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Foreword

Cryptography is a critical component of today’s information infrastructure; it is
what enables distributed information systems to exist and to work properly. Without
it, users would not be able to securely authenticate themselves to websites, secure
communications wouldn’t exist, and privacy would be unachievable.

Moreover, the number of applications for cryptography have increased dramati-
cally, as new cryptographic techniques are invented and proven secure. For example,
securely transacting with cryptocurrencies such as bitcoin requires modern cryptog-
raphy. As another example, hospitals may now share information about patients in
a way that protects patient privacy while allowing the hospitals to apply statisti-
cal methods assessing the effectiveness of new treatments on the aggregate of the
patients.

We recommend this book in our MIT class Applied Cryptography. This class is
about half undergraduates and half graduate students; past students have said the
text was excellent. It will be great to have this new edition available. The approach
taken in this text is more pragmatic and engineering-oriented than theory-oriented.
It is usable for both classroom use and self-study.

This edition of Understanding Cryptography contains much new material; the
book has expanded by almost 50% since the first edition. Part of this expansion is
due to the expansion of the field (technical), including new problems, and part of
the expansion is due to the addition of new references and discussion (historical).

Of particular note is the inclusion of new material on “quantum cryptography”:
cryptosystems that are specifically designed to resist attacks that are based on the
use of quantum computers. Shor’s algorithm (1994) showed that cryptographic al-
gorithms that are based on the hardness of factoring the product of two primes,
or that are based on the hardness of computing discrete logarithms, are vulnera-
ble to polynomial-time attacks using quantum computation. If and when quantum
computers become available, cryptographic methods such as RSA or elliptic-curve
cryptosystems will become vulnerable. Given the long lead time required to replace
cryptosystems in use, planning for a change-over to “quantum-resistant” algorithms
has already begun. The (U.S.) National Institute of Standards and Technology
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viii Foreword

textbook covers all three approaches. Indeed, this textbook may be the first to cover
PQC (post-quantum cryptography).

This textbook also has updated material on “conventional” (non-public-key)
cryptography. For example, it includes new and/or updated material on crypto-
graphic hash functions (including coverage of SHA-2 and SHA-3), stream ciphers
(including Salsa20 and ChaCha), and modes of operation (including authenticated
encryption modes).

In summary, I recommend this book highly for both undergraduate and graduate
classroom use; it can easily be augmented for students with a more theoretical ori-
entation. This book is also recommended for self-study, for anyone who wishes to
bring themselves up-to-date on where this exciting field is going.

December 2023 Ron Rivest

has converged on possible standards based on three particular hard problems; this



Preface

This is the second edition of Understanding Cryptography. Ever since we released
the first edition in 2009, we have been humbled by the many positive responses we
received from readers from all over the world. Our goal has always been to make the
fascinating but also challenging topic of cryptography accessible and fun to learn.
Key concepts of the book are that we focus on cryptography with high practical
relevance, and that the necessary mathematical material is accessible for readers
with a minimum background in college-level calculus. The fact that Understanding
Cryptography has been adopted as textbook by hundreds of universities on all conti-
nents (that is, if we ignore Antarctica) and the feedback we received from individual
readers and instructors makes us believe that this approach is working.

One thing that has changed since the first edition is that it has become abun-
dantly clear how important cybersecurity is in our, by now, digital society. Today,
seemingly every aspect in our private lives, at work or in governments has become
dependent on information technology in one way or another. Even though digital-
ization can have many benefits for individuals and society at large, information tech-
nology must come with strong security mechanisms in order to prevent malicious
manipulations. Here is where cryptography comes into play: It is a key tool for
building sound cybersecurity solutions. To this end, cryptographic algorithms have
crept into myriads of applications that surround us; examples range from social net-
works, smartphones and cloud servers to embedded systems like medical implants,
car keys and passports. Emerging applications such as autonomous cars and e-voting
will rely even more on strong security mechanisms. Of course, cryptocurrencies and
blockchains rely heavily on modern cryptographic algorithms, too.

Content Overview

The book has many features that make it a unique source for students, practition-
ers and researchers. We focus on practical relevance by introducing the majority
of cryptographic algorithms that are used in modern real-world applications. With
respect to symmetric algorithms, we introduce the block ciphers AES, DES and
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triple-DES as well as PRESENT, which is an important example of a lightweight
cipher. We also describe three popular stream ciphers. Regarding asymmetric cryp-
tography, we cover all three public-key families currently in use: RSA, discrete log-
arithm schemes and elliptic curves. In addition, the book introduces hash functions,
digital signatures and message authentication codes, or MACs. Beyond core cryp-
tographic algorithms, we also discuss topics such as modes of operation, security
services and key management. For every cryptographic scheme, up-to-date security
estimations and recommendations for key lengths are given. We also discuss the
important issue of software and hardware implementation.

What’s New

The second edition has received major updates and has grown from the 350 pages
of the first edition to more than 500 pages. The most noticeable new material is the
extensive treatment of post-quantum cryptography, or PQC, in Chapter 12. In the
coming years, many applications will need to replace traditional public-key schemes
with PQC algorithms. This will be the most comprehensive change in the landscape
of cryptography that we have seen in decades. We hope that our introduction to the
three most promising PQC families, that is lattice-based, code-based and hash-based
schemes, will be helpful in this context. Beside PQC, the 2nd edition also covers the
SHA-2 and SHA-3 hash functions, the new stream ciphers Salsa20 and ChaCha,
and authenticated encryption. Throughout the book, security parameters and
related work have been updated, as well as the Discussion and Further Reading
sections that conclude each chapter. The problem sections of all 14 chapters have
been extended, too.

How to Use the Book

The material in this book has evolved over many years and is “classroom proven”.
We’ve taught it both as a course for advanced undergraduate students and gradu-
ate students in computer science/math/electrical engineering, as well as a first-year
undergraduate course for students majoring in our IT security program. We found
that one can teach most concepts introduced in the book in a two-semester course,
with 90 minutes of lecture time plus 90 minutes of help sessions with exercises per
week (total of 10 ECTS credits). In a typical US-style three-credit course, or in a
one-semester European course, some of the material should be omitted. Here are
some reasonable choices for a one-semester course:

Course Curriculum 1 Focus on the application of cryptography, e.g., in an applied
course in computer science or a basic course for subsequent security classes, e.g., in
a cybersecurity program. A possible curriculum is: Chap. 1; Sects. 2.1–2.2; Chap. 4;
Sect. 5.1; Chap. 6; Sects. 7.1–7.3; Sects. 8.1–8.3; Sects. 10.1–10.2; Sects. 11.1–11.3;
Sects. 12.1 & 12.4; Sect. 13.1; Sects. 14.1–14.3.
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Course Curriculum 2 Focus on cryptographic algorithms and their mathematical
background, e.g., as a theory course in computer science or a crypto course in a math
program. This curriculum also works nicely as preparation for a more theoretical
course in cryptography: Chap. 1; Chap. 2; Chap. 4; Chap. 6; Chap. 7; Sects. 8.1 –
8.4; Chap. 9; Sects. 10.1–10.2; Sects. 11.1–11.3; Sects. 12.1, 12.2 & 12.4.

More Information

There are two online sources related to this book that we can recommend. First,
we recorded the two-semester introductory cryptography course that we teach at
Ruhr University Bochum (RUB). The main audience for this class are the first-
year students of RUB‘s IT Security program, and we tried to make the material as
accessible as possible. More than 20 lectures are available on the YouTube channel
“Introduction to Cryptography by Christof Paar”:

https://www.crypto-textbook.com/video

Each lecture takes about 80–90 minutes and closely follows the material in the book.
(For the more adventurous reader, there is also a German-language set of videos
available in the YouTube channel “Einführung in die Kryptographie von Christof
Paar”.)

Second, we recommend the companion website for the book, containing slide
sets for lecturers and solutions to odd-numbers problems of the book:

https://www.crypto-textbook.com

Trained as engineers, we have worked in applied cryptography and security for
more than 20 years and hope that the readers will have as much fun with this fasci-
nating field as we’ve had!

Christof Paar
Jan Pelzl

Tim Güneysu

Bochum, Germany
Hamm, Germany
Bochum, Germany

https://www.crypto-textbook.com/video
https://www.crypto-textbook.com
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Chapter 1
Introduction to Cryptography and Data Security

This section will introduce the most important terms of modern cryptology and will
teach an important lesson about proprietary vs. openly known algorithms. We will
also introduce modular arithmetic, which is useful for historical ciphers and of major
importance in modern public-key cryptography.

In this chapter you will learn:

� The general rules of cryptography
� Key lengths for short-, medium- and long-term security
� The different ways of attacking ciphers
� A few historical ciphers and on the way we will learn about modular arithmetic
� Why one should only use well-established cryptographic algorithms
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2 1 Introduction to Cryptography and Data Security

1.1 Overview of Cryptology (and This Book)

The book at hand provides an introduction to cryptography. This is part of the
broader area of cybersecurity, which deals with the protection of digital informa-
tion against misuse. Even though cybersecurity is a complex field that encompasses
technical aspects as well as organizational and human ones, almost all IT security
solutions in practice employ cryptography as a crucial module. A rough analogy
comes from the automotive domain: If cybersecurity is a car, cryptography is the en-
gine. Even though there are obviously many parts and technologies that are needed
for a car, every automobile relies on an engine as a central component. The same
holds in the security domain: It is hard to build secure digital systems without cryp-
tographic algorithms. As we know from almost daily reports about successful hacks
against IT systems, cybersecurity is difficult to achieve. In this context it is impor-
tant to bear in mind that today’s cryptography is usually the most secure part of a
cybersecurity solution. This book is primarily concerned with modern cryptographic
algorithms, also referred to as cryptographic primitives or ciphers.

If we hear the word cryptography our first associations might be cryptocurren-
cies, end-to-end encryption for the instant messenger running on our smartphone
or secure website access. Perhaps we go back a little bit in history and think about
the famous attack against the German Enigma encryption machine during World
War II (Figure 1.1). In any case, cryptography seems closely linked to modern elec-

Fig. 1.1 The German Enigma encryption machine (reproduced with permission of
the Deutsches Museum, Munich)

tronic communication. However, cryptography is a rather old business, with early
examples dating back to about 2000 B.C., when non-standard “secret” hieroglyphics
were used in ancient Egypt. Since Egyptian times cryptography has been used in one
form or another in many, if not most, cultures that developed written language. For
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instance, there are documented cases of secret writing in ancient Greece, namely the
scytale of Sparta (Figure 1.2), or the famous Caesar cipher in ancient Rome, about
which we will learn later in this chapter. This book, however, strongly focuses on

Fig. 1.2 Scytale of Sparta

modern cryptographic methods and also teaches many data security issues and their
relationship with cryptography.

Let’s now have a look at the field of cryptography, shown in Figure 1.3. The first

Fig. 1.3 Overview of the field of cryptology

thing that we notice is that the most general term is cryptology and not cryptography.
Cryptology splits into two main branches:

Cryptography is the science of securing communication against an adversary.
Historically, the main goal of crypography was to hide the meaning of a message.
Today, however, cryptography is also used for many other security goals such as
the integrity and authenticity of messages.
Cryptanalysis is the science and sometimes art of breaking cryptosystems. You
might think that code breaking is for the intelligence community or perhaps or-
ganized crime, and should not be included in a serious classification of a sci-
entific discipline. However, most cryptanalysis nowadays is done by respectable



4 1 Introduction to Cryptography and Data Security

researchers in academia. Cryptanalysis is of central importance for modern cryp-
tosystems: Without people who try to break our cryptographic methods, we will
never know whether they are really secure or not. This issue is discussed in more
detail in Section 1.3.

Because cryptanalysis is the only way to ensure that a cryptosystem is secure,
it is an integral part of cryptology. Nevertheless, the focus of this book is on
cryptography: We introduce the most important practical cryptographic algorithms
in detail. These are all ciphers that have withstood cryptanalysis for a long time, in
most cases for several decades. In the case of cryptanalysis we will mainly restrict
ourselves to providing state-of-the-art results with respect to breaking the crypto-
graphic algorithms that are introduced, e.g., the factoring record for breaking the
RSA scheme.

Let’s now go back to Figure 1.3. Cryptography itself splits into three main
branches:

Symmetric Algorithms are what many people assume cryptography is about:
Two parties have an encryption and decryption method for which they share a
secret key. All cryptography from ancient times until 1976 was exclusively based
on symmetric methods. Symmetric ciphers are still in widespread use, especially
for actual data encryption and integrity checking of messages.
Asymmetric (or Public-Key) Algorithms In 1976 an entirely different type of
cipher was introduced by Whitfield Diffie, Martin Hellman and Ralph Merkle.
In public-key cryptography, two keys exist: A user possesses a secret key as in
symmetric cryptography but also a public key. Asymmetric algorithms can be
used for applications such as digital signatures and key establishment but also
for classical data encryption.
Cryptographic Protocols Roughly speaking, cryptographic protocols realize
more complex security functions through the use of cryptographic algorithms.
Symmetric and asymmetric algorithms can be viewed as building blocks with
which applications such as secure internet communication can be realized. The
Transport Layer Security (TLS) scheme, which is used in every web browser, is
an example of a cryptographic protocol.

Strictly speaking, hash functions, which will be introduced in Chapter 11, form
a third class of algorithms but at the same time they share many properties with
symmetric ciphers.

In the majority of cryptographic applications in practical systems, symmetric and
asymmetric algorithms (and often also hash functions) are all used together. These
are sometimes referred to as hybrid schemes. The reason for using both families of
algorithms is that each has specific strengths and weaknesses.

The main focus of this book is on symmetric and asymmetric algorithms, as well
as hash functions. However, we will also introduce basic security protocols. In par-
ticular, we will introduce several key establishment protocols and discuss what can
be achieved with cryptographic protocols, including confidentiality of data, integrity
of data, authentication of data, user identification, etc.
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1.2 Symmetric Cryptography

This section deals with the concept of symmetric ciphers and introduces the historic
substitution cipher. Using the substitution cipher as an example, we will learn the
difference between brute-force and analytical attacks.

1.2.1 Basics

Symmetric cryptographic schemes are also referred to as symmetric-key, secret-key
and single-key schemes or algorithms. Symmetric cryptography is best introduced
with an easy-to-understand problem: There are two users, Alice and Bob, who want
to communicate over an insecure channel (Figure 1.4). The term channel might
sound a bit abstract but it is just a general term for the communication link: This can
be the internet, a stretch of air in the case of smartphones or a Wi-Fi home network,
or any other communication media you can think of. The actual problem starts with
the bad guy, Oscar1, who has access to the channel, for instance, by hacking into
an internet router or by listening to the radio signals of a Wi-Fi communication.
This type of unauthorized listening is called eavesdropping. Obviously, there are
many situations in which Alice and Bob would prefer to communicate without Oscar
listening. For instance, if Alice and Bob represent the headquarters and the research
office of a pharmaceutical company, and they are transmitting documents containing
their strategy for the development of a new pharmaceutical drug over the next few
years, these documents should not get into the hands of competitors, or of foreign
intelligence agencies for that matter.

Fig. 1.4 Communication over an insecure channel

In this situation, symmetric cryptography offers a powerful solution: Alice en-
crypts her message x using a symmetric algorithm, yielding the ciphertext y. Bob
receives the ciphertext and decrypts the message. Decryption is, thus, the inverse

1 The name Oscar was chosen to remind us of the word opponent.
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process of encryption (Figure 1.5). What is the advantage? If we have a strong en-
cryption algorithm, the ciphertext will look like random bits and Oscar will not be
able to obtain any useful information from it.

Fig. 1.5 Symmetric-key cryptosystem

The variables x, y and k in Figure 1.5 have special names in cryptography:

� x is called the plaintext or cleartext,
� y is called the ciphertext,
� k is called the key.

Remark that the set of all possible keys is called the key space. The system needs
a secure channel for distribution of the key between Alice and Bob. The secure
channel shown in Figure 1.5 can, for instance, be a human who is transporting the
key in a wallet between Alice and Bob. This is, of course, a cumbersome method.
An example where this method works nicely is the pre-shared keys used in Wi-Fi
Protected Access (WPA) encryption in wireless LANs. Later in this book we will
learn methods for establishing keys over insecure channels. In any case, the key
has only to be transmitted once between Alice and Bob and can then be used for
securing many subsequent communications.

One important and also counterintuitive fact in this situation is that both the en-
cryption and the decryption algorithms are publicly known. It seems that keeping the
encryption algorithm secret should make the whole system harder to break. How-
ever, secret algorithms also mean less intensively tested algorithms: The only way
to find out whether an encryption method is strong, i.e., cannot be broken by a de-
termined attacker, is to make it public and have it analyzed by other cryptographers.
Please see Section 1.3 for more discussion on this topic. The only thing that should
be kept secret in a sound cryptosystem is the key.
Remarks:

1. It seems very likely that most modern cryptographic algorithms can not be broken
by anybody on planet Earth, including big intelligence agencies. This assumes,
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however, that the algorithm is used correctly. Especially, we have to ensure that
an attacker does not get hold of the key. Of course, once Oscar knows the key, he
can easily decrypt the message since the algorithm is publicly known.
Hence it is crucial to note that the problem of transmitting a message se-
curely is reduced to the problems of transmitting a key secretly and of stor-
ing the key in a secure fashion.

2. In this scenario we only consider the problem of confidentiality, that is, of hiding
the contents of the message from an eavesdropper. We will see later in this book
that there are many other things we can do with cryptography, such as preventing
Oscar from making unnoticed changes to the message (message integrity) or
ensuring that a message really comes from Alice (sender authentication).

1.2.2 Simple Symmetric Encryption: The Substitution Cipher

We will now learn one of the simplest methods for encrypting text, the substitution
(= replacement) cipher. Historically this type of cipher has been widely used, and
it is a good illustration of basic cryptography. We will use the substitution cipher
for learning some important facts about key lengths and about different ways of
attacking cryptographic algorithms.

The goal of the substitution cipher is the encryption of text (as opposed to bits
in modern digital systems). The idea is very simple: We substitute each letter of the
alphabet with another one.

Example 1.1.

Plaintext Ciphertext
A → k

B → d

C → w

· · ·

For instance, the pop group ABBA would be encrypted as kddk.
�

We assume that we choose the substitution table completely randomly, so that
an attacker is not able to guess it. Note that the substitution table is the key of this
cryptosystem. As always in symmetric cryptography, the key, i.e., the substitution
table, has to be distributed between Alice and Bob in a secure fashion.

Example 1.2. Let’s look at another ciphertext:

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb
hcc hwwhbsqvqbre hwq vhlq

�
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This does not seem to make too much sense and looks like decent cryptography.
However, the substitution cipher is not secure at all! Let’s look at ways of breaking
the cipher.

First Attack: Brute-Force Attack or Exhaustive Key Search

Brute-force attacks treat the cipher as a black box. They are based on a simple con-
cept: Oscar, the attacker, has the ciphertext from eavesdropping on the channel and
happens to have a short piece of plaintext, e.g., the header of a file that was en-
crypted. Oscar now simply decrypts the first piece of ciphertext with all possible
keys. Again, the key for this cipher is the substitution table. If the resulting plaintext
matches the short piece of plaintext, he knows that he has found the correct key.

Definition 1.2.1 Basic Exhaustive Key Search or Brute-Force At-
tack
Let (x,y) denote the pair of plaintext and ciphertext, and let K =
{k1, ...,kκ} be the key space of all possible keys ki. A brute-force
attack now checks for every ki ∈ K whether

dki(y)
?
= x.

If the equality holds, a possible correct key is found; if not, proceed
with the next key.

In practice, a brute-force attack can be more complicated because incorrect keys can
give false positive results. We will address this issue in Section 5.2.

It is important to note that a brute-force attack against symmetric ciphers is al-
ways possible in principle. Whether it is feasible in practice depends on the key
space, i.e., on the number of possible keys that exist for a given cipher. If testing all
the keys on many modern computers takes too much time, i.e., hundreds or thou-
sands of years, the cipher is computationally secure against a brute-force attack.
More on computational security will be said in Section 2.2.3.

Let’s determine the key space of the substitution cipher: When choosing the re-
placement for the first letter A, we randomly choose one letter from the 26 letters of
the alphabet (in the example above we chose k). The replacement for the next al-
phabet letter B was randomly chosen from the remaining 25 letters, etc. Thus there
exist the following number of different substitution tables:

key space of the substitution cipher = 26 ·25 · · ·3 ·2 ·1 = 26!≈ 288

That means the key space has roughly a size of 288, which is equal to the key space
of a cipher that has a key consisting of 88 bits. Even with hundreds of thousands of
high-end PCs such a search would take several decades! Thus, we are tempted to
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conclude that the substitution cipher is secure. But this is incorrect because there is
another, more powerful, attack, which will be described in the following.

Second Attack: Letter Frequency Analysis

First we note that the brute-force attack from above treats the cipher as a black box,
i.e., we do not analyze the internal structure of the cipher. The substitution cipher
can easily be broken by such an analytical attack.

The major weakness of the cipher is that each plaintext symbol always maps to
the same ciphertext symbol. That means that the statistical properties of the plaintext
are preserved in the ciphertext. If we go back to the second example we observe that
the letter q occurs most frequently in the text. From this we know that q must be
the substitution for one of the frequent letters in the English language. For practical
attacks, the following properties of language can be exploited:

1. Determine the frequency of every ciphertext letter. The frequency distribution,
usually quite stable even for relatively short pieces of encrypted text, will be
close to that of the given language in general. In particular, the most frequent
letters can often easily be spotted in ciphertexts. For instance, in English E is the
most frequent letter (about 13%), T is the second most frequent letter (about 9%),
A is the third most frequent letter (about 8%), and so on. Table 1.1 lists the letter
frequency distribution of English.

Table 1.1 Relative letter frequencies of the English language

Letter Frequency Letter Frequency
A 0.0817 N 0.0675
B 0.0150 O 0.0751
C 0.0278 P 0.0193
D 0.0425 Q 0.0010
E 0.1270 R 0.0599
F 0.0223 S 0.0633
G 0.0202 T 0.0906
H 0.0609 U 0.0276
I 0.0697 V 0.0098
J 0.0015 W 0.0236
K 0.0077 X 0.0015
L 0.0403 Y 0.0197
M 0.0241 Z 0.0007

2. The method above can be generalized by looking at pairs or triples, or quadru-
ples, and so on of ciphertext symbols. For instance, in English (and some other
European languages), the letter Q is almost always followed by a U. This behavior
can be exploited to detect the substitution of the letter Q and the letter U.

3. If we assume that word separators, which means “blanks”, have been found
(which is only sometimes the case), one can often detect frequent short words



10 1 Introduction to Cryptography and Data Security

such as THE, AND, etc. Once we have identified one of these words, we imme-
diately know three letters (or whatever the length of the word is) for the entire
text.

In practice, the three techniques listed above are often combined to break substi-
tution ciphers.

Example 1.3. If we analyze the encrypted text from Example 1.2, we obtain:

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON
ALL ARRANGEMENTS ARE MADE

�

Lesson learned Good ciphers should hide the statistical properties of the encrypted
plaintext. The ciphertext symbols should appear to be random. Also, a large key
space alone is not sufficient for a strong encryption function.

1.3 Cryptanalysis

This section deals with recommended key lengths of symmetric ciphers and differ-
ent ways of attacking cryptographic algorithms. It is stressed that a cipher should be
secure even if the attacker knows the details of the algorithm.

1.3.1 General Thoughts on Breaking Cryptosystems

If we ask someone with some technical background what breaking ciphers is about,
he/she will most likely say that code breaking has to do with heavy mathematics,
smart people and large computers. We have images in mind of the British code
breakers during World War II, attacking the German Enigma cipher with extremely
smart mathematicians (the famous computer scientist Alan Turing headed the ef-
forts) and room-sized electro-mechanical computers. However, in practice there are
also other methods for code breaking. For a secure cryptosystem, it is important (1)
to use sound cryptographic algorithms and protocols and (2) to use correct imple-
mentations of the algorithms. Let’s look at different ways of breaking cryptosystems
in the real world shown in Figure 1.6.

Classical Cryptanalysis

Classical cryptanalysis attempts to break a cipher by analyzing the inputs and out-
puts. We recall from the earlier discussion that cryptanalysis can be divided into
analytical attacks, which exploit the internal structure of the encryption method,
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Fig. 1.6 Overview of cryptanalysis

and brute-force attacks, which treat the encryption algorithm as a black box and test
all possible keys. The specific goal of the adversary can vary but in most cases Oscar
attempts to recover the plaintext x from the ciphertext y or he attempts to recover
the key k from the ciphertext y. Especially for analytical attacks it is helpful to look
at what information the opponent has in addition to the ciphertext. The main classes
of attacks are:

� Ciphertext-only attack: The adversary has only access to the ciphertext.
� Known-plaintext attack: In addition to the ciphertext, the adversary also knows

some pieces of the plaintext (e.g., header information of an encrypted file or
email).

� Chosen-plaintext attack: The adversary can choose the plaintext that is being en-
crypted and also has access to the corresponding ciphertext. This can for instance
be the case when he has access to a decryption device such as a smart card and
he attempts to recover the secret key.

� Chosen-ciphertext attack: The adversary can choose ciphertexts and also obtains
the corresponding plaintexts. Again, the goal is typically to recover the secret
key.

This list is not exhaustive; additional attacks include adaptive chosen-plaintext and
adaptive chosen-ciphertext attacks or the related-key attack.

Implementation Attacks

Side-channel analysis can be used to extract a secret key by observing the behavior
of a cryptographic implementation, e.g., an integrated circuit or a piece of software.
One family of attacks uses the electrical power consumption or electromagnetic ra-
diation of the CPU that computes the cryptographic algorithms as sidechannels. The
attacker records the power or electromagnetic traces and applies signal processing
techniques to recover the key. Related attacks are based on timing side-channels, in
which the adversary measures the run time behavior of a cryptographic implemen-
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tation and attempts to compute the key from the timing measurements. All of these
attacks are mainly used against devices to which an attacker has physical access
such as smart cards, smartphones or IoT devices.2

Another family of attacks exploits software side-channels. They are primarily
relevant if different processes are running on a computer, e.g., in cloud computing.
The assumption is that the adversary controls one process with which he is able to
learn secret values such as cryptographic keys from another process. To gain infor-
mation, the hostile process exploits effects such as timing behavior or cache access
patterns. A main mechanism for preventing software side-channels is to ensure that
cryptographic implementations have a constant run time, independent of any secret
value.

Social Engineering Attacks

Bribing, blackmailing, tricking or classical espionage can be used to obtain a secret
key by involving humans. For instance, forcing someone to reveal his/her secret key,
e.g., by holding a gun to his/her head, can be quite successful. Another, less violent,
attack is to simply call the victim by phone and say: “This is the IT department of
your company. For important software updates we need your password”. It is always
surprising how many people are naı̈ve enough to actually give out their passwords
in such situations.

Even though both implementation attacks and social engineering attacks can be
quite powerful in practice, this book mainly assumes attacks based on mathematical
cryptanalysis and brute-force attacks.

We note that the list of attacks against cryptographic systems is certainly not
exhaustive. For instance, malware on a computer can also reveal secret keys in
software systems. You might think that many of these attacks, especially social
engineering and implementation attacks, are “unfair” but there is little fairness in
real-world cryptography. If people want to break your IT system, they are already
breaking the rules and are, thus, unfair. The major point to learn here is:

An attacker always looks for the weakest link in your cryptosystem. That
means we have to choose strong algorithms and we have to make sure that all
other attacks such as social engineering and implementation attacks are not
feasible.

Solid cryptosystems should adhere to Kerckhoffs’ Principle, postulated by Au-
guste Kerckhoffs in 1883.

2 Note that most modern hardware tokens that are security sensitive, such as smart cards used for
payment, have built-in countermeasures against sidechannel attacks and are very hard to break.
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Definition 1.3.1 Kerckhoffs’ Principle
A cryptosystem should be secure even if the attacker (Oscar) knows
all details about the system, with the exception of the secret key. In
particular, the system should be secure when the attacker knows the
encryption and decryption algorithms.

Some background information on the principle can be found in the Further Reading,
Section 1.5.

Important Remark: Kerckhoffs’ Principle is counterintuitive! It is extremely
tempting to design a system that appears to be more secure because we keep the de-
tails hidden. This is called security by obscurity. However, experience and military
history has shown over time that such systems are almost always weak, and they are
very often broken easily as soon as the secret design has been reverse-engineered or
leaked out through other means. An instructive case study for this is the attack on
Mifare chipcards. This type of chipcard had been used millionfold in applications
for contactless payment, e.g., in the original Oyster card used for London’s public
transportation system. Its security was based on a cipher which was kept secret. This
worked “well” for several years. However, after reverse-engineering the cipher, re-
searchers quickly found several ways of attacking the algorithm, both with classical
cryptanalysis and implementation attacks. This lead to severe security problems for
the real-world systems that were based on Mifare. For this reason, cryptographic
algorithms must provide security even if an attacker gets to known to all internal
details except for the key.

1.3.2 How Many Key Bits Are Enough?

During the 1990s there was much public discussion about the key length of ciphers.
Before we provide some guidelines, there are two crucial aspects to remember:

1. The discussion of key lengths for symmetric cryptographic algorithms is only rel-
evant if a brute-force attack is the best known attack. As we saw in Section 1.2.2
during the security analysis of the substitution cipher, if there is an analytical
attack that works, a large key space does not help at all. Of course, if there is the
possibility of social engineering or implementation attacks, a long key also does
not help.

2. The key lengths for symmetric and asymmetric algorithms are dramatically dif-
ferent. For instance, a 128-bit symmetric key provides roughly the same security
as a 3072-bit RSA (RSA is a popular asymmetric algorithm) key.

Both facts are often misunderstood, especially in the semitechnical literature.
Table 1.2 gives a rough indication of the security of symmetric ciphers with re-

spect to brute-force attacks. As described in Section 1.2.2, a large key space is a nec-
essary but not sufficient condition for a secure symmetric cipher. The cipher must
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also be strong against analytical attacks. The table mentions quantum computers.

Table 1.2 Estimated time for successful brute-force attacks on symmetric cipher
with different key lengths

Key length Security estimation
56–64 bits short term: a few hours or days
112–128 bits long term: several decades in the absence of quantum computers
256 bits long term: several decades, even with quantum computers

that run the currently known quantum computing algorithms

The role that they play for the cryptanalysis of symmetric ciphers is discussed in
Section 12.1.1.
Foretelling the Future Of course, predicting the future tends to be tricky: We can-
not really foresee new technical or theoretical developments with certainty. As you
can imagine, it is very hard to know what kinds of computers will be available in the
year 2050. For medium-term predictions, Moore’s Law is often assumed. Roughly
speaking, Moore’s Law states that computing power doubles every 18 months3

while the costs stay constant. This has the following implications in cryptography:
If today we need one month and computers worth $1,000,000 to break a cipher X ,
then:

� The cost for breaking the cipher will be $500,000 in 18 months (since we only
have to buy half as many computers),

� $250,000 in 3 years,
� $125,000 in 4.5 years, and so on.

It is important to stress that Moore’s law is an exponential function. In 15 years,
i.e., after 10 iterations of computer power doubling, we can do 210 = 1024 times
as many computations for the same money we would need to spend today. Stated
differently, we only need to spend about 1/1000th of today’s money to do the same
computation. In the example above that means that we can break cipher X in 15
years within one month at a cost of about $1,000,000/1024≈ $1000. Alternatively,
with $1,000,000, an attack can be accomplished within 45 minutes in 15 years from
now. Moore’s law behaves similarly to a bank account which pays a 100% interest
rate every 18 months: The compound interest grows very, very quickly. Unfortu-
nately, there are few trustworthy banks which offer such an interest rate.

3 In the literature, the doubling period of Moore’s law is sometimes alternatively given as
24 months. In the security context, it barely matters what exactly the doubling period is. The
crucial fact is that computing power grows exponentially over time.
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1.4 Modular Arithmetic and More Historical Ciphers

In this section we use two historical ciphers to introduce modular arithmetic with
integers. Even though the historical ciphers are no longer relevant, modular arith-
metic is extremely important in modern cryptography, especially for asymmetric
algorithms. Ancient ciphers date back to Egypt, where substitution ciphers were
used. A very popular special case of the substitution cipher is the Caesar cipher,
which is said to have been used by Julius Caesar to communicate with his army.
The Caesar cipher simply shifts the letters in the alphabet by a constant number of
steps. When the end of the alphabet is reached, the letters repeat in a cyclic way,
similarly to numbers in modular arithmetic.

To make computations with letters more practicable, we can assign each letter of
the alphabet a number. By doing so, an encryption with the Caesar cipher simply
becomes a (modular) addition with a fixed value. Instead of just adding constants,
a multiplication with a constant can be applied as well. This leads us to the affine
cipher.

Both the Caesar cipher and the affine cipher will now be discussed in more detail.

1.4.1 Modular Arithmetic

Almost all cryptographic algorithms, both symmetric ciphers and asymmetric ci-
phers, are based on arithmetic within a finite number of elements. Most number sets
we are used to, such as the set of natural numbers or the set of real numbers, are
infinite. In the following we introduce modular arithmetic, which is a simple way of
performing arithmetic on a finite set of integers. Let’s look at an example of a finite
set of integers from everyday life:

Example 1.4. Consider the hours on a clock. If you keep adding one hour, you ob-
tain:

1h,2h,3h, . . . ,11h,12h,1h,2h,3h, . . . ,11h,12h,1h,2h,3h, . . .

Even though we keep adding one hour, we never leave the set.
�

Let’s look at a general way of dealing with arithmetic in such finite sets.

Example 1.5. We consider the set of the nine numbers:

{0,1,2,3,4,5,6,7,8}

We can do regular arithmetic as long as the results are smaller than 9. For instance:

2 ·3 = 6
4+4 = 8



16 1 Introduction to Cryptography and Data Security

But what about 8+4? Now we try the following rule: Perform regular integer arith-
metic and divide the result by 9. We then consider only the remainder rather than
the original result. Since 8+4 = 12, and 12/9 has a remainder of 3, we write:

8+4≡ 3 mod 9

�

We now introduce an exact definition of the modulo operation.

Definition 1.4.1 Modulo Operation
Let a,r,m∈Z (where Z is a set of all integers) and m > 0. We write

a≡ r mod m

if m divides a− r.
m is called the modulus and r is called the remainder.

There are implications from this definition that go beyond the casual rule “divide by
the modulus and consider the remainder.” We discuss these in the following.

Computation of the Remainder

It is always possible to write a ∈ Z, such that

a = q ·m+ r for 0≤ r < m (1.1)

Since a− r = q ·m, i.e., m divides a− r, we can now write: a≡ r mod m. Note that
r ∈ {0,1,2, . . . ,m−1}.

Example 1.6. Let a = 42 and m = 9. Then

42 = 4 ·9+6

and therefore 42≡ 6 mod 9.
�

The Remainder Is Not Unique

It is somewhat surprising that for every given modulus m and number a, there are
(infinitely) many valid remainders. Let’s look at another example:

Example 1.7. We want to reduce 12 modulo 9. Here are several results that are cor-
rect according to the definition:
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� 12≡ 3 mod 9, 3 is a valid remainder since 9|(12−3)
� 12≡ 21 mod 9, 21 is a valid remainder since 9|(12−21)
� 12≡−6 mod 9, −6 is a valid remainder since 9|(12− (−6))

where the “x|y” means “x divides y”. There is a system behind this behavior. The set
of numbers:

{. . . ,−24,−15,−6,3,12,21,30, . . .}

form what is called an equivalence class. There is a total of nine equivalence classes
for the modulus 9:

{. . . ,−27,−18,−9, 0, 9,18,27, . . .}
{. . . ,−26,−17,−8, 1, 10,19,28, . . .}

...
{. . . ,−19,−10,−1, 8, 17,26,35, . . .}

�

We note that every integer, i.e., every number without decimal places from minus
infinity to plus infinity, is a member in one of these equivalence classes.

All Members of a Given Equivalence Class Behave Equivalently

For a given modulus m, it does not matter which element from a class we choose
for a given computation. This property of equivalence classes has major practical
implications. If we have involved computations with a fixed modulus — which is
usually the case in cryptography — we are free to choose the class element that
results in the easiest computation. Let’s look first at an example.

Example 1.8. The core operation in many practical public-key schemes is an expo-
nentiation of the form xe mod m, where x,e,m are very large integers, say, 2048 bits
each. Using a toy-size example, we can demonstrate two ways of doing modular ex-
ponentiation. We want to compute 38 mod 7. The first method is the straightforward
approach, and for the second one we switch within the equivalence class.

1. Naı̈ve method: We compute 38 = 6561≡ 2 mod 7, since 6561 = 937 ·7+2.
Note that we obtain the fairly large intermediate result 6561 even though we
know that our final result cannot be larger than 6.

2. Here is a much smarter method: First we perform two partial exponentiations:

38 = 34 ·34 = 81 ·81

We can now replace the intermediate results 81 by another member of the same
equivalence class. The smallest positive member modulo 7 in the class is 4 (since
81 = 11 ·7+4). Hence:
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38 = 81 ·81≡ 4 ·4 = 16 mod 7

From here we obtain the final result easily as 16≡ 2 mod 7.

Note that we could perform the second method without a pocket calculator since
the numbers never become larger than 81. For the first method, on the other hand,
dividing 6561 by 7 is mentally already a bit challenging. As a general rule we should
remember that it is almost always of computational advantage to apply the modulo
reduction as soon as we can in order to keep the numbers small. �

Of course, the final result of any modulo computation is always the same, no
matter how often we switch back and forth within equivalence classes.

Which Remainder Do We Choose?

By agreement, we usually choose r in Equation (1.1) such that:

0≤ r ≤ m−1

However, mathematically it does not matter which member of an equivalent class
we use.

1.4.2 Integer Rings

After studying the properties of modulo reduction we are now ready to define in
more general terms a structure that is based on modulo arithmetic. Let’s look at the
mathematical construction that we obtain if we consider the set of integers from
zero to m−1 together with the operations addition and multiplication.

Definition 1.4.2 Ring
The integer ring Zm consists of:

1. The set Zm = {0,1,2, . . . ,m−1}
2. Two operations “+” and “·” for all a,b ∈ Zm such that:

1. a+b≡ c mod m (c ∈ Zm)
2. a ·b≡ d mod m (d ∈ Zm)
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Let’s first look at an example of a small integer ring.

Example 1.9. Let m= 9, i.e., we are dealing with the ring Z9 = {0,1,2,3,4,5,6,7,8}.
Here are two simple computations in this ring:

6+8 = 14≡ 5 mod 9
6 ·8 = 48≡ 3 mod 9

�

More about rings and finite fields, which are related to rings, is discussed in
Section 4.3. At this point, the following properties of rings are important:

� We can add and multiply any two numbers from the set and the result is always
in the ring. A ring is said to be closed.

� Addition and multiplication are associative, i.e., a+(b+ c) = (a+ b)+ c and
a · (b · c) = (a ·b) · c, for all a,b,c ∈ Zm.

� Addition is commutative, i.e., a+b = b+a, for all a,b ∈ Zm.
� There is the neutral element 0 with respect to addition, i.e., for every element

a ∈ Zm it holds that a+0≡ a mod m.
� For any element a in the ring, there is always the negative element −a such that

a+(−a)≡ 0 mod m, i.e., the additive inverse always exists.
� There is the neutral element 1 with respect to multiplication, i.e., for every ele-

ment a ∈ Zm it holds that a ·1≡ a mod m.
� The multiplicative inverse exists only for some, but not for all, elements. Let

a ∈ Z. The inverse a−1 is defined such that

a ·a−1 ≡ 1 mod m

If an inverse exists for a, we can divide by this element since b/a≡ b ·a−1 mod
m.

� Another ring property is that a · (b+ c) = (a ·b)+(a · c) for all a,b,c ∈ Zm, i.e.,
the distributive law holds.

In summary, roughly speaking, we can say that the ring Zm is the set of integers
{0,1,2, . . . ,m−1} in which we can add, subtract, multiply and sometimes divide.

One issue that is worth discussing is the multiplicative inverse. It takes some ef-
fort to find the inverse (usually employing the extended Euclidean algorithm, which
is introduced in Section 6.3). However, there is an easy way of telling whether an
inverse for a given element a exists or not:

An element a ∈ Z has a multiplicative inverse a−1 if and only if gcd(a,m) = 1,
where gcd is the greatest common divisor, i.e., the largest integer that divides both
numbers a and m. The fact that two numbers have a gcd of 1 is of importance in
number theory, and there is a special name for it: If gcd(a,m) = 1, then a and m are
said to be relatively prime or coprime.
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Example 1.10. Let’s see whether the multiplicative inverse of 15 exists in Z26. Be-
cause

gcd(15,26) = 1

the inverse must exist. (In fact, the inverse is 7 since 7 ·15≡ 1 mod 26.) On the other
hand, since

gcd(14,26) = 2 6= 1

the multiplicative inverse of 14 does not exist in Z26.
�

As mentioned earlier, the ring Zm, and thus integer arithmetic with the modulo
operation, is of central importance in modern public-key cryptography. In practice,
the integers involved have a length of 256–4096 bits so that we need ways to perform
modular arithmetic with such large numbers efficiently.

1.4.3 Shift Cipher (or Caesar Cipher)

We now introduce another historical cipher, the shift cipher. It is actually a special
case of the substitution cipher and has a very elegant mathematical description.

The shift cipher itself is extremely simple: We simply shift every plaintext letter
by a fixed number of positions in the alphabet. For instance, if we shift by 3 posi-
tions, A would be substituted by d, B by e, etc. The only problem arises towards
the end of the alphabet: What should we do with X, Y, Z? As you might have
guessed, they should “wrap around”. That means X should become a, Y should be-
come b, and Z is replaced by c. (In light of this rule, a more accurate name for
the shift cipher would be “rotation cipher” but this name is rarely used.) Allegedly,
Julius Caesar used this cipher with a three-position shift.

The shift cipher also has an elegant description using modular arithmetic. For the
mathematical representation of the cipher, the letters of the alphabet are encoded as
numbers, as depicted in Table 1.3.

Table 1.3 Encoding of letters for the shift cipher

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12
N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Both the plaintext letters and the ciphertext letters are now elements of the ring
Z26. Also, the key, i.e., the number of shift positions, is in Z26 since more than
26 shifts would not make sense (27 shifts would be the same as 1 shift, etc.). The
encryption and decryption of the shift cipher are as follows.
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Definition 1.4.3 Shift Cipher
Let x,y,k ∈ Z26.
Encryption: ek(x)≡ x+ k mod 26
Decryption: dk(y)≡ y− k mod 26

Example 1.11. Let the key be k = 17, and the plaintext is:

ATTACK= x1,x2, . . . ,x6 = 0,19,19,0,2,10

The ciphertext is then computed as

y1,y2, . . . ,y6 = 17,10,10,17,19,1 = rkkrtb

�

As you can guess from the discussion of the substitution cipher earlier in this
book, the shift cipher is not secure at all. There are two ways of attacking it:

1. Since there are only 26 different keys (shift positions), one can easily launch a
brute-force attack by trying to decrypt a given ciphertext with all possible 26
keys. If the resulting plaintext is readable text, you have found the key.

2. As for the substitution cipher, one can also use letter frequency analysis. The
attack works even better for the shift cipher than for the substitution cipher. As
soon as the attacker has discovered the ciphertext letter for one plaintext letter,
he/she knows the number of shifts and thus has the key.

1.4.4 Affine Cipher

We try now to improve the shift cipher by generalizing the encryption function.
Recall that the actual encryption of the shift cipher was the addition of the key
yi ≡ xi + k mod 26. The affine cipher encrypts by multiplying the plaintext by one
part of the key followed by addition of another part of the key.

Definition 1.4.4 Affine Cipher
Let x,y,a,b ∈ Z26.
Encryption: ek(x) = y≡ a · x+b mod 26
Decryption: dk(y) = x≡ a−1 · (y−b) mod 26
with the key: k = (a,b), which has the restriction: gcd(a,26) = 1.
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The decryption is easily derived from the encryption function:

a · x+b ≡ y mod 26
a · x ≡ (y−b) mod 26

x ≡ a−1 · (y−b) mod 26

The restriction gcd(a,26) = 1 stems from the fact that the key parameter a needs
to be inverted for decryption. We recall from Section 1.4.2 that an element a and the
modulus must be relatively prime for the inverse of a to exist. Thus, a must be in
the set:

a ∈ {1,3,5,7,9,11,15,17,19,21,23,25} (1.2)

But how do we find a−1? For now, we can simply compute it by trial and error:
For a given a we simply try all possible values a−1 until we obtain:

a ·a−1 ≡ 1 mod 26

For instance, if a = 3, then a−1 = 9 since 3 ·9 = 27≡ 1 mod 26. Note that a−1 also
always fulfills the condition gcd(a−1,26) = 1 since the inverse of a−1 always exists.
In fact, the inverse of a−1 is a itself. Hence, for the trial-and-error determination of
a−1 one only has to check the values given in Equation (1.2).

Example 1.12. Let the key be k = (a,b) = (9,13), and the plaintext be

ATTACK= x1,x2, . . . ,x6 = 0,19,19,0,2,10.

The ciphertext is computed as

y1,y2, . . . ,y6 = 13,2,2,13,5,25 = nccnfz

For decryption, the inverse of a needs to be determined, which turns out to be
a−1 = 3. �

Is the affine cipher secure? No! The key space is only a bit larger than in the case
of the shift cipher:

key space = (#values for a) · (#values for b)

= 12 ·26 = 312

A key space with 312 elements can, of course, still be searched exhaustively, i.e.,
brute-force attacked, in a fraction of a second with any PC. In addition, the affine
cipher has the same weakness as the shift and substitution cipher: The mapping
between plaintext letters and ciphertext letters is fixed. Hence, it can also be broken
with letter frequency analysis.

The remainder of this book deals with strong cryptographic algorithms which are
of practical relevance.
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1.5 Discussion and Further Reading

This book addresses practical aspects of cryptography and data security and is in-
tended to be used as an introduction; it is suited for classroom use, distance learning
and self-study. At the end of each chapter, we provide a discussion section in which
we briefly describe topics for readers interested in further study of the material.

Cryptography vs. Cybersecurity vs. Safety and Reliability As mentioned at the
very beginning of the book, cryptography is part of the broader fields of cyber-
security and IT security, where it is difficult to have a clear distinction between
those two latter terms. In fact, there exist many definitions for IT- and cybersecu-
rity. Traditionally, those terms were often described as dealing with “assurance of
the confidentiality, integrity and availability of information”, sometimes referred to
as the CIA triad. However, in addition to these three basic security goals, there are
often additional ones, including authenticity, accountability, non-repudiation and re-
liability. More about security services can be found in Section 10.1.3 of this book.
It is important to bear in mind that cryptography, IT- and cybersecurity all deal with
the protecting of information systems against malicious human actors, to which we
refer as attackers or adversaries in this book. In contrast, technical safety4 is con-
cerned with protection against dangers such as random failures that arise during the
regular use of technical systems. For instance, when driving a car, we want to ensure
that the brakes and the steering don’t fail — otherwise it would be unsafe. In order
to achieve such technical safety, systems must be reliable. In contrast to security,
safety and reliability are primarily not concerned with failure due to malicious ac-
tors but due to (random) technical failures. Even though reliability and security are
partially interdependent, they involve different aspects of protecting systems.

In order to approach the problem of IT security systematically, several general
frameworks exist. They typically follow a holistic approach by taking all security-
relevant factors into account. Such an approach requires that assets and correspond-
ing security needs have to be defined, and that the attack potential and possible
attack paths must be evaluated. Finally, adequate countermeasures have to be spec-
ified in order to realize an appropriate level of security for a particular application
or environment. There are numerous standards that can be used for evaluation and
help to define a secure system. Among the more prominent ones are ISO/IEC 27001
for Information Security Management Systems (ISMS), the Common Criteria for
Information Technology Security Evaluation [75] and FIPS PUBS [116]. In some
industries, standards help to establish a more domain-specific approach towards IT
security, e.g., ISO/IEC 62443 for industrial communication networks or ISO/SAE
21434 for cybersecurity engineering for road vehicles [147]. Moreover, frameworks
such as the NIST framework for improving the IT security in critical infrastructures
exist [29].

Historical Ciphers and Kerckhoffs’ Principle This chapter introduced a few his-
torical ciphers. However, there are many, many more, ranging from ciphers in an-

4 We note that safety is also used in non-technical contexts, e.g., food safety.
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cient times to WWII encryption methods. To readers who wish to learn more about
historical ciphers and the role they played over the centuries, the books by Bauer
[30], Kahn [156], Singh [237] and Wrixon [254] are recommended. Besides mak-
ing fascinating bedtime reading, these books help one to understand the role that
military and diplomatic intelligence played in shaping world history. They also help
to show modern cryptography in a larger context.

Auguste Kerckhoffs was a Dutch cryptographer and linguist in the second half
of the nineteenth century. He observed that cryptography is often used incorrectly
in practice and postulated six principles in 1883, given below. What’s today widely
known as Kerckhoffs’ Principle is actually the second one from the list.

� The system should be, if not theoretically unbreakable, unbreakable in practice.
� The design of a system should not require secrecy, and compromise of the system

should not inconvenience the correspondents.
� The key should be memorable without notes and should be easily changeable.
� The cryptograms should be transmittable by telegraph.
� The apparatus or documents should be portable and operable by a single person.
� The system should be easy, neither requiring knowledge of a long list of rules

nor involving mental strain.

It is notable that several of the principles deal with the use of cryptography, as
opposed to the technical aspects of ciphers, a fact that was only relatively recently
observed by Sasse [226]. It was only in the 1990s that usable security emerged as a
proper research discipline within the scientific community.

Modular Arithmetic The mathematics introduced in this chapter, modular arith-
metic, belongs to the field of number theory. This is a fascinating subject area
which was, unfortunately, historically viewed as a “branch of mathematics with-
out applications”. Thus, it is rarely taught outside mathematics curricula. There is a
wealth of books on number theory. Among the classic introductory books are refer-
ences [204, 222]. A particularly accessible book written for non-mathematications
is reference [236].

Provable Security Due to our focus on practical cryptography, this book omits
most aspects related to the theoretical foundations of cryptographic algorithms and
protocols. One of the foundations of theoretical cryptography builds on the belief
that any cryptographic scheme should be accompanied by a rigorous mathematical
proof of its security (“security proof”) under a well-defined and reasonable crypto-
graphic hardness assumption. Examples of such hardness assumptions include the
assumption that computing discrete logarithms over certain prime-order groups is
difficult, the assumption that finding a small vector in a high-dimensional lattice is
difficult, or the assumption that finding a collision in a concrete hash function is
difficult. This concept is called provable security.5 Informally, “provable security”

5 The term “provable security” may be slightly misleading since it does not provide unconditional
proofs in a mathematical sense. It rather reduces a protocol’s security to a well-defined mathe-
matical hardness assumption. Some cryptographers therefore prefer to use the term “reductionist
security” instead.
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is achieved for a given cryptographic scheme when one provides (i) an algorith-
mic description of the cryptographic scheme; (ii) a formulation of a rigorous and
precise definition of the adversary’s capacities and goal (security model); and (iii)
a mathematical proof that the proposed scheme meets its security goal, assuming
some standard cryptographic assumption holds true. Point (iii) is remarkable and
deserves more attention. This mathematical proof shows formally that the only way
to break the scheme (within the defined security model) is to attack the underly-
ing cryptographic assumption. The proof holds for all possible attacks under the
same assumptions, even the ones we could not envision at the time of designing the
scheme.

The standard references for provable security are the textbooks by Katz/Lindell
[158] and Goldreich [123, 124]. Also recommended is the more recent online book
by Rosulek [223].

A few times this book also touches upon provable security, for instance the re-
lationship between Diffie–Hellman key exchange and the Diffie–Hellman problem
(cf. Section 8.4), the block cipher-based hash functions in Section 11.3.1, the secu-
rity of the HMAC message authentication scheme in Section 13.2, or the security
of lattice-based cryptography based on the conjectured intractability of the shortest-
vector problem in Section 12.2.

Advanced Cryptographic Schemes There are many advanced cryptographic con-
structions that go beyond the symmetric and asymmetric ciphers that are the main
topic of this book. In the following we sketch some of the more important examples
of advanced cryptography.

Homomorphic encryption allows computation on encrypted data, i.e., on cipher-
text, without first decrypting. A major application scenario is cloud computing,
where a user has a massive amount of data in encrypted form in the cloud. If the data
is, for instance, a large customer database, the user might be interested in download-
ing some customer records that fulfill certain criteria. The challenge is to perform
such a search on the ciphertext. It is relatively easy to construct partially homo-
morphic encryption schemes, which are constructions that allow one mathematical
operation to be performed on the ciphertext, typically multiplication or addition. In
fact, the two popular asymmetric encryption schemes RSA (cf. Chapter 7) and Elga-
mal (cf. Section 8.5) are partially homomorphic. Unfortunately, one mathematical
operation is not sufficient for the majority of practical applications. For a long time
finding a fully homomorphic encryption scheme that allows arbitrary operations was
considered the holy grail of cryptography. The first such scheme was proposed by
Gentry [122] in 2009, which is based on lattices (cf. Section 12.2). This original sys-
tem was quite impractical but since then numerous improvements have taken place.
At the time of writing, many competing schemes exist and use in practice is within
reach. This topic also relevant for the training of machine learning algorithms.

Another advanced cryptographic scheme is multiparty computation (MPC), also
known as secure multiparty computation. With MPC, several parties provide input
values and jointly compute a function from the inputs. The interesting part is that
when the protocol is completed the participants know only their own input and the
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answer but nothing about the inputs of the other participants. A standard example is
a situation where three people want to find out what the highest salary in the group
is without revealing the individual salaries. Another application is determining the
outcome of an election, that is electronic voting, or the highest bid in an auction
based on encrypted data. The general theory of MPC was proposed in the late 1980s
but it took more than 20 years before the first practical application started to emerge.
A good reference source is [80]. Related to multiparty computation is secret sharing.
The idea of (general) secret sharing is that out of n participants t must collaborate
to compute a secret, e.g., a cryptographic key. A real-world scenario is that at least
2 out of 3 managers of a bank must get together to generate the secret code for
opening a safe. Secret sharing was proposed independently by Shamir and Blakley
in 1979 [229, 54].

Zero-knowledge proofs are concerned with proving certain knowledge to another
party without revealing the secret. They were originally motivated for authentication
without revealing a password or key. There are many other applications such as
anonymous payment schemes. Zero-knowledge proofs were originally proposed by
Goldwasser, Micali and Rackoff [125].

Other advanced cryptographic constructions include identity-based encryption,
attribute-based encryption, functional encryption and proxy-reencryption.

Research Community and General References Even though cryptography has
matured considerably since the 1970s, it is still a relatively young field compared to
other scientific disciplines, and every year brings many new developments and dis-
coveries. Many research results are published at the eight main events organized by
the International Association for Cryptologic Research (IACR). The proceedings of
the three IACR conferences Crypto, Eurocrypt and Asicacrypt, the four more spe-
cific area conferences Cryptographic Hardware and Embedded Systems6 (CHES),
Fast Software Encryption (FSE), Public Key Cryptography (PKC) and Theoretical
Cryptograpy Conference (TCC), as well as the Real World Cryptography (RWC)
symposium are excellent sources for tracking recent developments in the field of
cryptology. There are four top conferences in the broader field of computer secu-
rity (of which cryptography is one aspect): the IEEE Symposium on Security and
Privacy (IEEE S&P), the ACM Conference on Computer and Communications Se-
curity (CCS), the USENIX Security Symposium and the Network and Distributed
System Security Symposium (NDSS). It should be stressed that in cryptography as
well as in computer security there are many, many more conferences and workshops,
many of which are also of very high quality.

There are several good books on cryptography. A classic, if somewhat dated,
book is Applied Cryptography [227] by Schneier published in 1994, which helped
to popularize modern cryptography. A more recent book, which makes an excellent
addition to the book at hand, is Serious Cryptography: A Practical Introduction
to Modern Encryption by Aumasson [20]. With respect to reference sources, the
Handbook of Applied Cryptography by Menezes, van Oorschot and Vanstone [189]
and the Encyclopedia of Cryptography and Security [246] can be recommended. An

6 CHES was co-founded by one of the authors of this book.
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excellent reference for the much broader field of security engineering is Anderson’s
Security Engineering: A Guide to Building Dependable Distributed Systems [12].

1.6 Lessons Learned

� Never ever develop your own cryptographic algorithm unless you have a team of
experienced cryptanalysts checking your design.

� Do not use unproven cryptographic algorithms (i.e., symmetric ciphers, asym-
metric ciphers, hash functions) or unproven protocols.

� Attackers always look for the weakest point of a cryptosystem. For instance, a
large key space by itself is no guarantee of a cipher being secure; the cipher might
still be vulnerable against analytical attacks.

� Key lengths for symmetric algorithms in order to thwart exhaustive key-search
attacks are:

� 64 bits: insecure except for data with extremely short-term value.
� 112–128 bits: long-term security of several decades, including attacks by in-

telligence agencies unless they possess quantum computers. Based on our cur-
rent knowledge, attacks are only feasible with quantum computers (which do
not exist but might become reality in 1–2 decades).

� 256 bits: as above, but possibly secure against attacks by quantum computers.

� Modular arithmetic is a tool for expressing historical encryption schemes, such as
the affine cipher, in a mathematically elegant way and provides the fundamental
basis for many modern cryptographic schemes.
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Problems

1.1. The ciphertext below was encrypted using a substitution cipher. Decrypt the ci-
phertext without knowledge of the key.

lrvmnir bpr sumvbwvr jx bpr lmiwv yjeryrkbi jx qmbm wi
bpr xjvni mkd ymibrut jx irhx wi bpr riirkvr jx
ymbinlmtmipw utn qmumbr dj w ipmhh but bj rhnvwdmbr bpr
yjeryrkbi jx bpr qmbm mvvjudwko bj yt wkbrusurbmbwjk
lmird jk xjubt trmui jx ibndt

wb wi kjb mk rmit bmiq bj rashmwk rmvp yjeryrkb mkd wbi
iwokwxwvmkvr mkd ijyr ynib urymwk nkrashmwkrd bj ower m
vjyshrbr rashmkmbwjk jkr cjnhd pmer bj lr fnmhwxwrd mkd
wkiswurd bj invp mk rabrkb bpmb pr vjnhd urmvp bpr ibmbr
jx rkhwopbrkrd ywkd vmsmlhr jx urvjokwgwko ijnkdhrii
ijnkd mkd ipmsrhrii ipmsr w dj kjb drry ytirhx bpr xwkmh
mnbpjuwbt lnb yt rasruwrkvr cwbp qmbm pmi hrxb kj djnlb
bpmb bpr xjhhjcwko wi bpr sujsru msshwvmbwjk mkd
wkbrusurbmbwjk w jxxru yt bprjuwri wk bpr pjsr bpmb bpr
riirkvr jx jqwkmcmk qmumbr cwhh urymwk wkbmvb

1. Compute the relative frequency of all letters A...Z in the ciphertext. You may
want to use a tool such as the open-source program CrypTool [82] for this task.
However, a paper and pencil approach is also doable.

2. Decrypt the ciphertext with the help of the relative letter frequency of the English
language (see Table 1.1 in Section 1.2.2). Note that the text is relatively short
and that the letter frequencies in it might not perfectly align with that of general
English language from the table.

3. Who wrote the text?

1.2. We received the following ciphertext which was encoded with a shift cipher:
xultpaajcxitltlxaarpjhtiwtgxktghidhipxciwtvgtpilpit

ghlxiwiwtxgqadds.

1. Perform an attack against the cipher based on a letter frequency count: How
many letters do you have to identify through a frequency count to recover the
key? What is the cleartext?

2. Who wrote this message?

1.3. We consider the long-term security of the Advanced Encryption Standard
(AES) with a key length of 128 bits with respect to exhaustive key-search attacks.
AES is perhaps the most widely used symmetric cipher at this time.

1. Assume that an attacker has special-purpose hardware chips (also known as
ASICs, or application-specific integrated circuits) that check 5 · 108 keys per
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second, and she has a budget of $1 million. One ASIC costs $50, and we as-
sume 100% overhead for integrating the ASIC (manufacturing the printed circuit
boards, power supply, cooling, etc.). How many ASICs can we run in parallel
with the given budget? How long does an average key search take? Relate this
time to the age of the Universe, which is about 1010 years.

2. We try now to take advances in computer technology into account. Predicting
the future tends to be tricky but the estimate usually applied is Moore’s law,
which states that the computing power doubles every 18 months while the costs
of integrated circuits stay constant. How many years do we have to wait until
a key-search machine can be built to break AES with 128 bits with an average
search time of 24 hours? Again, assume a budget of $1 million (do not take
inflation into account).

1.4. We now consider the relation between passwords and key size. For this purpose
we consider a cryptosystem where the user enters a key in the form of a password.

1. Assume a password consisting of 8 letters, where each letter is encoded with the
ASCII code (7 bits per character, i.e., 128 possible characters). What is the size
of the key space which can be constructed by such passwords?

2. What is the corresponding key length in bits?
3. Assume that most users use only the 26 lowercase letters from the alphabet in-

stead of the full 7 bits of the ASCII-encoding. What is the corresponding key
length in bits in this case?

4. At least how many characters are required for a password in order to generate a
key length of 128 bits in case of letters consisting of

a. 7-bit characters?
b. 26 lowercase letters from the alphabet?

1.5. In case of a brute-force attack, we have to search the entire key space of a cipher.
To prevent such a search from being successful, the key space must be sufficiently
large. It is crucial to observe that the key space grows exponentially with the key
length in bits. With this problem we want to get a better understanding of such an
exponential growth.
According to an anecdote, the inventor of chess asked the king for a humble reward
in the form of grains of rice: On the first field of the chess board, the king should
put one grain of rice, on the second field two grains of rice, on the third field four
grains etc.

1. How many grains of rice are on the last field of the chess board?
2. A single grain of rice has a weight of approximately 0.03 g. What is the total

weight of all grains on the board? Compare the total weight with the worldwide
yield of approximately 480 million tons per year.

Now, let us consider a piece of paper that is repeatedly folded. The thickness of the
paper increases exponentially: It has twice the thickness if folded once, four times
the thickness if folded twice etc. For the following tasks, we assume a piece of paper
which is 0.1 mm thick.
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3. How thick is the paper after 10 folding steps?
4. How often do we need to fold it to obtain a thickness of 1 km?
5. How often do we need to fold it to obtain the distance from the Earth to the Moon

(384,400 km)?
6. How often do we need to fold it to obtain the distance of one light year, i.e.,

9.46 ·1015 km?

Remark: Obviously, folding a piece of paper that often will not work out very well
in practice.

1.6. In this problem we consider the difference between end-to-end encryption
(E2EE) and more classical approaches to encrypting when communicating over a
channel that consists of multiple parts. E2EE is widely used, e.g., in instant messag-
ing services such as WhatsApp or Signal. The idea behind this is that encryption and
decryption are performed by the two users who communicate and all parties eaves-
dropping on the communication link cannot read (or meaningfully manipulate) the
message.

In the following we assume that each individual encryption with the cipher e() is
secure, i.e., the cryptographic algorithm cannot be broken by an adversary. First we
look at the communication between two smartphones without end-to-end encryp-
tion, shown in Figure 1.7. Encryption and/or decryption happen three times in this
setting: Between Alice and base station A (air link), between base stations A and B
(through the internet), and between base station B and Bob (again, air link).

Fig. 1.7 Communication without E2EE

1. Describe which of the following attackers can read (and meaningfully manipu-
late) messages.

a. A hacker who can listen to (and alter) messages on the air link between Alice
and her base station.

b. The mobile operator who runs and controls base station A.
c. A national law enforcement agency that has power over the mobile operator

and gains access to base station A or B.
d. An intelligence agency of a foreign country that can wiretap any internet com-

munication.
e. The mobile operator who runs and controls base station B.
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f. A hacker who can listen to (and alter) messages on the air link between Bob
and his base station.

We now look at the same communication system but this time Alice and Bob use
E2EE, cf. Figure 1.8

Fig. 1.8 Communication with E2EE

2. Describe which of the following attackers can read (and meaningfully manipu-
late) messages in the communication systems with E2EE.

a. A hacker who can listen to (and alter) messages on the air link between Alice
and her base station.

b. The mobile operator who runs and controls base station A.
c. A national law enforcement agency that has power over the mobile operator

and gains access to base station A or B.
d. An intelligence agency of a foreign country that can wiretap any internet com-

munication.
e. The mobile operator who runs and controls base station B.
f. A hacker who can listen to (and alter) messages on the air link between Bob

and his base station.

1.7. As we learned in this chapter, modular arithmetic is the basis of many cryp-
tosystems. We will now provide a number of exercises that help us get familiar with
modular computations.

Let’s start with an easy one: Compute the following result without a calculator.

1. 15 ·29 mod 13
2. 2 ·29 mod 13
3. 2 ·3 mod 13
4. −11 ·3 mod 13

The results should be given in the range from 0,1, . . . , modulus-1. Briefly describe
the relation between the different parts of the problem.
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1.8. Compute without a calculator:

1. 1/5 mod 13
2. 1/5 mod 7
3. 3 ·2/5 mod 7

1.9. We consider the ring Z4. Construct a table that describes the addition of all
elements in the ring with each other in the following form:

+ 0 1 2 3
0 0 1 2 3
1 1 2 · · ·
2 · · ·
3

1. Construct the multiplication table for Z4.
2. Construct the addition and multiplication tables for Z5.
3. Construct the addition and multiplication tables for Z6.
4. There are elements in Z4 and Z6 without a multiplicative inverse. Which ele-

ments are these? Why does a multiplicative inverse exist for all nonzero elements
in Z5?

1.10. What is the multiplicative inverse of 5 in Z11, Z12, and Z13? You can do a
trial-and-error search using a calculator or a PC.

With this simple problem we want now to stress the fact that the inverse of an
integer in a given ring depends completely on the ring considered. That is, if the
modulus changes, the inverse changes. Hence, it doesn’t make sense to talk about
an inverse of an element unless it is clear what the modulus is. This fact is crucial for
the RSA cryptosystem, which is introduced in Chapter 7. The extended Euclidean
algorithm, which can be used for computing inverses efficiently, is introduced in
Section 6.3.

1.11. Compute x as far as possible without a calculator. Where appropriate, make
use of a smart decomposition of the exponent as shown in the example in Sec-
tion 1.4.1:

1. x≡ 32 mod 13
2. x≡ 72 mod 13
3. x≡ 310 mod 13
4. x≡ 7100 mod 13
5. 7x ≡ 11 mod 13

The last problem is called a discrete logarithm and points to a hard problem which
we discuss in Chapter 8. The security of many public-key schemes is based on the
hardness of solving the discrete logarithm for large numbers, e.g., with more than
2000 bits.
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1.12. Find all integers n with 0 ≤ n < m that are relatively prime to m for m =
4,5,9,26. We denote the number of integers n which fulfill the condition by φ(m),
e.g., φ(3) = 2. This function is called “Euler’s phi function”. What is φ(m) for
m = 4,5,9,26?

More on Euler’s phi function will be said in Section 6.3.

1.13. This problem deals with the affine cipher where the key is given as a = 7 and
b = 22.

1. Decrypt the text below:
falszztysyjzyjkywjrztyjztyynaryjkyswarztyegyyj

2. Who wrote the line?

1.14. We want to extend the affine cipher from Section 1.4.4 such that we can en-
crypt and decrypt messages written with the full German alphabet. The German
alphabet consists of the English one together with the three umlauts, Ä, Ö, Ü, and
the (even stranger) “sharp S” character ß. We use the following mapping from letters
to integers:

A↔ 0 B↔ 1 C↔ 2 D↔ 3 E↔ 4 F↔ 5
G↔ 6 H↔ 7 I↔ 8 J↔ 9 K↔ 10 L↔ 11
M↔ 12 N↔ 13 O↔ 14 P↔ 15 Q↔ 16 R↔ 17
S↔ 18 T↔ 19 U↔ 20 V↔ 21 W↔ 22 X↔ 23
Y↔ 24 Z↔ 25 Ä↔ 26 Ö↔ 27 Ü↔ 28 ß↔ 29

1. What are the encryption and decryption equations for the cipher?
2. How large is the key space of the affine cipher for this alphabet?
3. The following ciphertext was encrypted using the key (a = 17,b = 1). What is

the corresponding plaintext?

ä u ß w ß

4. From which village does the plaintext come?

1.15. We consider an attack scenario where the adversary Oscar manages to provide
Alice with a few pieces of plaintext that she encrypts. Show how Oscar can break the
affine cipher by using two pairs of plaintext–ciphertext, (x1,y1) and (x2,y2). What
is the condition for choosing x1 and x2?

Remark: In practice, this chosen-plaintext attack is often possible depending on
the application, e.g., if Alice is a web server that encrypts and returns messages that
are sent to her.

1.16. An obvious approach to increase the security of a symmetric algorithm is to
apply the same cipher twice, i.e.,

y = ek2(ek1(x))

As is often the case in cryptography, things can be tricky and results are often dif-
ferent from the expected or desired ones. In this problem we show that a double
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encryption with the affine cipher is only as secure as single encryption! Assume two
affine ciphers ek1 ≡ a1x+b1 mod 26 and ek2 ≡ a2x+b2 mod 26.

1. Show that there is a single affine cipher ek3 ≡ a3x+ b3 mod 26 which performs
exactly the same encryption (and decryption) as the combination ek2(ek1(x)).

2. Find the values for a3,b3 when a1 = 3,b1 = 5 and a2 = 11,b2 = 7.
3. To verify your solution, (1) encrypt the letter K with ek1 and the result with ek2,

and (2) encrypt the letter K with ek3.
4. Briefly describe what happens if an exhaustive key-search attack is applied to a

double-encrypted affine ciphertext. Is the effective key space increased?

Remark: The issue of multiple encryption is of great practical importance in the
case of the Data Encryption Standard (DES), for which multiple encryption (in par-
ticular, triple encryption) does increase security considerably, cf. Section 5.3.2.

1.17. We already know that the substitution cipher and the shift cipher can easily be
broken in little time. Let us now consider an extension of the shift cipher, namely
the Vigenère cipher (named after Blaise de Vigenère). Instead of using a single key k
for the shift, it uses l different shifts that are derived from a secret code word c. The
code word consists of l letters and has the form c = (c0,c1, . . . ,cl−1). Each letter
ci corresponds to a number 0, . . . ,25, which is given by its position in the alphabet.
These numbers are the l shift positions, which we denote by (k0,k1, . . .kl−1).

Encryption (and decryption) work as follows: The first plaintext letter x0 is cycli-
cally shifted by k0 positions, the second plaintext x1 by k1 positions and so on, until
plaintext letter xl−1 is shifted by kl−1 positions. From now on, the shift sequence
repeats, i.e., plaintext xl is again shifted by k0 positions, the next plaintext by k1
positions and so on. This process is expressed as:

y j ≡ x j + k( j mod l) mod 26

where x j denotes the j-th letter of the plaintext x = (x0,x1, . . .).
Since the cipher uses many ciphertext alphabets, it is called a polyalphabetic

cipher.

1. Assume the code word is given as c = JAMAIKA of size l = 7. Transform the
code word into the corresponding encryption keys ki. You can use Table 1.4 for
this task.

2. Use the table to encrypt the word x = CODEBREAKERS with the Vigenère ci-
pher. For each plaintext letter, choose the row with the corresponding shift value
in the leftmost column # and look up the shifted version of the plaintext.

3. What do you think about the security of the Vigenère cipher? Propose an attack.
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# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
1 B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
2 C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
4 E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
5 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
6 G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
7 H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
8 I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
9 J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
10 K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
11 L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
12 M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
13 N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
14 O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
15 P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
16 Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
17 R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
18 S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
19 T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
20 U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
21 V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
22 W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
23 X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
24 Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
25 Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Table 1.4 Polyalphabetic substition table



Chapter 2
Stream Ciphers

If we have a more detailed look at the types of cryptographic algorithms that exist,
we see that symmetric ciphers can be divided into two families, stream ciphers and
block ciphers, as shown in Figure 2.1.

Fig. 2.1 Main areas within cryptography

This chapter is concerned with stream ciphers, which are an important class of
cryptographic primitives. In the chapter you will learn:

� The pros and cons of stream ciphers
� Random and pseudorandom number generators
� A truly unbreakable cipher: the one-time pad (OTP)
� Linear feedback shift registers
� The modern stream ciphers ChaCha20, Salsa20 and Trivium
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2.1 Introduction

This section will first discuss the difference between stream and block ciphers, and
then introduce the principle way stream ciphers work.

2.1.1 Stream Ciphers vs. Block Ciphers

Symmetric cryptography is split into block ciphers and stream ciphers, which are
easy to distinguish. Figure 2.2 depicts the operational differences between stream
(Figure 2.2a) and block ciphers (Figure 2.2b). In both cases, we want to encrypt b
bits at a time, where b is the width of the block cipher. A description of the operation
of the two types of symmetric ciphers follows.

(a)

(b)

Fig. 2.2 Principles of encrypting b bits with a stream (a) and a block (b) cipher

Stream ciphers encrypt bits individually. This is achieved by adding a bit from
a key stream to a plaintext bit. There are synchronous stream ciphers where the key
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stream depends only on the key, and asynchronous ones where the key stream also
depends on the ciphertext. If the dotted line in Figure 2.3 is present, the stream
cipher is an asynchronous one. Most practical stream ciphers are synchronous ones
and Section 2.4 of this chapter will introduce three modern ciphers of this type.
An example of an asynchronous stream cipher is the cipher feedback (CFB) mode,
introduced in Section 5.1.4.

Fig. 2.3 Synchronous and asynchronous stream ciphers

Block ciphers encrypt a block of b plaintext bits at a time with the same key.
The ciphers are constructed such that the encryption of any plaintext bit in a given
block depends on every other plaintext bit in the same block. In practice, the vast
majority of block ciphers either have a block length of 128 bits (16 bytes) like the
Advanced Encryption Standard (AES), or a block length of 64 bits (8 bytes) like the
Data Encryption Standard (DES) or the triple DES (3DES). These two ciphers are
introduced in Chapters 4 and 3, respectively.

In practice, in particular for encrypting computer communication on the inter-
net, block ciphers are used more often than stream ciphers. In the earlier days of
modern cryptography, roughly in the 1980s and 1990s, it was assumed that stream
ciphers could encrypt more efficiently than block ciphers. They were particularly
relevant for applications with low computational resources, e.g., for cell phones or
other small embedded devices. Back then, stream ciphers were often realized in
hardware. A prominent example of such an algorithm is the A5/1 cipher, which is
used for voice encryption in the (soon to be outdated) GSM mobile phone standard.
Since then, many block ciphers that are specifically designed with hardware effi-
ciency in mind have been proposed, such as the PRESENT algorithms, which is
described in Section 3.7.3. At the same time, there are modern stream ciphers that
are very well suited for high-speed software implementations, including Salsa20
(cf. Section 2.4.1) and ChaCha (cf. Section 2.4.2).
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2.1.2 Encryption and Decryption with Stream Ciphers

As mentioned above, stream ciphers encrypt plaintext bits individually. The question
now is: How does encryption of an individual bit work? The answer is surprisingly
simple: Each bit xi is encrypted by adding a secret key stream bit si modulo 2.

Definition 2.1.1 Stream Cipher Encryption and Decryption
The plaintext, the ciphertext and the key stream consist of individ-
ual bits, i.e., xi,yi,si ∈ {0,1}.
Encryption: yi = esi(xi)≡ xi + si mod 2
Decryption: xi = dsi(yi)≡ yi + si mod 2

Since the encryption and decryption functions are both simple additions modulo
2, we can depict the basic operation of a stream cipher as shown in Figure 2.4. Note
that we use a circle with an addition sign as the symbol for modulo 2 addition.

Fig. 2.4 Encryption and decryption with stream ciphers

Just looking at the formulae in the definition, there are three observations about
the stream cipher encryption and decryption function which we should clarify:

1. Why are encryption and decryption the same function?
2. Why can we use a simple modulo 2 addition as encryption?
3. What is the nature of the key stream bits si?

The following discussion of these three items will already give us an understanding
of some important stream cipher properties.

Why Are Encryption and Decryption the Same Function?

The reason for the similarity of the encryption and decryption functions can easily
be shown. We perform what is called a proof of correctness, i.e., we show that
the decryption function actually produces the plaintext bit xi again. We know that
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ciphertext bit yi was computed using the encryption function yi ≡ xi+si mod 2. We
insert this encryption expression in the decryption function:

dsi(yi) ≡ yi + si mod 2
≡ (xi + si)+ si mod 2
≡ xi + si + si mod 2
≡ xi +2si mod 2
≡ xi +0 mod 2
≡ xi mod 2 Q.E.D.

The trick here is that the expression (2si mod 2) always has the value zero since
2≡ 0 mod 2. Another way of understanding this is as follows: If si has the value 0,
then 2si = 2 ·0≡ 0 mod 2. If si = 1, we have 2si = 2 ·1 = 2≡ 0 mod 2.

Why is Modulo 2 Addition a Good Encryption Function?

A mathematical explanation for this is given in the context of the one-time pad in
Section 2.2.2. However, it is worth having a closer look at addition modulo 2. If we
do arithmetic modulo 2, the only possible values are 0 and 1 (because if you divide
by 2 only two remainders can occur, 0 and 1). Thus, we can treat arithmetic modulo
2 as Boolean functions such as logic AND, OR, NAND, etc. Let’s look at the truth
table for modulo 2 addition:

xi si yi ≡ xi + si mod 2
0 0 0
0 1 1
1 0 1
1 1 0

This should look familiar to most readers: It is the truth table of the exclusive-OR,
also called XOR, gate. This is an important fact: Modulo 2 addition is equivalent to
the XOR operation. The XOR operation plays a major role in modern cryptography
and will be used many times in the remainder of this book.

The question now is, why is the XOR operation so useful, as opposed to, say, the
AND operation? Let’s assume we want to encrypt the plaintext bit xi = 0. If we look
at the truth table we find that we are on either the 1st or 2nd line:

xi si y i
0 0 0
0 1 1
1 0 1
1 1 0
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Depending on the key bit, the ciphertext yi is either a zero (si = 0) or one (si = 1).
If the key bit si behaves perfectly randomly, i.e., it is unpredictable and has exactly
a 50% chance to have each of the values 0 and 1, then both possible ciphertexts also
occur with a 50% likelihood. Likewise, if we encrypt the plaintext bit xi = 1, we are
on line 3 or 4 of the truth table. Again, depending on the value of the key stream bit
si, there is a 50% chance that the ciphertext is each of the values 0 and 1.

We just observed that the XOR function is perfectly balanced, i.e., by observing
an output value, there is exactly a 50% chance for any value of the input bits. This
distinguishes the XOR gate from other Boolean functions such as the OR, AND or
NAND gates. Moreover, AND and NAND gates are not invertible. Let’s look at a
very simple example of encryption with a stream cipher.

Example 2.1. Alice wants to encrypt the letter A, where the letter is given in ASCII
code. The ASCII value for A is 6510 = 10000012. Let’s furthermore assume that the
first key stream bits are (s0, . . . ,s6) = 0101100.

Alice Oscar Bob
x0, . . . ,x6 = 1000001 = A

⊕
s0, . . . ,s6 = 0101100
y0, . . . ,y6 = 1101101 = m

m=1101101−−−−−−−−−−−−→
y0, . . . ,y6 = 1101101

⊕
s0, . . . ,s6 = 0101100
x0, . . . ,x6 = 1000001 = A

Note that encryption by Alice turns the uppercase A into the lowercase letter m.
Oscar, the attacker who eavesdrops on the channel, only sees the ciphertext letter m.
Decryption by Bob with the same key stream reproduces the plaintext A again.
�

So far, stream ciphers look unbelievably easy: One simply takes the plaintext,
performs an XOR operation with the key and obtains the ciphertext. On the receiving
side, Bob does the same. The “only” thing left to discuss is the last question from
above.

What Exactly is the Nature of the Key Stream?

It turns out that the generation of the values si, which are called the key stream, is
the central issue for the security of stream ciphers. In fact, the security of a stream
cipher completely depends on the key stream. The key stream bits si are not the key
bits themselves. So, how do we get the key stream? Generating the key stream is
pretty much what stream ciphers are about. This is a major topic and is discussed
later in this chapter. However, we can already guess that a central requirement for
the key stream bits should be that they appear like a random sequence to an attacker.
Otherwise, an attacker Oscar could guess the bits and do the decryption himself.
Hence, we first need to learn more about random numbers.
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2.2 Random Numbers and an Unbreakable Stream Cipher

2.2.1 Random Number Generators

As we saw in the previous section, the actual encryption and decryption of stream
ciphers is extremely simple. The security of stream ciphers hinges entirely on a
“suitable” key stream s0,s1,s2, . . . Since randomness plays a major role, we will first
learn about the three types of random number generators (RNG) that are important
for us.

True Random Number Generators (TRNGs)

True random number generators (TRNGs) are characterized by the fact that their
output cannot be reproduced. For instance, if we flip a coin 100 times and record the
resulting sequence of 100 bits, it will be virtually impossible for anyone on Earth to
generate the same 100-bit sequence. The chance of success is 1/2100, which is an ex-
tremely small probability. Ideally, TRNGs are based on physical processes that can-
not be reproduced. Examples include coin flipping or rolling of dice by humans. In
computer systems, modern CPUs are often equipped with hardware-based TRNGs
or else there is a TPM (trusted platform module) on the motherboard which contains
a TRNG. In computer systems without a hardware TRNG, random processes within
the computer are used as entropy sources, e.g., fine-grained timing measurements
of interrupts or other random data from device drivers. In cryptography, TRNGs are
often needed for generating session keys, which are then distributed between Alice
and Bob, but also for other purposes such as generation of nonces.

(General) Pseudorandom Number Generators (PRNGs)

Pseudorandom number generators (PRNGs) generate sequences which are com-
puted from an initial seed value. Often they are computed recursively in the follow-
ing way:

s0 = seed
si+1 = f (si), i = 0,1, . . .

A generalization of this is generators of the form si+1 = f (si,si−1, . . . ,si−t), where t
is a fixed integer. A popular example is the linear congruential generator:

s0 = seed
si+1 ≡ asi +b mod m, i = 0,1, . . .
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where a, b, m are integer constants. Note that PRNGs are not random in a true sense
because they can be computed and are thus completely deterministic. A widely used
example is the rand() function used in ANSI C. It has the parameters:

s0 = 12345
si+1 ≡ 1103515245si +12345 mod 231, i = 0,1, . . .

A common requirement of PRNGs is that they possess good statistical proper-
ties, meaning their output approximates a sequence of true random numbers. There
are many mathematical tests, e.g., the chi-square test, which can verify the statistical
behavior of PRNG sequences. Note that there are many, many applications for pseu-
dorandom numbers outside cryptography. For instance, many types of simulations
or testing, e.g., of software or of VLSI chips, need random test data as input. This is
the reason why a PRNG is included in the ANSI C specification.

Cryptographically Secure Pseudorandom Number Generators (CSPRNGs)

Cryptographically secure pseudorandom number generators (CSPRNGs) are a spe-
cial type of PRNG that possess the following additional property: A CSPRNG is a
PRNG which is unpredictable. Informally, this means that given n output bits of the
key stream si,si+1, . . . ,si+n−1, where n is some integer, it is computationally infea-
sible to compute the subsequent bits si+n,si+n+1, . . . A more exact definition is that
given n consecutive bits of the key stream, there is no polynomial-time algorithm
that can predict the next bit sn+1 with better than 50% chance of success. Another
property of CSPRNGs is that given the above sequence, it should be computation-
ally infeasible to compute any preceding bits si−1,si−2, . . .

Note that the need for unpredictability of CSPRNGs is unique to cryptography. In
virtually all other situations where pseudorandom numbers are needed in computer
science or engineering, unpredictability is not needed. As a consequence, the dis-
tinction between PRNGs and CSPRNGs and its relevance for stream ciphers is often
not clear to non-cryptographers. Almost all PRNGs that were designed without the
clear purpose of being stream ciphers are not CSPRNGs.

2.2.2 The One-Time Pad

In the following we discuss what happens if we use the three types of random num-
bers as generators for the key stream sequence s0,s1,s2, . . . of a stream cipher. Let’s
first define what a perfect cipher should be.
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Definition 2.2.1 Unconditional Security
A cryptosystem is unconditionally or information-theoretically se-
cure if it cannot be broken even with infinite computational re-
sources.

Unconditional security is based on information theory and assumes no limit on
the attacker’s computational power. This looks like a pretty straightforward defini-
tion. It is in fact straightforward, but the requirements for a cipher to be uncondition-
ally secure are tremendous. Let’s look at it using a gedankenexperiment: Assume we
have a symmetric encryption algorithm (it doesn’t matter whether it’s a block cipher
or stream cipher) with a key length of 10,000 bits, and the only attack that works
is an exhaustive key search, i.e, a brute-force attack. From the discussion in Sec-
tion 1.3.2, we recall that 128 bits are more than enough for long-term security. So,
is a cipher with 10,000 bits unconditionally secure? The answer is a resounding: No!
Since an attacker can have infinite computational resources, we can simply assume
that the attacker has 210000 computers available and every computer checks exactly
one key. This will give us a correct key in one time step. Of course, there is no way
that 210000 computers can ever be built, the number is too large. (It is estimated that
there are “only” about 2266 atoms in the known universe.) The cipher would merely
be computationally secure, but not unconditionally.

All this said, we now show a way to build an unconditionally secure cipher that
is quite simple. This cipher is called the one-time pad.

Definition 2.2.2 One-Time Pad (OTP)
A stream cipher for which

1. the key stream s0,s1,s2, . . . is generated by a true random num-
ber generator, and

2. the key stream is only known to the legitimate communicating
parties, and

3. every key stream bit si is only used once

is called a one-time pad. The one-time pad is unconditionally se-
cure.

It is easy to show why the OTP is unconditionally secure. Here is a sketch of a
proof. For every ciphertext bit we get an equation of the form:

y0 ≡ x0 + s0 mod 2
y1 ≡ x1 + s1 mod 2

...

Each individual relation is a linear equation modulo 2 with two unknowns. It is
impossible to derive a unique solution for such equations. If the attacker knows the
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value for y0 (0 or 1), he cannot determine the value of x0. In fact, the solutions x0 = 0
and x0 = 1 are exactly equally likely if s0 stems from a truly random source and there
is 50% chance that it has each of the values 0 and 1. The situation is identical for
the second equation and all subsequent ones. Note that the situation is different if
the values si are not truly random. In this case, there is some functional relationship
between them, and the equations shown above are not independent. Even though it
might still be hard to solve the system of equations, it is not provably secure!

Great, now we have a simple cipher that is perfectly secure. There are rumors that
the red telephone between the White House and the Kremlin was encrypted using an
OTP during the Cold War. Obviously there must be a catch since OTPs are not used
for web browsers, email encryption, instant messaging on smartphones, or other im-
portant modern applications. Let’s look at the implications of the three requirements
in Definition 2.2.2. The first requirement means that we need a TRNG. For this we
need a device, e.g., based on white noise of a semiconductor, that generates truly
random bits. Since standard PCs often have TRNGs nowadays, this requirement can
be met without too much effort. The second requirement means that Alice has to get
the random bits securely to Bob. In practice that could mean that Alice stores the
true random bits on an USB stick or a portable SSD and sends them securely, e.g.,
with a trusted courier, to Bob. This is not great but doable in certain applications.
The third requirement is the most impractical one: Key stream bits cannot be re-
used. This implies that we need one key bit for every bit of plaintext. Hence, our key
is as long as the plaintext! This is probably the major drawback of the OTP. Even if
Alice and Bob share 1 GByte of true random numbers, we run quickly into limits.
Just exchanging a few large files could exhaust the 1 GByte of key material. After
that they would need to repeat the cumbersome and slow process of exchanging true
random key stream bits again, e.g., by a trusted courier.

For these reasons OTPs are rarely used in practice. However, they give us a great
design idea for secure ciphers: If we XOR truly random bits and plaintext, we get
ciphertext that can certainly not be broken by an attacker. We will see in the next
section how we can use this fact to build practical stream ciphers.

2.2.3 Towards Practical Stream Ciphers

In the previous section we saw that OTPs are unconditionally secure, but they have
drawbacks which make them impractical. What we try to do with practical stream
ciphers is to replace the truly random key stream bits with a pseudorandom number
generator where the key k serves as a seed. The principle of practical stream ciphers
is shown in Figure 2.5.

Before we turn to stream ciphers used in the real world, it should be stressed that
practical stream ciphers are not unconditionally secure. In fact, all known practi-
cal cryptographic algorithms (stream ciphers, block ciphers, public-key algorithms)
are not unconditionally secure. The best we can aim for is computational security,
which we define as follows.
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Fig. 2.5 Practical stream ciphers

Definition 2.2.3 Computational Security
A cryptosystem is computationally secure if the best known algo-
rithm for breaking it requires at least t operations.

This seems like a reasonable definition but there are still several problems with
it. First, often we do not know what the best algorithm for a given attack is. A prime
example is the RSA public-key scheme, which can be broken by factoring large in-
tegers. Even though many factoring algorithms are known, we do not know whether
there exist any better ones. Second, even if a lower bound on the complexity of
one attack is known, we do not know whether any other, more powerful attacks are
possible. We saw this in Section 1.2.2 during the discussion about the substitution
cipher: Even though we know the exact computational complexity for an exhaustive
key search, there exist other, more powerful attacks. The best we can do in practice
is to design cryptographic schemes for which it is assumed that they are computa-
tionally secure. For symmetric ciphers this usually means one hopes that there is no
attack method with a complexity better than an exhaustive key search.

Let’s go back to Figure 2.5. This design emulates (“behaves to a certain extent
like”) a one-time pad. It has the major advantage over the OTP that Alice and Bob
only need to exchange a secret key that is at most a few 100 bits long, and that
does not have to be as long as the message we want to encrypt. We now have to
think carefully about the properties of the key stream s0,s1,s2, . . . that is generated
by Alice and Bob. Obviously, we need some type of random number generator to
derive the key stream. First, we note that we cannot use a TRNG since, by definition,
Alice and Bob will not be able to generate the same key stream. Instead we need
deterministic, i.e., pseudorandom, number generators. We now look at the other two
generators that were introduced in the previous section.
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Building Key Streams from PRNGs

Here is an idea that seems promising (but in fact is pretty bad): Many PRNGs pos-
sess good statistical properties, which are necessary for a strong stream cipher. If
we apply statistical tests to the key stream sequence, the output should pretty much
behave like the bit sequence generated by tossing a coin. So it is tempting to assume
that a PRNG can be used to generate the key stream. But all of this is not sufficient
for a stream cipher since our opponent, Oscar, is smart. Consider the following at-
tack.

Example 2.2. Let’s assume a PRNG based on the linear congruential generator:

S0 = seed
Si+1 ≡ ASi +B mod m, i = 0,1, . . .

where we choose m to be 100 bits long and Si,A,B∈ {0,1, . . . ,m−1}. Note that this
PRNG can have excellent statistical properties if we choose the parameters carefully.
The modulus m is part of the encryption scheme and is publicly known. The secret
key comprises the values (A,B), each with a length of 100 bits. That gives us a
key length of 200 bits, which is more than sufficient to protect against a brute-force
attack. Since this is a stream cipher, Alice can encrypt:

yi ≡ xi + si mod 2

where si are the bits of the binary representation of the PRNG output symbols S j.
But Oscar can easily launch an attack. Assume he knows the first 300 bits of

plaintext (this is only 300/8=37.5 bytes), e.g., file header information or he guesses
part of the plaintext. Since he certainly knows the ciphertext, he can now compute
the first 300 bits of key stream as:

si ≡ yi + xi mod m , i = 1,2, . . . ,300

These 300 bits immediately give the first three output symbols of the PRNG: S1 =
(s1, . . . ,s100), S2 = (s101, . . . ,s200) and S3 = (s201, . . . ,s300). Oscar can now generate
two equations:

S2 ≡ AS1 +B mod m

S3 ≡ AS2 +B mod m

This is a system of linear equations over Zm with two unknowns A and B. But those
two values are the key, and we can immediately solve the system, yielding:

A ≡ (S2−S3)/(S1−S2) mod m

B ≡ S2−S1(S2−S3)/(S1−S2) mod m

In case gcd((S1− S2),m)) 6= 1 we get multiple solutions since this is an equation
system over Zm. However, with a fourth piece of known plaintext the key can be
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uniquely detected in almost all cases. Alternatively, Oscar simply tries to encrypt
the message with each of the multiple solutions found. Hence, in summary: If we
know a few pieces of plaintext, we can compute the key and decrypt the entire
ciphertext!
�

This type of attack is why the notion of CSPRNG was invented.

Building Key Streams from CSPRNGs

What we need to do to prevent the attack above is to use a CSPRNG, which ensures
that the key stream is unpredictable. We recall that this means that given the first n
output bits of the key stream s1,s2, . . . ,sn, it is computationally infeasible to com-
pute the bits sn+1,sn+2, . . . Unfortunately, pretty much all pseudorandom number
generators that are used for applications outside cryptography are not cryptograph-
ically secure. Hence, in practice, we need to use pseudorandom number generators
that are specially designed for stream ciphers.

The question now is how practical stream ciphers actually look. There are many
proposals for stream ciphers in the literature. They can roughly be classified as ci-
phers either optimized for software implementation or optimized for hardware im-
plementation. In the former case, the ciphers typically require few CPU instructions
to compute one key stream bit. In the latter case, they tend to be based on opera-
tions that can easily be realized in hardware. A popular example is shift registers
with feedback, which are discussed in the next section. Another class of stream ci-
phers is built upon pseudorandom functions based on 32-bit addition, rotation and
XOR operations, so called add-rotate-XOR operations, and will be discussed in Sec-
tion 2.4. A third class of stream ciphers uses block ciphers as building blocks. The
cipher feedback mode, output feedback mode and counter mode to be introduced in
Chapter 5 are examples of stream ciphers derived from block ciphers.

2.3 Shift Register-Based Stream Ciphers

As we have learned so far, practical stream ciphers use a stream of key bits s1,s2, . . .
that are generated by the key stream generator, which should have certain properties.
An elegant way of realizing long pseudorandom sequences is to use linear feedback
shift registers (LFSRs). They are easily implemented in hardware and many, but
certainly not all, stream ciphers make use of LFSRs. A prominent example is the
A5/1 cipher, which is standardized for voice encryption in the (somewhat outdated)
GSM mobile communication standard. As we will see, even though a plain LFSR
produces a sequence with good statistical properties, it is cryptographically weak.
However, combinations of LFSRs can make secure stream ciphers. Trivium, intro-
duced in Section 2.4.3, is an example of such a cipher. It should be stressed that
there are many ways to construct stream ciphers, as we will see in Section 2.4.
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2.3.1 Linear Feedback Shift Registers (LFSRs)

An LFSR consists of clocked storage elements (flip-flops) and a feedback path. The
number of storage elements gives us the degree of the LFSR. In other words, an
LFSR with m flip-flops is said to be of degree m. The feedback network computes
the input for the last flip-flop as the XOR-sum of certain flip-flops in the shift regis-
ter.

Example 2.3. Simple LFSR We consider an LFSR of degree m = 3 with flip-flops
FF2, FF1, FF0, and a feedback path as shown in Figure 2.6. The internal state bits are
denoted by si and are shifted by one to the right with each clock tick. The rightmost
state bit is also the current output bit. The leftmost state bit is computed in the
feedback path, which is the XOR sum of some of the flip-flop values in the previous
clock period. Since the XOR is a linear operation, such circuits are called linear
feedback shift registers. If we assume an initial state of (s2 = 1,s1 = 0,s0 = 0),

CLK

FF FF FF

Fig. 2.6 Linear feedback shift register of degree 3 with initial values s2, s1, s0

Table 2.1 gives the complete sequence of states of the LFSR. Note that the rightmost

Table 2.1 Sequence of states of the LFSR

clk FF2 FF1 FF0 = si
0 1 0 0
1 0 1 0
2 1 0 1
3 1 1 0
4 1 1 1
5 0 1 1
6 0 0 1
7 1 0 0
8 0 1 0
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column is the output of the LFSR. One can see from this example that the LFSR
starts to repeat after clock cycle 6. This means the LFSR output has period of length
7 and has the form:

0010111 0010111 0010111 . . .

There is a simple formula which determines the functioning of this LFSR. Let’s
look at how the output bits si are computed, assuming the initial state bits s0,s1,s2:

s3 ≡ s1 + s0 mod 2
s4 ≡ s2 + s1 mod 2
s5 ≡ s3 + s2 mod 2

...

In general, the output bit is computed as:

si+3 ≡ si+1 + si mod 2

where i = 0,1,2, . . .
�

This was, of course, a simple example. However, we could already observe many
important properties. We will now look at general LFSRs.

A Mathematical Description of LFSRs

The general form of an LFSR of degree m is shown in Figure 2.7. It shows m
flip-flops and m possible feedback locations, all combined by the XOR operation.
Whether a feedback path is active or not is defined by the feedback coefficients
pm−1, . . . , p0, p1, which have the following function:

� If pi = 1 (closed switch), the feedback is active.
� If pi = 0 (open switch), the corresponding flip-flop output is not used for the

feedback.

With this notation, we obtain an elegant mathematical description for the feedback
path. If we multiply the output of flip-flop i by its coefficient pi, the result is either
the output value if pi = 1, which corresponds to a closed switch, or the value zero if
pi = 0, which corresponds to an open switch. The values of the feedback coefficients
are crucial for the output sequence produced by the LFSR.

Let’s assume the LFSR is initially loaded with the values sm−1, . . . ,s0. The next
output bit of the LFSR sm, which is also the input to the leftmost flip-flop, can be
computed by the XOR-sum of the products of flip-flop outputs and corresponding
feedback coefficients:

sm ≡ sm−1 pm−1 + · · ·+ s1 p1 + s0 p0 mod 2
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CLK

FF FF FF

Fig. 2.7 General LFSR with feedback coefficients pi and initial values sm−1, . . . ,s0

The next LFSR output can be computed as:

sm+1 ≡ sm pm−1 + · · ·+ s2 p1 + s1 p0 mod 2

In general, the output sequence can be described as:

sm+i ≡
m−1

∑
j=0

p j · si+ j mod 2; si, p j ∈ {0,1}; i = 0,1,2, . . . (2.1)

Clearly, the output values are given through a combination of some previous output
values. LFSRs are sometimes referred to as linear recurrences.

Due to the finite number of recurring states, the output sequence of an LFSR
repeats periodically. This was also illustrated in Example 2.3, where the period was
7. Moreover, an LFSR can produce output sequences of different lengths, depending
on the feedback coefficients. The following theorem gives us the maximum length
of an LFSR as function of its degree.

Theorem 2.3.1 The maximum sequence length generated by an
LFSR of degree m is 2m−1.

It is easy to show that this theorem holds. The state of an LFSR is uniquely deter-
mined by the m internal register bits. Given a certain state, the LFSR deterministi-
cally assumes its next state. Because of this, as soon as an LFSR assumes a previous
state, it starts to repeat. Since an m-bit state vector can only assume 2m−1 nonzero
states, the maximum sequence length before repetition is 2m− 1. Note that the all-
zero state must be excluded. If an LFSR assumes this state, it will get “stuck” in
it, i.e., it will never be able to leave it again. Note that only certain configurations
(p0, . . . , pm−1) yield maximum-length LFSRs. We give a small example of this be-
low.



2.3 Shift Register-Based Stream Ciphers 53

Example 2.4. LFSR with maximum-length output sequence
Given an LFSR of degree m = 4 and the feedback path (p3 = 0, p2 = 0, p1 =
1, p0 = 1), the output sequence of the LFSR has a period of 2m− 1 = 15, i.e., it
is a maximum-length LFSR. �

Example 2.5. LFSR with non-maximum output sequence
Given an LFSR of degree m= 4 and (p3 = 1, p2 = 1, p1 = 1, p0 = 1), then the output
sequence has period of 5; therefore, it is not a maximum-length LFSR. �

The mathematical background of the properties of LFSR sequences is beyond
the scope of this book. However, we conclude this introduction to LFSRs with some
additional facts. LFSRs are often specified by polynomials using the following no-
tation: An LFSR with a feedback coefficient vector (pm−1, . . . , p1, p0) is represented
by the polynomial:

P(x) = xm + pm−1xm−1 + . . .+ p1x+ p0

For instance, the LFSR from the example above with coefficients (p3 = 0, p2 =
0, p1 = 1, p0 = 1) can alternatively be specified by the polynomial x4 + x + 1.
This seemingly odd notation as a polynomial has several advantages. For instance,
maximum-length LFSRs have what is called primitive polynomials. Primitive poly-
nomials are a special type of irreducible polynomial. Irreducible polynomials are
roughly comparable with prime numbers, i.e., their only factors are 1 and the
polynomial itself. Primitive polynomials can relatively easily be computed. Hence,
maximum-length LFSRs can easily be found. Table 2.2 shows one primitive poly-
nomial for every value of m in the range from m = 2,3, . . . ,128. As an example,
the notation (0,2,5) refers to the polynomial 1+ x2 + x5. Note that there are many
primitive polynomials for every given degree m. For instance, there exist 69,273,666
different primitive polynomials of degree m = 31.

2.3.2 Known-Plaintext Attack Against Single LFSRs

As indicated by its name, LFSRs are linear. Linear systems are governed by linear
relationships between their inputs and outputs. Since linear dependencies can rela-
tively easily be analyzed, this can be a major advantage in many application areas,
e.g., in communication systems. However, a cryptosystem where the key bits only
occur in linear relationships makes a highly insecure cipher. We will now investigate
how the linear behavior of an LFSR leads to a powerful attack.

If we use an LFSR as a stream cipher, the secret key k is the feedback coefficient
vector (pm−1, . . . , p1, p0). An attack is possible if the attacker Oscar knows some
plaintext and the corresponding ciphertext. We further assume that Oscar knows the
degree m of the LFSR. The attack is so efficient that he could also easily try a large
number of possible m values, so that this assumption is not a major restriction. Let
the known plaintext be given by x0,x1, . . . ,x2m−1 and the corresponding ciphertext
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Table 2.2 Primitive polynomials for maximum-length LFSRs

(0,1,2) (0,1,3,4,24) (0,1,2,3,5,8,46) (0,1,5,7,68) (0,2,3,5,90) (0,1,2,3,6,8,112)
(0,1,3) (0,3,25) (0,5,47) (0,2,5,6,69) (0,1,2,3,5,6,7,91) (0,2,3,5,113)
(0,1,4) (0,1,2,6,26) (0,1,2,4,5,7,48) (0,1,3,5,70) (0,2,5,6,92) (0,2,3,6,7,8,114)
(0,2,5) (0,1,2,5,27) (0,4,5,6,49) (0,1,3,5,71) (0,2,93) (0,1,2,3,5,7,115)
(0,1,6) (0,3,28) (0,2,3,4,50) (0,1,2,3,4,6,72) (0,1,5,6,94) (0,2,5,6,116)
(0,1,7) (0,2,29) (0,1,3,6,51) (0,2,3,4,73) (0,1,2,4,5,6,95) (0,1,2,5,117)
(0,2,3,4,8) (0,1,4,6,30) (0,3,52) (0,3,4,7,74) (0,2,3,4,6,7,96) (0,2,5,6,118)
(0,4,9) (0,3,31) (0,1,2,6,53) (0,1,3,6,75) (0,6,97) (0,8,119)
(0,3,10) (0,1,2,3,5,7,32) (0,2,3,4,5,6,54) (0,2,4,5,76) (0,1,2,3,4,7,98) (0,1,2,5,6,7,120)
(0,2,11) (0,1,4,6,33) (0,1,2,6,55) (0,2,5,6,77) (0,4,5,7,99) (0,1,5,8,121)
(0,1,4,6,12) (0,1,2,5,6,7,34) (0,2,4,7,56) (0,1,2,7,78) (0,2,7,8,100) (0,1,2,6,122)
(0,1,3,4,13) (0,2,35) (0,2,3,5,57) (0,2,3,4,79) (0,1,6,7,101) (0,2,123)
(0,1,3,5,14) (0,1,2,4,5,6,36) (0,1,5,6,58) (0,1,2,3,5,7,80) (0,3,5,6,102) (0,5,6,7,124)
(0,1,15) (0,1,2,3,4,5,37) (0,1,3,4,5,6,59) (0,4,81) (0,2,3,4,5,7,103) (0,1,2,3,5,7,125)
(0,2,3,5,16) (0,1,5,6,38) (0,1,60) (0,1,4,6,7,8,82) (0,2,3,4,5,6,8,9,104) (0,2,4,7,126)
(0,3,17) (0,4,39) (0,1,2,5,61) (0,2,4,7,83) (0,1,2,4,5,6,105) (0,1,127)
(0,1,2,5,18) (0,3,4,5,40) (0,3,5,6,62) (0,1,3,5,7,8,84) (0,1,5,6,106) (0,1,2,7,128)
(0,1,2,5,19) (0,3,41) (0,1,63) (0,1,2,8,85) (0,1,2,3,5,7,107)
(0,3,20) (0,1,2,3,4,5,42) (0,1,3,4,64) (0,2,5,6,86) (0,1,2,3,4,5,6,7,9,10,108)
(0,2,21) (0,3,4,6,43) (0,1,3,4,65) (0,1,5,7,87) (0,2,4,5,109)
(0,1,22) (0,2,5,6,44) (0,2,3,5,6,8,66) (0,1,3,4,5,8,88) (0,1,4,6,110)
(0,5,23) (0,1,3,4,45) (0,1,2,5,67) (0,3,5,6,89) (0,2,4,7,111)

by y0,y1, . . . ,y2m−1. With these 2m pairs of plaintext and ciphertext bits, Oscar re-
constructs the first 2m key stream bits:

si ≡ xi + yi mod 2; i = 0,1, . . . ,2m−1.

The goal now is to find the key, i.e., the m feedback coefficients pi.
Equation (2.1) is a description of the relationship of the unknown key bits pi and

the key stream output. We repeat the equation here for convenience:

sm+i ≡
m−1

∑
j=0

p j · si+ j mod 2; si, p j ∈ {0,1}; i = 0,1,2, . . .

Note that we get a different equation for every value of i. Moreover, the equations
are linearly independent. With this knowledge, Oscar can generate m equations for
the first m values of i:

i = 0, sm ≡ pm−1sm−1 + . . .+ p1s1 + p0s0 mod 2
i = 1, sm+1 ≡ pm−1sm + . . .+ p1s2 + p0s1 mod 2
...

...
...

...
...

i = m−1, s2m−1 ≡ pm−1s2m−2 + . . .+ p1sm + p0sm−1 mod 2

(2.2)

He now has m linear equations with m unknowns p0, p1, . . . , pm−1. This system
can easily be solved by Oscar using Gaussian elimination, matrix inversion or any
other algorithm for solving systems of linear equations. Even for large values of m,
this can be done easily with a standard PC.

This situation has major consequences: as soon as Oscar knows 222mmm output bits
of an LFSR of degree mmm, the pppiii coefficients can be exactly constructed by merely
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solving a system of linear equations. Once he has computed these feedback coef-
ficients, he can “build” the LFSR and load it with any m consecutive output bits
that he already knows. Oscar can now clock the LFSR and produce the entire output
sequence. Because of this powerful attack, LFSRs by themselves are extremely inse-
cure! They are a good example of a PRNG with good statistical properties but with
terrible cryptographical ones. Nevertheless, all is not lost. There are many stream
ciphers which use combinations of several LFSRs to build strong cryptosystems.
The cipher Trivium in Section 2.4.3 is an example.

2.4 Practical Stream Ciphers

Even though stream ciphers had been popular in the “early days” of modern cryptog-
raphy, roughly in the 1980s, block ciphers became more dominant during the 1990s.
This development was in part due to the successful attacks against many of the early
stream ciphers. This was a main motivation for the eSTREAM project, which was
organized by a network of European cryptographers. In 2004, eSTREAM issued a
call for new stream ciphers and the selection process ended in 2008. The ciphers
were divided into two “profiles”. Profile 1 contains stream ciphers that allow high-
throughput software implementations. Profile 2 algorithms are hardware-friendly
stream ciphers, which have a low gate count and power consumption. In this section
we will introduce representatives for each of the two profiles: Salsa20 together with
its variant ChaCha (Profile 1) and Trivium (Profile 2).

2.4.1 Salsa20

Salsa20 is a family of software-efficient stream ciphers developed by Daniel J. Bern-
stein in 2005. The cipher uses a pseudorandom function based on 32-bit additions,
rotations and XOR operations. Such algorithms are referred to as add-rotate-XOR
(ARX) ciphers. The original cipher has 20 rounds and is denoted by Salsa20/20.
This cipher is already faster than AES on most CPUs. Subsequently, Bernstein in-
troduced two Salsa20 variants with a reduced round count, named Salsa20/12 and
Salsa20/8, which are even faster. No attacks are known against any of the Salsa20
variants that are better than a brute-force attack and the cipher is considered to be
very secure. In the following we will describe Salsa20 with 20 rounds.

Encryption and Decryption with Salsa20

Salsa20 supports key lengths of 256 and 128 bits. However, the designer recom-
mends 256 bits. The core of Salsa20 is a function with a 512-bit input and a 512-
bit output. For both encryption and decryption, Salsa20 processes the key, a nonce
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(which stands for “number used only once”) and a 64-bit block number, and gen-
erates a 512-bit block of key stream. Like every stream cipher, the result of this
process is XOR-added with the plaintext (encryption) or ciphertext (decryption).
Since Salsa20 generates an output of 512 bits, one can encrypt (or decrypt) 512
plaintext or ciphertext bits at once.

The main purpose of the nonce is that two key streams produced by the cipher
should be different, even though the key has not changed. If this were not the case,
the following attack becomes possible: If an attacker has a known plaintext from
the first encryption, he can compute the corresponding key stream. The second
encryption using the same key stream can now immediately be deciphered. With-
out a changing nonce, stream cipher encryption is highly deterministic. Nonces are
also often used for IVs (initialization vectors), which are used in many cipher con-
structions. Methods for generating IVs are discussed in Section 5.1.2. We note that
nonces and IVs do not have to be kept secret; It must merely be ensured that nonces
change for every session.

Encryption and decryption can be expressed as follows. Let k be a 32-byte (256
bits) or 16-byte (128 bits) sequence. Let n be an 8-byte nonce. Let x be an l-byte
message for some l ∈ {0,1, . . . ,270}. The Salsa20 encryption of a message x yields
an l-byte ciphertext y:

y = Salsa20k(n)⊕ x

For decryption, the same key stream is used and XORed to the ciphertext, i.e.,

x = Salsa20k(n)⊕ y

Since each block depends only on the key, the nonce and the block number, the
key stream blocks can be computed independently of each other and blocks can
be computed in parallel. This is advantageous for high-speed implementations of
Salsa20.

Core Function of Salsa20

The 512-bit internal state of Salsa20 consists of sixteen 32-bit words yi and can be
arranged as a 4-by-4 matrix:

u0 u1 u2 u3
u4 u5 u6 u7
u8 u9 u10 u11
u12 u13 u14 u15

To start the encryption process, the initial state of Salsa20 is constructed as follows.
Eight 32-bit words are formed by the key k = [k0k1k2k3k4k5k6k7], two words indicate
the stream position p = [p0 p1], two words come from the nonce n = [n0n1] and four
words are a constant c = [c0c1c2c3]:
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c0 k0 k1 k2
k3 c1 n0 n1
p0 p1 c2 k4
k5 k6 k7 c3

p can be seen as a counter indicating the position of the current 512-bit block within
the range of all 264 512-bit blocks of the key stream. The constant c is given by
the ASCII encoded string “expand 32-byte k”. If a 128-bit key consisting of
4 words k = [k0k1k2k3] is being used, the same key is concatenated to itself to form
the required 8 words, i.e., k = [k0k1k2k3k0k1k2k3].

The core operation in Salsa20 is the quarter-round function QR(a,b,c,d) and is
shown in Figure 2.8. It repeatedly applies three simple operations on 32-bit words:
32-bit addition modulo 232, 32-bit XOR and a constant 32-bit rotation by c positions
to the left (ROT Lc). We note that the addition modulo 232 is simply a regular integer
addition of two words, where the carry is ignored. The four-word output is computed
from a four-word input by the quarter-round function QR as follows:

b = b⊕ROT L7(a+d)

c = c⊕ROT L9(b+a)

d = d⊕ROT L13(c+b)

a = a⊕ROT L18(d + c)

Four quarter rounds form (not surprisingly) a round, and two consecutive rounds
are called a double-round: In odd-numbered rounds, QR is applied to each of the
four columns in the 4-by-4 matrix. In even-numbered rounds, QR is applied to each
of the four rows. With an input (v0,v1, . . . ,v15), the output (u0,u1, . . . ,u15) of the
first (odd) round of the double-round is computed as follows:

(u0,u4,u8,u12) = QR(v0,v4,v8,v12)

(u5,u9,u13,u1) = QR(v5,v9,v13,v1)

(u10,u14,u2,u6) = QR(v10,v14,v2,v6)

(u15,u3,u7,u11) = QR(v15,v3,v7,v11)

The second round of the double-round yields the output (z0,z1, . . . ,z15):

(z0,z1,z2,z3) = QR(u0,u1,u2,u3)

(z5,z6,z7,z4) = QR(u5,u6,u7,u4)

(z10,z11,z8,z9) = QR(u10,u11,u8,u9)

(z15,z12,z13,z14) = QR(u15,u12,u13,u14)

Figure 2.9 shows a double round with the application of the quarter-round func-
tion on the rows and colums. For encryption or decryption, 20 rounds or 10 double-
rounds are applied.
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Fig. 2.8 Quarter-round function QR(a,b,c,d) of Salsa20
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Fig. 2.9 Double-round function of Salsa20

Implementation

Since Salsa20 is an ARX cipher, i.e., its internal structure uses only additions, ro-
tation and XOR operations, it allows for very compact high-throughput software
implementations. Salsa20 with 20 rounds requires approximately 4–14 cycles per
byte on average for long streams, depending on the CPU type.
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2.4.2 ChaCha

ChaCha is another fast, software-oriented stream cipher, which was also developed
by Bernstein in 2008. It follows the same basic design principles as Salsa20. The ci-
pher can be configured with eight (ChaCha8), twelve (ChaCha12), or twenty rounds
(ChaCha20). This section focuses on ChaCha20 with twenty rounds and a 256-bit
key. Similarly to Salsa20, a 128-bit version exists too.

Encryption and Decryption with ChaCha20

Encryption and decryption with ChaCha is performed in the same way as with
Salsa20: ChaCha generates a 512-bit hash from its input values consisting of a key,
a nonce and a block number. The hash value is XORed with a 512-bit plaintext or
ciphertext for encryption or decryption, respectively. As with Salsa20, each 512-
bit key stream block can be computed independently and encryption or decryption
blocks can be computed in parallel.

Let k be a 32-byte (256 bits) or 16-byte (128 bits) sequence. Let n be an 8-
byte nonce. Let x be an l-byte message for some l ∈ 0,1, . . . ,270. The ChaCha20
encryption of message x with a nonce n and a key k yields an l-byte ciphertext y:

y =ChaCha20k(n)⊕ x

For decryption, the same key stream is used and XORed to the ciphertext, i.e.,

x =ChaCha20k(n)⊕ y

Core Function of ChaCha20

Similarly to Salsa20, ChaCha20’s initial state includes a 128-bit constant c, a 256-
bit key k, a 64-bit counter p and a 64-bit nonce n, which we can arrange in a 4-by-4
matrix of 32-bit words:

c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
p0 p1 n0 n1

We note that there is a different order of the input values compared to Salsa20. The
constant c is given by the ASCII encoded string “expand 32-byte k”.

Like Salsa20, ChaCha20 uses a quarter-round function QR(a,b,c,d) on its 32-bit
input values a, b, c and d. In the case of ChaCha20, it applies 4 additions modulo
232 and 4 XORs and 4 rotations repeatedly on the 32-bit state words. Compared to
Salsa20, ChaCha applies the operations in a different order. Moreover, each word is
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updated twice per round:

a = a+b

d = ROT L16(d⊕a)

c = c+d

b = ROT L12(b⊕ c)

a = a+b

d = ROT L8(d⊕a)

c = c+d

b = ROT L7(b⊕ c)

Figure 2.10 shows the quarter-round function of ChaCha20.

<<<
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a c db

a c db

Fig. 2.10 Quarter-round function QR(a,b,c,d) of ChaCha20

Similarly to Salsa20, ChaCha20 performs 10 iterations of a double round. Again,
each double round consists of two consecutive rounds, which in turn are each com-
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posed of four quarter rounds QR. If we denote the input by (v0,v1, . . . ,v15), the
output (u0,u1, . . . ,u15) of the first (odd) round of the double-round is computed on
the columns of the input as follows:

(u0,u4,u8,u12) = QR(v0,v4,v8,v12),

(u1,u5,u9,u13) = QR(v1,v5,v9,v13),

(u2,u6,u10,u14) = QR(v2,v6,v10,v14),

(u3,u7,u11,u15) = QR(v3,v7,v11,v15).

The second round of the double-round yields the intermediate output (z0,z1, . . . ,z15):

(z0,z5,z10,z15) = QR(v0,v5,v10,v15),

(z1,z6,z11,z12) = QR(v1,v6,v11,v12),

(z2,z7,z8,z13) = QR(v2,v7,v8,v13),

(z3,z4,z9,z14) = QR(v3,v4,v9,v14).

Implementation

Compared to Salsa20, the rounds in ChaCha have an improved diffusion (cf. Sec-
tion 3.1.1 for a discussion of diffusion in symmetric ciphers) while maintaining
a similar performance. Compared to AES software implementations, ChaCha20 is
about three times as fast on CPUs without specific AES accelerators. Like a Salsa20
round, a ChaCha round has 16 XORs, 16 additions, and 16 rotations of 32-bit words.
ChaCha20 with 20 rounds requires approximately 4–15 cycles per byte on average
for long streams, depending on the processor type.

2.4.3 Trivium

Like Salsa20, Trivium also grew out of the eStream project. It was designed by
Christophe De Cannière and Bart Preneel. In contrast to Salsa20, it is a hardware-
oriented cipher. This means that hardware implementations of the cipher use few
resources (i.e., logic gates) and should allow high encryption rates. Another differ-
ence from Salsa20 is that it uses an 80-bit key.

Trivium is based on a combination of three shift registers. Even though these are
linear feedback shift registers, there are nonlinear components used to combine the
registers, which prevents the attack against LFSRs that we studied in Section 2.3.2.
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Fig. 2.11 Internal structure of the stream cipher Trivium

Core Function of Trivium

As shown in Figure 2.11, at the heart of Trivium are the three shift registers, A, B
and C. The bit lengths of the registers are 93, 84 and 111, respectively. The XOR-
sum of all three register outputs forms the key stream si. A specific feature of the
cipher is that the output of each register is connected to the input of another register.
Thus, the registers are arranged in a circle-like fashion. The cipher can be viewed as
consisting of one circular register with a total length of 93+84+111 = 288. Each
of the three registers has similar structure, as described below.

The input of each register is computed as the XOR-sum of two bits:

1. For instance, the output of register A is part of the input of register B, as can be
seen in Figure 2.11.

2. One register bit at a specific location is fed back to the input. The positions are
given in Table 2.3. For instance, bit 69 of register A is fed back to its input.

The output of each register is computed as the XOR-sum of three bits:

� The rightmost register bit.
� One register bit at a specific location is fed forward to the output. The positions

are given in Table 2.3. For instance, bit 66 of register A is fed to its output.
� The output of a logical AND function whose inputs are two specific register bits.

Again, the positions of the AND gate inputs are given in Table 2.3.
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Table 2.3 Specification of Trivium

register length feedback bit feedforward bit AND inputs
A 93 69 66 91, 92
B 84 78 69 82, 83
C 111 87 66 109, 110

Alternatively, Trivium can be described using the following recursive formulae:

ai ≡ ci−66 + ci−111 + ci−110 · ci−109 +ai−69 mod 2
bi ≡ ai−66 +ai−93 +ai−92 ·ai−91 +bi−78 mod 2
ci ≡ bi−69 +bi−84 +bi−83 ·bi−82 + ci−87 mod 2

The leftmost bits ai, bi and ci are the new inputs for the three registers. The key
stream is then computed as the XOR sum of six register bits, cf. also Figure 2.11:

si ≡ ai−66 +ai−93 +bi−69 +bi−84 + ci−66 + ci−111 mod 2

Note that the AND operation is equal to multiplication in modulo 2 arithmetic.
This is in contrast to simple LFSRs, which only use XOR, i.e., modulo 2 addition.
In fact, the feed forward paths involving the AND operations are crucial for the
security of Trivium as they prevent attacks that exploit the linearity of the cipher,
such as the one shown against plain LFSRs in Section 2.3.2.

Encryption and Decryption with Trivium

Almost all modern stream ciphers have two input parameters: a key k and an ini-
tialization vector IV. The former is the regular key that is used in every symmetric
cryptographic system. The IV serves as a randomizer and should take a new value
for every encryption session, i.e., it should be a nonce (cf. the discussion of nonces
in stream ciphers in Section 2.4.1). We look now at the details of running Trivium.

Initialization Initially, an 80-bit key is loaded in the 80 leftmost locations of reg-
ister A, and an 80-bit IV is loaded into the 80 leftmost locations of register B. All
other register bits are set to zero with the exception of the three rightmost bits of
register C, i.e., bits c109, c110 and c111, which are set to 1.

Warm-Up Phase In the first phase, the cipher is clocked 4× 288 = 1152 times,
where 288 is the total length of all registers. No cipher output is generated. The
warm-up phase is required to prevent an attacker from computing the key from the
key stream. In other words, the warm-up phase is needed to randomize the cipher
sufficiently. It makes sure that the key stream depends on both the key k and the IV
in a way that cannot be predicted by an adversary.
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Encryption (Decryption) Phase The bits produced hereafter, i.e., starting with
the output bit of cycle 1153, form the key stream. As in every stream cipher, the key
stream is XORed to the plainext (encryption) or ciphertext (decryption).

Implementation An attractive feature of Trivium is its compactness, especially
if implemented in hardware. It mainly consists of a 288-bit shift register and a few
Boolean gates. It is estimated that a hardware implementation of the cipher occupies
an area of between about 3500 and 5500 gate equivalences, depending on the degree
of parallelization. (A gate equivalence is the chip area occupied by a 2-input NAND
gate.) For instance, an implementation with 4000 gates computes the key stream at
a rate of 16 bits/clock cycle. This is considerably smaller than most block ciphers
such as AES and additionally is very fast. If we assume that this hardware design is
clocked at 500 MHz, the encryption rate would be 16 bits× 500 MHz = 8 Gbit/s. In
software, it is estimated that computing 8 output bits takes 12 cycles on a 1.5 GHz
Intel CPU, resulting in a theoretical encryption rate of 1 Gbit/s.

Security of Trivium

At the time of writing no attack is known that is better than brute-force, i.e., that
requires less then 280 steps. There are some attacks against weakened versions of
Trivium. For instance, a key can be computed in 268 steps in case of a reduced ini-
tialization phase of 799 iterations (rather than the 1152 steps in the Trivium specifi-
cation). It should be kept in mind that Trivium was developed to be a very small and
efficient cipher and is not intended for high-security applications. It can be spec-
ulated that large nation-state attackers will be able to launch a brute-force attack
against ciphers with 80 key bits in the not-too-distant future.

2.5 Discussion and Further Reading

True Random Number Generation In this chapter we introduced different classes
of RNGs, and showed that cryptographically secure pseudorandom number genera-
tors are of central importance for stream ciphers. For other cryptographic applica-
tions, true random number generators are often needed. For instance, TRNGs are
used for the generation of cryptographic keys, which are then to be distributed
among participants. Many stream ciphers and modes of operation rely on initial
values that are often generated from TRNGs. Also, many protocols require nonces
(numbers used only once), which may stem from a TRNG. All TRNGs need to ex-
ploit some entropy source, i.e., some process which behaves truly randomly. Many
TRNG designs have been proposed over the years. They can coarsely be classified
as approaches that use specially designed hardware as a physical entropy source
or as TRNGs that exploit existing components of computer systems as sources of
randomness. Examples of the former are electronic circuits with random behavior,
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e.g., that are based on jitter in electronic circuits or several uncorrelated oscillators.
Many modern CPUs are equipped with such hardware-based TRNGs. Reference
[165, Chapter 5] contains a good survey on the topic. Examples of the latter are
computer systems that measure the times between key strokes, system interrupts, or
the arrival times of packets at network interfaces. Other possible entropy sources are
checksum over memory or hard disc content. On Linux-like computer systems, the
file /dev/random provides random bits that were collected in such a fashion. In
all these cases, one has to be extremely careful to make sure that the noise source in
fact has enough entropy.

There are many examples of TRNG designs that turned out to have poor random
behavior and which constitute a serious security weakness, depending on how they
are used. There are tools available that test the statistical properties of TRNG output
sequences [91, 195]. There are also standards with which TRNGs can be formally
evaluated [121].

Hirstorical Remark on Stream Ciphers and the OTP In the literature, stream
ciphers are often attributed to Gilbert Vernam who developed the concept in 1917,
even though they were not called stream ciphers back at that time. He built an elec-
tromechanical machine that automatically encrypted teletypewriter communication.
The plaintext was fed into the machine as one paper tape, and the key stream as
a second tape. This was the first time that encryption and transmission was auto-
mated in one machine. Occasionally, one-time pads are also called Vernam ciphers.
Vernam studied electrical engineering at Worcester Polytechnic Institute (WPI) in
Massachusetts where, by coincidence, one of the authors of this book was a pro-
fessor in the 1990s. Later on, Joseph Mauborgne discovered that the Vernam cipher
is unbreakable if the key stream is truly random and not reused, i.e., it becomes an
OTP. For further reading on Vernam’s machine, the book by Kahn [156] is recom-
mended. More recently, it was discovered that the one-time pad had been invented
35 years prior to Vernam’s machine, in 1882 by a Sacramento banker named Frank
Miller [34].

eSTREAM project As mentioned in the beginning of Section 2.4, the eSTREAM
project [108] was initiated in 2004 to trigger the development of new stream ci-
phers that are more secure and more efficient than many of the earlier stream cipher
constructions. eSTREAM was organized by the European Network of Excellence
in Cryptography (ECRYPT). In 2004, eSTREAM issued a call for new stream ci-
phers and the selection process ended in 2008. The ciphers were divided into two
“profiles”, depending on the intended application:

� Profile 1: Stream ciphers for software applications with high throughput require-
ments.

� Profile 2: Stream ciphers for hardware applications with restricted resources such
as limited storage, gate count or power consumption.

Some cryptographers had emphasized the importance of including an authentication
method, and hence two further profiles were also included to deal with ciphers that
also provide authentication.
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A total of 34 stream cipher candidates were submitted to the eSTREAM project.
At the end of the project four software-oriented (Profile 1) ciphers were found to
have desirable properties: HC-128, Rabbit, Salsa20/12 and SOSEMANUK. With re-
spect to hardware-oriented ciphers (Profile 2), the following three ciphers were se-
lected: Grain v1, MICKEY v2 and Trivium. The algorithm description, source code
and the results of the four-year evaluation process are available online [108], and
the official book provides more detailed information [219]. The official reference
document for Salsa20 is [38] and [37] for ChaCha.

It is important to keep in mind that ECRYPT is not a standardization body, so
the status of the eSTREAM finalist ciphers cannot be compared to that of AES,
which was initially standardized in the USA by NIST (cf. Section 4.1). Neverthe-
less, the ChaCha ciphers, a variant of the Salsa algorithm, have been specified as
an internet standard in RFC 7539 [201] and are part of the TLS cipher suite and
of OpenSSH. Trivium has been standardized as a “lightweight cipher” in ISO/IEC
29192-3:2012 [151].

Other Stream Ciphers Even though many stream ciphers have been proposed over
the years, many of the pre-eSTREAM algorithms are not as well scrutinized as the
eSTREAM ciphers. The security of many of those older stream ciphers is unknown,
and many of them have been broken. In the case of older software-oriented stream
ciphers, arguably the best-investigated one is RC4 [217]. In 2015, the use of RC4
within Transport Layer Security (TLS) was prohibited due to severe security is-
sues [6].

In the case of hardware-oriented ciphers, there is a wealth of LFSR-based al-
gorithms. Again, many older proposed ciphers have been broken; see references
[18, 126] for an introduction. Among the best-studied ones are the A5/1 and A5/2
algorithms, which are used in GSM mobile networks for voice encryption between
cell phones and base stations. A5/1, which was the cipher used in most industrialized
nations, had originally been kept secret but was reverse-engineered and published on
the internet in 1998. The cipher was borderline secure at release time [49], whereas
the weaker A5/2 has much more serious flaws [25]. Neither of the two ciphers is
recommended based on today’s understanding of cryptanalysis. For 3G (or UMTS)
mobile communication, a different cipher A5/3 (also named KASUMI) is used, but
it is a block cipher.



2.6 Lessons Learned 67

2.6 Lessons Learned

� Stream ciphers are an important part of modern cryptography but are somewhat
less widely used than block ciphers.

� The one-time pad is a provably secure symmetric cipher. However, it is highly
impractical for most applications because the key length has to equal the message
length.

� Stream ciphers sometimes require fewer resources, e.g., code size or chip area,
for implementation than block ciphers, and they can be very fast.

� Secure and fast stream ciphers such as ChaCha20 can be built from functions that
consist of the add-rotate-XOR operations.

� The requirements for a cryptographically secure pseudorandom number gener-
ator are far more demanding than the requirements for pseudorandom number
generators used in other fields of engineering such as testing or simulation.

� Single LFSRs make poor stream ciphers despite their good statistical properties.
However, careful combination of several LFSRs can yield strong ciphers.
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Problems

2.1. The stream cipher described in Definition 2.1.1 can easily be generalized to
work in alphabets other than the binary one. For manual encryption, an especially
useful one is a stream cipher that operates on letters.

1. Develop a scheme which operates with the letters A, B,. . ., Z, represented by the
numbers 0,1,. . .,25. What does the key (stream) look like? What are the encryp-
tion and decryption functions?

2. Decrypt the following ciphertext:
bsaspp kkuosr
which was encrypted using the key:
rsidpy dkawoa

3. How was the young man murdered?

2.2. Assume we store a one-time key on a DVD with a capacity of 1 Gbyte. Discuss
the real-life implications of a one-time pad (OTP) system. Address issues such as
the life cycle of the key, storage of the key during the life cycle/after the life cycle,
key distribution, generation of the key, etc.

2.3. Assume an OTP-like encryption with a short key of 128 bits. This key is then
used periodically to encrypt large volumes of data. Describe how an attack works
that breaks this scheme.

2.4. At first glance it seems as though an exhaustive key search is possible against
an OTP system. Given is a short message, let’s say 5 ASCII characters represented
by 40 bits, which was encrypted using a 40-bit OTP. Explain exactly why an exhaus-
tive key search will not succeed even though sufficient computational resources are
available. This is a paradox since we know that the OTP is unconditionally secure.
That is, explain why a brute-force attack does not work.

Note: You have to resolve the paradox! That means answers such as “The OTP
is unconditionally secure and therefore a brute-force attack does not work” are not
valid.

2.5. The OTP can be used to encrypt data of arbitrary length by encrypting binary
symbols xi ∈ {0,1}. Decrypt the following ciphertext by hand. The ciphertext is
given in hexadecimal notation:
26 34 05 18 0c 06 07 15 1c 2a 13 3c 0c 23 04 27 07 27 18

The key is given by:
6a 51 71 6b 49 68 64 67 65 5a 67 68 64 4a 77 65 68 48 73

Compute the plaintext, which is encoded in ASCII symbols.

2.6. The OTP offers provable security. Describe two major drawbacks of the OTP
that render it impractical for most applications such as encryption of emails or in-
stant messenging.
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2.7. We will now analyze a pseudorandom number sequence generated by an LFSR
of degree 3 characterized by (p2 = 1, p1 = 0, p0 = 1).

1. What is the sequence generated from the initialization vector:
(s2 = 1,s1 = 0,s0 = 0)?

2. What is the sequence generated from the initialization vector:
(s2 = 0,s1 = 1,s0 = 1)?

3. How are the two sequences related?

2.8. Assume we have a stream cipher whose period is quite short. We happen to
know that the period is 150–200 bits in length. We assume that we do not know
anything else about the internals of the stream cipher. In particular, we should not
assume that it is a simple LFSR. For simplicity, assume that English text in ASCII
format is being encrypted.

Describe in detail how such a cipher can be attacked. Specify exactly what Oscar
has to know in terms of plaintext/ciphertext, and how he can decrypt all ciphertext.

2.9. Compute the first two output bytes of the LFSR of degree 8 and the feedback
polynomial from Table 2.2 where the initialization vector has the value FF in hex-
adecimal notation.

2.10. In this problem we will study LFSRs in somewhat more detail. LFSRs come
in three flavors:

� LFSRs which generate a maximum-length sequence. These LFSRs are based on
primitive polynomials.

� LFSRs which do not generate a maximum-length sequence but whose sequence
length is independent of the initial value of the register. These LFSRs are based
on irreducible polynomials that are not primitive. (Note that all primitive poly-
nomials are also irreducible.)

� LFSRs which do not generate a maximum-length sequence and whose sequence
length depends on the initial values of the register. These LFSRs are based on
reducible polynomials.

We will study examples in the following. Determine all sequences generated by the
following three polynomials:

1. x4 + x+1
2. x4 + x2 +1
3. x4 + x3 + x2 + x+1

Draw the corresponding LFSR for each of the three polynomials. Which of the
polynomials is primitive, which is only irreducible, and which one is reducible?
Note that the lengths of all sequences generated by each of the LFSRs should always
add up to 2m−1.
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2.11. Given is a stream cipher based on a single LFSR as key stream generator. The
LFSR has a degree of 256.

1. How many plaintext/ciphertext bit pairs are needed to launch a successful attack?
2. Describe all steps of the attack in detail and develop the formulae that need to be

solved.
3. What is the key in this system? Why doesn’t it make sense to use the initial

contents of the LFSR as the key or as part of the key?

2.12. We conduct a known-plaintext attack on an LFSR-based stream cipher. We
know that the plaintext sent was:
1001 0010 0110 1101 1001 0010 0110
By tapping the channel we observe the following stream:
1011 1100 0011 0001 0010 1011 0001

1. What is the degree m of the key stream generator?
2. What is the initialization vector?
3. Determine the feedback coefficients of the LFSR.
4. Draw a circuit diagram and verify the output sequence of the LFSR.

2.13. We want to perform an attack on another LFSR-based stream cipher. In order
to process letters, each of the 26 uppercase letters and the numbers 0, 1, 2, 3, 4, 5
are represented by a 5-bit vector according to the following mapping:

A↔ 0 = 000002
...

Z↔ 25 = 110012

0↔ 26 = 110102
...

5↔ 31 = 111112

We happen to know the following facts about the system:

� The degree of the LFSR is m = 6.
� Every message starts with the header WPI.

We observe now on the channel the following message (the fourth symbol is a zero):
j5a0edj2b

1. What is the initialization vector?
2. What are the feedback coefficients of the LFSR?
3. Write a program in your favorite programming language which generates the

whole sequence, and find the whole plaintext.
4. Where does the thing after WPI live?
5. What type of attack did we perform?
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2.14. In this problem we will look at pseudorandom number generators based on a
linear congruential generator (LCG). As we have seen in Section 2.2.1, an LCG is
given by the equations:

z0 ≡ seed

zi+1 ≡ a · zi +b mod m , i = 0,1, ...

We assume that the modulus m is public and that the key is formed by the parameters
seed, a and b.

We consider now the problem that arises if we use an LCG as key stream genera-
tor. We assume the stream cipher is used for encrypting images given in GIF format.
The key stream zi encrypts a plaintext xi as follows:

yi ≡ xi + zi mod m.

Since GIF files consist of 8-bit values, we need at least 256 possible values for xi.
Thus, the prime modulus m = 257 is a good choice.

Now, assume that the first six bytes in the header of a GIF-image file consists
of the letters GIF89a, where each letter is encoded as an 8-bit ASCII character.
An attacker who obtains an encrypted GIF file finds the following ciphertexts at
the beginning of the file: y1 = 32, y2 = 166 and y3 = 87, which correspond to the
plaintext bytes x1 = G, x2 = I and x3 = F .

1. Describe how an attacker can compute the parameters a,b as well as the seed
with these three plaintext bytes. Compute the parameters a,b and the seed.

2. What is this attack called? What are the prerequisites for a successful attack?

2.15. The linear congruential generator described in Section 2.2.1 can be extended
such that each new element zi+1 of the key stream is computed from the two pre-
vious elements zi and zi−1. In this case, two seed values z0 and z1 as well as three
parameters a, b and c along with the modulus m are needed. The equation of the
generator is given as:

zi+1 ≡ a · zi +b · zi−1 + c mod m

The key stream zi is used to encrypt letters given in 8-bit ASCII code on a
character-by-character basis. That means for each key stream value zi, one plain-
text character xi is encrypted as yi ≡ xi + zi mod m.

Oscar, the attacker, eavesdrops on the communication and happens to know that
the ciphertext contains the name ALICE, starting at position i. Oscar observes now
the following ciphertext symbols on the channel:

yi = 69,yi+1 = 47,yi+2 = 3,yi+3 = 88,yi+4 = 217

He also knows that the modulus m = 257 is being used. Show how Oscar can com-
pute the parameters a, b and c.
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2.16. We want to use the Salsa20 algorithm with a 256-bit key for encryption. Let
the key k and the nonce n consist of only zeros and let the stream position start at
zero. Provide the 512-bit initial state of Salsa20.

2.17. Let us now have a closer look at the quarter-round function of ChaCha, i.e.,
QR(a,b,c,d). What is the output of QR for the following input?

a = 0x00000001
b = 0x00000000
c = 0x00000000
d = 0x00000000

2.18. Assume the IV and the key of Trivium each consist of 80 all-zero bits. Com-
pute the first 70 bits s1, . . . ,s70 during the warm-up phase of Trivium. Note that these
are only internal bits, which are not used for encryption since the warm-up phase
lasts for 1152 clock cycles.



Chapter 3
The Data Encryption Standard (DES) and
Alternatives

The Data Encryption Standard, or DES, was conceived in the early 1970s and can
arguably be considered the first modern encryption algorithm. It was the most pop-
ular block cipher in the 1980s and 1990s. Even though DES in its basic form is
nowadays not secure because of the small key space, its variant 3DES or triple DES
is still in use in the 2020s (cf. Section 3.7.2). 3DES simply encrypts data three times
in a row with DES. The design principles of DES have inspired many current ciphers
and, hence, studying it helps us to understand many other symmetric algorithms.

In this chapter you will learn:

� The design process of DES, which is very helpful for understanding the technical
and political evolution of modern cryptography

� Basic design ideas of block ciphers, including confusion and diffusion, which are
important properties of all modern block ciphers

� The internal structure of DES, including Feistel networks, S-boxes and the key
schedule

� Security analysis of DES
� Alternatives to DES, including 3DES and the lightweight block cipher PRESENT
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3.1 Introduction to DES

In 1972 a mildly revolutionary act was performed by the U.S. National Bureau of
Standards (NBS), which is now called the National Institute of Standards and Tech-
nology (NIST): the NBS initiated a request for proposals for a standardized cipher
in the USA. The idea was to find a single secure cryptographic algorithm which
could be used for a variety of applications. Up to this point in time governments had
always considered cryptography, and in particular cryptanalysis, so crucial for na-
tional security that it had to be kept secret. However, by the early 1970s the demand
for encryption for commercial applications such as banking had become so pressing
that it could not be ignored without economic consequences.

The NBS received the most promising candidate in 1974 from a team of cryp-
tographers working at IBM. The algorithm IBM submitted was based on the cipher
Lucifer. Lucifer was a family of ciphers developed by Horst Feistel in the late 1960s,
and was one of the first instances of block ciphers operating on digital data. Lucifer
is a Feistel cipher which encrypts blocks of 64 bits using a key size of 128 bits.
In order to investigate the security of the submitted ciphers, the NBS requested the
help of the National Security Agency (NSA), which did not even admit its existence
at that point in time1. It seems certain that the NSA influenced changes to the ci-
pher, which was rechristened DES. One of the changes that occurred was that DES
is specifically designed to withstand differential cryptanalysis, an attack not known
to the public until 1990. It is not clear whether the IBM team developed the knowl-
edge about differential cryptanalysis by themselves or whether they were guided by
the NSA. Allegedly, the NSA also convinced IBM to reduce the Lucifer key length
of 128 bits to 56 bits, which made the cipher much more vulnerable to brute-force
attacks.

The NSA involvement worried some people because it was feared that a secret
backdoor, i.e., a mathematical property with which DES could be broken but which
is only known to the NSA, might have been the real reason for the modifications. An-
other major complaint was the reduction of the key size. Some people conjectured
that the NSA would be able to search through a key space of 256, thus breaking it
by brute-force. In later decades, most of these concerns turned out to be unfounded.
Section 3.5 provides more information about real and perceived security weaknesses
of DES.

Despite all the criticism and concerns, in 1977 the NBS finally released all spec-
ifications of the modified IBM cipher to the public as Data Encryption Standard
(FIPS PUB 46). Even though the cipher is described down to the bit level in the
standard, the motivation for parts of the DES design (the so-called design criteria),
especially the choice of the substitution boxes, was never officially released.

With the rapid increase in personal computers in the early 1980s and all specifica-
tions of DES being publicly available, it became easier to analyze the inner structure
of the cipher. During this period, the academic cryptography research community
also grew and DES underwent major scrutiny. However, no serious weaknesses were

1 A standard joke in the cryptographic community was that NSA stands for “no such agency”.
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found until 1990. Originally, DES was only standardized for 10 years, until 1987.
Due to the wide use of DES and the lack of security weaknesses, NIST reaffirmed
the federal use of the cipher until 1999, when it was finally replaced by the Advanced
Encryption Standard (AES).

3.1.1 Confusion and Diffusion

Before we consider the details of DES, it is instructive to look at basic operations
that can be applied in order to achieve strong encryption. According to the famous
information theorist Claude Shannon, there are two primitive operations with which
strong encryption algorithms can be built [232]:

1. Confusion is an encryption operation where the relationship between key and
ciphertext is obscured. Today, a common element for achieving confusion is sub-
stitution, which is found in both DES and AES.

2. Diffusion is an encryption operation where the influence of one plaintext sym-
bol is spread over many ciphertext symbols with the goal of hiding statistical
properties of the plaintext. A simple diffusion element is the bit permutation,
which is used frequently within DES. AES uses the more advanced MixColumn
operation.

Ciphers which only perform confusion, such as the Shift Cipher (cf. Section 1.4.3)
or the World War II encryption machine Enigma, are not secure. Neither are ciphers
which only perform diffusion. However, through the concatenation of such oper-
ations, a strong cipher can be built. The idea of concatenating several encryption
operations was also proposed by Shannon. Such ciphers are known as product ci-
phers. All of today’s block ciphers are product ciphers as they consist of rounds
which are applied repeatedly to the data (Figure 3.1).

Modern block ciphers possess excellent diffusion properties. On a cipher level
this means that changing one bit of plaintext results on average in changing half the
output bits, i.e., the second ciphertext looks statistically independent of the first one.
This is an important property to keep in mind when dealing with block ciphers. We
demonstrate this behavior with the following simple example.

Example 3.1. Let’s assume a toy block cipher with a block length of 8 bits. Encryp-
tion of two plaintexts x1 and x2, which differ only by one bit, should roughly result
in the situation shown in Figure 3.2.

Note that modern block ciphers have block lengths of 64 or 128 bits but they
show exactly the same behavior if one input bit is flipped.
�
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Fig. 3.1 Principle of an N round product cipher, where each round performs a con-
fusion and a diffusion operation

Block Cipher
= 0110 11002

y = 1011 10011

x = 0000 10112

x = 0010 10111

y

Fig. 3.2 Principle of diffusion of a block cipher: A one-bit change in the input leads
to statistically independent outputs

3.2 Overview of the DES Algorithm

DES is a cipher that encrypts blocks of length 64 bits with a key of size of 56 bits
(Figure 3.3).

DES is a symmetric cipher, i.e., the same key is used for encryption and decryp-
tion. DES is, like virtually all modern block ciphers, a round-based algorithm. For
each block of plaintext, encryption is handled in 16 rounds, which all perform the
identical operation. Figure 3.4 shows the round structure of DES. In every round a
different subkey is used and all subkeys ki are derived from the main key k.

Let’s now have a more detailed look at the internals of DES, as shown in Fig-
ure 3.5. The structure in the figure is called a Feistel network. It can lead to very
strong ciphers if carefully designed. Feistel networks are used in other, but certainly
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Fig. 3.4 Round structure of DES

not in all, modern block ciphers too. (In fact, AES is not a Feistel cipher.) In ad-
dition to its potential cryptographic strength, one advantage of Feistel networks is
that encryption and decryption are almost the same operation. Decryption requires
only a reversed key schedule, which is an advantage in software and hardware im-
plementations. We discuss the Feistel network in the following.
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After the initial bitwise permutation IP of a 64-bit plaintext block x, the plaintext
is split into two halves L0 and R0. These two 32-bit halves are the input to the Feistel
network, which consists of 16 rounds. The right half Ri is fed into the function f .
The output of the f function is XORed (as usual, denoted by the symbol ⊕) with
the 32-bit left half Li. Finally, the right and left halves are swapped. This process
repeats in the next round and can be expressed as:

Li = Ri−1

Ri = Li−1⊕ f (Ri−1,ki)

where i = 1, . . . ,16. After round 16, the 32-bit halves L16 and R16 are swapped
again, and the final permutation IP−1 is the last operation of DES. As the notation
suggests, the final permutation IP−1 is the inverse of the initial permutation IP. In
each round, a round key ki is derived from the main 56-bit key using what is called
the key schedule.

It is crucial to note that the Feistel structure only encrypts (decrypts) half of the
input bits each round, namely the left half of the input. The right half is copied to
the next round unchanged. In particular, the right half is not encrypted with the f
function. In order to get a better understanding of the working of Feistel ciphers, the
following interpretation is helpful: Think of the f function as a pseudorandom gen-
erator with the two input parameters Ri−1 and ki. The output of the pseudorandom
generator is then used to encrypt the left half Li−1 with an XOR operation. As we
saw in Chapter 2, if the output of the f function is not predictable for an attacker,
this results in a strong encryption method.

The two basic properties of ciphers mentioned in Section 3.1.1, i.e., confusion
and diffusion, are realized within the f function. In order to thwart advanced analyt-
ical attacks, the f function must be designed extremely carefully. Once the f func-
tion has been designed securely, the security of a Feistel cipher increases with the
number of key bits used and the number of rounds.

Before we discuss all components of DES in detail, here is an algebraic descrip-
tion of the Feistel network for the mathematically inclined reader. The Feistel struc-
ture of each round bijectively maps a block of 64 input bits to 64 output bits (i.e.,
every possible input is mapped uniquely to exactly one output, and vice versa). This
mapping remains bijective for some arbitrary function f , i.e., even if the embedded
function f is not bijective itself. In the case of DES, the function f is in fact a sur-
jective many-to-one mapping. It uses nonlinear building blocks and maps 32 input
bits to 32 output bits using a 48-bit round key ki, with 1≤ i≤ 16.

3.3 Internal Structure of DES

The structure of DES as depicted in Figure 3.5 shows the internal functions, which
we will discuss in this section. The building blocks are the initial and final permu-
tation, the actual DES rounds with their core, the f function, and the key schedule.



80 3 The Data Encryption Standard (DES) and Alternatives

3.3.1 Initial and Final Permutation

As shown in Figures 3.6 and 3.7, the initial permutation IP and the final permuta-
tion IP−1 are bitwise permutations. A bitwise permutation can be viewed as simple
crosswiring. Interestingly, permutations can be very easily implemented in hard-
ware but are not particularly fast in software. Note that both permutations do not
increase the security of DES at all. The rationale for these two permutations in DES
is purely implementational: The original purpose was to make it easier to arrange
the plaintext and ciphertext bits in a bytewise manner to make data fetches easier
for 8-bit data buses, which were the state-of-the-art register size in the early 1970s.

. . .

. . . . . .

. . .

. . .

1

1 50

IP(x)

x

6458

402

Fig. 3.6 Examples of bit swaps in the initial permutation
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. . . IP   (z)

z

Fig. 3.7 Examples for bit swaps in the final permutation
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The details of the permutation IP are given in Table 3.1. This table, like all other
tables in this chapter, should be read from left to right, top to bottom. The table
indicates that input bit 58 is mapped to output position 1, input bit 50 is mapped to
the second output position, and so forth. The final permutation IP−1 performs the
inverse operation of IP as shown in Table 3.2.

Table 3.1 Initial permutation IP

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table 3.2 Final permutation IP−1

IP−1

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

3.3.2 The f Function

As mentioned earlier, the f function plays a crucial role for the security of DES.
In round i it takes the right half Ri−1 of the output of the previous round and the
current round key ki as input. The output of the f function is used as an XOR-mask
for encrypting the left half input bits Li−1.

The structure of the f function is shown in Figure 3.8. First, the 32-bit input is ex-
panded to 48 bits by partitioning the input into eight 4-bit blocks and by expanding
each block to 6 bits. This happens inside the E-box, which is a special type of per-
mutation. The first block consists of the bits (1,2,3,4), the second one of (5,6,7,8),
etc. The expansion to six bits can be seen in Figure 3.9.

As shown in Table 3.3, exactly 16 of the 32 input bits appear twice in the output.
However, an input bit never appears twice in the same 6-bit output block. The ex-
pansion box increases the diffusion behavior of DES since some input bits influence
two different output locations.

Next, the 48-bit result of the expansion is XORed with the round key ki, and the
eight 6-bit blocks are fed into eight different substition boxes, which are commonly
referred to as S-boxes. Each S-box is a lookup table that maps a 6-bit input to a 4-bit
output. Larger tables would have been cryptographically better but they also become
much larger; eight 4-by-6 tables were probably close to the maximum size that could
fit on a single integrated circuit in the early 1970s, when DES was designed. Each
S-box contains 26 = 64 entries, which are typically represented by a table with 16
columns and 4 rows. Each entry is a 4-bit value. All S-boxes are listed in Tables 3.4
to 3.11. Note that all S-boxes are different. The tables are to be read as indicated
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Table 3.3 Expansion permutation E

E
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

in Figure 3.10: the most significant bit (MSB) and the least significant bit (LSB)
of each 6-bit input select the row of the table, while the four inner bits select the
column. The integers 0,1,. . . ,15 of each entry in the table represent the decimal
notation of a 4-bit value.

Example 3.2. The S-box input b = (100101)2 indicates the row 112 = 3 (i.e., fourth
row, numbering starts with 002) and the column 00102 = 2 (i.e., the third column).
If the input b is fed into S-box 1, the output is S1(37 = 1001012) = 8 = 10002.

fourth row

1 0 0 1 0 1

11

0 0 1 0 third column

Fig. 3.10 Example of the decoding of the input 1001012 by S-box 1

�

Table 3.4 S-box S1

S1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 04 13 01 02 15 11 08 03 10 06 12 05 09 00 07
1 00 15 07 04 14 02 13 01 10 06 12 11 09 05 03 08
2 04 01 14 08 13 06 02 11 15 12 09 07 03 10 05 00
3 15 12 08 02 04 09 01 07 05 11 03 14 10 00 06 13
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Table 3.5 S-box S2

S2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 15 01 08 14 06 11 03 04 09 07 02 13 12 00 05 10
1 03 13 04 07 15 02 08 14 12 00 01 10 06 09 11 05
2 00 14 07 11 10 04 13 01 05 08 12 06 09 03 02 15
3 13 08 10 01 03 15 04 02 11 06 07 12 00 05 14 09

Table 3.6 S-box S3

S3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 10 00 09 14 06 03 15 05 01 13 12 07 11 04 02 08
1 13 07 00 09 03 04 06 10 02 08 05 14 12 11 15 01
2 13 06 04 09 08 15 03 00 11 01 02 12 05 10 14 07
3 01 10 13 00 06 09 08 07 04 15 14 03 11 05 02 12

Table 3.7 S-box S4

S4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 07 13 14 03 00 06 09 10 01 02 08 05 11 12 04 15
1 13 08 11 05 06 15 00 03 04 07 02 12 01 10 14 09
2 10 06 09 00 12 11 07 13 15 01 03 14 05 02 08 04
3 03 15 00 06 10 01 13 08 09 04 05 11 12 07 02 14

Table 3.8 S-box S5

S5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 02 12 04 01 07 10 11 06 08 05 03 15 13 00 14 09
1 14 11 02 12 04 07 13 01 05 00 15 10 03 09 08 06
2 04 02 01 11 10 13 07 08 15 09 12 05 06 03 00 14
3 11 08 12 07 01 14 02 13 06 15 00 09 10 04 05 03

Table 3.9 S-box S6

S6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 12 01 10 15 09 02 06 08 00 13 03 04 14 07 05 11
1 10 15 04 02 07 12 09 05 06 01 13 14 00 11 03 08
2 09 14 15 05 02 08 12 03 07 00 04 10 01 13 11 06
3 04 03 02 12 09 05 15 10 11 14 01 07 06 00 08 13

Table 3.10 S-box S7

S7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 04 11 02 14 15 00 08 13 03 12 09 07 05 10 06 01
1 13 00 11 07 04 09 01 10 14 03 05 12 02 15 08 06
2 01 04 11 13 12 03 07 14 10 15 06 08 00 05 09 02
3 06 11 13 08 01 04 10 07 09 05 00 15 14 02 03 12

The S-boxes are the core of DES in terms of cryptographic strength. They are the
only nonlinear element in the algorithm and provide confusion.
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Table 3.11 S-box S8

S8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 13 02 08 04 06 15 11 01 10 09 03 14 05 00 12 07
1 01 15 13 08 10 03 07 04 12 05 06 11 00 14 09 02
2 07 11 04 01 09 12 14 02 00 06 10 13 15 03 05 08
3 02 01 14 07 04 10 08 13 15 12 09 00 03 05 06 11

Even though the entire specification of DES was released by NBS/NIST in 1977,
the motivation for the choice of the S-box tables was never completely revealed.
This often gave rise to speculation, in particular with respect to the possible exis-
tence of a secret backdoor or some other intentionally constructed weakness which
could be exploited by the NSA. However, today we know that the S-boxes were
designed according to the criteria listed below.

1. Each S-box has six input bits and four output bits.
2. No single output bit should be too close to a linear combination of the input bits.
3. If the lowest and the highest bits of the input are fixed and the four middle bits

are varied, each of the possible 4-bit output values must occur exactly once.
4. If two inputs to an S-box differ in exactly one bit, their outputs must differ in at

least two bits.
5. If two inputs to an S-box differ in the two middle bits, their outputs must differ

in at least two bits.
6. If two inputs to an S-box differ in their first two bits and are identical in their last

two bits, the two outputs must be different.
7. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs

of inputs exhibiting that difference may result in the same output difference.
8. A collision (zero output difference) at the 32-bit output of the eight S-boxes is

only possible for three adjacent S-boxes.

Note that some of these design criteria were not revealed until the 1990s. More
information about the issue of the secrecy of the design criteria is found in Sec-
tion 3.5.

The S-boxes are the most crucial elements of DES because they introduce non-
linearity into the cipher, i.e.,

S(a)⊕S(b) 6= S(a⊕b)

Without a nonlinear building block, an attacker could express the DES input and out-
put with a system of linear equations where the key bits are the unknowns. Such sys-
tems can easily be solved, a fact that was used in the LFSR attack in Section 2.3.2.
However, the S-boxes were carefully designed to also thwart advanced mathematical
attacks, in particular differential cryptanalysis. Interestingly, differential cryptanal-
ysis was first discovered in the research community in 1990. At this point, the IBM
team declared that the attack was known to the designers at least 16 years earlier,
and that DES was especially designed to withstand differential cryptanalysis.



86 3 The Data Encryption Standard (DES) and Alternatives

Finally, the 32-bit output of the S-Boxes is permuted bitwise according to the
P permutation, which is given in Table 3.12. Unlike the initial permutation IP and
its inverse IP−1, the permutation P has an important cryptographic purpose. It in-
troduces diffusion because the four output bits of each S-box are permuted in such
a way that they affect several different S-boxes in the following round. The diffu-
sion caused by the expansion E and the permutation P together with the confusion
caused by the S-boxes guarantee that each of the 64 bits at the end of the fifth round
is a function of every plaintext bit and every key bit. This behavior is known as the
avalanche effect.

Table 3.12 The permutation P within the f function

P
16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9
19 13 30 6 22 11 4 25

3.3.3 Key Schedule

The key schedule derives 16 round keys ki, each consisting of 48 bits, from the
original 56-bit key. Another term for round key is subkey. First, note that the DES
input key is often stated to be 64 bits, where every eighth bit is used as an odd parity
bit over the preceding seven bits, as shown in Figure 3.11. It is not quite clear why
DES was specified that way. In any case, the eight parity bits are not actual key bits
and do not increase the security. DES is a 56-bit cipher, not a 64-bit one!

At the beginning of the key schedule, the 64-bit key is reduced to 56 bits by
ignoring every eighth bit, i.e., the parity bits are stripped in the initial PC–1 permu-
tation, cf. Figure 3.12. Again, the parity bits certainly do not increase the key space.
The name PC–1 stands for “permuted choice one”. The exact bit connections that
are realized by PC–1 are given in Table 3.13.

Table 3.13 Initial key permutation PC–1

PC–1
57 49 41 33 25 17 9 1
58 50 42 34 26 18 10 2
59 51 43 35 27 19 11 3
60 52 44 36 63 55 47 39
31 23 15 7 62 54 46 38
30 22 14 6 61 53 45 37
29 21 13 5 28 20 12 4
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Fig. 3.11 Location of the eight parity bits for a 64-bit input key

The resulting 56-bit key is split into two halves C0 and D0, and the actual key
schedule starts as shown in Figure 3.12. The two 28-bit halves are cyclically shifted
(i.e., rotated) left by one or two bit positions depending on the round i according to
the following rule:

� In rounds i = 1,2,9,16, the two halves are rotated left by one bit.
� In the other rounds where i 6= 1,2,9,16, the two halves are rotated left by two

bits.

Note that the rotations take place within the left and the right half. The total number
of rotation positions is 4 ·1+12 ·2 = 28. This leads to the interesting property that
C0 = C16 and D0 = D16. This is very useful for the decryption key schedule where
the subkeys have to be generated in reversed order, as we will see in Section 3.4.

To derive the 48-bit round keys ki, the two halves are permuted bitwise again
with PC–2, which stands for “permuted choice 2”. PC–2 permutes the 56 input bits
coming from Ci and Di and ignores 8 of them. The exact bit connections of PC–2
are given in Table 3.14.

Table 3.14 Round key permutation PC–2

PC–2
14 17 11 24 1 5 3 28
15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56
34 53 46 42 50 36 29 32

Note that every round key is a selection of 48 permuted bits of the input key k.
The key schedule is merely a method of realizing the 16 permutations systemati-
cally. Especially in hardware, the key schedule is very easy to implement. The key
schedule is also designed so that each of the 56 key bits is used in different round
keys; each bit is used in approximately 14 of the 16 round keys.
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Fig. 3.12 Key schedule for DES encryption

3.4 Decryption

One advantage of DES is that decryption is essentially the same function as encryp-
tion. This is a property of all Feistel ciphers. Figure 3.13 shows a block diagram for
DES decryption. Compared to encryption, only the key schedule is reversed, i.e., in
decryption round 1, subkey 16 is needed; in round 2, subkey 15; etc. Thus, when in
decryption mode, the key schedule algorithm has to generate the round keys as the
sequence k16,k15, . . . ,k1.
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Fig. 3.13 DES decryption

Reversed Key Schedule

The first question that we have to clarify is how, given the initial DES key k, can
we efficiently generate k16? Note that we saw above that C0 = C16 and D0 = D16.
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Hence k16 can be directly derived from PC–1.

k16 = PC–2(C16,D16)

= PC–2(C0,D0)

= PC–2(PC–1(k))

To compute k15 we need the intermediate variables C15 and D15, which can be de-
rived from C16,D16 through cyclic right shifts (RS):

k15 = PC–2(C15,D15)

= PC–2(RS2(C16),RS2(D16))

= PC–2(RS2(C0),RS2(D0))

The subsequent round keys k14,k13, . . . ,k1 are derived via right shifts in a similar
fashion. The number of bits shifted right for each round key in decryption mode are:

� In decryption round 1, the key is not rotated.
� In decryption rounds 2, 9 and 16 the two halves are rotated right by one bit.
� In the other rounds 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 and 15 the two halves are

rotated right by two bits.

Figure 3.14 shows the reversed key schedule for decryption.

Decryption in Feistel Networks

We have not yet addressed the core question: Why is the decryption function es-
sentially the same as the encryption function? The basic idea is that the decryption
function reverses the DES encryption in a round-by-round manner. That means that
decryption round 1 reverses encryption round 16, decryption round 2 reverses en-
cryption round 15, and so on. Let’s first look at the initial stage of decryption by
looking at Figure 3.13. Note that the right and left halves are swapped in the last
round of DES:

(Ld
0 ,R

d
0) = IP(Y ) = IP(IP−1(R16,L16)) = (R16,L16)

And thus:

Ld
0 = R16

Rd
0 = L16 = R15

Note that all variables in the decryption routine are marked with the superscript
d, whereas the encryption variables do not have superscripts. The derived equation
simply says that the input of the first round of decryption is the output of the last
round of encryption because the final and initial permutations cancel each other out.
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Transform 16

Fig. 3.14 Reversed key schedule for decryption of DES

We will now show that the first decryption round reverses the last encryption
round. For this, we have to express the output values (Ld

1 ,R
d
1) of the first decryption

round 1 in terms of the input values of the last encryption round (L15,R15) . The first
one is easy:

Ld
1 = Rd

0 = L16 = R15

We now look at how Rd
1 is computed:

Rd
1 = Ld

0⊕ f (Rd
0 ,k16) = R16⊕ f (L16,k16)

= [L15⊕ f (R15,k16)]⊕ f (R15,k16)

= L15⊕ [ f (R15,k16)⊕ f (R15,k16)] = L15

The crucial step is shown in the last equation above: The f function is XORed
twice to L15 with identical inputs (namely R15 and k16). These two outputs of the
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f function cancel each other out, so that Rd
1 = L15. Hence, after the first decryption

round, we in fact have computed the same values we had before the last encryption
round. Thus, the first decryption round reverses the last encryption round. This is
an iterative process, which continues in the next 15 decryption rounds and can be
expressed as:

Ld
i = R16−i,

Rd
i = L16−i,

where i = 0,1, . . . ,16. In particular, after the last decryption round:

Ld
16 = R16−16 = R0

Rd
16 = L0

Finally, at the end of the decryption process, we have to reverse the initial per-
mutation:

IP−1(Rd
16,L

d
16) = IP−1(L0,R0) = IP−1(IP(x)) = x

where x is the plaintext that was the input to the DES encryption.

3.5 Security of DES

As we discussed in Section 1.2.2, ciphers can be attacked in several ways. With
respect to cryptographic attacks, we distinguish between exhaustive key search (or
brute-force) attacks and analytical attacks. The latter was demonstrated with the
LFSR attack in Section 2.3.2, where we could easily break a stream cipher by solv-
ing a system of linear equations. Shortly after DES was proposed, two major criti-
cisms against the cryptographic strength of DES centered around two arguments:

1. The key space is too small, i.e., the algorithm is vulnerable against brute-force
attacks.

2. The design criteria of the S-boxes were kept secret and there might be an analyti-
cal attack that exploits mathematical properties of the S-boxes and which is only
known to the DES designers.

We discuss both types of attacks below and state the main conclusion about DES
security already here: Despite very intensive cryptanalysis since the mid-1970s, cur-
rent analytical attacks are not very efficient. However, DES can relatively easily be
broken with an exhaustive key-search attack and, thus, plain DES is not suited for
most applications anymore.
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3.5.1 Exhaustive Key Search

The first criticism is nowadays certainly justified. The original cipher proposed by
IBM had a key length of 128 bits and it is suspicious that it was reduced to 56 bits.
The official statement that a cipher with a shorter key length made it easier to im-
plement the DES algorithm on a single chip in 1974 does not sound too convincing.
For clarification, let’s recall the principle of an exhaustive key-search (or brute-force
attack).

Definition 3.5.1 DES exhaustive key search
Input: at least one pair of plaintext–ciphertext (x,y)
Output: k, such that y = DESk(x)
Attack: Test all 256 possible keys until the following condition is
fulfilled:

DES−1
ki
(y) ?

= x , i = 0,1, . . . ,256−1

Note that there is a small chance of 1/28 that an incorrect key is found, i.e., a key
k which decrypts only the one ciphertext y correctly but not subsequent ciphertexts.
If one wants to rule out this possibility, an attacker must check such a key candidate
with a second plaintext–ciphertext pair. More about this is found in Section 5.2.

Regular computers are not particularly well suited to perform the 256 key tests
necessary, but special-purpose key-search machines are an option. It seems highly
likely that large (government) institutions have long been able to build such brute-
force crackers, which can break DES in a matter of days. In 1977, Whitfield Diffie
and Martin Hellman [94] estimated that it was possible to build an exhaustive key-
search machine for approximately $20,000,000. Even though they later stated that
their cost estimate had been too optimistic, it was clear from the beginning that a
cracker could be built with sufficient funding.

At the rump session of the CRYPTO 1993 conference, Michael Wiener proposed
the design of a very efficient key-search machine which used pipelining techniques.
He estimated the cost of his design at approximately $1,000,000, and the time re-
quired to find the key at 1.5 days. This was a proposal only, and the machine was
not built. In 1998, however, the EFF (Electronic Frontier Foundation) built the hard-
ware machine Deep Crack, which performed a brute-force attack against DES in 56
hours. Figure 3.15 shows a photo of Deep Crack. The machine consisted of 1800 in-
tegrated circuits, where each had 24 key-test units. The average search time of Deep
Crack was 15 days, and the machine was built for less than $250,000. The success-
ful break with Deep Crack was considered the official demonstration that DES is
no longer secure against determined attacks by many people. Please note that this
break does not imply that a weak algorithm had been in use for more than 20 years.
It was only possible to build Deep Crack at such a relatively low price because digi-
tal hardware had become cheap. In the 1980s it would have been impossible to build
a DES cracker without spending many millions of dollars. It can be speculated that
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only government agencies were willing to invest such an amount of money for code
breaking.

Fig. 3.15 Deep Crack — the hardware exhaustive key-search machine that broke
DES in 1998 (reproduced with permission from Paul Kocher)

DES brute-force attacks also provide an excellent case study for the continuing
decrease in hardware costs. In 2006, the COPACOBANA (Cost-Optimized Parallel
Code-Breaker) machine was built based on commercial integrated circuits by a team
of researchers from the Universities of Bochum and Kiel in Germany (all three au-
thors of this book were heavily involved in this effort). COPACOBANA allows one
to break DES with an average search time of less than seven days. The interesting
part of this undertaking is that the machine could be built with hardware costs in the
$10,000 range. Figure 3.16 shows a picture of COPACOBANA.

Fig. 3.16 COPACOBANA — A cost-optimized parallel code breaker

In summary, a key size of 56 bits is too short to encrypt confidential data nowa-
days. Hence, single DES should not be used anymore. However, 3DES, i.e., apply-
ing DES three times in a row, yields a much more secure cipher, cf. Section 3.7.2.
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Please note that 3DES is currently being phased out by NIST and will officially be
discontinued as a U.S. standard after 2023.

3.5.2 Analytical Attacks

As was shown in the first chapter, analytical attacks can be very powerful. Since
the introduction of DES in the mid-1970s, many excellent researchers in academia
(and without doubt many excellent researchers in intelligence agencies) tried to find
weaknesses in the structure of DES, which would allow breaking of the cipher.
It is a major triumph for the designers of DES that no weakness was found until
1990. In this year, Eli Biham and Adi Shamir discovered what is called differential
cryptanalysis (DC). This is a powerful attack, which is in principle applicable to any
block cipher. However, it turned out that the DES S-boxes are particularly resistant
against this attack. In fact, one member of the original IBM design team declared
after the discovery of DC that they had been aware of the attack at the time of design.
Allegedly, the reason why the S-box design criteria were not made public was that
the design team did not want to make such a powerful attack public. If this claim
is true — and all circumstances support it — it means that the IBM and NSA team
was 15 years ahead of the research community. It should be noted, however, that in
the 1970s and 1980s relatively few people did active research in cryptography.

In 1993, a related but distinct analytical attack was published by Mitsuru Matsui,
which was named linear cryptanalysis (LC). Similarly to differential cryptanalysis,
the effectiveness of this attack heavily depends on the structure of the S-boxes.

What is the practical relevance of these two analytical attacks against DES? It
turns out that an attacker needs 247 plaintext–ciphertext pairs for a successful DC
attack. This assumes particularly chosen plaintext blocks; for random plaintext 255

pairs are needed! In the case of LC, an attacker needs 243 plaintext–ciphertext pairs.
All these numbers seem highly impractical for several reasons. First, an attacker
needs to know an extremely large number of plaintexts, i.e., pieces of data which
are supposedly encrypted and thus hidden from the attacker. Second, collecting and
storing such an amount of data takes a long time and requires considerable memory
resources. Third, the attack only recovers one key. (This is actually one of many
arguments for introducing key freshness in cryptographic applications.) As a result
of all these arguments, it does not seem likely that DES can be broken with either
DC or LC in real-world systems. However, both DC and LC are very powerful
attacks which are applicable to many other block ciphers. Table 3.15 provides an
overview of proposed and realized attacks against DES since its standardization.
Some entries refer to what is known as the DES Challenges. Starting in 1997, several
DES-breaking challenges were organized by the company RSA Security.
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Table 3.15 History of full-round DES attacks

Date Proposed or implemented attacks
1977 W. Diffie and M. Hellman propose cost estimate for key-search machine
1990 E. Biham and A. Shamir propose differential cryptanalysis, which requires 247

chosen plaintexts
1993 M. Wiener proposes detailed hardware design for key-search machine with an

average search time of 36 h and estimated cost of $1,000,000
1993 M. Matsui proposes linear cryptanalysis, which requires 243 chosen ciphertexts

Jun. 1997 DES Challenge I broken through brute-force; distributed effort on the internet
took 4.5 months

Feb. 1998 DES Challenge II–1 broken through brute-force; distributed effort on the inter-
net took 39 days

Jul. 1998 DES Challenge II–2 broken through brute-force; Electronic Frontier Founda-
tion built the Deep Crack key-search machine for about $250,000. The attack
took 56 h (15 days average)

Jan. 1999 DES Challenge III broken through brute-force by distributed internet effort
combined with Deep Crack and a total search time of 22 hours

Apr. 2006 Universities of Bochum and Kiel (both in Germany) built the COPACOBANA
key-search machine based on low-cost FPGAs for approximately $10,000. Av-
erage search time is 7 days.

3.6 Implementation in Software and Hardware

In the following, we provide a brief assessment of DES implementation properties in
software and hardware. When we talk about software, we refer to DES implemen-
tations running on desktop CPUs or embedded microprocessors like smart cards
or IoT devices. Hardware refers to DES implementations running on ICs such as
application-specific integrated circuits (ASICs) or field programmable gate arrays
(FPGAs).

Software

A straightforward software implementation that follows the data flow of most DES
descriptions, such as presented in this chapter, results in a very poor performance.
This is due to the fact that many of the atomic DES operations involve bit permuta-
tions, in particular the E and P permutations, which are slow in software. Similarly,
small S-boxes such as used in DES are efficient in hardware but only moderately
efficient on modern CPUs. There have been numerous methods proposed for ac-
celerating DES software implementations. The general idea is to use tables with
precomputed values of several DES operations, e.g., of several S-boxes and the per-
mutation. Optimized implementations require about 240 cycles for encrypting one
block on a 32-bit CPU. On a 2-GHz CPU this translates into a theoretical throughput
of about 533 Mbits/s. 3DES, which is considerably more secure than single DES,
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runs at one third of the DES speed. Note that non-optimized implementations are
considerably slower, often below 100 Mbit/s.

A notable method for accelerating software implementations of DES is bit-
slicing, developed by Eli Biham in 1997. The limitation of bit-slicing, however,
is that several blocks are encrypted in parallel, which can be a drawback for certain
modes of operation such as Cipher Block Chaining (CBC) and Output Feedback
(OFB) mode (cf. Chapter 5).

Hardware

One design criterion for DES was its efficiency in hardware. Permutations such as
E, P, IP and IP−1 are very easy to implement in hardware, as they only require
wiring but no logic. The small 6-by-4 S-boxes are also relatively easily realizable in
hardware. Typically, they are implemented with Boolean logic, i.e., logic gates. On
average, one S-box requires about 100 gates.

An area-efficient implementation of a single DES round can be done with fewer
than 3000 gates. If a high throughput is desired, DES can be made to execute ex-
tremely quickly by fitting multiple rounds in one circuit, e.g., by using pipelining.
On modern ASICs and FPGAs throughput rates of several 100 Gbit/sec are possi-
ble. At the other end of the performance spectrum, very small implementations with
fewer than 3000 gates even fit onto low-cost radio frequency identification (RFID)
chips.

3.7 DES Alternatives

There exist hundreds of other block ciphers. Even though many proposed ciphers
have have security weaknesses or have not been well investigated, there are also
many block ciphers that are believed to be very secure. In the following a brief list
of DES alternatives is discussed.

3.7.1 The Advanced Encryption Standard (AES) and the AES
Finalist Ciphers

Today, the algorithm of choice for many, many applications has become the Ad-
vanced Encryption Standard (AES), which will be introduced in detail in the fol-
lowing chapter. With its three key lengths of 128, 192 and 256 bits, AES will be
secure against brute-force attacks for several decades, and no analytical attacks with
any reasonable chance of success are known. Please note that AES-128 can poten-
tially be broken with quantum computers, should they become available in the fu-
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ture. However, AES-192 and AES-256 are believed to withstand quantum computer
attacks too. Section 12.1 provides more information about this issue.

AES was the result of an open competition, and in the last stage of the selection
process there were four other finalist algorithms. These are the block ciphers Mars,
RC6, Serpent and Twofish. All of them are cryptographically strong and quite fast,
especially in software. Based on today’s knowledge, they can all be recommended.
The designers of Mars, Serpent and Twofish have always allowed royalty-free use
of their ciphers. The patent for RC6 has also expired by now.

3.7.2 Triple DES (3DES) and DESX

Triple DES, also denoted 3DES, TDES, Triple DEA or TDEA, has been widely used
since the 1990s. 3DES is in particular popular for applications in the payment indus-
try. However, 3DES will be phased out for U.S. government applications in 2023.

3DES consists of three subsequent DES operations encrytion-decryption-en-
cryption (3DES-EDE):

y = DESk3(DES−1
k2
(DESk1(x)))

as shown in Figure 3.17. The reason for using 3DES in the EDE mode is that it
performs a single DES encryption if k3 = k2 = k1, which was desirable for imple-
mentations that should also support single DES for legacy reasons. There are two
ways to select the three keys. The method preferred today (and more natural) is to
choose three independent keys k1, k2 and k3, referred to as 3TDEA. The second
method is to choose k2 unique and keys k1 = k3, referred to as 2TDEA. In some
older applications it was considered advantageous that only 112 bits of key material
was needed for 2TDEA, as opposed to 168 bits for 3TDEA. However, the use of
2TDEA is not encouraged anymore.

-1

Fig. 3.17 Triple DES (3DES-EDE)
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3DES is resistant against brute-force attacks and most analytical attacks. There
are subtle security weaknesses when large amounts of data are encrypted under the
same key. To avoid such attacks, NIST mandates that not more than 220 blocks of
plaintext are encrypted with 3TDEA under the same key. With respect to implemen-
tation properties, 3DES is very efficient in hardware but not particularly in software.

One might wonder why there is no version of DES that uses double-encryption
(“2DES”). This has to do with the meet-in-the-middle attack, which is discussed in
Section 5.3.1. In short, 2DES is — surprisingly — not considerably more secure
than single DES.

DESX is a different approach for strengthening DES by using key whitening.
For this, two additional 64-bit keys k1 and k2 are XORed to the plaintext and cipher-
text, respectively, prior to and after the DES algorithm. This yields the following
encryption scheme:

y = DESk,k1,k2(x) = DESk(x⊕ k1)⊕ k2

This surprisingly simple modification makes DES much more resistant against ex-
haustive key searches. More about key whitening is said in Section 5.3.3.

3.7.3 Lightweight Cipher PRESENT

Since about 2007, several new encryption algorithms that are classified as “light-
weight ciphers” have been proposed. Lightweight commonly refers to algorithms
with a very low implementation complexity, especially in hardware. Trivium (Sec-
tion 2.4.3) is an example of a lightweight stream cipher. A promising block cipher
candidate is PRESENT , which was designed specifically for applications such as
RFID tags or other internet-of-things (IoT) devices, which are extremely power or
cost constrained. (One of the book authors participated in the design of PRESENT.)
With respect to other lightweight ciphers and NIST’s standardization efforts in this
area, we refer to Section 3.8.

Unlike DES, PRESENT is not based on a Feistel network. Instead it is a
substitution-permutation network (SP-network) and consists of 31 rounds. We note
that AES is also based on an SP-network. The block length is 64 bits, and two key
lengths of 80 and 128 bits are supported. A block diagram of the cipher is shown
in Figure 3.18. Each of the 31 rounds consists of an XOR operation to introduce a
round key Ki, a nonlinear substitution layer (sBoxLayer) and a linear bitwise per-
mutation (pLayer). After the last round, the final subkey k32 is applied to the data
path. The nonlinear layer uses a 4-bit S-box S, which is applied 16 times in parallel
in each round. The key schedule generates 32 round keys from the user-supplied
key. Here is the pseudo code:
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plaintext

K1

K32

sBoxLayer

pLayer

sBoxLayer

pLayer

cipher

key

update

update

. . .

. . .

Fig. 3.18 Internal structure of the block cipher PRESENT

Pseudo code of the block cipher PRESENT

1 generateRoundKeys()
2 FOR i = 1 TO 31
2.1 addRoundKey(STATE,Ki)
2.2 sBoxLayer(STATE)
2.3 pLayer(STATE)
3 addRoundKey(STATE,K32)

We discuss the details of the three steps of PRESENT below. Again, we recom-
mend to also look at the diagram in Figure 3.18.

addRoundKey At the beginning of each round, the round key Ki is XORed to the
current STATE.

sBoxLayer PRESENT uses a single 4-bit to 4-bit S-box. This is a direct conse-
quence of the pursuit of hardware efficiency, since such an S-box allows a much
more compact implementation than, e.g., an 8-bit S-box. The S-box entries in hex-
adecimal notation are given in Table 3.16.
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Table 3.16 The PRESENT S-box in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The 64-bit data path (b63 . . .b0) is referred to as the state. For the sBoxLayer, it
is helpful to view the state as consisting of sixteen 4-bit nibbles (w15 . . .w0), where
wi = b4·i+3||b4·i+2|| b4·i+1||b4·i for 0≤ i≤ 15, and the output consists of the sixteen
nibbles S[wi].

pLayer As in DES, the mixing layer was chosen as a bit permutation, which can
be implemented extremely compactly in hardware. The bit permutation used in
PRESENT is given by Table 3.17. Bit i of the input state is moved to bit position
P(i).

Table 3.17 The permutation layer of PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

The bit permutation is quite regular and can in fact be expressed as:

P(i) =
{

i ·16 mod 63, i = 0, . . . ,62
63, i = 63

Key Schedule of PRESENT-80 First, we describe the key schedule for PRESENT
with an 80-bit key. This key length is attractive for applications that have only short-
term security requirements, e.g., low-cost IoT devices. For all other applications the
128-bit key is recommended, which is described below. The user-supplied key is
stored in a key register K and is represented by the 80 bits k79k78 . . .k0. At round
i the 64-bit round key Ki consists of the 64 leftmost bits of the current contents of
register K. Thus at round i we have:

Ki = k79k78 . . .k16
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The first subkey K1 is a direct copy of the 64 leftmost bits of the user-supplied key.
For the following subkeys K2, . . . ,K32 the key register K = k79k78 . . .k0 is updated
as follows:

Step 1: [k79k78 . . .k1k0] = [k18k17 . . .k20k19]
Step 2: [k79k78k77k76] = S[k79k78k77k76]
Step 3: [k19k18k17k16k15] = [k19k18k17k16k15]⊕round_counter

Here is an explanation of the three steps of the key schedule:

� Step 1: The key register is rotated by 61 bit positions to the left.
� Step 2: The leftmost four bits are passed through the PRESENT S-box.
� Step 3: The round_counter value i is XORed with bits k19k18k17k16k15 of

K, where the least significant bit of round_counter is on the right. This
counter is a simple integer which takes the values (00001,00010, . . . ,11111).
For example, for the derivation of K2 the counter value 00001 is used; for K3, the
counter value 00010; and so on.

Key Schedule of PRESENT-128 The key is stored in a register K and represented
by the bits k127k126 . . .k0. In round i, the 64-bit round key Ki consists of the 64
leftmost bits of the current contents of register K, i.e.,

Ki = k127k126 . . .k64

The first subkey K1 is a direct copy of the 64 leftmost bit of the user-supplied key.
For the following subkeys K2, . . . ,K32, the key register K = k127k126 . . .k0 is updated
as follows:

Step 1: [k127k126 . . .k1k0] = [k66k65 . . .k68k67]
Step 2: [k127k126k125k124] = S[k127k126k125k124]
Step 3: [k123k122k121k120] = S[k123k122k121k120]
Step 4: [k66k65k64k63k62] = [k66k65k64k63k62]⊕round_counter

Implementation and Security PRESENT-80 can be implemented in hardware
with an area of approximately 1600 gate equivalences, where the encryption of one
64-bit plaintext block requires 32 clock cycles. As an example, even at a relatively
slow clock rate of 1 MHz, which is quite typical on low-cost, low-energy devices,
a remarkably high throughput of 2 Mbit/s is achieved. It is possible to realize the
cipher with as few as approximately 1000 gate equivalences, where the encryption
of one 64-bit plaintext requires 547 clock cycles. A fully pipelined implementation
of PRESENT with 31 encryption stages achieves a throughput of 64 bits per clock
cycle, which can result in encryption throughputs of more than 50 Gbit/s.

As a result of the aggressively hardware-optimized design of PRESENT, its soft-
ware performance is slower compared to many other modern ciphers like AES. An
optimized software implementation on a Pentium III CPU in C achieves a through-
put of about 60 Mbit/s at a frequency of 1 GHz. However, it performs quite well on
small microprocessors, which are common in inexpensive consumer products.
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At the time of writing, no attacks are known against the full-round version of
PRESENT that are better than a brute-force attacks.

3.8 Discussion and Further Reading

DES History and Attacks Even though single DES (i.e., non-3DES) is hardly
used anymore, its history helps us understand the evolution of cryptography since
the mid-1970s from an obscure discipline almost solely studied in government or-
ganizations towards an open field with many players in industry and academia. A
summary of the history of DES can be found in [245]. Today, the two major analyt-
ical attacks developed against DES, differential and linear cryptanalysis, are among
the most powerful general methods for breaking block ciphers. For readers inter-
ested in the theory of block ciphers, including differential and linear cryptanalysis,
the very accessible book [161] is recommended. The original references for differ-
ential and linear cryptanalysis are [48, 181].

As we have seen in this chapter, DES should no longer be used since a brute-force
attack can be accomplished at low cost in little time with cryptanalytical hardware.
The two machines built outside governments, Deep Crack and COPACOBANA, are
instructive examples of how to build low-cost “supercomputers” for very narrowly
defined computational tasks. More information about Deep Crack can be found
in [118] and about COPACOBANA in the articles [166, 137] and online at [76].
Earlier, Michael Wiener proposed (but did not built) a very efficient key-search ma-
chine which used pipelining techniques. An update of his proposal can be found
in [252]. Readers interested in the fascinating area of cryptanalytical computers in
general should take a look at the SHARCS (Special-purpose Hardware for Attacking
Cryptographic Systems) workshop series, which took place irregularly from 2005
until 2012 [249].

In July 2017, NIST first mentioned the retiring of 3DES [83], following a new
security analysis that is based on so-called collision attacks. It is described in Ref-
erence [45]. The attack can be mitigated by limiting the number of plaintext blocks
which are encrypted under one key. In November 2017, NIST restricted the usage of
3DES to 220 64-bit blocks of plaintext (8 MB of data) using a single set of keys. As
a consequence, it should no longer be used for TLS, IPsec or large file encryption
applications [26]. At the time of writing, 3DES (or TDEA) is being phased out by
NIST and will officially be discontinued as a U.S. standard after 2023. A guideline
for the transitioning away from 3DES is provided in [27].

DES Implementation With respect to software implementation of DES, an early
reference is [47]. More advanced techniques are described in [167]. The powerful
method of bit-slicing, which we described in Section 3.6, is applicable not only to
DES but to most other ciphers.

Regarding DES hardware implementation, an early but still very interesting ref-
erence is [247]. There are many descriptions of high-performance implementations
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of DES on a variety of hardware platforms, including FPGAs [244], standard ASICs
as well as more exotic semiconductor technology [107].

DES Alternatives and Lightweight Ciphers It should be noted that hundreds of
block ciphers have been proposed since DES came into existence in the mid-1970s.
DES has influenced the design of many other encryption algorithms, especially
those proposed in the 1980s and 1990s. Some of the most popular block ciphers
are also based on Feistel networks. Examples of other Feistel ciphers from this era
include Blowfish, CAST, KASUMI, Mars, MISTY1, Twofish and RC6. One cipher
from the pre-2000 area that is well known and markedly different from DES is
IDEA; it uses arithmetic in three different algebraic structures as atomic operations.
All this said, the block cipher of choice for many of today’s applications is AES,
which is introduced in the following chapter.

DES is a good example of a block cipher which is very efficient in hardware.
There are applications that are extremely cost sensitive and power constrained, e.g.,
RFID tags or other low-cost IoT devices, for which such lightweight ciphers are very
attractive. Good references for PRESENT are [59, 221]. In addition to PRESENT,
other proposed very small block ciphers include Clefia [77], HIGHT [144] and
mCrypton [175]. PRESENT and Clefia have been standardized in ISO/IEC 29192-
2 [150].

In 2015, NIST started the process of standardizing lightweight ciphers. In 2019,
57 candidate algorithms were submitted. The subsequent selection process stretched
over three rounds. After Round 2, ten finalist algorithms were announced in early
2021. In February 2023, the Ascon family of lightweight ciphers was selected as a
future NIST standard. The algorithm was designed by a team of European cryptog-
raphers and a description of the cipher is given in [98]. Interestingly, Ascon uses
neither a Feistel construction (like DES) nor a substitution-permutation network
(like AES and PRESENT) but rather a sponge construction. More about sponge
constructions will be said in Section 11.5.1 in the context of the SHA-3 hash func-
tion.

Among the many proposals for lightweight ciphers, the algorithms Simon and
Speck [31] play a particular role. They are efficient when implemented in software
and hardware but they are probably best known for the fact that they are designed by
the NSA. There have been controversies around efforts to include Simon and Speck
in industrial standards by ISO [19], as some countries were worried about possible
weaknesses in the ciphers.
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3.9 Lessons Learned

� DES was the dominant symmetric encryption algorithm from the mid-1970s to
the mid-1990s. Since ciphers with 56-bit keys were no longer secure, the Ad-
vanced Encryption Standard (AES) was created as DES’s replacement.

� Standard DES can be broken relatively easily nowadays through an exhaustive
key search due its short key length of 56 bits.

� DES is quite robust against known analytical attacks: In practice it is very diffi-
cult to break the cipher with differential or linear cryptanalysis.

� DES is reasonably efficient in software but fast and small in hardware.
� By encrypting with DES three times in a row, triple DES (3DES) is created,

which is still secure if the amount of data encrypted under one set of keys is
limited.

� The “default” symmetric cipher nowadays is often AES. In addition, the other
four AES finalist ciphers all seem very secure and efficient.

� Since about 2005 several proposals for lightweight ciphers have been made. They
are suited for resource-constrained applications.
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Problems

3.1. As stated in Section 3.5.2, one important property that ensures that DES is
secure is that the S-boxes are nonlinear. In this problem we verify this property by
computing the output of S1 for several pairs of inputs.

Show that S1(x1)⊕S1(x2) 6= S1(x1⊕ x2), where “⊕” denotes bitwise XOR, for:

1. x1 = 000000, x2 = 000001
2. x1 = 111111, x2 = 100000
3. x1 = 101010, x2 = 010101

3.2. The S-box S4 has special properties:

1. Show that the 1st row can be computed from the 0th row with the help of the
following mapping:

(y1,y2,y3,y4)→ (y2,y1,y4,y3)⊕ (0,1,1,0)

where (y1,y2,y3,y4) denotes the binary output of the S-box. It is sufficient to
show the mapping for the first five entries. Note that “row” refers to the standard
representation of S-boxes, which we also use in this book.

2. Show that the same holds for rows 2 and 3.

3.3. We want to verify that IP(·) and IP−1(·) are truly inverse operations. We con-
sider a vector x = (x1,x2, . . . ,x64) of 64 bits. Show that

IP−1(IP(x)) = x

holds for the first five bits of x, i.e., for xi, i = 1,2,3,4,5.

3.4. What is the output of the first round of the DES algorithm when the plaintext
and the key are both all zeros?

3.5. What is the output of the first round of the DES algorithm when the plaintext
and the key are both all ones?

3.6. Remember that it is desirable for good block ciphers that a change in one input
bit affects many output bits, a property that is called diffusion or the avalanche
effect. We try now to get a feeling for the avalanche property of DES. We apply an
input word that has a “1” at bit position 57 and all other bits as well as the key are
zero. (Note that the input word has to run through the initial permutation.)

1. How many S-boxes get a different input compared to the case when an all-zero
plaintext is provided?

2. What is the minimum number of output bits of the S-boxes that will change
according to the S-box design criteria?

3. What is the output after the first round?
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4. How many output bits after the first round have actually changed compared to
the case when the plaintext is all zero? (Observe that we only consider a single
round here. There will be more and more output differences after every new
round. Hence the term avalanche effect.)

3.7. An avalanche effect is also desirable for the key: A one-bit change in a key
should result in a dramatically different ciphertext if the plaintext is unchanged.

1. Assume an encryption with a given key. Now assume the key bit at position 1
(prior to PC–1) is flipped. Which S-boxes in which rounds are affected by the bit
flip during DES encryption?

2. Which S-boxes in which DES rounds are affected by this bit flip during DES
decryption?

3.8. In this problem we look at the relationship between the DES round keys and
the original key. It turns out that each of the 48 bits of every round key k1, . . . ,k16
is a direct map of one bit of the original 64-bit input key k.

1. Determine which of the bits of k form the first two bits of the round key k1.
2. Determine which of the bits of k form the first two bits of the round key k2.

3.9. A DES key Kw is called a weak key if encryption and decryption are identical
operations:

DESKw(x) = DES−1
Kw
(x), for all x (3.1)

1. Describe the relationship of the subkeys in the encryption and decryption algo-
rithm that is required so that Equation (3.1) is fulfilled.

2. There are four weak DES keys. What are they?
3. What is the likelihood that a randomly selected key is weak?

3.10. DES has a somewhat surprising property related to bitwise complements of its
inputs and outputs. We investigate the property in this problem.

We denote the bitwise complement (that is, all bits are flipped) of a number A by
A′. Let ⊕ denote bitwise XOR. We want to show that if

y = DESk(x)

then
y′ = DESk′(x

′) (3.2)

This states that if we complement the plaintext and the key, then the ciphertext
output will also be the complement of the original ciphertext.
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Your task is to prove this property. The proof can be done along the following
steps:

1. Show that for any bit strings A,B of equal length,

A′⊕B′ = A⊕B

and
A′⊕B = (A⊕B)′

(These two operations are needed for some of the following steps.)
2. Show that PC–1(k′) = (PC–1(k))′.
3. Show that LSi(C′i−1) = (LSi(Ci−1))

′.
4. Using the two results from above, show that if ki are the subkeys generated from

k, then k′i are the subkeys of k′, where i = 1,2, . . . ,16.
5. Show that IP(x′) = (IP(x))′.
6. Show that E(R′i) = (E(Ri))

′.
7. Using all previous results, show that if Ri−1, Li−1 and ki generates Ri, then R′i−1,

L′i−1, and k′i generates R′i.
8. Show that Equation (3.2) is true.

3.11. Assume we perform a known-plaintext attack against DES with one pair of
plaintext and ciphertext. How many keys do we have to test in a worst-case sce-
nario if we apply an exhaustive key search in a straightforward way? How many on
average?

3.12. In this problem we want to study the clock frequency requirements for a hard-
ware implementation of DES in real-world applications. The speed of a DES im-
plementation is mainly determined by the time required to compute one round. The
hardware block for one round is used 16 consecutive times in order to generate the
encrypted output. (An alternative approach would be to build a hardware pipeline
with 16 stages, resulting in 16-fold increased hardware costs but we are not looking
at such a pipelined implementation in this problem.)

1. Let’s assume that computing the round function can be performed in one clock
cycle. Develop an expression for the required clock frequency for encrypting a
stream of data with a data rate r [bits/sec]. Ignore the time needed for the initial
and final permutation.

2. What clock frequency is required for encrypting a network link running at a
speed of 1 Gb/sec? What is the clock frequency if we want to support a speed of
8 Gb/sec?

3.13. In this example we want to get a feeling for performing a brute-force attack
on a 56-bit key. For this purpose, we study the COPACOBANA key-search machine
(cf. Section 3.5.1).

1. Compute the run time of an average exhaustive key search on DES assuming the
following implementational details:
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� We use the COPACOBANA machine with 20 FPGA modules.
� 6 FPGAs per FPGA module.
� 4 DES engines per FPGA.
� Each DES engine is fully pipelined and is capable of performing one encryp-

tion per clock cycle.
� 100 MHz clock frequency.

2. How many COPACOBANA machines do we need if we want to have an average
search time of one hour? (We note that COPACOBANA was designed in 2006
and current hardware will be even more powerful.)

3. Why does any design of a key-search machine constitute only an upper secu-
rity threshold? By upper security threshold we mean a (complexity) measure
that describes the maximum security that is provided by a given cryptographic
algorithm.

3.14. In this problem, we study a real-world case of a weak password-based key
derivation. A commercial file encryption program from the early 1990s used stan-
dard DES with 56 key bits. In those days, performing an exhaustive key search
was considerably harder than today, and thus the key length was sufficient for some
applications. Unfortunately, the implementation of the key generation was flawed,
which we are going to analyze. Assume that we can test 106 keys per second on a
conventional PC.

The key is generated from a password consisting of 8 characters? The key is a
simple concatenation of the 8 ASCII characters, yielding 64 = 8 · 8 key bits. With
the permutation PC–1 in the key schedule, the least significant bit (LSB) of each
8-bit character is ignored, yielding 56 key bits.

1. What is the size of the key space if all 8 characters are randomly chosen 8-bit
ASCII characters? How long does an average key search take with a single PC?

2. How many key bits are used if the 8 characters are randomly chosen 7-bit ASCII
characters (i.e., the most significant bit is always zero)? How long does an aver-
age key search take with a single PC?

3. How large is the key space if, in addition to the restriction in Part 2, only let-
ters are used as characters. Furthermore, unfortunately, all letters are converted
to capital letters before generating the key in the software. How long does an
average key search take with a single PC?
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3.15. This problem deals with the lightweight cipher PRESENT.

1. Calculate the state of PRESENT-80 after the execution of one round. We rec-
ommend using the table shown below and to solve the problem with paper and
pencil. The following values are given (in hexadecimal notation):

� plaintext = 0000 0000 0000 0000
� key = BBBB 5555 5555 EEEE FFFF.

Plaintext 0000 0000 0000 0000

Round key
State after KeyAdd
State after sBoxLayer
State after pLayer

2. Now calculate the round key for the second round using the following table.

Key BBBB 5555 5555 EEEE FFFF

Key state after rotation
Key state after sBoxLayer
Key state after CounterAdd
Round key for Round 2



Chapter 4
The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is the most widely used symmetric ci-
pher today. Even though the term “Standard” in its name originally only referred
to U.S. government applications, the AES block cipher has been adopted by many
industry standards and is used in numerous commercial systems. Examples of stan-
dards that incorporate AES are the web security protocol TLS, the internet security
standard IPsec and the Wi-Fi encryption standard IEEE 802.11i. Countless other
applications, such as the instant messenger WhatsApp, password managers and file
encryption software make use of the block cipher too. To date, no attacks against
AES significantly better than brute-force are known.

In this chapter, you will learn:

� The design process of the U.S. symmetric encryption standard, AES
� The encryption and decryption function of AES
� The internal structure of AES, namely:
� byte substitution layer
� diffusion layer
� key addition layer
� key schedule

� Basic facts about Galois fields
� Efficiency of AES implementations
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4.1 Introduction

In 1999, the U.S. National Institute of Standards and Technology (NIST) indicated
that DES should only be used for legacy systems, and instead triple DES (3DES)
should be used. Even though 3DES resists brute-force attacks with today’s tech-
nology, there are several problems with it. First, it is not very efficient with regard
to software implementations. A more serious drawback is its block size of 64 bits,
which gives rise to certain attacks (cf. Section 3.8) if large blocks of data are en-
crypted. The short block size also makes it more difficult to build a hash function
from 3DES (cf. Section 11.3.1). Finally, if one is worried about attacks with quan-
tum computers in the future, key lengths on the order of 256 bits are desirable. All
these considerations led NIST to the conclusion that an entirely new block cipher
was needed as a replacement for DES.

In 1997, NIST called for proposals for a new Advanced Encryption Standard.
Unlike the development of DES, the selection of the AES algorithm was an open
process administered by NIST. In three subsequent evaluation rounds, NIST and
the international scientific community discussed the advantages and disadvantages
of the submitted ciphers and narrowed down the number of potential candidates.
In 2001, NIST declared the cipher Rijndael as the new AES and published it as
a U.S. standard (FIPS PUB 197). Rijndael was designed by two young Belgian
cryptographers.

Within the call for proposals, the following requirements for all AES candidate
submissions were mandatory:

� block cipher with 128-bit block size,
� three key lengths must be supported: 128, 192 and 256 bits,
� security relative to other submitted algorithms,
� efficiency in software and hardware.

The invitation for submitting suitable algorithms and the subsequent evaluation
of the successor of DES was a public process. A compact chronology of the AES
selection process is given here:

� The need for a new block cipher was announced in January 1997 by NIST.
� A formal call for AES was announced in September 1997.
� Fifteen candidate algorithms were submitted by researchers from several coun-

tries by August 1998.
� In August 1999, five finalist algorithms were announced:

� Mars by IBM Corporation,
� RC6 by RSA Laboratories,
� Rijndael, by Joan Daemen and Vincent Rijmen,
� Serpent, by Ross Anderson, Eli Biham and Lars Knudsen,
� Twofish, by Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris

Hall and Niels Ferguson.

� On October 2, 2000, NIST announced that it had chosen Rijndael as the AES.
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� On November 26, 2001, AES was formally approved as a U.S. federal standard.

It is expected that AES will stay the dominant symmetric-key algorithm for many
commercial applications for the next few decades, especially in the Western world.
It is also remarkable that in 2003, the U.S. National Security Agency (NSA) an-
nounced that it allows AES to encrypt classified documents up to the level SECRET
for all key lengths and up to the TOP SECRET level for key lengths of either 192
or 256 bits. Prior to that date, only non-public algorithms had been used for the
encryption of classified documents.

4.2 Overview of the AES Algorithm

The AES cipher is almost identical to the block cipher Rijndael. The Rijndael block
and key size vary between 128, 192 and 256 bits. However, the AES standard only
calls for a block size of 128 bits. Hence, only Rijndael with a block length of 128
bits is known as the AES algorithm. In the remainder of this chapter, we only discuss
the standardized version of Rijndael with a block size of 128 bits, cf. Figure 4.1.

AES k
128/192/256

128

128

x

y

Fig. 4.1 AES input and output parameters

The three key lengths supported by AES were a NIST design requirement. The
number of internal rounds of the cipher is a function of the key length, according to
Table 4.1.

Table 4.1 Key lengths and number of rounds for AES

key length # rounds = nr
128 bits 10
192 bits 12
256 bits 14
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In contrast to DES, AES does not have a Feistel structure. Feistel networks do
not encrypt an entire block per iteration, e.g., in DES, 64/2 = 32 bits are encrypted
in one round. AES, on the other hand, encrypts all 128 bits in one iteration. This
is one reason why it has a comparably small number of rounds. Each AES round
consists of so-called layers. There are only three different types of layers. Each layer
manipulates all 128 bits of the data path. The data path is also referred to as the state
of the algorithm. Each round, with the exception of the last, consists of all layers as
shown in Figure 4.2: the plaintext is denoted by x, the ciphertext by y and the number
of rounds by nr. Moreover, the last round nr does not make use of the MixColumn
transformation, which makes the encryption and decryption scheme symmetric.

We continue with a brief description of the layers:

Key addition layer A 128-bit round key, or subkey, which has been derived from
the main key in the key schedule, is XORed to the state.

Byte substitution layer (S-box) Each element of the state is nonlinearly trans-
formed using lookup tables with special mathematical properties. This introduces
confusion to the data, i.e., it ensures that changes in individual bits lead to nonlinear
changes in the state.

Diffusion layer This provides diffusion to the state, i.e., it ensures that changes of
individual bits propagate quickly across the 128 bits of the data path. It consists of
two sublayers, both of which perform linear operations:

� The ShiftRows sublayer permutes the data on a byte level.
� The MixColumn sublayer is a matrix operation that combines (or mixes) blocks

of four bytes.

The key schedule computes the round keys, or subkeys, (k0,k1, . . . ,knr) from the
user-provided AES key. We note that there are nr +1 subkeys, e.g., for the (widely
used) 10-round version of AES, there are 11 subkeys.

Before we describe the internal functions of the layers in Section 4.4, we have to
introduce a new mathematical concept, namely Galois fields.

4.3 Some Mathematics: A Brief Introduction to Galois Fields

In AES, Galois field arithmetic is used in most layers, especially in the S-box and
the MixColumn layer. Hence, for a deeper understanding of the internals of AES,
we provide an introduction to Galois fields as needed for this purpose before we
continue with the actual cipher description in Section 4.4. A background in Galois
fields is not required for a basic understanding of AES, and the reader interested in
this can skip this section.
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4.3.1 Existence of Finite Fields

A finite field, sometimes also called a Galois field, is a set with a finite number of
elements. Roughly speaking, a Galois field is a finite set of elements in which we
can add, subtract, multiply and invert. Before we introduce the definition of a field,
we first need the concept of a simpler algebraic structure, a group.

Definition 4.3.1 Group
A group is a set of elements G together with an operation ◦ that
combines two elements of G. A group has the following properties:

1. The group operation ◦ is closed. That is, for all a,b∈G, it holds
that a◦b = c ∈ G.

2. The group operation is associative. That is, a◦(b◦c)= (a◦b)◦c
for all a,b,c ∈ G.

3. There is an element 1∈G, called the neutral element (or identity
element), such that a◦1 = 1◦a = a for all a ∈ G.

4. For each a ∈ G there exists an element a−1 ∈ G, called the in-
verse of a, such that a◦a−1 = a−1 ◦a = 1.

5. A group G is abelian (or commutative) if, furthermore, a ◦ b =
b◦a for all a,b ∈ G.

A group is a set with one operation and the corresponding inverse operation. If
the operation is called addition, the inverse operation is subtraction; if the operation
is multiplication, the inverse operation is division (or multiplication with the inverse
element).

Example 4.1. The set of integers Zm = {0,1, . . . ,m−1} and the operation addition
modulo m form a group with the neutral element 0. Every element a has an inverse
−a such that a+(−a) ≡ 0 mod m. Note that this set does not form a group with
the operation multiplication because not all elements a have an inverse such that
aa−1 ≡ 1 mod m.
�

In order to have all four basic arithmetic operations (i.e., addition, subtraction,
multiplication, division), we need a set that contains an additive and a multiplicative
abelian group. This is what we call a field.
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Definition 4.3.2 Field
A field F is a set of elements with the following properties:

� All elements of F form an additive abelian group with the group
operation “+” and the neutral element 0.

� All elements of F except 0 form a multiplicative abelian group
with the group operation “×” and the neutral element 1.

� When the two group operations are mixed, the distributivity law
holds, i.e., for all a,b,c ∈ F: a(b+ c) = (ab)+(ac).

Example 4.2. The set R of real numbers is a field with the neutral element 0 for the
additive group and the neutral element 1 for the multiplicative group. Every real
number a has an additive inverse, namely −a, and every nonzero element a has a
multiplicative inverse a−1 = 1/a.
�

In cryptography, we are almost always interested in fields with a finite number of
elements, which we call finite fields or Galois fields. The number of elements in the
field is called the order or cardinality of the field. Of fundamental importance is the
following theorem.

Theorem 4.3.1 A field with order q only exists if q is a prime
power, i.e., q = pm, for some positive integer m and prime integer
p. p is called the characteristic of the finite field.

This theorem implies that there are, for instance, finite fields with 11 elements,
81 elements (since 81 = 34) or 256 elements (since 256 = 28, and 2 is a prime). In
contrast, there is no finite field with 12 elements since 12 = 22 ·3, and 12 is thus not
a prime power.

In the literature, the notations F and GF are both used for Galois fields. In this
chapter, we will use the latter one, with GF(pm) denoting a field with pm elements.
In the remainder of this section, we look at how finite fields can be built, and more
importantly for our purpose, how we can do arithmetic in them.

4.3.2 Prime Fields

The most intuitive examples of finite fields are those with a prime order, i.e., fields
with m = 1. Elements of the field GF(p) can simply be represented by integers
0,1, . . . , p− 1. The two operations of the field are modular integer addition and
integer multiplication modulo p.
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Theorem 4.3.2 Let p be a prime. The integer ring Zp is denoted
by GF(p) and is referred to as a prime field, or as a Galois field,
with a prime number of elements. All nonzero elements of GF(p)
have an inverse. Arithmetic in GF(p) is done modulo p.

This means that if we consider the integer ring Zm — which was introduced in
Section 1.4.2 — and m happens to be a prime, Zm is not only a ring but also a finite
field.

In order to do arithmetic in a prime field, we have to follow the rules for integer
rings: Addition and multiplication are done modulo p, the additive inverse −a of
any element a is defined by a+(−a)≡ 0 mod p, and the multiplicative inverse a−1

of any nonzero element a is defined as a · a−1 ≡ 1 mod p. Let’s have a look at an
example of a prime field.

Example 4.3. We consider the elements of the finite field GF(5), which are in the set
{0,1,2,3,4}. The tables below describe how to add and multiply any two elements,
as well as the additive and multiplicative inverse of the field elements. Using these
tables, we can perform all calculations in this field without using modular reduction
explicitly.

addition

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

additive inverse

−0 = 0
−1 = 4
−2 = 3
−3 = 2
−4 = 1

multiplication

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

multiplicative inverse

0−1 does not exist
1−1 = 1
2−1 = 3
3−1 = 2
4−1 = 4

�

A very important prime field is GF(2), which is the smallest finite field that
exists. Let’s have a look at the multiplication and addition tables for the field.

Example 4.4. We consider the finite field GF(2) and its elements in the set {0,1}.
Arithmetic is simply done modulo 2, yielding the following arithmetic tables:
�
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addition
+ 0 1
0 0 1
1 1 0

multiplication
× 0 1
0 0 0
1 0 1

We saw already in Chapter 2 that modulo 2 addition, i.e., GF(2) addition, is
equivalent to the XOR operation. From the example above we learn that GF(2)
multiplication is equivalent to the logical AND operation.

4.3.3 Extension Fields GF(2m)

AES makes heavily use of the finite field with 256 elements, which is denoted by
GF(28). This field was chosen because each of the field elements can be represented
by exactly one byte. For the S-box and MixColumn layers, AES treats every byte of
the internal data path as an element of the field GF(28) and manipulates the data by
performing arithmetic in this finite field.

If the order of a finite field is not prime, and 28 is clearly not a prime, the addition
and multiplication operation cannot be realized as integer addition and multiplica-
tion modulo 28. Such fields with m > 1 are called extension fields. In order to deal
with extension fields, we need (1) a different representation for field elements and
(2) different rules for performing arithmetic with the elements. We will see in the
following that elements of extension fields can be represented as polynomials and
that computation in the extension field is achieved by performing a certain type of
polynomial arithmetic.

In extension fields GF(2m), elements are not represented as integers but as poly-
nomials with coefficients in GF(2). The polynomials have a maximum degree of
m−1, so that there are m coefficients in total for every element. In the field GF(28),
which is used in AES, each element A ∈ GF(28) is thus represented as:

A(x) = a7x7 + · · ·+a1x+a0, ai ∈ GF(2)

Note that there are exactly 256 = 28 such polynomials. The set of these 256 polyno-
mials encodes the elements of the finite field GF(28). It is also important to observe
that every polynomial can simply be stored in digital form as an 8-bit vector

A = (a7,a6,a5,a4,a3,a2,a1,a0)

In particular, we do not have to store the powers x7, x6, etc. It is clear from the bit
positions to which power xi each coefficient belongs.
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4.3.4 Addition and Subtraction in GF(2m)

Let’s now look at addition and subtraction in extension fields. The key addition layer
of AES uses addition. It turns out that these operations are straightforward. They are
simply achieved by performing standard polynomial addition and subtraction: We
merely add or subtract coefficients with equal powers of x. The coefficient additions
or subtractions are done in the underlying field GF(2).

Definition 4.3.3 Extension field addition and subtraction
Let A(x),B(x) ∈GF(2m). The sum of the two elements is then com-
puted according to:

C(x) = A(x)+B(x) =
m−1

∑
i=0

cixi, ci ≡ ai +bi mod 2

and the difference is computed according to:

C(x) = A(x)−B(x) =
m−1

∑
i=0

cixi, ci ≡ ai−bi ≡ ai +bi mod 2

Note that we perform modulo 2 addition (or subtraction) with the coefficients.
Let’s have a look at an example in the field GF(28).

Example 4.5. Here is how the sum C(x)=A(x)+B(x) of two elements from GF(28)
is computed:

A(x) = x7+ x6+ x4+ 1
B(x) = x4+ x2+ 1
C(x) = x7+ x6+ x2

�

As we saw in Chapter 2, addition and subtraction modulo 2 are the same operation.
Moreover, addition modulo 2 is equal to bitwise XOR. Hence, if we computed the
difference A(x)−B(x) of the two polynomials from the example above, we would
get the same result as for the sum.

4.3.5 Multiplication in GF(2m)

Multiplication in GF(28) is the core operation of the MixColumn layer of AES. As
a first step, two elements (represented by their polynomials) of a finite field GF(2m)
are multiplied using the standard polynomial multiplication rule:
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A(x) ·B(x) = (am−1xm−1 + · · ·+a0) · (bm−1xm−1 + · · ·+b0)

C′(x) = c′2m−2x2m−2 + · · ·+ c′0

where:

c′0 = a0b0 mod 2
c′1 = a0b1 +a1b0 mod 2

...
c′2m−2 = am−1bm−1 mod 2

Note that all coefficients ai, bi and ci are elements of GF(2), and that coefficient
arithmetic is performed in GF(2). In general, the product polynomial C(x) will have
a degree higher than m− 1 and has to be reduced. The basic idea is an approach
similar to the case of multiplication in prime fields: In GF(p), we multiply the two
integers, divide the result by a prime, and consider only the remainder. Here is what
we do in extension fields: The product of the multiplication is divided by a certain
polynomial, and we consider only the remainder after the polynomial division. We
need irreducible polynomials for the modulo reduction. We recall from Section 2.3.1
that irreducible polynomials are roughly comparable to prime numbers, i.e., their
only factors are 1 and the polynomial itself.

Definition 4.3.4 Extension field multiplication
Let A(x),B(x) ∈ GF(2m) and let

P(x)≡
m

∑
i=0

pixi, pi ∈ GF(2)

be an irreducible polynomial of degree m. Multiplication of the two
elements A(x),B(x) is performed as

C(x)≡ A(x) ·B(x) mod P(x)

Thus, every field GF(2m) requires an irreducible polynomial P(x) of degree m
with coefficients from GF(2). Note that not all polynomials are irreducible. For
example, the polynomial x4 + x3 + x+1 is reducible since

x4 + x3 + x+1 = (x2 + x+1)(x2 +1)

and hence cannot be used to construct the extension field GF(24). Since primitive
polynomials are a special type of irreducible polynomials, the polynomials in Ta-
ble 2.2 can be used for constructing fields GF(2m). For AES, the irreducible poly-
nomial

P(x) = x8 + x4 + x3 + x+1
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is used. It is part of the AES specification.

Example 4.6. We want to multiply the two polynomials A(x) = x3 + x2 + 1 and
B(x) = x2 + x in the field GF(24). The irreducible polynomial of this Galois field is
given as

P(x) = x4 + x+1

The plain polynomial product is computed as:

C′(x) = A(x) ·B(x) = x5 + x3 + x2 + x

We can now reduce C′(x) using the polynomial division method we learned in
school. However, sometimes it is easier to reduce each of the leading terms x4 and
x5 individually by using the following equivalences:

x4 = 1 ·P(x)+(x+1)
x4 ≡ x+1 mod P(x)

x5 ≡ x2 + x mod P(x)

Now, we only have to insert the reduced expression for x5 into the intermediate
result C′(x):

C(x) ≡ x5 + x3 + x2 + x mod P(x)

C(x) ≡ (x2 + x)+(x3 + x2 + x) = x3

A(x) ·B(x) ≡ x3

�

It is important not to confuse multiplication in GF(2m) with integer multiplica-
tion, especially if we are concerned with software implementations of Galois fields.
Recall that the polynomials, i.e., the field elements, are normally stored in a com-
puter as bit vectors. If we look at the multiplication from the previous example, the
following very atypical operation is being performed on the bit level:

A · B = C
(x3 + x2 +1) · (x2 + x) = x3

(1 1 0 1) · (0 1 1 0) = (1 0 0 0)

This computation is not identical to integer arithmetic. If the polynomials are in-
terpreted as integers, i.e., (1101)2 = 1310 and (0110)2 = 610, the result is (1001110)2 =
7810, which is clearly not the same as the Galois field multiplication product. Hence,
even though we can represent field elements as integer data types, we cannot make
use of the integer arithmetic provided by computers!
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4.3.6 Inversion in GF(2m)

Inversion in GF(28) is the core operation of the Byte Substitution layer, which
contains the AES S-boxes. For a given finite field GF(2m) and the correspond-
ing irreducible reduction polynomial P(x), the inverse A−1 of a nonzero element
A ∈ GF(2m) is defined by:

A−1(x) ·A(x)≡ 1 mod P(x)

For small fields — in practice, this often means fields with 216 or fewer elements
— lookup tables which contain the precomputed inverses of all field elements are
often used. Table 4.2 shows the values which are used within the S-box of AES.
The table contains all inverses in GF(28) modulo P(x) = x8 + x4 + x3 + x+ 1 in
hexadecimal notation. A special case is the entry for the field element 0, for which
an inverse does not exist. However, for the AES S-box, a substitution table is needed
that is defined for every possible input value. Hence, the designers defined the S-box
such that the input value 0 is mapped to the output value 0.

Table 4.2 Multiplicative inverse table in GF(28) for bytes xy used within the AES
S-box, with the irreducible polynomial P(x) = x8 + x4 + x3 + x+1

Y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7
1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2
2 3A 6E 5A F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2
3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19
4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09
5 ED 5C 05 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17
6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B
7 79 B7 97 85 10 B5 BA 3C B6 70 D0 06 A1 FA 81 82

X 8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4
9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A
A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62
B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57
C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6
D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B
E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3
F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C

Example 4.7. From Table 4.2 the inverse of

x7 + x6 + x = (1100 0010)2 = (C2)hex = (xy)

is given by the element in row C, column 2:

(2F)hex = (0010 1111)2 = x5 + x3 + x2 + x+1
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This can be verified by multiplication:

(x7 + x6 + x) · (x5 + x3 + x2 + x+1)≡ 1 mod P(x)

�

Note that the table above does not contain the S-box itself, which is a bit more
complex and will be described in Section 4.4.1.

As an alternative to using lookup tables, one can also explicitly compute inverses.
The main algorithm for computing multiplicative inverses is the extended Euclidean
algorithm, which is introduced in Section 6.3.1.

4.4 Internal Structure of AES

In the following, we examine the internal structure of AES. Figure 4.3 shows the
block diagram of a single AES round. The 16-byte input (A0, . . . ,A15) is fed byte-
wise into the S-box. The 16-byte output (B0, . . . ,B15) is permuted byte-wise in the
ShiftRows layer and mixed by the MixColumn transformation c(x). Finally, the
128-bit subkey ki is XORed with the intermediate result. We note that AES is a
byte-oriented cipher. This is in contrast to DES, which makes heavy use of bit per-
mutation and can thus be considered to have a bit-oriented structure.

In order to understand how the data moves through AES, we first imagine that
the state A (i.e., the 128-bit data path) consists of 16 bytes A0,A1, . . . ,A15, which are
arranged in a four-by-four byte matrix:

A0 A4 A8 A12
A1 A5 A9 A13
A2 A6 A10 A14
A3 A7 A11 A15

As we will see in the following, AES operates on elements, columns or rows of
the current state matrix. Similarly, the key bytes are arranged into a matrix with four
rows and four (128-bit key), six (192-bit key) or eight (256-bit key) columns. As an
example, here is the state matrix of a 192-bit key:

K0 K4 K8 K12 K16 K20
K1 K5 K9 K13 K17 K21
K2 K6 K10 K14 K18 K22
K3 K7 K11 K15 K19 K23

We discuss now what happens in each of the layers.
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Key Addition

s s s s s s s s s s s s s s s s

0A 1A 2A 3A 6A5A4A 7A 8A 9A 11A 12A 13A 14A 15A10A
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1C 2C 3C 4C 5C 6C 7C 8C 9C 10C 11C 12C 13C 14C 15C0C

k i

Byte Substitution

MixColumn

ShiftRows

Fig. 4.3 AES round function for rounds 1,2, . . . ,nr−1

4.4.1 Byte Substitution Layer

As shown in Figure 4.3, the first layer in each round is the Byte Substitution layer.
The Byte Substitution layer can be viewed as a row of 16 parallel S-boxes, each
with 8 input and output bits. Note that all 16 S-boxes are identical, unlike DES
where eight different S-boxes are used. In the layer, each state byte Ai is replaced,
i.e., substituted, by another byte Bi:

S(Ai) = Bi

The S-box is the only nonlinear element of AES, i.e., it holds that

ByteSub(A)+ByteSub(B) 6= ByteSub(A+B)

for two states A and B. The S-box substitution is a bijective mapping, i.e., each of
the 28 = 256 possible input elements is one-to-one mapped to one output element.
This allows us to uniquely reverse the S-box, which is needed for decryption. In
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software implementations, the S-box is usually realized as a 256-by-8-bit lookup
table with fixed entries, as given in Table 4.3.

Example 4.8. Let’s assume the input byte to the S-box is Ai = (C2)hex, then the
substituted value is

S((C2)hex) = (25)hex

On a bit level — and remember, the only thing that is ultimately of interest in en-
cryption is the manipulation of bits — this substitution can be described as:

S(1100 0010) = (0010 0101) �

Table 4.3 AES S-box: Substitution values in hexadecimal notation for input byte
(xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

x 8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Even though the S-box is bijective, it does not have any fixed points, i.e., there
aren’t any input values Ai such that S(Ai) = Ai. Even the zero-input is not a fixed
point: S(0000 0000) = (63)hex = (0110 0011).

Example 4.9. Let’s assume the 16-byte input to the Byte Substitution layer is

(C2,C2, . . . ,C2)

in hexadecimal notation. The output state is then

(25,25, . . . ,25)

�

Mathematical description of the S-box For readers who are interested in how
the S-box entries are constructed, a more detailed description follows now. This
description, however, is not necessary for a basic understanding of AES, and the
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remainder of this subsection can be skipped without problem. Unlike the DES S-
boxes, which are essentially random tables that fulfill certain properties, the AES
S-boxes have a strong algebraic structure. An AES S-box can be viewed as a two-
step mathematical transformation, as shown in Figure 4.4.

Fig. 4.4 The two operations within the AES S-box which computes the function
Bi = S(Ai)

The first part of the substitution is a Galois field inversion, the mathematics of
which were introduced in Section 4.3.2. For each input element Ai, the inverse is
computed: B′i = A−1

i , where both Ai and B′i are considered elements in the field
GF(28) with the fixed irreducible polynomial P(x) = x8 +x4 +x3 +x+1. A lookup
table with all inverses is shown in Table 4.2. Note that the inverse of the zero element
does not exist. However, for AES it is defined that the zero element Ai = 0 is mapped
to itself.

In the second part of the substitution, each byte B′i is multiplied by a constant bit-
matrix followed by the addition of a constant 8-bit vector. The operation is described
by: 

b0
b1
b2
b3
b4
b5
b6
b7


≡



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7


+



1
1
0
0
0
1
1
0


mod 2

Note that B′ = (b′7, . . . ,b
′
0) is the bitwise vector representation of B′i(x) = A−1

i (x).
This second step is referred to as an affine mapping. Let’s look at an example of how
the S-box computations work.

Example 4.10. We assume the S-box input Ai = (1100 0010)2 = (C2)hex. From Ta-
ble 4.2, we can see that the inverse is:

A−1
i = B′i = (2F)hex = (0010 1111)2

We now apply the B′i bit vector as input to the affine transformation. Note that the
least significant bit b′0 of B′i is at the rightmost position,
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Bi = (0010 0101) = (25)hex

Thus, S((C2)hex) = (25)hex, which is exactly the result that is also given in the S-box
Table 4.3.
�

If one computes both steps for all 256 possible input elements of the S-box and
stores the results, one obtains Table 4.3. In most AES implementations, in particular,
in virtually all software realizations of AES, the S-box outputs are not explicitly
computed as shown here, but rather lookup tables like Table 4.3 are used. However,
for hardware implementations, it is sometimes advantageous to realize the S-boxes
as digital circuits that actually compute the inverse followed by the affine mapping.

The advantage of using inversion in GF(28) as the core function of the Byte
Substitution layer is that it provides a high degree of nonlinearity, which in turn
provides optimum protection against some of the strongest known analytical attacks.
The affine step “destroys” the algebraic structure of the Galois field, which in turn
is needed to prevent attacks that would exploit the finite field inversion.

4.4.2 Diffusion Layer

In AES, the Diffusion layer consists of two sublayers: the ShiftRows transformation
and the MixColumn transformation. We recall that diffusion is the spreading of the
influence of individual bits over the entire state. Unlike the nonlinear S-box, the
diffusion layer performs a linear operation on state matrices A,B, i.e., DIFF(A)+
DIFF(B) = DIFF(A+B).

ShiftRows Sublayer

The ShiftRows transformation cyclically shifts the second row of the state matrix
by three bytes to the right, the third row by two bytes to the right and the fourth
row by one byte to the right. The first row is not changed by the ShiftRows trans-
formation. The purpose of the ShiftRows transformation is to increase the diffusion
properties of AES. If the input of the ShiftRows sublayer is given as a state matrix
B = (B0,B1, . . . ,B15):

B0 B4 B8 B12
B1 B5 B9 B13
B2 B6 B10 B14
B3 B7 B11 B15
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The output is the new state:

B0 B4 B8 B12 no shift
B5 B9 B13 B1 −→ three positions right shift
B10 B14 B2 B6 −→ two positions right shift
B15 B3 B7 B11 −→ one position right shift

(4.1)

MixColumn Sublayer

The MixColumn step is a linear transformation that mixes each column of the state
matrix. Since every input byte influences four output bytes, the MixColumn opera-
tion is the major diffusion element in AES. The combination of the ShiftRows and
MixColumn sublayers makes it possible that after only three rounds, every byte of
the state matrix depends on all 16 plaintext bytes.

In the following, we denote the 16-byte input state by B and the 16-byte output
state by C:

MixColumn(B) =C

where B is the state after the ShiftRows operation as given in Expression (4.1). The
reader may also want to have a look again at Figure 4.3.

Now, each 4-byte column of (4.1) is considered a vector and multiplied by a fixed
4× 4 matrix. The matrix contains constant entries. Multiplication and addition of
the coefficients is done in GF(28). As an example, we show how the first four output
bytes are computed: 

C0
C1
C2
C3

=


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




B0
B5
B10
B15

 (4.2)

The second column of output bytes (C4,C5,C6,C7) is computed by multiplying
the four input bytes (B4,B9,B14,B3) by the same constant matrix, and so on. Fig-
ure 4.3 shows which input bytes are used in each of the four MixColumn operations.

We now discuss the details of the vector–matrix multiplication, which forms the
MixColumn operations. We recall that each state byte Ci and Bi is an 8-bit value
representing an element from GF(28). All arithmetic involving the coefficients is
done in this Galois field. For the constants in the matrix a hexadecimal notation is
used: “01” refers to the GF(28) polynomial with the coefficients (0000 0001), i.e., it
is the element 1 of the Galois field; “02” refers to the polynomial with the bit vector
(0000 0010), i.e., to the polynomial x; and “03” refers to the polynomial with the
bit vector (0000 0011), i.e., the Galois field element x+1.

The additions in the vector–matrix multiplication are GF(28) additions that are
simple bitwise XORs of the respective bytes. For the multiplication of the constants,
we have to realize multiplications with the constants 01, 02 and 03. These are quite
efficient, and in fact, the three constants were chosen such that software implemen-



130 4 The Advanced Encryption Standard (AES)

tation is easy. Multiplication by 01 is multiplication by the identity and does not
involve any explicit operation. Multiplication by 02 and 03 can be done through
table look-up in two 256-by-8 tables. As an alternative, multiplication by 02 can
also be implemented as a multiplication by x, which is a left shift by one bit, and
a modular reduction with P(x) = x8 + x4 + x3 + x+ 1. Similarly, multiplication by
03, which represents the polynomial (x+1), can be implemented by a left shift by
one bit and the addition of the original value followed by a modular reduction with
P(x).

Example 4.11. We consider the leftmost MixColumn box in Figure 4.3 with the four
input bytes:

B0 = x3 + x2 ; B5 = x7 +1 ; B10 = x5 + x4 +1 ; B15 = x5 + x4 + x3

We show how the first output byte:

C0 = 02 B0 +03B5 +01B10 +01B15

is computed. First we precompute the multiplications 02 B0 and 03B5:

02 B0 = x (x3 + x2) = x4 + x3

03B5 = (x+1) (x7 +1) = x8 + x7 + x+1

≡ x7 + x4 + x3 mod P(x)

C0 follows now from adding the four terms:

02 ·B0 = x4+ x3

03 ·B5 = x7+ x4+ x3

01 ·B10 = x5+ x4+ 1
01 ·B15 = x5+ x4+ x3

C0 = x7+ x3+ 1

The other output bytes can be computed the same way according to Equation (4.2),
which results in C1 = x6 + x5 + x4 + x3 + x2 + x, C2 = x7 + x5 + x2 + x+1 and C3 =
x7 + x6 + x4 + x2.
�

4.4.3 Key Addition Layer

The two inputs to the Key Addition layer are the current 16-byte state matrix and
a subkey which also consists of 16 bytes (128 bits). The two inputs are combined
through a bitwise XOR operation. Note that the XOR operation is equal to addi-
tion in the Galois field GF(2). The subkeys are derived in the key schedule that is
described below in Section 4.4.4.
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4.4.4 Key Schedule

The key schedule takes the original input key (of length 128, 192 or 256 bits) and
derives the subkeys used in AES. Note that an XOR addition of a subkey is used
both at the input and output of AES. This process is sometimes referred to as key
whitening. The number of subkeys is equal to the number of rounds plus one, due
to the key needed for key whitening in the first key addition layer, cf. Figure 4.2.
Thus, for the key length of 128 bits, the number of rounds is nr = 10 and there are
11 subkeys, each of 128 bits. AES with a 192-bit key requires 13 subkeys of length
128 bits each, and AES with a 256-bit key has 15 subkeys. The AES subkeys are
computed recursively, i.e., in order to derive subkey ki, subkey ki−1 must be known,
etc.

The AES key schedule is word-oriented, where one word equals 32 bits. Subkeys
are stored in a key expansion array W that consists of words. There are different key
schedules for the three different AES key sizes of 128, 192 and 256 bits, which are
all fairly similar. We introduce the three key schedules in the following.

Key Schedule for 128-Bit Key AES

Each 128-bit subkey consists of 4 words. The 11 subkeys are stored in a key expan-
sion array with the 11×4= 44 elements W [0], . . . ,W [43]. The subkeys are computed
as depicted in Figure 4.5. The elements K0, . . . ,K15 denote the bytes of the original
AES key.

First, we note that the first subkey k0 is the original AES key, i.e., the key is
copied into the first four elements of the key array W . The other array elements are
computed as follows. As can be seen in the figure, the leftmost word of a subkey
W [4i], where i = 1, . . . ,10, is computed as:

W [4i] =W [4(i−1)]⊕g(W [4i−1])

Here g is a nonlinear function with a four-byte input and output. The remaining
three words of a subkey are computed recursively as:

W [4i+ j] =W [4i+ j−1]⊕W [4(i−1)+ j]

where i = 1, . . . ,10 and j = 1,2,3. The function g rotates its four input bytes, per-
forms a byte-wise S-box substitution, and adds a round coefficient RC to it. The
round coefficient is an element of the Galois field GF(28), i.e., an 8-bit value. It is
only added to the leftmost byte in the function g.
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Fig. 4.5 AES key schedule for 128-bit key size

The round coefficients vary from round to round according to the following rule:

RC[1] = x0 = (0000 0001)2
RC[2] = x1 = (0000 0010)2
RC[3] = x2 = (0000 0100)2

...
RC[10] = x9 = (0011 0110)2

The function g has two purposes. First, it adds nonlinearity to the key sched-
ule. Second, it removes symmetry in AES. Both properties are necessary to thwart
certain block cipher attacks.
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Key Schedule for 192-Bit Key AES

AES with a 192-bit key has 12 rounds and, thus, 13 subkeys of 128 bits each.
The subkeys require 13× 4 = 52 words, which are stored in the array elements
W [0], . . . ,W [51]. The computation of the array elements is quite similar to the 128-
bit key case and is shown in Figure 4.6. There are eight rounds of the key schedule.
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Fig. 4.6 AES key schedule for 192-bit key size

(Note that these key schedule rounds do not correspond to the 12 AES rounds!) Each
iteration computes six new words of the subkey array W . The subkey for the first
AES round is formed by the array elements (W [0],W [1],W [2],W [3]), the second
subkey by the elements (W [4],W [5],W [6],W [7]) and so on. Eight round coefficients
RC[i] are needed within the function g. They are computed as in the 128-bit case
and range from RC[1], . . . ,RC[8].
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Key Schedule for 256-Bit Key AES

AES with a 256-bit key needs 15 subkeys. The subkeys are stored in the 15× 4 =
60 words W [0], . . . ,W [59]. The computation of the array elements is quite similar
to the 128-bit key case and is shown in Figure 4.7. The key schedule has seven
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Fig. 4.7 AES key schedule for 256-bit key size

rounds, where each round computes eight words for the subkeys. (Again, note that
these key schedule rounds do not correspond to the 14 AES rounds.) The subkey
for the first AES round is formed by the array elements (W [0],W [1],W [2],W [3]),
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the second subkey by the elements (W [4],W [5],W [6],W [7]) and so on. Seven round
coefficients RC[1], . . . ,RC[7] within the function g are needed within and they are
computed as in the 128-bit case. This key schedule also has a function h with a
4-byte input and output. The function applies the S-box to all four input bytes.

In general, when implementing any of the three key schedules, two different
approaches exist:

1. Precomputation All subkeys are expanded first into the array W . The encryp-
tion (decryption) of a plaintext (ciphertext) is executed afterward. This approach is
often taken in PC and server implementations of AES, where large pieces of data
are encrypted under one key. Please note that this approach requires (nr + 1) · 16
bytes of memory, e.g., 11 · 16 = 176 bytes if the key size is 128 bits. There are
applications with very limited memory, such as small IoT-like devices, where this
precomputation can be difficult.

2. On-the-fly A new subkey is derived for every new AES round during the en-
cryption (decryption) of a plaintext (ciphertext). Please note that when decrypting
ciphertexts, the last subkey is XORed first with the ciphertext. Therefore, it is re-
quired to recursively derive all subkeys first and then begin the decryption of the
ciphertext and the on-the-fly generation of subkeys. As a result of this overhead, the
decryption of a ciphertext is always slightly slower than the encryption of a plaintext
when on-the-fly generation of subkeys is used.

4.5 Decryption

Because AES is not based on a Feistel network, all layers must actually be inverted
for the decryption, i.e., the Byte Substitution layer becomes the Inv Byte Substitu-
tion layer, the ShiftRows layer becomes the Inv ShiftRows layer, and the MixCol-
umn layer becomes the Inv MixColumn layer. However, as we will see, it turns out
that the inverse layer operations are fairly similar to the layer operations used for
encryption. In addition, the order of the subkeys is reversed, i.e., we need a reversed
key schedule. A block diagram of the decryption function is shown in Figure 4.8.

Since the last encryption round does not perform the MixColumn operation, the
first decryption round also does not contain the corresponding inverse layer. All
other decryption rounds, however, contain all AES layers. In the following, we dis-
cuss the inverse layers of the general AES decryption round (Figure 4.9). Since the
XOR operation is its own inverse, the key addition layer in the decryption mode is
the same as in the encryption mode: It consists of a row of plain XOR gates.
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Inverse MixColumn Sublayer

After the addition of the subkey, the inverse MixColumn step is applied to the state
(again, the exception is the first decryption round). In order to reverse the MixCol-
umn operation, the inverse of its matrix must be used. The input is a 4-byte column
of the state C, which is multiplied by the inverse 4×4 matrix. The matrix contains
constant entries. Multiplication and addition of the coefficients is done in GF(28).
Below is the vector-matrix multiplication for the leftmost MixColumn box in Fig-
ure 4.9:


B0
B1
B2
B3

=


0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E




C0
C1
C2
C3
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The second column of output bytes (B4,B5,B6,B7) is computed by multiplying the
four input bytes (C4,C5,C6,C7) by the same constant matrix, and so on. Each value
Bi and Ci is an element from GF(28). Also, the constants are elements from GF(28).
The notation for the constants is hexadecimal and is the same as was used for the
MixColumn layer, for example:

0B = (0B)hex = (0000 1011)2 = x3 + x+1

Additions in the vector–matrix multiplication are bitwise XORs.

Inverse ShiftRows Sublayer

In order to reverse the ShiftRows operation of the encryption algorithm, we must
shift the rows of the state matrix in the opposite direction. The first row is not
changed by the inverse ShiftRows transformation. If the input of the ShiftRows
sublayer is given as a state matrix B = (B0,B1, . . . ,B15):

B0 B4 B8 B12
B1 B5 B9 B13
B2 B6 B10 B14
B3 B7 B11 B15

then the inverse ShiftRows sublayer yields the output:

B0 B4 B8 B12 no shift
B13 B1 B5 B9 ←− three positions left shift
B10 B14 B2 B6 ←− two positions left shift
B7 B11 B15 B3 ←− one position left shift

Inverse Byte Substitution Layer

The inverse S-box must used when decrypting a ciphertext. Since the AES S-box is
a bijective, i.e., a one-to-one mapping, it is possible to construct an inverse S-box
such that:

Ai = S−1(Bi) = S−1(S(Ai))

where Ai and Bi are elements of the state matrix. The entries of the inverse S-box are
given in Table 4.4. For readers who are interested in the details of how the entries
of the inverse S-box are constructed, we provide a derivation below. However, for a
functional understanding of AES, the remainder of this section can be skipped.

In order to reverse the S-box substitution, we first have to compute the inverse of
the affine transformation, cf. Figure 4.4. For this, each input byte Bi is considered
an element of GF(28). The inverse affine transformation on each byte Bi is given by
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Table 4.4 Inverse AES S-box: Substitution values in hexadecimal notation for input
byte (xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

x 8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

Equation (4.3), where (b7, . . . ,b0) is the bitwise vector representation of Bi(x), and
(b′7, . . . ,b

′
0) the result after the inverse affine transformation:

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7


≡



0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0





b0
b1
b2
b3
b4
b5
b6
b7


+



1
0
1
0
0
0
0
0


mod 2 (4.3)

In the second step of the inverse S-box operation, the Galois field inverse has to
be reversed. For this, note that Ai = (A−1

i )−1. This means that the inverse operation
is reversed by computing the inverse again. In our notation we thus have to compute

Ai = (B′i)
−1 ∈ GF(28)

with the fixed reduction polynomial P(x) = x8+x4+x3+x+1. Again, the zero ele-
ment is mapped to itself. The vector Ai = (a7, . . . ,a0) (representing the field element
a7x7 + · · ·+a1x+a0) is the result of the substitution:

Ai = S−1(Bi)

Decryption Key Schedule

Since decryption round one needs the last subkey, the second decryption round
needs the second-to-last subkey and so on, we need the nr + 1 subkeys in reversed
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order, as shown in Figure 4.8. In practice, this is mainly achieved by computing
the entire key schedule first and storing all 11, 13 or 15 subkeys, depending on the
number of rounds AES is using (which in turn depends on the three key lengths sup-
ported by AES). This precomputation usually adds a small latency to the decryption
operation relative to encryption.

4.6 Implementation in Software and Hardware

Below, we briefly comment on the efficiency of the AES cipher with respect to
software and hardware implementation.

Software

Unlike DES, AES has a much more software-friendly design. A straightforward
implementation of AES, which directly follows the data path-oriented description
provided in this chapter, is well suited for 8-bit processors, which are sometimes
used in simple smart cards or low-cost IoT devices. For 32- and 64-bit CPUs, which
are common in today’s smartphones, PCs and servers, table-based implementations
are widely used. The core idea is to merge all round functions (except the rather triv-
ial key addition) into one table look-up. This results in four tables, each of which
consists of 256 entries, where each entry is 32 bits wide. These tables are named
T-Boxes. Interestingly, this table method was already described by the Rijndael de-
signers in the original AES documentation submitted during the NIST competi-
tion. Four table accesses yield the 32 output bits of one round. Hence, one round
can be computed with 16 table look-ups. On a 1.2-GHz Intel processor, a through-
put of 50 MByte/s (or 400 Mbit/s) is possible. On many processors from Intel and
AMD, special instructions, called AES-NI (Advanced Encryption Standard New In-
structions), are available, which accelerate the computation of AES. AES-NI allows
throughput in the range of 2 GByte/s (or 16 Gbit/s).

Hardware

Compared to DES, AES requires more hardware resources for an implementation.
However, due to the high integration density of modern integrated circuits, hardware
circuits for AES are still quite small compared to many other functions commonly
implemented in modern integrated circuits. Due to its wide data path of 128 bits,
which can be implemented in parallel, AES hardware realizations are possible with
very high throughputs in modern ASIC or FPGA (field programmable gate array
— these are programmable hardware devices) technology. Implementations of AES
engines that use a single round that is iterated 10, 12 or 14 times (depending on the
key length) can exceed throughputs of 10 Gbit/sec. By implementing several such
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rounds in parallel and pipelining them, the speed can be further increased. It can be
said that symmetric encryption with today’s ciphers is extremely fast, not only com-
pared to asymmetric cryptosystems but also compared to other algorithms needed
in modern communication systems, such as data compression or signal processing
schemes.

4.7 Discussion and Further Reading

AES Algorithm and Security A detailed description of the design principles of
AES can be found in the book [87], which was written by the two Rijndael inventors.
More than two decades after it was standardized by NIST, AES is today extremely
widely used in practice. As mentioned at the very beginning of this chapter, AES
is part of the web security protocol TLS, the internet security standard IPsec, the
Wi-Fi encryption standard IEEE 802.11i, the secure shell network protocol SSH,
the instant messengers WhatsApp and Signal, many hard disk encryption products
and numerous security products around the world. Besides its unique position as
probably the most-used cipher worldwide, AES triggered very influential ideas on
how to design secure block ciphers. A prominent example is the wide trail strategy
[86], which demonstrates and clarifies the role of the linear layer of a block cipher
with respect to its resistance against many statistical attacks. It is probably fair to
say that the majority of today’s successful block ciphers have borrowed ideas from
AES.

Currently no analytical attack against AES is known which has a complexity less
than a brute-force attack. An elegant algebraic description was found in [192], which
in turn triggered speculations that this could lead to attacks. Subsequent research
showed that an attack is, in fact, not feasible. By now, the common assumption is
that the approach will not threaten AES. A good summary on algebraic attacks can
be found in [72]. In addition, there have been proposals for many other attacks,
including the square attack, impossible differential attack or related-key attack. The
best attacks on full-round AES are probably the biclique attacks [58]. They can be
seen as attacks that improve the complexity of brute-force attacks by not having
to iterate over the entire AES encryption for every possible key but rather iterate
over parts only. Biclique attacks marginally improve the complexity of a brute-force
attack by a factor of about four, e.g., attacking AES-128 takes about 2126 steps. None
of the proposed attacks come even close to threatening full-size AES in practical
settings..

Galois Fields The standard reference for the mathematics of finite fields is [174]. A
very accessible but brief introduction is also given in [46]. The International Work-
shop on the Arithmetic of Finite Fields (WAIFI) is concerned with both the applica-
tions and the theory of Galois fields [250].

AES Implementations As mentioned in Section 4.6, many software implemen-
tations use special lookup tables (T-Boxes) for realizing AES. An early detailed
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description of the construction of T-Boxes can be found in [85, Section 5]. A de-
scription of a high-speed software implementation on 32-bit and 64-bit CPUs is
given in [183, 182]. The bit-slicing technique, which was developed in the context
of DES, is also applicable to AES and can lead to very fast code, as shown in [184].

A strong indication of the importance of AES was the introduction of special
AES instructions for CPUs from AMD and Intel. They are extensions to the x86 in-
struction set architecture, referred to as Advanced Encryption Standard New Instruc-
tions (short AES-NI), originally proposed by Intel in 2008 [129]. The instructions
allow these machines to compute the AES round operations particularly quickly.

There is a wealth of literature dealing with hardware implementation of AES. A
good introduction to the area of AES hardware architectures is given in [165, Chap-
ter 10]. As an example of the variety of AES implementations, reference [127] de-
scribes a very small FPGA implementation with 2.2 Mbit/s and a very fast pipelined
FPGA implementation with 25 Gbit/s. It is also possible to use the DSP blocks (i.e.,
fast arithmetic units) available on modern FPGAs for AES, which can also yield
throughputs beyond 50 Gbit/s [99]. The basic idea in all high-speed architectures is
to process several plaintext blocks in parallel by means of pipelining. At the other
end of the performance spectrum are lightweight architectures that are optimized
for applications such as small IoT devices. The basic idea here is to serialize the
data path, i.e., one round is processed in several time steps. Good references are
[113, 71].

4.8 Lessons Learned

� AES is a modern block cipher that supports three key lengths of 128, 192 and
256 bits. It provides excellent long-term security against brute-force attacks.

� AES has been studied intensively since the late 1990s and no attacks have been
found that are more than marginally better than brute-force.

� AES is not based on Feistel networks. The AES rounds make heavily use of
Galois field arithmetic.

� AES has an excellent performance in software and hardware.
� AES is part of numerous open standards, such as IPsec or TLS, in addition to

being the mandatory encryption algorithm for U.S. government applications. It
seems likely that the cipher will continue to be the dominant symmetric encryp-
tion algorithm for many years to come.

� AES is efficient in software and hardware.
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Problems

4.1. The AES cipher was standardized by NIST as a U.S. standard in 2001 and soon
adopted by numerous international standards. It is nowadays the dominant symmet-
ric cipher in use (at least in the Western world). Answer the following questions:

1. The evolution of AES differs from that of DES. Briefly describe the differences
of the AES’s history in comparison to that of DES.

2. Outline the fundamental events of the development process.
3. What is the name of the algorithm that is known as AES?
4. Who developed this algorithm, and from which country are its inventors?
5. What block sizes and key lengths are supported by the cipher?

4.2. Within the AES algorithm, some computations are done in Galois fields. With
the following problems, we practice some basic computations.

Compute the multiplication and addition table for the prime field GF(7). A mul-
tiplication table is a square table (here: 7× 7) that has as its rows and columns all
field elements. Each of its entries is the product of the field element at the corre-
sponding row and column. Note that the table is symmetric along the diagonal. An
addition table is completely analogous but contains the sums of field elements as
entries.

4.3. Generate the multiplication table for the extension field GF(23) for the case
that the irreducible polynomial is P(x) = x3+x+1. The multiplication table, in this
case, is an 8× 8 table. (Remark: You can do this manually or write a program for
it.)

4.4. In this problem, we look at addition in extension fields. Compute A(x) +
B(x) mod P(x) in GF(24) using the irreducible polynomial P(x) = x4+x+1. What
would happen if we would change the reduction polynomial?

1. A(x) = x2 +1, B(x) = x3 + x2 +1.
2. A(x) = x2 +1, B(x) = x+1.

4.5. We now look at multiplication in the field GF(24): Compute A(x) ·B(x) mod
P(x) in GF(24) using the irreducible polynomial P(x) = x4 + x+ 1. What is the
influence of the choice of the reduction polynomial on the computation in this case?

1. A(x) = x2 +1, B(x) = x3 + x2 +1.
2. A(x) = x2 +1, B(x) = x+1.

4.6. Compute in GF(28):

(x4 + x+1)/(x7 + x6 + x3 + x2)

where the irreducible polynomial is the one used by AES, namely P(x) = x8 + x4 +
x3 + x+ 1. Note that Table 4.2 contains a list of all multiplicative inverses for this
field.
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4.7. We consider the finite field GF(24) with P(x) = x4+x+1 being the irreducible
polynomial. Find the inverses of A(x) = x and B(x) = x2 + x. You can find the in-
verses either by trial and error, i.e., brute-force search, or by applying the Euclidean
algorithm for polynomials. (However, the Euclidean algorithm is only sketched
briefly in this chapter.) Verify your answer by multiplying the inverses you deter-
mined by A and B, respectively.

4.8. Find all irreducible polynomials

1. of degree 3 over GF(2),
2. of degree 4 over GF(2).

The best approach for doing this is to consider all polynomials of lower degree and
check whether you can split them into factors (other than 1 and the polynomial
itself). Note that we only consider monic irreducible polynomials, i.e., polynomials
with the highest coefficient equal to one.

4.9. We consider the first part of the ByteSub operation, i.e., the Galois field inver-
sion.

1. Using Table 4.2, what is the inverse of the bytes 29, F3 and 01, where each byte
is given in hexadecimal notation?

2. Verify your answer by performing a GF(28) multiplication with your answer and
the input byte. Note that you have to represent each byte first as a polynomial in
GF(28). The MSB of each byte represents the x7 coefficient.

4.10. Your task is to compute the S-box, i.e., the ByteSub, values for the input bytes
29, F3 and 01, where each byte is given in hexadecimal notation.

1. First, look up the inverses using Table 4.2 to obtain values B′. Now, perform the
affine mapping by computing the matrix–vector multiplication and addition.

2. Verify your result using the S-box in Table 4.3.
3. What is the value of S(0)?

4.11. We consider AES with a 128-bit key. What is the output of the first round of
AES if the input of the first Byte Substitution Layer consists of 128 ones, and the
first subkey (i.e., k1) also consists of 128 ones? It is best if you write the output state
as a 4×4 array, as shown in Section 4.4.

4.12. In the following, we check the diffusion property of AES after a single round.
Let X =(X0,X1,X2,X3)= (0x01000000, 0x00000000, 0x00000000, 0x00000000)
be the four input words (32 bits each) to AES with a 128-bit key. Note that all input
bits except one have the value zero. The subkeys for the first round are denoted by
W [0], . . . ,W [7] with 32 bits each, and are given by:

W [0] = (0x2B7E1516), W [1] = (0x28AED2A6),

W [2] = (0xABF71588), W [3] = (0x09CF4F3C),

W [4] = (0xA0FAFE17), W [5] = (0x88542CB1),

W [6] = (0x23A33939), W [7] = (0x2A6C7605).
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Perform the following computations. You can do them manually or write a com-
puter program or use an existing one.

1. Compute the output of the first round of AES for the given input X and subkeys
W [0], . . . ,W [7]. Also provide all intermediate steps, i.e., the outputs after the lay-
ers SubBytes, ShiftRows and MixColumns. It is recommended that you provide
all results in a 4×4 state array.

2. Compute the output of the first round of AES for the case that all input bits are
zero.

3. How many output bits have changed? Note that we only consider a single round
— after every further round, more output bits will be affected. This behavior is
referred to as the avalanche effect.

4.13. We are in the 9th round of an AES-128 decryption. Your task is to compute
the final round and the corresponding plaintext. The AES-128 key is given by:

k0 = (0x00112233,0x44556677,0x88990011,0x22334455)

=


00 44 88 22
11 55 99 33
22 66 00 44
33 77 11 55


The state after the inverse byte substitution in Round 9 is

77 e9 45 58
c4 c f f a c3
b8 66 87 95
05 23 31 20


For your answer, write the output state also as a 4×4 array.

4.14. For the following, we assume AES with a 192-bit key. Furthermore, we as-
sume we have access to special-purpose integrated circuits that can check 3 · 107

AES keys per second.

1. If we use 100,000 such ICs in parallel, how long does an average key search
take? Compare this period of time with the age of the universe (appr. 1010 years).

2. Assuming Moore’s law will still be valid for the next few years, how many years
do we have to wait until we can build a key-search machine to perform an average
key search of AES-192 in 24 hours? Again, assume that we use 100,000 ICs in
parallel.

4.15. The MixColumn operation has a somewhat surprising property: If the four
input bytes all have the same value, the four output bytes are also all the same, and
additionally have the same value as the input byte. (We note that this property does
not lead to a security weakness of AES.)

1. Show that the property holds.
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2. Compute the probability that four random input bytes take the same value.
3. Argue why this situation (i.e., all four input bytes of the MixColumn operation

are identical) occurs infrequently in practice if AES is used with a random key.

4.16. Show that the two constant matrices for the MixColumn and Inv MixColumn
are each other’s inverses.

4.17. In this problem we look at computations in the MixColumn layer on the
bit level. As we saw in this chapter, the MixColumn transformation consists of a
matrix–vector multiplication in the finite field GF(28) with the irreducible polyno-
mial P(x) = x8 + x4 + x3 + x+1.

Let b = (b7x7 + . . .+ b0) be one of the (four) input bytes to the vector–matrix
multiplication. Within the matrix multiplication, the byte b is multiplied with the
constants 01, 02 and 03. We are interested in the bit-level equations for computing
those three constant multiplications. We denote the result by d = (d7x7 + . . .+d0).
Your task is to express the bits di in terms of the input bits bi.

1. Equations for computing the 8 bits of d = 01 ·b.
2. Equations for computing the 8 bits of d = 02 ·b.
3. Equations for computing the 8 bits of d = 03 ·b.

Note that in the AES specifications “01” represents the polynomial 1, “02” repre-
sents the polynomial x, and “03” represents x+1.

4.18. We now look at the gate (or bit) complexity of the MixColumn function, using
the results from problem 4.17. We recall from the discussion of stream ciphers that
a 2-input XOR gate performs a GF(2) addition.

1. How many 2-input XOR gates are required to perform one constant multiplica-
tion by 01, 02 and 03, respectively, in GF(28)?

2. What is the overall gate complexity of one matrix–vector multiplication? (The
gate complexity is important when implementing AES in hardware.)

3. What is the overall gate complexity of a hardware implementation of the entire
Diffusion layer? Note that permutations require no gates.

4.19. Derive the bit representation for the following round constants within the key
schedule:

� RC[8],
� RC[9].



Chapter 5
More About Block Ciphers

A block cipher is much more than just an encryption algorithm. It can be used as
a versatile building block with which a diverse set of cryptographic mechanisms
can be realized. For instance, we can use them for building different types of block-
based encryption schemes, and we can even use block ciphers for realizing stream
ciphers. The different ways of encryption are called modes of operation and are
discussed in this chapter. Block ciphers can also be used for constructing hash func-
tions, message authentication codes, which are also knowns as MACs, or key estab-
lishment protocols, all of which will be described in later chapters. There are also
other uses for block ciphers, e.g., as pseudorandom number generators. In addition
to modes of operation, this chapter also discusses two useful techniques for increas-
ing the security of block ciphers, namely key whitening and multiple encryption.

In this chapter you will learn:

� Important modes of operation for block ciphers in practice
� Security pitfalls when using modes of operation
� The principles of key whitening
� Why double encryption is not a good idea due to the meet-in-the-middle attack
� Triple encryption
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5.1 Modes of Operation for Encryption and Authentication

In this section, we will introduce several approaches to using block ciphers for en-
crypting data, referred to as modes of operation. We will also briefly discuss modes
of operation that are used for message authentication. However, the corresponding
modes will be described in detail in Section 13.3.

Modes of Operation for Encryption In the previous chapters we introduced
how AES, DES, 3DES and PRESENT encrypt a block of data. Of course, in practice
one wants typically to encrypt more than one single 8-byte or 16-byte block of
plaintext, e.g., when encrypting an email or a PDF file. There are several ways of
encrypting long plaintexts with a block cipher, including the following modes of
operation, which will be introduced in this chapter:

� Electronic Code Book mode (ECB),
� Cipher Block Chaining mode (CBC),
� Cipher Feedback mode (CFB),
� Output Feedback mode (OFB),
� Counter mode (CTR),
� XEX Tweakable Block Cipher with Ciphertext Stealing (XTS).

All modes provide confidentiality for a message sent from Alice to Bob. We note that
the CFB and OFB modes use the block cipher as a building block for a stream cipher.
We will also introduce XTS, a mode that has been standardized for encryption of
data in storage devices such has hard disks. For completeness, we note that there are
modes for other purposes too, e.g., the key wrapping modes KW, KWP and TKW,
which are used when cryptographic keys need to be encrypted.

The ECB and CBC modes require that the length of the plaintext is an exact
multiple of the block size of the cipher used, e.g., a multiple of 16 bytes in the
case of AES. If the plaintext does not have this length, it must be padded. There
are several ways of doing this padding in practice. One possible padding method
is to append a single “1” bit to the plaintext and then to append as many “0” bits
as necessary to reach a multiple of the block length. Should the plaintext be an
exact multiple of the block length, an extra block consisting only of padding bits is
appended.

Modes of Operation for Authentication In practice, we often not only want to
keep data confidential but Bob also wants to know whether the message is really
coming from Alice. This is called message authentication and the following modes
of operation provide authentication (CBC-MAC, CMAC), or both encryption and
authentication (CCM, GCM):

� CBC-MAC,
� Cipher-based MAC (CMAC),
� Cipher Block Chaining-Message Authentication Code (CCM),
� Galois Counter mode (GCM).

These modes enable the receiving party, Bob, to determine whether the message was
indeed created by a party who is in possession of the shared secret key. Moreover,
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authentication also allows Bob to detect whether the ciphertext was altered during
transmission. These modes are the topic of Section 13.3.

5.1.1 Electronic Codebook Mode (ECB)

The Electronic Code Book (ECB) mode is the most straightforward way of encrypt-
ing a message with a block cipher. In the following, let ek(xi) denote the encryption
of plaintext block xi with key k using some arbitrary block cipher. Let e−1

k (yi) de-
note the decryption of ciphertext block yi with key k. Let us assume that the block
cipher encrypts (decrypts) blocks with a size of b bits. Messages which exceed b
bits are partitioned into b-bit blocks. If the length of the message is not a multiple
of b bits, it must be padded to a multiple of b bits prior to encryption. As shown in
Figure 5.1, in ECB mode each block is encrypted separately. The block cipher can,
for instance, be AES or 3DES.

Fig. 5.1 Encryption and decryption in ECB mode

Encryption and decryption in the ECB mode is formally described as follows.

Definition 5.1.1 Electronic Codebook Mode (ECB)
Let e() be a block cipher of block size b, and let xi and yi be bit
strings of length b.
Encryption: yi = ek(xi), i≥ 1
Decryption: xi = e−1

k (yi), i≥ 1

It is straightforward to verify the correctness of the ECB mode:

e−1
k (yi) = e−1

k (ek(xi)) = xi

The ECB mode has advantages. Block synchronization between the encryption
and decryption parties Alice and Bob is not necessary, i.e., if the receiver does not
receive all encrypted blocks due to transmission problems, it is still possible to de-
crypt the received blocks. Similarly, bit errors, e.g., caused by noisy transmission
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lines, only affect the corresponding block but not succeeding blocks. Also, block ci-
phers operating in ECB mode can be parallelized, e.g., one encryption unit encrypts
(or decrypts) block 1, the next one block 2, and so on. This is an advantage for
high-speed implementations. We note that other modes such as CFB do not allow
parallelization.

However, as is often the case in cryptography, there are some unexpected weak-
nesses associated with the ECB mode, which we will discuss in the following. The
main problem of the ECB mode is that it encrypts highly deterministically. This
means that identical plaintext blocks result in identical ciphertext blocks, as long as
the key does not change. The ECB mode can be viewed as a gigantic code book —
hence the mode’s name — which maps every input to a certain output. Of course,
if the key is changed the entire code book changes but as long as the key is static
the book is fixed. This has several undesirable consequences. First, an attacker rec-
ognizes whether the same message has been sent twice simply by looking at the
ciphertext. Deducing information from the ciphertext in this way is called traffic
analysis. For instance, if there is a fixed header that always precedes a message,
the header always results in the same ciphertext. From this, an attacker can, for in-
stance, learn when a message with this specific header has been sent. Second, plain-
text blocks are encrypted independently of previous blocks. If an attacker reorders
the ciphertext blocks, this might result in valid plaintext and the reordering might
not be detected. We demonstrate two simple attacks which exploit these weaknesses
of the ECB mode. The ECB mode is susceptible to a substitution attack because
once a particular plaintext to ciphertext block mapping xi→ yi is known, a sequence
of ciphertext blocks can easily be manipulated. We demonstrate how a substitution
attack could work in the real world. Imagine the following example of an electronic
wire transfer betweens banks.

Example 5.1. Substitution attack against electronic bank transfer
Let’s assume a simple protocol for wire transfers between banks (Figure 5.2). There

4  51  2 3Block #

Amount

$

Receiving

Account #

Receiving

Bank B

Sending

Account #

Sending

Bank A

Fig. 5.2 Simple wire-transfer protocol that can be exploited by a substitution attack
against ECB encryption

are five fields that specify a transfer: the sending bank’s ID and account number,
the receiving bank’s ID and account number and the amount. We assume now (and
this is a major simplification) that each of the fields has exactly the size of the block
cipher width, e.g., 16 bytes in the case of AES. Furthermore, the encryption key
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between the two banks does not change too frequently. Due to the nature of the ECB
mode, an attacker can exploit the deterministic nature of this mode of operation by
simple substitution of the blocks. The attack details are as follows:

1. The attacker, Oscar, opens one account at bank A and one at bank B.
2. Oscar taps the encrypted line of the banking communication network.
3. He sends $1.00 transfers from his account at bank A to his account at bank B

repeatedly. He observes the ciphertexts going through the communication net-
work. Even though he cannot decipher the random-looking ciphertext blocks, he
can check for ciphertext blocks that repeat. After a while he can recognize the
five blocks of his own transfer. He now stores blocks 1, 3 and 4 of these transfers.
These are the encrypted versions of the ID numbers of both banks as well as the
encrypted version of his account at bank B.

4. Recall that the two banks do not change the key too frequently. This means that
the same key is used for many transfers between A and B. By comparing blocks
1 and 3 of all subsequent messages with the ones he has stored, Oscar recognizes
all transfers that are made from some account at bank A to some account at bank
B. He now simply replaces block 4 — which contains the receiving account
number — with the block 4 that he stored before. This block contains Oscar’s
account number in encrypted form. As a consequence, all transfers from some
account of bank A to some account of bank B are redirected to go into Oscar’s
account! Note that bank B now has no means of detecting that block 4 has been
replaced in some of the transfers it receives.

5. OSCAR withdraws money from bank B quickly and flies to a country that has a
relaxed attitude about the extradition of white-collar criminals.
�

What’s interesting about this attack is that it works completely without breaking
the block cipher itself. So even if we were to use AES with a 256-bit key and if
we were to encrypt each block, say, 1000 times, this would not prevent the attack.
Note that this attack only works if the key between bank A and B is not changed too
frequently. This is another reason why key freshness is a good idea.

It should be stressed that the confidentiality provided by the block cipher is not
directly broken: Messages that are unknown to Oscar still remain confidential. He
simply replaces parts of the ciphertext with parts of some other (previous) cipher-
texts. This is called a violation of the integrity of the message. There are techniques
available for preserving the message integrity, namely message authentication codes
(MACs) and digital signatures. Both are widely used in practice to prevent such an
attack and are introduced in Chapters 13 and 10, respectively. There are also modes
of operation with built-in message authentication, referred to as authenticated en-
cryption. Sections 13.3.3 and 13.3.4 describe two authenticated encryption modes.

We now look at another problematic application of the ECB mode.

Example 5.2. Encryption of bitmaps in ECB mode
Figure 5.3 shows the original version of a bitmap image on the top with the ECB-
encrypted version underneath. It is immediately obvious that there is major infor-
mation leakage: The text in the graphic is still readable from the encrypted picture
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even though we used AES with a 256-bit key for encryption. The reason for this
is, again, the major disadvantage of the ECB mode: Identical plaintexts are mapped
to identical ciphertexts. Here is what happens in the example. For encryption, the
image is broken down into small squares, which are individually encrypted. The
background consists mainly of identical (white) plaintext blocks that yield a fairly
uniform-looking background in the ciphertext image. On the other hand, all plain-
text blocks that contain part of the (black) letters result in random-looking cipher-
texts. These random-looking ciphertexts are clearly distinguishable from the uni-
form background by the human eye.

Fig. 5.3 Original image (top) and encrypted image using AES with 256-bit key in
ECB mode (bottom)

�

This weakness is similar to the attack on the substitution cipher that was intro-
duced in Example 5.1. In both cases, statistical properties in the plaintext are pre-
served in the ciphertext. Note that unlike an attack against the substitution cipher or
the above banking transfer attack, an attacker does not have to do anything in the
case here. The human eye automatically makes use of the statistical information.

Both attacks above were examples of the weakness of a deterministic encryp-
tion scheme. Thus, it is generally preferable that different ciphertexts are produced
every time we encrypt the same plaintext. This behavior is called probabilistic en-
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cryption. This can be achieved by introducing some form of randomness, typically
in the form of an initialization vector (IV). The following modes of operation en-
crypt probabilistically by means of an IV.

5.1.2 Cipher Block Chaining Mode (CBC) and Initialization
Vectors

There are two main ideas behind the cipher block chaining (CBC) mode. First, the
encryptions of all blocks are “chained together” such that ciphertext yi depends not
only on block xi but on all previous plaintext blocks as well. Second, the encryption
is randomized by using an initialization vector (IV). Here are the details of the CBC
mode.

The ciphertext yi, which is the result of the encryption of plaintext block xi, is
fed back to the cipher input and XORed with the succeeding plaintext block xi+1.
This XOR sum is then encrypted, yielding the next ciphertext yi+1, which can then
be used for encrypting xi+2, and so on. This process is shown on the left-hand side
of Figure 5.4. For the first plaintext block x1 there is no previous ciphertext. In this
case, an IV is added to the first plaintext, which also allows us to make each CBC
encryption probabilistic. Note that the first ciphertext y1 depends on plaintext x1 and
the IV. The second ciphertext depends on the IV, x1 and x2. The third ciphertext y3
depends on the IV and x1,x2,x3, and so on. The last ciphertext is a function of all
plaintext blocks and the IV.

Fig. 5.4 Encryption and decryption in CBC mode

When decrypting a ciphertext block yi in CBC mode, we have to reverse the two
operations we have done on the encryption side. First, we have to undo the block
cipher encryption by applying the decryption function e−1. After this we have to
undo the XOR operation by again XORing the correct ciphertext block. This can
be expressed for general blocks yi as e−1

k (yi) = xi⊕ yi−1. The right-hand side of
Figure 5.4 shows this process. Again, if the first ciphertext block y1 is decrypted,
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the result must be XORed with the initialization vector IV to determine the plaintext
block x1, i.e., x1 = IV ⊕ e−1

k (y1). The entire process of encryption and decryption
can be described as follows:

Definition 5.1.2 Cipher block chaining mode (CBC)
Let ek(x) be a block cipher of block size b; let xi and yi be bit strings
of length b; and IV be a nonce of length b.
Encryption (first block): y1 = ek(x1⊕ IV )
Encryption (other blocks): yi = ek(xi⊕ yi−1), i≥ 2
Decryption (first block): x1 = e−1

k (y1)⊕ IV
Decryption (other blocks): xi = e−1

k (yi)⊕ yi−1, i≥ 2

We now verify the correctness of the mode, i.e., we show that the decryption
actually reverses the encryption. For the decryption of the first block y1, we obtain:

d(y1) = e−1
k (y1)⊕ IV = e−1

k (ek(x1⊕ IV ))⊕ IV = (x1⊕ IV )⊕ IV = x1

For the decryption of all subsequent blocks yi, i≥ 2, we obtain:

d(yi) = e−1
k (yi)⊕ yi−1 = e−1

k (ek(xi⊕ yi−1))⊕ yi−1 = (xi⊕ yi−1)⊕ yi−1 = xi

The initialization vector IV If we choose a new IV every time we encrypt,
the CBC mode becomes a probabilistic encryption scheme. If we encrypt a string
of blocks x1, . . . ,xt once with a first IV and a second time with a different IV, the
two resulting ciphertext sequences look completely unrelated to each other to an
attacker. Note that we do not have to keep the IV secret. However, in most cases, we
want the IV to be a nonce, i.e., a number used only once. There are many different
ways of generating and agreeing on initialization values. In the simplest case, one
party choses a random number and transmits it in the clear to the other party before
the actual encryption starts. Alternatively it can be a counter value that is known to
Alice and Bob, and it is incremented every time a new session starts (which requires
that the counter value must be stored between sessions). The IV can also be derived
from values such as Alice’s and Bob’s ID number, e.g., their IP addresses, together
with the current time. In order to strengthen any of these methods, we can take a
value as described above, ECB-encrypt it once using the block cipher with the key
known to Alice and Bob, and use the resulting ciphertext as the IV. There are some
advanced attacks which also require that the IV is nonpredictable.

It is instructive to discuss whether the substitution attack against the bank transfer
that worked for the ECB mode is applicable to the CBC mode. If the IV is properly
chosen for every wire transfer, the attack will not work at all since Oscar will not
recognize any patterns in the ciphertext. For the sake of argument, let’s look at the
situation if the IV is kept the same for several transfers (something that should not
happen if the IV is chosen correctly). In this case, he would recognize the transfers
from his account at bank A to his account at bank B. However, if he substitutes
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ciphertext block 4, which is his encrypted account number, in other wire transfers
going from A to B, bank B would decrypt blocks 4 and 5 to some random value.
Even though money would not be redirected into Oscar’s account, it might be redi-
rected to some other random account. The amount would be a random value too.
This is obviously also highly undesirable for banks. This example shows that even
though Oscar cannot perform specific manipulations, ciphertext alterations by him
can cause random changes to the plaintext, which can have major negative conse-
quences. Hence, in many, if not in most, real-world systems, encryption itself is
not sufficient: We also have to protect the integrity of the message. As mentioned
above, message authentication codes (MACs) and digital signatures provide mes-
sage integrity. There are also modes for authenticated encryption, which provide
encryption and authentication in one pass, cf. Sections 13.3.3 and 13.3.4.

5.1.3 Output Feedback Mode (OFB)

In the output feedback (OFB) mode a block cipher is used to build a stream cipher
encryption scheme. This scheme is shown in Figure 5.5. Note that in OFB mode the
key stream is not generated bitwise but instead in a blockwise fashion. The output
of the cipher gives us b key stream bits, where b is the width of the block cipher
used, with which we can encrypt b plaintext bits using the XOR operation.

Fig. 5.5 Encryption and decryption in OFB mode

The idea behind the OFB mode is quite simple. We start by encrypting an IV with
a block cipher. The cipher output gives us the first set of b key stream bits, denoted
by s1. The next block of key stream bits is computed by feeding the previous cipher
output back into the block cipher and encrypting it. This process is repeated as
shown in Figure 5.5.

The OFB mode forms a synchronous stream cipher (cf. Figure 2.3) as the key
stream does not depend on the plain or ciphertext. In fact, using the OFB mode is
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quite similar to using a standard stream cipher such as Salsa20 or ChaCha. Since the
OFB mode forms a stream cipher, encryption and decryption are exactly the same
operation. As can be seen in the right-hand part of Figure 5.5, the receiver does not
use the block cipher in decryption mode, for which we would have used the notation
e−1(), to decrypt the ciphertext. This is because the actual encryption is performed
by the XOR function. In order to reverse it, i.e., to decrypt the ciphertex, we simply
have to perform another XOR function on the receiver side. This is in contrast to
ECB and CBC mode, where the data is actually decrypted by the block cipher.

Encryption and decryption using the OFB scheme can be expressed as follows.

Definition 5.1.3 Output feedback mode (OFB)
Let ek(x) be a block cipher of block size b; let xi, yi and si be bit
strings of length b; and IV be a nonce of length b.
Encryption (first block): s1 = ek(IV ) and y1 = s1⊕ x1
Encryption (other blocks): si = ek(si−1) and yi = si⊕ xi, i≥ 2
Decryption (first block): s1 = ek(IV ) and x1 = s1⊕ y1
Decryption (other blocks): si = ek(si−1) and xi = si⊕ yi, i≥ 2

As a result of the use of an IV, the OFB encryption is also nondeterministic and,
thus, encrypting the same plaintext twice results in different ciphertexts. As in the
case of the CBC mode, the IV should be a nonce. One advantage of the OFB mode
is that the block cipher computations are independent of the plaintext. Hence, one
can precompute one or several blocks si of key stream material.

5.1.4 Cipher Feedback Mode (CFB)

The cipher feedback (CFB) mode also uses a block cipher as a building block for
a stream cipher. It is similar to the OFB mode but instead of feeding back the key
stream, the ciphertext is fed back. (A more accurate name would be “Ciphertext
Feedback mode” if one follows the terminology of this book.) As in the OFB mode,
the key stream is not generated bitwise but instead in a blockwise fashion. The
idea behind the CFB mode is as follows: To generate the first key stream block s1,
we encrypt an IV. For all subsequent key stream blocks s2,s3, . . ., we encrypt the
previous ciphertext. This scheme is shown in Figure 5.6.

Since the CFB mode forms a stream cipher, encryption and decryption are exactly
the same operation. The CFB mode is an example of an asynchronous stream cipher
(cf. Figure 2.3) since the stream cipher output is also a function of the ciphertext.

The formal description of the CFB mode follows.
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Fig. 5.6 Encryption and decryption in CFB mode

Definition 5.1.4 Cipher feedback mode (CFB)
Let ek(x) be a block cipher of block size b; let xi and yi be bit strings
of length b; and IV be a nonce of length b.
Encryption (first block): y1 = ek(IV )⊕ x1
Encryption (other blocks): yi = ek(yi−1)⊕ xi, i≥ 2
Decryption (first block): x1 = ek(IV )⊕ y1
Decryption (other blocks): xi = ek(yi−1)⊕ yi, i≥ 2

As a result of the use of an IV, the CFB encryption is also nondeterministic;
hence, encrypting the same plaintext twice results in different ciphertexts. As in the
case of the CBC and OFB modes, the IV should be a nonce.

A variant of the CFB mode can be used in situations where short plaintext blocks
are to be encrypted. Let’s use the encryption of the link between a (remote) key-
board and a computer as an example. The plaintexts generated by the keyboard are
typically only 1 byte long, e.g., an ASCII character. In this case, only 8 bits of the
key stream are used for encryption (it does not matter which ones we choose as
they are all secure), and the ciphertext also only consists of 1 byte. The feedback
of the ciphertext as input to the block cipher is a bit tricky and works as follows.
The previous block cipher input is shifted by 8 bit positions to the left, and the 8
least significant positions of the input register are filled with the ciphertext byte.
This process repeats. Of course, this approach works not only for plaintext blocks
of length 8 but for any lengths shorter than the cipher output.

5.1.5 Counter Mode (CTR)

Another mode that uses a block cipher as a stream cipher is the counter (CTR)
mode. As in the OFB and CFB modes, the key stream is computed in a blockwise
fashion. The input to the block cipher is a counter, which assumes a different value
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every time the block cipher computes a new key stream block. Figure 5.7 shows the
principle.

Fig. 5.7 Encryption and decryption in counter mode

We have to be careful how we initialize the input to the block cipher. We must
prevent use of the same input value twice. Otherwise, if an attacker knows one of
the two plaintexts that were encrypted with the same input, he can compute the key
stream block and thus immediately decrypt the other ciphertext. In order to achieve
this uniqueness,the following approach is often taken in practice. Let’s assume a
block cipher with an input width of 128 bits such as AES. First we choose an IV that
is a nonce with a length smaller than the block length, e.g., 96 bits. The remaining 32
bits are then used by a counter with the value CTR, which is initialized to zero. For
every block that is encrypted during the session, the counter is incremented but the
IV stays the same. In this example, the number of blocks we can encrypt without
choosing a new IV is 232. Since every block consists of 16 bytes, a maximum of
16×232 = 236 bytes, or about 64 Gigabytes, can be encrypted before a new IV must
be generated. Here is a formal description of the counter mode with a cipher input
construction as just introduced.

Definition 5.1.5 Counter mode (CTR)
Let ek(x) be a block cipher of block size b, and let xi and yi be bit
strings of length b. The concatenation of the initialization value IV
and the counter CTRi is denoted by (IV ||CTRi) and is a bit string
of length b.
Encryption: yi = ek(IV ||CTRi)⊕ xi, i≥ 1
Decryption: xi = ek(IV ||CTRi)⊕ yi, i≥ 1

Please note that the string (IV ||CTR1) does not have to be kept secret. It can, for
instance, be generated by Alice and sent to Bob together with the first ciphertext
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block. The counter CTR can either be a regular integer counter or a slightly more
complex function such as a maximum-length LFSR.

One attractive feature of the counter mode is that it can be parallelized because,
unlike the OFB or CFB mode, it does not require any feedback. For instance, we
can have two block cipher engines running in parallel, where the first block cipher
encrypts the counter value CTR1 and the other CTR2 at the same time. When the two
block cipher engines are finished, the first engine encrypts the value CTR3 and the
other one CTR4, and so on. This scheme would allow us to encrypt at twice the data
rate of a single implementation. Of course, we can have more than two block ciphers
running in parallel, increasing the speed-up accordingly. For applications with high
throughput demands, e.g., in networks with data rates in the range of Gigabits per
second, encryption modes that can be parallelized are often desirable.

5.1.6 XTS-AES

Unlike the modes of operation introduced so far, the XTS-AES mode was designed
for one specific application scenario: XTS-AES is optimized for the encryption of
data on storage devices such as hard disks and uses the AES block cipher as a
building block. The acronym XTS stands for the XEX Tweakable Block Cipher with
Ciphertext Stealing where XEX is the short term for XOR-Encrypt-XOR. This mode
for storage encryption is specifically designed to enable random and independent
access to encrypted data blocks on the storage device. With any of the chaining-
based modes of operation that we have seen earlier in this chapter, it is clearly not
possible to just encrypt or decrypt individual blocks.

The mode encrypts a data stream divided into consecutive equally sized data
units, which are then stored on the storage device. The length of the data unit is
typically based on the block or sector size of the storage device. The data unit should
have a minimum length of 128 bits.

The core idea behind this mode is that it upgrades the AES block cipher into a
so-called tweakable block cipher. The tweak can be considered as another input to
the block cipher in addition to the plaintext data and the secret key. That way the
block cipher can accept another 128-bit input that incorporates the logical position
of the data unit (i.e., the physical address of the data block) on the storage device
in the encryption process. With this approach, even two identical plaintexts that
are stored at different positions on the storage device result in two (completely)
different ciphertexts. This prevents an adversary from gaining any information from
the ciphertext. Since the encryption process depends only on the tweak and thus the
physical address of the encrypted data, it allows for parallelization and pipelining in
implementations. The encryption procedure of one data unit is shown in Figure 5.8
and is defined as follows.
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Definition 5.1.6 XTS-AES Encryption
Given is the AES block cipher with a key length of 128 or 256 bits.
The XTS key k is a concatenation of two equally sized AES subkeys
k1 and k2, i.e., k = (k1||k2), where k has 256 or 512 bits.
Let x be a data unit consisting of plaintext blocks x1, . . . ,xn, and
corresponding ciphertexts y1, . . . ,yn. Each 128-bit plaintext block
is assigned a counter value j = 1, . . . ,n per data unit.
Finally we denote with i the 128-bit tweak value that determines
the location (i.e., physical address) of the data unit on the storage
device.
Encryption

1. T = AESk2(i)⊗α j

2. y j = AESk1(x j⊕T )⊕T

jk
2

k
1

j

  
j

AES AES

Fig. 5.8 XTS-AES encryption of one data unit

The mode uses a multiplication in the Galois Field GF(2128) to compute a mask
T . The mask is XORed to the plaintext and the ciphertext and depends both on
the tweak i and on the counter j. For computing T , the 16-byte output of the en-
crypted tweak AESk2(i) is represented as an element of GF(2128) and multiplied by
α j modulo the irreducible polynomial x128+x7+x2+x+1, where α = x is a prim-
itive element of the Galois field. We note that for a given data unit, the tweak i is
only encrypted once but a different masking value T is computed for every 128-bit
plaintext block x j through the varying value of j. Decryption in the XTS-AES mode
is very similar to encryption.

If the data unit is not a multiple of 128 bits, so-called ciphertext stealing is used
to pad the last plaintext block [145].
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5.2 Exhaustive Key Search Revisited

In Section 3.5.1 we saw that given a plaintext–ciphertext pair (x1,y1) a DES key can
be found by exhaustive search using the simple algorithm:

DESki(x1)
?
= y1, i = 0,1, . . . ,256−1 (5.1)

In practice, however, a key search is often more complicated. Somewhat surpris-
ingly, a brute-force attack can produce false positive results, i.e., keys ki are found
that are not the one used for the encryption by Alice, yet they perform a correct en-
cryption in Equation (5.1). The likelihood of this occurring is related to the relative
size of the key space and the plaintext space.

In order to find the correct key several pairs of plaintext–ciphertext are needed.
The length of the respective plaintext required to break the cipher with a brute-force
attack is referred to as unicity distance.

Let us first look why one pair (x1,y1) might not be sufficient to identify the cor-
rect key. For illustration purposes we assume a cipher with a block width of 64 bits
and a key size of 80 bits (PRESENT is a cipher with such parameters). If we en-
crypt x1 under all possible 280 keys, we obtain 280 ciphertexts. However, there exist
only 264 different ones, and thus some keys must map x1 to identical ciphertexts.
If we run through all keys for a given plaintext-ciphertext pair, we find on average
280/264 = 216 keys that perform the mapping ek(x1) = y1. This estimation is valid
since the encryption of a plaintext for a given key can be viewed as a random se-
lection of a 64-bit ciphertext string. The phenomenon of multiple “paths” between
a given plaintext and ciphertext is depicted in Figure 5.9, in which k(i) denote the
keys that map x1 to y1. These keys can be considered key candidates.

Fig. 5.9 Multiple keys map between one plaintext and one ciphertext

Among the approximately 216 key candidates k(i) is the correct one that was used
by Alice to perform the encryption. Let’s call this one the target key. In order to
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identify the target key we need a second plaintext–ciphertext pair (x2,y2). Again,
there are about 216 key candidates that map x2 to y2. One of them is the target key.
The other keys can be viewed as randomly drawn from the 280 possible ones. It is
crucial to note that the target key must be present in both sets of key candidates.
To determine the effectiveness of a brute-force attack, the crucial question is now:
What is the likelihood that another (false!) key is contained in both sets? The answer
is given by the following theorem.

Theorem 5.2.1 Given a block cipher with a key length of κ bits
and block size of n bits, as well as t plaintext–ciphertext pairs
(x1,y1), . . . ,(xt ,yt), the expected number of false keys which en-
crypt all plaintexts to the corresponding ciphertexts is:

2κ−tn

Returning to our example and assuming two plaintext–ciphertext pairs, the likeli-
hood of a false key k f that performs both encryptions ek f (x1) = y1 and ek f (x2) = y2
is:

280−2·64 = 2−48

This value is so small that for almost all practical purposes it is sufficient to test two
plaintext–ciphertext pairs. If the attacker chooses to test three pairs, the likelihood
of a false key decreases to 280−3·64 = 2−112. As we see from this example, the like-
lihood of a false alarm decreases rapidly with the number t of plaintext–ciphertext
pairs. In practice, typically we only need a few pairs.

The theorem above is not only important if we consider an individual block ci-
pher but also if we perform multiple encryptions with a cipher. This issue is ad-
dressed in the following section.

5.3 Increasing the Security of Block Ciphers

In some situations we wish to increase the security of block ciphers, e.g., if a cipher
such as DES is available in hardware or software for legacy reasons in a given
application. We discuss two general approaches to strengthen a cipher: multiple
encryption and key whitening. Multiple encryption, i.e., encrypting a plaintext more
than once, is already a fundamental design principle of block ciphers, since the
round function is applied many times to the cipher. Our intuition tells us that the
security of a block cipher against both brute-force and analytical attacks increases by
performing multiple encryptions in a row. Even though this is true in principle, there
are a few surprising facts. For instance, doing double encryption does very little to
increase the brute-force resistance over a single encryption if the attacker has a lot
of storage space available. We study this counterintuitive fact in the next section.
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Another very simple yet effective approach to increase the brute-force resistance of
block ciphers is called key whitening; it is also discussed below.

We note that when using AES, we already have three different security levels
given by the key lengths of 128, 192 and 256 bits. Since there are no realistic at-
tacks known against AES with any of those key lengths, there appears no reason
to perform multiple encryption with AES for practical systems. However, for some
selected older ciphers, especially for DES, multiple encryption can be a useful tool.

5.3.1 Double Encryption and Meet-in-the-Middle Attack

Let us assume a block cipher with a key length of κ bits. For double encryption, a
plaintext x is first encrypted with a key kL, and the resulting ciphertext is encrypted
again using a second key kR. This scheme is shown in Figure 5.10.

Fig. 5.10 Double encryption and meet-in-the-middle attack

A naı̈ve brute-force attack would require searching through all possible combi-
nations of both keys, i.e., the effective key length would be 2κ and an exhaustive
key search would require 2κ ·2κ = 22κ encryptions (or decryptions). However, using
the meet-in-the-middle attack, the key space is drastically reduced. This is a divide-
and-conquer attack in which Oscar first brute-force attacks the encryption on the
left-hand side, which requires 2κ cipher operations, and then the right encryption,
which again requires 2κ operations. If he succeeds with this attack, the total com-
plexity is 2κ + 2κ = 2 · 2κ = 2κ+1. This is only twice as costly as a key search of
a single encryption and of course dramatically less complex than performing 22κ

search operations.
The attack has two phases. In the first one, the left encryption is brute-forced and

a lookup table is computed. In the second phase the attacker tries to find a match in
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the table, which reveals both encryption keys. Here are the details of the meet-in-
the-middle attack.

Phase I: Table Computation For a given plaintext x1, compute a lookup table for
all pairs (kL,i,zL,i), where ekL,i(x1) = zL,i and i = 1,2, . . . ,2κ . These computations
are symbolized by the left arrow in the figure. The zL,i are the intermediate values
that occur in between the two encryptions. This list should be ordered by the values
of the zL,i. The number of entries in the table is 2κ , with each entry being n+κ bits
wide. Note that one of the keys we used during the table construction must be the
correct target key, but we still do not know which one it is.

Phase II: Key Matching In order to find the target key, we now decrypt y1, i.e.,
we perform the computations symbolized by the right arrow in the figure. We select
the first possible key kR,1, e.g., the all-zero key, and compute:

e−1
kR,1

(y1) = zR,1

We now check whether zR,1 is equal to any of the zL,i values in the table which we
computed in the first phase. If it is not in the table, we increment the key to kR,2,
decrypt y1 again, and check whether this value is in the table. We continue until we
have a match. Such a match is also called a collision of two values, i.e., zL,i = zR, j.
This gives us two keys: The value zL,i is associated with the key kL,i from the left
encryption, and kR, j is the key we just tested in the decryption coming from the
right side. This means there exists a key pair (kL,i,kR, j) which performs the double
encryption:

ekR, j(ekL,i(x1)) = y1 (5.2)

As discussed in Section 5.2, there is a chance that this is not the target key pair
we are looking for if there are several possible key pairs that perform the mapping
x1→ y1. Hence, we have to verify additional key candidates by encrypting several
plaintext–ciphertext pairs according to Equation (5.2). If the verification fails for any
of the pairs (x1,y1),(x2,y2), . . ., we go back to beginning of Phase II and increment
the key kR again and continue with the search.

Let us briefly discuss how many plaintext–ciphertext pairs we will need to rule
out faulty keys with a high likelihood. With respect to multiple mappings between
a plaintext and a ciphertext as depicted in Figure 5.9, double encryption can be
modeled as a cipher with 2κ key bits and n block bits. In practice, one often has
2κ > n, in which case we need several plaintext–ciphertext pairs. Theorem 5.2.1
can easily be adopted to the case of multiple encryption, which gives us a useful
guideline about how many (x,y) pairs should be available.
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Theorem 5.3.1 Given are l subsequent encryptions with a block
cipher with a key length of κ bits and block size of n bits, as well as
t plaintext–ciphertext pairs (x1,y1), . . . ,(xt ,yt). The expected num-
ber of false keys which encrypt all plaintexts to the corresponding
ciphertexts is given by:

2lκ−tn

Let us look at an example.

Example 5.3. As an example, if we double-encrypt with DES and choose to test
three plaintext–ciphertext pairs, the likelihood of a faulty key pair surviving all three
key tests is:

22·56−3·64 = 2−80

�

Let us examine the computational complexity of the meet-in-the-middle attack.
In the first phase of the attack, corresponding to the left arrow in Figure 5.10, we
perform 2κ encryptions and store them in 2κ memory locations. In the second stage,
corresponding to the right arrow in the figure, we perform a maximum of 2κ decryp-
tions and table look-ups. We ignore multiple-key tests at this stage. The total cost
for the meet-in-the-middle attack is:

number of encryptions and decryptions = 2κ +2κ = 2κ+1

number of storage locations = 2κ

This compares to 2κ encryptions or decryptions and essentially no storage cost in
the case of a brute-force attack against a single encryption. Even though the storage
requirements go up quite a bit, the costs in computation and memory are still only
proportional to 2κ . Thus, it is widely believed that double encryption is not worth
the effort. Instead, triple encryption should be used; this method is described in the
following section.

Note that for a more exact complexity analysis of the meet-in-the-middle attack,
we would also need take the cost of sorting the table entries in Phase I into account
as well as the table look-ups in Phase II. For our purposes, however, we can ignore
these additional costs.

5.3.2 Triple Encryption

Compared to double encryption, a much more secure approach is the encryption of
a block of data three times in a row:

y = ek3(ek2(ek1(x)))
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In practice, often the following version of triple encryption is used:

y = ek1(e
−1
k2
(ek3(x)))

This type of triple encryption is sometimes referred to as encryption–decryption–
encryption (EDE). The reason for this has nothing to do with security. If k1 = k2,
the operation effectively performed is

y = ek3(x)

which is single encryption. Since it is sometimes desirable that one implementation
can perform both triple encryption and single encryption, e.g., in order to interop-
erate with legacy systems, EDE is a popular choice for triple encryption. Triple
encryption is in practice especially relevant in the case of DES, referred to as 3DES
or triple DES and described in Section 3.7.2.

Of course, we can still perform a meet-in-the-middle attack as shown in Fig-
ure 5.11. Again, we assume κ bits per key. The problem for an attacker is that she

Fig. 5.11 Triple encryption and sketch of a meet-in-the-middle attack

has to compute a lookup table either after the first or after the second encryption. In
both cases, the attacker has to compute two encryptions or decryptions in a row in
order to reach the lookup table. Here lies the cryptographic strength of triple encryp-
tion: There are 22k possibilities to run through all possible keys of two encryptions
or decryptions. In the case of 3DES, this forces an attacker to perform 2112 key tests,
which is out of reach with current technology. In summary, the meet-in-the-middle
attack reduces the effective key length of triple encryption from 3κ to 2κ . Because
of this, it is often said that the effective key length of 3DES is 112 bits as opposed
to the 3 ·56 = 168 bits that are actually used as key input to the cipher.
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5.3.3 Key Whitening

Using an extremely simple technique called key whitening, it is possible to make
block ciphers such as DES much more resistant against brute-force attacks. The
basic scheme is shown in Figure 5.12.

Fig. 5.12 Key whitening of a block cipher

In addition to the regular cipher key k, two whitening keys k1 and k2 are used to
XOR-mask the plaintext and ciphertext. This process can be expressed as follows.

Definition 5.3.1 Key whitening for block ciphers
Encryption: y = ek,k1,k2(x) = ek(x⊕ k1)⊕ k2

Decryption: x = e−1
k,k1,k2

(y) = e−1
k (y⊕ k2)⊕ k1

It is important to stress that key whitening does not strengthen block ciphers
against most analytical attacks such as linear and differential cryptanalysis. This
is in contrast to multiple encryption, which often also increases the resistance to
analytical attacks. Hence, key whitening is not a “cure” for inherently weak ciphers.
Its main application is to ciphers that are strong against analytical attacks but possess
a key space that is too short. The prime example of such a cipher is DES. A variant
of DES which uses key whitening is DESX. In the case of DESX, the key k2 is
derived from k and k1. Please note that most modern block ciphers such as AES
already apply key whitening internally by adding a subkey prior to the first round
and after the last round.

Let’s now discuss the security of key whitening. A naı̈ve brute-force attack
against the scheme requires 2κ+2n search steps, where κ is the bit length of the
key and n the block size. Using the meet-in-the-middle attack introduced in Sec-
tion 5.3.1, the computational load can be reduced to approximately 2κ+n steps, plus
storage of 2n data sets. However, if the adversary Oscar can collect 2m plaintext–
ciphertext pairs, a more advanced attack exists with a computational complexity of

2κ+n−m
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cipher operations. Even though we do not introduce the attack here, we’ll briefly
discuss its consequences if we apply key whitening to DES. We assume that the
attacker knows 2m plaintext–ciphertext pairs. Note that the designer of a security
system can often control how many plaintext–ciphertext pairs are generated before
a new key is established. Thus, the parameter m often cannot be arbitrarily increased
by the attacker. Also, since the number of known plaintexts grows exponentially
with m, values beyond, say, m = 40, seem quite unrealistic. As a practical example,
let’s assume key whitening of DES, and that Oscar can collect a maximum of 232

plaintexts (that is about 34 GB of data). He now has to perform

256+64−32 = 288

DES computations. It can be speculated that 288 encryptions is at the edge of what
large government agencies can do. Thus, even though key-whitening is useful for
such a surprisingly simple technique, it does not provide long-term security if used
together with DES.

5.4 Discussion and Further Reading

NIST’s Modes of Operation After the AES selection, the U.S. National Institute
of Standards and Technology (NIST) supported the process of evaluating new modes
of operation in a series of special publications and workshops [194]. Table 5.1 pro-
vides an overview of the most relevant modes of operation standardized by NIST.
The NIST Special Publications 800-38 A–F describe five modes for confidentiality

Table 5.1 NIST modes of operations in Special Publications 800-38

SP 800-38 A B C D E F
[101] [105] [103] [102] [104] [106]

modes ECB, CBC,
CFB, OFB,

CTR

CMAC CCM GCM,
GMAC

XTS-AES KW, KWP,
TKW

confidentiality X X (X) X
authentication X X X
key wrap X

of data (ECB, CBC, CFB, OFB, CTR), one mode for storage encryption (XTS-
AES), one for authentication (CMAC), two combined modes for confidentiality and
authentication (CCM, GCM), and three modes for key wrapping (KW, KWP, TKW).
Modes CMAC, CCM and GCM are described in Chapter 13. The NIST modes are
widely used in practice and are part of many industry standards, e.g., for computer
networks or banking. We note that the NIST XTS-AES standard refers to the IEEE
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Standard 1619-2018 [145] and is based on the XEX (XOR Encrypt XOR) tweakable
block cipher, proposed by Phillip Rogaway [220]. The original XEX proposal can
only encrypt messages that are exact multiples of 128-bit blocks, whereas NIST’s
XTS-AES mode allows input data with arbitrary length.

Key wrapping modes (KW, KWP, TKW) Key wrapping describe methods to pro-
tect the confidentiality as well as the authenticity and integrity of cryptographic
keys. The AES Key Wrap (KW) mode is a deterministic authenticated encryption
mode of operation. Its variant with an internal padding scheme is called AES Key
Wrap With Padding (KWP).

The main component of the key wrap modes is a block cipher. The key for the
underlying block cipher is called the key encryption key (KEK), denoted K. For the
KW and KWP modes, the underlying block cipher shall have a key size of 128 bits
or more, which is of course the case for AES. For TKW, the underlying block cipher
is specified to be 3DES, and the block size is therefore 64 bits. The KEK has to be
kept secret and its key length directly affects the security of the algorithms against
brute-force attack.

For a full description of the AES Key Wrap (KW) and its variants KWP and
TKW we refer to the NIST document [106].

Authenticated Encryption and Other Applications for Block Ciphers The most
important application of block ciphers in practice, in addition to data encryption, is
Message Authentication Codes (MACs), which are discussed in Chapter 13. In addi-
tion to the CMAC message authentication mode, which is listed in the table above
and described in Section 13.3.2, there are several other MACs that are constructed
with a block cipher, including OMAC and PMAC. Authenticated Encryption (AE)
uses block ciphers to encrypt and generate a MAC at the same time in order to
provide both confidentiality and authentication. The table above contains two such
modes, CCM and GCM, which are described in Sections 13.3.3 and 13.3.4. Other
authenticated encryption modes include the EAX mode, OCB mode and GC mode.

Another application for block ciphers is the Cryptographically Secure Pseudo
Random Number Generator (CSPRNG). In fact, the stream cipher modes introduced
in this chapter, OFB, CFB and CTR mode, form CSPRNGs. There are also standards
such as [13, Appendix A.2.4] which explicitly specify random number generators
from block ciphers.

Block ciphers can also be used to build cryptographic hash functions, as dis-
cussed in Chapter 11.

Brute-Force and Quantum Computer Attacks Even though there are no algo-
rithmic shortcuts to brute-force attacks, there are methods that are efficient if sev-
eral exhaustive key searches have to be performed. Those methods are called time–
memory tradeoff attacks (TMTO). The general idea is to encrypt a fixed plaintext
under a large number of keys and to store certain intermediate results. This is the
precomputation phase, which is typically at least as complex as a single brute-force
attack and which results in large lookup tables. In the online phase, a search through
the tables takes place that is considerably faster than a brute-force attack. Thus, after
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the precomputation phase, individual keys can be found much more quickly. TMTO
attacks were originally proposed by Martin Hellman [141] and were improved with
the introduction of distinguished points by Ronald Rivest [218]. Later, rainbow ta-
bles were proposed by Philippe Oechslin to further improve TMTO attacks [206].
A limiting factor of TMTO attacks in practice is that for each individual attack it is
required that the same piece of known plaintext was encrypted, e.g., a file header.

Attacking block ciphers (or stream ciphers) with quantum computers which
might become available in the future is discussed in Section 12.1. The main obser-
vation is that a potential quantum computer would require only 2n/2 steps in order to
perform a key search on a cipher with an n-bit key, using Grover’s algorithm [128].

5.5 Lessons Learned

� There are many different ways to encrypt with a block cipher. The modes of
operation have their specific advantages and disadvantages.

� Some modes of operation turn a block cipher into a stream cipher.
� The straightforward ECB mode has security weaknesses, independent of the un-

derlying block cipher.
� The counter mode allows parallelization of encryption and is thus suited for high-

speed implementations.
� Double encryption with a given block cipher only marginally improves the resis-

tance against brute-force attacks.
� Triple encryption with a given block cipher roughly doubles the effective key

length. For example, triple DES (3DES) has an effective key length of 112 bits.
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Problems

5.1. Assume a toy block cipher e() for encryption of 5-bit blocks. The encryption
function is a bit permutation, which depends on the key. We assume that for a given
key the encryption (permutation) is as follows:

e(b1b2b3b4b5) = (b2b5b4b1b3)

Encrypt the message x = 01101 11011 11010 00110 with the five different modes of
operation ECB, CBC, CFB, OFB and CTR, and provide the corresponding cipher-
text y. Use IV = 11001 as initialization vector.

5.2. We consider exhaustive key-search attacks on block ciphers where the key is k
bits long. The block length is n bits, with n being much larger than k.

1. Exhaustive key searches typically require known plaintexts. How many plaintext–
ciphertext pairs are needed to successfully break the block cipher running in ECB
mode? How many steps are needed in the worst case?

2. Assume that the initialization vector IV for running the block cipher in CBC
mode is known (which is in practice the case as the IV is transmitted unen-
crypted). How many plaintext–ciphertext pairs are now needed to break the ci-
pher by performing an exhaustive key search? How many steps are needed max-
imally? Briefly describe the attack.

3. How many plaintext–ciphertext pairs are necessary if you do not know the IV?
4. Is breaking a block cipher in CBC mode by means of an exhaustive key search

considerably more difficult than breaking an ECB-mode block cipher?

5.3. In a company, all files that are sent on the internal network are automatically
encrypted by using AES-128 in CBC mode. A fixed key is used, and the IV is
changed once per day. The network encryption is file-based, so that the IV is used
at the beginning of every file.

Through hacking into the system you manage to find the fixed AES-128 key
but you do not know the current IV. Today, you were able to eavesdrop and obtain
two different files, one with unknown content and one which is known to be an
automatically generated temporary file, which only contains the value 0xFF. Briefly
describe how it is possible to obtain the unknown initialization vector and how you
are able to decrypt the unknown file.

5.4. Keeping the IV secret in OFB mode does not make an exhaustive key search
more complex. Describe how we can perform a brute-force attack with unknown IV.
What are the requirements regarding plaintext and ciphertext?

5.5. Describe how the OFB mode can be attacked if the IV is not different for each
execution of the encryption operation.

5.6. Propose a simple change to the OFB mode that encrypts one byte of plaintext
at a time, e.g., for encrypting key strokes from a remote keyboard. The block cipher
used is AES. Perform one block cipher operation for every new plaintext byte. Draw
a block diagram of your scheme and pay particular attention to the bit lengths used
in your diagram.
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5.7. As is so often true in cryptography, it is easy to weaken a seemingly strong
scheme by small modifications. Assume a variant of the OFB mode by which we
only feed back the 8 most significant bits of the cipher output. We use AES and fill
the remaining 120 input bits of the cipher with 0s.

1. Why is this scheme weak if we encrypt moderately large blocks of plaintext, say
100 kBytes? What is the maximum number of known plaintexts an attacker needs
to completely break the scheme?

2. Let the feedback byte be denoted by FB. Does the scheme become cryptographi-
cally stronger if we feed back the 128-bit value FB,FB, . . . ,FB to the input (i.e.,
we copy the feedback byte 16 times and use it as AES input)?

5.8. In the text, a variant of the CFB mode is proposed that encrypts individual bytes.
Draw a block diagram for this mode when using AES as block cipher. Indicate the
width (in bits) of each line in your diagram.

5.9. We are using AES in counter mode to encrypt a hard disk with 1 TB of capacity.
What is the maximum length of the IV?

5.10. Sometimes error propagation is an issue when choosing a mode of operation
in practice. In order to analyze the propagation of errors, let us assume a bit error
(i.e., a substitution of a “0” bit by a “1” bit or vice versa) in a ciphertext block yi.
Alice is sending messages to Bob.

1. Assume an error occurs during the transmission in one block of ciphertext, let’s
say yi. Which plaintext blocks are affected on Bob’s side when using the ECB
mode?

2. Again, assume block yi contains an error introduced during transmission. Which
plaintext blocks are affected on Bob’s side when using the CBC mode?

3. Suppose there is an error in the plaintext xi on Alice’s side. Which plaintext
blocks are affected on Bob’s side when using the CBC mode?

4. Assume a single-bit error occurs in the transmission of a ciphertext character in
8-bit CFB mode. How far does the error propagate? Describe exactly how each
block is affected.

5. Give an overview of the effect of bit errors in a ciphertext block for the modes
ECB, CBC, CFB, OFB and CTR. Differentiate between random bit errors and
specific bit errors when decrypting yi. Specific bit errors means errors at the same
position(s) as the original bit error(s).

5.11. Besides simple bit errors, the deletion or insertion of a bit during transmission
can yield even more severe effects for many modes of operation since the synchro-
nization of blocks is disrupted. In most cases, the decryption of subsequent blocks
will be incorrect. A special case is the CFB mode with a feedback width of 1 bit.
Show that the synchronization is automatically restored after κ + 1 steps, where κ

is the block size of the block cipher.

5.12. We now analyze the security of DES with double encryption (2DES) by doing
a cost estimate. The encryption is described by the following expression:
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2DES(x) = DESK2(DESK1(x))

1. First, let us assume a key search without building lookup tables. For this purpose,
the whole key space spanned by K1 and K2 has to be searched. How much does
a key-search machine for breaking 2DES (worst case) in 1 week cost?
We assume we have ASICs that can test 107 keys per second at a cost of $5
per IC. Furthermore, assume an overhead of 50% for building the key-search
machine.

2. Let us now consider the meet-in-the-middle (or time-memory tradeoff) attack
that was introduced in this chapter, in which we can use lookup tables. Answer
the following questions:

� How many entries have to be stored?
� How many bytes (not bits!) have to be stored for each entry?
� How costly is a key search in one week? Please note that the key space has to

be searched before filling up the memory completely. Then we can begin to
search the key space of the second key. Assume the same hardware for both
key spaces.

For a rough cost estimate, assume the following costs for hard disk space:
$5/1 TByte, where 1 TByte = 1012 Bytes.

3. Assuming that both processing costs and the price for storage decrease according
to Moore’s law, i.e., they decrease by 50% every 18 months, when do the total
costs move below $1 million?

5.13. Let e be a block cipher with a block size of n = 64 bits and a key length of
κ = 80 bits. A practical example of such a cipher is PRESENT. We assume the
algorithm does not have any mathematical weaknesses that can be exploited. Let us
now look at the following figure showing a triple encryption scheme:

1. Provide an expression for the encryption and decryption.
2. Why does this scheme use the encryption-decryption-encryption (EDE) mode

(as opposed to encrypting three times)? Does this choice increase the security
compared to triple encryption?
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3. How complex is a simple brute-force attack on this cipher in EDE mode? Com-
pare the computational complexity and the storage requirements with the com-
plexity of a meet-in-the-middle (MITM) attack. What is the effective key length
of this triple encryption? Do you think that either of these attacks is feasible with
today’s computers?

4. How many blocks of plaintext are required for the MITM attack in order find the
correct key with high probability?

5.14. Imagine that aliens — rather than abducting earthlings and performing strange
experiments on them — drop a computer on planet Earth that is particularly suited
for AES key searches. In fact, it is so powerful that we can search through 128, 192
and 256 key bits in a matter of days. Provide guidelines for the number of plaintext–
ciphertext pairs the aliens need so that they can rule out false keys with a reasonable
likelihood. (Remark: Since the existence of both aliens and human-built computers
for such key lengths seem extremely unlikely at the time of writing, this problem is
pure science fiction.)

5.15. In this problem, you are going to attack a symmetric multiple encryption
scheme with given pairs of plain- and ciphertexts.

1. You want to break an encryption scheme using triple AES-192 encryption with
a block length of n = 128 bits and a key length of k = 192 bits. How many
plaintext/ciphertext pairs are required to reduce the probability of obtaining a
wrong key candidate K′ in a brute-force attack to at most Pr(K′ 6= K) = 2−20?

2. Assume a block cipher with a block length of n = 80 and a double encryption
scheme (l = 2). What is the maximum key length of the block cipher such that
you can attack the cipher with an effective error rate of Pr(K′ 6= K) = 2−10 ≈
1/1024?

3. Estimate the probability of success in case of a double encryption with AES-256
(i.e., a block length of n = 128 bits and a key length of k = 256 bits) with four
given ciphertext pairs at hand?

5.16. 3DES with three different keys can be broken with about 22k encryptions and
2k memory cells, where k = 56. Design the corresponding attack. How many pairs
(x,y) should be available so that the probability of determining an incorrect key
triple (k1,k2,k3) is sufficiently low?

5.17. This is your chance to break a cryptosystem. As we know by now, cryptogra-
phy is a tricky business. The following problem illustrates how easy it is to turn a
strong scheme into a weak one with minor modifications.

We saw in this chapter that key whitening is a good technique for strengthening
block ciphers against brute-force attacks. We now look at the following variant of
key whitening against DES, which we’ll call DESA:

DESAk,k1(x) = DESk(x)⊕ k1

Even though the method looks similar to key whitening, it hardly adds to the se-
curity. Your task is to show that breaking the scheme is roughly as difficult as a
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brute-force attack against single DES. Assume you have a few plaintext-?ciphertext
pairs.

5.18. Let us now consider a brute-force attack on a block cipher with key length
k. The block cipher is used in OFB mode. The initialization vector is not known.
Describe how many (i) plaintexts and (ii) ciphertexts are required to break the cipher
with a brute-force attack. In the worst case, how many steps are necessary?

5.19. Draw a diagram of the decryption process of the XTR-AES mode. It is suffi-
cient to show the encryption of one data unit, in analogy to Figure 5.8.



Chapter 6
Introduction to Public-Key Cryptography

As we start to learn about public-key cryptography, let’s recall that the term public-
key cryptography is used interchangeably with asymmetric cryptography; they both
denote exactly the same thing and are used synonymously.

As stated in Chapter 1, symmetric cryptography has been used for at least 4000
years. Public-key cryptography, on the other hand, is quite new. It was publicly
introduced by Whitfield Diffie, Martin Hellman and Ralph Merkle in 1976. Two
decades later, in 1997, British documents that were declassified revealed that the re-
searchers James Ellis, Clifford Cocks and Graham Williamson from UK’s Govern-
ment Communications Headquarters (GCHQ) discovered and realized the principle
of public-key cryptography a few years earlier, in 1972. However, it is still being de-
bated whether GCHQ fully recognized the far-reaching consequences of public-key
cryptography for commercial security applications.

In this chapter you will learn:

� A brief history of public-key cryptography
� The pros and cons of public-key cryptography
� Some number-theoretical topics that are needed for understanding public-key

algorithms, most importantly the extended Euclidean algorithm
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6.1 Symmetric vs. Asymmetric Cryptography

In this chapter we will see that asymmetric, i.e., public-key, algorithms are very dif-
ferent from symmetric algorithms such as AES or DES. Most public-key algorithms
are based on number-theoretic functions. This is quite different from symmetric ci-
phers, where the goal is usually not to have a compact mathematical description
between input and output. Even though mathematical structures are often used for
small blocks within symmetric ciphers, for instance, in the AES S-box, this does not
mean that the entire cipher has a compact mathematical description.

Symmetric Cryptography Revisited

In order to understand the principle of asymmetric cryptography, let us first recall
the basic symmetric encryption scheme in Figure 6.1.

BobAlice

Fig. 6.1 Principle of symmetric-key encryption

Such a system is symmetric with respect to two properties:

1. The same secret key is used for encryption and decryption.
2. The encryption and decryption functions are very similar (in the case of DES

they are essentially identical).

There is a simple analogy for symmetric cryptography, as shown in Figure 6.2.
Assume there is a safe with a strong lock. Only Alice and Bob have a copy of
the key for the lock. The action of encrypting a message can be viewed as putting
the message in the safe. In order to read, i.e., decrypt, the message, Bob uses his key
and opens the safe.

Modern symmetric algorithms such as AES or 3DES are very secure, fast and
are in widespread use. However, there are several shortcomings associated with
symmetric-key schemes, as discussed below.

Key Distribution Problem The key must be established between Alice and Bob
using a secure channel. Remember that the communication link for the message is
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BobAlice

Fig. 6.2 Analogy for symmetric encryption: a safe for which both Alice and Bob
have a key

not secure, so sending the key over the channel directly — which would be the most
convenient way of transporting it — can not be done.

Number of Keys Even if we solve the key distribution problem, we must poten-
tially deal with a very large number of keys. If each pair of users needs a separate
key for secure communication in a network with n users, there are

n · (n−1)
2

keys, and every user has to store n− 1 keys securely. Even for mid-size networks,
say, a corporation with 2000 people, this requires approx. 2 million keys that must
be generated and transported via secure channels. More about this problem is found
in Section 14.1. (There are smarter ways of dealing with keys in symmetric cryptog-
raphy networks, as detailed in Section 14.3; however, those approaches have other
problems such as a single point of failure.)

No Protection Against Cheating by Alice or Bob Alice and Bob have the same
capabilities, since they possess the same key. As a consequence, symmetric cryp-
tography cannot be used in situations where we would like to prevent cheating by
either Alice or Bob as opposed to cheating by an outsider like Oscar. For instance,
in e-commerce applications it is often important to prove that Alice actually sent a
certain message, say, an online order for a flat screen TV. If we only use symmetric
cryptography and Alice changes her mind later, she can always claim that Bob, the
vendor, has falsely generated the electronic purchase order. Preventing this is called
non-repudiation and can be achieved with asymmetric cryptography, as discussed
in Section 10.1.1, or with digital signatures, which we introduce in Chapter 10.



180 6 Introduction to Public-Key Cryptography

BobAlice

public key private key

unlockdeposit

Fig. 6.3 Analogy for public-key encryption: a safe with a public lock for depositing
a message and a secret lock for retrieving a message

Principles of Asymmetric Cryptography — Encryption and Key Transport

In order to overcome these drawbacks, Whitfield Diffie, Martin Hellman and Ralph
Merkle made a revolutionary proposal based on the following idea: It is not neces-
sary that the key possessed by the person who encrypts the message (that’s Alice in
our example) is secret. The crucial part is that Bob, the receiver, can only decrypt
using a secret key. In order to realize such a system, Bob publishes a public encryp-
tion key, which is known to everyone. Bob also has a matching secret key, which is
used for decryption. Thus, Bob’s key k consists of two parts, a public part, kpub, and
a private one, kpr.

A simple analogy for such a system is shown in Figure 6.3. This system works
quite similarly to the good old mailbox on the corner of a street: Everyone can
put a letter in the box, i.e., encrypt, but only a person with a private (secret) key
can retrieve letters, i.e., decrypt. If we assume we have cryptosystems with such a
functionality, a basic protocol for public-key encryption looks like Figure 6.4.

Alice Bob
kpub←−−−−−−−−−−−− (kpub,kpr) = k

y = ekpub (x)
y−−−−−−−−−−−−→

x = dkpr (y)

Fig. 6.4 Basic protocol for public-key encryption

By looking at that protocol one might argue that even though we can encrypt a
message without a secret channel for key establishment, we still cannot exchange a
key if we want to encrypt with, say, AES. However, the protocol can easily be mod-
ified for this use. What we have to do is to encrypt a symmetric key, e.g., an AES
key, using the public-key algorithm. Once the symmetric key has been decrypted
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by Bob, both parties can use it to encrypt and decrypt messages using symmetric
ciphers. Figure 6.5 shows a basic key transport protocol where we use AES as the
symmetric cipher for illustration purposes (of course, one can use any other symmet-
ric algorithm in such a protocol). The main advantage of the protocol in Figure 6.5
over the one in Figure 6.4 is that the payload is encrypted with a symmetric cipher,
which tends to be much faster than an asymmetric algorithm, as we will discuss
later.

Alice Bob
kpub←−−−−−−−−−−−− kpub,kpr

choose random kAES
y = ekpub (kAES)

y−−−−−−−−−−−−→
kAES = dkpr (y)

encrypt message x:
z = AESkAES (x)

z−−−−−−−−−−−−→
x = AES−1

kAES
(z)

Fig. 6.5 Simple key transport protocol (with AES as an example of a symmetric
cipher)

In practice the symmetric key is shorter than the asymmetric key and needs to
be padded in order to serve as input for the asymmetric encryption. While this
can be done by applying generic padding schemes, it is beneficial to consider the
combination of supplying a secret key for symmetric encryption using asymmetric
encryption as one joint primitive. We call such a dedicated primitive a key encap-
sulation mechanism (KEM). In contrast to the plain encryption functions we have
seen before, KEMs do not expect a message as input. Instead, KEMs are capable of
generationg a random value (that we use later as a symmetric secret key) on their
own which is then fed into an associated asymmetric encryption function. This way,
Alice just needs to invoke a single function encapsulate to create random key mate-
rial which is directly asymmetrically encrypted. After Bob receives this encrypted
key material, Bob runs the corresponding function decapsulate to decrypt and un-
wrap the key material, which Alice and Bob then share for subsequent symmetric
bulk data encryption. We will explain how KEMs are used and instantiated in detail
in the context of RSA (cf. Section 7.8) and post-quantum cryptography (cf. Chap-
ter 12).

From the discussion so far, it has become obvious that asymmetric cryptography
is a desirable tool for building security solutions. The not-so-small question remain-
ing is how one can build public-key algorithms. In Chaps. 7, 8 and 9 we introduce
the asymmetric schemes that are currently in use. They are all built from one com-
mon principle, a one-way function. A one-way function is basically a function that
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is easy to compute on every input, but hard to reverse given any output of a random
input. The informal definition is as follows.

Definition 6.1.1 One-way function
A function f is a one-way function if:

1. y = f (x) is computationally easy, and
2. x = f−1(y) is computationally infeasible.

Obviously, the adjectives “easy” and “infeasible” are not particularly exact. In
the sense of computational complexity theory, a function is easy to compute if it can
be evaluated in polynomial time, i.e., its running time is a polynomial expression.
In order to be useful in practical cryptographic schemes, the computation y = f (x)
should be sufficiently fast that it does not lead to unacceptably slow execution times
in an application. The computation of the inverse x = f−1(y) should be computa-
tionally very costly in the average case. This means that it should be infeasible to
evaluate it in any reasonable time period, say, 10,000 years, when using the best
known algorithm and all computer resources on planet Earth.

There are several popular one-way functions that are used by the public-key
schemes currently in use. The first is the integer factorization problem, on which
RSA is based. Given two large primes, it is easy to compute the product. However,
it is very difficult to factor the resulting product on common computing platforms.
In fact, if each of the primes has 300 or more decimal digits, the resulting product
cannot be factored even with thousands of (classical) computers running for many
years. Another one-way function that is used widely is the discrete logarithm prob-
lem, on which schemes such as the Diffie-Hellman key exchange and elliptic curves
are based. This is not quite as intuitive and is introduced in Chapter 8. We remark
that with the potential of future powerful quantum computers we need to reconsider
the security of any of the aforementioned one-way functions. We will discuss this
problem and alternatives in Chapter 12.

6.2 Practical Aspects of Public-Key Cryptography

Public-key algorithms will be introduced in subsequent chapters since there is some
mathematics we must study first. However, it is very interesting to look at the prin-
cipal security mechanisms that are enabled by public-key cryptography, which we
address in this section.
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6.2.1 Security Mechanisms

As shown earlier in this chapter, public-key schemes can be used for encryption of
data. It turns out that we can do many other things with public-key algorithms. The
main functions that they can provide are listed below:

Main Security Mechanisms of Public-Key Algorithms:

Key Establishment There are protocols for establishing secret keys over
an insecure channel. Examples of such protocols include the Diffie–
Hellman key exchange (DHKE), the RSA key transport protocol and key
encapsulation mechanisms.

Non-repudiation Providing non-repudiation can be realized with digital
signature algorithms, e.g., RSA, DSA or ECDSA.

Integrity Digital signature algorithms can also ensure the integrity of mes-
sages.

Identification We can identify entities using challenge-and-response pro-
tocols together with digital signatures, e.g., in applications such as smart
cards for banking or for mobile phones.

Encryption We can encrypt messages using algorithms such as RSA or
Elgamal.

We note that encryption, message integrity and identification and can also be
achieved with symmetric ciphers, but they are not good at key management and non-
repudiation is extremely difficult with them. It looks as though public-key schemes
can provide all functions required by modern security applications. Even though this
is true in principle, the major drawback in practice is that encryption of data is very
computationally intensive — or more colloquially: extremely slow — with public-
key algorithms. Most block and stream ciphers can encrypt about one hundred to
one thousand times faster than public-key algorithms. Thus, somewhat ironically,
public-key cryptography is rarely used for the oldest application of cryptography,
namely the actual encryption of data. On the other hand, symmetric algorithms are
poor at providing non-repudiation and key establishment functionality. In order to
use the best of both worlds, most practical protocols are hybrid protocols which
incorporate both symmetric and public-key algorithms. Examples include the TLS
protocol that is commonly used for secure internet connections, or many end-to-end
encryption protocols used by instant messengers such as WhatsApp.
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6.2.2 The Remaining Problem: Authenticity of Public Keys

From the discussion so far we have seen that a major advantage of asymmetric
schemes is that we can distribute public keys over insecure channels, as shown in the
protocols in Figures 6.4 and 6.5. However, in practice, things are a bit more tricky
because we still have to ensure the authenticity of public keys. In other words: Do
we really know that a certain public key belongs to a certain person? In practice,
this issue is often solved with what is called certificates. Roughly speaking, certifi-
cates bind a public key to a certain identity. This is a major issue in many security
applications, e.g., when doing e-commerce transactions on the internet. We discuss
this topic in more detail in Section 14.4.2.

Another problem, which is not as fundamental, is that public-key algorithms re-
quire very long keys, resulting in slow execution times. The issue of key lengths and
security is discussed below.

6.2.3 Important Public-Key Algorithms

In the previous chapters, we learned about some block ciphers, DES, AES and
PRESENT, and a few stream ciphers. However, there exist many other symmetric
algorithms. Several hundred ciphers have been proposed over the years and many
are cryptographically strong, as discussed in Section 3.7. The situation is quite dif-
ferent for asymmetric algorithms. There are only three major families of public-
key algorithms that are currently used in practice. They can be classified based on
their underlying one-way function. We note that should quantum computers become
available in the future, the three algorithm families below can all be broken. At this
point, one has to use what is called post-quantum cryptography (PQC), which is a
(fancy) name for alternative public-key algorithms that appear to resist attacks with
quantum computers. Chapter 12 will introduce PQC schemes.
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Public-Key Algorithm Families of Practical Relevance (in the Absence
of Quantum Computers)

Integer-Factorization Schemes Several public-key schemes are based on
the fact that it is difficult to factor large integers. The most prominent rep-
resentative of this algorithm family is RSA.

Discrete Logarithm Schemes There are several algorithms which are
based on what is known as the discrete logarithm problem in finite fields.
The most prominent examples include the Diffie–Hellman key exchange,
Elgamal encryption and the Digital Signature Algorithm (DSA).

Elliptic Curve (EC) Schemes A generalization of the discrete logarithm
algorithm is elliptic curve public-key schemes. The most popular examples
include the Elliptic Curve Diffie–Hellman key exchange (ECDH) and the
Elliptic Curve Digital Signature Algorithm (ECDSA).

The first two families were proposed in the mid-1970s, and elliptic curves were
proposed in the mid-1980s. There are currently no known attacks against any of
the schemes with classical computers if the parameters, especially the operand and
key lengths, are chosen carefully. (Again, should large-scale quantum computers
become available in the future, the schemes will not be secure anymore.) Crypto-
graphic schemes belonging to each of the families will be introduced in Chapters 7, 8
and 9, respectively. It is important to note that each of the three families can be used
to provide the main public-key mechanisms of key establishment, non-repudiation
through digital signatures and encryption of data.

6.2.4 Key Lengths and Security Levels

All three of the established public-key algorithm families are based on number-
theoretic functions. One distinguishing feature of them is that they require arith-
metic with very long operands and keys. Not surprisingly, the longer the operands
and keys, the more secure the algorithms become. In order to compare different
algorithms, one often considers the security level. An algorithm is said to have a
“security level of n bits” if the best known attack requires 2n steps. This is a quite
natural definition because symmetric algorithms with a security level of n have a
key of length n bits. The relationship between cryptographic strength and security
is not as straightforward in the asymmetric case, though. Table 6.1 shows recom-
mended bit lengths for public-key algorithms for the four security levels 80, 128,
192 and 256 bits. We see from the table that RSA-like schemes and discrete loga-
rithm schemes require very long operands and keys. The key length of elliptic curve
schemes is significantly smaller, yet still twice as long as for symmetric ciphers
with the same cryptographic strength. The table assumes attacks in the absence of
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quantum computers. As mentioned above, should full-size quantum computers be-
come available in the future, the three public-key schemes in the table can easily be
broken.

Table 6.1 Bit lengths of public-key algorithms for different security levels

Algorithm Family Cryptosystems Security Level (bits)
(80) 128 192 256

Integer factorization RSA (1024 bits) 3072 bits 7680 bits 15360 bits
Discrete logarithm DH, DSA, Elgamal (1024 bits) 3072 bits 7680 bits 15360 bits
Elliptic curves ECDH, ECDSA (160 bits) 256 bits 384 bits 512 bits
Symmetric-key e.g., AES (80 bits) 128 bits 192 bits 256 bits

At the time of writing, it is assumed that a security level of 80 bits does not
provide long-term security and, hence, the values are put in parentheses. You may
want to compare this table with Table 1.2, which provides information about the
security estimations of symmetric-key algorithms. In order to provide long-term
security, i.e., security for a timespan of several decades, a security level of 128 bits
should be chosen, which requires fairly long keys for all three asymmetric algorithm
families.

An undesired consequence of the long operands is that public-key schemes are
extremely arithmetically intensive. As mentioned earlier, it is not uncommon that
one public-key operation, say a digital signature, is 2–3 orders of magnitude slower
than the encryption of one block using AES or 3DES. Moreover, the computational
complexity of the three algorithm families grows roughly with the cube of the bit
length. As an example, increasing the bit length from 2048 to 4096 in a given RSA
signature generation software results in an execution that is 23 = 8 times slower!
On modern PCs, execution times in the range of several milliseconds are common,
which does not pose a problem for many applications. However, public-key perfor-
mance can be a more serious bottleneck in constrained devices where small CPUs
are prevalent, e.g., mobile phones or smart cards, or on cloud servers, where we wish
to compute many public-key operations per second. Chapters 7, 8 and 9 introduce
several techniques for implementing public-key algorithms reasonably efficiently.

6.3 Essential Number Theory for Public-Key Algorithms

We will now study a few techniques from number theory that are essential for
public-key cryptography. We introduce the Euclidean algorithm, Euler’s phi func-
tion as well as Fermat’s Little Theorem and Euler’s theorem. All are important for
asymmetric algorithms, especially for understanding the RSA scheme.
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6.3.1 Euclidean Algorithm

We start with the problem of computing the greatest common divisor (gcd). The gcd
of two positive integers r0 and r1 is denoted by

gcd(r0,r1)

and is the largest positive number that divides both r0 and r1. For instance gcd(21,9)=
3. For small numbers, the gcd is easy to calculate by factoring both numbers and
finding the highest common factor.

Example 6.1. Let r0 = 84 and r1 = 30. Factoring yields:

r0 = 84 = 2 ·2 ·3 ·7
r1 = 30 = 2 ·3 ·5

The gcd is the product of all common prime factors:

2 ·3 = 6 = gcd(30,84)

�

For the large numbers that occur in public-key schemes, however, factoring often
is not possible, and a more efficient algorithm is used for gcd computations, the
Euclidean algorithm. The algorithm, which is also referred to as Euclid’s algorithm,
is based on the simple observation that if r0 and r1 have a common divisor g, any
linear combination of r0 and r1 is divisible by g. In particular, it holds that:

gcd(r0,r1) = gcd(r0− r1,r1) = g,

where we assume that r0 > r1, and that both numbers are positive integers. This
property can easily be shown: Let gcd(r0,r1) = g. Since g divides both r0 and r1,
we can write r0 = g · x and r1 = g · y, where x > y, and x and y are coprime integers,
i.e., they do not have common factors. Moreover, it is easy to show that (x− y) and
y are also coprime. It follows from this that:

gcd(r0− r1,r1) = gcd(g · (x− y),g · y) = g

Let’s verify this property with the numbers from the previous example.

Example 6.2. Again, let r0 = 84 and r1 = 30. We now look at the gcd of (r0− r1)
and r1:

r0− r1 = 54 = 2 ·3 ·3 ·3
r1 = 30 = 2 ·3 ·5

The largest common factor is still 2 ·3 = 6 = gcd(30,54) = gcd(30,84).
�
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It also follows immediately that we can apply the process iteratively:

gcd(r0,r1) = gcd(r0− r1,r1) = gcd(r0−2r1,r1) = · · ·= gcd(r0−m r1,r1)

as long as (r0−m r1) > 0. The algorithm uses the smallest number of steps if we
choose the maximum value for m. This is the case if we compute:

gcd(r0,r1) = gcd(r0 mod r1,r1)

Since the first term (r0 mod r1) is smaller than the second term r1, we usually swap
them:

gcd(r0,r1) = gcd(r1,r0 mod r1)

The core observation from this process is that we can reduce the problem of
finding the gcd of two given numbers to that of the gcd of two smaller numbers.
This process can be applied recursively until we obtain finally gcd(rl ,0) = rl . Since
each iteration preserves the gcd of the previous iteration step, it turns out that this
final gcd is the gcd of the original problem, i.e.,

gcd(r0,r1) = · · ·= gcd(rl ,0) = rl

We first show some examples of finding the gcd using the Euclidean algorithm and
then discuss the algorithm a bit more formally.

Example 6.3. Let r0 = 27 and r1 = 21. Figure 6.6 gives us some feeling for the
algorithm by showing how the lengths of the parameters shrink in every iteration.
The shaded parts in the iteration are the new remainders r2 = 6 (first iteration), and
r3 = 3 (second iteration), which form the input terms for the next iterations. Note
that in the last iteration the remainder is r4 = 0, which indicates the termination of
the algorithm. �

3

3666

21

gcd(6, 3) = gcd(2  3+0, 3) = gcd(3, 0) = 3

gcd(27, 21) = gcd(1  21+6, 21) = gcd(21, 6)

gcd(21, 6) = gcd(3  6+3, 6) = gcd(6, 3) 

gcd(27, 21) = gcd(21, 6) = gcd(6, 3) = gcd(3, 0) = 3

6

3

Fig. 6.6 The Euclidean algorithm for the input values r0 = 27 and r1 = 21

It is also helpful to look at the Euclidean algorithm with slightly larger numbers,
as happens in Example 6.4.
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Example 6.4. Let r0 = 973 and r1 = 301. The gcd is then computed as

973 = 3 ·301+70 gcd(973,301) = gcd(301,70)
301 = 4 ·70+21 gcd(301,70) = gcd(70,21)
70 = 3 ·21+7 gcd(70,21) = gcd(21,7)
21 = 3 ·7+0 gcd(21,7) = gcd(7,0) = 7

�

By now we should have an idea of Euclid’s algorithm, and we can give a more
formal description of the algorithm in the form of pseudo code.

Euclidean Algorithm
Input: positive integers r0 and r1 with r0 > r1
Output: gcd(r0,r1)
Initialization: i = 1
Algorithm:

1 DO
1.1 i = i+1
1.2 ri = ri−2 mod ri−1

WHILE ri 6= 0
2 RETURN

gcd(r0,r1) = ri−1

Note that the algorithm terminates if a remainder with the value rl = 0 is com-
puted. (The index “l” is a mnemonic for “last iteration”). The remainder computed
in the previous iteration, denoted by rl−1, is the gcd of the original problem.

The Euclidean algorithm is very efficient, even with the very long numbers typi-
cally used in public-key cryptography. The number of iterations is close to the num-
ber of digits of the input operands. That means, for instance, that the number of
iterations of a gcd involving 2048-bit numbers is 2048 times a constant. Of course,
algorithms with a few thousand iterations can easily be executed on today’s PCs,
making the algorithm efficient in practice.

6.3.2 Extended Euclidean Algorithm

So far, we have seen that finding the gcd of two integers r0 and r1 can be done
by recursively reducing the operands. However, it turns out that finding the gcd is
not the main application of the Euclidean algorithm. An extension of the algorithm
allows us to compute modular inverses, which is of major importance in public-key
cryptography. In addition to computing the gcd, the extended Euclidean algorithm
(EEA) computes a linear combination of the form:
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gcd(r0,r1) = s · r0 + t · r1

where s and t are integer coefficients. This equation is often referred to as a Dio-
phantine equation.

The question now is: How do we compute the two coefficients s and t? The idea
behind the algorithm is that we execute the standard Euclidean algorithm, but we
express the current remainder ri in every iteration as a linear combination of the
form

ri = sir0 + tir1 (6.1)

If we succeed with this, we end up in the last iteration with the equation:

rl = gcd(r0,r1) = slr0 + tlr1 = sr0 + tr1

This means that the last coefficient sl is the coefficient s in Equation (6.1) we are
looking for, and also tl = t. Let’s look at an example.

Example 6.5. We consider the extended Euclidean algorithm with the same values as
in the previous example, r0 = 973 and r1 = 301. On the left-hand side, we compute
the standard Euclidean algorithm, i.e., we compute new remainders r2,r3, . . . Also,
we have to compute the integer quotient qi−1 in every iteration. On the right-hand
side we compute the coefficients si and ti such that ri = sir0 + tir1. The coefficients
are always shown in brackets.

i ri−2 = qi−1 · ri−1 + ri ri = [si] r0 +[ti] r1
2 973 = 3 ·301+70 70 = [1] r0 +[−3] r1
3 301 = 4 ·70+21 21 = 301−4 ·70

= r1−4(1r0−3 r1)
= [−4] r0 +[13] r1

4 70 = 3 ·21+7 7 = 70−3 ·21
= (1r0−3r1)−3(−4r0 +13r1)
= [13] r0 +[−42] r1

21 = 3 ·7+0

The algorithm computed the three parameters gcd(973,301) = 7, s = 13 and
t =−42. The correctness can be verified by:

gcd(973,301) = [13] 973+[−42] 301 = 12649−12642 = 7

�

You should carefully watch the algebraic steps taking place in the right column
of the example above. In particular, observe that the linear combination on the right-
hand side is always constructed with the help of the previous linear combinations.
We will now derive recursive formulae for computing si and ri in every iteration. As-
sume we are in the iteration with index i. In the two previous iterations we computed
the values
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ri−2 = [si−2]r0 +[ti−2]r1 (6.2)
ri−1 = [si−1]r0 +[ti−1]r1 (6.3)

In the current iteration i we first compute the quotient qi−1 and the new remainder
ri from ri−1 and ri−2:

ri−2 = qi−1 · ri−1 + ri

This equation can be rewritten as:

ri = ri−2−qi−1 · ri−1 (6.4)

Recall that our goal is to represent the new remainder ri as a linear combination of
r0 and r1 as shown in Equation (6.1). The core step for achieving this happens now:
in Equation (6.4) we substitute ri−2 by Equation (6.2) and ri−1 by Equation (6.3):

ri = (si−2r0 + ti−2r1)−qi−1(si−1r0 + ti−1r1)

If we rearrange the terms we obtain the desired result:

ri = [si−2−qi−1si−1]r0 +[ti−2−qi−1ti−1]r1 (6.5)
ri = [si]r0 +[ti]r1.

Equation (6.5) also immediately gives us the recursive formulae for computing si
and ti, namely si = si−2−qi−1si−1 and ti = ti−2−qi−1ti−1. These recursions are valid
for index values i ≥ 2. Like any recursion, we need starting values for s0,s1, t0, t1.
These initial values (which we derive in Problem 6.13) can be shown to be s0 =
1,s1 = 0, t0 = 0, t1 = 1.
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Extended Euclidean Algorithm (EEA)
Input: positive integers r0 and r1 with r0 > r1
Output: gcd(r0,r1), as well as s and t such that gcd(r0,r1) = s · r0 + t · r1.

Initialization:
s0 = 1 t0 = 0
s1 = 0 t1 = 1
i = 1
Algorithm:
1 DO
1.1 i = i+1
1.2 ri ≡ ri−2 mod ri−1
1.3 qi−1 = (ri−2− ri)/ri−1
1.4 si = si−2−qi−1 · si−1
1.5 ti = ti−2−qi−1 · ti−1

WHILE ri 6= 0
2 RETURN

gcd(r0,r1) = ri−1
s = si−1
t = ti−1

As mentioned above, the main application of the EEA in asymmetric cryptogra-
phy is to compute the modular inverse of an integer. We already encountered this
problem in the context of the affine cipher in Chapter 1. For the affine cipher, we
were required to find the inverse of the key value a modulo 26. With the Euclidean
algorithm, this is straightforward. Let’s assume we want to compute the inverse
of r1 mod r0 where r1 < r0. Recall from Section 1.4.2 that the inverse only exists if
gcd(r0,r1) = 1. Hence, if we apply the EEA, we obtain s ·r0+t ·r1 = 1= gcd(r0,r1).
Taking this equation modulo r0 we obtain:

s · r0 + t · r1 = 1
s ·0+ t · r1 ≡ 1 mod r0

r1 · t ≡ 1 mod r0 (6.6)

Equation (6.6) is exactly the definition of the inverse of r1! This means that t itself
is the inverse of r1:

t ≡ r−1
1 mod r0

Thus, if we need to compute an inverse a−1 mod m, we apply the EEA with the
input parameters m and a. The output value t that is computed is the inverse. Let’s
look at an example.

Example 6.6. Our goal is to compute 12−1 mod 67. The values 12 and 67 are rela-
tively prime, i.e., gcd(67,12) = 1. If we apply the EEA, we obtain the coefficients s
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and t in gcd(67,12) = 1= s ·67+t ·12. Starting with the values r0 = 67 and r1 = 12,
the algorithm proceeds as follows:

i qi−1 ri si ti
2 5 7 1 -5
3 1 5 -1 6
4 1 2 2 -11
5 2 1 -5 28

This gives us the linear combination

−5 ·67+28 ·12 = 1

As shown above, the inverse of 12 follows from this as

12−1 ≡ 28 mod 67

This result can easily be verified

28 ·12 = 336≡ 1 mod 67

�

Note that the s coefficient is not needed and is in practice often not computed.
Please note also that the result of the algorithm can be a negative value for t. The
result is still correct, however. We have to compute t = t + r0, which is a valid
operation since t ≡ t + r0 mod r0.

For completeness, we show how the EEA can also be used for computing mul-
tiplicative inverses in Galois fields GF(2m). In modern cryptography this is mainly
relevant for the derivation of the AES S-Boxes and sometimes for elliptic curve
public-key algorithms. The EEA can be used completely analogously with polyno-
mials instead of integers. If we want to compute an inverse in a finite field GF(2m),
the inputs to the algorithm are the field element A(x) and the irreducible polynomial
P(x). The EEA computes the auxiliary polynomials s(x) and t(x), as well as the
greatest common divisor gcd(P(x),A(x)) such that:

s(x)P(x)+ t(x)A(x) = gcd(P(x),A(x)) = 1

Note that since P(x) is irreducible, the gcd is always equal to 1. If we take the
equation above and reduce both sides modulo P(x), it is easy to see that the auxiliary
polynomial t(x) is equal to the inverse of A(x):

s(x)0+ t(x)A(x) ≡ 1 mod P(x)

t(x) ≡ A−1(x) mod P(x)

We give at this point an example of the algorithm for the small field GF(23).
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Example 6.7. We are looking for the inverse of A(x) = x2 in the finite field GF(23)
with P(x) = x3 + x+ 1. The initial values for the t(x) polynomial are: t0(x) = 0,
t1(x) = 1.

Iteration ri−2(x) = [qi−1(x)]ri−1(x)+ [ri(x)] ti(x)
2 x3 + x+1 = [x]x2 +[x+1] t2 = t0−q1t1 = 0− x1≡ x
3 x2 = [x] (x+1)+ [x] t3 = t1−q2t2 = 1− x(x)≡ 1+ x2

4 x+1 = [1]x+[1] t4 = t2−q3t3 = x−1(1+ x2)
t4 ≡ 1+ x+ x2

5 x = [x]1+[0] Termination since r5 = 0

Note that polynomial coefficients are computed in GF(2), and since addition and
subtraction are the same operations, we can always replace a negative coefficient
(such as −x) with a positive one. The new quotient and the new remainder that
are computed in every iteration are shown in brackets above. The polynomials ti(x)
are computed according to the recursive formula that was used for computing the
integers ti earlier in this section. The EEA terminates if the remainder is 0, which is
the case in the iteration with index 5. The inverse is now given as the last ti(x) value
that was computed, i.e., t4(x):

A−1(x) = t(x) = t4(x) = x2 + x+1

Here is the check that t(x) is in fact the inverse of x2, where we use the properties
that x3 ≡ x+1 mod P(x) and x4 ≡ x2 + x mod P(x):

t4(x) · x2 = x4 + x3 + x2

≡ (x2 + x)+(x+1)+ x2 mod P(x)

≡ 1 mod P(x)

�

Note that in every iteration of the EEA, one uses long division (not shown above)
to determine the new quotient qi−1(x) and the new remainder ri(x).

Below is the pseudo code algorithm for the EEA for polynomials in GF(2) that
can be used for computing the inverse in GF(2m).



6.3 Essential Number Theory for Public-Key Algorithms 195

Extended Euclidean Algorithm for polynomials over GF(2)
Input: nonzero polynomials r0(x) and r1(x) with deg(r1)≤ deg(r0).
Output: gcd(r0,r1), as well as polynomials s(x) and t(x) such that
gcd(r0,r1) = s(x) · r0(x)+ t(x) · r1(x).

Initialization
s0 = 1 t0 = 0
s1 = 0 t1 = 1
i = 1

Algorithm
1 DO
1.1 i = i+1
1.2 j = deg(ri−2)−deg(ri−1)
1.3 IF j ≥ 0

ri = ri−2 + x jri−1
ti = ti−2 + x jti−1
si = si−2 + x jsi−1

1.4 ELSE
ri = ri−1 + x− jri−2
ti = ti−1 + x− jti−2
si = si−1 + x− jsi−2

WHILE ri 6= 0
2 RETURN

gcd(r0,r1) = ri−1
s(x) = si−1
t(x) = ti−1

The inverse Table 4.2 in Chapter 4 was computed using the extended Euclidean
algorithm.

6.3.3 Euler’s Phi Function

Now, we will look at another tool that is useful for public-key cryptosystems, espe-
cially for RSA. We consider the ring Zm, i.e., the set of integers {0,1, . . . ,m− 1}.
We are interested in the (at the moment seemingly odd) problem of knowing how
many numbers in this set are relatively prime to m. This quantity is given by Euler’s
phi function, which is defined as follows.
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Definition 6.3.1 Euler’s Phi Function
The number of integers in Zm relatively prime to m is denoted by
Φ(m).

We first look at some examples and calculate Euler’s phi function by actually
counting all the integers in Zm that are relatively prime to m.

Example 6.8. Let m = 6. The associated set is Z6 = {0,1,2,3,4,5}.
gcd(0,6) = 6
gcd(1,6) = 1 ?
gcd(2,6) = 2
gcd(3,6) = 3
gcd(4,6) = 2
gcd(5,6) = 1 ?
Since there are two numbers in the set which are relatively prime to 6, namely 1 and
5, the phi function takes the value Φ(6) = 2.
�

Here is another example.

Example 6.9. Let m = 5. The associated set is Z5 = {0,1,2,3,4}.
gcd(0,5) = 5
gcd(1,5) = 1 ?
gcd(2,5) = 1 ?
gcd(3,5) = 1 ?
gcd(4,5) = 1 ?
This time we have four numbers which are relatively prime to 5, hence, Φ(5) = 4.
�

From the examples above we can guess that calculating Euler’s phi function by
running through all elements and computing the gcd is extremely slow if the num-
bers are large. In fact, computing Euler’s phi function in this naı̈ve way is com-
pletely out of reach for the large numbers occurring in public-key cryptography.
Fortunately, there exists a relation to calculate it much more easily if we know the
factorization of m, which is given in the following theorem.

Theorem 6.3.1 Let m have the following canonical factorization

m = pe1
1 · p

e2
2 · . . . · p

en
n

where the pi are distinct prime numbers and ei are positive integers,
then

Φ(m) =
n

∏
i=1

(pei
i − pei−1

i )
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Since the value of n, i.e., the number of distinct prime factors, is always quite small
even for large numbers m, evaluating the product symbol ∏ is computationally easy.
Let’s look at an example where we calculate Euler’s phi function using the theorem.

Example 6.10. Let m = 240. The canonical factorization of 240 is

m = 240 = 16 ·15 = 24 ·3 ·5 = pe1
1 · p

e2
2 · p

e3
3

There are three distinct prime factors, i.e., n = 3. The value for Euler’s phi function
follows then as:

Φ(m) = (24−23)(31−30)(51−50) = 8 ·2 ·4 = 64.

That means that 64 integers in the range {0,1, . . . ,239} are coprime to m= 240. The
alternative method, which would have required us to evaluate the gcd 240 times,
would have been much slower even for this small number.
�

It is important to stress that we need to know the factorization of m in order to
calculate Euler’s phi function quickly in this manner. As we will see in the next
chapter, this property is at the heart of the RSA public-key scheme: If we know the
factorization of a certain number, we can compute Euler’s phi function and decrypt
the ciphertext. In contrast, if we do not know the factorization, we cannot compute
the phi function and, hence, cannot decrypt. In RSA, the owner of the private key
knows the factorization but nobody else does.

6.3.4 Fermat’s Little Theorem and Euler’s Theorem

We describe next two theorems which are quite useful in public-key cryptography.
We start with Fermat’s Little Theorem.1 The theorem is helpful for primality testing
and in many other aspects of public-key cryptography. The theorem gives a seem-
ingly surprising result if we do exponentiations modulo an integer.

Theorem 6.3.2 Fermat’s Little Theorem
Let a be an integer and p be a prime, then:

ap ≡ a mod p

We note that arithmetic in finite fields GF(p) is done modulo p, and hence, the
theorem holds for all integers a which are elements of a finite field GF(p). The
theorem can be stated in the form:
1 You should not confuse this with Fermat’s Last Theorem, one of the most famous number-
theoretical problems, which was proved in the early 1990s after 350 years.
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ap−1 ≡ 1 mod p

which is often useful in cryptography. One application is the computation of the
inverse in a finite field. We can rewrite the equation as a · ap−2 ≡ 1 mod p. This
is exactly the definition of the multiplicative inverse. Thus, we immediately have a
way of computing the inverse of an integer a modulo a prime:

a−1 ≡ ap−2 mod p (6.7)

We note that this inversion method holds only if p is a prime. Let’s look at an
example.

Example 6.11. Let p = 7 and a = 2. We can compute the inverse of a as:

ap−2 = 25 = 32≡ 4 mod 7.

This is easy to verify: 2 ·4≡ 1 mod 7
�

Performing the exponentiation in Equation (6.7) is usually slower than using the
extended Euclidean algorithm. However, there are situations where it is advanta-
geous to use Fermat’s Little Theorem, e.g., on smart cards or other devices which
have a hardware accelerator for fast exponentiation anyway. This is not uncommon
because many public-key algorithms require exponentiation, as we will see in sub-
sequent chapters.

A generalization of Fermat’s Little Theorem to any integer moduli, i.e., moduli
that are not necessarily primes, is Euler’s theorem.

Theorem 6.3.3 Euler’s Theorem
Let a and m be integers with gcd(a,m) = 1, then:

aΦ(m) ≡ 1 mod m

Since the theorem is defined modulo m, it is applicable to integer rings Zm. We show
now an example of Euler’s theorem with small values.

Example 6.12. Let m = 12 and a = 5. First, we compute Euler’s phi function of m:

Φ(12) = Φ(22 ·3) = (22−21)(31−30) = (4−2)(3−1) = 4

Now we can verify Euler’s theorem:

5Φ(12) = 54 = 252 = 625≡ 1 mod 12

�

It is easy to show that Fermat’s Little Theorem is a special case of Euler’s theorem.
If p is a prime, it holds that Φ(p) = (p1− p0) = p− 1. If we use this value for
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Euler’s theorem, we obtain: aΦ(p) = ap−1 ≡ 1 mod p, which is exactly Fermat’s
Little Theorem.

6.4 Discussion and Further Reading

Public-Key Cryptography in General Asymmetric cryptography was introduced
in the landmark paper by Whitfield Diffie and Martin Hellman [93]. Ralph Merkle
independently invented the concept of asymmetric cryptography but proposed an
entirely different public-key algorithm [190]. There are a few good accounts of the
history of public-key cryptography. The treatment in [92] by Diffie is recommended.
Another good overview of public-key cryptography is [199]. A very instructive and
detailed history of elliptic curve cryptography, including the relatively intense com-
petition between RSA and ECC during the 1990s, is described in [162]. More recent
development in asymmetric cryptography is tracked by the Conference on Public-
Key Cryptography (PKC) series.

Other Public-Key Algorithms In addition to the three established families of
asymmetric schemes introduced in this book, there exist several others. First, there
are algorithms that have been broken or are believed to be insecure, e.g., knapsack
schemes. Second, there are generalizations of the established algorithms, e.g., hy-
perelliptic curves, algebraic varieties or non-RSA factoring-based schemes. These
schemes use the same one-way function, that is, integer factorization or the dis-
crete logarithm in certain groups. Third, there are asymmetric algorithms which
are based on different one-way functions and are believed to be secure. Some of
those schemes have drawn major attention in recent years since they are potentially
resistant against quantum computer attacks. They are referred to as post-quantum
cryptography schemes, and will be discussed in much detail in Chapter 12. The rea-
son why they have not been used in pratice until now is that they often have practical
problems, such as very long keys.

Another public-key scheme with very interesting properties (and not treated in
this book) is pairing-based cryptography. The basic idea is to use the mapping
between two useful cryptographic groups that allows new cryptographic schemes
based on the reduction of a problem in one group to a different, usually easier, prob-
lem in the other group. Initially pairings were used for cryptanalysis. Later pair-
ings have also been used to construct efficient cryptographic schemes for identity-
based encryption or attribute-based encryption. In particular, cryptographic proto-
cols based on the Weil and Tate pairings on elliptic curves have attracted attention.

Elementary Number Theory With respect to the mathematics introduced in this
chapter, the introductory books on number theory recommended in Section 1.5 make
good sources for further reading. In practical terms, the extended Euclidean al-
gorithm (EEA) is most crucial, since virtually all implementations of public-key
schemes incorporate it, especially for modular inversion. An important acceleration
technique for the scheme is the binary EEA. Its advantage over the standard EEA



200 6 Introduction to Public-Key Cryptography

is that it replaces divisions by bit shifts. This is attractive for the very long numbers
occurring in public-key schemes.

6.5 Lessons Learned

� Public-key algorithms have capabilities that symmetric ciphers don’t have, in
particular digital signatures and key establishment functions.

� Public-key algorithms are computationally intensive (a nice way of saying that
they are slow), and hence are poorly suited for bulk data encryption.

� Only three families of public-key schemes are widely used today. (This is in
contrast to the hundreds of symmetric algorithms that exist.)

� Should large-scale quantum computers become available in the future, the three
established public-key schemes need to be replaced by post-quantum algorithms.

� The extended Euclidean algorithm allows us to compute modular inverses quickly,
which is important for almost all public-key schemes.

� Euler’s phi function gives us the number of elements smaller than an integer n
that are relatively prime to n. This is an important function for the RSA crypto-
graphic scheme.
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Problems

6.1. As we have seen in this chapter, public-key cryptography can be used for
encryption and key exchange. Furthermore, it has some properties (such as non-
repudiation) that are not offered by secret-key cryptography.

So why do we still use symmetric-key cryptography in most applications in prac-
tice?

6.2. In this problem, we want to compare the computational performance of sym-
metric and asymmetric algorithms. Assume a fast public-key library such as
OpenSSL that can decrypt data at a rate of 2.5 MByte/sec using the RSA algorithm
on a modern PC. On the same machine, AES can decrypt at a rate of 2.5 GByte/sec.
Assume we want to decrypt a movie stored on a Blu-ray disc. The movie requires
50 GByte of storage. How long does decryption take with each algorithm?

6.3. Assume a (small) company with 120 employees. A new security policy de-
mands that all email communication between all employees must be encrypted with
a symmetric cipher. How many keys are required if there should be a unique secure
channel between every possible pair of communicating parties?

6.4. In public-key cryptography, the desired security level directly influences the
performance of the respective algorithm (cf. Section 6.2.4). We now analyze the
relationship between security levels and run time.

Assume that a web server for an online shop can use either RSA or ECC for
signature generation. Furthermore, assume that signature generation for RSA-1024
and ECC-160 takes 15.7 ms and 1.3 ms, respectively.

1. Determine the increase in run time for signature generation if the security level
for RSA is increased from 1024 bits to 3072 bits.

2. How does the run time of RSA increase from 1024 bits to 15,360 bits?
3. Determine these numbers for the respective security levels of ECC.
4. Describe the difference between RSA and ECC when increasing the security

level.

Hint: Recall that the computational complexity of both RSA and ECC grows with
the cube of the bit length. You may want to use Table 6.1 to determine the adequate
bit length for ECC, given the security level of RSA.

6.5. Using the basic form of the Euclidean algorithm, compute the greatest common
divisor of

1. 7469 and 2464
2. 2689 and 4001
3. 286,875 and 333,200

For this problem use only a pocket calculator. Show every iteration step of the Eu-
clidean algorithm, i.e., don’t just write down the answer, which is only a number.
Also, for every gcd, provide the chain of gcd computations in the form:

gcd(r0,r1) = gcd(r1,r2) = · · ·



202 6 Introduction to Public-Key Cryptography

6.6. Using the extended Euclidean algorithm, compute the greatest common divisor
and the parameters s and t of

1. 198 and 243
2. 1819 and 3587
3. 2931 and 5451
4. 12,351 and 42,343

For every problem check whether sr0 + t r1 = gcd(r0,r1) is actually fulfilled. The
rules are the same as in the previous problem: Use a pocket calculator and show
what happens in every iteration step.

6.7. With the Euclidean algorithm we finally have an efficient algorithm for finding
the multiplicative inverse in Zm that is much better than exhaustive search. Find the
inverses in Zm of the following elements a modulo m:

1. a = 7, m = 26 (Rem.: inverses modulo 7 are useful for the affine cipher)
2. a = 19, m = 999

Note that the inverses must again be elements in Zm and that you can easily verify
your answers.

6.8. Determine φ(m), for m = 12,15,26, according to the definition: Check for each
positive integer n smaller than m whether gcd(n,m) = 1. (You do not have to apply
the Euclidean algorithm.)

6.9. Develop formulae for φ(m) for the special cases when

1. m is a prime
2. m = p ·q, where p and q are primes. This case is of great importance for the RSA

cryptosystem. Verify your formula for m = 15 and m = 26 with the results from
the previous problem.

6.10. Compute the inverse a−1 mod n with Fermat’s Theorem (if applicable) or Eu-
ler’s Theorem:

� a = 4, n = 7
� a = 5, n = 12
� a = 6, n = 13

6.11. Verify that Euler’s Theorem holds in Zm, m = 6,9, for all elements a for which
gcd(a,m) = 1. Also verify that the theorem does not hold for elements a for which
gcd(a,m) 6= 1.

6.12. For the affine cipher in Chapter 1, the multiplicative inverse of an element
modulo 26 can be found as

a−1 ≡ a11 mod 26

Derive this relationship by using Euler’s Theorem.
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6.13. The extended Euclidean algorithm has the initial conditions s0 = 1,s1 = 0, t0 =
0, t1 = 1. Derive these conditions. It is helpful to look at how the general iteration
formula for the Euclidean algorithm was derived in this chapter.

6.14. In this problem we are going to use the Euclidean algorithm for smoothness
tests of composite numbers. Smoothness tests are used, e.g., in attacks on asymmet-
ric schemes based on the factorization problem, in particular RSA. Numbers N that
are “(B1,B2)-smooth” are composite numbers with prime factors not larger than B1
and prime powers not larger than B2, where:

N =
k

∏
i=0

pei
i , pi ∈ P, pi ≤ B1 and pei

i ≤ B2

Now, we are going to test a number N for smoothness.

1. Compute the product P of all largest prime powers that fulfill the conditions
above for B1 = 30 and B2 = 250, i.e.,

P =
n

∏
j=0

p
e j
j , ∀pi ∈ P with p j ≤ 30 and p

e j
j ≤ 250

Remark: Since N will consist of only a few prime powers compared to P (which
consists of all prime powers), N << P will hold for most cases. Your calculator
might not be able to deal with such large numbers and you may need to use a
software that is able to compute numbers of that size.

2. Compute the gcd(P,N) for N = 29,716.
3. What is the condition for smoothness in relation to the gcd(P,N)?
4. Is N = 29,716 smooth for (B1,B2) = (40,300)?
5. Is N = 103,730 smooth? If not, provide all prime factors larger than B1 and all

prime powers larger than B2.



Chapter 7
The RSA Cryptosystem

After Whitfield Diffie and Martin Hellman introduced public-key cryptography in
their landmark 1976 paper, a new branch of cryptography suddenly opened up. As a
consequence, cryptographers started looking for methods with which public-key en-
cryption could be realized. In 1977, Ronald Rivest, Adi Shamir and Leonard Adle-
man (cf. Figure 7.1) proposed a scheme that became the most widely used asymmet-
ric cryptographic algorithm during the 1980s and 1990s, namely RSA. Even today,
RSA is still very popular in practice.

Fig. 7.1 An early picture of Adi Shamir, Ron Rivest, and Leonard Adleman (left to
right, reproduced with permission from Ron Rivest)

In this chapter you will learn:

� How RSA works
� Practical aspects of RSA, such as computation of the parameters, and fast en-

cryption and decryption
� Security estimations and pitfalls when implementing RSA
� Computational aspects
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7.1 Introduction

The RSA cryptographic scheme, sometimes referred to as the Rivest–Shamir–
Adleman algorithm, was for a long time the most popular asymmetric cryptographic
scheme. Nowadays, elliptic curves and discrete logarithm schemes are also widely
used. RSA was patented in the USA (but not in the rest of the world) until 2000.

There are many applications for RSA, but in practice it is most often used for:

� encryption of small pieces of data, especially for key transport,
� digital signatures, which are discussed in Chapter 10, e.g., for digital certificates

on the internet.

However, it should be noted that RSA encryption is not meant to replace sym-
metric ciphers because it is several orders of magnitude slower than ciphers such
as AES. This is due to the many computations involved in performing RSA (or any
other public-key algorithm) as we will learn later in this chapter. Thus, the main use
of the encryption feature is to securely exchange a key for a symmetric cipher (key
transport). In practice, RSA is often used together with a symmetric cipher such as
AES, where the symmetric cipher does the actual bulk data encryption.

The underlying one-way function of RSA is the integer factorization problem:
Multiplying two large primes is computationally easy (in fact, you can do it with
paper and pencil), but factoring the resulting product is very hard. Euler’s theorem
(Theorem 6.3.3) and Euler’s phi function play important roles in RSA. In the fol-
lowing, we first describe how encryption, decryption and key generation work, then
we talk about practical aspects of RSA.

7.2 Encryption and Decryption

RSA encryption and decryption are done in the integer ring Zn, and modular com-
putations play a central role. Recall that rings and modular arithmetic in rings were
introduced in Section 1.4.2. RSA encrypts a plaintext x, where we consider the bit
string representing x to be an element in Zn = {0,1, . . . ,n− 1}. As a consequence,
the binary value of the plaintext x must be less than n. The same holds for the ci-
phertext. Encryption with the public key and decryption with the private key are as
shown below.

RSA Encryption Given the public key (n,e) = kpub and the plaintext x, the
encryption function is:

y = ekpub(x)≡ xe mod n (7.1)

where x,y ∈ Zn.
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RSA Decryption Given the private key d = kpr and the ciphertext y, the
decryption function is:

x = dkpr(y)≡ yd mod n (7.2)

where x,y ∈ Zn.

In practice, x, y, n and d are very long numbers, usually 2048 bits or more. The
value e is sometimes referred to as the encryption exponent or public exponent, and
the private key d is sometimes called the decryption exponent or private exponent.
If Alice wants to send an encrypted message to Bob, Alice needs to have his public
key (n,e), and Bob decrypts with his private key d. We discuss in Section 7.3 how
these three crucial parameters d, e and n are generated.

Even without knowing more details, we can already state a few requirements for
the RSA cryptosystem:

1. Since an attacker has access to the public key, it must be computationally infea-
sible to determine the private key d given the public-key values e and n.

2. Since x is only unique up to the size of the modulus n, we cannot encrypt more
than l bits with one RSA encryption, where l is the bit length of n.

3. It should be relatively easy to calculate xe mod n, i.e., to encrypt, and yd mod n,
i.e., to decrypt. This means we need a method for fast exponentiation with very
long numbers.

4. For a given n, there should be many private-key/public-key pairs, otherwise an
attacker might be able to perform a brute-force attack. (It turns out that this re-
quirement is easy to satisfy.)

7.3 Key Generation and Proof of Correctness

A distinctive feature of all asymmetric schemes is that there is a set-up phase dur-
ing which the public and private keys are computed. Depending on the asymmetric
scheme, key generation can be quite complex. As a remark, we note that key gener-
ation is usually not an issue for block or stream ciphers.

Here are the steps involved in computing the public and private keys for the RSA
cryptosystem.
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RSA Key Generation
Output: public key: kpub = (n,e) and private key: kpr = (d)
1. Choose two large primes p and q.
2. Compute n = p ·q.
3. Compute Φ(n) = (p−1)(q−1).
4. Select the public exponent e ∈ {1,2, . . . ,Φ(n)−1} such that

gcd(e,Φ(n)) = 1

5. Compute the private key d such that

d · e≡ 1 mod Φ(n)

The condition that gcd(e,Φ(n)) = 1 ensures that the inverse of e exists modulo
Φ(n), so that there is always a private key d.

Two parts of the key generation are non-trivial: Step 1, in which the two large
primes are chosen, as well as Steps 4 and 5 in which the public and private key
are computed. The prime generation of Step 1 is quite challenging and is addressed
in Section 7.6. The computation of the keys d and e can be done at once using the
extended Euclidean algorithm (EEA). In practice, one often starts by first selecting a
public parameter e in the range 0 < e < Φ(n). The value e must satisfy the condition
gcd(e,Φ(n)) = 1. Obviously, it is wise to exclude e = 1 since this would result in
y = x. Once we have chosen n, we apply the EEA with the input parameters n and e
and obtain the relationship:

gcd(Φ(n),e) = s ·Φ(n)+ t · e

If gcd(e,Φ(n)) = 1, we know that e is a valid public key. Moreover, we also know
that the parameter t computed by the extended Euclidean algorithm is the inverse of
e, and thus:

d ≡ t mod Φ(n)

If e and Φ(n) are not relatively prime, we simply select a new value for e and repeat
the process. Note that the coefficient s of the EEA is not required for RSA and does
not need to be computed.

We now see how RSA works by presenting an example with toy values.

Example 7.1. Alice wants to send an encrypted message to Bob. Bob first computes
his RSA parameters in Steps 1–5. He then sends Alice his public key. Alice encrypts
the message (x = 4) and sends the ciphertext y to Bob. Bob decrypts y using his
private key.
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Alice Bob
message x = 4 1. choose p = 3 and q = 11

2. n = p ·q = 33
3. Φ(n) = (3−1)(11−1) = 20
4. choose e = 3
5. d ≡ e−1 ≡ 7 mod 20

kpub=(33,3)
←−−−−−−−−−−−−

y = xe ≡ 43 ≡ 31 mod 33
y=31−−−−−−−−−−−−→

yd = 317 ≡ 4 = x mod 33

Note that the private and public exponents fulfill the condition e · d = 3 · 7 ≡
1 mod Φ(n).
�

Practical RSA parameters are much, much larger. As can be seen from Table 6.1,
the RSA modulus n should be at least 2048 bits long, which results in a bit length
for p and q of 1024. In order to get a feeling for numbers in this range, we provide
below an example of an RSA instantiation where n is 1024 bits (this bit length was
in use for a long time):

p = E0DFD2C2A288ACEBC705EFAB30E4447541A8C5A47A37185C5A9
CB98389CE4DE19199AA3069B404FD98C801568CB9170EB712BF

10B4955CE9C9DC8CE6855C6123h

q = EBE0FCF21866FD9A9F0D72F7994875A8D92E67AEE4B515136B2
A778A8048B149828AEA30BD0BA34B977982A3D42168F594CA99
F3981DDABFAB2369F229640115h

n = CF33188211FDF6052BDBB1A37235E0ABB5978A45C71FD381A91
AD12FC76DA0544C47568AC83D855D47CA8D8A779579AB72E635
D0B0AAAC22D28341E998E90F82122A2C06090F43A37E0203C2B

72E401FD06890EC8EAD4F07E686E906F01B2468AE7B30CBD670
255C1FEDE1A2762CF4392C0759499CC0ABECFF008728D9A11ADFh

e = 40B028E1E4CCF07537643101FF72444A0BE1D7682F1EDB553E3
AB4F6DD8293CA1945DB12D796AE9244D60565C2EB692A89B888
1D58D278562ED60066DD8211E67315CF89857167206120405B0
8B54D10D4EC4ED4253C75FA74098FE3F7FB751FF5121353C554
391E114C85B56A9725E9BD5685D6C9C7EED8EE442366353DC39h

d = C21A93EE751A8D4FBFD77285D79D6768C58EBF283743D2889A3
95F266C78F4A28E86F545960C2CE01EB8AD5246905163B28D0B

8BAABB959CC03F4EC499186168AE9ED6D88058898907E61C7CC

CC584D65D801CFE32DFC983707F87F5AA6AE4B9E77B9CE630E2
C0DF05841B5E4984D059A35D7270D500514891F7B77B804BED81h
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What is interesting is that the message x is first raised to the e-th power during
encryption and the result y is raised to the d-th power in the decryption, and the
result of this is again equal to the message x. Expressed in a single equation, this
process is:

dkpr(y) = dkpr(ekpub(x))≡ (xe)d ≡ xde ≡ x mod n (7.3)

This is the essence of RSA. We will now prove why the RSA scheme works, the
so-called proof of correctness.

Proof. We need to show that decryption is the inverse function of encryption,
dkpr(ekpub(x)) = x. We start with the construction rule for the public and private
keys: d · e ≡ 1 mod Φ(n). By definition of the modulo operator, this is equivalent
to:

d · e = 1+ t ·Φ(n),

where t is some integer. Inserting this expression in Equation (7.3):

dkpr(y)≡ xde ≡ x1+t·Φ(n) ≡ xt·Φ(n) · x1 ≡ (xΦ(n))t · x mod n (7.4)

This means we have to prove that x≡ (xΦ(n))t · x mod n. We now use Euler’s The-
orem from Section 6.3.3, which states that if gcd(x,n) = 1 then 1≡ xΦ(n) mod n. A
minor generalization immediately follows:

1≡ 1t ≡ (xΦ(n))t mod n (7.5)

where t is any integer. For the proof we distinguish two cases:

First case: gcd(x,n) = 1
Euler’s Theorem holds here and we can insert Equation (7.5) into (7.4):

dkpr(y)≡ (xΦ(n))t · x≡ 1 · x≡ x mod n q.e.d.

This part of the proof establishes that decryption is actually the inverse func-
tion of encryption for plaintext values x which are relatively prime to the RSA
modulus n. We provide now the proof for the other case.

Second case: gcd(x,n) = gcd(x, p ·q) 6= 1
Since p and q are primes, x must have one of them as a factor:

x = r · p or x = s ·q

where r,s are integers such that r < q and s < p. Without loss of generality we
assume x = r · p, from which it follows that gcd(x,q) = 1. Euler’s Theorem holds
in the following form:

1≡ 1t ≡ (xΦ(q))t mod q

where t is any positive integer. We now look at the term (xΦ(n))t again:

(xΦ(n))t ≡ (x(q−1)(p−1))t ≡ ((xΦ(q))t)p−1 ≡ 1(p−1) = 1 mod q
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Using the definition of the modulo operator, this is equivalent to:

(xΦ(n))t = 1+u ·q

where u is some integer. We multiply this equation by x:

x · (xΦ(n))t = x+ x ·u ·q
= x+(r · p) ·u ·q
= x+ r ·u · (p ·q)
= x+ r ·u ·n

x · (xΦ(n))t ≡ x mod n (7.6)

Inserting Equation (7.6) into Equation (7.4) yields the desired result:

dkpr = (xΦ(n))t · x≡ x mod n
ut

If this proof seems somewhat lengthy, please remember that the correctness of
RSA is simply assured by Step 5 of the RSA key generation phase. The proof be-
comes simpler by using the Chinese Remainder Theorem, which we have not intro-
duced.

7.4 Encryption and Decryption: Fast Exponentiation

Unlike symmetric algorithms such as AES, DES or stream ciphers, public-key al-
gorithms are based on arithmetic with very long numbers. Unless we pay close
attention to how to realize the necessary computations, we can easily end up with
schemes that are too slow for practical use. If we look at RSA encryption and de-
cryption in Equations (7.1) and (7.2), we see that both are based on modular expo-
nentiation. We restate both operations here for convenience:

y = ekpub(x)≡ xe mod n (encryption)

x = dkpr(y)≡ yd mod n (decryption)

A straightforward way of exponentiation looks like this:

x
SQ−→ x2 MUL−−−→ x3 MUL−−−→ x4 MUL−−−→ x5 · · ·

where SQ denotes squaring and MUL multiplication. Unfortunately, the exponents
e and d are in general very large numbers. The exponents are typically chosen in
the range of 2048 . . .3072 bits or even larger. (The public exponent e is sometimes
chosen to be a small value, but d is always very long.) Straightforward exponentia-
tion as shown above would thus require around 22048 or more multiplications. Since
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the number of atoms in the visible universe is estimated to be around 2300, com-
puting 22048 multiplications to set up one secure session for our web browser is not
too tempting. The central question is whether there are considerably faster methods
for exponentiation available. The answer is, luckily, yes. Otherwise we could for-
get about RSA and many other public-key cryptosystems in use today, since they
all rely on exponentiation. One such method is the square-and-multiply algorithm.
We first show a few illustrative examples with small numbers before presenting the
actual algorithm.

Example 7.2. Let’s look at how many multiplications are required to compute the
simple exponentiation x8. With the straightforward method:

x
SQ−→ x2 MUL−−−→ x3 MUL−−−→ x4 MUL−−−→ x5 MUL−−−→ x6 MUL−−−→ x7 MUL−−−→ x8

we need seven multiplications and squarings. Alternatively, we can do something
faster:

x
SQ−→ x2 SQ−→ x4 SQ−→ x8

which requires only three squarings and one squaring is roughly as complex as a
multiplication.
�

This fast method works fine but is restricted to exponents that are powers of 2,
i.e., values e and d of the form 2i. Now the question is whether we can extend the
method to arbitrary exponents. Let us look at another example.

Example 7.3. This time we have the more general exponent 26, i.e., we want to
compute x26. Again, the naı̈ve method would require 25 multiplications. A faster
way is as follows:

x
SQ−→ x2 MUL−−−→ x3 SQ−→ x6 SQ−→ x12 MUL−−−→ x13 SQ−→ x26

This approach takes a total of six operations, two multiplications and four squarings.
�

Looking at the last example, we see that we can achieve the desired result by
performing two basic operations:

1. squaring the current result,
2. multiplying the current result by the base element x.

In the example above we computed the sequence SQ, MUL, SQ, SQ, MUL, SQ.
However, we do not know the sequence in which the squarings and multiplications
have to be performed for other exponents. One solution is the square-and-multiply
algorithm. It provides a systematic way to find the sequence in which we have to
perform squarings and multiplications by x for computing xH . Roughly speaking,
the algorithm works as follows:
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The algorithm is based on scanning the bits of the exponent from the left (the
most significant bit) to the right (the least significant bit). In every iteration, i.e., for
every exponent bit, the current result is squared. If and only if the currently scanned
exponent bit has the value 1, a multiplication of the current result by x is executed
following the squaring. After every operation, a modular reduction is performed.

This seems like a simple yet somewhat odd rule. For a better understanding, let’s
revisit the example from above. This time, let’s pay close attention to the exponent
bits.

Example 7.4. We again consider the exponentiation x26. For the square-and-multiply
algorithm, the binary representation of the exponent is crucial:

x26 = x110102 = x(h4h3h2h1h0)2 .

The algorithm scans the exponent bits, starting on the left with h4 and ending with
the rightmost bit h0.

Step
#0 x = x12 inital setting, bit processed: h4 = 1

#1a (x1)2 = x2 = x102 SQ, bit processed: h3
#1b x2 · x = x3 = x102 x12 = x112 MUL, since h3 = 1

#2a (x3)2 = x6 = (x112)2 = x1102 SQ, bit processed: h2
#2b no MUL, since h2 = 0

#3a (x6)2 = x12 = (x1102)2 = x11002 SQ, bit processed: h1
#3b x12 · x = x13 = x11002x12 = x11012 MUL, since h1 = 1

#4a (x13)2 = x26 = (x11012)2 = x110102 SQ, bit processed: h0
#4b no MUL, since h0 = 0

To understand the algorithm it is helpful to closely observe how the binary rep-
resentation of the exponent evolves. We see that the first basic operation, squaring,
results in a left shift of the exponent, with a 0 put in the rightmost position. The other
basic operation, multiplication by x, results in filling a 1 into the rightmost position
of the exponent. Compare how the highlighted exponents change from iteration to
iteration.
�
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Here is the pseudo code for the square-and-multiply algorithm:

Square-and-Multiply Algorithm for Modular Exponentiation
Input:
base element x
exponent H = ∑

t
i=0 hi2i, with hi ∈ 0,1 and ht = 1

modulus n
Output: xH mod n
Initialization: r = x
Algorithm:

1 FOR i = t−1 DOWNTO 0
1.1 r ≡ r2 mod n

IF hi = 1
1.2 r ≡ r · x mod n
2 RETURN (r)

The modulo reduction is applied after each multiplication and squaring operation
in order to keep the intermediate results small. It is helpful to compare this pseudo
code with the verbal description of the algorithm above.

We now determine the complexity of the square-and-multiply algorithm for an
exponent H with a bit length of t+1, i.e., dlog2 He= t+1. The number of squarings
is independent of the actual value of H, but the number of multiplications is equal
to the Hamming weight, i.e., the number of ones in its binary representation. Thus,
we provide here the average number of multiplications, denoted by MUL:

#SQ = t

#MUL = 0.5 t

Because the exponents used in cryptography often have good random properties,
assuming that half of their bits have the value one is often a valid approximation.

Example 7.5. How many operations are required on average for an exponentiation
with a 2048-bit exponent?

Straightforward exponentiation takes 22048 ≈ 10600 multiplications. That is com-
pletely impossible, no matter what computer resources we might have at hand. How-
ever, the square-and-multiply algorithm requires only

1.5 ·2048 = 3072

squarings and multiplications on average. This is an impressive example of the
difference between an algorithm with linear complexity (straightforward exponen-
tiation) and logarithmic complexity (square-and-multiply algorithm). Remember,
though, that each of the 3072 individual squarings and multiplications involves
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2048-bit numbers. That means that the number of integer operations on a CPU is
much higher than 3072 but certainly doable on modern computers.
�

7.5 Speed-Up Techniques for RSA

As we learned in Section 7.4, RSA involves exponentiation with very long numbers.
Even if the low-level arithmetic involving modular multiplication and squaring as
well as the square-and-multiply algorithm are implemented carefully, performing a
full RSA exponentiation with operands of length 2048 bits or beyond is computa-
tionally intensive. Thus, people have studied speed-up techniques for RSA since its
invention. We introduce two of the most popular general acceleration techniques in
the following.

7.5.1 Fast Encryption with Short Public Exponents

A surprisingly simple and very powerful trick can be used when RSA operations
with the public key e are concerned. This is in practice encryption and, as we’ll
learn later, verification of an RSA digital signature. In this situation, the public key
e can be chosen to be a very small value. In practice, the three values e = 3, e = 17
and e = 216+1 are of particular importance. The resulting complexities when using
these public keys are given in Table 7.1.

Table 7.1 Complexity of RSA exponentiation with short public exponents

public key e e as binary string #MUL + #SQ
3 112 2

17 100012 5
216 +1 100000000000000012 17

These complexities should be compared to the 1.5 t multiplications and squarings
that are required for exponents of full length. Here t +1 is the bit length of the RSA
modulus n, i.e., dlog2 ne= t+1. We note that all three exponents listed above have a
low Hamming weight, i.e., number of ones in the binary representation. This results
in a particularly low number of operations for performing an exponentiation. Inter-
estingly, RSA is still secure if such short exponents are used. Note that in general,
the private key d still has the full bit length t +1 even though e is short.

An important consequence of the use of short public exponents is that encryption
of a message and verification of an RSA signature are a very fast operations. In fact,
for these two operations, RSA is in almost all practical cases the fastest public-key
scheme available. Unfortunately, there is no such easy way to accelerate RSA when
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the private key d is involved, i.e., for decryption and signature generation. Hence,
these two operations tend to be slow. Other public-key algorithms, in particular el-
liptic curves, are often much faster for these two operations. The following section
shows how we can achieve a more moderate speed-up when using the private expo-
nent d.

7.5.2 Fast Decryption with the Chinese Remainder Theorem

We cannot choose a short private key without compromising the security of RSA.
If we were to select keys d as short as those in the case of encryption in the section
above, an attacker could simply brute-force all possible numbers up to a given bit
length, i.e., 50 bits. But even if the numbers are larger, say 128 bits, there are key
recovery attacks. In fact, it can be shown that the private key must have a length of
at least 0.3 t bits, where t is the bit length of the modulus n. In practice, e is often
chosen short and d has full bit length. What is done instead is to apply a method
which is based on the Chinese Remainder Theorem (CRT). We do not introduce
the CRT itself here but merely how it applies to accelerate RSA decryption and
signature generation.

Our goal is to perform the exponentiation yd mod n efficiently. First we note that
the party who possesses the private key also knows the primes p and q. The basic
idea of the CRT is that rather than doing arithmetic with one “long” modulus n,
we do two individual exponentiations modulo the two “short” primes p and q. This
is a type of transformation arithmetic. Like any transform, there are three steps:
transforming into the CRT domain, computation in the CRT domain, and inverse
transformation of the result. Those three steps are explained below.

Transformation of the Input into the CRT Domain

We simply reduce the base element x modulo the two factors p and q of the modulus
n, and obtain what is called the modular representation of y.

yp ≡ y mod p

yq ≡ y mod q

Exponentiation in the CRT Domain

With the reduced versions of y we perform the following two exponentiations:

xp ≡ ydp
p mod p

xq ≡ ydq
q mod q
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where the two new exponents are given by:

dp ≡ d mod (p−1)
dq ≡ d mod (q−1)

Note that both exponents in the transform domain, dp and dq, are bounded by p and
q, respectively. The same holds for the transformed results xp and xq. Since the two
primes are in practice chosen to have roughly the same bit length, the two exponents
as well as xp and xq have about half the bit length of n.

Inverse Transformation into the Problem Domain

The remaining step is now to assemble the final result x from its modular represen-
tation (xp,xq). This follows from the CRT and can be done as:

x≡ [qcp]xp +[pcq]xq mod n (7.7)

where the coefficients cp and cq are computed as:

cp ≡ q−1 mod p, cq ≡ p−1 mod q

Since the primes change very infrequently for a given RSA implementation, the two
expressions in brackets in Equation (7.7) can be precomputed. After the precom-
putations, the entire reverse transformation is achieved with merely two modular
multiplications and one modular addition.

Before we consider the complexity of RSA with CRT, let’s have a look at an
example with toy parameters.

Example 7.6. Let the RSA parameters be given by:

p = 11 e = 7
q = 13 d ≡ e−1 ≡ 103 mod 120
n = p ·q = 143

We now compute an RSA decryption for the ciphertext y = 15 using the CRT, i.e.,
the value yd ≡ 15103 mod 143. In the first step, we compute the modular represen-
tation of y:

yp ≡ 15 ≡ 4 mod 11
yq ≡ 15 ≡ 2 mod 13

In the second step, we perform the exponentiation in the transform domain with the
short exponents. These are:

dp ≡ 103 ≡ 3 mod 10
dq ≡ 103 ≡ 7 mod 12
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Here are the exponentiations:

xp ≡ ydp
p = 43 = 64≡ 9 mod 11

xq ≡ ydq
q = 27 = 128≡ 11 mod 13

In the last step, we have to compute x from its modular representation (xp,xq). For
this, we need the coefficients:

cp = 13−1 ≡ 2−1 ≡ 6 mod 11 cq = 11−1 ≡ 6 mod 13

The plaintext x follows now as:

x ≡ [qcp]xp +[pcq]xq mod n

x ≡ [13 ·6]9+[11 ·6]11 mod 143
x ≡ 702+726 = 1428≡ 141 mod 143

�

If you want to verify the result, you can compute yd mod 143 using the square-and-
multiply algorithm.

We will now establish the computational complexity of the CRT method. If we
look at the three steps involved in the CRT-based exponentiation, we conclude that
for a practical complexity analysis the transformation and inverse transformation
can be ignored since the operations involved are negligible compared to the actual
exponentiations in the transform domain. For convenience, we restate these CRT
exponentiations here:

xp ≡ ydp
p mod p

xq ≡ ydq
q mod q

If we assume that n has t +1 bits, both p and q are about t/2 bits long. All numbers
involved in the CRT exponentiations, i.e., xp, xq, dp and dq, are bound in size by
p and q, respectively, and thus also have a length of about t/2 bits. If we use the
square-and-multiply algorithm for the two exponentiations, each requires on average
approximately 1.5 t/2 modular multiplications and squarings. Together, the number
of multiplications and squarings is thus:

#SQ+#MUL = 2 ·1.5 t/2 = 1.5 t

This appears to be exactly the same computational complexity as regular exponen-
tiation without the CRT. However, each multiplication and squaring involves num-
bers that have half the length of the modulus, i.e, only t/2 bits. This is in contrast to
the operations without the CRT, where each multiplication was performed with t-bit
variables. Since the complexity of multiplication decreases quadratically with the bit
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length, each t/2-bit multiplication is four times faster than a t-bit multiplication.1

Thus, the total speed-up obtained through the CRT is a factor of 4. This speed-
up by a factor of four can be very valuable in practice. Since there are hardly any
drawbacks involved, CRT-based exponentiations are used in many cryptographic
products, e.g., for web browser encryption. The method is also particularly valuable
for implementations on smart cards or small IoT devices, which are only equipped
with small microprocessors. Here, digital signing is often needed, which involves
the secret key d. By applying the CRT for signature computation, the embedded
device is four times as fast. For example, if a regular 2048-bit RSA exponentiation
takes 3 seconds, using the CRT reduces that time to 0.75 seconds. This accelera-
tion might make the difference between a product with high customer acceptance
(0.75 s) and a product with a delay that is not acceptable for many applications (3 s).
This example is a good demonstration of how basic number theory can have direct
impact in the real world.

7.6 Finding Large Primes

There is one important practical aspect of RSA that we have not discussed yet:
generating the primes p and q in Step 1 of the key generation, cf. Section 7.3. Since
their product is the RSA modulus n = p · q, the two primes should have about half
the bit length of n. For instance, if we want to set up RSA with a modulus of length
dlog2 ne = 2048, p and q should have a bit length of about 1024 bits. The general
approach is to generate integers at random which are then checked for primality, as
depicted in Figure 7.2, where RNG stands for random number generator. The RNG
should be non-predictable because an attacker that can compute or guess one of the
two primes can easily break RSA, as we will see later in this chapter.

Fig. 7.2 Principal approach to generating primes for RSA

1 The reason for the quadratic complexity is easy to see with the following example. If we multiply
a 4-digit decimal number abcd by another number wxyz, we multiply each digit from the first
operand with each digit of the second operand, for a total of 42 = 16 digit multiplications. On the
other hand, if we multiply two numbers with two digits, i.e., ab times wx, only 22 = 4 elementary
multiplications are needed.
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In order to make this approach work, we have to answer two questions:

1. How many random integers do we have to test before we have a prime? (If the
likelihood of a prime is too small, it might take too long.)

2. How fast can we check whether a random integer is prime? (Again, if the test is
too slow, the approach is impractical.)

It turns out that both steps are reasonably fast, as is discussed in the following.

7.6.1 How Common Are Primes?

First we’ll answer the question of whether the likelihood that a randomly picked
integer p is a prime is sufficiently high. We know from looking at the first few
positive integers that primes become less dense as the value increases:

2,3,5,7,11,13,17,19,23,29,31,37, . . .

The question is whether there is still a reasonable chance that a random number
with, say, 1024 bits, is a prime. Luckily, this is the case. The chance that a randomly
picked integer p̃ is a prime follows from the famous prime number theorem and is
approximately 1/ ln( p̃). In practice, we only test odd numbers so that the likelihood
doubles. Thus, the probability for a random odd number p̃ to be prime is:

P( p̃ is prime)≈ 2
ln( p̃)

In order to get a better feeling for what this probability means for RSA primes, let’s
look at an example.

Example 7.7. For RSA with a 2048-bit modulus n, the primes p and q each should
have a length of about 1024 bits, i.e., p,q ≈ 21024. The probability that a random
odd number p̃ is a prime is

P(p̃ is prime)≈ 2
ln(21024)

=
2

1024 ln(2)
≈ 1

354

This means that we expect to test 354 random odd numbers before we find one that
is a prime. If the primality test is reasonably fast, 354 tests are feasible.
�

The likelihood of integers being primes decreases slowly, proportionally to the
bit length of the integer. This means that even for very long RSA parameters, say
with 4096 bits, the density of primes is still sufficiently high.
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7.6.2 Primality Tests

The other step we have to do is to decide whether the randomly generated integers p̃
are primes. A first idea could be to factor the number in question. However, for the
numbers used in RSA, factorization is not possible since p and q are too large. (In
fact, we especially choose numbers that cannot be factored because factoring n is the
best known attack against RSA.) The situation is not hopeless, though. Remember
that we are not interested in the factorization of p̃. Instead we merely need the
(binary) statement whether the number being tested is a prime or not. It turns out
that such primality tests are computationally much, much easier than factorization.
Examples of primality tests are the Fermat test, the Miller–Rabin test or variants of
them. We introduce primality test algorithms in this section.

Practical primality tests behave somewhat unusually: If the integer p̃ in question
is being fed into a primality test algorithm, the answer is either

1. “p̃ is composite” (i.e., not a prime), which is always a true statement, or
2. “p̃ is prime”, which is only true with a certain probability.

If the algorithm output is “composite”, the situation is clear: The integer in question
is not a prime and can be discarded. If the output statement is “prime”, p̃ is probably
a prime. In rare cases, however, an integer prompts a “prime” statement but it lies,
i.e., it yields an incorrect positive answer. There is a way to deal with this behavior.
Practical primality tests are probabilistic algorithms. That means they have a second
parameter a as input which can be chosen at random. If a composite number p̃
together with a parameter a yields the incorrect statement “p̃ is prime”, we repeat
the test a second time with a different value for a. The general strategy is to test a
prime candidate p̃ so often with several different random values a that the likelihood
that the pair (p̃,a) lies every single time is sufficiently small, say, less than 2−80.
Remember that as soon as the statement “p̃ is composite” occurs, we know for
certain that p̃ is not a prime and we can discard it.

Fermat Primality Test

One primality test is based on Fermat’s Little Theorem, Theorem (6.3.2).

Fermat Primality Test
Input: prime candidate p̃ and security parameter s
Output: statement “p̃ is composite” or “p̃ is likely prime”
Algorithm:
1 FOR i = 1 TO s
1.1 choose random a ∈ {2,3, . . . , p̃−2}
1.2 IF ap̃−1 6≡ 1 mod p̃
1.3 RETURN (“p̃ is composite”)
2 RETURN (“p̃ is likely prime”)
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The idea behind the test is that the theorem holds for all primes. Hence, if a num-
ber is found for which ap̃−1 6≡ 1 in Step 1.2, it is certainly not a prime. However, the
reverse is not true. There could be composite numbers which in fact fulfill the con-
dition a p̃−1 ≡ 1. In order to detect them, the algorithm is run s times with different
values of a.

Unfortunately, there are certain composite integers that behave like primes in
the Fermat test for many values of a. These are the Carmichael numbers. Given a
Carmichael number C, the following expression holds for all integers a for which
gcd(a,C) = 1:

aC−1 ≡ 1 mod C

Such special composites are very rare. For instance, there exist approximately only
100,000 Carmichael numbers below 1015.

Example 7.8. Carmichael Number
n = 561 = 3 ·11 ·17 is a Carmichael number since

a560 ≡ 1 mod 561

for all a with gcd(a,561) = 1.
�

If the prime factors of a Carmichael number are all large, there are only few bases
a for which Fermat’s test detects that the number is actually composite. For this
reason, the more powerful Miller–Rabin test is often used in practice to generate
RSA primes.

Miller–Rabin Primality Test

In contrast to Fermat’s test, the Miller–Rabin test does not have any composite num-
bers for which a large number of base elements a yield the statement “prime”. The
test is based on the following theorem.

Theorem 7.6.1 Given the decomposition of an odd prime candi-
date p̃

p̃−1 = 2ur

where r is odd. If we can find an integer a such that

ar 6≡ 1 mod p̃ and ar 2 j 6≡ p̃−1 mod p̃

for all j = {0,1, . . . ,u− 1}, then p̃ is composite. Otherwise, it is
probably a prime.

We can turn this into an efficient primality test.
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Miller–Rabin Primality Test
Input: prime candidate p̃ with p̃−1 = 2ur and security parameter s
Output: statement “p̃ is composite” or “p̃ is likely prime”
Algorithm:
1 FOR i = 1 TO s

choose random a ∈ {2,3, . . . , p̃−2}
1.2 z≡ ar mod p̃
1.3 IF z 6≡ 1 AND z 6≡ p̃−1

j = 1
1.4 WHILE j ≤ u−1 AND z 6≡ p̃−1

z≡ z2 mod p̃
1.5 IF z≡ 1 RETURN (“p̃ is composite”)

ELSE j = j+1
1.6 IF z 6≡ p̃−1 RETURN (“p̃ is composite”)
2 RETURN (“p̃ is likely prime”)

Step 1.2 is computed by using the square-and-multiply algorithm. The IF statement
in Step 1.3 tests the theorem for the case j = 0. The WHILE loop in Step 1.4 and
the IF statement in Step 1.5 test the right-hand side of the theorem for the values j =
1, . . . ,u− 1. Finally, the IF statement in Step 1.6 tests the right side of the theorem
for j = u.

It can still happen that a composite number p̃ gives the incorrect statement
“prime”. However, the likelihood of this rapidly decreases as we run the test with
several different random base elements a. The number of runs is given by the secu-
rity parameter s in the Miller–Rabin test. Table 7.2 shows how many different values
a must be chosen in order to have a probability of less than 2−80 that a composite is
incorrectly detected as a prime.

Table 7.2 Number of runs within the Miller–Rabin primality test for an error prob-
ability of less than 2−80

Bit length of p̃ Security parameter s
250 11
300 9
400 6
500 5
600 3

Example 7.9. Miller–Rabin Test
Let p̃ = 91. We write p̃ as p̃−1 = 21 ·45. We select a security parameter of s = 4.
Now, we choose s times a random value a:

1. Let a = 12: z = 1245 ≡ 90 mod 91, hence, p̃ is likely prime.
2. Let a = 17: z = 1745 ≡ 90 mod 91, hence, p̃ is likely prime.
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3. Let a = 38: z = 3845 ≡ 90 mod 91, hence, p̃ is likely prime.
4. Let a = 39: z = 3945 ≡ 78 mod 91, hence, p̃ is composite.

Since the numbers 12, 17 and 38 give incorrect statements for the prime candidate
p̃ = 91, they are called “liars for 91”.
�

7.7 RSA in Practice: Padding

What we have described so far is the so-called “schoolbook RSA” system, which has
several weaknesses. To mitigate those, RSA has to be used with a padding scheme
in practice. The following properties of schoolbook RSA are problematic:

� RSA encryption is deterministic, i.e., for a specific key, a particular plaintext
is always mapped to a particular ciphertext. An attacker can derive statistical
properties of the plaintext from the ciphertext. Furthermore, given some pairs of
plaintext–ciphertext, partial information can be derived from new ciphertexts that
are encrypted with the same key.

� Plaintext values x = 0, x = 1 or x =−1 produce ciphertexts equal to 0, 1 or −1.
� Small public exponents e and small plaintexts x might be subject to attacks if

no padding or weak padding is used. However, there is no known attack against
small public exponents such as 216 +1.

� RSA has another undesirable property, namely that it is malleable.

A cryptographic scheme is said to be malleable if the attacker Oscar is capable of
transforming the ciphertext into a different ciphertext that leads to a known transfor-
mation of the plaintext. Note that the attacker does not decrypt the ciphertext but is
merely capable of manipulating the plaintext in a predictable manner. This is easily
achieved in the case of RSA if the attacker replaces the ciphertext y by se y, where s
is some integer. If the receiver decrypts the manipulated ciphertext, he computes:

(se y)d ≡ sed xed ≡ sx mod n

Even though Oscar is not able to decrypt the ciphertext, such targeted manipulations
can still do harm. For instance, if x were an amount of money that is to be transferred
or the value of a contract, by choosing s = 2 Oscar could exactly double the amount
in a way that goes undetected by the receiver.

A possible solution to most of the problems that RSA has is the use of padding,
which embeds a random structure into the plaintext before encryption. Modern tech-
niques such as Optimal Asymmetric Encryption Padding (OAEP) for padding RSA
messages are specified and standardized in Public-Key Cryptography Standard #1
(PKCS #1) . We will explain this padding standard in the following.
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Figure 7.3 shows the principle of OAEP. In order to protect against the attacks
sketched above, two strings are added to the message m prior to encryption:

� A random number rand consisting of r bits, e.g., r = 128. The random string
turns RSA from a deterministic into a probabilistic encryption scheme.

� An all-zero string consisting of z bits. This string prevents malleability attacks.

00 … 0 rand

r

r

z

H
1

H
2

| m | + z

x

| n | bits

pad

Fig. 7.3 Principle of the Optimal Asymmetric Encryption Padding (OAEP) scheme
for a message m

Since the goal is to encrypt with RSA, the result of the shown OAEP padding
must be equal to the bit length |n| of the RSA modulus n. Hence it holds:

|n|= |m|+ z+ r

This implies that the message m is shorter than the RSA modulus n.
OAEP combines the three inputs m, r and the zero string as shown in in Fig-

ure 7.3. H1 and H2 are hash functions with the output lengths |m|+ z and r, re-
spectively. In the OAEP standard, H1 and H2 are referred to as mask generation
functions rather than hash functions since the latter are defined to have a specific
output length. However, in practice hash functions such as SHA-2 (cf. Section 11.4)
can be used several times with a counter as partial input to achieve the desired bit
length. We note that the same hash function can be used for realizing H1 and H2.
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Encryption of a message m with RSA and padding works as follows:

RSA Encryption with OAEP
Given a message m and the public key kpub = (n,e), the encryption function
is:

y = ekpub(m)≡ (x||pad)e mod n

where

x = (m||00 . . .0)⊕H1(rand)

pad = rand⊕H2(x)

The two parallel bars “||” denote concatenation of two bit strings. Decryption of the
received ciphertext y is done as follows:

RSA Decryption with OAEP
Given the private key kpr = d and the ciphertext y, the decryption process
is:

1. RSA decryption: dkpr(y) = yd ≡ x||pad mod n
2. recompute rand = H2(x)⊕pad
3. recompute m||00 . . .0 = x⊕H1(rand)
4. verify that the zero string from Step 3 in fact contains z zero bits

The OAEP scheme forms a two-round Feistel network (cf. Fig 3.5). In Round 1,
the rand value is used for “encrypting” the message m and the zero string. The result
of this process, i.e., (m||00 . . .0)⊕H1(rand), is used in Round 2 for encrypting the
value rand itself. The f -function, which is crucial in every Feistel network (again,
cf. Fig 3.5), is H1 in Round 1 and H2 in Round 2.

Lastly, we note that some details of the OAEP scheme as specified in the PKCS
#1 Standard have been omitted for clarity. It is strongly recommended that the reader
refers to the document before implementing OAEP.

7.8 Key Encapsulation

As we have seen in Chapter 6, asymmetric encryption schemes can be used to build
a secure channel with which keys can be distributed. In practice this often means:
A symmetric key is exchanged with help of a public-key encryption scheme in or-
der to allow both parties to encrypt and decrypt large messages using much faster
symmetric ciphers. However, directly encrypting a symmetric key, e.g., a 128-bit
key for AES, requires padding of the key in order to serve as input for an asymmet-
ric encryption such as RSA-2048. Even though padding such as the OAEP scheme
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described in the previous section is possible, it is often preferred in practice to use
a simpler encryption technique called key encapsulation mechanism (KEM) for the
exchange of a symmetric key. (One reason for not using a padding scheme is that se-
curity proofs tend to be easier without padding, a topic not addressed in this book.)
With a KEM, a random value is first securely exchanged between Alice and Bob.
More precisely, Alice performs the encapsulation operation of the KEM that gen-
erates a random value which is directly encrypted using an asymmetric encryption
scheme. Bob, on the other side, receives the encrypted packet and uses the decap-
sulation operation of the KEM to decrypt the random value using his private key.
Second, the random value is used by both Alice and Bob to derive the symmetric
key with the help of a key derivation function (KDF) such as a cryptographic hash
function. An example of a KEM encryption is shown in Figure 7.4. RSA or another
public-key encryption scheme such as Elgamal (cf. Section 8.5) or a PQC algorithm
from Table 12.1 can be used for the first phase of the protocol.

Alice Bob
kpub←−−−−−−−−−−−− kpub,kpr

KEM encapsulation:
1) choose random r
2) y = ekpub (r)

y−−−−−−−−−−−−→
derive key KEM decapsulation:

k = KDF(r) r = dkpr (y)

derive key
k = KDF(r)

encrypt (large) payload x
z = AESk(x)

z−−−−−−−−−−−−→
x = AES−1

k (z)

Fig. 7.4 Key encapsulation mechanism with public-key encryption, with AES being
used as an example symmetric cipher
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7.9 Attacks

Numerous attacks have been proposed against RSA since it was invented in 1977.
None of the attacks are serious if RSA is realized in a careful manner, and moreover,
they typically exploit weaknesses in the way RSA is implemented or used rather
than the RSA algorithm itself. There are three general attack families against RSA:

1. Protocol attacks
2. Mathematical attacks
3. Side-channel attacks

We comment on each of them in the following.

Protocol Attacks

Protocol attacks exploit weaknesses in the way RSA is being used. There have been
several protocol attacks over the years. Among the better-known ones are attacks
that exploit the malleability of RSA, which was introduced in the previous section.
Many of them can be avoided by using padding. Modern security standards describe
exactly how RSA should be used, and if those guidelines are followed, protocol
attacks should not be possible.

Mathematical Attacks

The best mathematical cryptanalytical method we know is factoring the modulus.
An attacker, Oscar, knows the modulus n, the public key e and the ciphertext y. His
goal is to compute the private key d, which has the property that e ·d ≡ 1 mod Φ(n).
It seems that he could simply apply the extended Euclidean algorithm and compute
d. However, he does not know the value of Φ(n). At this point factoring comes in:
The best way to obtain this value is to decompose n into its primes p and q. If Oscar
can do this, the attack succeeds rather trivially in three steps:

Φ(n) = (p−1)(q−1)
d−1 ≡ e mod Φ(n)

x ≡ yd mod n

In order to prevent this attack, the modulus must be sufficiently large. This is the
sole reason why moduli of 2048 or more bits are needed for RSA. The proposal of
the RSA scheme in 1977 sparked much interest in the old problem of integer fac-
torization. In fact, the major progress that has been made in factorization in the last
four decades would most likely not have happened if it weren’t for RSA. Table 7.3
shows a summary of the RSA factoring records that have occurred since the begin-
ning of the 1990s. These advances have been possible mainly due to improvements
in factoring algorithms, and to a lesser extent due to improved computer technology.
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Even though factoring has become easier than the RSA designers had assumed in
the mid-1970s, factoring RSA moduli beyond a certain size is still out of reach.

Table 7.3 Some of the RSA factoring records since 1991

Decimal digits Bit length Date
100 330 Apr 1991
110 364 Apr 1992
120 397 Jul 1993
129 426 Apr 1994
140 463 Feb 1999
174 576 Dec 2003
200 663 May 2005
212 704 Jul 2012
232 768 Dec 2009
250 829 Feb 2020

The factorizations of RSA-576 and RSA-768 shown in the table belong to the
RSA Factoring Challenge, which was announced by RSA Laboratories in 1991 and
included cash prizes. The scientist Thorsten Kleinjung and his collaborators were
heavily involved in both factorization efforts. The 768-bit factorization is also note-
worthy because RSA with such a modulus length had been used in practical systems.
It should be noted that factorization requires considerable resources. RSA-768 took
ten months and massive computing, provided by four computer clusters. Of histor-
ical interest is the 129-digit modulus which was published in a column by Martin
Gardner in Scientific American in 1977. It was estimated that the best factoring algo-
rithms of that time would take 40 trillion (4 ·1013) years. However, factoring meth-
ods improved considerably, particularly during the 1980s and 1990s, and it took in
fact less than 30 years.

The exact length an RSA modulus should have was the topic of many discussions
in the 1990s and early 2000s. At the time of writing, it is believed in the academic
world that it might be possible to factor 1024-bit numbers (a popular modulus length
not that long ago) within a period of about 10 years, and intelligence organiza-
tions might be capable of doing it possibly even earlier. Hence, it is recommended
to choose RSA parameters in the range of 2048–4096 bits for long-term security.
Please note that in the future, large-scale quantum computers could break RSA, as
we will discuss in Chapter 12.

Side-Channel Attacks

A third and entirely different family of attacks are side-channel attacks. They exploit
information about the private key, which is leaked through physical channels such
as the power consumption or the timing behavior. In order to observe such channels,
an attacker must typically have direct access to the RSA implementation, e.g., in a
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mobile phone or an IoT device. Even though side-channel analysis is a large and
active field of research in modern cryptography and beyond the scope of this book,
we show one particularly insightful attack against RSA in the following.

Figure 7.5 shows the power trace of an RSA implementation on a microprocessor.
More precisely, it shows the electric current drawn by the processor over time. Our
goal is to extract the private key d which is used during the RSA decryption. We
clearly see intervals of high activity between short periods of less activity. Since the
main computational load of RSA is the squaring (S) and multiplication (M) during
the exponentiation, we conclude that the high-activity intervals correspond to those
two operations. If we look more closely at the power trace, we see that there are
high-activity intervals that are short and others which are longer. In fact, the longer
ones appear to be about twice as long. This behavior is explained by the square-
and-multiply algorithm (cf. Section 7.4). If an exponent bit has the value 0, only a
squaring is performed. If an exponent bit has the value 1, a squaring together with a
multiplication is computed. But this timing behavior immediately reveals the key: A
long period of activity corresponds to the bit value 1 of the private key, and a short
period to a key bit with value 0. As shown in the figure, we can identify the secret
exponent by simply looking at the power trace. Thus we can learn the following 12
bits of the private key by looking at the trace:

operations: S SM SM S SM S S SM SM SM S SM
private key: 0 1 1 0 1 0 0 1 1 1 0 1

Based on this observation one can easily find all 2048 bits of a full-length private
key in a real-world setting. During the short periods with low activity, the square-
and-multiply algorithm scans and processes the exponent bits before it triggers the
next squaring or squaring-and-multiplication sequence.

This specific attack is classified as simple power analysis or SPA. There are sev-
eral countermeasures available to prevent the attack. A straightforward one is to ex-
ecute a multiplication with dummy variables after a squaring, which corresponds to
an exponent bit 0. This results in a power profile (and a run time) that is independent
of the exponent. However, countermeasures against more advanced side-channel at-
tacks are not as straightforward.

7.10 Implementation in Software and Hardware

RSA is the prime example (almost literally) for a public-key algorithm that is com-
putationally extremely intensive. Hence, the implementation of public-key algo-
rithms is much more crucial than that of symmetric ciphers like 3DES and AES,
which are significantly faster. In order to get an appreciation for the computational
load, we develop a rough estimate for the number of integer multiplications needed
for an RSA operation.
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Fig. 7.5 The power trace of an RSA implementation

We assume a 2048-bit RSA modulus. For decryption we need an average of 3072
squarings and multiplications, each of which involves 2048-bit operands. Let’s as-
sume a 32-bit CPU where each operand is represented by 2048/32 = 64 registers.
A single long-number multiplication requires 642 = 4096 integer multiplications
since we have to multiply every register of the first operand with every register of
the second operand. In addition, we have to modulo reduce each of these multipli-
cations. The best algorithms for doing this also require roughly 642 = 4096 integer
multiplications. Thus, in total, the CPU has to perform about 4096+ 4096 = 8192
integer multiplications for a single long-number multiplication with modulo reduc-
tion. Since we have 3072 of these, the number of integer multiplications for one
decryption is:

#(32-bit mult) = 3072×8192 = 25,165,824

Many desktop CPUs allow multiplications with 64-bit operands, which cuts the mul-
tiplication count by a factor of four. But even then, given that integer multiplications
are often the slowest instructions on CPUs, the computational demand is consider-
able. Note that most other public-key schemes have a comparable complexity.

The extremely high computational demand of RSA was, in fact, a serious hin-
drance to its adoption in practice after it had been invented. Doing hundreds of
thousands of integer multiplications was out of question with 1970s-style comput-
ers. The only option for RSA implementations with an acceptable run time was
to realize RSA on special hardware chips until the mid- to late 1980s. Even the
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RSA inventors investigated hardware architectures in the early days of the algo-
rithm. Since then much research has focused on ways to quickly perform modular
integer arithmetic. Given the enormous capabilities of state-of-the-art VLSI chips,
an RSA operation can today be done within 100 µs or less.

Similarly, due to Moore’s law, RSA implementations in software have become
possible since the late 1980s. A typical decryption operation on a 3 GHz CPU takes
around 1.6 ms for RSA-2048. Even though this is an acceptable time for many
applications, it is still too slow for bulk data encryption, as it corresponds to an
unimpressive encryption rate of a mere 2048 bits/1.6 ms = 160 kbyte/s. This is
clearly too slow for most of today’s applications where even moderate data packages
are in the range of megabytes. For this reason RSA and other public-key algorithms
are not used for bulk data encryption. Rather, symmetric algorithms are used that
are often faster by a factor of 1000.

7.11 Discussion and Further Reading

RSA and Variants The RSA cryptosystem is widely used in practice and is well
standardized in standards such as PKCS#1 [224]. Over the years several variants
have been proposed. One generalization is to use a modulus which is composed of
more than two primes such as multipower moduli of the form n = p2 q [243] or
multifactor moduli where n = pq r [74]. In both cases computational speed-ups by
a factor of approximately 2–3 are possible.

Several other cryptographic schemes are based on the integer factorization prob-
lem. A prominent one is the Rabin scheme [213]. In contrast to RSA, it can be shown
that the Rabin scheme is equivalent to factoring. Thus, it is said that the cryptosys-
tem is provably secure. Other schemes that rely on the hardness of integer factoriza-
tion include the probabilistic encryption scheme by Blum–Goldwasser [57] and the
Blum Blum Shub pseudorandom number generator [56]. The Handbook of Applied
Cryptography [189] describes all the schemes mentioned in a coherent form.

Implementation The actual performance of an RSA implementation heavily de-
pends on the efficiency of the arithmetic used. Generally speaking, speed-ups are
possible at two levels. On the higher level, improvements of the square-and-multiply
algorithm are an option. One of the fastest methods is sliding-window exponentia-
tion, which gives an improvement of about 25% over the square-and-multiply algo-
rithm. A good compilation of exponentiation methods is given in [189, Chapter 14].
However, all of these methods and the square-and-multiply algorithm itself result in
a run time that depends on the exponent. This can often lead to a leakage of the expo-
nent value, especially of the private key, through simple power analysis attacks (cf.
Section 7.9) or timing attacks (cf. below). For this reason, acceleration techniques
for the square-and-multiply algorithm have become less popular and constant-time
implementations are often preferred.
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On the lower layer, modular multiplication and squaring with long numbers can
be improved. One set of techniques deals with efficient algorithms for modular re-
duction. In practice, Montgomery reduction is the most popular choice; see [69]
for a good treatment of software techniques and [109] for hardware. Several alter-
natives to the Montgomery method have also been proposed over the years [193],
[189, Chapter 14]. Another angle to accelerate long-number arithmetic is to apply
fast multiplication methods. Spectral techniques such as the fast Fourier transform
(FFT) are usually not applicable because the operands are still too short, but meth-
ods such as the Karatsuba algorithm [157] are very useful. Reference [35] gives a
comprehensive but fairly mathematical treatment of the area of multiplication algo-
rithms, and [251] describes the Karatsuba method from a practical viewpoint.

Attacks Breaking RSA analytically has been a subject of intense investigation
since the late 1970s. Especially during the 1980s, major progress in factorization
algorithms was made, which was largely motivated by RSA. There have been nu-
merous other attempts to mathematically break RSA, including attacks against short
private exponents. A good survey is given in [62]. Starting around the turn of the
millenium, proposals have been made to build special computers whose sole pur-
pose is to break RSA. Proposals include an optoelectronic factoring machine [230]
and several other architectures based on conventional semiconductor technology
[231, 120]. Another factorization attack is possible if the two prime numbers p and
q are too close to each other. This property allows employment what is known as
Fermat factorization. Another number-theoretical attack is possible if short expo-
nents (cf. Section 7.5.1) are used without padding. Yet another way of breaking
RSA becomes feasible if the private key d is chosen too short. Wiener’s attack is
applicable for private exponents d < 1/3 n1/4, where n is the RSA modulus.

Besides the security of the algorithm itself, a sound implementation of the prime
generation is crucial. Choosing private primes requires a good source of random-
ness. An interesting attack can be mounted if two RSA instantiations share one of
the two primes, i.e., if the first RSA algorithm uses n1 = (p,q1) and the second one
n2 = (p,q2). An adversary can now immediately derive the secret prime by com-
puting gcd(n1,n2) = p, and thus factor n. In an ideal world this is not supposed to
happen but can occur in practice, e.g., if the RSA primes are generated by a server
that uses a faulty true random number generator. See Problem 7.17 for a toy example
of the attack. Somewhat surprisingly, this attack was discovered independently by
two groups in 2012 [142, 171] — that is, 35 years after RSA had been invented. The
authors of Reference [142] successfully mounted an attack on weak keys in network
devices. They were able to show that 0.75% of TLS certificates share keys due to
insufficient entropy during key generation.

Side-channel attacks have been systematically studied in academia and industry
since the late 1990s. RSA and most other symmetric and asymmetric schemes are
vulnerable against differential power analysis (DPA), which is more powerful than
the simple power analysis (SPA) shown in this chapter. On the other hand, DPA
countermeasures are easier to realize for public-key algorithms than for symmetric
ciphers. A good starting point is the “DPA book” [180]. Related implementation-
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based attacks are fault injection attacks and timing attacks. The latter can be a se-
rious threat against exponentiation-based asymmetric schemes such as RSA. It is
important to stress that a cryptosystem can be mathematically very strong but still
be vulnerable to side-channel attacks.

7.12 Lessons Learned

� RSA is one of the three families of public-key cryptosystems that are in use today
(the other two are elliptic curve- and discrete logarithm-based schemes).

� RSA is mainly used for key transport, i.e., encryption of symmetric keys, and
digital signatures.

� The public key e can be a short integer. The private key d needs to have the
full length of the modulus. Hence, encryption can be significantly faster than
decryption.

� RSA relies on the integer factorization problem. It seems likely that 1024-bit
RSA moduli will be able to be factored soon in the academic community. It is
advisable to use RSA with a 2048-bit modulus, and 3072 or 4096 bits if long-
term security, e.g., with respect to nation-state attackers, is desired.

� “Schoolbook RSA” allows several attacks and in practice only RSA with padding
should be used.

� RSA (as well as ECC and discrete logarithm schemes) will become insecure
should full-size quantum computers become available in the future.
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Problems

7.1. Let the two primes p = 41 and q = 17 be given as setup parameters for RSA.

1. Which of the parameters e1 = 32,e2 = 49 is a valid RSA exponent? Justify your
choice.

2. Compute the corresponding private key kpr = (p,q,d). Use the extended Eu-
clidean algorithm for the inversion and show every calculation step.

7.2. Computing modular exponentiation efficiently is central to using RSA in prac-
tice. Compute the following exponentiations xe mod m using the square-and-multiply
algorithm:

1. x = 2, e = 79, m = 101
2. x = 3, e = 197, m = 101
3. x = 5, e = 54, m = 151
4. x = 8, e = 127, m = 151

After every iteration step, show the exponent of the intermediate result in binary
notation.

7.3. Encrypt and decrypt by means of the RSA algorithm with the following system
parameters:

1. p = 3, q = 11, d = 7, x = 5
2. p = 5, q = 11, e = 3, x = 9

Only use a pocket calculator at this stage.

7.4. One major drawback of public-key algorithms is that they are relatively slow.
In Section 7.5.1 we learned that an acceleration technique is to use short exponents
e. We study short exponents in this problem in more detail.

1. Assume that in an implementation of the RSA cryptosystem one modular squar-
ing takes 75% of the time of a modular multiplication. How much quicker is
one encryption on average if instead of a 2048-bit public key the short exponent
e= 216+1 is used? Assume that the square-and-multiply algorithm is being used
in both cases.

2. Most short exponents are of the form e = 2n + 1. Would it be advantageous to
use exponents of the form 2n−1? Justify your answer.

3. Compute the exponentiation xe mod 29 with x = 5 and both variants of e from
Part 2 of this problem with n = 4. Use the square-and-multiply algorithm and
show each step of your computation.

7.5. In practice the short exponents e = 3, 17 and 216 +1 are often used.

1. Why can’t we use these three short exponents as values for the private key d in
applications where we want to accelerate decryption?

2. What is the minimum bit length for the private key of RSA-2048 in order to
prevent Wiener’s attack (cf. Paragraph “Attacks” in Section 7.11)?
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3. An interesting fact when working with short public exponents is that the private
key is a long number close to the modulus n. Show that for small public exponents
e the bit length of the private key d is at least

|φ(n)|− |e|

where the notation |x| denotes the bit length of the operand x. Also, show that
|φ(n)|= |n| in almost all cases.

7.6. Verify the example of RSA with CRT in Section 7.5.2 by computing yd =
15103 mod 143 using the square-and-multiply algorithm.

7.7. An RSA encryption scheme has the setup parameters p = 31 and q = 37. The
public key is e = 17.

1. Decrypt the ciphertext y = 2 using the CRT.
2. Verify your result by encrypting the plaintext without using the CRT.

7.8. Popular RSA modulus sizes are 2048, 3072 and 4092 bits.

1. How many random odd integers do we have to test on average until we expect to
find one that is a prime?

2. Derive a simple formula for any arbitrary RSA modulus size.

7.9. One of the most attractive applications of public-key algorithms is the estab-
lishment of a secure session key for a private-key algorithm such as AES over an
insecure channel.

Assume Bob has a pair of public/private keys for the RSA cryptosystem. Develop
a simple protocol using RSA which allows the two parties Alice and Bob to agree
on a shared secret key. Who determines the key in this protocol, Alice, Bob, or both?

7.10. In practice, it is sometimes desirable that both communication parties influ-
ence the selection of the session key. For instance, this prevents the other party from
choosing a key which is a weak key for a symmetric algorithm. Some block ciphers
such as DES and IDEA have weak keys. Messages encrypted with weak keys can
be recovered relatively easily from the ciphertext.

Develop a protocol similar to the one above in which both parties influence the
key. Assume that both Alice and Bob have a pair of public/private keys for the RSA
cryptosystem. Please note that there are several valid approaches to this problem.
Show just one.

7.11. In this exercise, you are asked to attack an RSA-encrypted message. You are
the attacker and you obtain the ciphertext y= 1141 by eavesdropping on the channel.
The public key is kpub = (n,e) = (2623,2111).

1. Consider the encryption formula. All variables except the plaintext x are known.
Why can’t you simply solve the equation for x?

2. In order to determine the private key d, you have to calculate d ≡ e−1 mod Φ(n).
There is an efficient expression for calculating Φ(n). Can we use this formula
here?
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3. Calculate the plaintext x by computing the private key d through factoring n.
(Hint: Factorization for such small RSA moduli can be done through an exhaus-
tive search with a list of all small primes and a simple program that checks which
prime up to

√
n factors n.) Does this approach remain suitable for numbers with

a length of 2048 bits or more?

7.12. We now show how an attack with chosen ciphertext can be used to break an
RSA encryption.

1. Show that the multiplicative property holds for RSA, i.e., show that the product
of two ciphertexts y1 and y2 is equal to the encryption of the product of the two
respective plaintexts x1 and x2.
Under certain circumstances, this property might be exploited by an attacker.

2. Assume Oscar eavesdrops and obtains a ciphertext y1, which is the encrypted
version of a message x1 that was sent from Alice to Bob. Oscar would like to
know the plaintext x1.
Oscar computes an innocent looking message t, which he encrypts. We assume
that he can obtain the decryption of one ciphertext that he sends to Bob, e.g., by
having access to Bob’s computer at a certain point in time. Show how Oscar can
construct a ciphertext y in such a way that he can use its decryption for computing
x1.

7.13. In this exercise, we illustrate the problem of using nonprobabilistic cryptosys-
tems, such as schoolbook RSA, imprudently. Nonprobabilistic means that the same
plaintext maps to the same ciphertext. This allows traffic analysis (i.e., to draw some
conclusion about the plaintext by merely observing the ciphertext) and in some cases
even the total break of the cryptoystem. The latter holds especially if the number of
possible plaintexts is small. Suppose the following situation:

Alice wants to send a message to Bob encrypted with his public key (n,e). She
decides to use the ASCII table to assign a number to each character (space→ 32,
!→ 33, . . . , A→ 65, B→ 66, . . . , ∼→ 126) and to encrypt them separately.

1. Oscar eavesdrops on the transferred ciphertext. Describe how he can successfully
decrypt the message by exploiting the nonprobabilistic property of RSA.

2. Bob’s RSA public key is (n,e) = (3763,11). Decrypt the ciphertext

y = 2514,1125,333,3696,2514,2929,3368,2514

with the attack proposed in 1. For simplification, assume that Alice only chose
capital letters A, . . . ,Z during the encryption.

3. Is the attack still possible if we use OAEP padding? Exactly explain your answer.

7.14. The modulus of RSA has been enlarged over the years in order to thwart im-
proving factorization attacks. As one would assume, public-key algorithms become
slower as the modulus length increases. We study the relation between modulus
length and performance in this problem. The performance of RSA, and of almost
any other public-key algorithm, is dependent on how fast modulo exponentiation
with large numbers can be performed.
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1. Assume that one modulo multiplication or squaring with k-bit numbers takes
c · k2 clock cycles, where c is a constant. How much slower is RSA encryp-
tion/decryption with 1024 bits compared to RSA with 512 bits on average? Only
consider the encryption/decryption itself with an exponent of full length and the
square-and-multiply algorithm.

2. In practice, the Karatsuba algorithm, which has an asymptotical complexity that
is proportional to klog2 3, is often used for long-number multiplication in cryptog-
raphy. Assume that this more advanced technique requires c′ · klog2 3 = c′ · k1.585

clock cycles for multiplication or squaring, where c′ is a constant. What is the
ratio between RSA encryption with 1024 bits and RSA with 512 bits if the Karat-
suba algorithm is used in both cases? Again, assume that full-length exponents
are being used.

7.15. (Advanced problem!) There are ways to improve the square-and-multiply al-
gorithm, that is, to reduce the number of operations required. Although the number
of squarings is fixed, the number of multiplications can be reduced. Your task is to
come up with a modified version of the square-and-multiply algorithm which re-
quires fewer multiplications. Give a detailed description of how the new algorithm
works and what the complexity is (number of operations).
Hint: Try to develop a generalization of the square-and-multiply algorithm which
processes more than one bit at a time. The basic idea is to handle k (e.g., k = 3)
exponent bits per iteration rather than one bit in the original square-and-multiply
algorithm.

7.16. Let us now investigate side-channel attacks against RSA. In a simple imple-
mentation of RSA without any countermeasures against side-channel leakage, the
analysis of the current consumption of the microcontroller in the decryption part
directly yields the private exponent. Figure 7.5 in Section 7.9 shows the power con-
sumption of an implementation of the square-and-multiply algorithm. If the mi-
crocontroller computes a squaring or a multiplication, the power consumption in-
creases. Due to the small intervals between the loops, every iteration can be identi-
fied. Furthermore, for each round we can identify whether a single squaring (short
duration) or a squaring followed by a multiplication (long duration) is being com-
puted.

1. Assume the square-and-multiply algorithm has been implemented such that the
exponent is being scanned from left to right. Furthermore, assume that the start-
ing values have been initialized. What is the private exponent d?

2. This key belongs to the RSA setup with the primes p = 67 and q = 103 and
e = 257. Verify your result. (Note that in practice an attacker wouldn’t know the
values of p and q.)

7.17. There is a vulnerability in RSA if the primes are re-used. Assume a certificate
server that generates RSA key pairs (kpub = (n,e),kpr = d) for users. Of course, to
generate the public keys, the server computes n = p q, were p and q are two large
primes. The server does not disclose the primes to the outside world, not even to the
owner of the private key.
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Two users, User 1 and User 2, obtain the key pairs (kpub1 = (n1,e1),kpr1 = d1)
and (kpub2 = (n2,e2),kpr2 = d2). Due to a faulty true random generator, n1 was
computed as n1 = p1 q1 and n2 as n2 = p1 q2, i.e., p1 was used for both key pairs.

1. Describe how an attacker can compute both private keys if he has both public
keys, which are, of course, publicly known. (Hint: You have to use the Euclidean
algorithm.)

2. You look up the two public keys kpub1 = (4757,17) and kpub2 = (2059,129) in a
certificate database. By wiretapping, you observe that User 1 receives the cipher-
text y1 = (0,1884,429) and User 2 receives y2 = (1186,836,0,1114,137,46).
Your task is to break the system and to recover the actual letters that form the
two plaintexts x1 and x2. The mapping between letters and plaintext numbers is
simple (cf. also Table 1.3):

A→ 0,B→ 1, . . . ,Z→ 25

Each letter is individually encrypted with RSA, i.e., the first plaintext consists of
three letters and the second one of six.
(Remark: In this basic form, RSA encrypts the plaintext value 0 to the ciphertext
0, which is a weakness. In practice, one uses additional techniques, especially
padding, to prevent this.)

7.18. Fermat Primality Test

1. State the prime number theorem.
2. Show that following numbers are not prime with help of the Fermat primality

test, i.e., find a number a such that gcd(a,n) = 1 with a(n−1) 6= 1 mod n

a. 221
b. 323
c. 143

3. Research which other primality tests exist and name three more.

7.19. Nowadays, RSA is often used with 2048, 3072 or 4096 bits. What are the bit
lengths of the corresponding prime numbers in all three cases? For each bit length
compute the probability that a random odd number is prime using the prime number
theorem.

7.20. By coincidence you learn that your colleagues are planning a secret party at
somebody’s house and you are not invited. Not very nice! In order to go to the
correct place you eavesdrop on your colleagues. Luckily, you manage to obtain the
email that your dear colleagues exchange.

Unfortunately, this email is RSA encrypted. You have the following information:

� kpub = (n,e) = (1271,11)
� Ciphertext: [955, 458, 562, 911, 914, 269, 690]
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The plaintext is the ASCII encoded name of the host of the party. Each ciphertext
contains one encrypted ASCII symbol.

Break RSA through factoring, find the location of the party, and surprise your
colleagues!



Chapter 8
Cryptosystems Based on the Discrete Logarithm
Problem

In the previous chapter we learned about the RSA public-key scheme, which is based
on the hardness of factoring large integers. The integer factorization problem is said
to be the one-way function of RSA. As explained earlier, a function f is one-way
if it is computationally easy to compute the function f (x) = y, but computationally
infeasible to compute the inverse f−1(y) = x. The question is whether we can find
other one-way functions for building asymmetric cryptographic schemes. It turns
out that most non-RSA public-key algorithms with practical relevance are based on
another one-way function, the discrete logarithm problem.

In this chapter, you will learn:

� The Diffie–Hellman key exchange
� Cyclic groups, which are important to gain a deeper understanding of the Diffie–

Hellman key exchange
� The discrete logarithm problem, which is of fundamental importance for many

practical public-key algorithms
� Encryption using the Elgamal scheme

In addition to the Diffie–Hellman key exchange and the Elgamal encryption
scheme introduced in this chapter, the Elgamal digital signature scheme (cf. Sec-
tion 10.3) and the Digital Signature Algorithm (cf. Section 10.2) are also based on
the discrete logarithm problem, as are cryptosystems based on elliptic curves (Chap-
ter 9).
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8.1 Diffie–Hellman Key Exchange

The Diffie–Hellman key exchange (DHKE), proposed by Whitfield Diffie and Martin
Hellman in 1976, was the first asymmetric scheme published in the open literature.
The two inventors were influenced by the work of Ralph Merkle. It provides a prac-
tical solution to the key distribution problem, i.e., it enables two parties to derive a
common secret key by communicating over an insecure channel1.

This fundamental key agreement technique is implemented for many open and
widely used cryptographic protocols such as Secure Shell (SSH), Transport Layer
Security (TLS) and Internet Protocol Security (IPSec). The DHKE is a very im-
pressive application of the discrete logarithm problem, which we’ll study in the
subsequent sections.

The basic idea behind the DHKE is that, for a prime p, exponentiation in Z∗p is a
one-way function and that exponentiation is commutative, i.e.,

k ≡ (αx)y ≡ (αy)x mod p

As we will see, the value k ≡ (αx)y ≡ (αy)x mod p is the joint secret in the DHKE,
which can be used as the session key between the two parties.

Let us now consider how the Diffie–Hellman key exchange protocol over Z∗p
works. In this protocol, there are two parties, Alice and Bob, who would like to
establish a shared secret key. There is possibly a trusted third party that properly
chooses and publishes public parameters which are needed for the key exchange.
However, it is also possible that Alice or Bob generate the public parameters and
exchange them.

Strictly speaking, the DHKE consists of two protocols, the set-up protocol and
the main protocol. The set-up protocol consists of the following steps:

Diffie–Hellman Set-up

1. Choose a large prime p.
2. Choose an integer α ∈ {2,3, . . . , p−2}.
3. Publish p and α .

These two values are sometimes referred to as domain parameters. In the follow-
ing, we assume that Alice and Bob are in possession of properly chosen domain
parameters (p,α). Now, they can generate a joint secret key k with the following
key exchange protocol:

1 The channel needs to be authenticated, an issue that will be discussed in detail in Section 14.4.
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Diffie–Hellman Key Exchange

Alice Bob
choose a = kpr,A ∈ {2, . . . , p−2} choose b = kpr,B ∈ {2, . . . , p−2}
compute A = kpub,A ≡ αa mod p compute B = kpub,B ≡ αb mod p

kpub,A=A
−−−−−−−−−−−−→

kpub,B=B
←−−−−−−−−−−−−

kAB = k
kpr,A
pub,B ≡ Ba mod p kAB = k

kpr,B
pub,A ≡ Ab mod p

The joint key kAB can be used to establish a secure communication between Alice
and Bob, e.g., with symmetric algorithms like AES, 3DES or a stream cipher. Here
is the proof that this surprisingly simple protocol is correct, i.e., that Alice and Bob
in fact compute the same session key kAB.

Proof. Alice computes
Ba ≡ (αb)a ≡ α

ab mod p

while Bob computes
Ab ≡ (αa)b ≡ α

ab mod p

and thus Alice and Bob share the session key kAB ≡ αab mod p. ut

We’ll look now at a simple example of the DHKE with small numbers.

Example 8.1. The Diffie–Hellman domain parameters are p = 29 and α = 2. The
protocol proceeds as follows:

Alice Bob
choose a = kpr,A = 5 choose b = kpr,B = 12
A = kpub,A = 25 ≡ 3 mod 29 B = kpub,B = 212 ≡ 7 mod 29

A=3−−−−−−−−−−−−→
B=7←−−−−−−−−−−−−

kAB = Ba = 75 ≡ 16 mod 29 kAB = Ab = 312 ≡ 16 mod 29

The joint secret kAB = 16 that both parties compute can be used for subsequent
cryptographic operations, e.g., as a session key for symmetric encryption.
�

The computational aspects of the DHKE are quite similar to those of RSA. Dur-
ing the set-up phase, we generate p using the probabilistic prime-finding algorithms
discussed in Section 7.6. As shown in Table 6.1, p should have a similar length to
the RSA modulus n, i.e., 2048 bits or beyond, in order to provide long-term secu-
rity. The integer α needs to be primitive, a special property of an element in Z∗p;
we explain primitive elements later in Section 8.2.2. The session key kAB computed
in the protocol has the same bit length as p. If we want to use it as a symmetric
key for algorithms such as AES, we can simply take the 128 most significant bits.
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Alternatively, we can apply a hash function to kAB and use pre-agreed parts of the
output as a symmetric key.

During the actual protocol, we first have to choose the private keys a and b. They
should stem from a true random number generator in order to prevent an attacker
from guessing them. For computing the public keys A and B as well as for comput-
ing the session key, both parties can make use of the square-and-multiply algorithm,
which was introduced in Section 7.4. The public keys are typically precomputed.
The main computation that needs to be done for a key exchange is thus the expo-
nentiation for the session key. In general, since the bit lengths and the computations
of RSA and the DHKE are very similar, they have comparable run times. However,
the trick of using short public exponents shown in Section 7.5.1 is not applicable to
the DHKE.

What we discussed so far is the classic DHKE protocol in the group Z∗p for a
prime p. The protocol can be generalized, in particular to groups of elliptic curves.
This gives rise to elliptic curve cryptography, which has become very popular for
asymmetric schemes in practice. In order to better understand elliptic curves as well
as schemes such as Elgamal encryption which are also closely related to the DHKE,
we introduce the discrete logarithm problem in the following sections. This prob-
lem is the mathematical basis for the DHKE. After we have introduced the discrete
logarithm problem, we will revisit the DHKE and discuss its security using a more
generalized approach.

8.2 Some Abstract Algebra

This section introduces some fundamentals of abstract algebra, in particular the no-
tion of groups, subgroups, finite groups and cyclic groups, which are essential for
understanding public-key algorithms based on the discrete logarithm problem.

8.2.1 Groups

For convenience, we restate the definition of groups introduced in Section 4.3.1.
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Definition 8.2.1 Group
A group is a set of elements G together with an operation ◦ that
combines two elements of G. A group has the following properties.

1. The group operation ◦ is closed. That is, for all a,b,∈G, it holds
that a◦b = c ∈ G.

2. The group operation is associative. That is, a◦(b◦c)= (a◦b)◦c
for all a,b,c ∈ G.

3. There is an element 1∈G, called the neutral element (or identity
element), such that a◦1 = 1◦a = a for all a ∈ G.

4. For each a ∈ G there exists an element a−1 ∈ G, called the in-
verse of a, such that a◦a−1 = a−1 ◦a = 1.

5. A group G is abelian (or commutative) if, furthermore, a ◦ b =
b◦a for all a,b ∈ G.

Note that in cryptography we use both multiplicative groups, where the operation
“◦” denotes multiplication, and additive groups, where “◦” denotes addition. The
latter notation is used for elliptic curves, as we’ll see in Chapter 9.

Example 8.2. To illustrate the definition of groups we consider the following exam-
ples.

� (Z,+) is a group, i.e., the set of all integers Z = {. . . ,−2,−1,0,1,2, . . .} to-
gether with the usual addition forms an abelian group, where e = 0 is the identity
element and −a is the inverse of an element a ∈ Z.

� (Z without 0, ·) is not a group, i.e., the set of integers Z (excluding the element 0)
and the usual multiplication does not form a group since there exists no inverse
a−1 for an element a ∈ Z with the exception of the elements −1 and 1.

� (C without 0, ·) is a group, i.e., the set of complex numbers u+ iv with u,v ∈ R
and u and v not both zero and i2 =−1 together with the complex multiplication
defined by

(u1 + iv1) · (u2 + iv2) = (u1u2− v1v2)+ i(u1v2 + v1u2)

forms an abelian group. The identity element of this group is e = 1, and the
inverse a−1 of an element a = u+ iv ∈ C is given by a−1 = (u− iv)/(u2 + v2).

�

None of the groups from the example plays a significant role in cryptography
because we need groups with a finite number of elements. Let us now consider the
group Z∗n, which is very important for many cryptographic schemes such as DHKE,
Elgamal encryption, the Digital Signature Algorithm and many others.
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Theorem 8.2.1
The set Z∗n, which consists of all integers i = 1, . . . ,n−1 for which
gcd(i,n) = 1, forms an abelian group under multiplication modulo
n. The identity element is e = 1.

Let us illustrate the theorem with an example.

Example 8.3. For n = 9, Z∗n consists of the elements {1,2,4,5,7,8}. By computing
the multiplication table for Z∗9, depicted in Table 8.1, we can easily check most
conditions from Definition 8.2.1.

Table 8.1 Multiplication table for Z∗9

× mod 9 1 2 4 5 7 8
1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

Condition 1 (closure) is satisfied, since the table only consists of integers which
are elements of Z∗9. For this group, Conditions 3 (identity) and 4 (inverse) also hold,
since each row and each column of the table is a permutation of the elements of
Z∗9. From the symmetry along the main diagonal, i.e., the element at row i and
column j equals the element at row j and column i, we can see that Condition 5
(commutativity) is satisfied. Condition 2 (associativity) cannot be directly derived
from the table, but follows from the associativity of multiplication in Zn. �

We note that the inverse a−1 of each element a ∈ Z∗n can be computed with the
extended Euclidean algorithm, cf. Section 6.3.2 .

8.2.2 Cyclic Groups

In cryptography, we are almost always concerned with finite structures. For instance,
for AES, we needed a finite field. We now provide the definition of a finite group.

Definition 8.2.2 Finite Group
A group (G, ◦) is finite if it has a finite number of elements. We
denote the cardinality or order of the group G by |G|.
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Example 8.4. Examples of finite groups are:

� (Zn,+): The cardinality of Zn is |Zn|= n since Zn = {0,1,2, . . . ,n−1}.
� (Z∗n, ·): Recall that Z∗n is defined as the set of positive integers smaller than n that

are relatively prime to n. Thus, the cardinality of Z∗n equals Euler’s phi function
evaluated for n, i.e., |Z∗n|= Φ(n). For instance, the group Z∗9 has a cardinality of
Φ(9) = 32− 31 = 6. This can be verified by the earlier example where we saw
that Z∗9 consist of the six elements {1,2,4,5,7,8}.
�

The remainder of this section deals with special groups, namely cyclic groups,
which are the basis for discrete logarithm-based cryptosystems. We start with the
following definition.

Definition 8.2.3 Order of an element
The order ord(a) of an element a of a group (G,◦) is the smallest
positive integer k such that

ak = a◦a◦ . . .◦a︸ ︷︷ ︸
k times

= 1,

where 1 is the identity element of G.

We examine this definition by looking at an example.

Example 8.5. We try to determine the order of a = 3 in the group Z∗11. For this, we
keep computing powers of a until we obtain the identity element 1.

a1 = 3
a2 = a ·a = 3 ·3 = 9
a3 = a2 ·a = 9 ·3 = 27 ≡ 5 mod 11
a4 = a3 ·a = 5 ·3 = 15 ≡ 4 mod 11
a5 = a4 ·a = 4 ·3 = 12 ≡ 1 mod 11

Therefore, ord(3) = 5.
�

One might ask what happens if we keep multiplying the result by a:

a6 = a5 ·a ≡ 1 ·a ≡ 3 mod 11
a7 = a5 ·a2 ≡ 1 ·a2 ≡ 9 mod 11
a8 = a5 ·a3 ≡ 1 ·a3 ≡ 5 mod 11
a9 = a5 ·a4 ≡ 1 ·a4 ≡ 4 mod 11
a10 = a5 ·a5 ≡ 1 ·1 ≡ 1 mod 11
a11 = a10 ·a ≡ 1 ·a ≡ 3 mod 11

...
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As we can see, the powers of a run through the sequence {3,9,5,4,1} indefinitely.
This cyclic behavior gives rise to the following definition.

Definition 8.2.4 Cyclic Group
A group G which contains an element α with maximum order
ord(α) = |G| is said to be cyclic. Elements with maximum order
are called primitive elements or generators.

An element α of a group G with maximum order is called a generator since every
element a of G can be written as a power α i = a for some i, i.e., α generates the
entire group. Let us verify these properties by considering the following example.

Example 8.6. We want to check whether a = 2 happens to be a primitive element of
Z∗11 = {1,2,3,4,5,6,7,8,9,10}. The cardinality of the group is |Z∗11|=Φ(11) = 10.
Let’s look at all elements that are generated by powers of the element a = 2:

a = 2 a6 ≡ 9 mod 11
a2 = 4 a7 ≡ 7 mod 11
a3 = 8 a8 ≡ 3 mod 11
a4 ≡ 5 mod 11 a9 ≡ 6 mod 11
a5 ≡ 10 mod 11 a10 ≡ 1 mod 11

It follows that

ord(a) = 10 = |Z∗11|

This implies that (i) a = 2 is a primitive element and (ii) |Z∗11| is cyclic.
We now want to verify whether the powers of a= 2 actually generate all elements

of the group Z∗11. Let’s look again at all values ai.

i 1 2 3 4 5 6 7 8 9 10
ai 2 4 8 5 10 9 7 3 6 1

By looking at the bottom row, we see that the powers ai in fact generate all elements
of the group Z∗11. We note that the order in which they are generated looks quite
arbitrary. This seemingly random relationship between the exponent i and the group
elements is the basis for cryptosystems such as the DHKE.
�

From this example, we conclude that the group Z∗11 has the element 2 as a gener-
ator. It is important to stress that the number 2 is not necessarily a generator in other
cyclic groups Z∗n. For instance, in Z∗7, ord(2) = 3, and the element 2 is thus not a
generator in that group.

Cyclic groups have interesting properties. The most important ones for crypto-
graphic applications are given in the following theorems.
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Theorem 8.2.2 For every prime p, (Z∗p, ·) is an abelian finite cyclic
group.

This theorem states that the multiplicative group of every prime field is cyclic.
This has far-reaching consequences in cryptography, where these groups are the
most popular ones for building discrete logarithm-based cryptosystems. Although
seemingly innocent, this theorem has major real-world relevance since nearly every
web browser makes use of a cryptosystem over Z∗p to realize secure connections.

Theorem 8.2.3
Let G be a finite cyclic group. Then, for every a ∈ G, it holds that:

1. a|G| = 1
2. ord(a) divides |G|

The first property is a generalization of Fermat’s Little Theorem for all cyclic
groups. The second property states that in a cyclic group only element orders that
divide the group cardinality exist. The latter property is very useful in practice.

Example 8.7. We again consider the group Z∗11, which has cardinality |Z∗11| = 10.
The only element orders in this group are 1, 2, 5 and 10, since these are the only
integers that divide 10. We can verify this property by looking at the order of each
element in the group:

ord(1) = 1 ord(6) = 10
ord(2) = 10 ord(7) = 10
ord(3) = 5 ord(8) = 10
ord(4) = 5 ord(9) = 5
ord(5) = 5 ord(10) = 2

Indeed, only orders that divide 10 occur.
�

Theorem 8.2.4 Let G be a finite cyclic group. Then, it holds that
1. The number of primitive elements of G is Φ(|G|).
2. If |G| is prime, then, all elements a 6= 1 ∈ G are primitive.

We can observe the first property in the example above. Since

Φ(10) = (5−1)(2−1) = 4,

the number of primitive elements is four, which are the elements 2, 6, 7 and 8.
The second property follows from the previous theorem. If the group cardinality is
prime, the only possible element orders are 1 and the cardinality itself. Since only
the element 1 can have an order of one, all other elements have order p.
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8.2.3 Subgroups

In this section, we consider subsets of (cyclic) groups that are groups themselves.
Such sets are referred to as subgroups. In order to check whether a subset H of a
group G is a subgroup, one has to verify whether or not all the properties of the
group definition in Section 8.2.1 also hold for H. In the case of cyclic groups, there
is an easy way to generate subgroups.

Theorem 8.2.5 Cyclic Subgroup Theorem
Let (G,◦) be a cyclic group. Then every element a ∈ G with
ord(a) = s is a primitive element of a cyclic subgroup with s el-
ements.

This theorem tells us that any element of a cyclic group is the generator of a sub-
group, which in turn is also cyclic.

Example 8.8. Let us examine the above theorem by considering a subgroup of G =
Z∗11. In an earlier example, we saw that ord(3) = 5, and the powers of 3 generate
the subset H = {1,3,4,5,9}. We now verify whether this set is actually a group by
looking at its multiplication table, shown in Table 8.2.

Table 8.2 Multiplication table for the subgroup H = {1,3,4,5,9}

× mod 11 1 3 4 5 9
1 1 3 4 5 9
3 3 9 1 4 5
4 4 1 5 9 3
5 5 4 9 3 1
9 9 5 3 1 4

H is closed under multiplication modulo 11 (Condition 1), since the table only
consists of integers which are elements of H. The group operation is associative and
commutative, which follows from regular multiplication rules (Conditions 2 and 5,
respectively). The neutral element is 1 (Condition 3), and, for every element a ∈ H,
there exists an inverse a−1, which is also an element of H (Condition 4). This fact is
observable, because every row and every column of the table contains the identity
element. Thus, H is a subgroup of Z∗11, which we visualize in Figure 8.1. More
precisely, it is a subgroup of prime order 5. It should be noted that 3 is not the only
generator of H, but also 4, 5 and 9, which follows from Theorem 8.2.4.
�

An important special case is subgroups of prime order. If the group cardinality
is denoted by q, all non-one elements have order q according to Theorem 8.2.4.
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Fig. 8.1 Subgroup H of the cyclic group G = Z∗11

From the Cyclic Subgroup Theorem, we know that each element a ∈ G of a group
G generates a subgroup H. By using Theorem 8.2.3, a theorem called Lagrange’s
theorem follows.

Theorem 8.2.6 Lagrange’s theorem
Let H be a subgroup of G. Then |H| divides |G|.

Let us now consider an application of Lagrange’s theorem.

Example 8.9. The cyclic group Z∗11 has cardinality |Z∗11|= 10. Thus, the subgroups
of Z∗11 have cardinalities 1, 2, 5 and 10, which are the proper divisors of 10. All
subgroups H of Z∗11 and their generators α are given below:

subgroup elements primitive elements
H1 {1} α = 1
H2 {1,10} α = 10
H3 {1,3,4,5,9} α = 3,4,5,9
H4 = Z∗11 {1,2,3,4,5,6,7,8,9,10} α = 2,6,7,8

�

The following final theorem of this section fully characterizes the subgroups of
a finite cyclic group.

Theorem 8.2.7
Let G be a finite cyclic group of order n and let α be a generator
of G. Then, for every integer k that divides n, there exists exactly
one cyclic subgroup H of G of order k. This subgroup is generated
by αn/k. H consists exactly of the elements a ∈ G which satisfy the
condition ak = 1. There are no other subgroups.
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This theorem immediately enables us to construct a subgroup from a given cyclic
group. We only need a primitive element and the group cardinality n. One can now
simple compute αn/k and obtain a generator of the subgroup with k elements.

Example 8.10. We again consider the cyclic group Z∗11. We saw earlier that α = 8 is
a primitive element in the group. If we want to have a generator β for the subgroup
of order 2, we compute:

β = α
n/k = 810/2 = 85 = 32768≡ 10 mod 11

We now verify that the element 10 in fact generates the subgroup with two elements:
β 1 = 10, β 2 = 100 ≡ 1 mod 11, β 3 ≡ 10 mod 11, etc. There are of course smarter
ways to compute 85 mod 11, e.g., 85 = 82 82 8≡ (−2)(−2)8≡ 32≡ 10 mod 11.
�

8.3 The Discrete Logarithm Problem

After the somewhat lengthy introduction to cyclic groups, one might wonder how
they are related to the rather straightforward DHKE protocol. It turns out that the
underlying one-way function of the DHKE, the discrete logarithm problem (DLP),
can most easily be explained using cyclic groups.

8.3.1 The Discrete Logarithm Problem in Prime Fields

We start with the DLP over Z∗p, where p is a prime.

Definition 8.3.1 Discrete Logarithm Problem (DLP) in Z∗p
Given is the finite cyclic group Z∗p of order p− 1, a primitive ele-
ment α ∈ Z∗p and another element β ∈ Z∗p. The DLP is the problem
of finding the integer 1≤ x≤ p−1 such that:

α
x ≡ β mod p

Recall from Section 8.2.2 that such an integer x must exist since α is a primitive
element and each group element can be expressed as a power of any primitive ele-
ment. This integer x is called the discrete logarithm of β to the base α , and we can
formally write:

x = logα β mod p

Computing discrete logarithms modulo a prime is a very hard problem if the param-
eters are sufficiently large. Since exponentiation αx ≡ β mod p is computationally
easy, this forms a one-way function.
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Example 8.11. We consider a discrete logarithm in the group Z∗47, in which α = 5 is
a primitive element. For β = 41, the DLP is: Find the positive integer x such that

5x ≡ 41 mod 47

Even for such small numbers, determining x is not entirely straightforward. By using
a brute-force attack, i.e., systematically trying all possible values for x, we obtain
the solution x = 15.
�
In practice, it is often desirable to have a DLP in groups with prime cardinality in

order to prevent the Pohlig–Hellman attack (cf. Section 8.3.3). Since groups Z∗p have
cardinality p−1, which is obviously not prime, one often uses DLPs in subgroups
of Z∗p with prime order, rather than using the group Z∗p itself. We illustrate this with
an example.

Example 8.12. We consider the group Z∗47, which has cardinality 46. The subgroups
in Z∗47 have thus a cardinality of 23, 2, or 1.

Since 23 is a prime, all elements in the subgroup with 23 elements are generators.
Let’s choose the element α = 2 in this subgroup. A possible DLP is given for β = 36
(which is also in the subgroup): Find the positive integer x, 1≤ x≤ 23, such that

2x ≡ 36 mod 47

By using a brute-force attack, we obtain the solution x = 17.
�

8.3.2 The Generalized Discrete Logarithm Problem

The feature that makes the DLP particularly useful in cryptography is that it is not
restricted to the multiplicative group Z∗p for a prime p, but can be defined over any
cyclic group. This is called the generalized discrete logarithm problem (GDLP).

Definition 8.3.2 Generalized Discrete Logarithm Problem
Given is a finite cyclic group G with the group operation ◦ and
cardinality n. We consider a primitive element α ∈ G and another
element β ∈ G. The discrete logarithm problem is finding the inte-
ger x, where 1≤ x≤ n, such that:

β = α ◦α ◦ . . .◦α︸ ︷︷ ︸
x times

= α
x

As in the case of the DLP in Z∗p, such an integer x must exist since α is a primi-
tive element, and, thus, each element of the group G can be generated by repeated
application of the group operation on α .
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It is important to realize that there are cyclic groups in which the DLP is not
difficult. Such groups cannot be used for a public-key cryptosystem, since the DLP
is not a one-way function.

Example 8.13. Instead of the multiplicative group, we consider the additive group of
integers modulo a prime. For instance, if we choose the prime p = 11, G = (Z11,+)
is a finite cyclic group with the primitive element α = 2. Here is how α generates
the group:

i 1 2 3 4 5 6 7 8 9 10 11
iα 2 4 6 8 10 1 3 5 7 9 0

We now try to solve the DLP for the element β = 3, i.e., we have to compute the
integer 1≤ x≤ 11 such that

x ·2 = 2+2+ . . .+2︸ ︷︷ ︸
x times

≡ 3 mod 11

Here is how an “attack” against this DLP works. Even though the group operation
is addition, we can express the relationship between α , β and the discrete logarithm
x in terms of multiplication:

x ·2≡ 3 mod 11

In order to solve for x, we simply have to invert the primitive element α:

x≡ 2−1 3 mod 11

Using, e.g., the extended Euclidean algorithm, we can compute 2−1 ≡ 6 mod 11 and
the discrete logarithm follows as:

x = 2−1 ·3 = 6 ·3 = 18≡ 7 mod 11

The discrete logarithm can be verified by looking at the small table provided above.
We can generalize the above to any group (Zn,+) for arbitrary n and elements

α,β ∈ Zn. Hence, we conclude that the generalized DLP is computationally easy
over Zn if addition is the group operation. The reason why the DLP can be solved
easily is that we have mathematical operations that are not in the additive group,
namely multiplication and inversion, which can be used for breaking the DLP.
�

After this counterexample, we now list DLPs that have been proposed for use in
cryptography:

1. The multiplicative group of the prime field Zp, or a subgroup of it. For instance,
the classical DHKE uses this approach, as do Elgamal encryption and the Digital
Signature Algorithm (DSA). These are the oldest and most widely used types of
discrete logarithm systems.
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2. The cyclic group formed by an elliptic curve. Elliptic curve cryptosystems are
introduced in Chapter 9. They have become extremely widely used since the
turn of the millenium and are often the public-key scheme of choice for new
applications such as smartphone apps or cryptocurrencies.

3. The multiplicative group of a Galois field GF(2m), or a subgroup of it. These
groups can be used completely analogous to multiplicative groups of prime fields,
and schemes such as the DHKE can be realized with them. They are not as pop-
ular in practice because the attacks against them are somewhat more powerful
than those against the DLP in Zp. Hence, DLPs over GF(2m) require longer bit
lengths for the same level of security compared to those over Zp.

4. Hyperelliptic curves or algebraic varieties, which can be viewed as a generaliza-
tion of elliptic curves. They are currently rarely used in practice, but hyperelliptic
curves in particular have some advantages such as short operand lengths.

There have been proposals for other DLP-based cryptosystems over the years,
but none of them has really been of interest in practice. Often, it was found that the
underlying DL problem was not difficult enough.

8.3.3 Attacks Against the Discrete Logarithm Problem

This section introduces methods for solving discrete logarithm problems, which is
something an adversary needs to do to attack a cryptosystem; readers only interested
in the constructive use of discrete logarithm schemes can skip this section.

As we have seen, the security of many asymmetric primitives is based on the
difficulty of computing the DLP in cyclic groups, i.e., to compute x for a given α

and β in G such that
β = α ◦α ◦ . . .◦α︸ ︷︷ ︸

x times
= α

x

holds. One should bear in mind that even though several attack algorithms are
known, there might be better, more powerful algorithms for solving the DLP in
the future. The situation is similar to the hardness of integer factorization, which is
the one-way function underlying RSA. Nobody really knows what the best possible
factorization method is. For the DLP, some interesting general results exist regard-
ing its computational hardness. This section gives a brief overview of algorithms for
computing discrete logarithms, which can be classified into generic algorithms and
nongeneric algorithms.

Generic Algorithms

Generic DL algorithms are methods that only use the group operation and no other
algebraic structure of the group under consideration. Since they do not exploit spe-
cial properties of the group, they work in any cyclic group. Generic algorithms for
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the discrete logarithm problem can be subdivided into two classes. The first class en-
compasses algorithms whose running time depends on the size of the cyclic group,
such as brute-force search, the baby-step giant-step algorithm, and Pollard’s rho
method. The second class are algorithms whose running time depends on the size of
the prime factors of the group order, such as the Pohlig–Hellman algorithm.

Brute-Force Search

A brute-force search is the most naı̈ve and computationally costly way for comput-
ing the discrete logarithm logα β . We simply compute powers of the generator α

successively until the result equals β :

α
1 ?
= β

α
2 ?
= β

...
α

x ?
= β

For a random exponent x, we expect to find the correct solution after checking
half of all possible x. This gives us a complexity of O(|G|) steps2, where |G| is the
cardinality of the group.

Thus, the cardinality |G| of the underlying group must be sufficiently large to
avoid brute-force attacks on DL-based cryptosystems in practice. For instance, in the
case of the group Z∗p for a prime p, which is the basis for the DHKE, (p−1)/2 tests
are required on average to compute a discrete logarithm. Thus, |G|= p−1 should be
in the range of 2128 to make a brute-force search infeasible using today’s computer
technology. Of course, this consideration only holds if a brute-force attack is the
only feasible attack, which is not the case. There exist more powerful algorithms to
solve discrete logarithms, as we will see below.

Shanks’ Baby-Step Giant-Step Method

Shanks’ algorithm is a time-memory tradeoff, which reduces the run time of a brute-
force search at the cost of extra storage. The idea is based on rewriting the discrete
logarithm x = logα β in a two-digit representation:

x = xg m+ xb for 0≤ xg,xb < m (8.1)

2 We use the popular “big-Oh” notation here. A complexity function f (x) has big-Oh notation
O(g(x)) if f (x)≤ c ·g(x) for some constant c and for input values x greater than some value x0.
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The integer m is chosen as the square root of the group order, i.e., m≈
√
|G|. We

can now write the discrete logarithm as β = αx = αxg m+xb , which leads to

β · (α−m)xg = α
xb (8.2)

The idea of the algorithm is to find a solution (xg,xb) for Equation (8.2), from which
the discrete logarithm then follows directly according to Equation (8.1). The core
idea of the algorithm is that Equation (8.2) can be solved by searching for xg and
xb separately, i.e., using a divide-and-conquer approach. In the first phase of the
algorithm, we compute and store all values αxb , where 0 ≤ xb < m. This is the
baby-step phase, requiring m ≈

√
|G| steps (group operations) and storage space

for m≈
√
|G| group elements.

In the giant-step phase, the algorithm checks for all xg in the range 0 ≤ xg < m
whether the following condition is fulfilled

β · (α−m)xg ?
= α

xb

for some stored entry αxb computed during the baby-step phase. In case of a match,
i.e., β · (α−m)xg,0 = α

xb,0 for some pair (xg,0,xb,0), the discrete logarithm is given by

x = xg,0 m+ xb,0

The baby-step giant-step method requires O(
√
|G|) computational steps and an

equal amount of memory. In a group of order 2128, an attacker would only need
approximately 264 =

√
2128 computations and memory locations, which can be done

nowadays by determined adversaries. Thus, in order to obtain an attack complexity
of 2128, a group must have a cardinality of at least |G| ≥ 2256. For groups G = Z∗p,
the prime p should thus have a length of at least 256 bits. There are however more
powerful attacks against DLPs in Z∗p, which forces even larger bit lengths of p.

Pollard’s Rho Method

Pollard’s rho method has the same expected run time O(
√
|G|) as the baby-step

giant-step algorithm, but only negligible memory requirements. The method is a
probabilistic algorithm based on the birthday paradox (cf. Section 11.2.3). We will
only sketch the algorithm here. The basic idea is to pseudorandomly generate group
elements of the form α i ·β j. For every element, we keep track of the values i and j.
We continue until we obtain a collision of two elements, i.e., until we have:

α
i1 ·β j1 = α

i2 ·β j2 (8.3)

If we substitute β = αx and compare the exponents on both sides of the equation,
the collision leads to the relation i1 + x j1 ≡ i2 + x j2 mod |G|; note that we are in
a cyclic group with |G| elements and have to take the exponent modulo |G|. From
here, the discrete logarithm can easily be computed as:
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x≡ i2− i1
j1− j2

mod |G|

An important detail, which we omit here, is the exact way to find the collision in
Equation (8.3) (the pseudorandom generation of the elements is a random walk
through the group). This can be illustrated by the shape of the Greek letter rho,
hence the name of this attack.

Pollard’s rho method is of great practical importance, because it is currently
the best known algorithm to compute discrete logarithms in elliptic curve groups.
Since the method has an attack complexity of O(

√
|G|) computations, elliptic curve

groups should have a size of at least 2256. In fact, elliptic curve cryptosystems with
256-bit operands are very popular in practice. For the DLP in Z∗p, much more pow-
erful attacks are known as we will see below.

Pohlig–Hellman Algorithm

The Pohlig–Hellman method is an algorithm based on the Chinese Remainder The-
orem (see Section 7.5.2); it exploits a possible factorization of the order of a group.
It is typically not used by itself, but in conjunction with one of the other DLP attack
algorithms in this section. Let

|G|= pe1
1 · p

e2
2 · . . . · p

el
l

be the prime factorization of the group order |G|. Again, we attempt to compute
a discrete logarithm x = logα β in G. The basic idea is that, rather than dealing
with the large group G, one computes smaller discrete logarithms xi ≡ x mod pei

i
in each of the subgroups of order pei

i . The desired discrete logarithm x can then
be computed from all xi, i = 1, . . . , l, using the Chinese Remainder Theorem. Each
individual small DLP xi can be computed using Pollard’s rho method or the baby-
step giant-step algorithm.

The run time of the algorithm clearly depends on the prime factors of the group
order. To prevent the attack, the group order must have its largest prime factor in the
range of 2256. An important practical consequence of the Pohlig–Hellman algorithm
is that one needs to know the prime factorization of the group order. Especially in
the case of elliptic curve cryptosystems, computing the order of the cyclic group is
not always easy.

Nongeneric Algorithms: The Index-Calculus Method

All algorithms introduced so far are completely independent of the group being
attacked, i.e., they work for discrete logarithms defined over any cyclic group. Non-
generic algorithms efficiently exploit special properties, i.e., the inherent structure
of certain groups. This can lead to much more powerful attacks. The most important
nongeneric algorithm is the index-calculus method.
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Both the baby-step giant-step algorithm and Pollard’s rho method have a run
time that is exponential in the bit length of the group order, approximately 2n/2

steps, where n is the bit length of |G|. This greatly favors the cryptographic designer
over the cryptanalyst. For instance, increasing the group order by a mere 20 bits
increases the attack effort by a factor of 1024 = 210. This is a major reason why
elliptic curves have better long-term security behavior than RSA or cryptosystems
based on the DLP in Z∗p. The question is whether there are more powerful algorithms
for DLPs in certain specific groups. The answer is yes.

The index-calculus method is a very efficient algorithm for computing discrete
logarithms in the cyclic groups Z∗p and GF(2m)∗. It has a subexponential running
time. We will not introduce the method here, but just provide a very brief descrip-
tion. The index-calculus method depends on the property that a significant fraction
of elements in G can be efficiently expressed as products of elements of a small sub-
set of G. For the group Z∗p, this means that many elements should be expressable as
a product of small primes. This property is satisfied by the groups Z∗p and GF(2m)∗.
However, we currently do not know how to do the same for elliptic curve groups.

The index-calculus method is so powerful that, in order to provide a security of
128 bits, i.e., an attacker has to perform 2128 steps, the prime p of a DLP in Z∗p
should be at least 3072 bits long, cf. Table 6.1 in the previous chapter. Table 8.3
gives an overview of the DLP records achieved since the early 1990s. The index-
calculus method is more powerful for solving the DLP in GF(2m)∗. Hence, the bit
lengths have to be chosen somewhat longer to achieve the same level of security, cf.
the comment in Section 8.6. For that reason, DLP schemes in GF(2m)∗ are rarely
used in practice.

Table 8.3 Some records for computing discrete logarithms in Z∗p

Decimal digits Bit length Year
58 193 1991
65 216 1996
85 282 1998

100 332 1999
120 399 2001
135 448 2006
160 532 2007
180 596 2014
232 768 2016
240 795 2019
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8.4 Security of the Diffie–Hellman Key Exchange

After the introduction to the discrete logarithm problem, we are now well prepared
to discuss the security of the DHKE from Section 8.1. First, it should be noted
that a protocol that uses the basic version of the DHKE is not secure against active
attacks. If an attacker Oscar can either modify messages or generate false messages,
Oscar can defeat the protocol with a so-called man-in-the-middle attack, discussed
in Section 14.4.1.

Let us now consider the possibilities of a passive adversary, i.e., Oscar can only
listen, but not alter messages. His goal is to compute the session key kAB shared
by Alice and Bob. What information does Oscar get from observing the protocol?
Certainly, Oscar knows α and p, because these are public domain parameters cho-
sen during the set-up protocol. In addition, Oscar can obtain the values A = kpub,A
and B = kpub,B by eavesdropping on the channel during an execution of the key ex-
change protocol. Thus, the question is whether he is capable of computing k = αab

from α , p, A ≡ αa mod p and B ≡ αb mod p. This problem is called the Diffie–
Hellman problem (DHP). Like the discrete logarithm problem, it can be generalized
to arbitrary finite cyclic groups. Here is a more formal statement of the DHP.

Definition 8.4.1 Generalized Diffie–Hellman Problem (DHP)
Given is a finite cyclic group G of order n, a primitive element
α ∈ G and two elements A = αa and B = αb in G. The Diffie–
Hellman problem is to find the group element αab.

One general approach to solving the Diffie–Hellman problem is as follows. For
illustrative purposes, we consider the DHP in the multiplicative group Z∗p. Suppose
— and that’s a big “suppose” — Oscar knows an efficient method for computing
discrete logarithms in Z∗p. Then, he could also solve the Diffie–Hellman problem
and obtain the key kAB via the following two steps:

1. Compute Alice’s private key a = kpr,A by solving the discrete logarithm problem:
a≡ logα A mod p.

2. Compute the session key kAB ≡ Ba mod p.

Unfortunately (from Oscar’s perspective), as we know from Section 8.3.3, com-
puting the discrete logarithm problem is infeasible if p is sufficiently large, i.e., the
sketched attack does not work in practice.

It is important to note that it is not known whether solving the DLP is the only
way to solve the DHP. In theory, it is possible that there exists another method for
solving the DHP without computing the discrete logarithm. The situation is analo-
gous to RSA, where it is also not known whether factoring is the best way to break
RSA. However, even though it is not proven in a strict mathematical sense, it is often
assumed that solving the DLP efficiently is the only viable strategy for solving the
DHP efficiently.
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Hence, in order to ensure the security of the DHKE in practice, we have to be
certain that the corresponding DLP cannot be solved. This is achieved by choosing
p large enough so that the index-calculus method cannot compute the DLP. By con-
sulting Table 6.1, we see that a security level of 80 bits is achieved by primes of
length 1024 bits, and for 128-bit security we need about 3072 bits. An additional
requirement is that, in order to prevent the Pohlig–Hellman attack, the order p− 1
of the cyclic group must not factor into only small prime factors. Each of the sub-
groups formed by the factors of p−1 can be attacked using the baby-step giant-step
method or Pollards’s rho method, but not by the index-calculus method. Hence, the
smallest prime factor of p− 1 must be at least 160 bits long for an 80-bit security
level, and at least 256 bits long for a security level of 128 bits.

8.5 The Elgamal Encryption Scheme

The Elgamal encryption scheme was proposed by Taher Elgamal in 1985 [110]. It is
also often referred to as Elgamal encryption. It can be viewed as an extension of the
DHKE protocol. Unsurprisingly, its security is also based on the intractability of the
DLP and the DHP. We consider the Elgamal encryption scheme over the group Z∗p,
where p is a prime. However, it can also be applied to other cyclic groups in which
the DLP and the DHP is intractable.

8.5.1 From Diffie–Hellman Key Exchange to Elgamal Encryption

In order to understand the Elgamal scheme, it is very helpful to see how it follows
almost immediately from the DHKE. We consider two parties, Alice and Bob. If
Alice wants to send an encrypted message x to Bob, both parties first perform a
Diffie–Hellman key exchange to derive a shared key kM . For this, we assume that a
large prime p and a primitive element α have been generated. Now, the new idea is
that Alice uses this key as a multiplicative mask to encrypt x as y ≡ x · kM mod p.
This process is depicted below.
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Principle of Elgamal Encryption

Alice Bob
(a) choose d = kpr,B ∈ {2, . . . , p−2}
(b) compute β = kpub,B ≡ αd mod p

β←−−−−−−−
(c) choose i = kpr,A ∈ {2, . . . , p−2}
(d) compute kE = kpub,A ≡ α i mod p

kE−−−−−−−→
(e) compute kM ≡ β i mod p (f) compute kM ≡ kd

E mod p
(g) encrypt message x ∈ Z∗p

y≡ x · kM mod p
y−−−−−−−→

(h) decrypt x≡ y · k−1
M mod p

The protocol consists of two phases, the classical DHKE (Steps a–f) followed by
the message encryption and decryption (Steps g and h, respectively). Bob computes
his private key d and public key β . This key pair does not change, i.e., it can be used
to encrypt many messages. Alice, however, has to generate a new public/private-key
pair for the encryption of every message. Her private key is denoted by i and her
public key by kE . The latter is an ephemeral, i.e, a temporary, key, hence the index
“E”. The joint key is denoted by kM because it is used for masking the plaintext.

For the actual encryption, Alice simply multiplies the plaintext message x by
the masking key kM in Z∗p. On the receiving side, Bob reverses the encryption by
multipliying with the inverse mask. Note that one property of cyclic groups is that,
given any key kM ∈ Z∗p, every message x maps to another ciphertext y if the two
values are multiplied. Moreover, if the key kM is randomly drawn from Z∗p, every
ciphertext y ∈ {1,2, . . . , p−1} is equally likely.

8.5.2 The Elgamal Protocol

We now provide a somewhat more structured description of the scheme. We distin-
guish three phases. The set-up phase is executed once by the party who issues the
public key and will receive the message. The encryption phase and the decryption
phase are executed every time a message is sent. In contrast to the DHKE, no trusted
third party is needed to choose a prime and primitive element. Bob generates them
and makes them public, for example placing them in a database or on his website.



8.5 The Elgamal Encryption Scheme 263

Elgamal Encryption Protocol

Alice Bob
choose large prime p
choose primitive element α ∈ Z∗p

or in a subgroup of Z∗p
choose kpr = d ∈ {2, . . . , p−2}
compute β ≡ αd mod p

kpub=(p,α ,β )
←−−−−−−−−−−−

choose i ∈ {2, . . . , p−2}
compute ephemeral key

kE ≡ α i mod p
compute masking key

kM ≡ β i mod p
encrypt message x ∈ Z∗p

y≡ x · kM mod p
(kE ,y)−−−−−−−−−−−→

compute masking key
kM ≡ kd

E mod p
decrypt x≡ y · k−1

M mod p

The actual Elgamal encryption protocol rearranges the sequence of operations
from the naı̈ve Diffie–Hellman–inspired approach we saw before. Now, Alice has to
send only one message to Bob, as opposed to two messages in the earlier protocol.

The ciphertext consists of two parts, the ephemeral key kE , and the masked plain-
text y. In general, all parameters have a bit length of dlog2 pe, hence the ciphertext
(kE ,y) is twice as long as the message. Thus, the message expansion factor of Elga-
mal encryption is two. We now prove the correctness of the Elgamal protocol.

Proof. We have to show that dkpr(kE ,y) actually yields the original message x.

dkpr(kE ,y) ≡ y · (kM)−1 mod p
≡ [x · kM] · (kd

E)
−1 mod p

≡ [x · (αd)i][(α i)d ]−1 mod p
≡ x ·αd·i−d·i ≡ x mod p

ut

Let’s look at an example with small numbers.
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Example 8.14. In this example, Bob generates the Elgamal keys and Alice encrypts
the message x = 26.

Alice Bob
message x = 26 generate p = 29 and α = 2

choose kpr,B = d = 12
compute β = αd ≡ 7 mod 29

kpub,B=(p,α ,β )
←−−−−−−−−−−−−

choose i = 5
compute kE = α i ≡ 3 mod 29
compute kM = β i ≡ 16 mod 29
encrypt y = x · kM ≡ 10 mod 29

(y,kE )−−−−−−−−−−−−→
compute kM = kd

E ≡ 16 mod 29
decrypt:
x = y · k−1

M ≡ 10 ·20≡ 26 mod 29

�

It is important to note that, unlike the schoolbook version of the RSA scheme, El-
gamal is a probabilistic encryption scheme, i.e., encrypting two identical messages
x1 and x2, where x1 = x2, using the same public key results in two different cipher-
texts y1 6= y2 with extremely high likelihood. This is because i is chosen at random
from {2,3, · · · , p− 2} for each encryption, and thus also the session key kM = β i

used for encryption is a random element in this very large set. Thus, a brute-force
search for neither the session key kM nor the plaintext x is feasible given a large
enough p, i.e., nowadays commonly at least a 2048-bit number.

8.5.3 Computational Aspects

Key Generation During the key generation by the receiver (Bob in our example),
a prime p must be generated, and the public and private keys have to be computed.
Since the security of Elgamal also depends on the DLP, p needs to have the prop-
erties discussed in Section 8.3.3. In particular, it should be at least 2048 bits. The
prime-finding algorithms discussed in Section 7.6 can be used to generate such a
prime. The private key should be generated by a true random number generator.
The public key requires one exponentiation, for which an efficient exponentiation
approach such as the square-and-multiply algorithm can be used (cf. Section 7.4).
Encryption Within the encryption procedure, two modular exponentiations and one
modular multiplication are required for computing the ephemeral and the masking
key, as well as for the message encryption. All operands involved have a bit length
of dlog2 pe. For efficient exponentiation, one should apply the square-and-multiply
algorithm. It is important to note that the two exponentiations, which constitute
almost all the computations necessary, are independent of the plaintext. Hence, in
some applications they can be precomputed at times of low computational load,
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stored and used when the actual encryption is needed. This can be a major advantage
in practice.
Decryption The main steps of the decryption are an exponentiation kM ≡ kd mod
p, using the square-and-multiply algorithm, followed by an inversion of kM that
is performed with the extended Euclidean algorithm. However, there is a shortcut
based on Fermat’s Little Theorem that combines these two steps into a single one.
From the theorem, which was introduced in Section 6.3.4, it follows that

kp−1
E ≡ 1 mod p

for all kE ∈ Z∗p. We can now merge Steps 1 and 2 of the decryption as follows:

k−1
M ≡ (kd

E)
−1 mod p

≡ (kd
E)
−1 kp−1

E mod p

≡ kp−d−1
E mod p (8.4)

The equivalence (8.4) allows us to compute the inverse of the masking key using a
single exponentiation with the exponent (p− d− 1). After that, one modular mul-
tiplication is required to recover x ≡ y · k−1

M mod p. As a consequence, decryption
essentially requires one execution of the square-and-multiply algorithm followed by
a single modular multiplication to revover the plaintext.

8.5.4 Security

If we want to assess the security of the Elgamal encryption scheme, it is important to
distinguish between passive, i.e., listen-only, and active attacks, which allow Oscar
to generate and alter messages.

Passive Attacks

The security of the Elgamal encryption scheme against passive attacks, i.e., recov-
ering x from the information p, α , β = αd , kE = α i and y = x · β i obtained by
eavesdropping, relies on the hardness of the DHP (cf. Section 8.4). Currently, no
method is known to solve the DHP other than computing discrete logarithms. If we
assume Oscar has supernatural powers and can in fact compute DLPs, he has two
ways of attacking the Elgamal scheme.

� Recover x by finding Bob’s secret key d:

d ≡ logα β mod p

This step solves the DLP, which is computationally infeasible if the parameters
are chosen correctly. However, if Oscar succeeds, he can decrypt the plaintext by
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performing the same steps as the receiver, Bob:

x≡ y · (kd
E)
−1 mod p

� Alternatively, instead of computing Bob’s secret exponent d, Oscar could attempt
to recover Alice’s random exponent i:

i≡ logα k mod p

Again, this step is solving the discrete logarithm problem. Should Oscar succeed,
he can compute the plaintext:

x≡ y · (β i)−1 mod p

In both cases, Oscar has to solve the DLP in the finite cyclic group Z∗p. In contrast
to elliptic curves, the more powerful index-calculus method (Section 8.3.3) can be
applied here. Thus, in order to guarantee the security of the Elgamal scheme over
Z∗p today, p should at least have a length of 2048 bits.

Just as in the DHKE protocol, we have to be careful that we do not fall victim
to what is a called a small subgroup attack. In order to counter this attack, we use
primitive elements α , which generate a subgroup of prime order. In such groups,
all elements are primitive and small subgroups do not exist. Problem 8.18 illustrates
the pitfalls of a small subgroup attack with an example.

Active Attacks

Like in every other asymmetric scheme, it must be ensured that the public keys are
authentic. This means that the encrypting party, Alice in our example, in fact has
the public key that belongs to the real Bob. If Oscar manages to convince Alice that
his key is Bob’s, he can easily attack the scheme. In order to prevent the attack,
certificates can be used, a topic that is discussed in Chapter 14.

Another attack becomes possible if the secret exponent i is reused. Assume Alice
uses the value i to encrypto two sequential messages, x1 and x2. In this case, the two
masking keys are the same, namely kM = β i. Then, the two ephemeral keys are also
identical. She sends the two ciphertexts (y1,kE) and (y2,kE) over the channel, and,
if Oscar knows or can guess the first message, he can compute the masking key as
kM ≡ y1x−1

1 mod p. With this, he can decrypt x2:

x2 ≡ y2 k−1
M mod p

Any other message encrypted with the same i value can also be recovered this
way. As a consequence, one has to take care that the secret exponent i does not
repeat. For instance, if one were to use a cryptographically secure PRNG (as in-
troduced in Section 2.2.1), but with the same seed value every time a session is
initiated, the same sequence of i values would be used for every encryption, a fact
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that could be exploited by Oscar. Note that Oscar can detect the reuse of secret
exponents because they lead to identical ephemeral keys.

Another active attack against Elgamal exploits its malleability. If Oscar observes
the ciphertext (kE ,y), he can replace it by

(kE ,s · y)

where s is some integer. The receiver would compute

dkpr(kE ,sy) ≡ s · y · k−1
M mod p

≡ s(x · kM) · k−1
M mod p

≡ s · x mod p

Thus, the decrypted text is also a multiple of s. The situation is exactly the same as
for the attack that exploits the malleability of RSA introduced in Section 7.7. Oscar
is not able to decrypt the ciphertext, but he can manipulate it in a specific way.
For instance, he could double or triple the integer value of the decryption result by
choosing s = 2 or s = 3, respectively. As in the case of RSA, schoolbook Elgamal
encryption is often not used in practice, and some padding is introduced to prevent
these types of attacks.

8.6 Discussion and Further Reading

Diffie–Hellman Key Exchange and Elgamal Encryption The DHKE was intro-
duced in the landmark paper [93], which also described the concept of public-key
cryptography. Due to the independent discovery of asymmetric cryptography by
Ralph Merkle, Hellman suggested in 2003 that the algorithm should be named
“Diffie–Hellman–Merkle key exchange”. The name has not caught on, however.
In Chapter 14 of this book, more will be said about the DHKE in the context of
key establishment. The scheme is standardized in ANSI X9.42 [14] and is used in
numerous security protocols such as TLS. One attractive feature of DHKE is that
it can be generalized to any cyclic group, not only to the multiplicative group of a
prime field often used as an example in this chapter. In practice, the most popular
group in addition to Z∗p is the DHKE over an elliptic curve, which is presented in
Section 9.3.

By default, the DHKE is a two-party protocol, but can be extended to a group
key agreement in which more than two parties establish a joint Diffie–Hellman key,
see, e.g., [65].

The Elgamal encryption as proposed in 1985 by Taher Elgamal [110] is widely
used. For example, Elgamal is part of the free GNU Privacy Guard (GnuPG),
OpenSSL, Pretty Good Privacy (PGP) and other cryptographic software. Active at-
tacks against the Elgamal encryption scheme such as described in Section 8.5.4 have
quite strong requirements, proving rather difficult in practice. There exist schemes
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that are related to Elgamal but have stronger formal security properties. These in-
clude, e.g., the Cramer–Shoup System [81], and the DHAES [7] scheme proposed by
Abdalla, Bellare and Rogaway; these are secure against chosen- ciphertext attacks
under certain assumptions.

Discrete Logarithm Problem This chapter sketched the most important attack al-
gorithms for solving discrete logarithm problems (DLPs). A good overview of these,
including further references, is given in [246]. We also discussed the relationship be-
tween the Diffie–Hellman problem (DHP) and the DLP. This relationship is a mat-
ter of great importance for the foundations of cryptography. Key contributions that
study this are [61, 186]. Variants of the number field sieve and function field sieve
are the best known methods for solving the DLP. They share a common structure
and can be divided in several phases. Only the last phase depends on the actual DLP
that is computed. Thus, the computation of several DLPs in a field based on a fixed
prime p can be executed much faster since the computations of most phases can be
reused. Table 8.3 lists notable records in computing discrete logarithms in Zp.

Computing the DLP in the multiplicative group of extension fields GF(2m) is
computationally easier than in prime fields Zp with the same bit length. For prime
values of m, the record at the time of writing is a discrete logarithm calculation in
GF(21279) performed by Thorsten Kleinjung [160]. If m is composite, DLP com-
putations are considerably easier. For instance, in 2013, a French and an Irish team
were able to solve the DLP for the fields GF(26120) and GF(26168) [117]. Note that
both exponents are composite: 6120 = 23 ·32 ·5 ·17 and 6168 = 23 ·3 ·257. For that
reason, mainly prime fields Zp are used in practice for DLP-based cryptosystems.
Good summaries of the state of the art of DLP computations can be found in [117]
and [155].

The idea of using the DLP in groups other than Z∗p is exploited in elliptic curve
cryptography, a topic that is treated in Chapter 9. Other cryptoystems based on the
generalized DLP include hyperelliptic curves, a comprehensive treatment of which
can be found in [73]. Rather than using the prime field Zp it is also possible to use
certain extension fields, which offer computational advantages. Two of the better-
studied discrete logarithm systems over extension fields are Lucas-Based Cryptosys-
tems [55] and Efficient and Compact Subgroup Trace Representation (XTR) [172].
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8.7 Lessons Learned

� The Diffie–Hellman protocol is a widely used method for key exchange. It is
based on the discrete logarithm problem in finite fields.

� For the Diffie–Hellman protocol in Zp, the prime p should be at least 2048 bits
long. In order to achieve a security level of 128 bits (which is what AES with a
128-bit key offers), the prime should have 3072 bits.

� The discrete logarithm problem is one of the most important one-way functions
in modern asymmetric cryptography. In practice, the DLP over the multiplicative
group of the prime field Zp or the group of an elliptic curve are used most often.

� Elgamal is a probabilistic encryption which can be viewed as an extension of the
DHKE.

� Discrete logarithm cryptosystems (as well as RSA and elliptic curve schemes)
will become unsecure should full-size quantum computers become available in
the future.
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Problems

8.1. Understanding groups, cyclic groups and subgroups is important for the use of
public-key cryptosystems based on the discrete logarithm problem. That’s why we
are going to practice some arithmetic in such structures in this and the next few
problems.

Let’s start with an easy one. Determine the order of all elements of the multi-
plicative groups of:

1. Z∗5
2. Z∗7
3. Z∗13

Create a list with two columns for every group, where each row contains an element
a and the order ord(a).

(Hint: In order to get familiar with cyclic groups and their properties, it is a good
idea to compute all orders “by hand”, i.e., use only a pocket calculator. If you want to
refresh your mental arithmetic skills, try not to use a calculator whenever possible,
in particular for the first two groups.)

8.2. We consider the group Z∗53. What are the possible element orders? How many
elements exist for each order?

8.3. We now study the groups from Problem 8.1.

1. How many elements does each of the multiplicative groups have?
2. Do all orders from above divide the number of elements in the corresponding

multiplicative group?
3. Which of the elements from Problem 8.1 are primitive elements?
4. Verify for each group that the number of primitive elements is given by φ(|Z∗p|).

8.4. In this exercise we want to identify primitive elements (generators) of a multi-
plicative group since they are important for the DHKE and many other public-key
schemes based on the DL problem. You are given a prime p = 4969 and the corre-
sponding multiplicative group Z∗4969.

1. Determine how many generators exist in Z∗4969.
2. What is the probability of a randomly chosen element a ∈ Z∗4969 being a genera-

tor?
3. Determine the smallest generator a ∈ Z∗4969 with a > 1000.

Hint: The identification can be done naı̈vely through testing all possible factors
of the group cardinality p− 1, or more efficiently by checking that a(p−1)/qi 6=
1 mod p for all prime factors qi with p− 1 = ∏qei

i . You can simply start with
a = 1001 and repeat these steps until you find a generator of Z∗4969.
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8.5. Compute the two public keys and the joint key kAB for the DHKE scheme with
the parameters p = 467, α = 2, and

1. a = 3, b = 5
2. a = 400, b = 134
3. a = 228, b = 57

In all cases, perform the computation of the joint key for Alice and Bob. This is also
a perfect check of your results.

8.6. We now design another DHKE scheme with the same prime p = 467 as in
Problem 8.5. This time, however, we use the element α = 4. The element 4 has
order 233 and thus generates a subgroup with 233 elements. Compute kAB for

1. a = 400, b = 134
2. a = 167, b = 134

Why are the session keys identical?

8.7. In the DHKE protocol, the private keys are chosen from the set

{2, . . . , p−2}

Why are the values 1 and p− 1 excluded? Describe the weakness of these two
values.

8.8. Given is a DHKE algorithm. The modulus p has 1024 bits and α is a generator
of a subgroup where ord(α)≈ 2160.

1. What is the maximum value that the private keys should have?
2. How long does the computation of the session key take on average if one modular

multiplication takes 700 µs and one modular squaring 400 µs? Assume that the
public keys have already been computed.

3. One well-known acceleration technique for discrete logarithm systems uses short
primitive elements. We assume now that α is such a short element (e.g., a 16-bit
integer). Assume that modular multiplication with α takes now only 30 µs. How
long does the computation of the public key take now? Why is the time for one
modular squaring still the same as above if we apply the square-and-multiply
algorithm?

8.9. This problem demonstrates what can go wrong if a generator is chosen that has
certain undesirable properties.

1. Show that the order of an element a ∈ Zp with a = p−1 is always 2.
2. What subgroup is generated by a?
3. Briefly describe a simple attack on the DHKE which exploits this property.

8.10. We consider a DHKE protocol over Galois fields GF(2m). All arithmetic is
done in GF(25), with P(x) = x5 + x2 + 1 as the irreducible field polynomial. The
primitive element for the Diffie–Hellman scheme is α = x2. The private keys are
a = 3 and b = 12. What is the session key kAB?
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8.11. In this chapter we saw that the Diffie–Hellman protocol is as secure as the
Diffie–Hellman problem, which is probably as hard as the discrete logarithm prob-
lem in the group Z∗p. However, this only holds for passive attacks, i.e., if Oscar is
only capable of eavesdropping. If Oscar can manipulate messages between Alice
and Bob, the key agreement protocol can easily be broken! Develop an active attack
against the Diffie–Hellman key agreement protocol with Oscar being the man in the
middle.

8.12. Write a program which computes the discrete logarithm in Z∗p by exhaustive
search. The input parameters for your program are p,α,β . The program computes
x where β = αx mod p.

Compute the solution to log106 12375 in Z24691.

8.13. Encrypt the following messages with the Elgamal cryptosystem (p = 467 and
α = 2):

1. kpr = d = 105, i = 213, x = 33
2. kpr = d = 105, i = 123, x = 33
3. kpr = d = 300, i = 45, x = 248
4. kpr = d = 300, i = 47, x = 248

Now decrypt every ciphertext and show all steps.

8.14. Assume Bob sends an Elgamal-encrypted message to Alice consisting of two
pieces of plaintext. Since Bob is lazy, he applies the scheme incorrectly and uses the
same parameter i for all messages. Assume we know that each of Bob’s plaintexts
starts with the number x1 = 21, which happens to be Bob’s ID. We now obtain the
following ciphertexts:

(kE,1 = 6,y1 = 12)
(kE,2 = 6,y2 = 14)

The Elgamal parameters are p = 31,α = 3,β = 18. Determine the second plaintext
x2.

8.15. Given is an Elgamal cryptosystem. Bob tries to be especially smart and
chooses the following pseudorandom generator to compute new i values:

i j = i j−1 + f ( j) , 1≤ j (8.5)

where f ( j) is a “complicated” but known pseudorandom function (for instance,
f ( j) could be a cryptographic hash function such as SHA-2) and i0 is a true random
number that is not known to Oscar.

Bob encrypts n messages x j as follows:

kE j ≡ α
i j mod p

y j ≡ x j ·β i j mod p
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where 1≤ j ≤ n. Assume that the last plaintext xn and all ciphertexts are known to
Oscar.

Provide a formula with which Oscar can compute any of the messages x j, 1 ≤
j≤ n−1. Of course, following Kerckhoffs’ principle, Oscar knows the construction
method shown above, including the function f ().

8.16. Given are an Elgamal encryption scheme with public parameters kpub =
(p,α,β ) and an unknown private key kpr = d. Due to an erroneous implementa-
tion of the random number generator of the encrypting party, the following relation
holds for two temporary keys:

kM, j+1 ≡ k2
M, j mod p

Given are n consecutive ciphertexts

(kE1 ,y1),(kE2 ,y2), ...,(kEn ,yn)

belonging to the plaintexts

x1,x2, ...,xn

Furthermore, the first plaintext x1 is known (e.g., header information).

1. Describe how an attacker can compute the plaintexts x1,x2, ...,xn from the given
variables.

2. Can an attacker compute the private key d from the given information? Explain
your answer.

8.17. Considering the four examples from Problem 8.13, we see that the Elgamal
scheme is nondeterministic: A given plaintext x has many valid ciphertexts, e.g.,
both x = 33 and x = 248 have the same ciphertext in the problem.

1. Why is the Elgamal encryption scheme nondeterministic?
2. How many valid ciphertexts exist for each message x (general expression)?

How many are there for the system in Problem 8.13 (numerical answer)?
3. Is the schoolbook RSA cryptographic system nondeterministic once the public

key has been chosen?

8.18. We investigate the weaknesses that arise in Elgamal encryption if a public key
of small order is used. We look at the following example. Assume Bob uses the
group Z∗29 with the primitive element α = 2. His public key is β = 28.

1. What is the order of the public key?
2. Which masking keys kM are possible?
3. Alice encrypts a text message. Every character is encoded according to the simple

rule a→ 0,. . ., z→ 25. Three additional ciphertext symbols are the umlauts:
ä→ 26, ö→ 27, ü→ 28. She transmits the following 11 ciphertexts (kE ,y):
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(3,15),(19,14),(6,15),(1,4),(22,13),(4,7),
(13,4),(3,21),(18,17),(26,25),(7,17)

Decrypt the message without computing Bob’s private key. Just look at the ci-
phertext and use the fact that there are only very few masking keys and a bit of
guesswork.

8.19. In this problem, we will introduce the Pohlig–Hellmann exponentiation ci-
pher. It was introduced in 1978 and is a symmetric encryption algorithm based on
modular exponentations, an operation we know from RSA and the DHKE. The ci-
pher is resistant against known-plaintext attacks. From a practical perspective, it has
never gained importance since it is far less efficient than block ciphers like AES
or stream ciphers. From a pedagogical point of view, however, the Pohlig-Hellman
cipher is quite valuable since it combines the discrete logarithm problem with a sym-
metric cipher without the need to explain the more abstract concept of public-key
cryptography.

The Pohlig–Hellmann exponentiation cipher scheme works as follows: Given a
(sufficiently large) prime p and a key e, Alice and Bob perform:

Encryption: y ≡ xe mod p

Decryption: x ≡ xd mod p, where d ≡ e−1 mod p−1

1. Compute the encryption of x = {S,Y,M,M,E,T,R,I,C} with p = 29 and e =
9. You can assume a simple mapping of letters to numbers, e.g., A = 0,B =
1, · · · ,Z= 25.

2. Compute the corresponding key d for decryption and show that the decryption of
y yields the plaintext x.

3. Do encryption and decryption work for any e?
4. Is the scheme still secure if Oscar knows the encryption key e and the prime p?
5. Can Oscar attack the scheme if he gains access to a pair of plaintext and cipher-

text without knowing the key e?

8.20. Solving the (generalized) discrete logarithm problem is not hard in all groups.
Let us now consider the additive group of integers modulo a prime (Zp,+).

1. What is the definition of the generalized discrete logarithm problem for this par-
ticular group? (cf. Definition 8.3.2)

2. Describe a method to efficiently solve the generalized discrete logarithm problem
in the group (Zp,+).

8.21. For the DHKE, we choose the generator α as well as the private keys kpr,A and
kpr,B, which are elements in {2,3, ..., p−2}.

1. Show that we cannot choose p−1 as private key in general. Compute α p−1 mod
p for any arbitrary DHKE parameters α, p.

2. What is the order of the element α = p−1? Which subgroup is generated from
α = p−1?
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8.22. Compute the following discrete logarithm in Z∗113 with the Baby-Step Giant-
Step method. Justify your answer if a computation is not possible.

1. α = 10, β = 98
2. α = 10, β = 99
3. α = 7, β = 98



Chapter 9
Elliptic Curve Cryptosystems

Elliptic Curve Cryptography (ECC) forms together with RSA and discrete logarithm
schemes the third family of public-key algorithms that are currently widely used.
ECC was introduced independently by Neal Koblitz and Victor Miller in the mid-
1980s, that is about 10 years later than RSA and the Diffie–Hellman key exchange.

ECC is based on the generalized discrete logarithm problem, and thus DL-
protocols such as the Diffie–Hellman key exchange can also be realized using el-
liptic curves. ECC provides the same level of security as RSA or discrete logarithm
systems with considerably shorter operands (approximately 256–512 bits vs. 2048–
4096 bits). In many cases, ECC has performance advantages (fewer computations)
and bandwidth advantages (shorter keys and signatures) over RSA and classical
discrete logarithm schemes. This has made ECC extremely popular in many more
recent applications such as digital signatures for cryptocurrencies or key exchange
in electronic messengers. It should be noted that RSA operations that involve short
public keys as introduced in Section 7.5.1 are still much faster than ECC operations.

The mathematics of elliptic curves are considerably more involved than those
of RSA and DL schemes. Some topics, e.g., counting points on elliptic curves, go
beyond the scope of this book. Thus, the focus of this chapter is to explain the
basics of ECC in a clear fashion without too much mathematical overhead, so that
the reader gains an understanding of the most important functions of cryptosystems
based on elliptic curves.

In this chapter, you will learn:

� The basic pros and cons of ECC vs. RSA and DL schemes
� What an elliptic curve is and how to compute with it
� How to build a DL problem with an elliptic curve
� Protocols that can be realized with elliptic curves
� Current security and performance estimations of cryptosystems based on elliptic

curves
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9.1 How to Compute with Elliptic Curves

We start by giving a short introduction to the mathematical concept of elliptic
curves, independent of their cryptographic applications. ECC is based on the gener-
alized discrete logarithm problem. Hence, what we try to do first is to find a cyclic
group with which we can build a DL cryptosystem. Of course, the mere existence
of a cyclic group is not sufficient. The DL problem in this group must also be com-
putationally hard, which means that it must have good one-way properties.

We start by considering certain polynomials (i.e., functions with sums of expo-
nents of x and y), and we plot them over the real numbers.

Example 9.1. Let’s look at the polynomial equation x2 + y2 = r2 over the real num-
bers R.

x

y

Fig. 9.1 Plot of all points (x,y) that are solutions to the equation x2+y2 = r2 over R

If we plot all the pairs (x,y) that fulfill this equation in a Cartesian coordinate
system, we obtain a circle as shown in Figure 9.1.
�

We now look at another polynomial equation over the real numbers.

Example 9.2. A slight generalization of the circle equation is to introduce coeffi-
cients to the two terms x2 and y2, i.e., we look at the set of solutions to the equation
a · x2 +b · y2 = c over the real numbers.

It turns out that we obtain an ellipse, as shown in Figure 9.2.
�
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x

y

Fig. 9.2 Plot of all points (x,y) that fulfill the equation a · x2 +b · y2 = c over R

9.1.1 Definition of Elliptic Curves

From the two examples above, we conclude that we can form certain types of curves
with polynomial equations. By “curves”, we mean the set of points (x,y) which are
solutions of the equations. For example, the point (x = r,y = 0) fulfills the equation
of a circle and is, thus, in the set. On the other hand, the point (x = r/2,y = r/2)
is not a solution to the polynomial x2 + y2 = r2 and is, thus, not a set member. An
elliptic curve is a special type of polynomial equation. For cryptographic use, we
need to consider the curve not over the real numbers but over a finite field. The
most popular choice is prime fields GF(p) (cf. Section 4.3.2), where all arithmetic
is performed modulo a prime p.

Definition 9.1.1 Elliptic Curve
The elliptic curve over Zp with a prime number p > 3 is the set of
all pairs (x,y) ∈ Zp which fulfill

y2 ≡ x3 +a · x+b mod p (9.1)

together with an imaginary point of infinity O , where

a,b ∈ Zp

and the condition 4 ·a3 +27 ·b2 6= 0 mod p.

The definition of elliptic curve requires that the curve is nonsingular. Geometri-
cally speaking, this means that the plot has no self-intersections or vertices, which
is achieved if the discriminant of the curve −16(4a3 +27b2) is nonzero.
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For cryptographic use we are interested in studying the curve over a prime field
as in the definition. However, if we plot such an elliptic curve over Zp, we do not get
anything remotely resembling a curve. However, nothing prevents us from taking an
elliptic curve equation and plotting it over the set of real numbers. In this case we
obtain actual curves, as shown in the following example.

Example 9.3. In Figure 9.3 (a-d), different elliptic curves over the real numbers are
shown.

x

y

(a): y2 = x3− 3x+ 3

x

y

(b): y2 = x3 − x

x

y

(c): y2 = x3 + x2 + x+ 1

x

y

(d): y2 = x3 + x2

Fig. 9.3 Examples of elliptic curves over the reals

�



9.1 How to Compute with Elliptic Curves 281

We notice several things from these elliptic curve plots.1 First, elliptic curves are
symmetric with respect to the x-axis. This follows directly from the fact that for all
values xi which are on the elliptic curve, both

yi =
√

x3
i +a · xi +b and y′i =−

√
x3

i +a · xi +b

are solutions. Second, there are between one and three intersections with the x-axis.
This follows from the fact that it is a cubic equation if we solve for y = 0.

We now return to our original goal of finding a curve with a large cyclic group,
which is needed for constructing a discrete logarithm problem. The first task for
finding a group is done, namely identifying a set of elements. In the elliptic curve
case, the group elements are the points that fulfill Equation (9.1). The next question
at hand is: How do we define a group operation with those points? Of course, we
have to make sure that the group laws from Definition 4.3.1 in Section 4.3 hold for
the operation.

9.1.2 Group Operations on Elliptic Curves

Let’s denote the group operation with the addition symbol2 “+”. “Addition” means
that given two points and their coordinates, say P = (x1,y1) and Q = (x2,y2), we
have to compute the coordinates of a third point R such that:

P+Q = R

(x1,y1)+(x2,y2) = (x3,y3)

As we will see below, it turns out that this addition operation looks quite arbi-
trary. Luckily, there is a nice geometric interpretation of the addition operation if we
consider a curve defined over the real numbers. For this geometric interpretation,
we have to distinguish two cases: the addition of two distinct points (named point
addition) and the addition of one point to itself (named point doubling).

Point Addition P+Q This is the case where we compute R = P+Q and P 6=
Q. The construction works as follows: Draw a line through P and Q and obtain a
third point of intersection between the elliptic curve and the line. Mirror this third
intersection point in the x-axis. This mirrored point is, by definition, the point R.
Figure 9.4 shows the point addition on an elliptic curve over the real numbers.

Point Doubling P+P This is the case where we compute P+Q but P = Q. Hence,
we can write R = P+P = 2P. We need a slightly different construction here. We

1 Note that elliptic curves are not ellipses. They play a role in determining the circumference of
ellipses, hence the name.
2 Note that the choice of naming the operation “addition” is completely arbitrary; we could have
also called it multiplication. However, in the math literature, elliptic curves are studied as additive
groups.
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x

y

P

Q

R= P+Q

Fig. 9.4 Point addition on an elliptic curve over the real numbers

draw the tangent line through P and obtain a second point of intersection between
this line and the elliptic curve. We mirror the point of the second intersection in
the x-axis. This mirrored point is the result R of the doubling. Figure 9.5 shows the
doubling of a point on an elliptic curve over the real numbers.

You might wonder why the group operations have such an arbitrary-looking
form. Historically, this tangent-and-chord method was used to construct a third
point if two points were already known, while only using the four standard alge-
braic operations add, subtract, multiply and divide. It turns out that if points on the
elliptic curve are added in this very way, the set of points also fulfills most condi-
tions necessary for a group, that is, closure, associativity, existence of an identity
element and existence of an inverse.

Of course, in a cryptosystem we cannot perform geometric constructions. How-
ever, by applying simple coordinate geometry, we can express both of the geomet-
ric constructions from above through analytic expressions, i.e., formulae. As stated
above, these formulae only involve the four basic algebraic operations. These oper-
ations can be performed in any field, not only over the field of the real numbers (cf.
Section 4.3). In particular, we can take the curve equation from above, but we now
consider it over prime fields GF(p) rather than over the real numbers. This yields
the following analytical expressions for the group operation.
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x

y

P

2P

Fig. 9.5 Point doubling on an elliptic curve over the real numbers

Elliptic Curve Point Addition and Point Doubling

x3 ≡ s2− x1− x2 mod p

y3 ≡ s(x1− x3)− y1 mod p

where

s≡

{ y2−y1
x2−x1

mod p ; if P 6= Q (point addition)
3x2

1+a
2y1

mod p ; if P = Q (point doubling)

Note that the parameter s is the slope of the line through P and Q in the case of
point addition and the slope of the tangent through P in the case of point doubling.

Even though we made major headway towards the establishment of a finite group,
we are not there yet. One thing that is still missing is an identity (or neutral) element
O such that:

P+O = P

for all points P on the elliptic curve. It turns out that there isn’t any point (x,y) that
fulfills the condition. Instead, we define an abstract point at infinity as the neutral
element O . This point at infinity can be visualized as a point that is located towards
“plus” infinity along the y-axis or towards “minus” infinity along the y-axis.
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Now that we have the neutral element, we can now also define the inverse −P of
any group element P according to the group definition:

P+(−P) = O

The question is how do we find−P? If we apply the tangent-and-chord method from
above, it turns out that the inverse of the point P = (xp,yp) is the point

−P = (xp,−yp)

i.e., the point that P reflected in the x-axis. Figure 9.6 shows the point P together
with its inverse.

x

y

P

−P

Fig. 9.6 The inverse of a point P on an elliptic curve

Note that finding the inverse of a point P = (xp,yp) is now trivial. We simply
take the negative of its y coordinate. In the case of elliptic curves over a prime field
GF(p), which is the most interesting case in cryptography, this is easily achieved
since −yp ≡ p− yp mod p, hence:

−P = (xp, p− yp)

Now that we have defined all group properties for elliptic curves, we can look at
an example of the group operation.
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Example 9.4. We consider a curve over the small field Z17:

E : y2 ≡ x3 +2x+2 mod 17

We want to double the point P = (5,1).

2P = P+P = (5,1)+(5,1) = (x3,y3)

s =
3x2

1 +a
2y1

= (2 ·1)−1(3 ·52 +2) = 2−1 ·9≡ 9 ·9≡ 13 mod 17

x3 = s2− x1− x2 = 132−5−5 = 159≡ 6 mod 17
y3 = s(x1− x3)− y1 = 13(5−6)−1 =−14≡ 3 mod 17
2P = (5,1)+(5,1) = (6,3)

For illustrative purposes we verify whether the result 2P = (6,3) is actually a point
on the curve by inserting the coordinates into the curve equation:

y2 ≡ x3 +2 · x+2 mod 17
y2 ≡ 63 +2 ·6+2 mod 17
y2 = 230≡ 9 mod 17

This is correct since y2 = 32 = 9. �

9.2 Building a Discrete Logarithm Problem with Elliptic Curves

What we have done so far is to establish the group operations (point addition and
doubling), we have provided an identity element, and we have shown a way of
finding the inverse for any point on the curve. Thus, we now have all necessary
items in place to motivate the following theorem.

Theorem 9.2.1 The points on an elliptic curve together with O
form a group with cyclic subgroups. Under certain conditions all
points on an elliptic curve form a cyclic group.

Please note that we have not proved the theorem. The theorem is extremely useful
because we have a good understanding of the properties of cyclic groups. In partic-
ular, we know that by definition a primitive element must exist such that its powers
generate the entire group. Moreover, we know quite well how to build cryptosystems
from cyclic groups. Here is an example of the cyclic group of an elliptic curve.

Example 9.5. We want to find all points on the curve:

E : y2 ≡ x3 +2 · x+2 mod 17
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It happens that all points on the curve form a cyclic group and that the order is
#E = 19. For this specific curve the group order is a prime and, according to Theo-
rem 8.2.4, every element is primitive.

As in the previous example we start with the primitive element P = (5,1). We
compute now all “powers” of P. More precisely, since the group operation is addi-
tion, we compute P, 2P,3P, . . . ,(#E)P. Here is a list of the elements that we obtain:

2P = (5,1)+(5,1) = (6,3) 11P = (13,10)
3P = 2P+P = (10,6) 12P = (0,11)
4P = (3,1) 13P = (16,4)
5P = (9,16) 14P = (9,1)
6P = (16,13) 15P = (3,16)
7P = (0,6) 16P = (10,11)
8P = (13,7) 17P = (6,14)
9P = (7,6) 18P = (5,16)
10P = (7,11) 19P = O

If we continue adding P to the previous result the cyclic structure becomes visi-
ble:

20P = 19P+P = O +P = P

21P = 2P
...

It is also instructive to look at the last computation above, which yielded:

18P+P = O

This means that P = (5,1) is the inverse of 18P = (5,16), and vice versa. This is
easy to verify. We have to check whether the two x coordinates are identical and
that the two y coordinates are each other’s additive inverse modulo 17. The first
condition obviously holds and the second one too, since

−1≡ 16 mod 17

�

To set up discrete logarithm cryptosystems it is important to know the order of the
group. Even though calculating the exact number of points on a curve is a difficult
task, we know the approximate number due to Hasse’s theorem.
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Theorem 9.2.2 Hasse’s theorem
Given an elliptic curve E modulo p, the number of points on the
curve is denoted by #E and is bounded by:

p+1−2
√

p≤ #E ≤ p+1+2
√

p

Hasse’s theorem, which is also known as Hasse’s bound, states that the number of
points is roughly in the range of the prime p. This has major practical implications.
For instance, if we need an elliptic curve with 2256 elements, we have to use a prime
of length about 256 bits.

Let’s now turn our attention to the details of setting up the elliptic curve discrete
logarithm problem. For this, we can proceed as described in Chapter 8.

Definition 9.2.1 Elliptic Curve Discrete Logarithm Problem
(ECDLP)
Given is an elliptic curve E. We consider a primitive element P

and another element T . The DL problem is finding the integer d,
where 1≤ d ≤ #E, such that:

P+P+ · · ·+P︸ ︷︷ ︸
d times

= d P = T (9.2)

In cryptosystems, d is the private ke y,which is an integer, while the public key T
is a point on the curve with coordinates T = (xT ,yT ). In contrast, in the case of the
DL problem in Z∗p, both keys were integers. The operation in Equation (9.2) is called
point multiplication or scalar multiplication, since we can formally write T = d P.
This terminology can be misleading, however, since we cannot directly multiply the
integer d with a curve point P. Instead, d P is merely a convenient notation for the
repeated application of the group operation in Equation (9.2)3. Let’s now look at an
example of an ECDLP.

Example 9.6. We want to solve a discrete logarithm problem on the curve y2 ≡ x3 +
2x+2 mod 17, which was also used in the previous example. Given is the primitive
element P = (5,1) and the point T = (16,4). The DLP in question is thus the integer
d in the expression:

d P = T

In this case, we can simply use the table that was compiled earlier which shows that
the solution to this DLP is d = 13 because:

13P = (16,4)

3 Note that the symbol “+” was chosen arbitrarily to denote the group operation. If we had chosen
a multiplicative notation instead, the ECDLP would have had the form Pd = T , which would have
been more consistent with the conventional DL problem in Z∗p.
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Point multiplication is analogous to exponentiation in multiplicative groups. In
order to do it efficiently, we can directly adopt the square-and-multiply algorithm,
which was introduced in Section 7.4. The only difference is that squaring becomes
doubling and multiplication becomes addition of P. Here is the algorithm:

Double-and-Add Algorithm for Point Multiplication
Input: elliptic curve E together with a point P
a scalar d = ∑

t
i=0 di2i with di ∈ 0,1 and dt = 1

Output: T = d P
Initialization:
T = P
Algorithm:
1 FOR i = t−1 DOWNTO 0
1.1 T = T +T

IF di = 1
1.2 T = T +P
2 RETURN (T )

For a random scalar with a length of t +1 bits, the algorithm requires on average
1.5 t point doublings and additions. Verbally expressed, the algorithm scans the bit
representation of the scalar d from left to right. It performs a doubling in every
iteration and only if the current bit has the value 1 does it perform an addition of P.
Let’s look at an example.

Example 9.7. We consider the scalar multiplication 26P, which has the following
binary representation:

26P = (110102)P = (d4d3d2d1d0)2 P

The algorithm scans the scalar bits starting on the left with d4 and ending with the
rightmost bit d0.

Step
#0 P = 12 P inital setting, bit processed: d4 = 1

#1a P+P = 2P = 102 P DOUBLE, bit processed: d3
#1b 2P+P = 3P = 102 P+12 P = 112 P ADD, since d3 = 1

#2a 3P+3P = 6P = 2(112 P) = 1102 P DOUBLE, bit processed: d2
#2b no ADD, since d2 = 0

#3a 6P+6P = 12P = 2(1102 P) = 11002 P DOUBLE, bit processed: d1
#3b 12P+P = 13P = 11002 P+12 P = 11012 P ADD, since d1 = 1

#4a 13P+13P = 26P = 2(11012 P) = 110102 P DOUBLE, bit processed: d0
#4b no ADD, since d0 = 0
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It is instructive to observe how the binary representation of the exponent evolves,
which is shown in boldface above. We see that doubling results in a left shift of the
scalar, with a 0 put in the rightmost position. By performing addition with P, a 1
is substituted in the rightmost position of the scalar. Compare how the highlighted
exponents change from iteration to iteration. �

If we go back to elliptic curves over the real numbers, there is a nice geometric
interpretation for the ECDLP: Given a starting point P, we compute 2P, 3P, . . .,
d P = T , effectively hopping back and forth on the elliptic curve. We then publish
the starting point P (a publicly known domain parameter) and the final point T (the
public key). In order to break the cryptosystem, an attacker has to figure out how
often we “jumped” on the elliptic curve. The number of hops is the secret d, the
private key.

9.3 Diffie–Hellman Key Exchange with Elliptic Curves

In complete analogy to the conventional Diffie–Hellman key exchange (DHKE) in-
troduced in Section 8.1, we can now realize a key exchange using elliptic curves.
This is referred to as the elliptic curve Diffie–Hellman key exchange, or ECDH.
First we have to agree on domain parameters, that is, a suitable elliptic curve over
which we can work and a point on the curve that is a primitive element.

ECDH Domain Parameters

1. Choose a prime p and the elliptic curve

E : y2 ≡ x3 +a · x+b mod p

2. Choose a primitive element P = (xP,yP)
The prime p, the curve given by its coefficients a,b, and the primitive ele-
ment P are the domain parameters.

Note that in practice finding a suitable elliptic curve is a somewhat involved task.
The curves have to show certain properties in order to be secure. More about this
is said below. The actual key exchange is performed completely analogously to the
way it is done in the conventional Diffie–Hellman protocol.
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Elliptic Curve Diffie–Hellman Key Exchange (ECDH)

Alice Bob
choose kprA = a ∈ {2,3, . . . ,#E−1} choose kprB = b ∈ {2,3, . . . ,#E−1}
compute kpubA = aP = A = (xA,yA) compute kpubB = bP = B = (xB,yB)

A−−−−−−−−−→
B←−−−−−−−−−

compute aB = TAB compute bA = TAB

At the end of the protocol4, Alice and Bob share the joint secret: TAB = (xAB,yAB),
which is a point on the curve. The correctness of the protocol is easy to prove.

Proof. Alice computes
aB = a(bP)

while Bob computes
bA = b(aP).

Since point addition is associative (remember that associativity is one of the group
properties), both parties compute the same result, namely the point TAB = abP. ut

As can be seen in the protocol, Alice and Bob choose the private keys a and
b, respectively, which are two large integers. With the private keys both generate
their respective public keys A and B, which are points on the curve. The public
keys are computed by point multiplication. The two parties exchange these public
parameters with each other. The joint secret TAB is then computed by both Alice
and Bob by performing a second point multiplication involving the public key they
received and their own secret parameter. The joint secret TAB can be used to derive
a session key, e.g., as input for the AES algorithm. Note that the two coordinates
(xAB,yAB) are not independent of each other: Given xAB, the other coordinate can be
computed by simply inserting the x value in the elliptic curve equation. Thus, only
one of the two coordinates should be used for the derivation of a session key. Let’s
look at an example with small numbers.

Example 9.8. We consider the ECDH with the following domain parameters. The
elliptic curve is y2 ≡ x3 +2x+2 mod 17, which forms a cyclic group of order #E =
19. The primitive element is P = (5,1). The protocol proceeds as follows:

Alice Bob
choose a = kpr,A = 3 choose b = kpr,B = 10
A = kpub,A = 3P = (10,6) B = kpub,B = 10P = (7,11)

A−−−−−−−−−−−−→
B←−−−−−−−−−−−−

TAB = aB = 3(7,11) = (13,10) TAB = bA = 10(10,6) = (13,10)

4 Please note that the variables a and b appear in different formulas and have different meanings:
we use a and b for the coefficients in the elliptic curve equation as well as for the values of the
private keys in the Diffie-Hellman protocol. We made this choice in order to be consistent with the
notation in Chapter 8.
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The two scalar multiplications that Alice and Bob both perform require the double-
and-add algorithm.
�

One of the coordinates of the joint secret TAB can now be used as session key. In
practice, often the x-coordinate is hashed and then used as a symmetric key. Typ-
ically, not all bits are needed. For instance, in a 256-bit ECC scheme, hashing the
x-coordinate with SHA-512 (cf. Section 11.4) results in a 512-bit output of which
only 128 bits would be used as an AES key.

Please note that elliptic curves are not restricted to the DHKE. In fact, almost
all other discrete logarithm protocols, in particular digital signatures and encryp-
tion, e.g., variants of Elgamal, can also be realized. The widely used Elliptic Curve
Digital Signature Algorithm (ECDSA) will be introduced in Section 10.5.1.

9.4 Security

The reason we use elliptic curves is that the ECDLP has excellent one-way charac-
teristics. If an attacker Oscar wants to break the ECDH, he has the following infor-
mation: the domain parameters E, p, P, as well as the public keys A and B. He wants
to compute the joint secret between Alice and Bob TAB = a ·b ·P. This is called the
elliptic curve Diffie–Hellman problem (ECDHP). There appears to be only one way
to compute the ECDHP, namely to solve either of the discrete logarithm problems:

a = logP A or b = logP B

If the elliptic curve is chosen with care, the best known attacks against the
ECDLP are considerably weaker than the best algorithms for solving the DL prob-
lem modulo p and the best factoring algorithms which are used for RSA attacks. In
particular, the index-calculus algorithm, which allows a powerful attack against the
DLP modulo p, is not applicable against elliptic curves. For carefully selected el-
liptic curves, the only remaining attacks are generic DL algorithms, that is Shanks’
baby-step giant-step method and Pollard’s rho method, which are introduced in Sec-
tion 8.3.3. Since the number of steps required for such an attack is roughly equal
to the square root of the group cardinality, a group order of at least 2256 should be
used. According to Hasse’s theorem, this requires that the prime p used for the el-
liptic curve must be roughly 256 bits long. If we attack such a group with generic
algorithms, we need around

√
2256 = 2128 steps.

It should be stressed that this security is only achieved if cryptographically strong
elliptic curves are used. There are several families of curves that possess crypto-
graphic weaknesses, e.g., supersingular curves. They are relatively easy to spot,
however.
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9.5 Implementation in Software and Hardware

Before using ECC, a curve with good cryptographic properties needs to be identi-
fied. In practice, a core requirement is that the cyclic group (or subgroup) formed
by the curve points has prime order. Moreover, certain mathematical properties that
lead to cryptographic weaknesses must be ruled out. Since ensuring all these prop-
erties is a non-trivial and computationally demanding task, standardized curves are
often used in practice.

When implementing elliptic curves it is useful to view an ECC scheme as a struc-
ture with four layers. On the bottom layer, finite field operations are performed. For
elliptic curves over prime fields GF(p) — which is the main field choice in prac-
tice — modular arithmetic with long numbers for the four field operations addition,
subtraction, multiplication and inversion must be supported by the implementation.
On the next layer, the two group operations point doubling and point addition are
realized. They make use of the arithmetic provided in the bottom layer. On the third
layer, scalar multiplication is realized, which uses the group operations of the pre-
vious layer. The top layer implements the actual protocol, e.g., ECDH or ECDSA.
It is important to note that two entirely different finite algebraic structures are in-
volved in an elliptic curve cryptosystem. There is the finite field GF(p) over which
the curve is defined, and there is the cyclic group which is formed by the points on
the curve.

In software, a highly optimized 256-bit ECC implementation on a 3-GHz, 64-bit
CPU can take approximately 2 ms for one point multiplication. Slower through-
puts due to smaller microprocessors or less optimized algorithms are common with
performances in the range of 10 ms. For high-performance applications, e.g., for
internet servers that have to perform a large number of elliptic curve signatures per
second, hardware implementations are desirable. Typical performance numbers for
fast implementations are in the range of 40–100 µs for computing a point multipli-
cation.

On the other side of the performance spectrum, ECC is also an attractive choice
for public-key algorithms for lightweight applications such as small IoT devices
or ICs within electronic passports. In hardware, highly compact ECC engines are
possible, which need as few as 10,000 gate equivalences and run at a speed of several
tens of milliseconds for a point multiplication. Even though ECC engines are much
larger than implementations of symmetric ciphers such as AES or 3DES, they are
considerably smaller than RSA or DLP implementations.

The computational complexity of ECC is cubic in the bit length of the prime used.
This is due to the fact that modular multiplication, which is the main operation on the
bottom layer, is quadratic in the bit length, and scalar multiplication (i.e., with the
double-and-add algorithm) contributes another linear dimension, so that we have,
in total, a cubic complexity. This implies that doubling the bit length of an ECC
implementation results in performance degradation by a factor of roughly 23 = 8.
RSA and DL systems show the same cubic run-time behavior. The advantage of
ECC over the other two popular public-key families is that the parameters have to
be increased much more slowly to enhance the security level. For instance, doubling
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the effort of an attacker for a given ECC system requires an increase in the length of
the parameter by 2 bits, whereas RSA or DL schemes require an increase of 20–30
bits. This behavior is due to the fact that only generic attacks (cf. Section 8.3.3) are
known for ECC cryptosystems, whereas more powerful algorithms are available for
attacking RSA and DL schemes.

9.6 Discussion and Further Reading

History and General Remarks As mentioned in the beginning of this chapter,
ECC was invented in 1987 independently by Neal Koblitz and in 1986 by Vic-
tor Miller. During the 1990s there was much speculation about the security and
practicality of ECC, especially if compared to RSA. After a period of intensive re-
search, it is nowadays considered to be highly secure if the parameters are chosen
correctly, just like RSA and DL schemes. An important step for building confi-
dence in ECC was the issuing of two ANSI banking standards for elliptic curve
digital signature and key establishment in 1999 and 2001, respectively [15, 16]. In-
terestingly, in Suite B — a collection of cryptographic algorithms selected by the
NSA for use in U.S. government systems proposed in 2005 — ECC schemes were
the only asymmetric algorithms allowed. The Commercial National Security Al-
gorithm Suite (CNSA Suite), which was announced in 2018, replaces the Suite B
algorithms [205]. CNSA includes RSA with at least 3072-bit modulus in addition
to ECC.

Roughly since the turn of the millennium, ECC has consistently gained “market
share” relatively to RSA and conventional DLP schemes. By now, the situation is al-
most the opposite from the one in the late 1990s, i.e., the first choice when selecting
a public-key scheme is often ECC for many applications. Widely deployed applica-
tions that use elliptic curves include mobile messengers, cryptocurrencies, the web
security protocols TLS and IPsec, and numerous embedded and IoT devices. Ref-
erence [162] describes the historical development of ECC with respect to scientific
and commercial aspects, and makes excellent reading.

For readers interested in a deeper understanding of elliptic curve cryptography,
the books [53, 52, 139, 73, 140] are recommended. The RFC 6090 provides an
overview of fundamental ECC algorithms [84]. The overview article [164], even
though a bit dated by now, provides an excellent summary of ECC. For more re-
cent developments, the annual Workshop on Elliptic Curve Cryptography (ECC) is
recommended as an excellent resource [1]. The workshop includes both theoreti-
cal and applied topics related to ECC and related cryptographic schemes. There is
also a considerable body of literature that deals with the mathematics of elliptic
curves [234, 163, 235], regardless of their use in cryptography.

Implementation In the first few years after the invention of ECC, the scheme was
believed to be computationally more complex than existing public-key algorithms,
especially RSA. This assumption is somewhat ironic in hindsight, given that ECC
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schemes are nowadays usually faster than other public-key schemes. During the
1990s, fast implementation techniques for ECC were intensively researched, which
resulted in considerable performance improvements. The book [139] is an excellent
starting point for such techniques.

For the efficient implementation of an ECC system, improvements are possible
at the finite field arithmetic layer, at the group operation layer and at the point multi-
plication layer. There is a wealth of techniques and following is a summary of some
common acceleration methods. For curves over GF(p), sometimes special primes
are used that allow for fast modular reduction. A prominent example is Curve25519,
which uses the prime p = 2255−19 together with the curve y2 ≡ x3+486,662x2+x
[36]. There is a whole family of similar primes, called generalized Mersenne primes.
These are primes such as p = 2192− 264− 1 or p = 2256− 2224 + 2192 + 296− 1,
which also allow very fast modulo reduction and are part of NIST’s digitial signa-
ture standard FIPS 186-4 [197]. If primes without special structures are used, algo-
rithms like the Montgomery reduction, which is mentioned in Section 7.11, can be
used for realizing modulo reduction. With respect to ECC over fields GF(2m), effi-
cient arithmetic algorithms are described in Reference [139]. On the group operation
layer, several optimizations are possible. A popular one is to switch from affine co-
ordinates, which were introduced in this chapter, to projective coordinates, in which
each point is represented as a triple (x,y,z). Their advantage is that no inversion
is required within the group operation. The number of multiplications increases,
however. On the next layer, fast scalar multiplication techniques are applicable. Im-
proved versions of the double-and-add algorithm, which make use of the fact that
adding or subtracting a point come at almost identical costs, are commonly applied.
Again, an excellent compilation of efficient computation techniques for ECC is the
book [139]. As it is the case with RSA and the square-and-multiply algorithm, ECC
becomes vulnerable against side-channel attacks if the generic double-and-add algo-
rithm is used. Since point doubling and point addition have different run time behav-
iors, an attacker can distinguish between them by observing the power consumption
or electromagnetic dissipation. This in turn leads to a leakage of information about
the private key, which is used within the double-and-add algorithm. Countermea-
sures include masking of the private key or making the run time independent of
the private key, i.e., using constant-time implementations. There are also curves that
lead more naturally to secure implementations, cf. the paragraph “Standards” below.

Standards As mentioned in Section 9.5, standardized curves are often used in
practice. A widely used set of curves is provided in the U.S. FIPS Standard [197,
Appendix D]. There are other standards with recommended curves too, including
the ANSI standards X9.62 and X9.63, the Brainpool curves (a German working
group) and ANSSI FRP256V1, a French standard. In practice, it can happen that
mathematically-secure curves, i.e., curves for which the ECDLP is very difficult,
become insecure due to flaws in the implementations, for instance because of timing
side-channels. Bernstein and Lange discuss this issue and list a number of curves for
which sound implementations are more easily achieved, including the Curve25519
mentioned above [42].
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Special Curves and Variants In this chapter, elliptic curves over prime fields
GF(p) were introduced. These are in practice often preferred over ECC with other
finite fields. However, binary fields GF(2m) are also sometimes used and are in fact
standardized by NIST. Such binary fields have good implementation characteristics
in hardware, but at the same time there are concerns about potential weaknesses. A
special type of elliptic curve that allows for particularly fast point multiplication is
the Koblitz curves [238]. These are curves over GF(2m) where the coefficients have
the values 0 or 1. Other curves with good properties for building cryptosystems in-
clude Edward curves and Montgomery curves. The NIST document [239] provides
a good overview of such curves with respect to use in practice. More exotic are el-
liptic curves over optimum extension fields, i.e., fields of the form GF(pm), where
p > 2 and has a special form [24].

There are also more advanced cryptographic applications that are based on ellip-
tic curves, including identity-based encryption (IBE) [60] or cryptosystems based
on isogenies [78]. Elliptic curves also allow for generalization. To be exact, they
are a special case of hyperelliptic curves, which can also be used to build discrete
logarithm cryptosystems [73]. A summary of implementation techniques for hyper-
elliptic curves is given in [253].

9.7 Lessons Learned

� Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem.
The required computations are done in a finite field which often is a prime field,
i.e., all arithmetic is performed modulo a prime.

� In practice, ECC is most often used for key exchange and digital signatures.
� For many new applications, ECC is the public-key scheme of choice.
� ECC provides the same level of security as RSA or discrete logarithm systems

over Z∗p with considerably shorter operands (approximately 256 bits vs. 3072
bits), which results in shorter keys, ciphertexts and signatures.

� In many cases ECC has performance advantages over other public-key algo-
rithms. However, signature verification with short RSA keys is still considerably
faster than ECC.

� ECC as well as RSA and conventional discrete logarithm schemes will become
insecure in the future in case full-size quantum computers become available.
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Problems

9.1. Show that the condition 4a3 +27b2 6= 0 mod p is fulfilled for the curve

y2 ≡ x3 +2x+2 mod 17

9.2. Perform the point additions

1. (13,7)+(6,3)
2. (13,7)+(13,7)

in the group of the curve y2 ≡ x3 +2x+2 mod 17. Only use a pocket calculator.

9.3. In this chapter the elliptic curve y2 ≡ x3+2x+2 mod 17 is given with #E = 19.
Verify Hasse’s theorem for the curve.

9.4. Let us again consider the elliptic curve y2 ≡ x3 + 2x+ 2 mod 17, the points of
which are shown in Example 9.5. Why are all points primitive elements?

Note: In general it is not true that all elements of an elliptic curve are primitive.

9.5. Let E be an elliptic curve defined over Z7:

E : y2 = x3 +3x+2

1. Compute all points on E over Z7.
2. What is the order of the group? (Hint: Do not miss the neutral element O .)
3. Given the element α = (0,3), determine the order of α . Is α a primitive element?

9.6. Given are the following elliptic curves:

E1 : y2 ≡ x3 +5x+4 mod 11

E2 : y2 ≡ x3 +15x+29 mod 28

E3 : y2 ≡ x3 +12x+11 mod 13

Which one is suited for use in a cryptosystem? Justify your answer!
Remark: You do not need to consider security-relevant attributes such as size of

primes etc.

9.7. Given an elliptic curve with group order 16. Show that one can determine the
order of any element α with at most three point doublings.

9.8. In practice, a and k are both very long integers in the range p ≈ 2256 · · ·2512,
and computing a scalar multiplication T = a ·P is done using the double-and-add
algorithm as shown in Section 9.2.

1. Illustrate how the algorithm works for a = 19 and for a = 160. Do not perform
elliptic curve operations, but keep P a variable.
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2. How many (i) point additions and (ii) point doublings are required on average for
one point multiplication? Assume that all integers have n = dlog2 pe bits.

3. Assume that all integers have a length of n = 256 bits, i.e., p is a 256-bit prime.
Assume one group operation (addition or doubling) requires 20 µsec. What is
the time for an average double-and-add operation?

9.9. Given is a curve E over Z11:

y2 ≡ x3 +9x+1 mod 11

1. Determine all points on the curve E and the order ord(E).
2. Compute 2P and 3P for P = (2,4).

9.10. We look at points of order two.

1. What is the property of points of order two on an elliptic curve E?
2. Given a prime p with p > 3 and an elliptic curve E : y2 = x3 +(p−1)x. Find all

points of order two on E. Justify your answer.

9.11. Given an elliptic curve E over Z29 and the primitive element P = (8,10):

E : y2 ≡ x3 +4x+20 mod 29

Calculate the following point multiplication k ·P using the double-and-add algo-
rithm. Provide the intermediate results after each step.

1. k = 9
2. k = 20

9.12. Given is the same curve as in Problem 9.11. The order of this curve is known
to be #E = 37. Given is also the point Q = 15 ·P = (14,23) on the curve. Determine
the result of the following point multiplications by using as few group operations
as possible, i.e., make smart use of the known point Q. Specify how you simplified
the calculation each time. (Hint: In addition to using Q, use the fact that it is easy to
compute −P.)

1. 16 ·P
2. 38 ·P
3. 53 ·P
4. 14 ·P+4 ·Q
5. 23 ·P+11 ·Q
You should be able to perform the scalar multiplications with considerably fewer
steps than a straightforward application of the double-and-add algorithm would al-
low.

9.13. Your task is to compute the session key in a DHKE protocol based on elliptic
curves. Your private key is a = 6. You receive Bob’s public key B = (5,9). The
elliptic curve being used is defined by:

y2 ≡ x3 + x+6 mod 11
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9.14. An example of an elliptic curve DHKE is given in Section 9.3. Verify the two
scalar multiplications that Alice performs. Show the intermediate results within the
group operation.

9.15. After the DHKE, Alice and Bob possess a mutual secret point R = (x,y). The
modulus of the used elliptic curve is a 64-bit prime. (Remark: This problem uses an
unrealistically small prime for illustration purposes; in practice the modulus should
have 256 bits or more.) Now, we want to derive a session key for a 128-bit block
cipher such as AES. The session key is calculated as follows:

KAB = h(x||y)

where h is a hash function and “||” denotes concatenation of two values. Describe
an efficient brute-force attack against the symmetric cipher. How many of the key
bits are truly random in this case? (Hint: You do not need to describe the mathemat-
ical details. Provide a list of the necessary steps. Assume you have a function that
computes square roots modulo p.)

9.16. Derive the formula for point addition on elliptic curves. That is, given the
coordinates for P and Q, find the coordinates for R = (x3,y3).

Hint: First, find the equation of a line through the two points. Insert this equation
in the elliptic curve equation. At some point you have to find the roots of a cubic
polynomial x3 +a2x2 +a1x+a0. If the three roots are denoted by x0,x1,x2, you can
use the fact that x0 + x1 + x2 =−a2.



Chapter 10
Digital Signatures

Digital signatures are an important cryptographic tool and they are widely used to-
day. Applications range from digital certificates for secure web browsing to secure
software updates to signing of digital contracts that are legally binding. Together
with key establishment over insecure channels, they are the most important mecha-
nism for which public-key cryptography is used.

Digital signatures share some functionality with handwritten signatures. In par-
ticular, they provide a method to enssure that a message is authentic to one user,
i.e., it in fact originates from the person who claims to have generated the message.
However, they actually provide much more functionality, as we will discuss in this
chapter.

In this chapter you will learn:

� The principle of digital signatures
� Security services, that is, the specific objectives that can be achieved by a security

system
� The RSA digital signature scheme
� The Elgamal digital signature scheme and two extensions of it, the digital signa-

ture algorithm (DSA) and the elliptic curve digital signature algorithm (ECDSA)
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10.1 Introduction

In this section, we first provide a motivating example to show why digital signatures
are needed and why they must be based on asymmetric cryptography. We then de-
velop the principles of digital signatures. Actual signature algorithms are introduced
in subsequent sections.

10.1.1 Odd Colors for Cars, or: Why Symmetric Cryptography Is
Not Sufficient

The cryptographic schemes that we have encountered so far had two main goals:
either to encrypt data (e.g., with AES, 3DES or RSA encryption) or to establish
a shared key (e.g., with the Diffie–Hellman key exchange). One might be tempted
to think that we are now in a position to realize any security mechanism that is
needed in practice. However, there are many other security needs besides encryption
and key exchange. These are termed security services and are discussed in detail in
Section 10.1.3. We first consider a setting in which symmetric cryptography fails to
provide a desirable security function.

Assume Alice wants to send a message to Bob and the two share a secret key. If
they encrypt with a sound symmetric cipher such as AES, they can be assured that a
third party, Oscar, is not able to learn the plaintext. As we will learn in Chapter 13,
they can also employ a message authentication code, which will assure Bob that
the message actually comes from Alice and not from Oscar. Message authentication
codes are based on symmetric cryptography too. So far so good: It appears that
symmetric cryptography can protect against most attacks that might occur. But until
now we have always assumed that the bad guy is an external party (which we named
Oscar). However, in practice it is often the case that Alice and Bob do want to
communicate securely with each other, but at the same time they might be interested
in cheating each other. It turns out that symmetric-key schemes do not protect the
two parties against each other. To get a better understanding of the situation, we
consider the following scenario.

Suppose that Alice owns a dealership for new cars where you can select and
order cars online. We assume that Bob, the customer, and Alice, the dealer, have
established a shared secret kAB, e.g., by using the Diffie–Hellman key exchange.
Bob now specifies the car that he likes, which includes a color choice of pink for the
interior and an external color of orange — choices most people would not make. He
sends the order form AES-encrypted to Alice. She decrypts the order and is happy
to have sold another model for $50,000. Upon delivery of the car three weeks later,
Bob has second thoughts about his choice, in part because his spouse is threatening
him with divorce after seeing the car. Unfortunately for Bob (and his family), Alice
has a “no return” policy. Given that she is an experienced car dealer, she knows
too well that it will not be easy to sell a pink-orange car, and she is thus set on not
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making any exceptions. Since Bob now claims that he never ordered the car, she has
no other choice but to sue him. In front of the judge, Alice’s lawyer presents Bob’s
digital car order together with the encrypted version of it. Obviously, the lawyer
argues, Bob must have generated the order since he is in possession of kAB with
which the ciphertext was generated. However, if Bob’s lawyer is worth his money,
he will patiently explain to the judge that the car dealer, Alice, also knows kAB and
that Alice has in fact a high incentive to generate faked car orders. The judge, it turns
out, has no way of knowing whether the plaintext–ciphertext pair was generated by
Bob or Alice! Given the laws in most countries, Bob probably gets away with his
dishonesty.

This might sound like a rather specific and somewhat artificially constructed sce-
nario, but in fact it is not. There are many, many situations where it is important
to prove to a neutral third party, i.e., a person acting as a judge, that one of two (or
more) parties generated a message. By proving we mean that the judge can conclude
without doubt who has generated the message, even if all parties are potentially dis-
honest. Why can’t we use some (complicated) symmetric-key scheme to achieve
this goal? The high-level explanation is simple: Exactly because we have a sym-
metric setup, Alice and Bob have the same knowledge (namely of keys) and thus
the same capabilities. Everything that Alice can do, Bob can do as well. Thus, a
neutral third party cannot distinguish whether a certain cryptographic operation was
performed by Alice or by Bob or by both.

The solution to this problem is the use of public-key cryptography. The asymmet-
ric setup that is inherent in public-key algorithms might potentially enable a judge
to distinguish between actions that only one person can perform (namely the person
in possession of the private key), and those that can be done by both (namely com-
putations involving the public key). It turns out that digital signatures are public-key
schemes, which have the properties that are needed to resolve a situation of cheat-
ing participants. In the internet-ordered car example above, Bob would have been
required to digitally sign his order using his private key.

10.1.2 Principles of Digital Signatures

The property of proving that a certain person generated a message is obviously
also very important outside the digital domain. In the real, “analog” world, this is
achieved by handwritten signatures on paper. For instance, if we sign a contract or
sign a check, the receiver can prove to a judge that we actually signed the message.
(Of course, one can try to forge signatures, but there are legal and social barriers that
prevent most people from even attempting to do so.) As with conventional hand-
written signatures, only the person who creates a digital message must be capable
of generating a valid signature. In order to achieve this with cryptographic prim-
itives, we have to use public-key cryptography. The basic idea is that the person
who signs the message uses a private key, and the receiving party uses the matching
public key. The principle of a digital signature scheme is shown in Figure 10.1. We
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note that there are post-quantum cryptography signature schemes that work slightly
differently than shown in the figure. They are introduced in Section 12.4.
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Fig. 10.1 Principle of digital signatures, which involves signing and verifying a
message

The process starts with Bob signing the message x. The signature algorithm is a
function of Bob’s private key, kpr. Hence, assuming he in fact keeps his private key
private, only Bob can sign a message x on his behalf. In order to bind a signature to
the message, x is also an input to the signature algorithm. After signing the message,
the signature s is appended to the message x and the pair (x,s) is sent to Alice. It
is important to note that a digital signature by itself is of no use unless it is accom-
panied by the message. A digital signature without the message is the equivalent of
a handwritten signature on a strip of paper without the contract or the check that is
supposed to be signed.

The digital signature itself is merely a (large) integer value, for instance, a string
of 2048 bits. The signature is only useful to Alice if she has means to verify whether
the signature is valid or not. For this, a verification function is needed, which takes
both x and the signature s as inputs. In order to link the signature to Bob, the function
also requires his public key. Even though the verification function has long inputs,
its only output is the binary statement “true” or “false”. If x was actually signed
with the private key that belongs to the public verification key, the output is true,
otherwise it is false.

From these general observations we can easily develop a generic digital signature
protocol:
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Basic Digital Signature Protocol

Alice Bob
generate kpr,B and kpub,B

kpub,B←−−−−−−−−−−−− publish public key

sign message: s = sigkpr,B
(x)

(x,s)←−−−−−−−−−−−− send message + signature

verify signature:
verkpub,B (x,s) = true/false

From this setup, the core property of digital signatures follows: A signed message
can unambiguously be traced back to its originator since a valid signature can only
be computed with the unique signer’s private key. Only the signer has the ability
to generate a signature on his behalf. Hence, we can prove that the signing party
has actually generated the message. Such a proof can even have legal meaning, for
instance, through the Electronic Signatures in Global and National Commerce Act
(ESIGN) in the USA or eIDAS (electronic IDentification, Authentication and trust
Services) in the EU. We note that the basic protocol above does not provide any
confidentiality of the message since the message x is being sent in the clear. Of
course, the message can be kept confidential by also encrypting it, e.g., with AES or
another strong symmetric cipher.

Each of the three popular public-key algorithm families, namely integer factor-
ization, discrete logarithms and elliptic curves, allows us to construct digital signa-
tures. In the remainder of this chapter we learn about most signature schemes that
are of practical relevance.

10.1.3 Security Services

It is very instructive to discuss in more detail the security functions we can achieve
with digital signatures. In fact, at this point we will step away for a moment from
digital signatures and ask ourselves in general: What are possible security objectives
that a security system might possess? The objectives of a security systems are called
security services. There exist many security services, but the most common ones
required by many applications are as follows:

1. Confidentiality: Information is kept secret from all but authorized parties.
2. Integrity: Messages have not been modified in transit.
3. Message Authentication or Data Origin Authentication: The sender of a mes-

sage is authentic.
4. Non-repudiation: The sender of a message can not deny the creation of the

message.
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Confidentiality, integrity and availability (cf. below) are sometimes referred to as
the CIA triad, because they are considered particularly important for securing a sys-
tem. Different applications call for different sets of security services. For instance,
for private email the first three services are desirable, whereas a corporate email sys-
tem might also require non-repudiation. As another example, if we want to secure
software updates for a smartphone, the chief objectives might be integrity and mes-
sage authentication because the manufacturer primarily wants to ensure that only
original updates are loaded into the handheld device, whereas confidentiality is not
needed since the software itself is widely available anyway. We note that message
authentication always implies data integrity; the opposite is not true.

The four security services can be achieved in a more or less straightforward man-
ner with the schemes introduced in this book: For confidentiality one uses primarily
symmetric ciphers and less frequently asymmetric encryption. Integrity and mes-
sage authentication are provided by digital signatures and message authentication
codes, which are introduced in Chapter 13. Non-repudiation can be achieved with
digital signatures, as discussed above.

In addition to the four core security services there are several other ones:

5. Identification or entity authentication: Establish and verify the identity of an
entity, e.g., a person, a computer or a credit card.

6. Access control: Restrict access to the resources to privileged entities.
7. Availability: Ensures that the electronic system is reliably available.
8. Auditing: Provide evidence about security-relevant activities, e.g., by keeping

logs about certain events.
9. Physical security: Provide protection against physical tampering and/or re-

sponses to physical tampering attempts.
10. Anonymity: Provide protection against discovery and misuse of identity.

As in the case of the four core security services, which of the advanced security
services are desired in a given system is heavily application specific. For instance,
anonymity might not be desirable for private emails since they are supposed to have
a clearly identifiable sender. On the other hand, car-to-car communication systems
for collision avoidance (one of the many exciting new applications for cryptography
we will see soon) have a need to keep cars and drivers anonymous in order to avoid
tracking. As a further example, in order to secure the operating system of a com-
puter, access control to certain parts of a computer system is often of paramount
importance. Most but not all of these advanced services can be achieved with the
cryptographic algorithms in this book. However, in some cases non-cryptographic
approaches need to be taken. For instance, availability is often achieved by using
redundancy, e.g., running redundant computing or storage systems in parallel. Such
solutions are only indirectly, if at all, related to cryptography.
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10.1.4 Applications of Digital Signatures

As we have seen so far, basic security services such as authenticity and non-
repudiation can be achieved with digital signatures. In practice digital signatures
are not limited to signing email messages in order to provide mutual authenticity
to the communicating partners. In fact, digital signatures allow for many important
applications which are difficult to realize otherwise. We will briefly discuss three
prominent use cases below, certificates, secure boot and secure firmware updates as
well as proof-of-knowledge protocols. We note that there are many more applica-
tions of digital signatures beyond those mentioned.

Certificates With digital signatures, the problem of authentic public keys is acute:
How can Alice be assured that she possesses the correct public key of Bob? Or,
phrased differently, how can Oscar be prevented from injecting faked public keys in
order to perform an attack? Certificates bind an identity (e.g., Bob’s email address)
to a public key. They are based on digital signatures and are one of their main appli-
cations. We will introduce certificates and their application in detail in Chapter 14.

Secure Boot and Secure Firmware Updates Reliable IT systems demand in-
tegrity and authenticity of software and its updates. The main security objective
here is to ensure that only (well-functioning and well-tested) software from the orig-
inal provider runs on a particular computer and that it cannot be changed without
authorization. Many modern computer systems use digital signatures to check the
integrity and authenticity of firmware during boot-up and software updates. Such a
check needs to be done every single time a system is started and is called authen-
ticated boot or trusted boot. The major advantage of digital signatures is that on
the computer system of every user — and there might be many millions of them
— only the public key needs to be installed, which doesn’t need to be protected.
On the other hand, only the software provider can generate valid updates with the
private key. There are also standards for secure boot, such as the Unified Extensible
Firmware Interface (UEFI), which is widely used in industry.

Proof-of-Knowledge Protocols Let us assume a situation where Alice needs to
prove to Bob that she in fact is the person she claims to be. To accomplish this,
she wants to convince Bob that she is in possession of a particular secret without
revealing it. This is in contrast to password-based schemes, where the secret (i.e.,
the password) is shown to the verifying party. Such a proof is called proof of knowl-
ege. The following example shows a variant of the widely used challenge-response
protocol.

Example 10.1. Suppose Bob wants to ensure that he is communicating with Alice.
For that purpose, he sends a random value (nonce) to Alice. Alice signs the random
value with her private key and sends the signature back to Bob. Bob verifies the
signature of Alice with the help of her public key.
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Alice Bob
choose nonce n

n←−−−−−−−−−−−−
sign nonce
s = sigkpr,A

(n)
s−−−−−−−−−−−−→

verify signature
verkpub,A (n,s) = true/false

Bob can conclude from the valid signature that Alice knows a secret, namely
her private key. That means Alice has provided a proof of knowledge. The nonce
guarantees freshness in this protocol and prevents replay attacks where an attacker
reuses previously sent messages.
�

Applications of this type of protocol include, e.g., smart cards for authentication to-
wards an ATM machine or for building access. The advantage in this setup is that the
sensitive private key resides securely inside the smart card and that the verification
key does not need special protection. We note that challenge-response protocols can
also be realized using symmetric primitives with a Message Authentication Code
(MAC), as discussed in Problem 13.6.

10.2 The RSA Signature Scheme

The RSA signature scheme is based on RSA encryption, introduced in Chapter 7. Its
security relies on the integer factorization problem, i.e., the difficulty of factoring a
product of two large primes. Since it was proposed in 1978, the RSA signature
scheme has been widely used in practice.

10.2.1 Schoolbook RSA Digital Signature

We first show the basic form of RSA digital signatures, hence the qualifier “school-
book”. In practice, padding has to be used to prevent certain attacks, as discussed in
Section 10.2.3.

Suppose Bob wants to send a signed message x to Alice. He generates the same
RSA keys that were used for RSA encryption as shown in Section 7.3. At the end of
the set-up he has the following parameters:

RSA Keys
� Bob’s private key: kpr = (d)
� Bob’s public key: kpub = (n,e)
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The actual signature protocol is shown in the following. The message x that is
being signed is in the range (1,2, . . . ,n−1).

Basic RSA Digital Signature Protocol

Alice Bob
kpub = (n,e), kpr = d

(n,e)←−−−−−−−−−−−−
compute signature:
s = sigkpr

(x)≡ xd mod n
(x,s)←−−−−−−−−−−−−

verify: verkpub (x,s)
x′ ≡ se mod n

x′
{
≡ x mod n =⇒ valid signature
6≡ x mod n =⇒ invalid signature

As can be seen from the protocol, Bob computes the signature s for a message
x by RSA-encrypting x with his private key kpr = d. Bob is the only party who can
apply kpr, and hence the ownership of kpr authenticates him as the author of the
signed message. Bob appends the signature s to the message x and sends both to
Alice. Alice receives the signed message and RSA-decrypts s using Bob’s public
key kpub, yielding x′. If x and x′ match, Alice knows two important things: First,
the author of the message was in possession of Bob’s secret key, and if only Bob
had access to the key, it was in fact him who signed the message. This is called
message authentication. Second, the message has not been changed in transit, so
that message integrity is given. We recall from the previous section that these are
two of the fundamental security services which are often needed in practice.

Proof. We now provide a proof of correctness, i.e., we show that the verification
process yields a “true” statement if the message and signature have not been altered
during transmission. We start from the verification operation se mod n:

se = (xd)e = xde ≡ x mod n

Due to the mathematical relationship between the private and the public key, namely
that

d e≡ 1 mod φ(n)

raising any integer x ∈ Zn to the (d e)-th power yields the integer itself again. The
proof of this can be found in Section 7.3. ut

The role of the public and the private keys are swapped compared to the RSA
encryption scheme. Whereas RSA encryption applies the public key to the message
x, the signature scheme applies the private key kpr. On the other side of the commu-
nication channel, RSA decryption requires the use of the private key by the receiver,
while the digital signature scheme applies the public key for verification.

Let’s look at an example with small numbers.
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Example 10.2. Suppose Bob wants to send a signed message (x = 4) to Alice. The
first steps are exactly the same as for an RSA encryption: Bob computes his RSA pa-
rameters and sends the public key to Alice. In contrast to the encryption scheme, the
private key is used for signing while the public key is needed to verify the signature.

Alice Bob
1. choose p = 3 and q = 11
2. n = p ·q = 33
3. Φ(n) = (3−1)(11−1) = 20
4. choose e = 3
5. d ≡ e−1 ≡ 7 mod 20

(n,e)=(33,3)←−−−−−−−−−−−−
compute signature for message
x = 4:
s = xd ≡ 47 ≡ 16 mod 33

(x,s)=(4,16)←−−−−−−−−−−−−
verify:
x′ = se ≡ 163 ≡ 4 mod 33
x′ ≡ x mod 33 =⇒ valid signature

Alice can conclude from the valid signature that Bob generated the message and
that it was not altered in transit, i.e., message authentication and message integrity
are given.
�

It should be noted that we introduced a digital signature scheme only. In par-
ticular, the message itself is not encrypted and, thus, there is no confidentiality. If
this security service is required, the message together with the signature should be
encrypted, e.g., using a symmetric algorithm like AES.

10.2.2 Computational Aspects

First, we note that the signature is as long as the modulus n, i.e., roughly dlog2 ne
bits. As discussed earlier, n should have at least 2048 bits. Even though such a sig-
nature length is not a problem in most applications, it can be undesirable in systems
that are bandwidth and/or energy constrained, e.g., small IoT devices.

The key generation process is identical to the one we used for RSA encryption,
which was discussed in detail in Chapter 7. To compute and verify the signature,
the square-and-multiply algorithm introduced in Section 7.4 is used. The accelera-
tion techniques for RSA introduced in Section 7.5 are also applicable to the digital
signature scheme. Particularly interesting are short public keys e, for instance, the
choice e = 216 + 1. This makes verification a very fast operation. Since in many
practical scenarios a message is signed only once but verified many times, the fact
that verification is very fast is helpful. This is the case, e.g., in public-key infrastruc-
tures, which use certificates. Certificates are signed only once but are verified over
and over again every time a user uses his asymmetric keys (cf. Section 14.5).
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10.2.3 Security

In order to have a secure signature scheme, it must be ensured that the RSA al-
gorithm itself can’t be broken mathematically. For this, the factorization problem
must be computationally difficult, which is achieved by choosing sufficiently large
primes p and q. In practice, this means both primes should have a minimum length
of 1024 bits, which results in a modulus n with at least 2048 bits. Also, like in every
other asymmetric scheme, it must be ensured that the public keys are authentic. This
means that the verifying party in fact has the public key that is associated with the
private signature key. If an attacker succeeds in providing the verifier with an incor-
rect public key that supposedly belongs to the signer, the attacker can sign messages
on her/his behalf. In order to prevent this attack, certificates are used in practice, a
topic that is discussed in Section 14.4.2.

Existential Forgery

An attack that is possible for some signature schemes is the existential forgery at-
tack. The schoolbook RSA signature scheme allows this attack, in which the adver-
sary can generate a valid signature for a random message x. The attack works as
follows:

Existential Forgery Attack Against RSA Digital Signature

Alice Oscar Bob
kpr = d
kpub = (n,e)

(n,e)←−−−−−−−− (n,e)←−−−−−−−−
1. choose signature:

s ∈ Zn
2. compute message:

x≡ se mod n
(x,s)←−−−−−−−−

verification:
se ≡ x′ mod n

since x′ = x
=⇒ valid signature!

The attacker impersonates Bob, i.e., Oscar claims towards Alice that he is in fact
Bob. Because Alice performs exactly the same computations as Oscar, she will ver-
ify the signature as correct. However, by closely looking at Steps 1 and 2 that Oscar
performs, one sees that the attack is somewhat odd. The attacker chooses the signa-
ture first and then computes the message. As a consequence, he cannot control the
semantics of the message x. For instance, Oscar cannot generate a message such as
“Transfer $1000 into Oscar’s account”. Nevertheless, the fact that
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an automated verification process does not recognize the forgery is certainly not a
desirable feature. For this reason, schoolbook RSA signature is rarely used in prac-
tice, and padding schemes are applied in order to prevent this and other attacks.

RSA Padding: The Probabilistic Signature Standard (PSS)

The attack above can be prevented by allowing only certain message formats. Gen-
erally speaking, formatting imposes a rule that allows the verifier, Alice in our exam-
ples, to distinguish between valid and invalid messages. Such formatting is called
padding. For example, a simple formatting rule could specify that all messages x
have 100 trailing bits with the value zero (or any other specific bit pattern). If Oscar
chooses signature values s and computes the “message” x≡ se mod n, it is extremely
unlikely that x has this specific format. If we require a specific pattern for the 100
trailing bits, the chance that x has this format is 2−100, which is considerably lower
than winning any lottery.

We now look at a padding scheme that is widely used in practice. Note that
a padding scheme for RSA encryption was already discussed in Section 7.7. The
probabilistic signature scheme (RSA-PSS) is an extension of the schoolbook RSA
digital signature. It combines signing with padding of the message, which is re-
ferred to as encoding. Figure 10.2 depicts the encoding procedure, which is known
as Encoding Method for Signature with Appendix (EMSA) Probabilistic Signature
Scheme (PSS).

Let’s now have a more detailed look at the procedure. In order to be consistent
with the terminology used in standards, we denote the message by M instead of x.
As can be seen in the figure, almost always in practice, the message itself is not
signed directly but rather the hashed version of it. Hash functions compute a digital
fingerprint of messages. The fingerprint has a fixed length, e.g., 256 bits. The hash
function accepts messages as inputs of arbitrary lengths. More about hash functions
and the role they play in digital signatures is found in Chapter 11. Below are the
details of the EMSA scheme.
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Encoding for the EMSA Probabilistic Signature Scheme

Let |n| be the size of the RSA modulus in bits. The encoded message EM
has a length d(|n| − 1)/8e bytes such that the bit length of EM is at most
|n|−1 bits.
1. Generate a random value salt.
2. Form a string M′ by concatenating a fixed padding padding1 , the hash

value mHash = h(M) and salt.
3. Compute a hash value H of the string M′.
4. Concatenate a fixed padding padding2 and the value salt to form a data

block DB.
5. Apply a mask generation function MGF to the hash of the string M′ to

compute the mask value dbMask. In practice, a hash function such as
SHA-2 is often used as MGF .

6. XOR the mask value dbMask and the data block DB to compute
maskedDB.

7. The encoded message EM is obtained by concatenating maskedDB, the
hash value H and the fixed padding bc.

Fig. 10.2 Principle of EMSA-PSS encoding



312 10 Digital Signatures

After the encoding, the actual RSA signing operation is applied to the encoded
message EM, e.g.,

s = sigkpr
(M)≡ EMd mod n

We note that the sender has to transmit the salt value together with the message and
signature.

The verification operation proceeds in a similar way: The receiver uses the salt,
padding1 and padding2 values together with the received message M to recreate the
EM value and to check whether the EMSA-PSS encoding of the message is correct.
Then, the RSA verification operation is performed on the value EM. The receiver
knows the values of padding1 and padding2 from the standard.

In essence, the value H in EM is the hashed version of the message. By adding
a random value salt prior to the second hashing, the encoded value becomes proba-
bilistic. As a consequence, if we encode and sign the same message twice, we obtain
different signatures, which is a desirable feature.

10.3 The Elgamal Digital Signature Scheme

The Elgamal signature scheme, which was published in 1985, is based on the dif-
ficulty of computing discrete logarithms (cf. Section 8.3). Unlike RSA, where en-
cryption and digital signature are almost identical operations, the Elgamal digital
signature is quite different from the encryption scheme with the same name.

10.3.1 Schoolbook Elgamal Digital Signature

Like all asymmetric schemes, the Elgamal digital signature consists of a key gener-
ation phase and the execution of the actual scheme.

Key Generation

We start by finding a large prime p and constructing a discrete logarithm problem
as follows:

Key Generation for Elgamal Digital Signature

1. Choose a large prime p.
2. Choose a primitive element α of Z∗p or of a subgroup of Z∗p.
3. Choose a random integer d ∈ {2,3, . . . , p−2}.
4. Compute β ≡ αd mod p .
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The public key is now formed by kpub = (p,α,β ), and the private key by kpr = d.

Signing and Verification

Using the private key and the parameters of the public key, the signature:

sigkpr
(x,kE) = (r,s)

for a message x is computed during the signing process. Note that it consists of two
integers r and s. The signing consists of two main steps: choosing a random value
kE , which forms an ephemeral private key, and computing the actual signature of x.

Elgamal Signature Generation

1. Choose a random ephemeral key kE ∈ {2, . . . , p − 2} such that
gcd(kE , p−1) = 1.

2. Compute the signature parameters:

r ≡ α
kE mod p

s ≡ (x−d · r)k−1
E mod (p−1)

On the receiving side, the signature is verified as verkpub(x,(r,s)) using the public
key, the signature and the message.

Elgamal Signature Verification

1. Compute the value
t ≡ β

r · rs mod p

2. The verification follows from:

t
{
≡ αx mod p =⇒ valid signature
6≡ αx mod p =⇒ invalid signature

The verifier accepts a signature (r,s) only if the relation β r · rs ≡ αx mod p is
satisfied. Otherwise, the verification fails. In order to make sense of the rather ar-
bitrary looking rules for computing the signature parameters r and s as well as the
verification, it is helpful to study the following proof of correctness.

Proof. For the proof of correctness we show that the verification process yields a
“true” statement if the verifier uses the correct public key and the correct message,
and if the signature parameters (r,s) were chosen as specified. We start with the
verification equation:
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β
r · rs ≡ (αd)r(αkE )s mod p

≡ α
d r+kE s mod p

The signature is considered valid if this expression is identical to αx:

α
x ≡ α

d r+kE s mod p (10.1)

According to Fermat’s Little Theorem, the relationship in Equation (10.1) holds if
the exponents on both sides of the expression are identical modulo p−1:

x≡ d r+ kE s mod (p−1)

from which the construction rule of the signature parameters s follows:

s≡ (x−d · r)k−1
E mod (p−1)

ut

The condition that gcd(kE , p−1) = 1 is required since we have to find the inverse
of the ephemeral key modulo p−1 when computing s. Let’s look at an example with
small numbers.

Example 10.3. Again, Bob wants to send a message to Alice. This time, it should
be signed with the Elgamal digital signature scheme. The signature and verification
process is as follows:

Alice Bob
1. choose p = 29
2. choose α = 2
3. choose d = 12
4. β = αd ≡ 7 mod 29

(p,α,β )=(29,2,7)←−−−−−−−−−−−−
compute signature for message
x = 26:
choose kE = 5

(note that gcd(5,28) = 1)
r = αkE ≡ 25 ≡ 3 mod 29
s = (x−d r)k−1

E
≡ (−10) ·17≡ 26 mod 28

(x,(r,s))=(26,(3,26))←−−−−−−−−−−−−
verify:
t = β r · rs ≡ 73 ·326 ≡ 22 mod 29
αx ≡ 226 ≡ 22 mod 29
t ≡αx mod 29=⇒ valid signature

�
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10.3.2 Computational Aspects

The key generation phase is identical to the set-up phase of Elgamal encryption,
which we introduced in Section 8.5.2. Because the security of the signature scheme
relies on the discrete logarithm problem, p needs to have the properties discussed
in Section 8.3.3. In particular, it should have a length of at least 2048 bits to ensure
that a discrete logarithm cannot be computed. The prime can be generated using
the prime-finding algorithms introduced in Section 7.6. The private key should be
generated by a true random number generator. The public key requires one expo-
nentiation using the square-and-multiply algorithm.

The signature consists of the pair (r,s). Both have roughly the same bit length as
p, so that the total length of the tuple (x,(r,s)) is about three times as long as the
message x itself. Computing r requires an exponentiation modulo p, which can be
achieved with the square-and-multiply algorithm. The main operation when com-
puting s is the inversion of kE . This can be done using the extended Euclidean al-
gorithm. A speed-up is possible through precomputing. The signer can generate the
ephemeral key kE and r in advance and store both values. When a message is to be
signed, they can be retrieved and used to compute s. The verifier performs two ex-
ponentiations that are again computed with the square-and-multiply algorithm, and
one multiplication.

10.3.3 Security

First, we must make sure that the verifier has the correct public key. Otherwise, the
attack sketched in Section 10.2.3 is applicable. Other attacks are described in the
following.

Computing Discrete Logarithms

The security of the signature scheme relies on the discrete logarithm problem (DLP).
If Oscar is capable of computing discrete logarithms, he can compute the private key
d from β as well as the ephemeral key kE from r. With this knowledge, he can sign
arbitrary messages on behalf of the signer. Hence the Elgamal parameters must be
chosen such that the DLP is intractable. We refer the reader to Section 8.3.3 for a
discussion of possible discrete logarithm attacks. One of the key requirements is
that the prime p should be at least 2048 bits long. We have also to make sure that
small subgroup attacks are not possible. In order to counter this attack, in practice
primitive elements α are used to generate a subgroup of prime order. In such groups,
all elements are primitive and small subgroups do not exist.
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Reuse of the Ephemeral Key

If the signer reuses the ephemeral key kE , an attacker can easily compute the private
key d. This constitutes a complete break of the system. Here is how the attack works.

Oscar observes two digital signatures and messages of the form (x,(r,s)). If the
two messages x1 and x2 have the same ephemeral key kE , Oscar can detect this since
the two r values are the same because they were constructed as r1≡ r2≡αkE mod p.
The two s values are different, and Oscar obtains the following two expressions:

s1 ≡ (x1−d r)k−1
E mod (p−1) (10.2)

s2 ≡ (x2−d r)k−1
E mod (p−1) (10.3)

This is an equation system with the two unknowns d, which is Bob’s private key (!),
and the ephemeral key kE . By multiplying both equations by kE it becomes a linear
system of equations which can be solved easily. Oscar simply subtracts the second
equation from the first one, yielding:

s1− s2 ≡ (x1− x2)k−1
E mod (p−1)

from which the ephemeral key follows as

kE ≡
x1− x2

s1− s2
mod (p−1)

If gcd(s1− s2, p−1) 6= 1, the equation has multiple solutions for kE , and Oscar has
to verify which is the correct one. In any case, using kE , Oscar can now also compute
the private key through either Equation (10.2) or Equation (10.3):

d ≡ x1− s1kE

r
mod (p−1)

With the knowledge of the private key d and the public key, Oscar can now freely
sign any documents on Bob’s behalf. In order to avoid the attack, fresh ephemeral
keys stemming from a random number generator should be used for every digital
signature. An attack example with small numbers is given in the next example.

Example 10.4. Let’s assume the situation where Oscar eavesdrops on the following
two messages that were previously signed with Bob’s private key and that use the
same ephemeral key kE :

1. (x1,(r,s1)) = (26,(3,26))
2. (x2,(r,s2)) = (13,(3,1))

Additionally, Oscar knows Bob’s public key, which is given as

(p,α,β ) = (29,2,7).

With this information, Oscar is now able to compute the ephemeral key
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kE ≡
x1− x2

s1− s2
mod (p−1)

≡ 26−13
26−1

≡ 13 ·9

≡ 5 mod 28

and finally reveal Bob’s private key d:

d ≡ x1− s1 · kE

r
mod (p−1)

≡ 26−26 ·5
3

≡ 8 ·19

≡ 12 mod 28

�

Existential Forgery Attack

Similarly to the case of RSA digital signatures, it is also possible that an attacker
generates a valid signature for a random message x. The attacker, Oscar, imperson-
ates Bob, i.e., Oscar claims to Alice that he is in fact Bob. The attack works as
follows:

Existential Forgery Attack Against Elgamal Digital Signature

Alice Oscar Bob
kpr = d
kpub = (p,α,β )

(p,α,β )←−−−−−− (p,α,β )←−−−−−−
1. select integers i, j

where gcd( j, p−1) = 1
2. compute signature:

r ≡ α iβ j mod p
s≡−r j−1 mod (p−1)

3. compute message:
x≡ s i mod (p−1)

(x,(r,s))←−−−−−−
verification:
t ≡ β r · rs mod p
since t ≡ αx mod p:

valid signature!

The verification yields a “true” statement because the following holds:
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t ≡ β
r · rs mod p

≡ α
d r · rs mod p

≡ α
d r ·α(i+d j)s mod p

≡ α
d r ·α(i+d j)(−r j−1) mod p

≡ α
d r−d r ·α−r i j−1

mod p

≡ α
s i mod p

Since the message was constructed as x ≡ s i mod (p− 1), the last expression is
equal to

α
s i ≡ α

x mod p

which is exactly Alice’s condition for accepting the signature as valid.
The attacker computes in Step 3 the message x, the semantics of which he cannot

control. Thus, Oscar can only compute valid signatures for pseudorandom messages.
The attack is not possible if the message is hashed, which is, in practice, very

often the case. Rather than using the message directly to compute the signature, one
applies a hash function to the message prior to signing, i.e., the signing equation
becomes:

s≡ (h(x)−d · r)k−1
E mod (p−1)

More on hashing can be found in Chapter 11.

10.4 The Digital Signature Algorithm (DSA)

The native Elgamal signature algorithm described in the previous section is rarely
found in practice. Instead, a much more popular variant is the Digital Signature
Algorithm, or DSA. It is also known as the U.S. Digital Signature Standard (DSS).
Even though NIST, the U.S. National Institute of Standards and Technology, stopped
recommending DSA as a signature scheme in 2020, it is still used in many legacy
systems. (Nowadays NIST recommends the use of RSA signatures or ECDSA, cf.
Section 10.5.) The main advantages of DSA over the Elgamal signature scheme are
that the signature is shorter than the modulus, e.g., 448 bits when the modulus is
2048 bits, and that some of the attacks that can threaten the Elgamal scheme are not
applicable.

10.4.1 The DSA Algorithm

We introduce in the following the DSA algorithm with a bit length of 2048 bits.
Note that a 3072-bit version was also part of the standard.
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Key Generation

The keys for DSA are computed as follows:

Key Generation for DSA

1. Generate a prime p with 22047 < p < 22048.
2. Find a prime divisor q of p−1 with 2223 < q < 2224.
3. Find an element α with ord(α) = q, i.e., α generates the subgroup with

q elements.
4. Choose a random integer d with 0 < d < q.
5. Compute β ≡ αd mod p.
The keys are now:
kpub = (p,q,α,β )
kpr = (d)

The central idea of DSA is that there are two cyclic groups involved. One is the
large cyclic group Z∗p, the order of which has a length of 2048 bits. The second one
is the 224-bit subgroup of Z∗q. This setup yields shorter signatures, as we see in the
following.

In addition to the 2048-bit prime p and a 224-bit prime q, there are two other bit
length combinations possible for the primes p and q, shown in Table 10.1. We note
that the 1024-bit version does not provide long-term security anymore and should
not be used in practice nowadays.

Table 10.1 Bit lengths of important parameters of DSA

p q signature
1024 160 320
2048 224 448
3072 256 512

If one of the other bit lengths is required, only Steps 1 and 2 of the key generation
phase have to be adjusted accordingly. More about the issue of bit length will be said
in Section 10.4.3 below.

Signature and Verification

As in the Elgamal signature scheme, the DSA signature consists of a pair of integers
(r,s). Since each of the two parameters is only 224 bits long, the total signature
length is 448 bits. Using the public and private keys, the signature for a message x
is computed as follows:
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DSA Signature Generation

1. Choose an integer as random ephemeral key kE with 0 < kE < q.
2. Compute r ≡ (αkE mod p) mod q.
3. Compute s≡ (SHA(x)+d · r)kE

−1 mod q.

The message x is hashed using the hash function SHA-2 in order to compute s.
Hash functions, including SHA-2, are described in Chapter 11. For now it is suffi-
cient to know that SHA-2 compresses x and computes a fingerprint that is at least
224 bits long. This fingerprint can be thought of as a representative of x.

The signature verification process is as follows:

DSA Signature Verification

1. Compute the auxiliary value w≡ s−1 mod q.
2. Compute the auxiliary value u1 ≡ w ·SHA(x) mod q.
3. Compute the auxiliary value u2 ≡ w · r mod q.
4. Compute v≡ (αu1 ·β u2 mod p) mod q.
5. The verification verkpub(x,(r,s)) follows from:

v
{
≡ r mod q =⇒ valid signature
6≡ r mod q =⇒ invalid signature

The verifier accepts a signature (r,s) only if v≡ r mod q is satisfied. Otherwise,
the verification fails. In this case, either the message or the signature may have been
modified or the verifier is not in possession of the correct public key. In any case,
the signature should be considered invalid.

Proof. We show that a signature (r,s) satisfies the verification condition v≡ r mod
q. We’ll start with the signature parameter s:

s≡ (SHA(x)+d r)kE
−1 mod q

which is equivalent to:

kE ≡ s−1 SHA(x)+d s−1 r mod q

The right-hand side can be expressed in terms of the auxiliary values u1 and u2:

kE ≡ u1 +d u2 mod q

We can raise α to either side of the equation if we reduce modulo p:

α
kE mod p≡ α

u1+d u2 mod p
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Since the public key value β was computed as β ≡ αd mod p, we can write:

α
kE mod p≡ α

u1 β
u2 mod p

We now reduce both sides of the equation modulo q:

(αkE mod p) mod q≡ (αu1β
u2 mod p) mod q

Since r was constructed as r≡ (αkE mod p) mod q and v≡ (αu1β u2 mod p) mod q,
this expression is identical to the condition for verifying a signature as valid:

r ≡ v mod q

ut

Let’s look at an example with small numbers.

Example 10.5. Bob wants to send a message x to Alice which is to be signed with
the DSA algorithm. Suppose the hash value of x is h(x) = 26. Then the signature
and verification process is as follows:

Alice Bob
1. choose p = 59
2. choose q = 29
3. choose α = 3
4. choose private key d = 7
5. β = αd ≡ 4 mod 59

(p,q,α,β )=(59,29,3,4)←−−−−−−−−−−−−−−−−−−
sign:
compute hash of message h(x) = 26
1. choose ephemeral key kE = 10
2. r = (310 mod 59)≡ 20 mod 29
3. s = (26+7 ·20) ·3≡ 5 mod 29

(x,(r,s))=(x,(20,5))←−−−−−−−−−−−−−−−−−−
verify:
1. w = 5−1 ≡ 6 mod 29
2. u1 = 6 ·26≡ 11 mod 29
3. u2 = 6 ·20≡ 4 mod 29
4. v = (311 ·44 mod 59) mod 29 = 20
5. v≡ r mod 29 =⇒ valid signature

In this example, the subgroup has a prime order of q = 29, whereas the “large”
cyclic group modulo p has 58 elements. We note that 58 = 2 · 29. We assumed a
fictitious hash function h(x) that computes a hash value of 26 for the message.
�
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10.4.2 Computational Aspects

We discuss now the computations involved in the DSA scheme. The most demand-
ing part is the key generation phase. However, this phase only has to be executed
once at set-up time.

Key Generation

The challenge in the key generation phase is to find a cyclic group Z∗p with a bit
length of 2048, and which has a prime subgroup in the range of 2224. This condi-
tion is fulfilled if p− 1 has a prime factor q of 224 bits. The general approach to
generating such parameters is to first find the 224-bit prime q and then to construct
the larger prime p from it. Below is the prime-generating algorithm, which uses
the Miller-Rabin primality test from Section 7.6.2 as a subroutine. Note that the
NIST-specified scheme is slightly different.

Prime Generation for DSA
Output: two primes (p,q), where 22047 < p < 22048 and 2223 < q < 2224,
such that p−1 is a multiple of q.
Initialization: i = 1
Algorithm:

1 find prime q with 2223 < q < 2224 using the Miller–Rabin algorithm
2 FOR i = 1 TO 4096
2.1 generate random integer M with 22047 < M < 22048

2.2 Mr ≡M mod 2q
2.3 p−1≡M−Mr (note that p−1 is a multiple of 2q.)

IF p is prime (use Miller–Rabin primality test)
2.4 RETURN (p, q)
2.5 i = i + 1
3 GOTO Step 1

The choice of 2q as modulus in Step 2.2 ensures that the prime candidates gen-
erated in Step 2.3 are odd numbers. Since p−1 is divisible by 2q, it is also divisible
by q. If p is a prime, Z∗p thus has a subgroup of order q.

Signing

During signing we compute the parameters r and s. Computing r involves first eval-
uating αkE mod p using the square-and-multiply algorithm. Since kE has only 224
bits, about 1.5 · 224 = 336 squarings and multiplications are required on average,
even though the arithmetic is done with 2048-bit numbers. The result, which also
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has a length of 2048 bits, is then reduced to 224 bits by the operation “mod q”.
Computing s involves only 224-bit numbers. The most costly step is the inversion
of kE .

Of these operations, the exponentiation is the most costly one in terms of com-
putational complexity. Since the parameter r does not depend on the message, it can
be precomputed so that the actual signing can be a relatively fast operation.

Verification

Computing the auxiliary parameters w, u1 and u2 only involves 224-bit operands,
which makes them relatively fast. The most costly operations are the exponentia-
tions in the expression v≡ (αu1 ·β u2 mod p) mod q.

10.4.3 Security

An interesting aspect of DSA is that we have to protect against two different discrete
logarithm attacks. If an attacker wants to break the scheme, he could attempt to
compute the private key d by solving the discrete logarithm in the large cyclic group
modulo p:

d ≡ logα β mod p

The most powerful method for this is the index-calculus attack, which was sketched
in Section 8.3.3. In order to thwart this attack, p must be at least 2048 bits long.
We recall that for a higher security level primes with lengths of 3072 bits are also
possible.

The second discrete logarithm attack on DSA is to exploit the fact that α gen-
erates only a small subgroup of order q. Hence, it seems promising to attack only
the subgroup, which has a size of about 2224, rather than the large cyclic group with
about 22048 elements formed by p. However, it turns out that the powerful index-
calculus attack is not applicable if Oscar wants to exploit the subgroup property.
The best he can do is to perform one of the generic DLP attacks, i.e., either the
baby-step giant-step method or Pollard’s rho method (cf. Section 8.3.3). These are
so-called square root attacks, and given that the subgroup has an order of approxi-
mately 2224, these attacks provide a security level of

√
2224 = 2112. Table 10.2 shows

the NIST-specified lengths of the primes p and q together with the resulting security
levels. The security level of the hash function must also match that of the discrete
logarithm problem. Since the cryptographic strength of a hash function is mainly
determined by the bit length of the hash output, the minimum hash output is also
given in the table. More about security of hash functions will be said in Chapter 11.

It should be stressed that the record for discrete logarithm calculations is close
to 800 bits (cf. Table 8.3 in Section 8.3.3), so that the 1024-bit DSA variant should
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Table 10.2 Bit lengths and security levels for DSA

p q Hash output (min) Security levels
1024 160 160 80
2048 224 224 112
3072 256 256 128

not be used. The 2048-bit and 3072-bit variants are believed to provide long-term
security.

In addition to discrete logarithm attacks, DSA becomes vulnerable if the ephe-
meral key is reused. This attack is completely analogues to the case of the Elgamal
digital signature. Hence, it must be ensured that a fresh randomly genererated key
kE is used in every signing operation.

10.5 The Elliptic Curve Digital Signature Algorithm (ECDSA)

As discussed in Chapter 9, elliptic curves have several advantages over RSA and
over DL schemes like Elgamal or DSA. In particular, in the absence of strong at-
tacks against elliptic curve cryptosystems (ECC), bit lengths in the range of 256–
512 bits can be chosen, which provide security equivalent to 2048–4096-bit RSA
and DL schemes. The shorter bit length of ECC often results in shorter processing
time and in shorter signatures. For these reasons, the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) was standardized in the U.S. by the American National
Standards Institute (ANSI) in 1998 and later also by NIST.

10.5.1 The ECDSA Algorithm

The steps in the ECDSA standard are conceptionally closely related to the DSA
scheme. However, its discrete logarithm problem is constructed in the group of an
elliptic curve. Thus, the arithmetic for actually computing an ECDSA signature is
entirely different from that used for DSA.

The ECDSA standard is defined for elliptic curves over prime fields Zp and Ga-
lois fields GF(2m). The former is often preferred in practice, and we will only in-
troduce this one in the following.
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Key Generation

The keys for the ECDSA are computed as follows:

Key Generation for ECDSA

1. Use an elliptic curve E with

� modulus p
� coefficients a and b
� a point A that generates a cyclic group of prime order q

2. Choose a random integer d with 0 < d < q.
3. Compute B = d A.
The keys are now:
kpub = (p,a,b,q,A,B)
kpr = (d)

Note that we have set up a discrete logarithm problem where the integer d is the
private key and the result of the scalar multiplication, point B, is the public key.
Similarlz to DSA, the cyclic group has order q, which should have size of at least
224 bits, or more for higher security levels.

Signature and Verification

Like DSA, an ECDSA signature consists of a pair of integers (r,s). Each value has
the same bit length as q, which makes for fairly compact signatures. Using the public
and private keys, the signature for a message x is computed as follows:

ECDSA Signature Generation

1. Choose an integer as random ephemeral key kE with 0 < kE < q
2. Compute R = kE A = (xR,yR)
3. Let r = xR
4. Compute s≡ (h(x)+d · r)kE

−1 mod q

In Step 3, the x-coordinate of the point R is assigned to the variable r. The mes-
sage x has to be hashed using the function h in order to compute s. The hash function
output length must be at least as long as q. More about hash functions will be said
in Chapter 11. For now it is sufficient to know that the hash function compresses x
and computes a fingerprint which can be viewed as a representative of x.



326 10 Digital Signatures

The signature verification process is as follows:

ECDSA Signature Verification

1. Compute the auxiliary value w≡ s−1 mod q
2. Compute the auxiliary value u1 ≡ w ·h(x) mod q
3. Compute the auxiliary value u2 ≡ w · r mod q
4. Compute P = u1 A+u2 B
5. The verification verkpub(x,(r,s)) follows from:

xP

{
≡ r mod q =⇒ valid signature
6≡ r mod q =⇒ invalid signature

In the last step, the notation xP indicates the x-coordinate of the point P. The verifier
accepts a signature (r,s) if xP has the same value as the signature parameter r modulo
q. Otherwise, the signature should be considered invalid.

Proof. We show that a signature (r,s) satisfies the ECDSA verification condition
r ≡ xP mod q. We’ll start with the signature parameter s:

s≡ (h(x)+d r)kE
−1 mod q

which is equivalent to:

kE ≡ s−1 h(x)+d s−1 r mod q

The right-hand side can be expressed in terms of the auxiliary values u1 and u2:

kE ≡ u1 +d u2 mod q

Since the point A generates a cyclic group of order q, we can multiply both sides of
the equation with A:

kE A = (u1 +d u2)A

Since the group operation is associative, we can write

kE A = u1 A+d u2 A

and
kE A = u1 A+ u2 B

What we showed so far is that the expression u1 A+ u2 B is equal to kE A if the
correct signature and key (and message) have been used. But this is exactly the
condition that we check in the verification process by comparing the x-coordinates
of P = u1 A+ u2 B and R = kE A.

ut



10.5 The Elliptic Curve Digital Signature Algorithm (ECDSA) 327

Using the small elliptic curve from Chapter 9, we look at a simple ECDSA ex-
ample.

Example 10.6. Bob wants to send a message to Alice that is to be signed with the
ECDSA algorithm. We assume that the message has a hash value of h(x) = 26. The
signature and verification process is as follows:

Alice Bob
choose E with p = 17, a = 2, b = 2,
and A = (5,1) with q = 19
choose d = 7
compute B= d A= 7 ·(5,1) = (0,6)

(p,a,b,q,A,B)=←−−−−−−−−−−−−
(17,2,2,19,(5,1),(0,6))

sign:
compute hash of message h(x) = 26
choose ephemeral key kE = 10
R = 10 · (5,1) = (7,11)
r = xR = 7
s = (26+7 ·7) ·2≡ 17 mod 19

(x,(r,s))=(x,(7,17))←−−−−−−−−−−−−
verify:
w = 17−1 ≡ 9 mod 19
u1 = 9 ·26≡ 6 mod 19
u2 = 9 ·7≡ 6 mod 19
P = 6 · (5,1)+6 · (0,6) = (7,11)
xP ≡ r mod 19 =⇒ valid signature

Note that we used the elliptic curve

E : y2 ≡ x3 +2x+2 mod 17

which is discussed in Section 9.2. Because all points of the curve form a cyclic group
of order 19, i.e., a prime, there are no subgroups and hence in this case q = #E = 19.
�

10.5.2 Computational Aspects

We discuss now the computations involved in the three stages of the ECDSA
scheme.

Key Generation As mentioned earlier, finding an elliptic curve with good cryp-
tographic properties is a nontrivial task. In practice, standardized curves such as
the ones proposed by NIST or curves proposed in the academic community such
as the Curve25519 are often used (cf. Section 9.6). The remaining computation in
the key generation phase is one point multiplication, which can be done using the
double-and-add algorithm.
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Signing During signing we first compute the point R, which requires one point
multiplication, and from which r immediately follows. For the parameter s we have
to invert the ephemeral key, which is done with the extended Euclidean algorithm.
The other main operations are hashing of the message and one reduction modulo q.

The point multiplication, which is in most cases by far the most arithmetic-
intensive operation, can be precomputed by choosing the ephemeral key ahead of
time, e.g., during the idle time of a CPU. Thus, in situations where precomputation
is an option, signing becomes a very fast operation.

One has also to compute the hash of the message. For long messages, this can
require many computations and can dominate the signing process.

Verification Computing the auxiliary parameters w, u1 and u2 involves straightfor-
ward modular arithmetic. The main computational load occurs during the evaluation
of P = u1 A+ u2 B. This can be accomplished by two separate point multiplications.
However, there are specialized methods for simultaneous exponentiations (remem-
ber from Chapter 9 that point multiplication is closely related to exponentiation) that
are faster than two individual point multiplications.

The hash of the message must also be computed. Similarlz to the signing pro-
cess, if the message is long, hashing can become the dominant computational factor
during verification.

10.5.3 Security

Given that the elliptic curve parameters are chosen correctly, the main analytical
attack against ECDSA attempts to solve the elliptic curve discrete logarithm prob-
lem. If an attacker were capable of doing this, he could compute the private key d
and/or the ephemeral key. We recall from Section 8.3.3 that the best known ECC
attacks have a complexity proportional to the square root of the size of the group in
which the DL problem is defined, i.e., proportional to

√
q. The parameter length of

ECDSA and the corresponding security levels are given in Table 10.3. The prime p
is typically only slightly larger than q, so that all arithmetic is done with operands
that have roughly the bit length of q.

The security level of the hash function must also match that of the discrete loga-
rithm problem. The cryptographic strength of a hash function is mainly determined
by the length of its output. More about security of hash functions will be said in
Chapter 11.

The security levels of 128, 192 and 256 were chosen so that they match the
security offered by AES with its three respective key sizes, and the 112-bit security
level is a match for the effective key length of 3DES.

More subtle attacks against ECDSA are also possible. For instance, at the begin-
ning of verification it must be checked whether r,s∈ {1,2, . . . ,q} in order to prevent
a certain attack. Also, protocol-based weaknesses, e.g., reusing the ephemeral key,
must be prevented.
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Table 10.3 Bit lengths and security levels of ECDSA

q Hash output (min) Security levels
192 192 96
224 224 112
256 256 128
384 384 192
512 512 256

10.6 Discussion and Further Reading

Algorithms for Digital Signatures The first practical digital signature scheme was
introduced in the original “RSA paper” by Rivest, Shamir and Adleman [216]. RSA
digital signatures have been standardized by several bodies for a long time, see, e.g.,
[148]. The RSA signature was, and for many applications still is, the most widely
used algorithm, especially for certificates on the internet.

The Elgamal digital signature was published in 1985 in [110]. Many variants
of this scheme are possible and have been proposed over the years. For a compact
summary see [189, Note 11.70].

DSS, or the Digital Signature Standard, is a collection of signature algorithms
endorsed by the U.S. government. It was published in 1994. The DSA algorithm was
proposed in 1991 and was in the beginning the only scheme of the DSS. There were
two possible motivations for the government to create this standard as an alternative
to RSA, which was the de facto standard for signatures at that time. First, RSA was
patented back then and having a free alternative was attractive for U.S. industry.
Second, RSA digital signature implementations can also be used for encryption.
This was not desirable (from the U.S. government viewpoint) since there were still
rather strict export restrictions for cryptography in the U.S. at that time. In contrast,
a DSA implementation can only be used for signing and not for encryption, and it
was easier to export systems that only included signature functionality. The original
1994 standard was referred to as FIPS 186, which was revised several times. The
latest version of the standard that contained DSA was FIPS 186-4. However, the
current version, FIPS 186-5 [198], disallows DSA and only lists ECDSA and RSA
as signature algorithms.

In addition to the algorithms discussed in this chapter, several other schemes
for digital signatures exist. These include, e.g., the Rabin signature [213], the Fiat–
Shamir signature [114], the Pointcheval–Stern signature [208] and the Schnorr sig-
nature [228].

Digital Signatures in Practice There is an interesting interaction between society
and modern cryptography through digital signature laws. They basically ensure that
a digital signature has a legally binding meaning. For instance, an electronic contract
that was digitally signed can be enforced in the same way as a conventionally signed
contract in paper form. Around the turn of the millennium, many nations introduced
corresponding laws. This was at a time when the “brave new world” of the internet
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opened up seemingly endless opportunities for doing business online, and digital
signature laws seemed to be crucial to allow trusted business transactions via the
internet. Examples of digital signature laws are the Electronic Signatures in Global
and National Commerce Act (ESIGN) in the U.S. [212], or the much broader eIDAS
(electronic IDentification, Authentication and trust Services) of the European Union
[112].

One crucial issue when using digital signatures in the real world is that private
keys, especially if used in a setting with legal significance, have to be kept strictly
confidential. This requires a secure way to store this sensitive key material. One
way to satisfy this requirement is to employ smart cards that can be used as secure
containers for secret keys. The private key never leaves the smart card, and signa-
tures are performed within the CPU inside the smart card. For applications with
high security requirements, tamper-resistant smart cards are protected against sev-
eral types of hardware attacks. Reference [214] provides insight into the various
facets of smart card technology.

10.7 Lessons Learned

� Digital signatures provide message integrity, message authentication and non-
repudiation.

� It is difficult to provide non-repudiation without digital signatures, e.g., with
symmetric cryptography.

� RSA and the Elliptic Curve Digital Signature Standard (ECDSA) are currently
the most widely used digital signature algorithms.

� Compared to RSA, ECDSA has the advantage of much shorter signatures.
� RSA verification can be done with short public keys e. Hence, in practice, RSA

verification is usually faster than signing.
� In order to prevent certain attacks, RSA should be used with padding.
� The modulus of RSA and DSA signature schemes should be at least 2048 bits

long. For true long-term security, a modulus of length 3072 bits should be chosen.
In contrast, ECDSA achieves the same or higher security levels with bit lengths
in the range 256-512 bits.
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Problems

10.1. In this problem we consider some basic aspects of security services.

1. In Section 10.1.3 we state that sender (or message) authentication always implies
data integrity. Why? Is the opposite true too, i.e., does data integrity imply sender
authentication?

2. Does confidentiality always guarantee integrity?

Justify all of your answers.

10.2. A painter comes up with a new business idea: He wants to offer custom paint-
ings from photos. Both the photos and paintings will be transmitted in digital form
via the internet. One concern that he has is discretion towards his customers, since
potentially embarrassing photos, e.g., nude pictures, might be sent to him. Thus,
the photo data should not be accessible to third parties during transmission. The
painter needs multiple weeks for the creation of a painting, and hence he wants to
ensure that he cannot be fooled by someone who sends in a photo assuming a false
name. He also wants to be assured that the painting will definitely be accepted by
the customer and that she cannot deny the order.

1. Which of the four basic security services are needed for the communication be-
tween the customers and the painter. Provide a one-sentence justification for ev-
ery security service.

2. Which cryptographic primitives (e.g., symmetric encryption) can be utilized to
achieve the security services? Assume that several megabytes of data have to be
transmitted for every photo.

10.3. In this problem we look at the RSA signature scheme.

1. Compute the RSA signature for the message x = 1234 and modulus n = 11111.
Choose e as small as possible.

2. What is the benefit of choosing a small public exponent e? Justify your answer!

10.4. Compute the RSA signatures for the messages x below with the public key
(n,e) = (2183,97) and the private key (d) = (409). Check your results by verifying
the signatures.

1. x = 55
2. x = 584

10.5. Given an RSA signature scheme with the public key (n = 9797,e = 131),
which of the following signatures are valid?

1. (x = 123,sig(x) = 6292)
2. (x = 4333,sig(x) = 4768)
3. (x = 4333,sig(x) = 1424)

10.6. Given an RSA signature scheme with the public key (n = 9797,e = 131),
show how Oscar can perform an existential forgery attack by providing an example.
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10.7. In an RSA digital signature scheme, Bob signs messages xi and sends them
together with the signatures si and his public key to Alice. Bob’s public key is the
pair (n,e); his private key is d.

Oscar can perform a man-in-the-middle attack, i.e., he can replace Bob’s public
key with his own during transmission on the channel. His goal is to alter messages
and provide these with a digital signature that will check out correctly on Alice’s
side. Show everything that Oscar has to do for a successful attack.

10.8. Given is an RSA signature scheme with EMSA-PSS padding as shown in Sec-
tion 10.2.3. Describe step-by-step the verification process that has to be performed
by the receiver of a signature that was EMSA-PSS encoded.

10.9. In this problem we study the computational efforts required to (i) sign a mes-
sage and (ii) verify a signature. We look at the schoolbok RSA digital signature
algorithm.

1. How many multiplications do we need, on average, to perform (i) signing of a
message with a general exponent, and (ii) verification of a signature with the
short exponent e = 216 + 1? Assume that n has l = dlog2 ne bits. Assume the
square-and-multiply algorithm is used for both signing and verification. Derive
general expressions with l as a variable.

2. Which takes longer, signing or verification?
3. We now derive estimates for the speed of actual software implementation. Use

the following timing model for multiplication: The computer operates with 32-
bit data structures. Hence, each full-length variable, in particular n and x, is rep-
resented by an array with m = dl/32e elements (with x being the base of the
exponentiation operation). We assume that one multiplication or squaring of two
of these variables modulo n takes m2 time units (a time unit is the clock period
times some constant larger than 1 which depends on the implementation). Note
that you never multiply with the exponents d and e. That means the bit length of
the exponent does not influence the time it takes to perform an individual modu-
lar squaring or multiplication.
How long does it take to compute a signature/verify a signature if the time unit
on a certain computer is 100 ns, and n has 1024 bits? How long does it take if n
has 2048 bits?

4. Smart cards are often used for computing digital signatures. Smart cards with
a 32-bit microprocessor are popular in practice. What time unit is required in
order to perform one signature generation in 0.5 s if n has (i) 1024 bits and (ii)
2048 bits? Since these processors cannot be clocked at more than, say, 80 MHz,
is the required time realistic?
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10.10. We now consider the Elgamal signature scheme. Given are Bob’s private key
Kpr = d = 67 and the corresponding public key Kpub = (p,α,β ) = (97,23,15).

1. Calculate the signature (r,s) and the corresponding verification for a message
from Bob to Alice with the following messages x and ephemeral keys kE :

a. x = 17 and kE = 31
b. x = 17 and kE = 49
c. x = 85 and kE = 77

2. You receive two messages x1 and x2 with their corresponding signatures (ri,si)
that are allegedly from Bob. Verify whether the messages (x1,r1,s1)= (22,37,33)
and (x2,r2,s2) = (82,13,65) actually originate from him.

3. Compare the RSA signature scbeme with the Elgamal signature scheme. Name
some advantages and drawbacks of each?

10.11. Given is an Elgamal signature scheme with p = 31, α = 3 and β = 6. You
receive the message x = 10 twice with the signatures (r,s):

(i) (17,5)
(ii) (13,15)

1. Are both signatures valid?
2. How many valid signatures are there for each message x with the specific param-

eters from above?

10.12. Given is an Elgamal signature scheme with the public parameters (p =
97,α = 23,β = 15). Show how Oscar can perform an existential forgery attack
by providing an example of a valid signature.

10.13. Given is an Elgamal signature scheme with the public parameters p,α ∈ Z∗p
and an unknown private key d. Due to an incorrect software implementation, there
is the following dependency between two consecutive ephemeral keys:

kEi+1 = kEi +1

Assume two consecutive signatures for the plaintexts x1 and x2 are given: (r1,s1)
and (r2,s2). Explain how an attacker is able to calculate the private key with these
values.

10.14. The parameters of a DSA scheme are given by p = 59,q = 29,α = 3, and
Bob’s private key is d = 23. Show the process of signing (by Bob) and verification
(by Alice) for the following hashed messages h(x) and ephemeral keys kE :

1. h(x) = 17,kE = 25
2. h(x) = 2,kE = 13
3. h(x) = 21,kE = 8
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10.15. Show how DSA can be attacked if the same ephemeral key is used to sign
two different messages.

10.16. We consider the ECDSA scheme. The parameters are the curve E : y2 ≡
x3 +2x+2 mod 17, the point A = (5,1) of order q = 19 and Bob’s private d = 10.
Show the process of signing (by Bob) and verification (by Alice) for the following
hashed messages h(x) and ephemeral keys kE :

1. h(x) = 12,kE = 11
2. h(x) = 4,kE = 13
3. h(x) = 9,kE = 8

10.17. Bob has noticed that somebody can sign messages in his name. Upon inspec-
tion of his signature software, he notices that the random number generator always
chooses the same ephemeral key for the Elgamal signature scheme. Since his im-
plementation lacks a good TRNG, Bob implements the following countermeasure.
He modifies the random number generator such that the new key is computed by
multiplying the value of the previous key with 3, i.e.,

kE(i+1) = 3 · kE(i)

Furthermore, he verifies that the gcd condition holds: gcd(kE , p− 1) = 1. In case
the gcd is not 1, Bob multiplies the key again by 3. Describe how an attacker can
compute the secret key d if he gets two consecutive messages and signature tuples,
each consisting of (x,r,s).

Hint: In this problem, no specific values for the parameters are given. Your task
it to provide a generic solution.



Chapter 11
Hash Functions

Hash functions are an important primitive in cryptography and are widely used in
practice. They compute a digest of a message, which is a short, fixed-length bit
string. For a particular message, this hash value can be seen as a fingerprint of
the message, i.e., a unique representation of that message. Unlike all other cryp-
tographic algorithms introduced in this book, hash functions do not have a key.

There are many applications of hash functions in cryptography. They are an es-
sential part of digital signature schemes, message authentication codes (cf. Chap-
ter 13) and PQC-algorithms (cf. Chapter 12). But they are also widely used for
other cryptographic applications, e.g., hash functions are a central component of
cryptocurrencies and of generating pseudo-random numbers, storing passwords or
for verifying of files.

In this chapter you will learn:

� Why hash functions are required in digital signature schemes
� Important properties of hash functions
� A security analysis of hash functions, including an introduction to the birthday

paradox
� An overview of different families of hash functions
� How the most widley used hash functions SHA-2 and SHA-3 work in detail
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11.1 Motivation: Signing Long Messages

Even though hash functions have many applications in modern cryptography, a good
motivation for them is the role they play in the use of digital signatures in practice.
Other important applications of hash functions are discussed in Section 11.6.

In the previous chapter, we have introduced signature schemes based on the
asymmetric algorithm RSA, the discrete logarithm problem and elliptic curves. For
all schemes, the length of the plaintext is limited. For instance, in the case of RSA,
the message cannot be larger than the modulus, which in practice is often between
2048 and 3072 bits long. Remember that this translates into only 256–384 bytes.
Thus far, we have ignored the fact that most messages in practice, e.g., emails or
PDF files, are (much) larger. The question that arises at this point is simple: How
are we going to efficiently compute signatures of large messages? An intuitive ap-
proach would be similar to the ECB mode for block ciphers: Divide the message x
into blocks xi with a size that is equal to or less than the allowed input length of the
signature algorithm, and sign each block separately, as depicted in Figure 11.1.
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Fig. 11.1 Insecure approach to signing of long messages

However, this approach yields three serious problems:

Problem 1: High Computational Load Digital signatures are based on computa-
tionally intensive asymmetric operations such as modular exponentiations of large
integers. Even if a single operation consumes a small amount of time (and energy,
which is relevant in mobile applications), signing large messages, e.g., email attach-
ments or multimedia files, would take too long on current computers. Furthermore,
not only does the signer have to compute the signature, but the verifier also has to
spend a similar amount of time and energy to verify the signature.

Problem 2: Bandwidth Overhead Obviously, this naı̈ve approach dramatically
increases the communication overhead because not only must the message be sent
but also many signatures, which are of roughly the same length. For instance, a
1 MB file would yield an RSA signature of length 1 MB, so that a total of 2 MB
must be transmitted.



11.1 Motivation: Signing Long Messages 337

Problem 3: Security Limitations This is the most serious problem if we attempt
to sign a long message by signing a sequence of message blocks individually. The
approach shown in Figure 11.1 leads immediately to new attacks: For instance, Os-
car could remove individual messages and the corresponding signatures, or he could
reorder messages and signatures, or he could reassemble new messages and signa-
tures out of fragments of previous messages and signatures, etc. Even though an
attacker cannot perform manipulations within an individual block, we do not have
protection for the whole message.

Hence, for security as well as for performance reasons we would like to have one
short signature for a message of arbitrary length. The solution to this problem is
hash functions. If we had a hash function that somehow computes a fingerprint of
the message x, we could perform the signature operation as shown in Figure 11.2.
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Fig. 11.2 Signing of long messages with a hash function

Assuming we possess such a hash function, we now describe a basic protocol for
a digital signature scheme with hash function. Bob wants to send a digitally signed
message to Alice.

Basic Protocol for Digital Signatures with Hash Function:

Alice Bob
kpub,B←−−−−−−−−−−−−

z = h(x)
s = sigkpr,B

(z)
(x,s)←−−−−−−−−−−−−

z′ = h(x)
verkpub,B (s,z

′) = true/false

He computes the hash of the message x and signs the hash value z with his private
key kpr,B. On the receiving side, Alice computes the hash value z′ of the received
message x. She verifies the signature s with Bob’s public key kpub,B. We note that
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both the signature generation and the verification operate on the hash value z rather
than on the message itself. Hence, the hash value represents the message. The hash
is sometimes referred to as the message digest or the fingerprint of the message.

Before we discuss the security properties of hash functions in the next section,
we can already get a rough feeling for a desirable input–output behavior of hash
functions: We want to be able to apply a hash function to messages x of any size
and, hence, we need a function h that is computationally efficient. Even if we hash
large messages in the range of, say, hundreds of megabytes, it should be relatively
fast to compute. Another desirable property is that the output of a hash function is of
fixed length and independent of the input length. Mathematically speaking, we can
define h by a map of an input with an arbitrary number of bits to an output of a fixed
size with n bits. Each bit can take a value {0,1}. To denote the arbitrary number of
input bits, we use an asterisk “*” in the following definition:

h : {0,1}∗→{0,1}n

Most modern hash functions have output lengths n between 256–512 bits.
Finally, the computed fingerprint should be highly sensitive to all input bits. That

means even if we make minor modifications to the input x, the fingerprint should
look very different. This behavior is similar to that of block ciphers. The properties
that we just described are visualized in Figure 11.3.

Fig. 11.3 Principal input–output behavior of hash functions
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11.2 Security Requirements of Hash Functions

As mentioned in the introduction, unlike all other cryptographic algorithms we have
dealt with so far, hash functions do not have keys. The question now is whether
there are any special properties needed for a hash function to be “secure”. In fact,
we have to ask ourselves whether hash functions have any impact on the security
of an application at all since they do not encrypt and they do not have keys. As
is often the case in cryptography, things can be tricky and there are attacks which
exploit weaknesses of hash functions. It turns out that there are three fundamental
properties that hash functions need to possess in order to be secure:

1. preimage resistance (or one-wayness)
2. second preimage resistance (or weak collision resistance)
3. collision resistance (or strong collision resistance)

These three properties are visualized in Figure 11.4 and are discussed in the
following subsections.

Fig. 11.4 The three fundamental security properties of hash functions

11.2.1 Preimage Resistance or One-Wayness

Hash functions need to be one-way: Given a hash output z, it must be computation-
ally infeasible to find an input message x such that z = h(x). In other words, given a
fingerprint, we cannot derive a matching message. By a matching message we mean
any message x which satisfies z = h(x), not just the original one. We demonstrate
now why preimage resistance is important by means of a fictive protocol in which
Bob encrypts the message but not the signature, i.e., he transmits the pair:
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(ek(x),sigkpr,B
(z))

Here, ek(x) is a symmetric cipher, e.g., AES, with some symmetric key shared by
Alice and Bob. Let’s assume Bob uses an RSA digital signature, where the signature
is computed as:

s = sigkpr,B
(z)≡ zd mod n

The attacker Oscar can use Bob’s public key e to compute

se ≡ z mod n

If the hash function is not one-way, Oscar can now compute the message x from
h−1(z) = x. Thus, the symmetric encryption of x is circumvented by the signature,
which leaks the plaintext. For this reason, h(x) needs to be a one-way function. We
note the one-wayness implies that it should not be possible for an attacker to find
any message x that satisfies z = h(x), not just the original one.

In many other applications that make use of hash functions, for instance in key
derivation, preimage resistance is even more crucial.

11.2.2 Second Preimage Resistance or Weak Collision Resistance

For digital signatures on hashed messages it should be computationally infeasible
for an attacker to create two different messages x1 6= x2 with equal hash values z1 =
h(x1) = h(x2) = z2. We differentiate between two different types of such collisions.
In the first case, x1 is given and we try to find x2. This is called second preimage
resistance or weak collision resistance. In the second case an attacker is free to
choose both x1 and x2. This is referred to as strong collision resistance and is dealt
with in the subsequent section.

It is easy to see why second preimage resistance is important for the basic
signature with hash scheme that we introduced above. Assume Bob hashes and
signs a message x1. If Oscar is capable of finding a second message x2 such that
h(x1) = h(x2), he can run the following substitution attack:

Alice Oscar Bob
kpub,B←−−−−−

z = h(x1)
s = sigkpr,B

(z)
(x2,s)←−−−−−  substitute

(x1,s)←−−−−−
z = h(x2)
verkpub,B(s,z) = true

As we can see, Alice would accept x2 as a correct message since the verification
gives her the output “true”. How can this happen? From a more abstract viewpoint,
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this attack is possible because both signing (by Bob) and verification (by Alice) do
not happen with the actual message itself, but rather with the hashed version of it.
Hence, if an attacker manages to find a second message with the same fingerprint
(i.e., hash output), signing and verifying are the same for this second message.

The question now is how we can prevent Oscar from finding x2. Ideally, we would
like to have a hash function for which weak collisions do not exist. This is, unfor-
tunately, impossible due to the pigeonhole principle, a more impressive term for
which is Dirichlet’s drawer principle. The pigeonhole principle uses a counting ar-
gument in situations like the following: If you are the owner of 101 pigeons but in
your pigeon loft are only 100 holes, at least one pigeonhole will be occupied by 2
or more birds. Since the output of every hash function has a fixed bit length, say
n bits, there are “only” 2n possible output values. At the same time, the number of
inputs to the hash functions is infinite so that multiple inputs must hash to the same
output value. In practice, each output value is equally likely for a random input, so
that weak collisions exist for all output values.

Since weak collisions always exist, the next best thing we can do is to ensure that
they cannot be found in practice. A strong hash function should be designed such
that given x1 and h(x1) it is impossible to construct x2 such that h(x1) = h(x2). This
means that there is no analytical attack. However, Oscar can always randomly pick
x2 values, compute their hash values and check whether they are equal to h(x1).
This is similar to a brute-force attack on a symmetric cipher. In order to prevent
this attack given today’s computers, an output length of n = 128 bits is sufficient.
However, we see in the next section that more powerful attacks exist, forcing us to
use even longer output bit lengths.

11.2.3 Collision Resistance and the Birthday Attack

We call a hash function collision resistant or strong collision resistant if it is com-
putationally infeasible to find two different inputs x1 6= x2 with h(x1) = h(x2). This
property is harder to achieve than weak collision resistance since an attacker has two
degrees of freedom: Both messages can be chosen to achieve the same hash value.
Now, we show how Oscar could turn his ability to find collisions into an attack. He
starts with two messages, for instance:

x1 = Transfer $10 into Oscar’s account

x2 = Transfer $10,000 into Oscar’s account

He now alters x1 and x2 at “nonvisible” locations, e.g., he replaces spaces by tabs,
adds spaces or return signs at the end of the message, etc. This way, the semantics
of the message is unchanged (e.g., for a bank), but the hash value changes for every
version of the message. Oscar continues until the condition h(x1)= h(x2) is fulfilled.
The attack is known as Yuval’s birthday attack and was first proposed in 1979 by
Gideon Yuval.
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Note that if an attacker has, e.g., 64 locations in the message that he can alter
or not, this yields 264 versions of the same message with 264 different hash values.
With the two messages, he can launch the following attack:

Alice Oscar Bob
kpub,B←−−−−−
x1−−−−−→

z = h(x1)
s = sigkpr,B

(z)
(x2,s)←−−−−−  substitute

(x1,s)←−−−−−
z = h(x2)
verkpub,B(s,z) = true

This attack assumes that Oscar can trick Bob into signing the message x1. This is,
of course, not possible in every situation. But one can imagine scenarios where Os-
car can pose as an innocent party, e.g., a shop on the internet, and x1 is the purchase
order that is generated by Oscar.

As we saw earlier, due to the pigeonhole principle, collisions always exist. The
question is how difficult it is to find them. Our first guess is probably that this is as
difficult as finding second preimages, i.e., if the hash function has an output length of
80 bits, we have to check about 280 messages. However, it turns out that an attacker
needs only about 240 messages! This is a quite surprising result which is due to the
birthday attack. This attack is based on the birthday paradox, which is a powerful
property that is often used in cryptanalysis.

It turns out that the following real-world question is closely related to finding
collisions for hash functions: How many people are required at a party such that
there is a reasonable chance that at least two people have a birthday on the same
day of the year? Our intuition might lead us to assume that we need around 183
people (i.e., about half of the 365 days that are in a year) for a collision to occur.
However, it turns out that we need far fewer people. The piecewise approach to solve
this problem is to first compute the probability of two people not having the same
birthday, i.e., having no collision of their birthdays. For one person, the probability
of no collision is 1, which is trivial since a single birthday cannot collide with anyone
else’s. For the second person, the probability of no collision is 364 over 365, since
there is only one day, the birthday of the first person, to collide with:

P(no collision among 2 people) =
(

1− 1
365

)
If a third person joins the party, he or she can collide with either of the people
already there, hence:

P(no collision among 3 people) =
(

1− 1
365

)
·
(

1− 2
365

)
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Consequently, the probability for t people having no birthday collision is given by:

P(no collision among t people) =
(

1− 1
365

)
·
(

1− 2
365

)
· · ·
(

1− t−1
365

)
For t = 366 people we will have a collision with probability 1 since a year has only
365 days. We return now to our initial question: How many people are needed to
have a 50% chance of two or more colliding birthdays? Surprisingly — following
from the equations above — it only requires 23 people to obtain a probability of
about 0.5 for a birthday collision since:

P(at least one collision) = 1−P(no collision)

= 1−
(

1− 1
365

)
· · ·
(

1− 23−1
365

)
= 0.507≈ 50%

Note that for 40 people the probability is about 90%. Due to the surprising outcome
of this gedankenexperiment, it is often referred to as the birthday paradox.

Collision search for a hash function h() is exactly the same problem as finding
birthday collisions among party attendees. For a hash function there are not 365
values each element can take but 2n, where n is the output width of h(). In fact, it
turns out that n is the crucial security parameter for hash functions. The question is
how many messages (x1,x2, . . . ,xt) Oscar needs to hash to have a reasonable chance
that h(xi) = h(x j) for some xi and x j that he picked. The probability of no collisions
among t hash values is:

P(no collision) =
(

1− 1
2n

)(
1− 2

2n

)
· · ·
(

1− t−1
2n

)
=

t−1

∏
i=1

(
1− i

2n

)
We recall from our calculus courses that the approximation

e−x ≈ 1− x,

holds1 since i/2n << 1. We can approximate the probability as:

P(no collision) ≈
t−1

∏
i=1

e−
i

2n

≈ e−
1+2+3+···+t−1

2n

1 This follows from the Taylor series representation of the exponential function: e−x = 1− x+
x2/2!− x3/3!+ · · · for x << 1.
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The arithmetic series

1+2+ · · ·+ t−1 = t(t−1)/2

is in the exponent, which allows us to write the probability approximation as

P(no collision)≈ e−
t(t−1)
2·2n

Recall that our goal is to find out how many messages (x1,x2, . . . ,xt) are needed to
find a collision. Hence, we now solve the equation for t. If we denote the probability
of at least one collision by λ = 1−P(no collision), then

λ ≈ 1− e−
t(t−1)
2n+1

ln(1−λ ) ≈ − t(t−1)
2n+1

t(t−1) ≈ 2n+1 ln
(

1
1−λ

)
Since in practice t >> 1, it holds that t2 ≈ t(t−1) and thus:

t ≈

√
2n+1 ln

(
1

1−λ

)

t ≈ 2(n+1)/2

√
ln
(

1
1−λ

)
. (11.1)

Equation (11.1) is extremely important: It describes the number of hashed messages
t needed for a collision as a function of the hash output length n and the collision
probability λ . The most important consequence of the birthday attack is that the
number of messages we need to hash to find a collision is roughly equal to the
square root of the number of possible output values, i.e., about

t ≈ 2n/2 =
√

2n

Hence, for a security level (cf. Section 6.2.4) of m bits, the hash function needs to
have an output length of 2m bits. As an example, assume we want to find a collision
for a hypothetical hash function with an 80-bit output. For a success probability of
50%, we expect to hash about:

t = 281/2
√

ln(1/(1−0.5))≈ 240.2

input values. Computing around 240 hashes and checking for collisions can easily
be done today! In order to thwart collision attacks based on the birthday paradox,
the output length of a hash function must be about twice as long as an output that
protects merely against a second preimage attack. For this reason it is recommended
that hash functions should have an output length of at least 256 bits. Table 11.1
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shows the number of hash computations needed for a birthday paradox collision for
output lengths found in current and older hash functions. Interestingly, the desired
likelihood of a collision does not influence the attack complexity very much, as
is evidenced by the small difference between the success probabilities λ = 0.5 and
λ = 0.9. It should be stressed that the birthday attack is a generic attack. This means

Table 11.1 Number of required hash computations for a collision for different hash
function output lengths and for two different collision likelihoods

Hash output length [bits]
λ 128 160 256 384 512

0.5 264 281 2129 2193 2257

0.9 265 282 2130 2194 2258

it is applicable against any hash function. On the other hand, it is not guaranteed
that it is the most powerful attack available for a given hash function. As we will
see in Section 11.3, for some formerly popular hash functions, in particular MD5
and SHA-1, mathematical collision attacks exist which are more efficient than the
birthday attack.

It should be stressed that there are applications of hash functions that only require
preimage resistance. For example, when storing password hashes, it suffices if a
password can not be recovered from its hash value. Thus, a hash function with a
relatively short output, say 128 bits, might be sufficient since collision attacks do
not pose a threat.

At the end of this section we summarize the important properties of hash func-
tions h(x). Note that Properties 1−3 are practical requirements, whereas Properties
4−6 relate to the security of hash functions.

Properties of Hash Functions
1. Arbitrary message size h(x) can be applied to messages x of any size.
2. Fixed output length h(x) produces a hash value z of fixed length.
3. Efficiency h(x) is relatively easy to compute.
4. Preimage resistance For a given output z, it is computationally infeasi-

ble to find any input x such that h(x) = z, i.e, h(x) is one-way.
5. Second preimage resistance Given x1, and thus h(x1), it is computa-

tionally infeasible to find any x2 6= x1 such that h(x1) = h(x2).
6. Collision resistance It is computationally infeasible to find any pair x1 6=

x2 such that h(x1) = h(x2).
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11.3 Overview of Hash Algorithms

So far we only discussed the requirements for hash functions. We will now turn
our attention on ways to actually build them. There are two general types of hash
functions:

1. Dedicated hash functions These are algorithms that are specifically designed to
serve as hash functions. They are the most popular ones in practice.

2. Block cipher-based hash functions It is also possible to use block ciphers such
as AES to construct hash functions.

As we saw in the previous section, hash functions can process an arbitrary-length
message and produce a fixed-length output. In practice, this is achieved by segment-
ing the input into a series of blocks of equal size. These blocks are processed sequen-
tially by the hash function, which has a compression function at its heart. One way
to process messages in such an iterated fashion is known as the Merkle–Damgård
construction, shown in Figure 11.5. The final hash value of the input message is the
output of the last iteration of the compression function.

Fig. 11.5 Merkle–Damgård hash function construction

The popular hash functions SHA-1 and SHA-2 are in fact based on the Merkle–
Damgård construction, whereas the newer SHA-3 relies on a different design princi-
ple, namely a sponge construction. The sponge construction consists of two phases,
the absorbing (or input) phase and the squeezing (or output) phase. In contrast to the
Merkle–Damgård design, sponge constructions are more versatile and can also be
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used to build functions other than hash functions, e.g., extendable output functions
(XOF). More about sponge constructions will be said in Section 11.5.1.

11.3.1 Hash Functions from Block Ciphers

As mentioned above, hash functions can also be constructed using block cipher
chaining techniques. First, we divide the message x into blocks xi of fixed size.
Figure 11.6 shows the construction of such a hash function: The message chunks
xi are encrypted with a block cipher e of block size b. As m-bit key input to the
cipher, we use the previous output Hi−1, which is processed through a function g
that performs a b-to-m-bit mapping. In the case of b = m — e.g., if AES with a
128-bit key is being used — the function g can be the identity mapping. After the
encryption of the message block xi, we XOR the result to the original message block.
The last output value computed is the hash of the whole message x1,x2,. . .,xn, i.e.,
Hn = h(x).

Fig. 11.6 The Matyas–Meyer–Oseas hash function construction from block ciphers

The function can be expressed as:

Hi = eg(Hi−1)(xi)⊕ xi

This construction, which is named after its inventors, is called the Matyas–Meyer–
Oseas hash function.
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There exist several variants of block cipher-based hash functions. Two popular
ones are shown in Figure 11.7.

Fig. 11.7 Davies–Meyer (left) and Miyaguchi–Preneel (right) hash function con-
structions from block ciphers

The two hash functions can be expressed as:

Hi = Hi−1⊕ exi(Hi−1) (Davies–Meyer)
Hi = Hi−1⊕ xi⊕ eg(Hi−1)(xi) (Miyaguchi–Preneel)

All three hash functions need to have initial values assigned to H0. These can be
public values, e.g., the all-zero vector. All schemes have in common that the bit size
of the hash output is equal to the block width of the cipher used. In situations where
only preimage and second preimage resistance are required (but no collision resis-
tance), block ciphers like AES with 128-bit block width can be used, because they
provide a security level of 128 bits against those attacks. For applications that need
collision resistance, the 128-bit length provided by most modern block ciphers is
not sufficient. The birthday attack reduces the security level to a mere 64 bits, which
is within reach of cloud clusters and certainly doable by nation-state adversaries.

One solution to this problem is to use Rijndael, the block cipher that later became
AES (see Section 4.1), with a block width of 192 or 256 bits. These bit lengths
provide a security level of 96 and 128 bits, respectively, against birthday attacks,
which is sufficient for most applications.

Another way of obtaining larger message digests is to use constructions that are
composed of several instances of a block cipher, and which yield twice the width
of the block length b. Figure 11.8 shows the Hirose construction for the case that a
cipher e is being employed whose key length is twice the block length. This holds
in particularly for AES with a 256-bit key. The message digest output is the 2b bits
(Hn,L||Hn,R). If AES is being used, this output is 2b = 256 bits long, which provides
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a high level of security against collision attacks. As can be seen from the figure, the
previous output of the left cipher Hi−1,L is fed back as input to both block ciphers.
The concatenation of the previous output of the right cipher, Hi−1,R, with the next
message block xi forms the key for both ciphers. For security reasons a constant c
has to be XORed to the input of the right block cipher. c can have any value other
than the all-zero vector. As in the other three constructions described above, initial
values have to be assigned to the first hash values, H0,L and H0,R.

Fig. 11.8 Hirose construction for a hash function with twice the block width

There are many other ciphers that satisfy this condition in addition to AES, e.g.,
the block ciphers Blowfish, Mars, RC6 and Serpent. If a hash function for resource-
constrained applications is needed, the lightweight block cipher PRESENT (cf. Sec-
tion 3.7) allows a very compact hardware implementation. With a key size of 128
bits and a block size of 64 bits, the construction computes a 128-bit hash output.
Recall that this message digest size resists preimage and second preimage attacks,
but offers only marginal security against birthday attacks.

11.3.2 The Dedicated Hash Functions SHA-1, SHA-2 and SHA-3

A large number of hash functions have been proposed over the last three decades. In
practice, by far the most popular algorithms have been SHA-1, SHA-2 and SHA-3.
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While SHA-1 and SHA-2 as well as MD5 and RIPEMD belong to what is called
the MD4 family, SHA-3 has an entirely different internal design. In this section we
give an introduction to these hash algorithms. Subsequently, we will discuss SHA-2
and SHA-3 in detail.

The MD4 hash function was created by Ronald Rivest (a name we have encoun-
tered before in the book; Rivest is the “R” in RSA). The idea behind MD4 was
innovative because it was specifically designed to allow efficient implementation in
software. It uses 32-bit variables and most operations are bitwise Boolean functions
such as logical AND, OR, XOR and negation. All subsequent hash functions in the
MD4 family are based on the same software-friendly principles. A strengthened ver-
sion of MD4, named MD5, was proposed by Rivest in 1991. Both hash functions
compute a 128-bit output, i.e., they possess a collision resistance of about 264. MD5
became widely used, e.g., in internet security protocols, for computing checksums
of files or for creating password hashes.

There were, however, early signs of potential weaknesses. Thus, NIST, the U.S.
National Institute of Standards and Technology, published a new message digest
standard, which was named the Secure Hash Algorithm (SHA), in 1993. This was
the first member of the SHA family and is officially called SHA, even though it is
nowadays commonly referred to as SHA-0. It is based on MD5. In 1995, SHA-0
was modified to create SHA-1. The difference between the SHA-0 and SHA-1 algo-
rithms lies in an improved schedule of the compression function. Both algorithms
have an output length of 160 bits. In 1996, a collision attack by Hans Dobbertin
against the hash function MD5 led to more and more experts recommending SHA-1
as a replacement for the widely used MD5.

In 2004, collision attacks against MD5 and SHA-0 were announced. In 2005, a
SHA-1 collision with a complexity of 263 steps was found. This is considerably less
than the 280 steps needed for the birthday attack. Later on, the attack was further
improved. The best collision search at the time of writing has a complexity of 261.2

SHA-1 computations. In summary, we conclude that SHA-1 should be considered
insecure in many applications.

Table 11.2 gives an overview of the main representatives of the MD4 family and
their security status. More details on the attack history can be found in Section 11.6.
At this point we would like to note that finding a collision does not necessarily mean
that the hash function is insecure in every situation. There are applications for hash
functions, e.g., key derivation or storage of passwords, where only preimage and
second preimage resistance are required. For such applications, hash functions such
as SHA-1 can still be sufficient.

Today, it is recommended to use hash functions with a security level of at least
128 bits, which requires an output length of 256 bits or more. The security level is a
good fit if they are used in protocols together with algorithms such as AES, which
has a security level of 128 to 256 bits. Similarly, most public-key schemes can offer
higher security levels: for instance, elliptic curves have a security level of 128 bits
if 256-bit curves are used. Thus, in 2001 NIST introduced three improved variants
of SHA-1: SHA-256, SHA-384 and SHA-512, with message digest lengths of 256,
384 and 512 bits, respectively. An additional variant, SHA-224, was introduced in
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Table 11.2 The MD4 family of hash functions

Algorithm Output Input # rounds Collisions
[bits] [bits] found

MD5 128 512 64 yes
SHA-1 160 512 80 yes

SHA-2

SHA-224 224 512 64 no
SHA-256 256 512 64 no
SHA-384 384 1024 80 no
SHA-512 512 1024 80 no

2004 in order to fit the security level of 3DES. These four hash functions are often
referred to as SHA-2, and all four of them are considered secure. In Section 11.4 we
will learn about the internals of SHA-2.

Despite SHA-2 still being considered secure, NIST decided to start a public com-
petition in 2007 with the goal to standardize a hash function that features an internal
design dissimilar to that of the MD4 family. The rationale behind this decision was
to be prepared in case the MD4 architecture turned out to be vulnerable in general,
thereby also affecting SHA-2. This new hash function was finally standardized as
SHA-3 in 2015 and will be discussed in more detail in Section 11.5.

11.4 The Secure Hash Algorithm SHA-2

The Secure Hash Algorithm 2 (SHA-2) is nowadays the most widely used message
digest function of the MD4 family. SHA-2 comprises the six algorithms SHA-224,
SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256. For the first four
algorithms, the number following “SHA–” indicates the output length of the digest
in bits. In addition, there are two variants of SHA-512 with output lengths of 224
bits and 256 bits.

All SHA-2 algorithms are based on a Merkle–Damgård construction. For the
sake of simplicity, we only describe SHA-256 as a representative of the SHA-2
family of algorithms. We note that the internal structure of all six hash algorithms
is identical. Figure 11.9 shows the Merkle–Damgård construction of SHA-256. An
interesting interpretation of the SHA-2 algorithm is that the compression function
works like a block cipher, where the input is the previous hash value Hi−1 and the
key is formed by the message block xi. As we will see below, the actual rounds of
SHA-2 are similar to a Feistel block cipher.

SHA-256 produces a 256-bit output from a message with a maximum length
of 264 − 1 bits. We note that SHA-384 and SHA-512 allow for messages with a
maximum length of 2128− 1 bits. Before the hash computation, the algorithm pre-
processes the message. During the actual computation, the compression function of
SHA-256 processes the message in 512-bit chunks. For SHA-256, the compression
function consists of 64 rounds.
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Fig. 11.9 High-level diagram of SHA-256

11.4.1 SHA-256 Preprocessing

First, we describe the preprocessing phase of SHA-2. Before the actual hash com-
putation, the message x has to be padded to a multiple of 512 bits. For the internal
processing, the padded message must then be divided into blocks.

Padding Assume that we have a message x with a length of l bits. To obtain an
overall message size of a multiple of 512 bits, we append a single “1” followed
by k zero bits and the 64-bit binary representation of l. Consequently, the number
of required zeros k is given by

k ≡ 512−64−1− l

= 448− (l +1) mod 512

Figure 11.10 illustrates the padding of a message x.

Example 11.1. Given is the message “abc”, consisting of three 8-bit ASCII char-
acters with a total length of l = 24 bits:

01100001︸ ︷︷ ︸
a

01100010︸ ︷︷ ︸
b

01100011︸ ︷︷ ︸
c

.

We append a “1” followed by k = 423 zero bits, where k is determined by

k ≡ 448− (l +1) = 448−25 = 423 mod 512
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+1 bits

N 512 bits

100...0

Padding

l

64 bitsbitsl

xMessage

k

Fig. 11.10 Padding of a message in SHA-256

Finally, we append the 64-bit value which contains the binary representation of
the length l = 2410 = 110002. The padded message is then given as

01100001︸ ︷︷ ︸
a

01100010︸ ︷︷ ︸
b

01100011︸ ︷︷ ︸
c

1 00 · · ·0︸ ︷︷ ︸
423 zeros

00 · · ·011000︸ ︷︷ ︸
l=24

�

Dividing the padded message Prior to applying the compression function, we
need to divide the message into 512-bit blocks x1,x2, ... ,xn. Each 512-bit block
can be subdivided into 16 words of 32 bits. For instance, the i-th block of the
message x is split into:

xi = (x(0)i x(1)i · · · x(15)
i )

where x(k)i are 32-bit words.

11.4.2 The SHA-256 Compression Function

Figure 11.11 gives a closer look at the compression function of SHA-256. As can
be seen from the figure, the compression function has three inputs: the output
of the previous iteration Hi−1, the message schedule, which consists of 64 words
W0,W1, . . . ,W63, and the constants K0, . . . ,K63. The symbol � in the figure denotes
additions of two 32-bit words modulo 232.

For each message block xi, consisting of 16 words (or 512 bits), the iteration
within the compression function is executed 64 times. In each of the 64 iterations,
one word Wi of the message schedule and one constant Ki is provided as input. The
values of the message schedule are derived as follows:

Wj =

{
x( j)

i 0≤ j≤15
σ1(W j−2)+W j−7+σ0(W j−15)+W j−16 16≤ j≤63
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H i-1

256

H i

256

32

32

32

W0 …W63

K0 …K63

iteration

Fig. 11.11 Compression function of SHA-2 with 256 output bits

The message schedule uses the two functions:

σ0(x) = ROTR7(x)⊕ROTR18(x)⊕SHR3(x)

σ1(x) = ROTR17(x)⊕ROTR19(x)⊕SHR10(x)

ROTRn(x) is a circular bit-shift (i.e., a rotation) of x by n positions to the right.
SHRn(x) is a right shift without rotation, i.e., SHRn(x) = x� n.

We note that the first 16 words W0, . . . ,W15 are the 512 bits of the actual message
that’s being hashed, whereas the subsequent 48 words are computed recursively.
The 64 constants K = (K0,K1, . . . ,K63) are 32-bit words. The hexadecimal repre-
sentation of the constants is as follows:

428A2F98 71374491 B5C0FBCF E9B5DBA5 3956C25B 59F111F1 923F82A4 AB1C5ED5
D807AA98 12835B01 243185BE 550C7DC3 72BE5D74 80DEB1FE 9BDC06A7 C19BF174
E49B69C1 EFBE4786 0FC19DC6 240CA1CC 2DE92C6F 4A7484AA 5CB0A9DC 76F988DA
983E5152 A831C66D B00327C8 BF597FC7 C6E00BF3 D5A79147 06CA6351 14292967
27B70A85 2E1B2138 4D2C6DFC 53380D13 650A7354 766A0ABB 81C2C92E 92722C85
A2BFE8A1 A81A664B C24B8B70 C76C51A3 D192E819 D6990624 F40E3585 106AA070
19A4C116 1E376C08 2748774C 34B0BCB5 391C0CB3 4ED8AA4A 5B9CCA4F 682E6FF3
748F82EE 78A5636F 84C87814 8CC70208 90BEFFFA A4506CEB BEF9A3F7 C67178F2
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These words represent the first 32 bits of the fractional parts of the cube roots of
the first sixty-four prime numbers2.

The 256-bit input and output of the compression function are split into eight
words H(0)

i , . . . ,H(7)
i . The initial input Hi for the first iteration is the following eight

32-bit words, given in hexadecimal notation:

A = H(0)
0 = 6A09E667 E = H(4)

0 = 510E527F

B = H(1)
0 = BB67AE85 F = H(5)

0 = 9B05688C

C = H(2)
0 = 3C6EF372 G = H(6)

0 = 1F83D9AB

D = H(3)
0 = A54FF53A H = H(7)

0 = 5BE0CD19

These values were computed by taking the first 32 bits of the fractional parts of the
square roots of the first eight prime numbers3.

The iteration function itself is shown in Figure 11.12. The eight input and output
words are denoted by the registers A, . . . ,H. Again, the function is executed 64 times

A B C D E

A B C D E

F

F

G H

G H

Ch

Wj

Kj

Maj

Σ1

Σ0

Fig. 11.12 Iteration j in the SHA-256 compression function

for every input block.

2 The values were derived from these mathematical constants in order to demonstrate that there is
no backdoor, i.e., no hidden weakness, in SHA-2 based on specially constructed values.
3 Again, the values were derived from mathematical constants to demonstrate the absence of a
backdoor.
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In the figure we can see the operations within a single iteration j, where j =
0, . . .63, which are given by:

T1 = H +Σ1(E)+Ch(E,F,G)+K j +Wj T2 = Σ0(A)+Ma j(A,B,C)
H = G G = F
F = E E = D+T1
D = C C = B
B = A A = T1 +T2

All additions are performed modulo 232. Within the iteration six logical functions
are applied, which are described below. They all operate on 32-bit words, denoted
by x, y and z. The result of each function is a new 32-bit word.

Ch(x,y,z) = (x∧ y)⊕ (¬x∧ z)

Maj(x,y,z) = (x∧ y)⊕ (x∧ z)⊕ (y∧ z)

Σ0(x) = ROTR2(x)⊕ROTR13(x)⊕ROTR22(x)

Σ1(x) = ROTR6(x)⊕ROTR11(x)⊕ROTR25(x)

∧ denotes a logical AND and ¬x denotes the bitwise complement of x. ROTRn(x)
works as defined for the message schedule above.

Both Ch and Maj operate on the bit level. The name Ch denotes “choice”, as
for each of its 32 output bits, Ch chooses the respective bit of y or z based on the
corresponding bit of x. For example, if the first bit of x is “1”, Ch outputs the first bit
of y, otherwise it outputs the first bit of z. Maj stands for “majority”, because each
of its output bits assumes the value that has the majority among the corresponding
bits of x, y and z. If the first bit of two or more of x, y and z is “1”, Ch outputs “1”
as first bit, otherwise the first output bit has the value “0”.

After all n blocks of the message x = x1,x2, ... ,xn have been processed, the re-
sulting 256-bit message digest is given by:

SHA-256(x) = H(0)
n ||H(1)

n ||H(2)
n ||H(3)

n ||H(4)
n ||H(5)

n ||H(6)
n ||H(7)

n

11.4.3 Implementation in Software and Hardware

SHA-2 was designed to be especially suited for software implementations. Each
round requires only bitwise Boolean operations and additions with 32-bit regis-
ters, which are very fast in software. While these efficient operations lead to fast
execution of a single round, SHA-2 has a comparatively large number of rounds.
Nevertheless, optimized implementations on modern 64-bit CPU architectures can
achieve throughputs of approximately 10 Gbit/s. We note that special SHA-2 in-
structions are available on many modern processor types, which accelerate the hash
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function. For instance, the Intel SHA extensions are available on some Intel and
AMD x86 processors.

With respect to hardware, SHA-2 implementations on FPGAs can reach through-
puts of a few Gbit/s, i.e., they are in the same speed range as software implementa-
tions. Reasons for the moderate hardware performance include the basic operations
within the compression function that are difficult to parallelize. We note that SHA-3,
which is discussed in the following section, has a more hardware-friendly structure,
which leads to considerably higher throughputs in hardware implementations.

11.5 The Secure Hash Algorithm SHA-3

In 2007, NIST decided to develop an additional hash function, to be named SHA-3,
through a public competition. The main thinking of NIST was that it seemed pru-
dent to have an alternative to SHA-2 with a dissimilar internal design: In case there
should be an (unlikely) cryptanalytical breakthrough against SHA-2, there will be
another standardized and tested alternative hash function ready. The process of hav-
ing a public competition for SHA-3 was quite similar to the selection process for
AES in the late 1990s. However, unlike AES, which was clearly meant as a replace-
ment for DES, SHA-2 and SHA-3 should coexist. SHA-3 was released as a standard
in 2015. Below is a rough time line of the SHA-3 selection process:

� November 2, 2007: NIST announces the SHA-3 call for algorithms.
� December 2008: NIST selects 51 algorithms for Round 1 of the SHA-3 compe-

tition.
� July 2009: After much input from the scientific community, NIST selects 14

Round 2 algorithms.
� December 2010: NIST announces five Round 3 candidates, which are:

� BLAKE by Jean-Philippe Aumasson, Luca Henzen, Willi Meier and Raphael
C.-W. Phan,

� Grøstl by Praveen Gauravaram, Lars Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer and Søren S. Thomsen,

� JH by Hongjun Wu
� Keccak by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Ass-

che,
� Skein by Bruce Schneier, Stefan Lucks, Niels Ferguson, Doug Whiting, Mihir

Bellare, Tadayoshi Kohno, Jon Callas and Jesse Walker.

� October 2, 2012: NIST selects Keccak as the basis for the SHA-3 hash function4.
� August 5, 2015: SHA-3 is formally standardized by NIST as FIPS 202.

It should be stressed that “standardized” only refers to the fact that SHA-3 is a so-
called FIPS standard (Federal Information Processing Standard) in the USA. Its

4 Like AES, Keccak was designed by a team of European cryptographers. One member of the
Keccak team, Joan Daemen from Belgium, is also one of the two AES designers.



358 11 Hash Functions

immediate consequence is merely that it is to be used in U.S. government systems.
However, given the international participation within the standardization process,
SHA-3 and many other FIPS standards such as AES are also widely used on an
international level.

A central requirement by NIST for the SHA-3 hash function was the support
of 224, 256, 384 and 512-bit output lengths. We recall the birthday paradox from
Section 11.2.3: A collision attack that is applied to the hash function SHA-3 has
an attack complexity of approximately 2112, 2128, 2192 and 2256, respectively. The
three latter security levels are an exact match for the cryptographic strength that the
three key lengths of AES provide against brute-force attacks. Similarly, 3DES has
a cryptographic strength of 2112, and SHA-3 with 224-bit output shows the same
resistance against collision attacks. It is not a coincidence that SHA-2 also supports
the four output lengths of 224, 256, 384 and 512 bits. This allows SHA-3 to be used
as a replacement for SHA-2 and vice versa.

Somewhat surprisingly, SHA-3 can also be used as an extendable-output function
(XOF). These are functions that can produce an output of any desired length from a
given input message. Two such functions are supported, denoted by SHAKE128 and
SHAKE256. They offer a security level of 128 and 256 bits, respectively. We note
that neither SHA-1 nor SHA-2 supports XOF functionality. SHA-3 and SHAKE5

will be introduced in the following subsections.

11.5.1 High-Level View of SHA-3

SHA-3 and its variants SHAKE128 and SHAKE256 are based on an algorithm
named Keccak. The interplay of Keccak and SHA-3/SHAKE is visualized in Fig-
ure 11.13. Like every hash function, SHA-3 computes a message digest of fixed

m

Keccak

h(m) , for SHA-3

string(m) , for SHAKE

SHA-3/SHAKE

Fig. 11.13 High-level view of SHA-3 and its variant SHAKE

length for a given input message m. In contrast, the extendable output functions

5 “SHAKE” stands for Secure Hash Algorithm Keccak.
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SHAKE128 and SHAKE256 compute as output a bit string of arbitrary length. As
we will see, Keccak has parameters that allow it to be configured so that it can be
used for both SHA-3 and SHAKE.

From Figure 11.13 it is obvious that in order to understand SHA-3 and SHAKE,
one has to understand how Keccak works. Keccak is based on an innovative design,
called sponge construction. After the preprocessing (which divides the message into
blocks and provides padding), a sponge construction consists of two phases:

1. The Absorbing (or input) Phase, which processes the message blocks xi.
2. The Squeezing (or output) Phase, which computes an output of configurable

length.

Figure 11.14 gives a high-level view of Keccak. Initially, there is a preprocessing
of the input m which adds a suffix and a padding to m. Next, in the absorbing phase,
the input blocks xi are read in and processed. In the subsequent squeezing phase,
the output blocks y j are generated. Keccak by itself allows arbitrarily many output
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Fig. 11.14 The Keccak sponge construction on which SHA-3 and SHAKE128/256
are based

blocks y j. For SHA-3, only y0 is computed and its first bits form the hash value
h(m), cf. Section 11.5.2. For SHAKE128 and SHAKE256, as many output blocks
y0,y1, . . . as needed by the application are computed. The fact that not only the input
but also the output length is user defined makes Keccak a versatile function that can
be used to realize a number of cryptographic primitives, including hash functions
and pseudorandom number generators.

As can be guessed from looking at Figure 11.14, the “heart” of SHA-3 and
SHAKE128/256 is the function Keccak- f . Before we discuss the function in the
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following, we will introduce the parameters b, r and c with which Keccak can be
configured:

� b is the width of the state, where b = r+ c. Even though the function Keccak- f
allows various values for b, in the case of SHA-3 and SHAKE128/256 the state
is fixed at b = 1600 bits. (Other choices for b are discussed in Section 11.5.4.)

� r is called the bit rate. r is equal to the length of one message block xi or one
output block y j.

� c is called the capacity. The capacity determines the security level.

Again, for SHA-3 and SHAKE128/256 the state is fixed at b= 1600. Different com-
binations of r and c lead to different security levels, which are shown in Table 11.3.
The security level denotes the number of computations an attacker has to perform
in order to find a collision, e.g., a security level of 128 bits implies that an adversary
has to perform 2128 computations (cf. Section 11.2.3).

Table 11.3 The parameters of SHA-3 and SHAKE128/256

function b r c security hash
type (state) (rate) (capacity) level output

[bits] [bits] [bits] [bits] [bits]
SHA3-224 hash 1600 1152 448 112 224
SHA3-256 hash 1600 1088 512 128 256
SHA3-384 hash 1600 832 768 192 384
SHA3-512 hash 1600 576 1024 256 512
SHAKE128 XOF 1600 1344 256 128 arbitrary
SHAKE256 XOF 1600 1088 512 256 arbitrary

What’s left to do now in order to fully understand SHA-3 and SHAKE128/256
as shown in Figure 11.14 is to (a) explain the suffix and padding in Section 11.5.2,
and (b) give insight into the function Keccak- f in Section 11.5.3.

11.5.2 Suffix, Padding and Output Generation

Prior to the actual processing of a message m, a suffix and padding are added to the
message. For completeness, we note that the suffix is strictly speaking not part of
the Keccak function, but is required for SHA–3 and SHAKE128/256. On the other
hand, the padding is part of the Keccak definition.

The suffix appends certain bits to the message prior to padding. The suffix rules
are simple and are shown in Table 11.4. The different suffixes ensure that even if the
same message is used for computing a SHA-3 hash and subsequently for generating
a pseudorandom sequence with SHAKE128/256, the generated bits are different.
This is called domain separation.

After the suffix has been appended to m, the padding ensures that the message
plus the padding has a length of a multiple of r bits. The reason why padding is
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Table 11.4 Suffix rules for SHA-3 and SHAKE128/256

suffix
SHA3 suf = 01
SHAKE128/256 suf = 1111

needed is obvious when looking at Figure 11.14: Keccak reads the message in
chunks that are r bits long. The padding is a so-called multi-rate padding, which
is constructed as follows:

pad(m,suf) = m||suf||10?1

The actually padding string “10?1” consists of a 1 followed by the smallest number
of 0s and a terminating 1, such that the total length of the new string is a multiple of
r. Note that the string “0? = 0 · · ·0” can be the empty string, i.e., it can consist of no
zeros. Thus, the smallest possible padding is “11”, which has a length of two. The
longest possible padding string “10 · · ·01” has a length of r+1.

For SHA-3, only the output value y0 is needed (cf. Figure 11.14). y0 is computed
during the last round of the absorbing phase and has a length of r bits. If we look
at Table 11.3, we see that r always has more bits than needed for the output for the
four variants of SHA-3 (224, 256, 384 and 512 bits, respectively). In order to obtain
the desired hash output, the leading bits of y0 are used and the remaining bits of
y0 are discarded. When using SHAKE128/256, all r bits of y0 can be used. If more
than r bits are needed for the given application, we simply keep iterating Keccak- f
as shown in Figure 11.14 and compute the subsequent output blocks y1,y2, . . .

11.5.3 The Function Keccak- f (or the Keccak- f Permutation)

Keccak, and thus SHA-3 and SHAKE128/256, is based on the function Keccak- f ,
cf. Figure 11.14. (As mentioned above, the suffix is strictly speaking not part of
Keccak.) Keccak- f is also referred to as the Keccak- f permutation. The latter name
stems from the fact that the function permutes the 2b input values, i.e., every b-
bit integer is mapped to exactly one b-bit output integer in a bijective (one-to-one)
manner6.

Even though SHA-3 and SHAKE have 1600 bits of state (cf. Table 11.3),
Keccak- f allows seven different state sizes. To understand Keccak- f it is extremely
helpful to view the state as a three-dimensional array as shown in Figure 11.15. As
can be seen from the figure, the state array consists of b = 5×5×w bits. The seven
different states b and the number of rounds nr for every state follow from:

6 Note that such a permutation function is different from the bit permutations that are utilized
within DES.
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Fig. 11.15 The state of Keccak where each small cube represents one bit. For SHA-3
and SHAKE128/256, the “depth” of the array along the z axis is w = 64

b = 25 ·w = 25 ·2l ,with l = 0,1, . . . ,6
nr = 12+2 l

The resulting seven states and the number of rounds nr are shown in Table 11.5.

Table 11.5 The different states and number of rounds of Keccak- f ; note that b =
1600 and nr = 24 for SHA-3 and SHAKE128/256

state b [bits] 25 50 100 200 400 800 1600
number of rounds nr 12 14 16 18 20 22 24
lane w [bits] 1 2 4 8 16 32 64
l 0 1 2 3 4 5 6

For a given (x,y) coordinate, the w bits are called a lane, i.e., the word along
the z-axis. For SHA-3 and SHAKE128/256, the lane has w = 64 bits, i.e., the state
is composed of b = 1600 = 5 · 5 · 64 bits. This is a good match for modern CPUs,
which have a 64-bit architecture. It allows the entire state to be stored in an array
consisting of 25 registers. Please note the “centered” indices along the x and y-axis
in Figure 11.15, which play a role when we discuss the internals of Keccak- f below.

We now take a look at the inner structure of Keccak- f , shown in Figure 11.16.
Each round of Keccak- f consists of a sequence of five steps denoted by the Greek
letters: θ (theta), ρ (rho), π (pi), χ (chi) and ι (iota). The rounds are identical except
for the round constant RC[i], which takes a different value in each round i. The
constant is only used in the Iota (ι) Step of the round function and will be described
in Section 11.5.3.5. In the following, we introduce the inner workings of the five
steps θ , ρ , π , χ and ι of Keccak- f .



11.5 The Secure Hash Algorithm SHA-3 363

Round Round

Keccak-

0 23

r r

c
b b b b

b b
θ π χ ı

c

r r

c
f

c

. . .

Fig. 11.16 Internal structure of the function Keccak- f

11.5.3.1 Theta (θ ) Step

Figure 11.17 shows the θ Step on a bit level. Roughly speaking, every bit in the
state is replaced by the XOR sum of 10 bits “in its neighborhood” and the original
bit itself. To be exact: One adds to the bit being processed the five bits forming the
column to the left plus the column which is on the right and one position to the
“front”. Note that all positions in the x and y direction are computed modulo 5, and
modulo w in the z direction.

For efficient software implementation, the θ Step can be described as operating
on lanes of w bits as opposed to single bits. For this, we consider Figure 11.15
again where we see that the state consists of 25 lanes that are arranged in a 5× 5
array. If we denote the state array by A(x,y) with x,y = 0,1, . . . ,4, the θ Step can be
implemented through the following operation:

C[x] = A[x,0]⊕A[x,1]⊕A[x,2]⊕A[x,3]⊕A[x,4] , x = 0,1,2,3,4
D[x] = C[x−1]⊕ rot(C[x+1],1) , x = 0,1,2,3,4
A′[x,y] = A[x,y]⊕D[x] , x,y = 0,1,2,3,4

C[x] and D[x] are one-dimensional arrays which contain five words of w bits.
“rot(C[ ],1)” denotes a rotation of the operand by one bit and⊕ denotes the bit-wise
XOR operation of the two w-bit operands. Note that all indices are taken modulo 5,
e.g., C[−1] refers to C[4].

Here is what the code does: In the first line, all columns in the state are added
up (via the XOR operation) and stored in the array C[x]. Each column consists of 5
bits and Figure 11.17 shows two of these columns in grey. In the next line of code,
two XOR-sums are added according to the rule described above, cf. the two grey
columns in the figure, and stored in D[x]. Note that each bit of D[x] now contains
the XOR-sum of 10 bits. In the last line of code, each 10-bits-XOR-sum is added
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Fig. 11.17 The θ Step of Keccak- f (graphic from [115])

to the original bit; again refer to Figure 11.17. The advantage of the code is its high
degree of bit-level parallelism because in every operation w bits are processed at
once. We recall that w = 64 in most practical scenarios since that’s the parameter
used for SHA-3.

11.5.3.2 Rho (ρ) Step

Again, we consider the state as being represented by a 5-by-5 array A(x,y), where
each array element is a lane. The ρ Step7 rotates each of these lanes by a certain
number of bit positions, referred to as the offset. These rotation offsets depend on
the x and y coordinate of the lane that is being rotated and are shown in Table 11.6.
All bit positions are computed modulo w. For completeness we also provide the

Table 11.6 The rotation offsets of the ρ Step

x = 3 x = 4 x = 0 x = 1 x = 2
y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

7 “Rho” can be thought of as a mnemonic for rotation, and the subsequent “Pi” of the π Step for
permuation.
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algorithm with which the offsets are computed.

Offset Computation Algorithm for the ρ Step
Output: offset table T [x,y] , x,y = 0,1,2,3,4
Initialization: (x,y) = (1,0) , T [0,0] = 0
Algorithm:
1 FOR t = 0 TO 23
1.1 T [x,y] = (t +1)(t +2)/2
1.2 (x,y) = (y,2x+3y mod 5)
2 RETURN (T [ ])

Interestingly, the actual offset values are all triangular numbers, which are the num-
ber of objects that are arranged in a pyramid-like structure, e.g., a pyramid built out
of beer cans. The first few triangular numbers are 0,1,3,6,10, . . .

11.5.3.3 Pi (π) Step

The π Step permutes the 25 lanes of the state array A. If we denote the new array by
A′, the permutation is given by the following simple rule:

A′[x,y] = A[x+3y,x] , x,y = 0,1,2,3,4

As always in Keccak, the x and y coordinates are computed modulo 5. As an ex-
ample, let’s look at the new state array at position A′[2,3], i.e., the lane at the
lower right-most corner in Figure 11.15. This position will be filled with the lane
A[2+3 ·3,2] = A[11,2] = A[1,2] of the original array.

11.5.3.4 Chi (χ) Step

The χ Step is the only nonlinear operation within Keccak- f and also operates on
lanes with w bits. If we denote the new state array by A′, the step is described by the
following pseudo code:

A′[x,y] = A[x,y]⊕ ((Ā[x+1,y])∧A[x+2,y]) , x,y = 0,1,2,3,4

where Ā[i, j] denotes the bitwise complement of the lane at position [i, j], and ∧ is
the bitwise Boolean AND operation of the two operands. As in all other steps, the
indices are to be taken modulo 5. Describing the operation verbally, one could say
that the χ Step takes the lane at location [x,y] and XORs it with the logical AND
of the inverse of the lane at location [x + 1,y] and the lane at position [x + 2,y].
Figure 11.18 visualizes the step on a bit level.
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Fig. 11.18 The χ Step of Keccak- f . The upper row represents five lanes of the A[ ]
array, whereas the lower row shows five lanes of the new state array A′[ ] (graphic
from [115]).

11.5.3.5 Iota (ι) Step

The Iota Step adds a predefined w-bit constant to the lane at location [0,0] of the
state array A:

A′[0,0] = A[0,0]⊕RC[i]

The constant RC[i] differs depending on which round i is being executed. We recall
from Table 11.5 that the number of rounds nr varies with the parameter b chosen
for Keccak. For SHA-3 and SHAKE128/256, there are nr = 24 rounds. The cor-
responding round constants RC[0] . . .RC[23] are shown in Table 11.7. Each round
constant consists of the all-zero vector with pseudorandom bits added at the bit lo-
cations (1,2,3,7,15,31,63). The pseudorandom bits are generated by a degree-8
LFSR. Details of the PRN generation and how to generate the round constants for
different values of b and nr (cf. Table 11.5) can be found in the NIST FIPS 202
documentation.
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Table 11.7 The round constants for SHA-3 and SHAKE128/256; each constant is a
64-bit word given in hexadecimal notation

RC[ 0] = 0x0000000000000001 RC[12] = 0x000000008000808B
RC[ 1] = 0x0000000000008082 RC[13] = 0x800000000000008B
RC[ 2] = 0x800000000000808A RC[14] = 0x8000000000008089
RC[ 3] = 0x8000000080008000 RC[15] = 0x8000000000008003
RC[ 4] = 0x000000000000808B RC[16] = 0x8000000000008002
RC[ 5] = 0x0000000080000001 RC[17] = 0x8000000000000080
RC[ 6] = 0x8000000080008081 RC[18] = 0x000000000000800A
RC[ 7] = 0x8000000000008009 RC[19] = 0x800000008000000A
RC[ 8] = 0x000000000000008A RC[20] = 0x8000000080008081
RC[ 9] = 0x0000000000000088 RC[21] = 0x8000000000008080
RC[10] = 0x0000000080008009 RC[22] = 0x0000000080000001
RC[11] = 0x000000008000000A RC[23] = 0x8000000080008008

11.5.4 Other Cryptographic Functions Based on Keccak

As stated earlier, Keccak is a versatile function with which other cryptographic
primitives in addition to SHA-3 and SHAKE can be realized. In this section, we dis-
cuss such constructions. We first introduce additional parameter choices for Keccak-
f and subsequently cSHAKE, which is a collection of cryptographic functions.

Keccak- fff One option for building further hash-like functions is to make use of
the other state sizes that are possible with Keccak- f . We recall from Table 11.5
that there are seven possible states, namely b ∈ {25,50,100,200,400,800,1600}.
In addition to the 1600 bits used for SHA-3 and SHAKE128/256, the values 100,
200, 400 and 800 are options if a user wishes to build other cryptographic primitives
with the sponge construction. The two smallest parameters b = 25 and b = 50 are
only toy values for analyzing the algorithm and should not be used in practice.

Keccak-ppp During the SHA-3 competition and the subsequent standardization pro-
cess, it turned out that there might be applications where different numbers of rounds
than those specified in Table 11.5 are desirable. In particular, a lower round count
for higher performance can be attractive. Hence, NIST standardized the function
Keccak-p, which is identical to Keccak- f , for which 24 rounds are mandatory, but
allows freedom when choosing the round numbers. However, for the standardized
cryptographic schemes SHA-3 and SHAKE128/256, Keccak- f with nr = 24 must
be used, as shown in Table 11.5.

cSHAKE After the standardization of SHA-3 and SHAKE128/256 in 2015, NIST
specified three additional cryptographic functions that are based on Keccak- f in the
following year. The functions are named KMAC, TupleHash and ParallelHash. It
should be stressed that they are merely standardized ways of using Keccak- f for
other purposes rather than new algorithms. All three functions are realized in an
instantiation of Keccak- f called cSHAKE, which is an acronym for customizable
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SHAKE. With 128 and 256 bits, two security levels are defined. The corresponding
Keccak- f parameters are shown in Table 11.8.

Table 11.8 The parameters of the two cSHAKE instances

b r c security
(state) (rate) (capacity) level
[bits] [bits] [bits] [bits]

cSHAKE 128 1600 1344 256 128
cSHAKE 256 1600 1088 512 256

We will now briefly describe the three standardized functions based on cSHAKE.

� KMAC is a hash function-based message authentication code (MAC), also
known as a keyed hash function, cf. Section 13.2. The function can be used with
two security levels, denoted by KMAC128 and KMAC256, which make use of
the corresponding two cSHAKE functions shown in Table 11.8.

� TupleHash is a method of hashing n input strings in an unambiguous way. An
example of an application is computing of a hash checksum over several public
keys. The function is defined such that hashing of very similar groups of strings
will produce different outputs. For instance, hashing the two strings ab and cd
together will produce a different hash value from hashing the two strings abc
and d or the single string abcd.

� ParallelHash allows the efficient hashing of very long input strings by support-
ing the parallelism available in modern computers. As with KMAC and Tuple-
Hash, it also supports the two security levels of 128 and 256 bits. ParallelHash
works in two phases. First, the input is divided into blocks of length B. Each of
these blocks is hashed individually using cSHAKE, which allows these individ-
ual hashes to be computed in parallel, for instance on a multi-core CPU. In the
second phase, the computed hash outputs from the first phase are combined by
feeding them into cSHAKE again and generating one final hash value.

11.5.5 Implementation in Software and Hardware

When computing SHA-3 and SHAKE, the majority of time is spent on Keccak- f .
Hence, Keccak- f determines the implementation properties of the hash function.
Below we will discuss software and hardware realizations.

Keccak- f , and thus also SHA-3 and SHAKE, turns out to be very well suited for
hardware implementations. This is in contrast to SHA-1 and SHA-2, which are soft-
ware oriented. A high-speed parallelized hardware architecture of SHA-3 can easily
achieve throughputs of 30 Gbit/s or beyond with an area of about 100,000 gate
equivalences. At the other hand of the performance spectrum, a very small se-
rial hardware engine with fewer than 10,000 gate equivalences can still achieve
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throughputs of several 10 Mbit/s. We note that SHA-3 also leads to more energy
efficient hardware realizations than implementations of SHA-1 and SHA-2, which
is of particular interest for applications such as cryptocurrencies or other proof-of-
work schemes, cf. Section 11.6.

Despite its hardware friendliness, SHA-3 is also quite amenable to software im-
plementation. Keccak- f has a state of 1600 bits, which is stored in 25 words of
64 bits each, cf. Figure 11.15. The majority of modern CPUs, i.e., Intel and AMD
for laptops and servers as well as ARM in smartphones, use 64-bit architectures.
This allows efficient representation of one 64-bit lane in a single register. More-
over, many of the atomic operations used in the five steps of the Keccak- f round
function (cf. Figure 11.16) such as bitwise Boolean operations and rotations are
directly supported by low-level CPU instructions, leading to fast implementations.
A highly optimized implementation of SHA-3 with 512-bit output on modern Intel
core CPUs can be executed at a rate of about 15 cycles/byte which translates, e.g.,
to a throughput of approximately 200 MByte/s (or about 1.6 Gbit/s) if we assume
that the processor is clocked at 3 GHz.

11.6 Discussion and Further Reading

Other Applications of Cryptographic Hash Functions At the beginng of this
chapter, we motivated the use of hash functions with digital signatures. In practice,
however, cryptographic hash functions are used in many other security applications.
A prominent example is that of the widely used message authentication codes, which
ensure message integrity as we will discuss in Chapter 13. Other applications in-
clude key derivation functions, password storage, proof-of-work systems and file
verification. We’ll briefly discuss these applications below.

Passwords and key derivation commonly make use of the one-wayness of hash
functions. Key derivation functions compute a key from a secret value such as a
human-generated password or a master key. In the case of password-based authen-
tication we can avoid storing passwords in clear by applying hash functions. This is
desirable since a hacked password file can have devastating consequences. Instead
of storing the actual passwords directly, only hashed version of the passwords need
to be stored. Even if the hashed value is exposed to an attacker, the one-way property
of the hash function prevents him from computing the original passwords. More on
key derivation and passwords will be said in Section 14.2.

Proof-of-work functions are consensus mechanisms that can be build upon hash
functions. Proof-of-work systems are used, e.g., in cryptocurrencies and to limit
denial-of-service attacks and email spam. The basic idea behind proof-of-work is
to compute a function with high computational effort (the work) but such that the
proof that the work has been done correctly can be verified efficiently. The work is
the construction of a message that has a hash value with a specific structure; typi-
cally the first n bits should be zeros. For instance, finding an input value that has 20
leading zeros if hashed will require 220 ≈ 1,000,000 hash operations. While such
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work might require a time span of, say, a few seconds on a laptop, the verifier merely
has to perform a single hash to check whether the message in fact has the correct
number of zeros, which might take a fraction of a millisecond. Hashcash [23], pro-
posed in 1997, is an example of a hash-based proof-of-work algorithm that is used
in cryptocurrencies including bitcoin and in applications such as spam prevention.

As a final example of an application of hash functions, we mention file verifica-
tion. In computer systems it is often required to check whether two given files are
in fact identical or whether a given file has been altered. An efficient method to ac-
complish such tasks is to consider the hash value of the files in question, which can
be considered the files’ fingerprints. Comparing two fingerprints of, e.g., 256 bits,
obviously is way more efficient than a byte-by-byte comparison of two large files.
Additionally, this approach is storage efficient since only the short fingerprint of the
original file has to be stored for a subsequent comparison.

Hash Functions from Block Ciphers The four block cipher-based hash functions
introduced in this chapter are all provably secure. This means the best possible
preimage and second preimage attacks have a complexity of 2b, where b is the
message digest length, and the best possible collision attack requires 2b/2 steps. The
security proof only holds if the block cipher is being treated as a black box, i.e, there
are no mathematical attacks against the ciphers themselves that are better than an ex-
haustive key search. In addition to the four methods of building hash functions from
block ciphers introduced in this chapter, there are several other constructions [210].
In Problem 11.1, a number of variants are discussed.

MD4 family and General Remarks Different members of the MD4 family were
shown to be insecure in the past; thus, it is instructive to have a look at the at-
tack history of the MD4 family. A predecessor of MD4 was Rivest’s MD2 hash
function, which does not appear to have been widely used. It is doubtful that the
algorithm would withstand today’s attacks. The first attacks against reduced ver-
sions of MD4 (the first or the last rounds were missing) were developed by Bert den
Boer and Antoon Bosselaers in 1992 [89]. In 1995, Hans Dobbertin showed how
collisions for the full MD4 can be constructed in less than a minute on conventional
PCs [96]. He later showed that a variant of MD4 (a round was not executed) does
not have the one-wayness property. In 1994, Boer and Bosselaer found collisions
in MD5 [90]. In 1995, Dobbertin was able to find collisions for the compression
function of MD5 [97].

In 2004, collision-finding attacks against MD5 and SHA-0 were announced by
Xiaoyun Wang at the Rump Session of the conference CRYPTO ’04 and published
in [248]. One year later, at the Rump Session of CRYPTO ’05, a team involving
Wang announced that the attack could be extended to SHA-1 and that a collision
search would take 263 steps, which is considerably less than the 280 achieved by the
birthday attack. In 2017 a team of researchers were actually able to compute the first
collision for full SHA-1 [242]. The computational effort of this collision search was
equivalent to 263.1 steps. The best attack at the time of writing has an even lower
complexity, namely 261.2 SHA-1 computations [173]. Executing the actual collision
attack took nine months on a GPU cluster and was performed by academics. It is
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safe to assume that resource-rich adversaries can perform the attack considerably
faster.

RIPEMD-160 plays a somewhat special role in the MD4 family of hash func-
tions. Unlike SHA-1 and SHA-2, it is the only one that was not designed by NIST
and NSA, but rather by a team of European researchers. Even though there is
no indication that any of the SHA algorithms are artificially weakened or contain
backdoors, RIPEMD-160 might appeal to some people who strongly distrust gov-
ernments. Currently, no successful attacks against the full-size hash functions are
known, though a description of attacks against reduced-round versions is given in
[177]. We note that there are also two versions of the algorithm with longer output
lengths, RIPEMD-256 and RIPEMD-320.

It is important to point out that in addition to the MD4 family, numerous other al-
gorithms have been proposed over the years including, for instance, Whirlpool [28],
which is related to AES. Most of them have not gained widespread adoption, how-
ever. Entirely different from the MD4 family are hash functions which are based on
algebraic structures such as MASH-1 and MASH-2 [149]. Many of these algorithms
were found to be insecure.

The Hirose construction [143] can also be realized with AES with a 192-bit key
and message blocks xi of length 64 bits. However, the efficiency is roughly half of
that of the construction presented in this chapter (AES256 with 128-bit message
blocks). There are also various other methods to build hash functions with twice
the output size of the block ciphers used. A prominent one is MDC-2, which was
originally designed for DES but works with any block cipher [211]. MDC-2 is stan-
dardized in ISO/IEC 10118-2.

The SHA-3 Selection Process The Request for Candidate Algorithms by NIST,
the U.S. National Institute of Standards and Technology, was issued in 2007. The
four criteria for selecting the new hash function were security, performance, crypto-
graphic maturity (i.e., how well an algorithm is understood and has been analyzed)
and diversity (i.e., how dissimilar the internal structure is from SHA-2). After the
submissions were received in late 2008, there were four years during which the 51
algorithms considered by NIST underwent intensive analysis by the international
scientific community. The main focus was to cryptanalyze the algorithms and to
study their performance. The official NIST website has many resources about the
competition, including the official reports at the ends of Round 1, 2 and 3 [196]. A
good overview of the multifaceted selection effort is the SHA-3 Zoo project [3] pro-
vided by ECRYPT (European Network of Excellence in Cryptology). The SHA-3
Zoo is a wiki-like web resource that in particular (i) provides an overview of each al-
gorithm submitted to the SHA-3 competition and (ii) summarizes the cryptanalysis
of each hash function.

SHA-3 and Keccak As part of the SHA-3 competition there have been exten-
sive efforts by the scientific community to discover weaknesses in Keccak (and, of
course, all other SHA-3 candidate algorithms). To date, there appears no attack that
has even a remote chance of success. To give the reader an idea of the state of theart:
The “best” attack known so far requires about 2500 (!) steps and only works against
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a scaled-down version of Keccak with 8 rounds. We recall from Section 11.5.3 that
SHA-3 requires 24 rounds. An overview of the various research papers dealing with
the security analysis of Keccak can be found in Reference [131].

Regarding Keccak, the official reference describing the algorithm is document
[133]. The four algorithm designers maintain a website with much useful informa-
tion about the hash function [130], including software and hardware code (HDL)
and a pseudo code description of Keccak. The sponge construction, or sponge func-
tion, is a comparatively new approach to building hash functions. It was proposed
by the Keccak designers at an ECRYPT workshop in 2007. A general introduction
to and more information about sponge constructions can be found online [132].

Keccak Implementation There is a host of low-level implementation tricks avail-
able in order to speed-up Keccak on modern 32 and 64-bit CPUs. An overview of
open-source software implementation can found on the site [136] and performance
figures on [134].

Even though SHA-3 has a good performance in software, highly optimized im-
plementations of SHA-2 run about three to four times as fast on modern CPUs.
The situation is different in hardware. Keccak is considerably more efficient than
SHA-2 and the other finalist algorithms of the SHA-3 competition. In one compari-
son, which took the throughput-to-area ratio into account, Keccak was more efficien
by a factor of about five. Two recommended references that provide absolute num-
bers and also discuss the difficulties of providing reliable hardware comparisons are
[225] and [255]. VHDL code for a hardware implementation of Keccak is provided
in [135]. See also Section 11.5.5 regarding Keccak implementation.
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11.7 Lessons Learned

� Hash functions are keyless. They have many applications in modern security
systems. Among the most popular ones are digital signatures and message au-
thentication codes.

� The three main security properties of hash functions are one-wayness, second
preimage resistance and collision resistance.

� In order to withstand collision attacks, hash functions should have an output
length of 256 bits or more.

� Both SHA-2 and SHA-3 seem very secure at the moment, i.e., there are no attacks
known with a reasonable chance of success in practice. In contrast, SHA-1 is
considered insecure and should not be used.

� In addition to dedicated algorithms such as SHA-2 and SHA- 3, hash functions
can also be built from block ciphers.

� SHA-3 is based on a sponge construction and has, thus, a quite different internal
structure than SHA-1 and SHA-2.

� In hardware, SHA-3 is considerably more efficient (fast, little energy) and there-
fore well suited for mobile and embedded applications. In software, SHA-2 is
faster than SHA-3.
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Problems

11.1. Draw a block diagram for the following hash functions built from a block
cipher denoted by e(x):

1. e(Hi−1,xi)⊕ xi
2. e(Hi−1,xi⊕Hi−1)⊕ xi⊕Hi−1
3. e(Hi−1,xi)⊕ xi⊕Hi−1
4. e(Hi−1,xi⊕Hi−1)⊕ xi
5. e(xi,Hi−1)⊕Hi−1
6. e(xi,xi⊕Hi−1)⊕ xi⊕Hi−1
7. e(xi,Hi−1)⊕ xi⊕Hi−1
8. e(xi,xi⊕Hi−1)⊕Hi−1
9. e(xi⊕Hi−1,xi)⊕ xi

10. e(xi⊕Hi−1,Hi−1)⊕Hi−1
11. e(xi⊕Hi−1,xi)⊕Hi−1
12. e(xi⊕Hi−1,Hi−1)⊕ xi

11.2. We define the rate of a block cipher-based hash function as follows: A block
cipher-based hash function that processes u input bits at a time, produces v output
bits and performs w block cipher encryptions per input block has a rate of

v/(u ·w)

What is the rate of the four block cipher constructions introduced in Section 11.3.1?

11.3. We consider three different hash functions which produce outputs of lengths
64, 128 and 160 bits. After how many random inputs do we have a probability of
λ = 0.5 for a collision? After how many random inputs do we have a probability of
λ = 0.1 for a collision?

11.4. Describe how exactly you would perform a collision search to find a pair x1,
x2, such that h(x1) = h(x2) for a given hash function h. What are the memory re-
quirements for this type of search if the hash function has an output length of n
bits?

11.5. One of the earlier applications of cryptographic hash functions was the stor-
age of passwords for user authentication in computer systems. With this method, a
password is hashed after its input and is compared to the stored hashed reference
password. (See Section 11.6 for more information on this approach.)

1. Assume you are a hacker and you got access to the hashed password list. Of
course, you would like to recover the passwords from the list in order to imper-
sonate some of the users. Discuss which of the three attacks below allow this.
Exactly describe the consequences of each of the attacks:

� Attack A: You can break the one-way property of h.
� Attack B: You can find second preimages for h.
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� Attack C: You can find collisions for h.

2. Why is this technique of storing hashed passwords often extended by the use
of a so-called salt? A salt is a random value appended to the password before
hashing. Together with the hash, the value of the salt is stored in the list of hashed
passwords. Are the attacks above affected by this technique?

3. Is a hash function with an output length of 80 bits sufficient for this application?

11.6. In this problem we will compare the complexity of finding weak collisions
(or second preimages) and strong collisions (or just “collisions”) by looking at a
toy example. Let h() be some fictitious hash function with 8-bit output bit length.
We assume that h has no mathematical weakness but its output bit length is not
sufficiently large. Still, the output for a given input looks like a random number.

1. How many output values are possible?
2. We now compute the effort for constructing a weak collision. Write a computer

program in your favorite programming language. The program shall:

� choose a random number in the range of (0, ...,255) and store it
� simulate the output of h() by generating a sequence of random numbers in the

range of (0, ...,255)
� continue to generate random numbers until a value is found that matches the

first random number (i.e., a weak collision is found).

Execute your program 100 times. On average, how many random numbers have
to be generated for a weak collision?

3. Now, we will look at the complexity for a strong collision through another ex-
periment. For this, every random number generated is stored in a list. Write a
computer program that:

� generates a random number in the range of (0, ...,255) and checks whether
that number is already in the list

� if not, the number is added to the list
� continues until a collision is found (i.e., matching numbers)

Execute your program 100 times. On average, how many random numbers have
to be generated for a strong collision?

4. Equation (11.1) in this chapter provides an expression to compute the number of
expected random numbers until a strong collision is found with a probability of
0.5. What is the number of expected trials in this case?

11.7. Assume the block cipher PRESENT with a 128-bit key is used in a Hirose
hash function construction. The algorithm is used to store the hashes of passwords
in a computer system. For each user i with password PWi, the system stores:

h(PWi) = yi

where the passwords (or passphrases) have an arbitrary length. Within the computer
system only the values yi are actually used for identifying users and giving them
access.
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Unfortunately, the password file that contains all hash values falls into your hands
and you are widely known as a very dangerous hacker. This in itself should not pose
a serious problem as it should be impossible to recover the passwords from the
hashes due to the one-wayness of the hash function. However, you have discovered
a small but momentous implementation flaw in the software: The constant c in the
hash scheme is assigned the value c = 0. Assume you also know the initial values
(H0,L and H0,R).

1. What is the size of each entry yi?
2. Assume you want to log in as user U (this might be the CEO of the organization).

Provide a detailed description that shows that finding a value PWhack for which

PWhack = yU

takes only about 264 steps.
3. Which of the three general attacks against hash functions do you perform?
4. Why is the attack not possible if c 6= 0?

11.8. In this problem, we will examine why techniques that work nicely for error
correction codes are not suited as cryptographic hash functions. The input message
is represented by a string of bytes (C0, . . . ,Cn−1). The error correction code com-
putes one output bit per message byte. It takes one byte as input and computes a
1-bit output value through the following equation:

ci = bi1⊕bi2⊕bi3⊕bi4⊕bi5⊕bi6⊕bi7⊕bi8 (11.2)

where bi1, . . . ,bi8 are the bits of the byte Ci. The input byte can, e.g., be an ASCII-
encoded character. We investigate what happens if we want to use this error correc-
tion code as a hash function.

1. Encode the string CRYPTO to its binary or hexadecimal representation.
2. Calculate the (6-bit long) hash value of the character string using the previously

defined equation.
3. “Break” the hash function by pointing out how it is possible to find (meaningful)

character strings, which result in the same hash value. Provide an appropriate
example.

4. Which crucial property of hash functions is missing in this case?

11.9. Compute the output of the first round ( j = 0) of SHA-2 for a 512-bit input
block of:

1. x = {0...00}
2. x = {0...01} (i.e., bit zero has the value 1).

Ignore the standardized initial values H(i)
0 for this problem and assume that the start-

ing values consist of all-zero strings (i.e., A0 = B0 = ...= H0 = 0000 0000hex).
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11.10. Use a tool for the computation of a 512-bit SHA-2 hash for the following
two messages. Provide the first four bytes in hexadecimal notation.

m1 = Have you eaten, my child?

m2 = Have you eaten my child?

The messages m1 and m2 are very similar. What is your observation regarding the
respective hash values?

11.11. Assume that SHA-3 is used in a given application with an output size of
256 bits. We measure a throughput of 120 MByte/s with our cryptographic software
library. For security reasons, we change to SHA-3 with 384 output bits. What is the
throughput if the same cryptographic library is used? (Hint: You just have to study
Section 11.5.1.)

11.12. We want to hash a short message consisting of the two bytes 0xCCCC with
SHA-3. The hash function should be used as a replacement for SHA-2 with 256
bits. What is the message after padding? Provide an answer in binary notation.

11.13. Keccak- f is a permutation, i.e., each of the 2d input values gets a unique
output value assigned in a bijective (i.e., one-to-one) manner. In this problem we
will study how permutation functions are different from the bit permutations that
are used within DES, e.g., the P or IP permutation.

� Let us consider a toy example, a function with 2 I/O bits. How many different
bit permutations exist with 2 input and output bits? Draw one diagram for each
possible bit permutation.

� Now we consider a permutation function f that has 2 input and output bits. How
many different (i) input values and (ii) output values exist? More importantly:
How many different permutations exist, i.e., how many different bijective (one-
to-one) mappings exist between the input and output? List all possible permuta-
tions. You can do this in a table that has in its leftmost column all input com-
binations listed, and for each possible permutation you write a new column to
the right. (You may want to write your solution on a piece of paper in landscape
orientation.)

� It turns out that a bit permutation is a subset of the permutation function. In the
example above, which of the permutations generated by f are the bit permuta-
tions?

� In general: How many permutation functions are there for d input bits, and how
many bit permutations are there for this case?

11.14. We consider Keccak- f with an input state A where all 1600 bits have the
value 0. What is the state after the first round?
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11.15. We consider a SHA-3 state A where all 1600 bits have the value 0 except the
bits whose z coordinate is equal to zero, i.e., A[x,y,0] = 1.

� How many state bits have the value 1? By looking at Figure 11.15, where are
those bits located?

� We now apply the θ Step to A. What is the new state?



Chapter 12
Post-Quantum Cryptography

The term post-quantum cryptography (PQC) was coined to describe alternative
cryptosystems that are assumed to resist attacks using large-scale quantum comput-
ers. This is of particular importance for public-key cryptography since it is known
that the families of cryptosystems currently used — that is RSA, discrete logarithm
schemes such as the Diffie-Hellman key exchange and elliptic curves (cf. Chap-
ters 7–9, respectively) — will be broken if full-scale quantum computers become
available in the future. While this seems to be a problem to be solved in the future,
we already need to equip today’s applications with cryptography that is resistant
to quantum computer attacks in order to defend against “store now, decrypt later”
adversaries, as discussed in Section 12.1.1.

Today, post-quantum cryptography is an active field of research and a few
schemes have already been standardized. In this chapter we will give an introduc-
tion to different types of post-quantum cryptography that exist.

In this chapter you will learn:

� Why quantum computers are a threat to conventional symmetric and asymmetric
cryptography

� The basic design ideas behind alternative public-key, i.e., PQC, cryptosystems
� How lattice-based cryptography works and how to use it
� The background on code-based cryptography and how to build encryption schemes

with it
� The concept of hash-based cryptography
� The state of PQC standardization and an outlook
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12.1 Introduction

In previous chapters we have seen a number of symmetric and asymmetric cryp-
tosystems and how to use them for tasks like encryption, secure key exchange and
digital signatures. In Section 6.2.4 we provided key-length recommendations for
long-term security (say, security for 20–30 years or longer), where we assumed re-
sistance to the best known attacks. However, we have not explicitly discussed what
kind of computers an adversary would use for these best known attacks, implicitly
assuming that all cryptanalytic algorithms operate on conventional computing hard-
ware only, based on well-known bits and bytes. As we know, in such a classical
computer one bit can take two states — either 0 or 1 — and this bit can be stored or
used for computation. But what will happen with our cryptanalytic algorithms when
we have a machine available that enables significantly more concurrent operations
on the same set of data? It turns out that quantum computers are capable of exactly
this. In Section 12.1.1 below, we will give a very brief high-level description of
quantum computers. This is meant as a motivation for learning about PQC schemes.
However, post-quantum cryptography, which is the main topic of this chapter, does
not require the understanding of quantum computers.

12.1.1 Quantum Computing and Cryptography

A quantum computer is a machine that operates on qubits instead of classical bits,
which are used by our contemporary CPUs. Roughly speaking, a single qubit |q〉
is a state of memory that is not as discrete as we know it from conventional bits,
which can take the two values 0 or 1. Rather, a qubit is a fuzzy memory element
that can also represent values “in between” the two corresponding bounds |0〉 and
|1〉. The overlap between these bounds is characterized by coefficients or so-called
amplitudes α and β . This allows a qubit to be represented as a scaled combination
of the two bounds like |q〉 = α|0〉+ β |1〉. One might wonder what the advantage
of such a behavior is. With two conventional bits, we can store one out of the four
possible states 00, 01, 10 and 11. However, two qubits contain a representation of
all four possible states at the same time, to be determined by the corresponding
amplitudes. To capture the state of two qubits, we need four values on a classical
computer; for three qubits we will need 8 values. In general, an n-bit register on a
classical computer can hold exactly one state, while an n-qubit register represents
2n states at the same time.

The really interesting aspect is that computing with such an n-qubit quantum
computer can be significantly more powerful than any n-bit classical computer. This
speed-up is attributed to the massively parallel operations on 2n states that can be
simultaneously performed on a n-qubit register thanks to a concept called superpo-
sition. Nevertheless, it is a popular misunderstanding that quantum computers will
lead to significant gains in performance for all applications. In fact, they can ac-
celerate only certain classes of computations and algorithms for which the native
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superposition (and thus parallel nature) of inputs can be efficiently exploited. For
many other algorithms, classical computers will still be required. It does not seem
very likely that we will have web browsers or spreadsheet programs running on fu-
ture quantum computers. However, as a useful example, one problem a quantum
computer can solve efficiently is searching in an unsorted database with N entries.
A classical computer needs to iterate through the entries and compare them with
the desired value, which needs N steps in the worst case. In contrast, Grovers algo-
rithm can be used on a quantum computer to solve the problem in approximately√

N steps. Its use in cryptography will be described in the following section.

Quantum Computer Attacks on Symmetric Cryptosystems

Grovers quantum search algorithm can be used to attack symmetric cryptosystems.
As we have seen in previous chapters of this book, the best known attack against
sound symmetric ciphers is an exhaustive key search, cf. Section 3.5.1. We recall
that at least one piece of known plaintext is required. This attack is basically the
same as searching in an unsorted database: We encrypt the known plaintext with
all possible keys, retrieve a large database of unsorted values, and then search for
the known ciphertext. For example, AES with a 128-bit key can be broken with a
classical computer in roughly 2128 steps, assuming we have a plaintext/ciphertext
pair.

With a quantum computer running Grovers algorithm, the same attack is more
efficient: It would take only

√
2128 = 264 steps. This could be a problem for sym-

metric ciphers with the (popular) key length of 128 bits. It is often assumed that
large-scale adversaries can perform 264 computations and could, thus, break 128-bit
ciphers as soon a powerful quantum computer becomes available1. Fortunately, the
problem can be solved quite simply by increasing the key length of symmetric al-
gorithms. In fact, Grover’s algorithm was the main reason why AES was designed
with the two key lengths of 192 and 256 bits, in addition to the 128-bit key. Us-
ing a quantum computer that runs Grover’s algorithm, these longer keys result in a
complexity of 296 and 2128 respectively. In practice, future quantum computers are
the major reason why more and more modern applications require AES-256, so that
they are protected against quantum computer attacks in the future.

Quantum Computer Attacks on Asymmetric Cryptosystems

Unfortunately, quantum computers pose a much more serious threat to all asymmet-
ric cryptosystems that are currently in use, and which have been introduced in Chap-
ters 7–9 of this book. In the mid-1990s, Peter Shor published two algorithms for
quantum computers that can efficiently solve the mathematical problems on which

1 Note that most quantum operations are much more expensive to perform compared to those of
a classical computer. Considering the higher costs of such quantum operations, an attack with 264

quantum operations could be out of range for the next decades.
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today’s public-key schemes are based. More specifically, RSA can be broken using
Shors period-finding algorithm, which allows for efficient factorization of large in-
tegers. We recall from Section 7.9 that RSA relies exactly on the fact that this is not
possible. All other asymmetric schemes currently in use, like the Digital Signature
Algorithm (DSA) or the Diffie-Hellman Key Exchange (DHKE) and their elliptic
curve variants, rely on the difficulty of computing discrete logarithms. It turns out
that discrete logarithms can similarly be broken in polynomial time using Shor’s
algorithm on a quantum computer.

Fortunately, large-scale quantum computers that are required to break the cur-
rently deployed asymmetric cryptosystems like RSA and ECC cannot be built cur-
rently. At the time of writing, quantum computers realized by companies such as
Google and IBM provide (noisy) qubits in the range of tens to hundreds, while for
successful attacks several thousands to millions of fault-tolerant qubits would be
necessary. While there is still a significant technology gap, many believe that it is
only a matter of time before quantum computers evolve to the point where they can
efficiently break currently deployed asymmetric cryptosystems. Please note that the
number of qubits is not the only factor that currently stands in the way of con-
ducting full-size attacks with quantum computers. The type of supported quantum
operations, their error rate and the number of consecutive operations are also of
critical importance. The exact time when full-size quantum computers will become
available is hotly debated among experts. However, it is commonly believed that
practical attacks running on quantum computers are most likely at least 10–20 years
away, possibly much longer.

While this might still seem far away, it is important to develop and deploy new
asymmetric schemes that are resistant to quantum computers now. This somewhat
surprising fact is due to two reasons. First, attackers can employ a “store now, de-
crypt later” strategy. That is, an adversary stores ciphertexts even though he cannot
break the cryptographic algorithms involved. However, once quantum computers
become available at a later date, the stored data can be decrypted. This approach is
particularly likely to be used by nation-state actors such as large intelligence agen-
cies2. Second, it is essential to consider the latency for the development and roll-out
of new asymmetric algorithms. There are many steps involved in turning a new cryp-
tographic scheme from a mathematical construct into a practical system, including
the security evaluation and the analysis of implementation characteristics, the stan-
dardization process, the actual software or hardware implementation in products,
the assurance of interoperability (which may involve changing existing standards),
the key management and many other aspects. Past experience has shown that even
comparatively simple tasks such as updating an internet security standard to use
new hash functions can take many years in practice. Also, there are complex pro-
duction chains in domains like automotive or avionics, where it can take 5–10 years
to adopt new algorithm families into products. Hence, we need to work on putting
quantum-secure asymmetric cryptosystems into practice now in order to be ready

2 There is historical precedence for the “store now, decrypt later” approach. Starting in WWII and
lasting for many decades during the Cold War, NSA ran the VENONA Project, which led to the
decryption of messages that had been sent many years earlier.
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when powerful quantum computers are available. NIST started an initiative in this
direction in 2017 by establishing an open standardization call for quantum-secure
asymmetric cryptosystems. This process is similar to the AES (cf. Section 4.1) and
SHA-3 (cf. Section 4.1) competitions. The most promising PQC algorithms consid-
ered in the NIST competition belong to the families of lattice-based, code-based and
hash-based cryptography. These three algorithm families will be the main topic of
this chapter.

12.1.2 Quantum-Secure Asymmetric Cryptosystems

As discussed above, Shor’s algorithm efficiently solves the factorization and discrete
logarithm problems that underlie RSA, discrete logarithm and ECC schemes once
powerful quantum computers become available. Unlike cryptanalysis with conven-
tional computers, which have a subexpentional run time, Shor’s algorithm runs in
polynomial time on quantum computers. As a consequence, we need new mathe-
matical problems that are not affected by the exponential computational speed-up
offered by quantum computers, and which can be used for constructing novel public-
key schemes. One promising approach to find such problems would be to look at
hard problems known in complexity theory. There exists the class of NP-complete
problems, denoting the set of problems that, roughly speaking, require an exponen-
tial effort to solve on a classical computing system in the general case. However, if
a solution is found, the validity of the solution can be verified in polynomial time.
Examples of NP-complete problems are well known from the theory of computer
science, such as the knapsack and traveling salesman problems.

Interestingly, it is currently believed that the class of NP-complete problems can-
not be tackled efficiently even with full-scale quantum computers. In other words,
using such a problem to build a quantum-secure asymmetric cryptosystem could be
a highly promising approach. However, an interesting question arises in this setting:
Why have we not seen any public-key cryptosystem in practice that is build upon
an NP-complete problem? Instead, current schemes rely on weaker complexity as-
sumptions, namely the integer factorization and discrete logarithm problems.

First, it is important to understand the security requirements in cryptography and
the problem assumptions correctly. We have just learned that NP-complete prob-
lems are considered difficult to solve in the general case but a main issue is that this
difficulty is not guaranteed for all instances. In particular, there could be examples
that are easy to solve. In other words, choosing a random instance from a generic
NP-complete problem used for a novel cryptosystem might still lead to a problem
that can be quickly solved by an attacker with any conventional computer. Hence,
we need to take special care to exclude those simple cases if we want to take this
idea into practice. This consideration is not purely academic; there have been sev-
eral cases where this has happened. A well-known example is the MerkleHellman
knapsack cryptosystem that was proposed in 1978 and later broken by Shamir, even
though the basic knapsack problem is NP-complete.
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On the other hand, there are other NP-complete problems that have been pro-
posed for public-key cryptography and appear useful. The most prominent one is
the code-based McEliece encryption system, which was presented by Robert J.
McEliece in 1978, i.e., in the same year RSA was proposed. The remainder of this
chapter will introduce three families of novel public-key schemes. Table 12.1 shows
the three types of PQC schemes treated in this chapter. At the time of writing, these
are considered the most promising candidates for use in practice and standardization
efforts for them are currently under way.

Table 12.1 Promising PQC families and cryptosystems

PQC Family Supported Services Cryptosystems Description

Lattice-based cryptography key transport LWE, KYBER, FRODO, Section 12.2digital signatures DILITHIUM, FALCON

Code-based cryptography key transport McEliece, Niederreiter Section 12.3
Hash-based cryptography digital signatures MSS, XMSS, LMS, SPHINCS+ Section 12.4

We recall that the conventional public-key schemes RSA, discrete logarithm and
elliptic curves are each quite universal; in particular, each can be used for encryption
(and, thus, key transport) and for digital signatures. We will see in this chapter
that the situation is different for PQC algorithms. Most families of PQC schemes
support either efficient encryption (e.g., for key transport) or digital signatures but
often not both. For example, the class of code-based PQC schemes mostly focuses
on key transport mechanisms while hash-based cryptography can only be used for
digital signature schemes. We note that a key transport protocol is also referred to
as key encapsulation mechanism, or KEM. The only family with a versatility and
efficiency similar to conventional asymmetric schemes is the class of lattice-based
PQC schemes.

Before we jump into the exciting field of quantum-resistant public-key cryp-
tography, we should clarify the terminology. We have to distinguish between the
(similarly-sounding!) terms post-quantum cryptography (PQC) and quantum cryp-
tography (QC). QC denotes concepts such as quantum key distribution (QKD) for
securely exchanging keys over quantum channels, which are built on actual quantum
effects. Post-quantum cryptography, however, is meant to denote the class of alter-
native cryptographic algorithms that are designed to run on conventional computers
but that are capable of withstanding attacks that use powerful quantum computers
or combinations of quantum and conventional computers.

12.1.3 The Use of Uncertainty in Cryptography

We discussed above that the fundamental problems of factorization and discrete
logarithms can be efficiently computed once powerful quantum computers become
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available. As a consequence, post-quantum cryptography requires alternative as-
sumptions that are hard to solve both on classical computer platforms and on quan-
tum computers. Before we go into the details of these new problems, we introduce
a general concept behind many PQC schemes using a simple example.

A B

DC

E

HG

a

F

Fig. 12.1 Problem: Spot the point a and locate its closest corner

Let us look at Figure 12.1. It shows a cube that is, even though it has three
dimensions, depicted in only two dimensions. Besides the eight corners, we note
a point a. We now try to answer the question: To which of the corners A, B, . . ., H
of the cube is the point a closest? Possible answers from looking at the 2D figure
are:

� If we assume that a is located inside the cube, it may be hard to say whether it is
closest to either D or H.

� Point a seems to be closest to D if we assume it is placed on the front plane of
the cube (or even outside the front plane).

� Similarly, point a could also be closest to H if we think it sits on the back plane
or even outside the cube’s back plane.

As a consequence, it is impossible for us to derive a single correct answer, either by
visual inspection or by any mathematical tools — at least unless we get additional
information. We can attribute the hardness of this problem to the projection of the
3D cube into a 2D plane, which constitutes a dimensionality reduction. With this
simple example in mind, we can introduce two important principles that can be
used for PQC:

1. Loss of information: We are unable to uniquely identify the point’s exact posi-
tion due to the projection from three dimensions into two. Such a reduction step
can also be observed by one-way functions such as hash functions, which map a
large string into a smaller string, intentionally dropping much information of the



386 12 Post-Quantum Cryptography

original input. As we have learned in Chapter 11, an attacker who only knows
the short output value (or the “image”) has a hard time correctly identifying the
corresponding larger input value (the “preimage”).

2. Approximation: In the example above, we created the problem of finding the
corner element from the set b ∈ {A, . . . ,H} that is nearest to the point a. In PQC
schemes we can use a closely related idea, namely finding a point (or similar
item) that is closest to one of a predefined structure. In order to turn this into a
cryptographic problem, imagine that we pick a particular corner (e.g., D or H
in the example) and generate the point a by adding a little bit of noise so that a
moves slightly away in space from its original corner b.

We note that both ideas are related to the concept of uncertainty. It turns out that the
two concepts of information loss and approximation can be turned into mathemat-
ical problems that lay the foundation for many PQC families, including the three
post-quantum schemes introduced in this chapter:

1. Lattice-based cryptography (cf. Section 12.2) starts with the set {A, . . . ,H} of
cube corners and considers several problems related to the corners and interme-
diate points, such as the closest vector problem (CVP) or the related shortest
vector problem (SVP).

2. For code-based cryptography (cf. Section 12.3) we can regard the set {A, . . . ,H}
as codewords of an error-correcting code, and a is considered a noisy variant of
one of the codewords.

3. Hash-based cryptography uses information loss as the key concept for the one-
wayness property of hash functions, which enable hash-based signature schemes.
We will look at those more closely in Section 12.4.

12.2 Lattice-Based Cryptography

In this section we will introduce the concept behind lattice-based cryptography. It is
used for many different PQC schemes which appear very promising for future use.

Let us start by defining what a lattice actually is. Generally speaking, a lattice
is a set of points in an n-dimensional space with a periodic structure. The periodic
structure gives rise to the name “lattice”. More precisely, a lattice L is defined as the
set of linear integer combinations of a number of independent vectors a1,a2, . . . ,an,
known as basis vectors, and their integer coefficients xi ∈ Z:

L = {x1a1 + x2a2 + · · ·+ xnan} (12.1)

The basis vectors ai have dimension m, i.e., they are vectors in an m-dimensional
space. Thus, we say that Equation (12.1) defines an m-dimensional lattice space.
Note that all coefficients xi ∈ Z are integers. The number of vectors, n, is called the
rank of the lattice n. As an example, Figure 12.2 shows a lattice from the two vectors
a1 and a2. Each solid dot in the figure can be reached with the lattice formula:
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L = {x1a1 + x2a2} (12.2)

where x1 and x2 are integers. Since the the vectors are in the 2-dimensional space,
the lattice has the dimension m = 2. Because the lattice is spanned by two vectors,
the rank is also n = 2.

O
a1

a2

Fig. 12.2 Two-dimensional lattice spanned over basis vectors a1,a2; black dots de-
note lattice points

We can easily imagine that the cube used in our initial example in Figure 12.1
can be interpreted as part of a lattice with dimension m = 3, where the corners are
lattice points. An important observation is that the same lattice (or cube) can be
generated by a number of different bases3, where each basis is formed by different
sets of basis vectors.

As with conventional public-key schemes, lattice-based cryptography also oper-
ates on numbers from finite sets rather than on real numbers. For PQC schemes,
we choose the coordinates of the basis vectors from an integer ring Zq, which we
defined early on in this book in Section 1.4.2. For building efficient, i.e., fast, lattice-
based cryptosystems, the integer q is commonly chosen as a prime or a power of two.
We recall that such a ring consists of the integers {0,1, . . . ,q−1} and arithmetic is
performed with the “mod q” operation.

With this in mind, we define a vector ai with dimension m in column notation as
follows:

ai =


a0,i
a1,i

...
am−1,i

 , where a j,i ∈ Zq

3 For clarification, bases is the plural of basis.



388 12 Post-Quantum Cryptography

Since the coordinates are from the integer ring Zq and the vector has dimension m,
we will use the shorter notation ai ∈ Zm

q in the following. The set of n basis vectors
ai that form a lattice can be written as a matrix:

A = {a1,a2, . . . ,an}

For such a lattice with n basis vectors, we use the notation A ∈ Zm×n
q .

It turns out that it is sometimes useful for cryptographic schemes to transpose
this matrix, i.e., to swap columns and rows. The formal definition is as follows.

Definition 12.2.1 Transposition of a Matrix
Given a matrix A ∈ Zm×n defined over the integers with dimension
m and rank n. We define the transposition of A as AT ∈Zn×m, where
all rows of A are interchanged with its columns, i.e., AT [i, j] =
A[ j, i].

Note that we can likewise define the transposition aT of a vector a, which means we
convert a column vector into a row vector and vice versa.

Example 12.1. We look at small example of a lattice defined over Z17 with rank
n = 4, i.e., the lattice is spanned by 4 vectors. The vectors have dimension m = 7 so
that the matrix has the form A ∈ Z7×4

17 . We also show the transposed lattice matrix
with swapped dimensions AT ∈ Z4×7

17 :

A =



10 13 16 10
12 5 14 12
10 11 8 11
7 7 5 3
8 13 8 9

14 13 13 16
7 6 10 4


AT =


10 12 10 7 8 14 7
13 5 11 7 13 13 6
16 14 8 5 8 13 10
10 12 11 3 9 16 4



�

For completeness, we note that two bases will generate the same lattice when
any of the following occur: Vectors of the basis matrix are permuted, vectors of the
basis matrix are negated or vectors are added to integer multiples of other vectors.

We now have the prerequisites to define a highly relevant problem for building
lattice cryptography schemes, namely the Learning-with-Errors (LWE) problem. In-
formally speaking, it refers to the difficulty of recovering a point on the lattice L
after it has been modified by addition of some error. We will now look at the LWE
problem and how it can be turned into a lattice-based cryptosystem.
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12.2.1 The Learning With Errors (LWE) Problem

In Section 8.3.1 we introduced the discrete logarithm problem, which is the problem
underlying widely used public-key schemes such as elliptic curves and the Diffie-
Hellman key exchange. To solve the DLP, an attacker has to determine a secret
integer x so that αx ≡ β mod p, given the multiplicative group Z∗p of a prime field, a
generator α and a target element β in the finite field. Informally speaking, we found
a hard mathematical problem that is concerned with identifying the discrete number
of steps x that are needed to reach the target element β starting from α . We can view
α as a basis or a generator in this problem.

For the learning with errors (LWE) problem we actually use a somewhat similar
problem, but this time based on a lattice. The basic idea is that we take several
basis vectors a1,a2, . . . ,an ∈ Zm

q and multiply them with secret integer coefficients
s1,s2, . . . ,sn so that we reach a target point t on the lattice:

s1a1 + s2a2 + · · ·+ snan = t (12.3)

Similarly to the DLP problem, an adversary is now given the starting point (the set
of basis vectors) as well as an end point t and his goal is to find the value — that is,
the set of integers (s1,s2, . . . ,sn) — with which he has to multiply the starting point
so that he reaches the end point.

It is again helpful to express this problem in the form of a matrix, which looks
like this:

A · s = t

where s = (s1,s2, . . . ,sn) is the set of secret integer coefficients, the matrix A con-
tains the basis vectors and t is the target vector. We now look at a simple example
of matrix-coefficient multiplication in order to develop the LWE problem.

Example 12.2. We use the same lattice as in the previous example, i.e., a lattice
defined over Z17 with rank n = 4. The vectors have dimension m = 7, so that the
matrix has the form A ∈ Z7×4

17 . We note that t is also a vector of dimension 7, i.e., it
is a point somewhere on the lattice. Equation (12.4) shows the problem:

A · s =



10 13 16 10
12 5 14 12
10 11 8 11
7 7 5 3
8 13 8 9

14 13 13 16
7 6 10 4


·


s1
s2
s3
s4

≡


2
14
7
6
10
8
16


= t mod 17 (12.4)

�

We recall that our goal is to create a problem that is difficult to solve for an ad-
versary. Unfortunately, taking a closer look at the example, it turns out that it is not
a hard problem since Equation (12.4) describes a system of linear equations. We
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mentioned earlier, e.g., in Section 2.3.2, that techniques such as Gaussian elimina-
tion will do the job to solve this problem very quickly, even for extremely large
matrices. This means in the lattice case that it is computationally easy to find a vec-
tor of (unknown) integer coefficients si that if multiplied with the basis vectors G
reach the point t. In fact the solution to Equation (12.4) can be easily computed as:

s =


s1
s2
s3
s4

=


6
2
12
3


It is straighforward to insert this vector s into Equation (12.4) and check that the
solution is correct.

Luckily, this easy problem can be turned into a computationally difficult problem
by introducing a simple tweak: Let us consider t not as a point on the lattice but as
a point close to a point on the lattice. This tweak can be mathematically described
by introducing an error vector e into the equation, resulting in:

A · s+ e = t′ (12.5)

The error vector introduces an approximation into the problem, as discussed in
Section 12.1.3. Let us now reconsider the example from above, but with an addi-
tional error vector e:

10 13 16 10
12 5 14 12
10 11 8 11
7 7 5 3
8 13 8 9

14 13 13 16
7 6 10 4


·


s1
s2
s3
s4

+



e1
e2
e3
e4
e5
e6
e7


≡



1
13
8
6
10
9
15


mod 17 (12.6)

If one is given such an equation without providing also e or s, an attacker can
try using Gaussian elimination or any other technique for solving linear equation
systems, but he will not be able to compute the correct solution since t′ is not a
point on the lattice. If we carefully compare the values on the right-hand side of
Equations (12.4) and (12.6), we notice that the target vectors t and t′ are actually
very close to each other. Thus, we see that even a small deviation from the lattice
coefficients, for example with error values ei ∈ {−1,0,1}, suffices to create a non-
trivial problem. In fact, the error vector in Equation (12.6) is:
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e =



e1
e2
e3
e4
e5
e6
e7


=



−1
−1
1
0
0
1
−1


≡



16
16
1
0
0
1

16


mod 17

We note that in Z17 it holds that −1 ≡ 16. For actual cryptosystems, small values
for e are important since we have to make sure that a legitimate receiver can still
uniquely recover the lattice point t to which t′ is closest.

In summary we conclude that with the introduction of an error vector we achieved
our goal: Standard techniques for solving systems of linear equations (such as Gaus-
sian elimination) cannot be used to recover the unknowns s and e efficiently in Equa-
tion (12.5). For real-world systems we also make sure that brute-force approaches
do not work by choosing the rank n and dimension m of the lattice sufficiently large.
Interestingly, one can even show that solving approximations of such linear sys-
tems are indeed hard problems that belong to the class of NP-complete problems,
and which are assumed hard even on large-scale quantum computers. Therefore, the
following definition seems to be useful for building cryptographic systems that are
quantum computer-resistant.

Definition 12.2.2 Learning With Errors Problem (LWE)
Given a set of n basis vectors ai ∈ Zm

q represented by matrix A and
a point t ∈ Zm

q .

The LWE is the problem of determining a set of secret coefficients
s = (s1,s2, . . . ,sn), with si ∈ Zq, such that:

A · s+ e≡ t mod q

where e is an unknown error vector consisting of small integers
modulo q.

This plain LWE can be used for building a PQC cryptosystem but it requires very
large parameters to be secure, as will be discussed next. However, the closely related
Ring-LWE problem allows cryptographic schemes that are considerably more effi-
cient in practice. We will discuss Ring-LWE schemes in Section 12.2.3.

12.2.2 A Simple LWE-Based Encryption System

With the LWE problem we now have the basis for building a simple lattice-based
cryptosystem to encrypt data. Before we start with the details, it is helpful to dis-
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cuss an important requirement of the scheme. As with every public-key encryption
scheme, the goal is that Alice encrypts a message and sends it to Bob, who decrypts
it. Alice will embed her secret message in an LWE problem. As part of this process,
she adds a random error to a lattice point. Since the LWE problem is hard, Bob
needs some additional information in order to solve and decrypt it. We note that this
is different from conventional public-key encryption schemes introduced in previ-
ous chapters, which are either fully deterministic with no randomness at all such
as schoolbook RSA, or in the case of probabilistic schemes such as Elgamal, the
nonce is explicitly transmitted to the other party. For an LWE-based cryptosystem,
however, the added noise is hidden in the parameter t. This problem of a hidden
error can be addressed by Alice and Bob using a special coding technique. We will
now describe how messages are encoded and decoded so that Alice and Bob can
successfully exchange encrypted messages.

Encoding and Decoding

In conventional public-key encryption systems such as RSA or Elgamal, plaintexts
and ciphertexts are simple elements in a finite field or integer ring Z∗q. This is differ-
ent for LWE constructions and is done as follows. Let us assume we want to encrypt
an n-bit message m = (m0,m1, . . . ,mn−1) with mi ∈ {0,1}. As a first step, we map
each plaintext bit to an element of Zq. More precisely, we map every bit mi to a
coefficient m̄i ∈ Zq. Since the mi are bit values whereas each coefficient m̄i has a
range {0,1, . . . ,q−1} the question arises which of the q possible values we should
choose for m̄i. A straightforward idea would be to map:

mi = 0−→ m̄i = 0 and mi = 1−→ m̄i = 1

However, as will be shown later, during encryption the LWE scheme introduces
small errors to the m̄i values, e.g., from the distribution (−1,0,1). The above coding
does not work in this situation because the receiver cannot distinguish whether m̄i
was originally a 0 or a 1. To overcome this problem, we have to map mi = 0 and
mi = 1 to values of m̄i that are far enough apart so that small distortions of m̄i still
allow the receiver to decide whether a 0 or 1 was encoded.

A better idea seems to be to use the smallest and largest numerical value in Zq
for the mapping, i.e.,

mi = 0−→ m̄i = 0 and mi = 1−→ m̄i = q−1

This is shown in an example setting in Figure 12.3 using q = 61. However, this
mapping is a bad idea, too, because we have to remember that the coefficients are
elements from Zq, which has a cyclic structure. For instance, if an error value of
ei = 1 is added to m̄i = q− 1 = 60 (which represents the plaintext bit mi = 1), the
result will be m̄i +ei = 61≡ 0. But m̄i = 0 represents the plaintext bit mi = 0! Thus,
with this coding even the smallest possible error value of 1 will lead to an incorrect
decoding.
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Fig. 12.3 Naı̈ve mapping of bits mi to coefficients m̄i ∈ Z61

To salvage the situation, we need to take the cyclic nature of the underlying
finite group into account. An optimal encoding function that maximizes the distance
between the two values that are assigned to the m̄i coefficients is the following:

m̄i = enc(mi) :=
⌊q

2

⌋
·m =

{
0 if mi = 0⌊ q
2

⌋
if mi = 1 (12.7)

Let us again look at the example with Z61. The encodings of the two bit values 0
and 1 are pi = 0→ m̄i = 0 and mi = 1→ m̄i = 30 since

⌊ 61
2

⌋
= b30.5c = 30. Note

that no rounding occurs where q is a power of two. The encoding function is shown
in Figure 12.4. The areas in shades of gray indicate to which value a corresponding
value from this area is decoded.

Crucial in the figure are the areas that surround the “pizza slices” that contain the
0 and the 1. If m̄i has a value within the dark grey area, the decoding will map this
to mi = 1. In case the value of m̄i is in the light grey area, the decoding output will
be mi = 0. The decoding rule can be formally described as:

mi = dec(m̄i) :=
{

0 if −
⌊ q

4

⌋
≤ m̄i ≤

⌊ q
4

⌋
1 otherwise (12.8)

Looking at our previous example with q = 61 again, we will quickly compute that⌊ q
4

⌋
=
⌊ 61

4

⌋
= 15. This means that all values−15≤mi ≤ 15 will be decoded to zero.

Note that −15 ≡ 46 mod 61. In other words, decoding will return the output 0 for
all inputs in the range from 46 to 60 and in the range from 0 to 15. Consequently,
all inputs in the range 16 to 45 will decode to the output 1.

While there are other more complex coding procedures for lattice-based cryp-
tosystems (cf. Section 12.6), we will use these straightforward error-tolerant encod-
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Fig. 12.4 Safe mapping of bits mi to coefficients m̄i ∈ Z61

ing and decoding functions to define a first LWE encryption system in the following
section.

A Simple Encryption and Decryption Scheme

We now define a simple cryptosystem that we call “Simple-LWE”, as it serves only
educational purposes. It will help us understand the basic workings of lattice-based
encryption. Simple-LWE is limited by encrypting only a single message bit at a time.
Encryption schemes that can be used in practice will be discussed subsequently.

As we have seen with conventional asymmetric encryption schemes such as RSA
and Elgamal, lattice-based PQC also requires (i) key generation as well as (ii) an
encryption and (iii) a decryption function. The key generation of Simple-LWE gen-
erates a matrix A from lattice basis vectors and a secret vector s and applies the
LWE problem to generate a corresponding public key. The details are as follows:

Simple-LWE Key Generation
Output: public key: kpub = (t,A) with t ∈ Zk

q and A ∈ Zk×n
q

private key: kpr = s ∈ Zn
q

1. Choose n random vectors ai ∈ Zk
q and combine them in a matrix

A = (a1,a2, . . . ,an) ∈ Zk×n
q .

2. Generate a random secret key s from “small” integers.
3. Build a random error vector e from “small” integers.
4. Compute t = A · s+ e .
5. Return the public key kpub = (t,A) and the private key kpr = s.
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After we have generated the public and private keys, we can now define the
encryption and decryption functions. As in every asymmetric encryption scheme,
the sender uses the public key, which is denoted by kpub, for the actual encryption.
Note that we use the encoding as described in Section 12.2.2 to convert the message
bit m into an element in Zq.

Simple-LWE Encryption
Input: public key kpub = (t,A), message m ∈ {0,1}
Output: ciphertext c = (caux,cmsg) with caux ∈ Zn

q and cmsg ∈ Zq

1. Sample small random integers into vectors r,eaux and a value emsg.
2. Encode the message m: m̄ = enc(m) ∈ Zq.
3. Compute caux = AT · r+ eaux.
4. Compute cmsg = tT · r+ emsg + m̄.
5. Return the ciphertext c = (caux,cmsg).

As mentioned earlier, the scheme only encrypts a single bit. The ciphertext consists
of two elements, namely caux and cmsg. Such a behavior is not completely unfamiliar.
For instance, Elgamal encryption also generates two values that need to be transmit-
ted by the encrypting party, cf. Section 8.5.2. For LWE encryption we follow the
same strategy: The first part is an auxiliary value caux that includes some hidden in-
formation for the receiving party, which can be used for decrypting the second part
cmsg.

The decryption recovers the message from the ciphertext using the private key.
Interestingly, the actual decryption is in essence just a multiplication of caux with the
private key s that is subtracted from the second part of the ciphertext cmsg. Finally,
the receiver has to use the decoding function introduced in Section 12.2.2.

Simple-LWE Decryption
Input: private key kpr = s ∈ Zn

q, ciphertext c = (caux,cmsg)
Output: message m ∈ {0,1}

1. Return message m = dec
(
cmsg− sT · caux

)
.

Before we discuss the security and correctness of the Simple-LWE scheme, let
us look at an example.
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Example 12.3. We consider Simple-LWE encryption and decryption using the toy
parameters m = 5, n = 3, q = 61, and start by computing the public and private keys
as part of the key generation:

� To set up the scheme, we generate n = 3 random vectors a1 = (11,15,3,52,34),
a2 = (33,18,39,41,56) and a1 = (27,48,36,37,17) and assemble the matrix A:

A =


11 33 27
15 18 48
3 39 36

52 41 37
34 56 17

 ∈ Z5×3
61

� Next, we randomly generate a secret vector s and an error vector e with small
values over the integers.

s =

 60
1
1

 ∈ Z3
61 e =


1
1
0

60
1

 ∈ Z5
61

Note that 60 is also “small” since 60≡−1 in Z61.

� We compute t = A · s+ e≡


11 33 27
15 18 48
3 39 36

52 41 37
34 56 17


60

1
1

+


1
1
0

60
1

≡


50
52
11
25
40

 mod 61

� The public key we have constructed is now: kpub = (t,A).

� The secret private key is kpr = s =

60
1
1


With the public and private keys to hand we can start encrypting. Let us assume we
want to encrypt the message bit m = 1. This looks as follows:

� For encryption we first sample three random values:

� a random vector r with small integer values:

r =


1
1
1
0

60

 ∈ Z5
61
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� a random vector eaux with small integer values:

eaux =

0
1
0

 ∈ Z3
61

� and a random small integer emsg = 60 ∈ Z61.

� Next we encode the message bit m as follows:

m̄ = enc(m) =
⌊q

2

⌋
·m = 30 ·1 = 30

� Finally we can compute the ciphertext c:

caux = AT · r+ eaux =

11 15 3 52 34
33 18 39 41 56
27 48 36 37 17




1
1
1
0
60

+

0
1
0

≡
56

34
33

+

0
1
0



≡

56
35
33

 mod 61

cmsg = tT · r+ emsg + m̄ =
(

50 52 11 25 40
)


1
1
1
0

60

+60+30≡ 41 mod 61

The ciphertext can now be sent over the channel.
On the receiving side, the decryption with the private key s works as follows.

� The receiver first computes an intermediate value from the ciphertext:

m′ = cmsg− sT · caux = 41−
(

60 1 1
) 2

25
6

≡ 29 mod 61

� Using our decoding strategy from Equation (12.8) and shown in Figure 12.4, we
successfully retrieve m = dec(m′) = 1 since t = 29 is close to

⌊ q
2

⌋
=
⌊ 61

2

⌋
= 30.

Proof of Correctness and Security We start by showing that Simple-LWE is
secure. We consider two possible attack strategies: An adversary could attempt to
compute the private key or to decrypt the ciphertext. If we look at Step 4 of the key
generation

t = A · s+ e
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we see immediately that this is the LWE problem as given in Definition 12.2.2. More
concretely, if an attacker attempts to compute the private key from the public key
kpub = (t,A), he needs to solve the LWE problem, which is believed to be infeasible
if the parameters are chosen correctly. A second attack would be to compute the
message from the ciphertext tuple:

caux = AT · r+ eaux

cmsg = tT · r+ emsg + m̄

We see quickly that the construction of caux is equivalent to an LWE problem, since
an attacker knows neither r nor eaux. Likewise, he faces another instance of the LWE
problem if he tries to compute m̄ from cmsg.

With respect to the correctness of the Simple-LWE scheme, we saw in the ex-
ample that the receiver indeed recovered the message bit correctly. This was no
coincidence and it can be shown that the message is recovered in (nearly) all cases.
We leave this full correctness proof as an exercise to the reader in Problem 12.6.

Shortcomings of the Simple-LWE Scheme

With Simple-LWE, we introduced a first lattice public-key scheme based on the
LWE assumption. Please recall that the scheme is not designed for use in real-world
applications. We will discuss the shortcomings of Simple-LWE and derive features
practical lattice-based encryption schemes should have.

� Multi-bit Encryption. Simple-LWE only supports encryption of single bits. For
practical use cases, e.g., the secure transport of symmetric keys, this is not suffi-
cient and we need to extend the scheme to multi-bit encryption.

� Ciphertext Expansion. Looking at Example 12.3, we notice that the scheme en-
crypts a 1-bit message into a ciphertext tuple c that has a total of n+1 = 4 values
from Z61. Each of these values requires 6 bits to represent all possible values
ci = {0, . . . ,60} so that the entire ciphertext requires 24 bits. Considering that
the input is a single message bit, this corresponds to a ciphertext expansion by a
factor of 24. With real-world parameters, this expansion factor would be much
larger. Reducing the ciphertext expansion is therefore an important optimization
goal for all lattice-based encryption schemes.

� Large Keys. The use of matrices as public keys involves a quadratic complexity
in terms of storage and bandwidth. While our toy example started with the matrix
A ∈ Z5×3

61 , which can easily be handled, it becomes a challenge if the rank n and
dimension k of the matrix is in the hundreds. Such values are required for secure
instances of the LWE assumption. As an example, the LWE-based encryption
scheme FrodoKEM uses a quadratic matrix A over Z640×640

q for its smallest and
Z1344×1344

q for its largest parameter set. We will see later that it is more efficient
to replace such a costly matrix construction by the introduction of more efficient
polynomial rings.
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� Error Distribution. When looking at the generation of the error values e and
r in Simple-LWE, one sees that we avoided specifying how exactly the desired
“small” integer values are chosen. In fact, error sampling for LWE-based encryp-
tion systems is non-trivial and has received significant attention in the scientific
literature. Some of the distributions D that can be used to generate such error
vectors include, for example, sampling from discrete Gaussian or binomial dis-
tributions.

Summarizing the aspects above, a practical LWE-based encryption scheme should
be able to encrypt a multi-bit message without excessive ciphertext expansion or
extremely large key sizes. To reduce the storage requirements, there is an option to
construct the LWE problem over polynomial rings, referred to as the ring learning
with errors problem, or Ring-LWE or RLWE. Ring-LWE allows the use of a sin-
gle polynomial instead of a matrix, which is required for standard lattice schemes.
Even though the polynomial has large values, it is still considerably more efficient
with respect to storage and computation than schemes using the matrix A, which is
needed for LWE-based cryptosystems.

12.2.3 The Ring Learning With Errors Problem

In order to understand the Ring-LWE, which replaces matrix operations with com-
putations using polynomials, we first have to introduce the notion of polynomial
rings. We restrict ourselves to the most common case used in lattice cryptography,
namely schemes based on a polynomial ring defined with what is called a cyclo-
tomic polynomial. More specifically, we use special cyclotomic polynomials of the
form x2i

+1 .

Definition 12.2.3 The ring Rq = Zq[x]/(xn +1)
The polynomial ring Zq[x]/(xn + 1) consists of all polynomials
with a maximum degree of n− 1 with coefficients from Zq and n
being a power of two, i.e., n = 2i.

The ring operations addition, subtraction and multiplication are
performed as regular polynomial arithmetic, with the results be-
ing reduced modulo the cyclotomic polynomical xn +1. All integer
coefficients are reduced modulo q.

The polynomial ring Zq[x]/(xn + 1) has all the properties of a ring, which were
introduced in Section 1.4.2. If the product of a multiplication yields a polynomial
with degree of n or larger, it is reduced modulo xn + 1. In this context, the special
form xn+1 of the modulus is beneficial since reduction is extremely easy. We recall
that xn +1≡ 0 mod xn +1 holds. This can be rewritten as
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xn ≡−1 mod xn +1

In other words, every time xn occurs, it can be substituted by−1 when doing modulo
reduction. From this observation also follows that xn+1 ≡ −x and xn+2 ≡ −x2 and
so on if we do arithmetic modulo xn +1.

Example 12.4. Let us look at multiplication in the ring R61 = Z61[x]/(x2 +1) using
the parameters n = 21 and q = 61. We consider the polynomials a(x) and b(x) of
degree n−1 = 1 from R61:

a(x) = 19x+15 b(x) = 30x+53

We perform multiplication by reducing all coefficient computations by q = 61 and
the product polynomial by x2 + 1. For the polynomial reduction we make use of
x2 ≡−1 mod x2 +1, i.e., we can simply replace x2 by −1.

a(x) ·b(x) = (19 ·30)x2 +(19 ·53+15 ·30)x+(15 ·53)

≡ 21x2 +(31+23)x+2 mod x2 +1

≡ 21(−1)+54x+2 mod x2 +1

≡ 54x+42 mod x2 +1

We note that this type of computation is quite similar to polynomial arithmetic in
extension fields, which was introduced in Section 4.3.3 in the context of AES.
�
For building lattice-based cryptosystems, an important fact is that there is a simi-

larity between a matrix and a polynomial ring regarding their capabilities to generate
algebraic structures such as (ideal) lattices. Without delving into the mathematical
details, we now define an LWE problem that is based on polynomial rings instead
of standard lattices spanned by matrices.

Definition 12.2.4 Ring-LWE Problem
Let Rq denote the ring Z[x]q/(xn + 1), where q is a prime and the
positive integer n is a power of two. Given are polynomials a and
t ∈ Rq.

Ring-LWE is the problem of determining a secret polynomial s∈ Rq
such that:

a(x) · s(x)+ e(x) = t(x)

where the error vector e is a polynomial in the ring Rq with small
integer coefficients obtained from a discrete distribution D.

We use boldface for polynomials with large coefficient values such as a(x), t(x)∈
Rq while we use plain font for polynomials such as e(x),s(x) which have only small
values.
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Comparing this definition with the previous Definition 12.2.2 of the LWE prob-
lem (which we call Standard-LWE), we easily see similarities. However, Ring-LWE
only requires a one-dimensional polynomial a(x) instead of the large quadratic ma-
trix A. This reduces the computation and memory requirements, while the Ring-
LWE problem is assumed to be secure due to its similarity to Standard-LWE. Cryp-
tosystems based on Ring-LWE are computationally more efficient than Standard-
LWE, but have the drawback that they have more mathematical structure that could
potentially be exploited cryptanalytically.

As a remedy to this threat, a third class of lattice-based cryptosystems has
been proposed, combining the concept of the matrix-based Standard-LWE and the
polynomial-based Ring-LWE into module-based lattices (Module-LWE). As we
will discuss later in Section 12.2.5, module-based lattice cryptosystems have gained
a lot of attention in the standardization process. They are, unfortunately, quite in-
volved and for simplicity we will remain with the Ring-LWE problem, which will
allow us to construct a practical lattice-based encryption system.

12.2.4 Ring-LWE Encryption Scheme

With Definition 12.2.4 of the Ring-LWE problem we have the tools to present a
practical lattice-based cryptosystem which is a considerable improvement over the
Simple-LWE scheme. Please note that real-world lattice-based encryption schemes
look quite similar but often have individual tweaks and optimizations, which we will
sketch in Section 12.2.5.

Encryption and Decryption

The Ring-LWE encryption system we present in the following was initially pro-
posed by Lyubashevski, Lindner and Peikert. Since we have already studied the
Simple-LWE scheme, we will quickly identify many similarities. However, many
limitations of Simple-LWE, which were discussed in Section 12.2.2, are not present
in the Ring-LWE scheme.

Ring-LWE Key Generation
Output: public key: kpub = (t,a) and private key: kpr = s
1. Choose a(x) ∈ Rq from the ring Rq = Z[x]q/(xn +1).
2. Choose e(x),s(x) ∈ Rq with coefficients from a set of small integers ac-

cording to some discrete error distribution D.
3. Compute t(x) = a(x) · s(x)+ e(x) ∈ Rq.
4. Return the public key kpub = (t,a) and the private key kpr = s.
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Even though all variables used in the key generation are polynomials that are in the
ring Rq, it is important to note that there are two types of polynomials employed.
There are polynomials — denoted by bold letters such as a(x) — with “large” in-
teger coefficients, and there are polynomials such as r(x) with “small” coefficients.
We will discuss this issue in more detail after we have introduced the encryption
and decryption procedures of the Ring-LWE encryption scheme.

Ring-LWE Encryption
Input: public key kpub = (t,a), message m ∈ {0,1}n

Output: ciphertext c = (caux,cmsg)
1. Choose error polynomials r(x),eaux(x),emsg(x) with coefficients from a

set of small integers according to the discrete error distribution D.
2. Write the n message bits m as a message polynomial m(x) and generate

the encoded polynomial: m̄(x) = enc(m(x)).
3. Compute caux(x) = a(x) · r(x)+ eaux(x).
4. Compute cmsg(x) = t(x) · r(x)+ emsg(x)+ m̄(x).
5. Return the ciphertext c = (caux,cmsg).

Let us look at the decryption by the receiver:

Ring-LWE Decryption
Input: private key kpr = s, ciphertext c = (caux,cmsg)
Output: message m
1. Compute m′(x) = cmsg(x)− caux(x) · s(x).
2. Return the decoded message m = dec(m′(x)).

Let us first discuss the bit lengths that the scheme requires. The coefficients of
the “large” polynomials (again, these are the ones shown in bold face) are bounded
by the integer q, which is not as large as the moduli in the case of RSA or Elgamal
cryptosystems, where we need at least 2048 bits for secure schemes. In contrast,
in Ring-LWE schemes, q is 10–20 bits long, which translates to roughly 4–8 deci-
mal digits. For instance, q = 12,289 is used in the NewHope cryptosystem. Second,
we have the “small” polynomials s,e,r,eaux,emsg, which are also elements of the
ring Rq but the polynomial coefficients are chosen from a discrete error distribu-
tion D modulo q, which only has small values. An example is an error distribution
centered around 0 with small values, for example Dq = {−3,−2,−1,0,1,2,3}q =
{58,59,60,0,1,2,3}61 when q = 61.

Note that a computation involving a large and a small polynomial, for instance
the multiplication

caux(x) · s(x)

will have a product polynomial that again has large coefficients. To get a better
feeling for the Ring-LWE encryption and its computations, we will now look at an
example.
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Example 12.5. We consider an instance of Ring-LWE encryption with the toy pa-
rameters n = 23 and q = 61.

Key Generation. The initial step is to compute the public and private keys.

� First, we choose a random polynomial a(x):

a(x) = 53x7 +11x6 +38x5 +16x4 +4x3 +54x2 +55x+7

� Next, we generate the random secret and error polynomials s(x) and e(x) from a
distribution D61 over small integers. In our example we use the discrete Gaussian
distribution D61 ∈ {58,59,60,0,1,2,3}61:

s(x) = 60x6 + x4 +60x2 e(x) = x7 +60x6 + x5 + x4 +59x3 + x2 +1

� We can now compute the second part of the public key:

t(x) = a(x) · s(x)+ e(x) = 34x7 +30x6 +44x5 +26x4 +50x3 +60x2 +19x+50

� Finally, we return the public key kpub = (t,a) and private key kpub = (s), where
we describe the polynomials simply as a list of integers (or integer vectors).

kpub = (t,a) = [(34,30,44,26,50,60,19,50),(53,11,39,16,4,54,55,7)]
kpr = s = (0,60,0,1,0,60,0,0)

Encryption. Given the public key kpub = (t,a), we can encrypt the message
m = (0,1,1,0,1,0,0,0) with n = 8 bits. For this, we convert the message m into
a polynomial:

m(x) = x6 + x5 + x3

� We now sample polynomials r,eaux and emsg from the distribution D61:

r = 60x6 +2x5 +60x4 +60x3 +2x2 +2x

eaux = 59x6 + x5 +60x4 +60x3 +60x2 +60x

emsg = x7 +60x4 + x3 +58x+59

� Next we encode all message bits into the coefficients of a message polynomial
using the encoding rule shown in Equation (12.7): enc(m) =

⌊ q
2

⌋
·mi = 30 ·mi

for i = 1, . . . ,8:
m̄(x) = 30x6 +30x5 +30x3
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� Then we compute the first ciphertext polynomial caux(x):

caux(x) = a(x) · r(x)+ eaux(x)

� Last we compute cmsg(x), which also includes the encoded message m̄(x):

cmsg(x) = t(x) · r(x)+ emsg(x)+ m̄(x)

� Finally we obtain the ciphertext, which is represented by the coefficients of the
two ciphertext polynomials:

(caux,cmsg) = ( (9,29,60,19,35,5,50,33),(52,48,54,51,35,18,40,22) )

Decryption. For this we need to have the secret key kpr =(s)= (0,60,0,1,0,60,0,0)
and the ciphertext (caux,cmsg) as generated during the encryption. All values are
converted back into polynomials s(x),caux(x) and cmsg(x).

� First we compute m′(x) = cmsg(x)− caux(x) · s(x) as follows:

m′(x) = (52x7 +48x6 +54x5 +51x4 +35x3 +18x2 +40x+22)︸ ︷︷ ︸
cmsg(x)

−

(9x7 +29x6 +60x5 +19x4 +35x3 +5x2 +50x+33)︸ ︷︷ ︸
caux(x)

(60x6 + x4 +60x2)︸ ︷︷ ︸
s(x)

= 5x7 +34x6 +30x5 +55x4 +34x3 +56x+7

� In the final step we need to decode the individual coefficients of m′(x) using the
dec(x) function. Recall that dec(x) will return 0 if −

⌊ q
4

⌋
≤ m′i ≤

⌊ q
4

⌋
, and 1 in

all other cases. For q = 61 this means that coefficients larger than 45 and smaller
than 16 will decode to 0. For the other case, all coefficients between 16 and 45
(including both values) will decode to 1.

= [(53x7 +11x6 +38x5 +16x4 +4x3 +54x2 +55x+7)︸ ︷︷ ︸
a(x)

(60x6 +2x5 +60x4 +60x3 +2x2 +2x)︸ ︷︷ ︸
r(x)

]

+(59x6 + x5 +60x4 +60x3 +60x2 +60x)︸ ︷︷ ︸
eaux(x)

= [9x7 +31x6 +59x5 +20x4 +36x3 +6x2 +51x+33]+ (59x6 + x5 +60x4 +60x3 +60x2 +60x)

= 9x7 +29x6 +60x5 +19x4 +35x3 +5x2 +50x+33

= [(34x7 +30x6 +44x5 +26x4 +50x3 +60x2 +19x+50)︸ ︷︷ ︸
t(x)

(60x6 +2x5 +60x4 +60x3 +2x2 +2x)︸ ︷︷ ︸
r(x)

]

+(x7 +60x4 + x3 +58x+59)︸ ︷︷ ︸
emsg(x)

+(30x6 +30x5 +30x3)︸ ︷︷ ︸
m̄(x)

= [51x7 +18x6 +24x5 +52x4 +4x3 +18x2 +43x+24]+ (x7 +30x6 +30x5 +60x4 +31x3 +58x+59)

= 52x7 +48x6 +54x5 +51x4 +35x3 +18x2 +40x+22
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5x7→ dec(5) = 0 34x3→ dec(34) = 1

34x6→ dec(34) = 1 0x2→ dec(0) = 0

30x5→ dec(30) = 1 56x1→ dec(56) = 0

55x4→ dec(55) = 0 7→ dec(7) = 0

� The decrypted message is m = (0,1,1,0,1,0,0,0). As expected, this matches our
original plaintext message.

Correctness and Security First, we want to show that Ring-LWE works as en-
visioned, i.e., that decryption actually reverses the encryption operation. The proof
of correctness is as follows.

Proof. We have to show that the decryption operation dkpr(caux,cmsg) yields the
original message m.

dkpr(caux,cmsg) = dec( cmsg(x)− caux(x) · s(x) )
= dec( (t(x) · r(x)+ emsg(x)+ m̄(x))− (a(x) · r(x)+ eaux(x)) · s(x) )
= dec( ((a(x) · s(x)+ e(x)) · r(x)+ emsg(x)+ m̄(x))

− (a(x) · r(x)+ eaux(x)) · s(x) )
= dec( (a(x) · s(x) · r(x)+ e(x) · r(x)+ emsg(x)+ m̄(x))

−a(x) · r(x) · s(x)− eaux(x) · s(x) )
= dec( e(x) · r(x)+ emsg(x)− eaux(x) · s(x)︸ ︷︷ ︸

“small” error E

+m̄(x) ) = m (12.9)

An important underlying assumption of the correctness proof is that the error
term E = e(x) · r(x) + emsg(x)− eaux(x) · s(x) is so small that it can be corrected
by the decoding function “dec()” in virtually all cases, as shown in Figure 12.4.
Due to the probabilistic nature of encryption, however, there is still a very small
chance that decoding might fail in case the error E grows too large to be corrected
successfully. However, if the scheme is carefully designed and parameters have been
chosen reasonably, the chance of a decoding failure is negligible. Modern LWE-
based cryptosystems specify the decoding failure rate as an additional parameter δ ,
as can be seen in Table12.2 later in this section.

Second, we want to look at the security of the Ring-LWE scheme. We ask our-
selves what an attacker Oscar needs to do to break the encryption. Oscar knows the
public key kpub = (t,a), the ciphertext (caux,cmsg) and, according to Kerckhoffs’
Principle, how key generation, encryption and decryption work. The most straight-
forward attack would be to find and extract the private key kpr = (s), which would
allow Oscar to perform the regular decryption operation shown above, i.e., he would
compute cmsg(x)− caux(x) · s(x). The private key s is part of the public-key values
that were computed as:

t(x) = a(x) · s(x)+ e(x)︸ ︷︷ ︸
Ring-LWE problem
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With t and a known, it quickly becomes clear that this is the Ring-LWE problem
as given in Definition 12.2.4. As we recall from the earlier discussion, solving this
problem is computationally infeasible if the parameters have been chosen correctly
and sufficiently large. Another attack would be to extract the message from the
ciphertext. For this, an adversary has to look at this step of the encryption:

cmsg(x) = t(x) · r(x)+ emsg(x)︸ ︷︷ ︸
Ring-LWE problem

+m̄(x) (12.10)

While it is a bit less obvious, we will find another Ring-LWE instance as part of the
computation of cmsg in which the error vector r(x) acts like the secret polynomial
s(x). The error vector r, unknown to an adversary, is also part of the second Ring-
LWE instance contained in caux and is used to cancel out any polynomials with large
coefficients when combining cmsg and caux during decryption.

Note that the message m̄(x) has been mixed into the Ring-LWE problem by
addition in Equation (12.10). An attacker needs to compute the Ring-LWE problem
first in order to be able to separate t(x) · r(x)+ emsg(x) and m̄(x).

An essential part of the Ring-LWE cryptosystem is choosing the error terms cor-
rectly. On the one hand, the accumulated error E in Equation (12.9) added to the
message needs to be small enough to remain in the assigned interval shown in Fig-
ure 12.4. Otherwise, decoding during the decryption will not be possible. On the
other hand, the error distribution needs to provide values that are sufficiently large
so that the Ring-LWE is indeed a hard problem for an attacker. Choosing optimal
parameters to satisfy both requirements is challenging, as discussed in further detail
in the next section.

12.2.5 LWE in Practice

With (Ring-)LWE we have introduced a generic lattice-based problem and encryp-
tion scheme. What we want to do now is to discuss the actual parameters one has
to choose so that the scheme resists strong attackers. Since lattice-based cryptog-
raphy is a rather young field of cryptography — proposed in the seminal work by
Miklós Ajtai in 1996 and Oded Regev in 2005 — cryptanalysis of efficient and
secure lattice-based constructions is still an active field of research. We note that
parametrization is significantly more complex compared to RSA or discrete log-
arithm schemes such as the Diffie-Hellman key exchange or Elgamal encryption
where the security depends largely on a single parameter, namely the modulus. In
contrast, there is an interplay of several parameters for Ring-LWE schemes, includ-
ing the size of the polynomials, the modulus q and the error distribution. An exam-
ple is a Ring-LWE instance proposed by Regev with the parameters n = 128 and
q = 16,411 using an error distribution Dq based on a discrete Gaussian distribution
with a carefully selected variance (σ = 29.6). This particular configuration was as-
sumed in early 2015 to provide security equivalent to a 71-bit symmetric cipher.
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However, after two years of research with new cryptanalytical results, it turned out
that these parameters provide only a security level of 48 bits, i.e., this Ring-LWE
instance can be broken quite easily.

We have already learned that the substitution of the matrix variant of LWE
(Standard-LWE) with the polynomial variant (Ring-LWE) comes with significant
implementation benefits, especially with respect to storage requirements. The draw-
back of a Ring-LWE-based encryption scheme, however, is that security proofs that
guarantee that the LWE is a hard problem do not simply extent to the Ring-LWE ver-
sion. Ring-LWE is assumed secure to date (given that appropriate security parame-
ters are chosen), but the implicit structure that follows from its cyclotomic polyno-
mials can possibly enable more efficient attacks. In response to that, an intermediate
version of LWE called Module-LWE has been proposed that aims to combine both
variants: it applies the matrix structure of Standard-LWE with the efficiency of struc-
tured polynomials as part of its matrix elements. A structural overview of all three
different versions of LWE is depicted in Figure 12.5. It also highlights the different
storage requirements of A, from the most compact scheme Ring-LWE (4 elements
of a polynomial) to Standard-LWE as the most memory-consuming scheme (16 el-
ements in a matrix).
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Fig. 12.5 Structural differences between LWE variants with 4× 4 elements in A.
Grey boxes represent matrices or vectors while white boxes denote polynomials.
Standard-LWE computes with matrices and vectors, Ring-LWE uses polynomials
instead and Module-LWE uses a mixture of both.
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Like all public-key schemes, any LWE-based cryptosystem is also orders of mag-
nitudes slower than symmetric ciphers such as AES. Hence, the main application
of PQC encryption is the establishment of keys between two parties over an inse-
cure channel (rather than for encrypting of bulk data). The key is then used for a
fast symmetric cipher such as AES. In practice this key establishment is often real-
ized through a key encapsulation mechanism (KEM), which was introduced in Sec-
tion 7.8. Table 12.2 lists three LWE-based KEM schemes that appear very promising
for use in practice, followed by an explanation of the rightmost rows of the table.
Please note that some very specific parameters, e.g., for the error distribution, are
omitted for simplicity.

Table 12.2 Parameter sets for LWE-based key encapsulation schemes

Scheme Type Equivalent Security nnn kkk qqq δδδ

KYBER-512 Module-LWE AES-128 256 2 3329 2−139

KYBER-768 Module-LWE AES-192 256 3 3329 2−164

KYBER-1024 Module-LWE AES-256 256 4 3329 2−174

NEWHOPE-512 Ring-LWE AES-128 512 1 12289 2−213

NEWHOPE-1024 Ring-LWE AES-256 1024 1 12289 2−216

FRODOKEM-640 Standard-LWE AES-128 640 1 215 2−138.7

FRODOKEM-1340 Standard-LWE AES-256 1340 1 216 2−252.5

� n denotes the number of coefficients and degree of the polynomial of the LWE
instance.

� k represents the dimension of the lattice as a multiple of n, e.g., for KYBER768
we have k ·n = 3 ·256 = 768 coefficients spanning the corresponding lattice.

� q is the modulus for of the ring Zq.
� δ is the probability of a decryption failure due to an error in the decoding process.

We also remark that the parameter sets from Table 12.2 are designed to pro-
vide security levels equivalent to AES with 128, 192 and 256-bit keys, respectively.
The NewHope cryptosystem (Ring-LWE) and KYBER (Module-LWE) both share
many features with the basic Ring-LWE scheme introduced in Section 12.2.4. The
two schemes make use of several computational optimizations for improved perfor-
mance and reduced ciphertext size. As in the case of established public-key schemes,
performance is always related to the paramatrization of the cryptosystem and there
is a compromise between security and efficiency. We also include the more conser-
vative lattice-based encryption scheme FRODO-KEM, which is based on Standard-
LWE.

As a final remark, we note that in this section we focused on the LWE prob-
lem and its variants but there exist a number of other related lattice-based prob-
lems. These include the Shortest Integer Solution (SIS) problem, the Learning with
Rounding (LWR) problem and the NTRU problem. With these it is also possible to
construct quantum-resistant digital signature schemes that are not addressed in this
chapter.
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12.2.6 Final Remarks

Several lattice-based cryptosystems are currently considered for standardization.
They are popular since they are more versatile than other PQC schemes and pro-
vide a good tradeoff between security arguments and cryptanalytic strength against
classical and quantum attacks. As mentioned earlier, lattice-based and other PQC
schemes that support encryption are not designed for bulk data encryption but
specifically for key transport and, thus, support key encapsulation mechanisms
(KEM) only. The following are the finalist algorithms after Round 3 of the NIST
post-quantum cryptography standardization effort (cf. Section 12.5):

� KYBER: This key encapsulation scheme was selected by NIST in 2022 as a final
candidate for standardization under the name ML-KEM. It is based on the hard-
ness of the module-based LWE problem, and is designed to combine the high ef-
ficiency of Ring-LWE-based proposals with the conservative security arguments
of LWE using matrices and standard lattices.

� DILITHIUM: A digital signature scheme based on the module-based LWE prob-
lem which is also used for KYBER. Note that, unlike RSA for which the encryp-
tion and digital signature scheme are very similar and conceptionally easy, the
construction of a lattice-based signature scheme is technically more challenging.
In particular, finding a suitable instance that can be used as signature for a given
message is non-trivial and involves a rejection step that triggers another signing
attempt in case of a failure. DILITHIUM was also selected in 2022 as candidate
for standardization by NIST under the name ML-SIG.

� FALCON: A digital signature scheme that combines several efficiency improve-
ments yielding smaller signature and key sizes at the cost of higher implementa-
tion complexity. Due to its smaller signature sizes and lightweight verification,
FALCON was selected by NIST as candidate to be published as standard FN-SIG.
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12.3 Code-Based Cryptography

In this section we will introduce cryptosystems that are based on hard problems from
coding theory. It is interesting to note that the first code-based cryptosystem was
already proposed in 1978 by Robert J. McEliece and is, thus, as old as the extremely
widely used RSA algorithm (and roughly as old as the Diffie-Hellman key exchange,
which had been invented one year earlier). One question that immediately comes to
mind is why the McEliece cryptosystem has not gained nearly as much popularity
as RSA in the past four decades. We will address this question in the remainder of
this section. But first we need to provide some background on coding theory, which
will be needed to understand code-based cryptosystems.

As the name suggests, code-based cryptography is based on error correction
codes. They are used for the detection and correction of errors that occur during data
transmission, e.g., on a wireless link in a cellular network. Error coding schemes are
integral to all modern digital communication, including any type of wired and wire-
less network connections. We note that error correction codes are also part of every
data storage systems, such as computer hard disks or memory sticks. In all these
cases (and especially on wireless channels) messages are likely to be corrupted —
e.g., through flipping of some bits — so that the other party does not receive the
original message correctly.

c = m | r noisy channel c' = c + e

Alice Bob
error e

encoding: decoding:

Fig. 12.6 Transfer of a message m over a noisy channel with error-coding

The basic approach for salving the situation is to add some additional, redundant
information r to the original message m. The message together with the redundant
information form what is called a codeword c. As shown in Figure 12.6, the addi-
tional information can simply be attached to the message. In general, the codeword
c does not need to contain the message in clear and m and r don’t have to be strictly
separated from each other, but we restrict ourselves for the sake of clarity to the
special case c = m|r for the rest of this chapter.

If an error is introduced during transmission, an altered codeword c′ will be re-
ceived. The fundamental assumption is that the receiver can distinguish between
valid codewords and corrupted ones. If everything works correctly, the receiver can
identify that an error has occurred (in the case of error detection schemes) or even
correct the errors e (in the case of error correction schemes). In the former case, the
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receiver can request a retransmission of the message by the sender. Not surprisingly,
error detection and correction only work if the introduced errors are within the lim-
its that the chosen code can handle, i.e., if too many errors occur, the code cannot
successfully detect or correct them. Next, we will introduce a family of linear codes
with which we can demonstrate the basic functionality of encoding and decoding.

12.3.1 Linear Codes

In this section we will introduce the principle of error correction codes. We will
use binary linear codes that, as we will see, can easily be decoded. However, for
more complex codes, decoding can be a very hard problem that can be used for
building asymmetric cryptosystems. This section will be used as a motivation for
the syndrome decoding problem, described in Section 12.3.2, which is at the heart
of code-based PQC schemes.

Figure 12.7 shows how data transmission with linear codes works on a high level.

c = m · G

Alice Bob

c ' = c+ e
noisy channel

encoding:
syndrome s = H · (c ') T

 
s  = 0  no error detected

≠ 0  error detected

decoding:

Fig. 12.7 Principle of linear error correction coding

Before we discuss the three stages shown in the figure, let us first define two
important parameters, namely k as the length of the message m, and n as the length
of the constructed codeword, cf. Figure 12.8. All lengths are given in bits. From the
figure it is clear that the redundant part r has (n− k) bits.

We now look at the three stages in the error correction process from Figure 12.7:

Encoding Alice, the sender, computes a codeword from her message m by adding
some redundant bits. This computation is done by simply multiplying the mes-
sage with a generator matrix G:

c = m ·G

As shown in Figure 12.6, the codeword consists of some redundant information
denoted by r and the message: c = m|r.
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m rc =  

k n -k

n

Fig. 12.8 Every n-bit codeword c consists of k message bits and n− k bits of redun-
dant information

Transmission During data transmission on the channel, errors can occur, result-
ing in an altered codeword c′. We consider these errors as bit flips4. Mathemati-
cally speaking, this can be expressed by adding an error vector e to the codeword:

c′ = c+ e

It is important to note that the error is a bit vector so that the addition is a bit-
wise XOR operation. In other words, at bit locations where the error vector e has
the value “1”, the bit of the codeword c flips and, thus, an error occurs. At the
locations where e has the “0” bit, no error occurs.

Decoding The receiver Bob has to decode the message. He computes what is
referred to as the syndrome s from the received codeword c′:

s = H · (c′)T (12.11)

The computation is a matrix-vector multiplication with the so-called parity-check
matrix H. The syndrome is crucial for the coding process: If the syndrome s
has the value zero, no error is detected. If s is not equal to zero, an error has
been detected. If not too many bits have flipped, the erroneous bits can even be
corrected by Bob. Note that (c′)T is the transposed version of the codeword c′ as
introduced in the previous section on lattice-based cryptography. In this case, it
simply means that the row vector c′ is rotated by 90◦ and turned into a column
vector.

In the following we will develop the mathematical concept behind linear codes,
including how the generator matrix G and the parity-check matrix H are constructed
so that r depends linearly on m.

In general, there are two ways to describe a code. The first one is by defining rules
to construct all codewords that belong to the code. Exactly this is achieved by the
generator matrix G: Every possible linear combination of the rows of G corresponds

4 In actual communication channels other types of errors such as dropped bits are possible, too.
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to a valid codeword what we obtain when encoding a message. We multiply m with
G, which gives us the valid codeword that corresponds to m.

For the second way, we can define a code based on rules determining whether a
given codeword is valid or not. That is the intuition behind the parity-check matrix
H. Whenever we multiply H with a given word c̃, the result is 0 if and only if c̃ is
a valid codeword. This property of the parity-check matrix is fundamental for any
error correction code. It allows the receiver to distinguish valid codewords that were
constructed by the sender from invalid ones that are corrupted by bit errors. The
syndrome in Equation (12.11) gives us this very information due to the following
(simple) observation: We recall that the received codeword consists of the original
codeword and the error vector, i.e., c′ = c+ e. Hence, the syndrome computation
can be expressed as:

s = H · (c′)T = H · (c+ e)T = H · cT +H · eT = 0+H · eT

= H · eT (12.12)

Thus, the syndrome s from Equation (12.11) is always the product of the parity-
check matrix and the error vector.

Either of the matrices G and H is sufficient to define the code. When knowing
the generator matrix G, one can calculate a corresponding parity-check matrix H
and vice versa. With the following example, we illustrate how to find the generator
matrix G for a given parity-check matrix H so that we can encode any message.

Example 12.6. Let us assume a message m consisting of k = 4 bits, so that m =
(m1,m2,m3,m4). We want to generate a codeword c with a length of seven bits
(n = 7) with three bits (n−k = 7−4 = 3) of redundancy r. The codeword has, thus,
the form:

c = (m|r) = (m1,m2,m3,m4,r1,r2,r3)

The matrix H has the dimension (n− k)×n = 3×7, where the matrix elements are
from GF(2). We recall that this is the finite field with two elements5. We use the
following parity-check matrix in this example:

H · cT =

0 1 1 1 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1




m1
m2
m3
m4
r1
r2
r3


(12.13)

We already know the first four bits of the codeword c, namely (m1,m2,m3,m4) but
we still need to compute the redundant bits (r1,r2,r3). We recall that an essential
property of H is that the result of Equation (12.13) is the zero vector, i.e., HcT = 0.

5 Computations in GF(2) are done with modulo 2 arithmetic: Addition is the XOR operation and
multiplication is a Boolean AND, cf., Section 4.3.2
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With this, we can derive a system of linear equations from Equation (12.13):

m2 +m3 +m4 +r1 ≡ 0 mod 2
m1 +m2 +m4 +r2 ≡ 0 mod 2
m1 +m3 +m4 +r3 ≡ 0 mod 2

This linear equation set can be rewritten as:

r1 ≡ m2 +m3 +m4 mod 2
r2 ≡ m1 +m2 +m4 mod 2
r3 ≡ m1 +m3 +m4 mod 2

The three equations determine the redundant part r from the 4-bit message m so that
we can generate a valid codeword c. Since the three bits ri are linear combinations
of the message bits, we can write the construction of the codeword as a matrix
multiplication (which is also a linear operation):

c =



m1
m2
m3
m4
r1
r2
r3



T

=



m1
m2
m3
m4

m2 +m3 +m4
m1 +m2 +m4
m1 +m3 +m4



T

= (m1,m2,m3,m4)︸ ︷︷ ︸
m

·


1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1


︸ ︷︷ ︸

G

= m ·G

This example showed how a generator matrix G can be constructed from H. It has
size 4×7, i.e., it consists of k = 4 rows and n= 7 columns. As shown in Figure 12.7,
it is used by Alice during encoding.

�
After this example, we can now provide a general definition of a linear code.

Definition 12.3.1 (Binary) Linear Codes
Given a parity-check matrix H of size (n− k)× n over any prime
field GF(p). For binary linear codes, the field is GF(2).
We define the linear code C as the set of all vectors c ∈ GF(2)n

with n elements for which H · cT = 0 holds.
The set C defines all valid codewords of a linear (n,k) code, where
n is called the length and k the dimension of the code.

Any k×n matrix G whose row space is equal to C is called a gen-
erator matrix of C and can be used for encoding by c = m ·G. A
code can equivalently be defined by its generator matrix instead of
its parity-check matrix.
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The row space used in the definition above is simply the set of all possible linear
combinations of the rows of H.

With this definition, there are multiple options for constructing a linear code.
Simple ones are known as parity-check or repetition codes. In the problem section
we will give some more examples of how to use linear codes in common error
coding applications (see Problems 12.7, 12.8 and 12.9). Please note that we focus
on simple (systematic) binary linear codes for clarity, while more complex linear
codes over other finite fields exist which are also widely used in practice.

We will now look at another example that allows us to discover some funda-
mental aspects of error correction codes, in particular the notion of error correction
capability.

Example 12.7. We again assume a linear code with the parameters k = 4, n = 7. The
generator matrix is the same as in the previous example:

G =


1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1


The corresponding parity-check matrix with n− k = 3 and n = 7 is defined by:

H =

0 1 1 1 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


A key feature of codes is their maximum correction capability t. This parameter
denotes the maximum number of bit flips during transmission that can be corrected.
In order to derive t, we have to look at all valid codewords. We then have to deter-
mine the minimum Hamming distance between all those codewords. The Hamming
distance between two bit vectors is the number of positions at which they differ. For
instance, the Hamming distance between (1101) and (1011) is two since they differ
in the second and third bit position.

In the code we consider here, we have k = 4 and, thus, there are 24 = 16 possible
messages, which lead to 16 valid codewords. As an example, we consider the mes-
sage m =

(
1 0 1 0

)
. As shown earlier, the encoding of the message is obtained by

multiplying m with the generator matrix G, i.e.,

c = m ·G =
(

1 0 1 0
)
·


1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1

=
(

1 0 1 0 1 1 0
)

If we do the same with all possible four-bit messages, we obtain an exhaustive list
with all possible messages m and their corresponding codewords c as presented
below.
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Messages m Codewords c(
0 0 0 0

) (
0 0 0 0 0 0 0

)(
0 0 0 1

) (
0 0 0 1 1 1 1

)(
0 0 1 0

) (
0 0 1 0 1 0 1

)(
0 0 1 1

) (
0 0 1 1 0 1 0

)(
0 1 0 0

) (
0 1 0 0 1 1 0

)(
0 1 0 1

) (
0 1 0 1 0 0 1

)(
0 1 1 0

) (
0 1 1 0 0 1 1

)(
0 1 1 1

) (
0 1 1 1 1 0 0

)(
1 0 0 0

) (
1 0 0 0 0 1 1

)(
1 0 0 1

) (
1 0 0 1 1 0 0

)(
1 0 1 0

) (
1 0 1 0 1 1 0

)(
1 0 1 1

) (
1 0 1 1 0 0 1

)(
1 1 0 0

) (
1 1 0 0 1 0 1

)(
1 1 0 1

) (
1 1 0 1 0 1 0

)(
1 1 1 0

) (
1 1 1 0 0 0 0

)(
1 1 1 1

) (
1 1 1 1 1 1 1

)
We now have to determine the Hamming distance between all possible pairs of
codewords. If we do that, we find that the minimum Hamming distance is d = 3.
This means that any two codewords differ in at least three bit positions. From here
it is easy to see that the error correction capability is

t = b(d−1)/2c= 1

Behind this expression is the principle that if t = 1 bit errors have been introduced,
there is a nearest code word, which contains the original message. This nearest code
word c has a Hamming distance of one from the received c′, while all other code-
words will have a Hamming distance of at least two. In other words, the given linear
code is capable of correcting any single-bit error that may occur during transmis-
sion. Such an error will flip exactly one bit in any of the codewords listed above.
There are seven error vectors e = (e1, . . . ,e7) that will cause such a bit flip: The
error vectors have one bit ei with the value 1 and all other bit values are 0.

We can now use the seven error vectors to compute all syndromes that allow a
correction of a one-bit error. We achieve this by multiplying these error vectors with
the parity-check matrix. We recall that this is due to the relationship s = H · (c′)T =
H · eT introduced in Equation (12.12). As an example, we consider the error vector
e =

(
0 0 0 0 1 0 0

)
. This vector leads to the following syndrome s:
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sT = H · eT =

0 1 1 1 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 ·


0
0
0
0
1
0
0


=

1
0
0



If we repeat this computation with all seven error vectors we obtain the list below:

Error e Syndrome s(
0 0 0 0 0 0 1

) (
0 0 1

)(
0 0 0 0 0 1 0

) (
0 1 0

)(
0 0 0 0 1 0 0

) (
1 0 0

)(
0 0 0 1 0 0 0

) (
1 1 1

)(
0 0 1 0 0 0 0

) (
1 0 1

)(
0 1 0 0 0 0 0

) (
1 1 0

)(
1 0 0 0 0 0 0

) (
0 1 1

)
The table is essential for decoding: If the receiver, Bob, computes any of the seven
syndromes show in the right column, he can look up the corresponding error vector.
To correct the error, he simply adds e to the received codeword c′ and obtains the
codeword that was originally sent by Alice:

c = c′+ e

This immediately gives Bob the original message since the first k bits of the code
word are the message, cf. Figure 12.8.

�

12.3.2 The Syndrome Decoding Problem

As we know, all asymmetric cryptosystems are based on a hard problem that an
attacker cannot solve. To build a PQC scheme based on codes, our goal is to turn
the decoding step into a computationally hard problem. Unfortunately, decoding in
Example 12.7 above seems straightforward and not particularly difficult, as it only
requires simple matrix operations. However, the ease with which we could decode
(and thus find the error) was due to the fact that we used a small code for which the
error correction capability was very low, namely t = 1. If we increase t, the decoding
step becomes significantly more complex in the general case. To get a feeling for
that, let us assume an error correction capability of up to t = 8 for a code with
n = 2048 bits. While the size of this code seems already large, we will see later that
we need even larger values for n to achieve secure code-based cryptosystems.
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If we compute the table with all possible syndromes for such a code as done
in the example above, the table becomes very large since we need to consider all
error combinations over the range from 1 to 8 possible errors. The number of error
combinations is given by the corresponding binomial coefficients:

8

∑
i=1

(
2048

i

)
≈ 265

Such a lookup table would be absurdly large, as it would contain 32 million terabytes
of entries. In fact, unless there is mathematical structure in the code that allows a
computationally easy way to map the syndrome to the error vector e with a Ham-
ming weight smaller than or equal to t, this is a hard problem in the general case.
It is known as the syndrome decoding problem and was identified by Berlekamp,
McEliece and van Tilborg in 1978. We give now a formal definition of the problem.

Definition 12.3.2 Syndrome Decoding Problem
Given a (linear) code with parity-check matrix H of size (n−k)×n
over the binary field GF(2), a syndrome s consisting of n− k bits
and the maximum error correcting capability t. We call the task to
find an n-bit vector e that does not exceed the Hamming weight
HW (e)≤ t such that

H · eT = s

the syndrome decoding problem.

The constraint HW(e) ≤ t makes the problem a very difficult one in the general
case. In fact, it has an exponential run time in the worst case.

Even though the syndrome decoding problem is promising for cryptography, it
is not useful for error correction codes, where the goal is to find the error vector
that corrupted the data. For this reason, since the 1960s, the coding community has
developed a large number of error correction codes that allow an efficient decoding
process. The basic principle is always to introduce mathematical structure to the
codes so that decoding becomes feasible. Well-known decoding algorithms for error
correction codes used in practice are, e.g., the Berlekamp-Massey and the Patterson
algorithms.

In order to build public-key schemes one has to combine two conflicting goals:
An adversary should face the (computationally very difficult) syndrome decoding
problem, whereas the owner of the private key should be able to use an efficient
decoding algorithm. The idea of code-based PQC schemes is that Bob, the owner
of the private/public key pair, uses a code for which he has an efficient decoding
algorithm. However, he does not make the original code public but hides the code by
adding randomness to it. For instance, in the McEliece scheme, the original code that
Bob can decode is given by the generator matrix G. If an attacker knew G, he could
also decode. Therefore Bob only publishes Ĝ in which he hides G by multiplying
it with two random matrices: kpub = Ĝ = S×G×P. In Section 12.3.3 below we
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will introduce details of two asymmetric encryption schemes that are based on this
principle.

12.3.3 Encryption Schemes

Code-based PQC schemes can be used for encrypting of data, and are used in prac-
tice particularly for key transport. In a nutshell, Bob publishes a hidden linear code
within his public key. If Alice wants to send a plaintext message, she performs an
encoding operation of that linear code. She also artificially introduces an error dur-
ing the encoding operation. When Bob receives the encoded message, he runs the
decoding operation, which removes the errors, so that he obtains the plaintext. How-
ever, decoding is only easy and efficient if the actual code is known. An attacker,
Oscar, who eavesdrops, can therefore not retrieve the message correctly since Bob
hides the code before publishing it. The security of these code-based schemes is
based on the assumption that the adversary is not able to solve the syndrome de-
coding problem or a related problem for the (seemingly) random code in the public
key. We now introduce the first code-based cryptosystem, which was proposed by
Robert McEliece in 1978, and subsequently the Niederreiter encryption scheme.

The McEliece Cryptosystem

To build a public-key encryption system, McEliece observed that we can easily
transform the encoding operation of an error correction code into encryption and,
likewise, decoding into a decryption operation. In order to make this approach work
securely, one needs some additional operations that hide the underlying code struc-
ture but still allow the syndrome decoding if one knows the private key. The idea
for hiding the code structure is simple: McEliece proposed to perturb the generator
matrix G by multiplying it with two randomly chosen matrices: a scrambling matrix
S and permutation matrix P. Bob — as legitimate user — keeps the unscrambled
code as his private key and can, thus, efficiently decrypt using a standard decod-
ing algorithm. An attacker, however, without access to the unscrambled underlying
code is left to solve the hard problem of decoding a general linear code. Below, we
introduce the three steps of the McEliece scheme, key generation, encryption and
decryption.
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McEliece Key Generation
Output: public key: kpub = (Ĝ) and private key kpr = (S,G,P)
Given are a linear code C[n,k,d] with maximum error correcting capability
t, a generator matrix G and corresponding decoding function decode().
1. Generate the private key kpr = (S,G,P), where S is a k× k random, in-

vertible matrix and P an n×n random, invertible permutation matrix.
2. Compute the public key kpub = Ĝ = S×G×P.

McEliece Encryption

1. Generate a random n-bit error vector e of weight t.
2. Given a message m and kpub, compute the ciphertext: c = m · Ĝ+ e.

McEliece Decryption

1. Compute u = c ·P−1.
2. Decode the intermediate value v = decode(u).
3. Compute m = v ·S−1.

Note the different notations for the two types of multiplication: If we want to mul-
tiply two matrices M and N, we use M×N. For matrix-vector multiplication of a
matrix M with a vector e, we write M · e.

In the following we will discuss the correctness and the choice of codes for the
McEliece scheme, followed by an example with small parameters.

Correctness. We show that decryption actually computes the original message
that was sent. Step 1 of the decryption process computes the following:

u = c ·P−1

= (m · Ĝ+ e)P−1

= m · Ĝ×P−1 + e ·P−1

= m ·S×G+ e ·P−1 (12.14)

The crucial question is what happens if we feed Equation (12.14) into the de-
coding algorithm of the code in Step 2. The left-hand term m · S×G contains the
scrambled message v = m ·S. To understand the decoding procedure, we recall that
in linear codes the message is encoded as m ·G, cf. Figure 12.7, and in the McEliece
scheme we have replaced m by m · S. If we apply our decoding procedure to the
product m ·S×G, we multiply it by the parity-check matrix H:

H · (m ·S×G)T = H · (v ·G)T = H · c̃T = 0
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According to Equation (12.12), the product between a valid codeword and the
parity-check matrix is always zero. In our case, c̃ = (m · S×G) is a valid code-
word since we just encoded the scrambled message v = m ·S instead of the original
message m.

The right-hand term e ·P−1 of Equation (12.14) is only a bit permutation of the
t error bits introduced by the sender of the message. Since the number of error bits
does not change, all errors can be corrected by using the parity-check matrix H and
a lookup table (cf. Example 12.7) to identify the permuted error e ·P−1.

Finally, Step 3 removes the scrambling S and retrieves the original message since:

v ·S−1 = m ·S×S−1 = m

To use the McEliece scheme in practice, we need to choose a suitable underlying
code, which is a highly non-trivial task. A large number of codes currently used
for error correction, such as the popular Reed-Solomon codes, have characteristics
that can be exploited by an attacker even after scrambling with the random matrices
S and P and are, thus, not suited for this public-key scheme. Interestingly, Robert
McEliece originally proposed the use of binary Goppa codes and they have remained
a secure choice to date. We will discuss further details on the choice of codes and
associated parameters in Section 12.3.4.

We now show a toy example of the McEliece scheme that is not based on a
binary Goppa code as proposed by McEliece, but uses the same simple linear code
as introduced in Example 12.7 above. Note that such a code is not secure in practice,
but due to its simplicity and compactness it is well suited for demonstrating how
McEliece encryption works.

Example 12.8. We assume that Bob computes a public/private key pair, Alice en-
crypts a message and sends it to Bob, who eventually decrypts the ciphertext using
his private key. Bob uses the linear code from Example 12.7, i.e., he has the gener-
ator matrix G and parity-check matrix H.

� We start with the key generation. For the construction of the private key kpr =
(S,G,P), Bob generates random matrices S and P. He needs to ensure that S is
invertible. Since P is a permutation matrix, it is invertible by definition. In this
example, we assume that S and P are given by:

S =


1 1 1 0
1 0 0 1
1 1 0 1
0 0 1 0

 P =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0


We note that P is in fact a permutation matrix and it can be shown that S is in fact
invertible.
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� Their inverses are:

S−1 =


1 1 1 1
0 1 1 0
0 0 0 1
1 0 1 1

 P−1 =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0


(As an exercise, one can check whether S× S−1 and P×P−1 actually result in
the identity matrix.)

� Given S and P, Bob can now compute the public key kpub = Ĝ, where all arith-
metic is done in GF(2).

Ĝ = S×G×P

=


1 1 1 0
1 0 0 1
1 1 0 1
0 0 1 0

×


1 0 0 0 0 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 1 1 1

×


1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0


=


1 0 0 1 0 0 1
1 1 0 0 0 1 0
1 1 1 1 0 0 0
0 0 0 0 1 1 1



When Alice wants to encrypt the message m = (m1, . . . ,m4), she first generates
random bits for the error vector e = (e1, . . . ,e7). She then encodes m with Bob’s
public-key matrix Ĝ, adding the error e. Since the code in this example can correct
t = 1 error, Alice must choose an error vector with a Hamming weight of one.

� We assume Alice’s error vector e is:

e =
(

0 0 1 0 0 0 0
)

� The message Alice wants to encrypt is:

m =
(

1 0 1 1
)

� For the actual encryption, Alice computes the ciphertext c by multiplying m with
kpub and adding the error vector e. Again, all arithmetic is done in GF(2).

c = m · Ĝ+ e

=
(

1 0 1 1
)
·


1 0 0 1 0 0 1
1 1 0 0 0 1 0
1 1 1 1 0 0 0
0 0 0 0 1 1 1

+
(

0 0 1 0 0 0 0
)
=
(

0 1 0 0 1 1 0
)
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This ciphertext c is sent to Bob. Upon reception, he can decrypt using the known
code and the private-key matrices P−1 and S−1.

� First, Bob computes the intermediate value u using the ciphertext and the inverse
of P:

u = c ·P−1 =
(

0 1 0 0 1 1 0
)
·



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0


=
(

0 0 0 1 1 0 1
)

� Next, Bob has to decode u. For this, he uses the decoding algorithm that is spe-
cific to the chosen underlying code. Decoding means that he removes the errors
that were artificially introduced by Alice. Therefore, he first multiplies the parity-
check matrix H by the vector uT , i.e.,

s′ = H ·uT =

0 1 1 1 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 · (0 0 0 1 1 0 1
)T

=

0
1
0


� With this syndrome s′, Bob can determine the permuted error e′ = eP−1. Using

the look-up table from Example 12.7, he identifies the permuted error vector as

e′ =
(

0 0 0 0 0 1 0
)

To undo the permutation of the bit positions of e′ we find e by multiplying e′ with
the permutation matrix P, i.e., e = e′ ·P.

� Next, Bob uses the permuted error vector e′ to correct the intermediate vector
u. Since all of our computations are accomplished in GF(2), we can remove e′

from u by a simple addition modulus two. Bob obtains the corrected vector ũ by

ũ = u+ e′ =
(

0 0 0 1 1 0 1
)
+
(

0 0 0 0 0 1 0
)
=
(

0 0 0 1 1 1 1
)

� Since Bob is only interested in the message, we remove the last n− k = 3 bits
from ũ to obtain v as the result of the decoding process:

v = decode(u) =
(

0 0 0 1
)

� Finally, Bob multiplies v by the inverse of S and recovers the original message
m:

m = v ·S−1 =
(

0 0 0 1
)
·


1 1 1 1
0 1 1 0
0 0 0 1
1 0 1 1

=
(

1 0 1 1
)
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The Niederreiter Cryptosystem

Inspired by the same idea of a hidden linear code, Harald Niederreiter proposed
a variant of McEliece’s scheme in 1986. It basically replaces the generator matrix
G with the parity-check matrix H for encryption. While technically equivalent, an
advantage of Niederreiter’s approach is a simpler encryption process that combines
the message and the error value in a single parameter. This is beneficial and has less
overhead compared to the McEliece encryption process if code-based encryption
should be employed for key transport of a secret key.

Niederreiter Key Generation
Output: public key: kpub = (Ĥ) and private key kpr = (S,H,P)
Given a code C[n,k,d] with maximum error correcting capability t, parity-
check matrix H and its associated function decode().
1. Generate the private key kpr = (S,H,P), where S is a random (n− k)×

(n− k), invertible matrix and P a random n× n invertible permutation
matrix.

2. Compute the public key kpub = Ĥ = S×H×P.

Niederreiter Encryption

1. Encode the message m of length n into an error vector e with bit length
n and a Hamming weight of at most t.

2. Generate the ciphertext c by computing c = Ĥ · eT .

Niederreiter Decryption

1. Compute u = S−1 · c.
2. Decode the intermediate value v = decode(u).
3. Compute eT = P−1 · vT to recover the error vector, which contains the

message.

While this encryption system seems almost completely analogous to the McEliece
scheme, it has some subtle differences. One aspect is that it more closely adopts the
general Syndrome Decoding Problem, which can be easily identified as the core of
the encryption operation. Another aspect that catches the eye when looking at the
encryption process is that we need a technique to convert the given message into an
error vector with a weight that does not exceed the error correction capability t of
the code. This actually requires a separate procedure to convert the message bits into
specific distances within the error vector. As pointed out earlier, modern variants
of Niederreiter encryption are mostly used for exchanging symmetric secret keys,
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which often need to be generated at random anyway. In this case, instead of first
generating a random key and then using a complex fixed-weight encoding process,
we can just randomly generate an error vector e with a fixed weight. Decoding such
a fixed-weight random error vector yields a random string that can be used as a
shared symmetric secret key between Alice and Bob.

Correctness. For the correctness proof we have to show that decoding the ci-
phertext results in the original message. This can be achieved by considering the
ciphertext c as a syndrome of the error vector e of weight t. This becomes clear
if we compare Step 2 of the encryption with Equation (12.12) in our discussion of
linear codes. The goal of the decryption is now to recover the error vector — which
contains the message — from the ciphertext c. For this, during decryption, we first
remove the permutation matrix S in Step 1 through the computation:

u = S−1 · c
= S−1 · (Ĥ · eT )

= S−1 · (S×H×P · eT )

= H×P · eT

and obtain the intermediate value u. This expression is quite similar to the one
used for the syndrome calculation of linear codes, where we have H · eT , cf. Equa-
tion (12.12). If we now run the decoding operation of the underlying code with u as
input in Step 2 of the decryption, we obtain v, which is a permutation of the original
error vector e:

v = decode(u) =
(
P · eT )T

This operation is crucial: Since the code is capable of correcting t error bits, the
syndrome and the corresponding error vector can be recovered through the decoding
operation. The remaining Step (3) in the decryption just removes the permutation
matrix P:

P−1 · vT = P−1×P · eT = eT

We give now an example of the Niederreiter encryption scheme using a simple
linear code, which is used for educational purposes only. In practice, codes as dis-
cussed in Section 12.3.4 need to be employed in order to provide sufficient security.

Example 12.9. The setting is that Bob issues a public/private key pair and Alice
wants to send an encrypted message to him. Bob uses the linear code introduced
in Example 12.7 as underlying code for the Niederreiter scheme, i.e., he has the
parity-check matrix H and generator matrix G.
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� For the key generation, Bob first randomly generates the 3× 3 matrix S and the
7×7 matrix P:

S =

 1 1 1
1 0 0
0 0 1

 P =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0


� Next, he hides H in the public key by multiplying it with the two random matrices

Ĥ = S×H×P. All operations with the matrix coefficients are in GF(2).

Ĥ =

 1 1 1
1 0 0
0 0 1

×
0 1 1 1 1 0 0

1 1 0 1 0 1 0
1 0 1 1 0 0 1

×


1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0


=

 0 1 1 0 1 1 0
0 1 0 1 0 1 1
1 1 0 0 1 0 1



Alice uses the public key kpub = Ĥ to encrypt a message. Since the error correction
capability of the linear code is t = 1, she encodes her message m into an error vector
e with Hamming weight of 1. For this specific (simple) code, there are seven possible
messages she can encode because e has seven bit positions.

� We assume the message is represented by the error vector:

e =
(

0 0 1 0 0 0 0
)

� Alice computes the ciphertext c by multiplying the public key Ĥ with the error
vector e. This results in the ciphertext:

c = Ĥ · eT =

0 1 1 0 1 1 0
0 1 0 1 0 1 1
1 1 0 0 1 0 1

 · (0 0 1 0 0 0 0
)T

=

 1
0
0


She then sends the ciphertext c to Bob, who starts the decryption process.

� First, he computes the intermediate value u as:

u = S−1 · c =

 0 1 0
1 1 1
0 0 1

 ·
 1

0
0

=

 0
1
0
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� Second, using u and the lookup table from Example 12.7, Bob identifies v as

v =
(

0 0 0 0 0 1 0
)
.

� Third, he computes eT = P−1 · vT , resulting in:

eT =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 1 0 0 0 0


·
(

0 0 0 0 0 1 0
)T

=



0
0
1
0
0
0
0


which is the encoded message sent by Alice!

�
In the following section, the crucial aspect of what kind of codes should be used

for the Niederreiter and McEliece schemes will be discussed.

12.3.4 Suitable Choices of Codes

The beauty of code-based encryption schemes lies in their basic principle of trans-
forming the encoding and decoding operation of an error correction code into en-
cryption and decryption operations. The McEliece and Niederreiter cryptosystems
are promising because their security is related to hard problems from coding the-
ory, especially the Syndrome Decoding Problem, cf. Definition 12.3.2. However,
such strong security claims only hold if the parameters and the class of codes are
chosen carefully, which turns out to be challenging. In particular, designers of the
cryptosystem would like to make decoding with the private key more efficient by
introducing additional mathematical structures to the code, but this often enables
additional algebraic attacks which exploit these structures.

One of the most powerful generic algorithms that can attack code-based cryp-
tosystems is the technique known as Information Set Decoding (ISD) and its many
variants. To prevent ISD and other algebraic attacks, it is required that the hidden
codes are large and chosen at random. The original proposal by McEliece to use
binary Goppa codes turned out to be an excellent choice due to their inherently ran-
dom nature. Unfortunately, code instances still need to be large to be secure against
powerful instances of ISD-based attacks. Table 12.3 provides an overview of the
parameter sets recommended for what is known as the Classic McEliece cryptosys-
tem. Classic McEliece is a modern KEM variant of McEliece’s original proposal.
We provide further details on the scheme as part of the discussion on the standard-
ization process in Section 12.5.
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Table 12.3 Parameter set proposed for Classic McEliece KEM

Scheme Equivalent Security nnn kkk ttt Public Key
mceliece348864 AES-128 3488 2720 64 2040 kBits
mceliece460896 AES-192 4608 3360 96 4095 kBits
mceliece6688128 AES-256 6688 5024 128 8164 kBits
mceliece6960119 AES-256 6960 5413 119 8178 kBits
mceliece8192128 AES-256 8192 6528 128 10,608 kBits

One might wonder why Table 12.3 shows several parameter sets that all provide
equivalent security to AES-256. The reason for this is that there are potentially many
ways to attack the schemes mathematically. By using different codes, the hope is that
in case there is a new attack against one of the code instances, the others still remain
secure.

From Table 12.3 we see that codes that provide a security level of 256 bits re-
quire extremely large public keys of several Mbits ! Obviously, this can be quite
challenging for applications with limited memory or communication bandwidth,
e.g., IoT devices. The high memory footprint is also the reason that McEliece has
received less attention in past decades compared to conventional asymmetric en-
cryption schemes such as RSA, even though they were both conceived in the late
1970s. Note that encryption with the Niederreiter schemes requires similarly large
public keys, as the security assumptions are equivalent to the McEliece scheme.

There are several tweaks to reduce the memory footprint of code-based cryp-
tosystems. First, we can include the identity matrix as part of the code which does
not need to be stored explicitly, reducing the high memory consumption. In fact,
most examples and matrices of this chapter already include this tweak so that you
will find the identity matrix as a subcomponent of the generator and parity-check
matrices. Codes that include the identity matrix as part of their parity-check matrix
are called systematic codes. Note that the use of the identity matrix is not possible
for all types of code-based cryptography. Just consider, for example, that multipli-
cation of message bits with the identity matrix does not cause any changes at the
output, which is obviously a very undesirable feature for an encryption scheme.

Second, much research has been put into reducing the cost of the large hidden
matrices by introducing structures and repetitive patterns. To this end, a large variety
of different structured codes have been investigated. It turns out that there is a large
number of compact codes that require significantly less memory, but at the same
time they tend to introduce too much structure resulting in insecure constructions
that simplify attacks. To date, some classes of quasi-cyclic (QC) codes with a care-
ful choice of parameters seem to be a suitable alternatives to binary Goppa codes.
QC codes are very structured because they consist of a single row that is circularly
shifted to build the entire code matrix. By storing the single row only, the memory
requirements can be significantly reduced. A few examples of structured codes are
the quasi-cyclic moderate density parity-check codes (QC-MDPC) used in the cryp-
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tosystem BIKE6, or certain concatenated Hamming codes (HPC KEM). Table 12.4
contains parameters proposed for BIKE, which are significantly smaller compared
to those required for Classic McEliece as shown in Table 12.3.

Table 12.4 Parameter sets for the BIKE cryptosystem, which is based on structured
quasi-cyclic code

Scheme Equivalent Security rrr www ttt Public Key
BIKE Level 1 AES-128 12,323 142 134 12 kBits
BIKE Level 3 AES-192 24,659 206 199 24 kBits
BIKE Level 5 AES-256 40,973 274 264 40 kBits

We see from Table 12.4 that BIKE does not explicitly specify parameters n and
k anymore but due to its structured nature uses parameters r for the block length w
for the row weight instead.

12.3.5 Final Remarks

Most code-based constructions focus on encryption and key encapsulation mech-
anisms (KEMs). This includes the McEliece and Niederreiter construction and its
variants, e.g., the Classic McEliece, BIKE and HQC schemes that have been sub-
mitted to the NIST PQC standardization process, cf. Section 12.5. Even though
proposals for code-based digital signatures exist, most have turned out to be either
insecure (e.g., the CFS scheme) or highly inefficient compared to signature schemes
based on other PQC families.

Similarly to lattice-based schemes, code-based cryptosystems come with a non-
negligible ciphertext expansion due to the encoding of a message into a codeword,
i.e., the ciphertext is significantly larger than the input. As an example, for the BIKE
scheme, the resulting ciphertext has roughly the same size as the public key, rang-
ing between 12 and 40 kBits, depending on the selected security level. This makes
code-based cryptography unattractive for bulk data encryption but works nicely for
encrypting short messages, especially for key encapsulation mechanisms.

6 One of the book authors participated in the design of BIKE.
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12.4 Hash-Based Cryptography

So far we have looked at PQC schemes based on lattices, which can be used for
encryption and digital signatures (even though we only discussed encryption), and
code-based schemes, which are mainly used for encryption. In this section we in-
troduce another PQC family which can be used solely for digital signatures, namely
hash-based cryptography.

As the name suggests, hash-based digital signatures are based on cryptographic
hash functions, which are described in Chapter 11. Since hash functions are de-
signed to compress a longer input to a shorter output, we can actually view them
as lossy functions introducing uncertainty for an attacker. We recall from the dis-
cussion in Section 12.1.3 at the beginning of this chapter that information loss is
one of the design principles of PQC schemes. If an attacker wants to break a hash-
based signature scheme, he is required to invert a cryptographic hash function such
as SHA-2 or SHA-3. As we know from Section 11.2, this is considered a hard prob-
lem with classical computers due to the one-way property of hash functions. For
building PQC schemes, the common belief that quantum computers will not be able
to invert hash functions is crucial. The origins of hash-based cryptography were es-
tablished around the same time that code-based cryptosystems (and RSA and the
Diffie-Hellman key exchange) were proposed: In 1979 Leslie Lamport and Whit-
field Diffie introduced the principle of one-time digital signatures, which forms the
foundation of all modern hash-based cryptosystems.

In the following, we first introduce the basic Lamport-Diffie one-time signature
and its generalization, the Winternitz one-time signature. Subsequently, we will de-
scribe the more practical many-time signature schemes in Section 12.4.2.

12.4.1 One-Time Signatures

A one-time signature scheme behaves quite differently from the digital signatures
introduced in Chapter 10, which are based on the factorization or discrete logarithm
problem. While plain one-time signatures are very limited in their use in real-world
applications, they are also the building blocks for many-time signatures, which will
be presented in Section 12.4.2.

Lamport-Diffie One-Time Signatures (LD-OTS)

In order to grasp the principle of LD-OTS, we start with signing the simplest possi-
ble message, which consists of only one bit m0. Signing means that Alice can prove
two key facts that we require from digital signatures: she can prove to everyone (1)
that she is the actual sender of the message, and (2) that she signed one specific
value, either m0 = 0 or m0 = 1, and that the value was correctly transmitted. This
task can be accomplished in a surprisingly easy way if Alice and Bob use a one-way
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function f (x) that takes an n-bit input and maps it to an n-bit output in a one-way
fashion. This behavior can be expressed with the following notation:

f : {0,1}n→{0,1}n

Note that one-way mapping implies that it is efficient to map an input to an output,
but it is a hard problem to invert this mapping, i.e., mapping the output back to
the input. This is a key characteristic of cryptographic hash functions, described in
Chapter 11, which are commonly used as function f . Cryptographic hash functions
have additional properties that we do not need at this time, such as mapping inputs
of arbitrary length to short outputs. For our basic definition of f we only assume
a mapping of n-bit inputs to n-bit outputs, which is something that a cryptographic
hash function can do but there are also other one-way functions with this property.

As a first step to generate a one-time signature, Alice creates two random values
r, which will be used to represent the two possible values of the bit m0 = {0,1}.
Since these representatives correspond to the binary values 0 and 1, we denote them
by r[0] and r[1], respectively, as shown here:

m0 =

{
0 → r[0]
1 → r[1]

The values r[0] and r[1] consist of n bits, where n is commonly in the range of 128–
512 bits. Hence, we represent the single bit m0 with many more bits, as we’ll see
below. The assignment of two random values will achieve one of the key facts of
the scheme: binding the message bits to a specific value that can later serve as the
signature. With this in mind, we can now take these two random numbers to form
the private key:

kpr = (r[0],r[1])

To generate the public key from the private key, we need a way to hide the secret
information. Here is where the one-way function f (x) comes into play that we apply
to the values r[0],r[1]:

p[0] = f (r[0])
p[1] = f (r[1])

We publish both hashed values, which form the public key:

kpub = (p[0], p[1])

Note that the positions of the two values within the public key are important: The
first value p[0] corresponds to the signature for a message that is the 0-bit, the second
value p[1] is the signature in case the message has the value 1.

As always in asymmetric cryptography, all participants know Alice’s kpub and
everyone is assured that only Alice knows her private key kpr. With this, Alice can
sign a one-bit message with a simple rule:
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s = r[m0] =

{
if m0 = 0 : s = r[0]
if m0 = 1 : s = r[1]

This means the signature s is one of the two randomly generated values r[i] with
i = 0 or i = 1, which are each 128–512 bits long. As in the case of conventional
digital signatures, she transmits the message together with the signature s. Thus,
suppose Alice sends

(m0,s) = (0,r[m0])

over the channel to Bob. He has to do three simple things to verify that the signature
is correct:

1. First he hashes the signature, i.e., Bob computes f (s).
2. Second, he picks the representative from the public key kpub that matches the

position of m0, i.e., for m0 = 0 he picks the first value f (r[0]).

3. Finally, he compares f (s) ?
= f (r[0]).

If the match in Step 3 checkes out, Bob knows the following:

� Message Authentication: The message and signature must come from Alice be-
cause only she could have known the unique value r[0] that generated the value
f (r[0]) and which was evidently part of Alice public key.

� Integrity: Alice had actually sent a message bit with the value m0 = 0.

Of course, the same arguments hold if the message bit is 1 and Alice sends the
message-signature pair (m0,s) = (1,r[1]) to Bob. In this case, Bob verifies by check-

ing f (s) ?
= f (r[1]). If this is true, Bob knows that the corresponding message bit

must have the value 1.
Already from this toy example we learned some important characteristics of one-

time signatures7. It is important to stress that once Alice has signed a message with
her private key, it cannot be used again. This is simply due to the fact that the signa-
ture itself is (part of) the private key, i.e., signing means releasing a specific part of
the private key.

After we have learned how to sign messages of a single bit, we will now show
how the Lamport-Diffie scheme can be used to sign messages consisting of n bits.

Key Generation

Generalizing from a one-bit message to many bits is straightforward. We observed
already that Alice needed two random values to sign a single bit. These two random
values r[0],r[1] formed the private key. If the message has more than one bit (which
is obviously true in most practical settings), Alice has to generate such a pair of
values for every bit in the message. As before, the first value is used as the signature

7 While we prefer the notation r for the random values and p for the public values, in the literature
the symbols x and y are often used, respectively.
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in case the corresponding message bit has the value 0; the second value becomes the
signature in case the bit is 1.

Let us assume we have an n-bit message. For this message m=(m0,m1, . . . ,mn−1),
we use the following notation for the secret key values:

kpr = [(r[0],r[1])0,(r[0],r[1])1, . . . ,(r[0],r[1])n−1]

As before, each of the values r[i], where i = 0 or i = 1, is an n-bit number that was
generated at random. Thus, the entire private key kpr consists of n pairs, where each
pair (r[0],r[1]) has a length of 2n bits. This leads to a private key with n ·2n = 2n2

bits. We note that the key length grows with the square of the message length, which
leads to long private keys.

To generate the public key kpub we feed each of the r[i] into the one-way function
f , returning the values p[i] = f (r[i]) of the public key:

kpub = [(p[0], p[1])0,(p[0], p[1])1, . . . ,(p[0], p[1])n−1]

Signing is now simple. We use the first tuple of the private key, that is (r[0],r[1])0,
to sign the first bit m0 of the message, the second private-key pair (r[0],r[1])1 is used
for signing bit m1 etc. Verification works likewise and is performed for every bit of
the message m again. We note the public key has 2n elements, where the bit length
of the elements depends on the output size of the one-way function f .

Before we look at an example, we discuss what can be used as one-way function
f . As mentioned earlier, this one-way function is usually realized with a well-known
cryptographic hash function (e.g., SHA-2 or SHA-3) but one can also use simpler
mathematical constructions. In this chapter, we will use a one-way function based
on modular squaring:

f (x)≡ x2 mod N

where the value N is a product of two primes, as proposed by Michael Rabin in the
late 1970s. If an attacker wants to compute x from a given output of this function, he
has to compute a square root in the finite ring ZN over the integers, which is a hard
problem if N is difficult to factor. Note that the modulus N = p ·q generated by two
primes p,q is actually the same as for the RSA cryptosystem from Chapter 7 — in
fact the two problems are closely related.

We look at a toy example of key generation in the LD-OTS scheme, where we
assume messages of length n = 8.

Example 12.10. Let us assume the Rabin one-way function f (x)≡ x2 mod 253 with
N = 253= 11 ·23. During key generation, Alice chooses two random values for each
of the n = 8 message bits. These eight pairs form the private key:

kpr = [(r[0],r[1])0,(r[0],r[1])1,(r[0],r[1])2, . . . ,(r[0],r[1])7]

= [(13,77)0,(22,142)1,(221,87)2,(55,119)3,(43,187)4,(8,53)5,(99,244)6,(184,49)7]

Next Alice computes the public key by applying the one-way function f to ev-
ery random value r[i] of the private key. The result is shown in Figure 12.9. The
complete public key that Alice has generated consists of the following values:
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13 77 22 142 221 87 184 49...

0 1 2 7

f

169 110 231 177 12 232 207 124...

 kpr

 kpub

r[0]     r[1] r[0]      r[1] r[0]      r[1] r[0]       r[1]

f f f f f f f

p[0]      p[1] p[0]       p[1] p[0]        p[1] p[0]       p[1]

Fig. 12.9 Example of LD-OTS key generation for an 8-bit message: All elements of
the private key kpr are randomly generated 8-bit values, and the one-way function is
f (x)≡ x2 mod 253

kpub = [(p[0], p[1])0,(p[0], p[1])1,(p[0], p[1])2, . . . ,(p[0], p[1])7]

= [(169,110)0,(231,177)1,(12,232)2,(242,246)3,(78,55)4,(64,26)5,(187,81)6,(207,124)7]

The key pair (kpr,kpub) is now ready to be used to sign a single 8-bit message.
Prior to signing, the public key kpub is distributed to anyone who needs to be able
to verify the message. Note that the one-way function f is also considered public
information and available to all parties (including Alice and Bob).

�
After the example showing how the keys are generated, we now turn our attention

to the signing and verification of messages.

Signing a Message

Next Alice wants to sign her message m using the one-time key pair (kpr,kpub).
Recall that the message consists of n bits, i.e., m = (m0,m1, . . . ,mn−1). The signing
process is very simple: Each message bit mi is used to select the corresponding value
r[mi] at index i of the private key, which can be written as follows:

s = [(r[m0])0,(r[m1])1,(r[m2])2, . . . ,(r[mn−1])n−1]

Let us clarify the signature generation by returning to our example.

Example 12.11. Given the public and private keys from the previous example, Alice
wants to sign the 8-bit message

m = (0,1,1,0,1,0,0,1)



12.4 Hash-Based Cryptography 435

The signing process consists of simply selecting the entries of the private key corre-
sponding to the value of the mi bit (i.e., either 0 or 1), as depicted in Figure 12.10.

13 77 22 142 221 87 184 49...

m1 = 1 m2 = 1 m7 = 1...

kpr

m

13 142 87 49s

0 1 2 7

r [0]     r[1] r [0]       r [1] r [0]       r [1] r [0]       r [1]

...

m0= 0

Fig. 12.10 LD-OTS signature generation for an example message with 8 bits

This results in the signature:

s = (13,142,87,55,187,8,99,49)

After signing, Alice sends the signature s together with the message m to Bob.

Verifying a Message

Bob receives the message-signature pair (m,s) from Alice, where m=(m0,m1, . . . ,mn−1)
and s = (s0,s1, . . . ,sn−1). To verify the signature, Bob uses Alice’s public key and
performs the following steps:

1. For each value si from the signature, Bob first computes verification values vi
using the one-way function f :

vi = f (si) , i = 0, . . . ,n−1

2. Second, Bob checks whether all verification values vi match the corresponding
entry p[mi]i in the public key:

vi
?
= (p[mi])i , i = 0, . . . ,n−1.

Let us look at how signature verification works with our example.
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Example 12.12. We again assume the values from the two previous examples. As-
sume Bob has got the correct public key of Alice at some earlier point in time:

kpub = [(169,110)0,(231,177)1,(12,232)2,(242,246)3,(78,55)4,(64,26)5,(187,81)6,(207,124)7]

Bob receives Alice’s message-signature pair with m = (0,1,1,0,1,0,0,1) and cor-
responding signature s = (13,142,87,55,187,8,99,49). He now performs the sig-
nature verification steps shown in Figure 12.11.

f

169 110 231 177 12 232 207 124...kpub

f f f

13 142 87 49s ...

169 177 232 124...v

=

m0  =  0 m1  = 1 m2  =  1 m7 =  1

0 1 2 7

p[0 ]    p[1 ] p[0 ]    p[1 ] p[0 ]    p[1 ] p[0 ]    p[1 ]

= = =

s0 s1 s2 s7

Fig. 12.11 Example of LD-OTS signature verification

For instance, to verify bit m0 = 0, he hashes the corresponding signature value
s0 = 13:

v0 = f (13)≡ 132 = 169 mod 253

Since this matches the first (i.e., left) value of the public key tuple (169,110)0, he
knows that the signature is actually for the message bit with the value 0.

Since all vi match the corresponding entries of the public key ymi , the verification
is successful. �

Discussion

The proof of correctness of the LD-OTS scheme is straightforward since it can be
directly shown that

vi = f (si) = f ((r[mi])i) = (p[mi])i

holds for all i = 0 . . .n−1.
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Note that with every signature generation half of the bits of the private key are re-
vealed to the public since the signature elements are simply drawn from the private-
key values. As a result, each key pair can only be used once, which limits the use of
this simple version of LD-OTS in real-world applications.

Another drawback of the basic LD-OTS is that the signatures are large; more
precisely by a factor of n larger than the message size. This can be mitigated some-
what by applying a cryptographic hash function to the message and then signing
the hash output. The same approach is used for conventional signature schemes,
cf. Figure 11.2. A numerical example is discussed in Problem 12.13. We will inves-
tigate this expansion factor between message and signature size more closely in the
following one-time signature scheme.

Winternitz One-Time Signatures (W-OTS)

LD-OTS was the first hash-based signature scheme, and shortly after its introduc-
tion variants were proposed. In 1979 (the same year LD-OTS was created) Robert
Winternitz published an improvement of the LD-OTS scheme that reduces the sig-
nature size significantly. The W-OTS scheme is based on hash chains, and it paved
the way for other enhanced hash-based signatures.

Winternitz’s idea was to not apply the one-way function f to every bit of the n-bit
message separately but instead, to process multiple message bits simultaneously. For
this, one has to choose a Winternitz parameter w that divides n, which is the length
of the message to be signed. The scheme then generates l = n/w random values ri
as the W-OTS private key, where each value is also n bits long. The public key kpub
is computed by hashing each private-key value 2w− 1 times in a row, resulting in
corresponding values pi, which form the public key. This repeated computing of the
one-way function is called chaining.

To generate a signature for an n-bit message m=(m0,m1, . . . ,mn−1), the message
is split into l blocks that consist of w bits each. Thus, we have l message blocks as
well as l private-key values. The core idea of the scheme is now as follows: Since
each message block consists of w bits, we can look at the integer values t that are
formed by these bits, which are in the range t = 0,1, . . . ,2w− 1. To generate the
signature, the one-way function is applied iteratively t times to the private-key value
that corresponds to the message block. After this somewhat abstract description, we
look at an example to get a better understanding of W-OTS in general and how the
verification process works.

Example 12.13. Let us look at the signing and verification process of a single mes-
sage block mi when we choose a block size w = 3. Alice, the sender, has gener-
ated a random private key value ri and computed the public value pi by hashing ri
2w−1 = 7 times, which can be expressed as:

pi = f 7(ri)

This process is shown in Figure 12.12.
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f 1 ri f 2 f 3 f 4 f 5 f 6 f 7 pi

kpr kpubmi = 5 :  s i= f 5(ri)

sign verify

Fig. 12.12 W-OTS principle for a message block width of w = 3 and a message
value of mi = 5

The signature si for the message block depends on the actual value of mi. Note
that mi is three bits long and, thus, can take the values {0,1, . . . ,7}. In this example
we assume that the message block has the bit pattern mi = (101), which is equal to
the integer value mi = 5. Thus, Alice sign the message by hashing ri five times in a
row:

si = f ( f ( f ( f ( f (ri))))) = f 5(ri)

She now sends the pair (mi,si) to Bob, who already knows the public key pi. Bob
sees that the integer value of mi is 5. For verification, he now hashes si another two
times (since 7-5=2) to complete the hash chain. He then checks whether the result of
f 2(si) is the same as the public key value pi, which he received earlier from Alice.
This process of signing and verification for the i-th element of the private and public
keys is shown in Figure 12.12.

�
If we look at the W-OTS in more detail, we make two important observations:

1. Collision-resistance of the one-way function. The earlier LD-OTS scheme ap-
plied the one-way function only once to generate a signature based on the private
key. In contrast, in the W-OTS scheme we apply the one-way function f (x) iter-
atively, namely t times. Repeated application of a mapping, however, increases
the probability of collisions. That means that two different input values x,x′ are
more likely to map to the same output value so that f x(ri) = f x′(ri) for differ-
ent x,x′ < 2w. Hence, W-OTS requires that the one-way function f is collision-
resistant.

2. Forgeable signatures. Inspecting Figure 12.12 more closely reveals a weakness
of the signature scheme. If an attacker intercepts the signature block si = f 5(ri)
and the message block mi = 5, he can easily apply the public one-way function
again to generate a forged but valid signature block for the message block m′i = 6
since s′i = f 6(ri) = f (si).

Luckily, it is easy to prevent the forging attack by using a simple trick: We encode
the actual values of mi into a checksum c, append this to the message and sign the
combination of (message||checksum) as depicted in Figure 12.13.
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The W-OTS checksum is calculated as follows:

c =
l−1

∑
i=0

((2w−1)−mi)

As we see, c is the integer sum of all values 2w − 1−mi. Each of these values
denotes the number of times the one-way function f needs to be applied during the
verification of si. For instance, in the example above, (2w− 1)−mi = 7− 5 = 2,
as can be seen in Figure 12.12. Since c itself needs to be signed with the W-OTS
scheme too, we also divide the checksum into k blocks consisting of w bits to fit the
requirements of the scheme:

c = (c0,c1, . . . ,ck−1) , with ci = 0 . . .2w−1

m0 m1 ml-1 c0 c1 ck -1... ...

message checksum

s0 s1 sl-1 sj-1...

f  m0 f  m1 f
  ml -1

... sl

f  c0

sl+1

f  c1 f  ck -1

Fig. 12.13 W-OTS signing process with checksum: l message blocks and k check-
sum blocks are signed

The message, which has a block length of l, together with the checksum is then
used to generate the signature s consisting of j = l + k values as shown in Fig-
ure 12.13.

If an attacker attempts to forge a signature by applying the one-way function
to any of the signature blocks (thus, incrementing the corresponding block of the
signed message), he would have to undo one iteration of the one-way function in
the checksum part of the signature. By the nature of one-way functions, inversion
is not possible and, hence, the attacker cannot construct a valid signature with valid
checksum.

Before we continue with the Winternitz scheme, we discuss the length of the
checksum. It is easy to see that c is maximized when the message only consists of
zero bits. In this case, c = l (2w−1). The bit length of the checksum is then

|c|= dlog2(l (2
w−1))e ≈ dlog2(l)e+w

Since the checksum only grows with the logarithm of the message block length l,
the overhead in the signature due to the checksum-signing will be moderate even
for very long messages, say in the range of gigabytes.
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Key Generation

Alice generates a secret key kpr by randomly choosing j values for each of the
message and checksum blocks. All these values ri must match the input size of the
collision-resistant function f . The private key is thus:

kpr = (r0,r1,r2, . . . ,r j−1)

Note that while similar to the LD-OTS scheme, each ri is a single value whereas
LD-OTS used pairs of values. We now compute the public key by applying the
function f exactly 2w−1 times to each of the private key elements:

kpub = (p0, p1, p2 . . . , p j−1) , with pi = f 2w−1(ri)

Let us look at an example with small numbers to get intuition for how the key
generation works for this scheme.

Example 12.14. We assume a W-OTS scheme with a message consisting of n =
12 bits and the Winternitz parameter w = 3. Hence, there are l = n/w = 4 message
blocks. For this example we again use a Rabin one-way function with toy param-
eters: f (x) ≡ x2 mod 511, with N = 511 = 7 · 73. It operates on 9-bit inputs and
outputs. Please note that we do not consider collision-resistance of the one-way
function at this time. We will discuss this requirement further in Problem 12.20.

We recall that the checksum is generated using

c =
l−1

∑
i=0

2w−1−mi = (c0,c1, . . . ,ck−1) with ci = 0, . . . ,2w−1

The maximum value of the checksum is l · (2w−1) = 4 ·7 = 28, which is the case if
all mi = 0. For the binary representation of this maximum, k = dlog2(28)e= 5 bits
are required. Since w = 3, we need two blocks for the checksum in addition to the
four message blocks, thus j = 4+2 = 6.

Given these parameters, let us assume Alice chooses the following random pri-
vate key values:

kpr = (413,253,36,221,374,188)

Next, Alice computes the public key by iterating the one-way function 2w− 1 = 7
times on each xi, as shown in Figure 12.14.

This results in the public key:

kpub = (105,470,274,296,373,470)

Taking a closer look at the public key, we notice that the value 470 appears twice
in the public key. This is undesirable and shows the necessity to use a collision-
resistant one-way function in practice, since two random private-key values r1 =
253 and r5 = 188 collide into the same value p1 = p5 = 470 after we apply the
one-way function t = 7 times. Again, we will analyze this further in Problem 12.20.
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413 253 36 221 374 188

f 1 

105 470 274 296 373 470

kpr

kpub

...

2
w-1

 = 2
3-1 = 7

 tim
es

r0 r1 r2 r3 r4 r5

p0 p1 p2 p3 p4 p5

f 1 f 1 f 1 f 1 f 1 

f 2 f 2 f 2 f 2 f 2 f 2 

f 7 f 7 f 7 f 7 f 7 f 7 

... ... ... ... ...

Fig. 12.14 Example with w = 3 and message length n = 12 for W-OTS with check-
sum. The one-way function is f (x)≡ x2 mod 511

�

Signing a Message

First, we note that message padding can be applied in case that w does not divide the
message length n without remainder. For the actual signing, we can see from Fig-
ure 12.12 that the function f is applied a certain number of times, depending on the
binary value of the message (or checksum) blocks. Since the signing process does
not distinguish between message and checksum blocks, we introduce the following
notation for the concatenation of (message||checksum):

mc = (m0, . . . ,ml−1,c0, . . . ,ck−1) = (mc0, . . . ,mc j−1)

Based on this notation, the signature is computed over the values mci as follows:

s = ( f mc0(r0), f mc1(r1), . . . , f mc j−1(r j−1)) = (s0,s1, . . . ,s j−1)

Again, let us clarify the construction and signature generation using another exam-
ple.
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Example 12.15. Alice now wants to sign the n = 12-bit message m, which we rep-
resent in blocks of size w = 3 as follows:

m = 101011101010 (bits)
= (101,011,101,010) (binary blocks)
= (5,3,5,2) = (m0,m1,m2,m3) (decimal blocks)

The corresponding checksum (using decimals) is computed from the four message
blocks as:

c = (7−5)+(7−3)+(7−5)+(7−2) = 13 = (001101)2 = (001,101)w=3 = (1,5)

Hence the concatenated string of the four messages and two checksum blocks is:

mc = (mc0, . . . ,mc5) = (5,3,5,2,1,5)

To each element of the private key kpr = (413,253,36,221,374,188) we apply the
function f iteratively. The length of each hash chain (i.e., how often we apply f )
depends on the values mci. This results in the following signature:

s = ( f 5(413), f 3(253), f 5(36), f 2(221), f 1(374), f 5(188))
= (329,442,162,235,373,183)

�
What is now missing is a discussion of the verification of the W-OTS scheme.

Verifiying a Message

Given the signature s and message m = (m0, . . . ,ml−1), the verifier computes the
checksum in the same way as was done during signing, yielding mc=(mc0, . . . ,mc j−1).

From Figure 12.12 we see that verification of the signature is achieved by com-
plementing the hashing of the signature block until the iteration count of t = 2w−1
is reached. In other words, the signature block si = f mci(ri) can be verified by com-
puting the verification values as follows:

v = ( f t−mc0(s0), f t−mc1(s1), . . . , f t−mc j−1(s j−1))

If all values match the public key, then the signature is correct. The simplicity of the
verification process becomes obvious by looking at the following example.

Example 12.16. Bob receives the signature s = (329,442,162,235,373,183) and
the message m = (5,3,2,1) from Alice. Prior to this, he has also received Alice’s
public key kpub = (105,470,274,296,373,470).

For verification, Bob computes the concatenated string of message and associated
checksum blocks mc = (5,3,5,2,1,5). Since the way the checksum is constructed is



12.4 Hash-Based Cryptography 443

publicly known, Bob will also compute the checksum as shown in Example 12.15.
Next, Bob determines the maximum iteration count t = 2w− 1 = 7 and computes
the verification values:

v = ( f 7−5(329), f 7−3(442), f 7−5(162), f 7−2(235), f 7−1(373), f 7−5(183))
= (105,470,274,296,373,470)

Since each of the resulting values is equal to the corresponding public key value of
kpub, the signature is correct.

�

12.4.2 Many-Time Signatures

While the idea behind one-time signatures is elegant, they suffer from a significant
drawback in practice: For every single message, a full-sized pair of secret and public
keys must be generated and distributed. As one can imagine, it is highly impractical
to pre-distribute public keys to all users that are long enough for signing all messages
one plans to send in, say, the next one or two years8. As a remedy, Ralph Merkle
proposed an extension of one-time signatures to a many-time signature scheme in
1989. As for one-time signatures, Merkle’s scheme is based on one-way functions.
A difference of the scheme is that we now also allow inputs larger than n bits to be
mapped to a fixed output of n bits. This is not a problem because all cryptographic
hash functions h as discussed in Chapter 11 provide exactly this functionality, which
we can express as:

h : {0,1}∗→{0,1}n

The high-level idea of Merkle’s scheme is that the signer can use as many one-
time signature (OTS) schemes as he wants, but he only needs one public key. The
individual public keys that are needed for the many one-time signatures are merged
into a single public key through the use of a hash tree, also referred to as a Merkle
tree. This single key is made public and can, if desired, be protected by a certificate
(cf. Section 14.4.2).

Principle of MSS Signatures

In this subsection, we discuss the core idea behind the Merkle signature scheme
(MSS) by means of an example. Alice, the signer, precomputes parameters for as
many instances of a one-time signature scheme (e.g., for W-OTS) as she likes. First,
Alice chooses a value t that allows her to use 2t one-time signatures (OTS). Pre-
computation means she generates a pair consisting of a private and a public key for

8 We note that this situation is similar to encryption with the one-time pad, cf. Section 2.2.



444 12 Post-Quantum Cryptography

each of the OTSs. For compactness and better readability let us denote these OTS
key pairs by:

OTSi = (kpr,kpub)i = (Xi,Yi) , i = 0, . . . ,2t −1

Remember that our goal is that Alice only needs to publish one public key (even
though she just generated 2t OTS public keys), which is known to all other users.
The trick that Alice uses is that she builds a hash tree with t levels where the leaves
— these are the nodes at the bottom of the tree — contain the hash of each of the 2t

OTS public keys.
Let us look at an example of such a tree of height t = 3 in Figure 12.15. On

Level 0 we find the leaves with the values Ai, which are the hashed versions of
the 2t = 23 = 8 OTS public keys. One level up, on Level 1, are the tree nodes Bi.
Each of them contains the hash of two nodes from Level 0 whose values are simply
combined, for example B0 = h(A0||A1), where || denotes the concatenation of two
values. This pattern continues on Level 2, which consists of hashes of nodes from
Level 1. Finally, at the top we find only one value that is in fact Alice’s public key,
which can be distributed to all users in the system. Please note that the top node is
called the root (which is a somewhat confusing terminology since trees in nature
tend to have their root at the bottom).

D=h(C0||C1) = kpub

C0 =h(B0||B1)

B0 =h(A0||A1)

Level

3

A0 =h(Y0) A1 =h(Y1)
(X0,Y0) (X1,Y1)

2

1

0

B1 =h(A2||A3)

A2 =h(Y2) A3 =h(Y3)
(X2,Y2 ) (X3,Y3)

C1 =h(B2||B3)

B2 =h(A4||A5)

A4 =h(Y4) A5 =h(Y5)
(X4,Y4) (X5,Y5)

B3 =h(A6||A7)

A6 =h(Y6) A7 =h(Y7)
(X6,Y6) (X7,Y7)

Fig. 12.15 Principle of a Merkle hash tree of height t = 3

The signing process works as follows: Alice selects an OTS key pair that she has
not used yet. Let us, for example, assume she has already signed three messages
with the OTS keys (X0,Y0), (X1,Y1) and (X2,Y2) so that she now uses:

(X3,Y3)

for the next message. First, she signs the message m with the private key using her
one-time signature scheme:

s3 = sigX3(m)
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Note that the hash tree works for any OTS scheme. If Alice were now to naı̈vely
proceed as usual and send the triple

(message, signature, public key) = (m,s3,Y3)

to Bob, there would be the following problem. Bob would have no way of knowing
that the message and signature are from Alice because he doesn’t know whether the
public key Y3 is actually hers. In fact, anybody could set up a one-time signature
scheme (e.g., W-OTS), compute the values (m,s3,Y3) and send them to Bob with
the message m saying “Hey Bob, I’m Alice and this is my signed
message. Please transfer 1000 e into my account.”.

To solve this problem, we must link the one-time OTS public key Y3 to Alice’s
long-term public key kpub, which is known to Bob. This can be achieved if Alice
sends Bob some selected nodes from the hash tree. In this example, she sends in
addition to (m,s3,Y3) the authentication path (A2,B0,C1) to Bob:

(message, signature, public key, auth) = (m,s3,Y3,(A2,B0,C1))

Bob can now use the authentication path to compute a chain of hashes that connects
the OTS public key Y3 of the current message to Alice’s kpub, which he knows. He
computes the following hash chain:

A′3 = h(Y3) Level 0
B′1 = h(A2||A′3) Level 1
C′0 = h(B0||B′1) Level 2
D′ = h(C′0||C1) Level 3

Bob now verifies whether the value D′ that he has just computed is in fact Alice’s
public key:

D′ ?
= kpub

If this check is correct, Bob knows with certainty that Y3 must be from Alice because
only she knows all the intermediate values that are needed to compute D. Again,
we assume Bob has kpub and that it has been authenticated, i.e., verified that it is
actually Alice’s public key. With Y3 he can, in turn, verify whether the OTS signature
on the message m is correct. We will see later that Y3 does not even need to be
included in the transmission since it can be entirely computed from the signature
s3 and the message m. All participants achieve, thus, the final goal of providing a
digital signature for the message m which implies the security services of integrity,
authentication and non-repudiation (cf. Section 10.1.3).

At first glance, one might think that over time an attacker Oscar who eavesdrops
will collect all tree nodes, and that he can now generate fraudulent signatures. How-
ever, even if he knows all the tree nodes including all leaf values Ai, he cannot
compute the associated public keys Yi that he needs to generate a fake OTS signa-
ture. We note that there a mechanism is still needed that keeps track of which OTS
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signatures have been used already. This is called statefulness and is discussed in
Section 12.4.3.

Because each tree node (except the bottom leaves) contains hashes of exactly two
nodes, this is called a binary tree. It is also easy to see that if the tree has a height of t,
there are 2t leaves at the bottom and, thus, 2t OTS keys. This exponential growth of
the number of one-time signatures allows the scheme to be used in large-scale real-
world settings. For instance, if Alice knows that she will need a maximum of one
million signatures in the next two years, she can choose a tree of height t = 20, which
has 220 = 1,048,576 leaves at its bottom. As explained above, each leaf is associated
with one public/private key pair, which allows one message to be signed. Note that
Alice needs to precompute the entire tree but only publishes the value D = kpub,
which is valid for two years. Since it is quite expensive for Alice to precompute and
store the large trees required for the signing process, several improvements to the
original MSS scheme have been proposed reducing the overall computational and
memory footprint, as discussed in Section 12.4.3.

Formal Description of MSS

After introducing how the MSS scheme works for the example of t = 3, we will
now describe an algorithm for generating the hash tree and the authentication path
in a more generic way. Since we cannot easily generalize a scheme with fixed node
names per level such as A,B,C, . . ., we use now a scalable notation for the tree that
is otherwise still identical to the one in our introductory example in Figure 12.15.

As before, we use t to specify the height of the entire tree. We now need two
indices for each node v. Index i denotes the level of the node and index j its position
within the level:

vi[ j], 0≤ j < 2t−i

For a more intuitive understanding of this notation, it is helpful to realize that a
tree is essentially a 2-dimensional structure of nodes (also called vertices, therefore
vi[ j]), where the indices j can be considered the values on the x axis and i are
the y values. With this in mind, we can apply the new notation to the hash tree as
depicted in Figure 12.16. In contrast to Figure 12.15, this tree uses the more generic
vi[ j] notation for the nodes. Functionally, however, the two trees are identical. We
discuss below the three types of nodes in the tree.

Leaf nodes. The nodes at the bottom of the tree have the index i = 0. The leaf
values are computed from the OTS public keys Yi by using the hash function h:

v0[ j] = h(Yj), 0≤ j < 2t

Intermediate nodes. All other nodes on the subsequent layers 1,2, . . . , t are gen-
erated by hashing the concatenation of their respective two predecessors:

vi[ j] = h(vi−1[2 j] ||vi−1[2 j+1]) , where 1≤ i≤ t and 0≤ j < 2t−i
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v0 [0 ] v0 [1]

(X0 ,Y0 ) (X1 ,Y1)

v0 [2] v0 [3]

(X2 ,Y2) (X3 ,Y3)

v0 [4] v0 [5]

(X4 ,Y4 ) (X5 ,Y5)

v0 [6] v0 [7]

(X6 ,Y6) (X7 ,Y7)

v1 [0]  v1 [1] v1 [2 ] v1 [3] 

v2 [0]  v2 [1] 

v3 [0 ] = kpub

i = 0

i = 1

i = 2

Level v1[0] = h(v0[0]||v0 [1]) 

i = 3

v2[1] = h (v1 [2] ||v1 [3])

Fig. 12.16 MSS tree of height t = 3. The exploded view shows the construction of
the two nodes v1[0] and v2[1] as examples

Root node. Finally, we define the root vt[0] as the public key of the MSS scheme.

The private key consists of all OTS private keys. The example tree in Figure 12.16
of height t = 3 contains 23 = 8 OTS private keys and, thus, allows us to sign eight
messages using a single MSS public key.

For MSS signature generation, Alice takes a message and signs it using one of
the 2t OTS key pairs that has not been used before. Let us assume she choses an OTS
key pair at index c. Alice has to provide an authentication path that allows anybody
to link the OTS public key Yc to her published public key kpub, which is the root of
the tree. The authentication path is computed with the following algorithm:
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Algorithm for the MSS Authentication Path

Input: Merkle tree with nodes vi[ j], where 1≤ i≤ t and 0≤ j < 2t−i,
index c of one-time signature chosen for the signing process

Output: authentication path for Yc: (a0,a1, . . . ,at−1)
Algorithm:

1 FOR i = 0 TO t−1 DO
1.1 q = bc/2ic
1.2 compute index of sibling node: r = q+(−1)q

1.3 select the authentication node ai = vi[r]
2 RETURN

authentication path (a0,a1, . . . ,at−1)

v0 [ 3] = h (Y3 )

(X 3,Y3)

v 1 [1  ]  = h ( a0 || v0 [ 3 ])

v2 [0  ]  = h ( a1 || v 1 [ 1  ] )

kpub = v 3 [0 ]  = h ( v2 [ 0  ] | |  a2 )

a1 = v 1 [ 0  ]

a2 = v2 [ 1  ]

a0 = v 0 [ 2  ]

Fig. 12.17 MSS authentication path for chosen OTS at index c = 3 for a tree of
height t = 3. The dashed circles show the nodes that need to be supplied with the
signature

Figure 12.17 shows the authentication nodes (a0,a1,a2) for the OTS signature
associated with chosen leaf c = 3 for a tree of height t = 3. Please note that this is
the same authentication path as used in Section 12.4.2.

Now, let us look at how verification works in the example given in Figure 12.17.
Bob, the receiver, obtains the authentication path (a0,a1,a2) corresponding to the
chosen OTS key pair (Xc,Yc) at index c = 3. He wants to know whether the OTS
public key Y3 is actually from the sender, Alice. He checks that by linking Y3 to
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Alice’s public key kpub. Verifying along the authentication path consists of the fol-
lowing steps:

v′0[3] = h(Y3) Level 0
v′1[1] = h(a0||v′0[3]) = h(v0[2]||v′0[3]) Level 1
v′2[0] = h(a1||v′1[1]) = h(v1[0]||v′1[1]) Level 2
v′3[0] = h(v′2[0]||a2) = h(v′2[0]||v2[1]) Level 3

At the end, he checks whether his own computation finally matches Alice’s public
key such that v′3[0]

?
= kpub. If this check is successful, Bob is assured that in fact

the value Y3 corresponds to one of the one-time signatures that are associated with
Alice’s public key. In the following examples will show how we can elegantly com-
bine the W-OTS verification that a message m matches Y3 with the tree verification
along the authentication path.

Example 12.17. We now describe the whole process of generating an MMS tree,
computing a signature and verifying it with numerical values by an example. The
tree has height t = 2. As OTS, we use the Winternitz one-time signature scheme
introduced in Section 12.4.1. As in our earlier example, we use the Rabin one-way
function

f (x)≡ x2 mod 511

for the Winternitz scheme with n = 9 bits of input and output. Further, we choose a
toy hash function for the construction of the Merkle tree: It is an extremely simple
hash function that just sums all input values xi before feeding the result into f (x):

h(xi)≡ f (∑xi)

Addition in this expression is simple integer addition. We would like to stress that
both functions f and h are solely designed for educational purposes. In fact, Prob-
lem 12.20 will reveal that the construction of such a hash function h is rather weak
since it does not prevent manipulations or collisions within the signature genera-
tion process and the Merkle tree. In real-world applications of MSS and its variants,
strong cryptographic hash functions (cf. Section 12.4.3) are used for f ,h with which
long-term, quantum-secure schemes can be generated. Note also that enhanced vari-
ants of MSS, such as XMSS, are designed to relax the essential requirement on
collision resistance, making it easier to instantiate secure instances for hash-based
digital signatures in practice.

Tree Generation Let us assume Alice has already generated the W-OTS pub-
lic/private key pairs (X0,Y0), . . . ,(X3,Y3) which are needed for the tree. The MSS
private key consists of the four W-OTS private keys X0,X1,X2,X3 (which we do
not need to consider any further). We are interested in the W-OTS public keys
Y0,Y1,Y2,Y3:
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Y0 =(105,470,274,296,373,470)
Y1 =(502,506,32,390,144,312)
Y2 =(42,264,342,195,73,187)
Y3 =(158,264,165,478,194,37)

The tree of height t = 2 corresponding to these public keys is shown in Fig-
ure 12.18.

Y0 = (105, 470,

274, 296,

373, 470)

Y1 = ( 502 , 506,

32 , 390,

144, 312)

v0[0] = 70 v0 [1] = 436 v0 [2] = 429 v0 [3] = 470

v1 [0] = 25 v1 [1] =310 

 v2 [0] = 316 =  kpub

i = 0

i = 1

i = 2

Level Y2 = ( 42 , 264,

342 , 195,

73, 187)

Y3 = (158 , 264,

165 , 478,

194 , 37)

Fig. 12.18 MSS example tree of height t = 2

To construct the MSS tree, including the public key at the top, we need to first
compute the leaf nodes v0[0], . . . ,v0[3]. In the example we focus on the leftmost leaf
node v0[0], which is the hashed version of the public key Y0:

v0[0] = h(Y0) = h(105+470+274+296+373+470) = 70

We can compute the other leaf nodes in the same way, resulting in v0[1] = 436,v0[2] =
429 and v0[3] = 470. To generate on Level 1 the parent node on the left, which stems
from the two leftmost leaf nodes, we compute:

v1[0] = h(v0[0]+ v0[1]) = h(70+436) = 25

Similarly, we compute v1[1] on the right-hand side of Level 1:

v1[1] = h(v0[2]+ v0[3]) = h(429+470) = 310

Now, we only need to calculate the root of the tree:

v2[0] = h(25+310) = 316
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This root node is the public key of the signature scheme and is made public.

Signing As mentioned above, Alice uses the W-OTS scheme. She wants to sign
the same message as in Example 12.15, namely:

m = 101011101010

We assume that m is the first message to be signed with this MSS scheme, i.e.,
we will choose the leftmost OTS at index c = 0, which has not been used previ-
ously. As shown in Example 12.15 in full detail, the signature for message m is
s0 = (329,442,162,235,373,183). Next, Alice needs to calculate the MSS authen-
tication path in addition to the actual W-OTS signature. Since she knows all inter-
mediate values of the tree, this can be done quite efficiently. For tree level 0, we
have q = d0/(0+ 1)e = 0 and thus, r = 0+−10 = 1. Hence, we add v0[1] = 436
to the authentication path. For the next tree level, we compute q = d0/(1+1)e= 0
and r = 0+−10 = 1. We add v1[1] = 310 to the authentication path. Thus, the au-
thentication path is auth = (436,310). The complete MSS signature consists of the
tuple:

sMSS = [c, sc, auth]
sMSS = [0, (329,442,162,235,373,183), (436,310)]

Verification We assume Bob has Alice’s MSS public key kpub = 316 and knows
that this is her correct key. He receives sMSS together with m and wants to verify
the signature from Alice. As shown in Example 12.16, Bob starts by extending the
received message m with the checksum into mc = (5,3,5,2,1,5). Next he proceeds
with the verification steps as shown in Figure 12.12, i.e., he applies f to the elements
of the signature s0 iteratively until he reaches the expected OTS public key Y ′0:

Y ′l = ( f 7−5(329), f 7−3(442), f 7−5(162), f 7−2(235), f 7−1(373), f 7−5(183))
= (105,470,274,296,373,470)

As a next step, he has to verify that this is in fact the valid W-OTS key that belongs
to Alice. First, Bob computes the leaf from the public OTS key Y ′0. From the MSS
signature, he knows that this is the leaf with index c = 0.

v0 = h(105+470+274+296+373+470) = 70

He uses the first value of the authentication path to compute v1[0] as follows:

v1 = h(v0 + auth[0]) = h(70+436) = 25

Then, the root node of the MSS can be computed as

v2 = h(v1 + auth[1]) = h(310+25) = 316
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Since Bob knows that Alice’s public key is kpub = 316, he is now assured that (1)
the OTS signature s0 indeed matches a valid one-time public key Y0 and (2) this one-
time public key Y0 is located at an authenticated leaf of the MSS tree that belongs to
Alice’s public key kpub.

12.4.3 Final Remarks

Hash-based digital signatures rely on the hardness of inverting a one-way operation
and, fortunately, it is believed that strong one-way functions are not only computa-
tionally secure against current computer technology but also against future quantum
computers. For constructing MSS-based signature schemes, hash functions such
as SHA-2 (cf. Section 11.4) and SHAKE, an extendable-output version of SHA-
3 (cf. Section 11.5), are used in practice. The eXtended Merkle Signature Scheme
(XMSS) and Leighton-Micali Signatures (LMS) are standardized variants of the ba-
sic Merkle scheme. Both implement additional tweaks that relax assumptions on
the collision-resistance and improve the efficiency of the tree construction, reducing
precomputation and storage requirements significantly.

Note that these MSS-based digital signature schemes share a major disadvantage
with respect to other signature schemes, such as RSA and ECDSA. Due to the em-
ployment of one-time signatures, the system needs to ensure that no one-time signa-
ture in the tree is used twice. Otherwise, the scheme would become trivially insecure
(cf. Exercise 12.14). In other words, the cryptosystem requires a mechanism to track
which one-time signatures have been used and which are still available for further
signing processes. Hence, MSS is a stateful digital signatures scheme. This means
that the user or the system must store a state that irrevocably determines which of the
remaining OTS signatures are still available and can safely be used next. However,
maintaining such a state can be a difficult constraint for some applications. First,
the tree and state size need to be fixed upfront by defining the tree height t. Once
all OTS signatures in the trees have been used, no further signature operation can
be performed, clearly restricting the lifetime of this MSS instance. Second, the state
must be protected against tampering since if an attacker can modify it in such a way
that an OTS key is used twice, it will become easy to forge signatures. This poses
additional restrictions in practice with respect to stateless classical digital signatures
(again, e.g., RSA or ECDSA), which do not limit the number of signatures.

As a remedy to this situation, the SPHINCS+ hash-based digital signature scheme
was also selected for standardization, following a proposal by Bernstein, Hopwood,
Hülsing, Lange, Niederhagen, Papachristodoulou, Schneider, Schwabe and Wilcox-
O’Hearn from 2015. SPHINCS+ aims to release the user from the burden of main-
taining a state recording which of the OTS components have been already used.
In fact, SPHINCS+ extends the original MSS construction by replacing one-time
signatures (OTS) with few-times signatures (FTS) combined with a more complex
hypertree construction. This way, SPHINCS+ enables a stateless hash-based digital
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signature scheme. SPHINCS+ is also a finalist of the standardization process, as we
will see in the following section.

12.5 PQC Standardization

As discussed in previous chapters, standardization of cryptosystems is a powerful
process to obtain cryptographic functions that are highly useful in practice. Prime
examples of this are AES and SHA-3. Part of the standardization process is an in-
depth analysis of the cryptanalytic features and security as well as the computa-
tional efficiency of each of the considered candidates. One of the earliest standards
for PQC schemes was announced by IETF/IRTF for the Merkle-based hash-based
digital signatures XMSS and LMS. These two schemes were also adopted by NIST
in 2020. Since this early PQC standard did not include any key agreement protocols,
NIST launched an open call for alternative quantum-secure asymmetric cryptosys-
tems for key encapsulation mechanisms but also for digital signatures. During sev-
eral rounds of the standardization process, cryptanalytic features, efficiency and ad-
ditional specific constraints such as implementation security have been thoroughly
analyzed and discussed by the international scientific community. In 2022, a first set
of candidates was selected for standardization. At the time of writing, all selected
candidates for standardization belong to the families of hash-based, lattice-based
and code-based cryptography, which are all introduced in this chapter. Details of the
NIST process are shown in Table 12.5.

Table 12.5 Submitted and selected candidates in the NIST PQC competition. Num-
bers in bold indicate the number of finalists for standardization; numbers in paren-
theses denote the candidates remaining for further consideration.

Step Announcement #Algorithms #KEMs #Signatures
Initial Submissions Dec 2017 69 40 29
After Round 1 Jan 2019 26 17 9
After Round 2 Jul 2020 7 + (8) 4 + (5) 3 + (3)
After Round 3 Jul 2022 4 + (3) 1 + (3) 3

As can be seen from the history, four PQC schemes were announced by NIST
for standardization, namely one KEM (i.e., a key encapsulation mechanism for key
establishment based on an encryption scheme) and three digital signature schemes
in addition to the two hash-based digital signature schemes XMSS and LMS. The
lattice-based KYBER was chosen as KEM as a compromise between assumed secu-
rity and efficiency with respect to conventional public-key schemes. The lattice-
based DILITHIUM and FALCON and the hash-based SPHINCS+ are the digital
signature schemes that were selected during this standardization process. Due to
the majority of lattice-based candidates in the current standards, NIST opened a
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fourth round in 2022 with several runner-up candidates mostly from the family of
code-based KEMs. At the same time, NIST asked for additional submissions for
digital signature candidates to further broaden the spectrum in future standards.
Beyond these NIST-driven activities, the International Organization for Standard-
ization (ISO) is considering the code-based cryptosystem Classic McEliece and
Standard-LWE-based FRODOKEM for standardization.

International standardization bodies have already compiled a first portfolio of
standardized quantum-secure schemes for key encapsulation and digital signatures
which is currently still being extended. In fact, with a large diversity of standard-
ized PQC schemes we will be prepared to provide confidentiality and authentication
services even in an era of powerful quantum computers .

12.6 Discussion and Further Reading

To recap the motivation for this chapter, quantum computers pose a major threat to
classical public-key cryptosystems due to Shor’s algorithm [233] from 1997, which
can break RSA, discrete logarithm and ECC cryptosystems once powerful quantum
computers become available. For symmetric cryptosystems, Grover’s quantum al-
gorithm [128] will reduce their security level and effectively the key sizes by half.
Alternative public-key schemes that are believed to be resistant to attacks with quan-
tum computers are referred to as post-quantum cryptography.

This chapter introduced the basic concepts behind three promising PQC families,
namely code-based, lattice-based and hash-based cryptography. All PQC schemes
that are currently considered for standardization belong to these three algorithm
families. Note that we excluded in this chapter the discussion of details and certain
variants which may still be subject to changes. Updates on the most important stan-
dardization initiative can be found at [202]. We also did not cover other families
of PQC schemes which have been proposed over the years. Some of these “other”
schemes are based on NP-complete or other hard mathematical problems. Please
note, however, that not every hard problem automatically leads to quantum-secure
cryptographic system. In fact, we have seen a series of cryptographically extremely
weak schemes based on such NP-complete problems, for example, Knapsack-based
cryptosystems [64].

For readers interested in the details of the mathematical constructions and ad-
ditional background on the different PQC families that exist, the in-depth tutorial
in [39] is recommended. Advances in the theory and applications of PQC are dis-
cussed in the conference series PQCRYPTO [2]. Updates on the standardization of
PQC candidates can be found at [202]. In the following, we give some background
information about the three PQC families treated in this chapter as well as other
schemes.

� Lattice-based cryptography. In this chapter we discussed the basic encryption
scheme using LWE and related variants, which grew out of the seminal works
by Ajtai [9] in 1996 and Regev in 2005 [215]. Popular instantiations of Ring-
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LWE encryption are based on proposals by Lyubashevski, Lindner and Peik-
ert from 2011 [176, 179], followed by more advanced constructions such as the
NewHope cryptosystem [11], FRODOKEM [10], KYBER [22] and SABER [88].
An alternative direction in lattice-based encryption construction is based on the
NTRU assumption, discussed in detail in [70]. Beyond encryption schemes, dig-
ital signatures are also an essential aspect of lattice-based cryptography; relevant
proposals in this direction are DILITHIUM [21] and FALCON [119]. For the inter-
ested reader, further mathematical background on (ideal) lattices and polynomial
rings is given in [179].

� Code-based cryptography. Code-based PQC schemes can be used for encrypt-
ing data and for key transport. The first code-based cryptosystem was proposed
by Robert McEliece in 1978 [187]. A similar proposal is the cryptosystem pre-
sented by Harald Niederreiter in 1986 [200]. For both schemes, the choice of the
underlying code is crucial to resist powerful attacks such as Information Set De-
coding (ISD) [209] and its many variants. Initially, McEliece proposed the use
of binary Goppa codes, which have continued to be a secure choice after some
tweaks and adaptions of the parameters in 2008 [43]. Binary Goppa codes are
also the choice used in the Classic McEliece proposal [40] that is also the subject
of standardization efforts. More efficient proposals for key encapsulation based
on quasi-cyclic codes are HQC [188] and BIKE [17]. While code-based cryptog-
raphy traditionally focused on encryption schemes, there are indeed some pro-
posals for digital signatures too [202]. However, due to their complex construc-
tion, code-based digital signatures tend to be less efficient compared to schemes
from other PQC families.

� Hash-based cryptography. Details on LD-OTS and W-OTS can be found in the
original publications [168]. Merkle proposed his extension of one-time signa-
tures to a many-times signature scheme in 1989 [191]. In fact, due to the crypt-
analytic simplicity of one-time signatures, hash-based signatures were the first
to be standardized for global use in applications by IETF and NIST. Important
for the deployment of hash-based signatures is the selection of the underlying
hash function that determines the security margin and performance of the signa-
ture scheme. Common choices for these hash functions are SHA-2 and SHAKE
which are standardized for the stateful cryptosystems XMSS and LMS in IETF
RFC 8391 [146, 153] and NIST SP 800-208 [203]. Further information on the
stateless hash-based digital signature scheme SPHINCS+ is given in [41].

� Isogeny-based cryptography. Another interesting class is the PQC family of
isogeny-based cryptography, which relies on mathematical relations over ellip-
tic curves. One such scheme, called Supersingular Isogeny Key Encapsulation
(SIKE) [79], was submitted to the NIST PQC standardization process. Because
they are constructed with elliptic curves, isogeny-based cryptographic systems
have the advantage of using existing frameworks and infrastructures for ellip-
tic curves, which have been widely deployed during the last decades. However,
although SIKE made it as a candidate to the fourth round of the NIST standard-
ization process and was already considered as a finalist, it was broken in August
2022 by the devastating attack of Castryck and Decru [68].
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� Cryptography based on multivariate quadratic equations. The class of Mul-
tivariate Quadratic Cryptosystems (MQ) has been well studied after it was pro-
posed by Matsumoto and Imai [185] in 1988. The basic idea is, roughly speaking,
to use a set of multivariate equations that can be solved easily with access to the
linear base field, which is only known to Bob as legitimate user and owner of the
private key. However, any adversary without access to the linear base field needs
to solve the same problem over a quadratic extension field. Despite the long tradi-
tion and popular schemes such as the Unbalanced Oil and Vinegar (UOV) [159]
and Rainbow [95] schemes, the exact instantiation of MQ schemes is non-trivial
and remains challenging. In fact, even after multiple decades of cryptanalytic
research, recently proposed candidates still often turn out to be insecure. As an
example, Rainbow, also a candidate in the NIST standardization process, was
broken by an attack due to Beullens in 2022 [44], using a laptop running for just
about a weekend. Improved variants of UOV, however, might still be interesting
for standardization in the future.

From the perspective of implementation, PQC schemes are generally consider-
ably less efficient and more complex to implement compared to RSA and ECC.
While there are lattice-based candidates that are about as fast in terms of compu-
tational performance as RSA and ECC, PQC schemes in general often come with
subtle but important deficiencies compared to classical schemes. Those need to be
carefully considered before deploying a scheme from the large PQC portfolio in
real-world applications. Relevant aspects to consider are:

� Time & memory efficiency. Most PQC schemes are, particularly for parame-
ter sets that provide a high level of security, significantly less efficient in terms
of computation time and memory requirements compared to conventional asym-
metric schemes. For example, the hash-based scheme SPHINCS+ requires many
hundred million to billion CPU cycles to run the key generation, signing and ver-
ification operations. Even for powerful desktop computers and servers this can
be challenge [41]. In addition, it requires many resources to compute the hyper-
tree construction in main memory. On smaller devices, such as Internet of Things
(IoT) nodes, with fewer computational and memory resources, the employment
of such an expensive scheme is clearly infeasible.

� Key sizes. While there are lattice-based and code-based PQC schemes such as
KYBER or BIKE that provide public and private keys of the some order of mag-
nitude as large RSA keys, there are also quite a few schemes that come with sig-
nificant requirements regarding key storage. As an example, Classic McEliece
requires public keys of about 1 MB [40] for its largest parameter set. Again, for
small devices such as RFIDs and smart cards, this is already an excessive amount
of non-volatile storage.

� Output sizes. Basic RSA encryption (or signature generation) is length-preserving,
i.e., the ciphertext c after encryption c≡me mod n has the same size as the initial
message m. However, this is different for any PQC schemes: All PQC encryption
(or KEM) schemes come with a significant ciphertext expansion, and most dig-
ital signature schemes result in large signatures. As a consequence, when PQC
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schemes are deployed in practice, this will clearly result in higher bandwidth
requirements for networks and devices.

� Side constraints: While history in cryptanalysis has shown a number of devastat-
ing flaws when incorrect parameters for RSA, discrete logarithm and ECC were
selected, the problem is more severe for PQC schemes. Due to the significantly
larger number of security-relevant parameters and the higher complexity of the
cryptographic computations involved, more flaws and vulnerabilities can be ex-
pected to show up in their realization. Furthermore, side constraints such as the
(small) probability of decryption failures [22] or signature rejection [21] make
sound implementations more challenging. Furthermore, keeping track of the state
in stateful signature schemes, which makes sure that one-time signatures [203]
are not chosen twice, is also a non-trivial challenge in many applications.

� Implementation security. Not only the cryptographic scheme itself can be target
of an attack but also its implementation, e.g., by exploiting timing side-channels
(cf. Section 7.9) or injection faults that perturb the correct operation of the im-
plementation. Most PQC schemes involve less-established and non-trivial oper-
ations such as sampling from special (non-uniform) distributions and encodings.
In recent years, we have seen a series of side-channel and fault-injection attacks
against these operations. It can safely be said that secure PQC implementations
are still a challenging field of research, and it will probably take years until sound
implementation techniques are fully understood.

12.7 Lessons Learned

� Once large-scale quantum computers become available in the future, the con-
ventional asymmetric cryptosystems currently in use — that is, RSA, discrete
logarithm and elliptic curves — will be broken.

� Post-quantum cryptography is the (fancy) term for alternative asymmetric cryp-
tographic schemes which are currently believed to be secure against quantum-
computer attacks. They rely on different mathematical functions than conven-
tional asymmetric algorithms.

� The security functions provided by PQC algorithms are digital signatures and
key establishment.

� The most promising and standardized PQC schemes are based on lattice-based,
code-based and hash-based cryptography.

� PQC-based cryptosystems come with individual disadvantages compared to con-
ventional asymmetric schemes, in particular large key and output sizes, and their
memory and computational requirements. Also, integrating PQC in applications
tends to be more complex.

� A portfolio of different PQC schemes is required in order to match the different
security needs of modern applications.
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Problems

12.1. In this problem we look at the security of the Standard-LWE problem.

1. Given is a matrix-vector equation with entries in Z7:4 0 2
0 5 4
6 1 2

 · s =
4

5
0


Show that this problem can easily be solved by computing the secret error vector
s. You can apply any algorithm for solving systems of linear equations.

2. Let us make the problem more difficult by introducing an error vector to the
equation: 4 0 2

0 5 4
6 1 2

 · s+ e =

6
3
2


Can you determine the unknown vectors s and e with the method you used in the
previous problem?

3. Show that the problem can be solved if you can guess the error vector, which is
in this case e = (0,1,0)T .

12.2. Given is an instance of the Simple-LWE cryptosystem from Section 12.2.2.
Assume n = 3,k = 3,q = 61 and the following parameters:

A =

12 59 7
27 33 6
4 23 57

 ∈ Z3×3
61 , t =

51
28
26

 ∈ Z3
61, s =

 0
1

60

 ∈ Z3
61

1. Pick random values from {−1,0,1}= {60,0,1}∈Z61 at your choice to construct
r,eaux,emsg, which consist of small integer values.

2. Encrypt and decrypt the message m = 0 using your chosen r,eaux,emsg.
3. Encrypt and decrypt m = 1 using the same values for r,eaux,emsg.

12.3. Let us now look at arithmetic in polynomial rings, as introduced in Defini-
tion 12.2.3.

1. Given is the ring R7 with q = 7 and n = 4 and three polynomials in this ring:
a(x) = 3x3 + 4x2 + x + 6, b(x) = 4x3 + 4x2 + 5x + 6 and c(x) = x3 + 5x2 + 3.
Compute d(x) = a(x) ·b(x)+ c(x).

2. Now we consider the ring with another modulus q= 11, i.e., R11. The value n= 4
stays the same. Assume the same polynomials as before.
Compute d′(x) = a(x) ·b(x)+ c(x).

12.4. We use the polynomial ring R7 with q = 7 and n = 4 again. Given the polyno-
mial a(x) = 2x3 +5x2 +4x+3, compute p(x),q(x),r(x) that will be the result of a
multiplication with polynomials that only have “small” coefficients:
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1. p(x) = a(x) ·
(
x3 + x+1

)
2. q(x) = a(x) ·

(
x2
)

3. r(x) = a(x) ·
(
x2 +1

)
If you look at the results p(x),q(x),r(x): Is it still easily possible to identify the
original factor a(x) by visual inspection?

12.5. We consider the polynomial ring R61 with n = 4.

1. Given a(x) = 48x3 + 16x2 + 50x+ 51, s(x) = x3 + x2 + 60 and e(x) = x2 + 60,
compute t(x) = a(x) · s(x)+ e(x).

2. Encrypt the message m = (0,1,1,1). Again select small random coefficients for
r(x), eaux and emsg from {−1,0,1}= {60,0,1} ∈ Z61 of your choice.

3. Decrypt the ciphertext and recover the message.

12.6. Show the correctness of Simple-LWE, similarly to Section 12.2.4, where cor-
rectness is shown for the Ring-LWE scheme. Keep in mind that matrix-vector
multiplication is non-commutative so that the operands of a matrix-vector multi-
plication cannot be swapped (unlike integer or polynomial multiplication, which
are commutative). Also consider that for a matrix M and a vector v it holds that:
(M ·v)T = vT ·MT .

12.7. We look at a parity-check matrix H of a linear code C with the parameters
k = 4 and n = 7. Show how the generator matrix G can be computed from H.

H =

1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


12.8. Alice would like to transmit the message “PQC” over an unreliable commu-
nication channel to Bob. She first transforms her message “PQC” into the UTF-8
format. To protect her message against random errors that may occur during the
transmission, she splits the three 8-bit characters into 4-bit nibbles and encodes the
resulting six sub-messages with the linear code defined in Example 12.7.

Compute the six codewords ci.

12.9. We consider again the linear code from Example 12.7. Alice transmits to Bob
a short message consisting of two letters. Each letter is represented by 8 bits in
UTF-8 format. Bob receives the four codewords:

c′1 =
(

1 0 0 0 0 1 1
)

c′2 =
(

1 0 1 1 1 0 0
)

c′3 =
(

1 0 0 0 1 0 0
)

c′4 =
(

1 0 0 1 1 0 0
)

Decode the received codewords, i.e., check for errors and correct them in case there
are any.

The 4+ 4 message bits from (c1||c2) form the first letter, and the message bits
from codewords (c3||c4) the second letter.
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12.10. Given are all 16 codewords of a linear Hamming code with n = 7 and k = 4.
Determine the corresponding generator matrix G and parity-check matrix H.(

0 0 0 0 0 0 0
) (

0 0 0 1 0 1 1
) (

0 0 1 0 1 0 1
) (

0 0 1 1 1 1 0
)(

0 1 0 0 1 1 0
) (

0 1 0 1 1 0 1
) (

0 1 1 0 0 1 1
) (

0 1 1 1 0 0 0
)(

1 0 0 0 1 1 1
) (

1 0 0 1 1 0 0
) (

1 0 1 0 0 1 0
) (

1 0 1 1 0 0 1
)(

1 1 0 0 0 0 1
) (

1 1 0 1 0 1 0
) (

1 1 1 0 1 0 0
) (

1 1 1 1 1 1 1
)

12.11. Bob generated a key for the McEliece encryption scheme. First he computed
the generator matrix Ĝ as:

Ĝ =


1 0 0 1 1 0 1
1 1 0 0 1 0 0
1 1 1 1 0 0 0
0 0 0 0 1 1 1

 .

For this, he used the following matrices of the private key:

S =


1 1 1 0
1 0 0 1
1 1 0 1
0 0 1 0

 G =


1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0


and

P =



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0


Finally, he created the parity-check matrix H matching the generator matrix G:

H =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1


From Alice, he receives the ciphertext c =

(
1 1 1 0 1 0 1

)
. Your task is now to

decode the ciphertext in order to recover the message m.
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12.12. Bob performed the key generation of the Niederreiter encryption scheme. For
the public key, he generated the parity check matrix Ĥ:

Ĥ =

1 0 1 1 0 1 0
1 0 1 0 1 0 1
0 1 1 1 0 0 1


The corresponding matrices of the private key are:

S =

1 0 1
1 1 1
0 0 1

 H =

1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1


and

P =



0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0


From Alice, he receives the ciphertext cT =

(
0 1 0

)
. Decode the ciphertext in order

to recover the error vector e.

12.13. In this problem we look at the LD-OTS (Lamport-Diffie one-time signatures)
scheme when applied in practice. Assume you want to sign a message that is 1 MB
long9, for instance a PDF file.

1. How long is the public key kpub if the LD-OTS scheme is directly applied to sign
each bit of the message?

2. In order to reduce the memory size, you hash the message first using SHA-256
(cf. Section 11.4) and sign the hashed output with LD-OTS afterwards. How long
is the public key now?

3. What is the size of your public key if you plan to sign one document per day
and the key should last for one year? Assume again you apply SHA-256 before
signing each message.

9 One MB is 106 bytes.
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12.14. As the name implies, one-time signatures must never be used more than once.
Unfortunately, Bob does not believe in this restriction. You were able to obtain two
LD signatures sa,sb for two different messages ma,mb generated from the same
public key:

ma = 101110 sa = (130,10,432,213,396,105)
mb = 011010 sb = (254,488,432,112,396,105)

Show that you can forge a valid signature for certain messages m′ that are not
identical to ma or mb, that is: m′ /∈ {ma,mb}. Can you forge signatures for any arbi-
trary m′? Why (not)?

12.15. Compute the W-OTS public key using n = 9 bits, with f (x) ≡ x2 mod 511
and w = 3. The private key is generated randomly using the following sequence of
numbers: 184,245,20,60,311,450,11, ...

1. Compute the required length of the private key and then sign the message

m = 101110100

2. Show that the signature is valid by running the verification.

12.16. We look at the one-time requirement of W-OTS signatures. Assume we have
a one-way function f (x) ≡ x2 mod 211 with W-OTS parameters w = 3 and n = 9.
For these parameters you were able to observe two W-OTS signatures sa,sb gener-
ated using the same public key but for different messages ma,mb:

ma = 111010000 sa = (274,422,126,127,366)
mb = 011011111 sb = (442,256,294,127,501)

Show that you can forge a valid signature for message m′ /∈ {ma,mb}.

12.17. We look at the Merkle signature scheme (MSS) using a tree of height t = 4.

1. Alice wants to use the first OTS signature (X0,Y0) for a message. Which values
are need for the authentication path? Show the hash operations that the receiver
has to perform to authenticate Y0.

2. Which values are needed for the authentication path if Alice uses the OTS keys
(X8,Y8)? Again, show all hash operation needed for verifying Y8.

12.18. Compute the public key for the MSS scheme with f (x) ≡ x2 + 7x mod 512
and a tree of height t = 3. The OTS keys have already been generated and com-
pressed as shown below. To combine two nodes, apply the hash function h(xi) ≡
f (∑xi) based on additions described in this chapter.

v0[0] = 152 v0[1] = 2 v0[2] = 233 v0[3] = 112
v0[4] = 501 v0[5] = 442 v0[6] = 243 v0[7] = 499
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12.19. We now want to generate a MSS signature for a Merkle tree of height t = 3.
Again, we will use f (x) ≡ x2 + 7x mod 512 and h(xi) ≡ f (∑xi) as hash function.
The leaf nodes of the tree contain the following values:

v0[0] = 411 v0[1] = 245 v0[2] = 44 v0[3] = 192
v0[4] = 376 v0[5] = 199 v0[6] = 418 v0[7] = 53

1. Generate the MSS signature for the message

m = 101001111

Assume that the following OTS signature has already been generated as s3 =
(72,300,220,436,52) for which the corresponding OST key is located at c = 3
in the binary tree.

2. After completing the signing process, what needs to happen with the state of the
MSS instance?

12.20. In this problem we analyze the security and collision-resistance of the hash
function from Example 12.17. In that example, we used h(xi)≡ f (∑xi) with f (x)≡
x2 mod 511 to construct a tree of height t = 3.

We want to understand whether this function is a good or bad choice for building
MSS signatures. Recall that an essential requirement for digital signatures is that
they cannot simply be forged by an attacker, i.e., that signatures cannot be efficiently
generated by the attacker that are verified as valid under a given public key.

For the functions h, f and some message m, we now want to show that it is not
difficult to construct another set of signatures (and thus a different Merkle tree) that
is valid under a given public key.

1. First we analyze the collision resistance of our one-way function f (x). What do
you notice if you repeatedly apply f (x) to the inputs x = 1, x = 8 and x = 64,
x = 510 in the same way as we would compute W-OTS signatures?

2. Next, we investigate the hash function h(xi), which is used to construct the
Merkle tree. If you look at level i of the tree, which operation can you apply
to that level without changing any values on the upper levels i+1, . . .?

3. Combining both observations, how can you forge signatures for a message m to
be valid under the same public key?



Chapter 13
Message Authentication Codes (MACs)

Message Authentication Codes (MAC), also known as a cryptographic checksums
or keyed hash functions, are widely used in practice. In terms of security function-
ality, MACs share some properties with digital signatures, since they also provide
message integrity and message authentication. However, unlike digital signatures,
MACs are symmetric-key schemes and they do not provide non-repudiation. One
advantage of MACs is that they are much faster than digital signatures because they
are based on either block ciphers or hash functions.

In this chapter you will learn:

� The principle behind MACs
� The security properties that can be achieved with MACs
� How MACs can be realized with hash functions and with block ciphers
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13.1 Principles of Message Authentication Codes

Similarly to digital signatures, MACs append an authentication tag to a message.
The crucial difference between MACs and digital signatures is that MACs use a
symmetric key k for both generating the authentication tag and verifying it. A MAC
is a function of the symmetric key k and the message x. We will use the notation

m = MACk(x)

for this in the following. The principle of the MAC calculation (by Bob) and verifi-
cation (by Alice) is shown in Figure 13.1.

MAC

x

m

verification:

m = m'
?

(  ,    )

MAC

 m'

x

BobAlice

k

x  m

k

Fig. 13.1 Basic protocol for protecting a plaintext x with a message authentication
code

The typical motivation for using MACs is that Alice and Bob want to be assured
that any manipulation of a message x in transit is detected, and that the message
originates from the correct sender. For this, Bob computes the MAC as a function
of the message and the shared secret key k. He sends both the message and the
authentication tag m to Alice. Upon receiving the message and m, Alice verifies
the MAC. Since this is a symmetric setup, she simply repeats the steps that Bob
conducted when sending the message: She merely recomputes the authentication
tag with the received message and the symmetric key.

The underlying assumption of this system is that the MAC computation will yield
an incorrect result if the message x was altered in transit. Hence, message integrity is
provided as a security service. Furthermore, Alice is now assured that Bob was the
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originator of the message since only the two parties with the same secret key k have
the possibility to compute the MAC. If an adversary, Oscar, changes the message
during transmission, he cannot simply compute a valid MAC since he lacks the
secret key. Any malicious or accidental (e.g., due to transmission errors) forgery of
the message will be detected by the receiver due to a failed verification of the MAC.
That means, from Alice’s perspective, Bob must have generated the MAC. In terms
of security services, message authentication is provided too, in addition to message
integrity.

In practice, a message x is almost always much larger than the corresponding
MAC. Hence, similarly to hash functions, the output of a MAC computation is a
fixed-length authentication tag that is independent of the length of the input.

If we summarize the discussion that we had so far, we can state the following
important MAC properties:

Properties of Message Authentication Codes

1. Cryptographic checksum A MAC generates a cryptographically secure
authentication tag for a given message.

2. Symmetric MACs are based on secret symmetric keys. The signing and
verifying parties must share a secret key.

3. Arbitrary message size MACs accept messages of arbitrary length.
4. Fixed output length MACs generate fixed-size authentication tags.
5. Message integrity MACs provide message integrity: Any manipulations

of a message during transit will be detected by the receiver.
6. Message authentication The receiving party is assured of the origin of

the message.
7. Lack of non-repudiation Since MACs are based on symmetric princi-

ples, they do not provide non-repudiation.

The last point is important to keep in mind: MACs do not provide non-repudiation.
Since the two communicating parties share the same key, there is no possibility
to prove to a neutral third party, e.g., a judge, whether a message and its MAC
originated from Alice or Bob. Thus, MACs offer no protection in scenarios where
either Alice or Bob is dishonest, like the car-buying example we discussed in Sec-
tion 10.1.1. A symmetric secret key is not tied to a single person (unlike a private
asymmetric key) but rather to two parties, and hence a judge cannot distinguish
between Alice and Bob in case of a dispute.

Despite their lack of non-repudiation, MACs are widely used in practice because
they allow for very efficient computations of authentication tags, which is in contrast
to the relatively slow asymmetric signatures. The reason for their efficiency is that
MACs can be built from symmetric primitives, as we will see in the following. Us-
ing MACs requires the confidential storage of keys by both communication parties.
In contrast, verification of digital signatures only requires to store the public key
such that its authenticity is ensured, which often is easier to accomplish. This trade-
off between MACs and digital signatures has to be considered for any particular
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application and cryptosystem, since it requires a detailed consideration of platform
security, key management and efficiency requirements.

In practice, message authentication codes are constructed in two essentially dif-
ferent ways: from block ciphers or from hash functions. In the subsequent sections
of this chapter we will introduce both approaches for building MACs.

13.2 MACs from Hash Functions: HMAC

One widely used way of realizing MACs is to employ cryptographic hash func-
tions such as SHA-2 and SHA-3 as building blocks. A possible construction, named
HMAC, has become very popular in practice. For instance, both the Transport Layer
Security (TLS) protocol, which is used by almost all web browsers, as well as the
IPsec protocol suite use HMAC. One reason for its widespread use is that it can be
proven to be secure if certain assumptions are made.

The basic idea behind all hash-based message authentication codes is that the key
is hashed together with the message. Two obvious constructions come immediately
to mind. The first one:

m = MACk(x) = h(k||x)

is called secret prefix MAC, and the second one:

m = MACk(x) = h(x||k)

is known as secret suffix MAC. The symbol “||” denotes concatenation. Intuitively,
due to the one-wayness and the good “scrambling properties” of modern hash func-
tions, both approaches should result in strong cryptographic checksums. However,
as is often the case in cryptography, assessing the security of a scheme can be trick-
ier than it seems at first glance. We now demonstrate weaknesses in both of these
straightforward constructions.

Attacks Against Secret Prefix MACs (Length Extension Attack)

We consider MACs realized as m = h(k||x). For the attack we assume that the
cryptographic checksum m is computed using a hash function that is based on the
Merkle–Damgård construction, as shown in Figure 11.5. This iterated approach is
used in many of today’s hash functions, in particular SHA-1 and SHA-2. (We note
that SHA-3 uses a different construction — the sponge construction — and it is,
thus, not susceptible to the attack.) The message x that Bob wants to sign is a se-
quence of blocks x= (x1,x2, . . . ,xn), where the block length matches the input width
of the hash function. Bob computes an authentication tag as:

m = MACK(x) = h(k||x1,x2, . . . ,xn)
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The problem is that the MAC for the message x=(x1,x2, . . . ,xn,xn+1), where xn+1 is
an arbitrary additional block, can be constructed from m without knowing the secret
key. The attack is known as a length extension attack. It is shown in the protocol
below.

Attack Against Secret Prefix MACs

Alice Oscar Bob
x = (x1, . . . ,xn)
m = h(k||x1, . . . ,xn)

 intercept
(x,m)←−−−−−−

xO = (x1, . . . ,xn,xn+1)
mO = h(m||xn+1)

(xO,mO)←−−−−−−
m′ =
h(k||x1, . . . ,xn,xn+1)
since m′ = mO
⇒ valid checksum!

Note that Alice will accept the message (x1, . . . ,xn,xn+1) as valid, even though
Bob only authenticated (x1, . . . ,xn). The last block xn+1 could, for instance, be an
appendix to an electronic contract, a situation that could have serious consequences.

The attack is possible since the MAC for the message with the additional block
xn+1 can be constructed with the previous hash output m (which was computed with
the secret key) and xn+1, but it does not need the key k.

We note that modern hash functions often require that an indicator of the length
of the message is included in the header of the message in order to prevent length
extension attacks. However, despite this fix, the attack is still worrisome.

Attacks Against Secret Suffix MACs

After studying the attack above, it seems to be safe to use the other basic con-
struction method, namely m = h(x||k). However, a different weakness occurs here.
Assume Oscar is capable of constructing a collision in the hash function, i.e., he can
find x and xO such that:

h(x) = h(xO)

The two messages x and xO can be, for instance, two versions of a contract which
are different in some crucial aspect, e.g., the agreed-upon payment. If Bob signs x
with a message authentication code

m = h(x||k)

m is also a valid checksum for xO, i.e.,
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m = h(x||k) = h(xO||k)

This is a “classic” collision attack, which is possible because x and xO result in
the same output if hashed. Thus, we conclude that the secret suffix construction is
insecure if a collision in the underlying hash function can be found.

Whether this attack presents Oscar with an advantage depends on the parameters
used in the construction. As a practical example, let’s consider a secret suffix MAC
which uses SHA-256 as hash function, which has an output length of 256 bits, and a
256-bit key. One would expect that this MAC offers a security level of 256 bits, i.e.,
an attacker cannot do better than brute-forcing the entire key space to forge a mes-
sage. However, if an attacker exploits the birthday paradox (cf. Section 11.2.3), he
can find a collision with about

√
2256 = 2128 computations. Even though performing

2128 computations is completely out of reach with today’s computers, we conclude
that the secret suffix method also does not provide the security one would like to
have from a MAC construction.

HMAC

A hash-based message authentication code that does not show the security weakness
of the secret prefix and secret suffix MAC described above is the HMAC construc-
tion proposed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in 1996. HMAC
consists of an inner and outer hash and is visualized in Figure 13.2.

The MAC computation starts by appending all-zero bytes to the least significant
bit end of the key k such that the result k+ is b bits in length, where b is the input
block width of the hash function. The expanded key k+ is XORed with the inner
pad, which consists of a repeated bit pattern:

ipad = 00110110,00110110, . . . ,00110110

and also has a length of b bits. The output of the XOR forms the first input
block to the hash function. The subsequent input blocks are the message blocks
(x1,x2, . . . ,xn).

The second, outer hash is computed with the padded key together with the output
of the first hash. Here, the key is again expanded with zeros and then XORed with
the outer pad:

opad = 01011100,01011100, . . . ,01011100

The result of the XOR operation forms the first input block for the outer hash. The
other input is the output of the inner hash. After the outer hash has been computed,
its output is the message authentication code of x. The entire HMAC construction
can be expressed as:

HMACk(x) = h
[
(k+⊕opad)||h

[
(k+⊕ ipad)||x

]]
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Fig. 13.2 HMAC construction

One may wonder whether there is a problem with the interface between the inner
and the outer hash since the output length (of the inner hash) l is in practice shorter
than the width b of an input block of the outer hash. For instance, SHA-256 has
an l = 256-bit output but accepts b = 512-bit inputs. However, this does not pose a
problem because hash functions have preprocessing steps to match the input string
to the block width. As an example, Section 11.4.1 describes the preprocessing for
SHA-256. We note that even though the ipad and opad are standardized as shown
above, the actual values are not important for the security of the HMAC. ipad and
opad were chosen such that the masked key in the inner and outer hash differ in
many bits.

In terms of computational efficiency, it should be noted that the message x, which
can be very long, is only hashed once in the inner hash function. The outer hash
consists of merely two blocks, namely the padded key and the inner hash output.
Thus, the computational overhead introduced through the HMAC construction is
very low.
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A major reason why the HMAC construction is so widely used in practice is that
there exists a proof of security. It can be shown that the MAC is secure even if a
collision or a second preimage (cf. Section 11.2) can be found in the underlying
hash function.

13.3 MACs from Block Ciphers

In the preceding section we saw that hash functions can be used to realize mes-
sage authentication codes. An alternative method is to construct MACs from block
ciphers. There exist a fair number of schemes with such a functionality. They can
roughly be classified into constructions that just compute a MAC, i.e., they provide
authentication-only, and authenticated encryption schemes. The latter provide both
confidentiality through encryption as well as authentication through a MAC. Ta-
ble 13.1 shows important representatives of both families of schemes. They will be
introduced in the following sections.

Table 13.1 Popular MAC constructions based on block ciphers

Mode Encryption Authentication Comment
CBC-MAC X security deficiencies
CMAC X
CCM X X authenticated encryption
GCM X X authenticated encryption
GMAC X

13.3.1 CBC-MAC

For a long time, the most popular approach for computing a MAC was to use the
cipher block chaining (CBC) mode together with a block cipher like AES. Such a
message authentication code is referred to as CBC-MAC. It is very similar to the
CBC encryption mode, which was introduced in Section 5.1.2.

Figure 13.3 shows CBC-MAC. From the picture we see that the final MAC value
m is in fact a function of all message blocks x1, . . . ,xn. The blocks can be consid-
ered to be chained together, hence the name CBC. We recall that both the sender
(who generates the MAC initially) and the receiver (who verifies the MAC) per-
form identical operations. Thus, the computation shown in the figure is performed
by both, Alice and Bob. It is instructive to compare the CBC-MAC construction
with the CBC encryption mode shown in Figure 5.4 in Section 5.1.2. We note that
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nIV

Fig. 13.3 MAC built from a block cipher in CBC mode

in the latter, Bob actually has to decrypt the received ciphertext blocks, whereas the
CBC-MAC construction doesn’t require the cipher e to be used in decryption mode
at all. Another core difference is that the CBC-MAC construction does not transmit
the encrypted intermediate values but merely the result of the very last encryption,
namely m = MACk(x).

Please remark that we need to set the IV to a constant value such as zero. Oth-
erwise an adversary could change the first (and only) plaintext block x1 together
with a corresponding change in the IV resulting in the same MAC. This attack is
prevented if the IV is fixed to a predefined constant value.

The output length of the MAC is determined by the block size of the cipher used.
Historically, DES was widely used, e.g., for banking applications. Nowadays, AES
is often used, which yields a MAC with a length of 128 bits.

CBC-MAC has some subtle security weaknesses, even though it was and still
is used in practice. Generally speaking, given the MAC for several messages that
were authenticated individually, an adversary can construct a valid MAC for a new
message that is the concatenation of the individual messages. Problem 13.8 deals
with such an attack. With a slight modification, these attacks can be prevented. This
modified version of CBC-MAC is called CMAC and will be introduced below.

13.3.2 Cipher-based MAC (CMAC)

The CMAC mode, shown in Figure 13.4, is closely related to CBC-MAC but re-
moves some of its security deficiencies. We note that in practice AES is often used as
the cipher e. There are two differences between the two constructions. First, CMAC
has no IV. (One can also imagine that there is a fixed IV that is set to the all-zero
string.) The second difference is more crucial. Before encrypting the final block xn
of the plaintext, an additional key k1 is XOR-added to xn. This key k1 is called the
subkey. The subkey is computed from the original key k, i.e., the user has only to
provide one key, namely k. The way k1 is computed is somewhat convoluted for
the standard-compliant CMAC construction. However, in a simplified version, the
subkey is derived from k by encrypting the all-zero string with the cipher e that is
being used for the MAC:
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k1 = ek(0) (13.1)

In the NIST standard, the subkey is also based on the encryption of the zero string
as shown in Equation (13.1) but additionally it is rotated by one or two positions and
possibly a fixed mask is added. The details depend on the bit pattern of the subkey
and whether the message can be evenly divided by the block width of the cipher.

n

Fig. 13.4 Basic CMAC (cipher-based MAC) construction

13.3.3 Authenticated Encryption: The Counter with Cipher Block
Chaining-Message Authentication Code (CCM)

In many applications it is desirable to provide confidentiality (through encryp-
tion) and at the same time authentication and integrity (through a MAC). We note
that these three security services are realized with symmetric ciphers. One way of
achieving this goal is to use one of the modes of operation described in Chapter 5
for encryption together with CBC-MAC or CMAC — which were introduced in the
previous sections — for authentication and integrity. However, it often is attractive
to have an encryption function that performs message encryption and MAC com-
putation in one pass. Such cryptographic primitives are referred to as authenticated
encryption, sometimes referred to as “AE”.

The Counter with Cipher Block Chaining-Message Authentication Code (CCM)
mode provides authenticated encryption. The idea behind CCM is to combine the
counter mode for encryption (CTR, cf. Section 5.1.5) with CBC-MAC for authen-
tication. For both mechanisms, the CTR mode and CBC-MAC, the same key k is
used. CCM is widely used in practice, e.g., in the WPA2 security protocol for pro-
tecting Wi-Fi communication, in Bluetooth Low Energy and in IPsec.

CCM works in the fashion of authenticate-then-encrypt, i.e., first a MAC is com-
puted and subsequently the tag m of the MAC together with the entire message
are encrypted. The two CCM processes are called generation-encryption (by the
sender, Alice) and decryption-verification (by the receiver, Bob) and are described
in the following. Figure 13.5 shows the generation-encryption process for a message
x. The counter values CTRi are constructed in the same way as for the counter en-
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cryption mode, as introduced in Section 5.1.5. The sender, Alice, first computes the
MAC value m and then encrypts m together with the actual message. She sends the
ciphertext consisting of the n+1 blocks (y0, . . . ,yn) to Bob. It is interesting to look
at what’s happening with the MAC tag m. First, we note that it is only an internal
value that is not sent in the clear over the channel (which is in contrast to the MAC-
only modes CBC-MAC and CMAC introduced above). Second, the MAC value m is
encrypted and becomes the first ciphertext block y0, which is then transmitted over
the channel. The IV must be a nonce, i.e., a value used only once; cf. Section 5.1.2
for more information on IVs and nonces. It must also be ensured that the nonce is
not identical to any of the counter values CTRi.

nm

n

m

n

n

IV

k x

n

Fig. 13.5 Generation-encryption process of the CCM code

On the receiving side, Bob performs the decryption-verification operation shown
in Figure 13.6. For the verification, the MAC tag m has be to re-computed by Bob,
which requires the plaintext x1, . . . ,xn. Hence, Bob has first to decrypt the ciphertext
blocks (upper part of the figure) and subsequently he computes the MAC (lower part
of the figure). The actual verification consists of comparing the tag m′ computed by
Bob with the received tag m that was sent by Alice.

The CCM mode according to the NIST standard (officially named the NIST Spe-
cial Publication 800-38C) involves more details, which have been elided for clarity
in the description in this section. For instance, the standard specifies associated data,
which is a piece of plaintext that is authenticated but not encrypted. This can be, for
instance, header information that the sender wishes to send in the clear.
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Fig. 13.6 Decryption-verification process of the CCM code

13.3.4 Authenticated Encryption: The Galois Counter Mode
(GCM)

Similarly to CMAC, the Galois Counter mode (GCM) also combines encryption
and MAC computation. It is widely used in practice, i.e., in IPsec and TLS. GCM
provides what is called authenticated encryption with associated data (AEAD). “As-
sociated data” is used in situations where certain parts of the message should not be
encrypted, e.g., headers of network packets or frames. While the associated data
is not encrypted, the MAC is computed over both the actual plaintext message to-
gether with the associated data. Since the associated data is also MAC-protected, an
AEAD mode allows detection of attacks where ciphertexts are copied into messages
with different headers (which are part of the AE) since it binds associated data to
the ciphertext. Below we present a slightly simplified version of the GCM mode,
omitting some padding details for clarity.

GCM works in the fashion of encrypt-then-authenticate, i.e., the plaintext is first
encrypted and the MAC is computed from the resulting ciphertext blocks. Fig-
ure 13.7 shows a diagram of the GCM mode. On the sender side, GCM encrypts
data using the counter mode (dashed box in the figure) followed by the computation
of a MAC value (lower part). For details on the counter mode and the generation
of the counter values CTRi, please refer to Section 5.1.5. As in all counter modes,
GCM allows for precomputation of the block cipher function if the initialization
vector is known ahead of time.

For authentication, GCM performs an innovative approach based on a series of
Galois field multiplications. For computing the MAC tag, a subkey H is needed,
which is computed from the encryption key k as follow:
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m

Fig. 13.7 Basic authenticated encryption in Galois Counter mode

H = ek(0)

As can be seen from the lower part of Figure 13.7, the ciphertexts are chained to-
gether in the following way: Each ciphertext yi is XOR-added with the result of the
previous iteration and then multiplied with the subkey H. The first ciphertext y1 is
XORed with the result of the multiplication of the associated data (denoted by AAD
— additional authenticated data) and the subkey. After the last ciphertext block yn
has been multiplied with H, a bit string that contains the length of the associated
data and the length of the sum of all ciphertexts is XOR-added. The result of this
XOR operation is finally multiplied with the output of the encryption of the first
counter value CTR0.

The multiplications are in the 128-bit Galois field GF(2128) with the irreducible
polynomial P(x) = x128 + x7 + x2 + x+ 1. This implies that the block cipher used
must have a block size of 128 bits. Such ciphers are quite common, the most promi-
nent example being AES. Since only one multiplication is required per block cipher
encryption, the authentication adds very little computational overhead to the encryp-
tion.

The receiver, Bob, gets the packet [(y1, . . . ,yn),m,AAD], which contains three
types of data, the actual encrypted message, the authentication tag m and the un-
encrypted associated data. To recover the message, Bob simply applies the counter
mode to the blocks yi. To check the authenticity of the data, he also computes an
authentication tag m′ using the received ciphertext and AAD as input. For the com-
putation he employs exactly the same steps as the sender. If m and m′ match, the
receiver is assured that the cipertext (and the AAD) were not manipulated in transit
and that only the sender could have generated the message.
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13.3.5 Galois Counter Message Authentication Code (GMAC)

GMAC is a variant of the Galois Counter Mode (GCM) introduced in Section 13.3.4
above. In contrast to the GCM mode, GMAC does not encrypt data but only com-
putes the message authentication code. The mode is used in applications that do not
require confidentiality of the data but still need message integrity and authenticity.
GMAC allows for easy parallelization, which is attractive for high-speed applica-
tions. The mode can be efficiently implemented in hardware and can reach through-
puts of 100 Gbit/sec and above.

The mode is part of many widely used standards. For instance, GMAC is speci-
fied within the IPsec standard for internet security, where it is used for the Encapsu-
lating Security Payload (ESP) and the Authentication Header (AH).

13.4 Discussion and Further Reading

MACs from Block Ciphers Historically, block cipher-based MACs have been the
dominant method for constructing message authentication codes. As early as 1977,
i.e., only a couple of years after the announcement of the Data Encryption Standard,
it was suggested that DES could be used to compute cryptographic checksums [66].
In the following years, block cipher-based MACs were standardized in the USA and
became widely used for ensuring the integrity of financial transactions, e.g., in the
1985-issued FIPS 113. This was a standard for the CBC-MAC construction with
DES as encryption algorithm, which expired in 2008. The main security deficiency
of CBC-MAC is an existential forgery attack, a description of which can be found
in [189, Example 9.62]. Problem 13.8 also shows an example of such an attack.

The four modern MAC constructions CMAC, CCM, GCM and GMAC intro-
duced in this chapter were standardized by NIST in the years 2004–2007. They are
described in a series of NIST Special Publications 800-38 (SP 800-38), which also
contains modes of operation for encryption. For ease of reading, we show below
again Table 5.1 from Section 5.4, which summarizes the NIST Special Publica-
tions 800-38. Please refer to Section 5.4 for more details.

SP-800-38 A B C D E F
[101] [105] [103] [102] [104] [106]

modes ECB, CBC,
CFB, OFB,

CTR

CMAC CCM GCM,
GMAC

XTS-AES KW, KWP,
TKW

confidentiality X X (X) X
authentication X X X
key wrap X
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As mentioned in the text, the CMAC construction is an improved version of
CBC-MAC, which has security weaknesses. CMAC is based on the OMAC (One-
key MAC) construction, which was proposed by Iwata and Kurosawa [154] in 2003.
In turn, OMAC improves the XCBC MAC construction, which was proposed by
Rogaway and Black [51] in 2000, which itself is an improvement of the CBC-MAC
algorithm.

Hash Function-Based MACs The HMAC construction was originally proposed
at the conference CRYPTO 1996 [32]. A very accessible treatment of the scheme
can be found in [33]. As described in the text, HMAC is attractive because it pre-
vents length extension attacks, described in Section 13.2. HMAC was turned into
an internet RFC, and was quickly adopted in many internet security protocols, in-
cluding TLS and IPsec. In both cases it protects the integrity of a message during
transmission. It is currently widely used with the hash function SHA-2.

Other MAC Constructions Another type of message authentication code is based
on universal hashing and is called UMAC. UMAC is backed by a formal security
analysis, and the only internal cryptographic component is a block cipher used to
generate the pseudorandom pads and internal key material. The universal hash func-
tion is used to produce a short hash value of fixed length. This hash is then XORed
with a key-derived pseudorandom pad. The universal hash function is designed to be
very fast in software (e.g., as low as one cycle per byte on contemporary processors)
and is mainly based on additions of 32-bit and 64-bit numbers and multiplication
of 32-bit numbers. Based on the original idea by Wegman and Carter [67], numer-
ous schemes have been proposed, e.g., the schemes Multilinear-Modular-Hashing
(MMH) and UMAC [138, 50].

13.5 Lessons Learned

� MACs provide two security services, message integrity and message authentica-
tion, using symmetric techniques. MACs are widely used in practical protocols.

� Both of these services are also provided by digital signatures, but MACs are
much faster.

� MACs do not provide non-repudiation.
� MACs of practical relevance are based either on block ciphers or on hash func-

tions.
� Authenticated encryption refers to schemes that perform both data encryption

and MAC computation.
� HMAC is a popular MAC based on hash functions. It is widely used in practice,

e.g., in TLS.
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Problems

13.1. As we have seen, MACs can be used to authenticate messages. With this prob-
lem, we want to show the difference between two protocols — one with a MAC, one
with a digital signature. In the two protocols, the sending party performs the follow-
ing operation:

1. Protocol A:
y = ek1 [x||h(k2||x)]

where x is the message, h(x) is a hash function such as SHA-3, e is a symmetric
encryption algorithm, “||” denotes simple concatenation, and k1, k2 are secret
keys, which are only known to the sender and the receiver.

2. Protocol B:
y = ek[x||sigkpr(h(x))]

Provide a step-by-step description (e.g., with an itemized list) of what the receiver
does upon receipt of y. You may want to draw a block diagram for the process on
the receiver’s side.

13.2. For hash functions it is crucial to have a sufficiently large number of output
bits, e.g., 256 bits, in order to thwart attacks based on the birthday paradox. Why are
much shorter output lengths of, e.g., 128 bits, sufficient for MACs in most cases?

For your answer, assume a message x that is sent in clear together with its MAC
over the channel: (x,MACk(x)). Clarify exactly what Oscar has to do in order to
attack this system.

13.3. We study two methods for integrity protection with encryption.

1. Assume we apply a technique for authenticated encryption (i.e., a scheme that
provides both confidentiality and authentication/integrity) in which a ciphertext
c is computed as

c = ek(x||h(x))

where h(x) is a hash function. This technique is not suited for encryption with
stream ciphers if the attacker knows the whole plaintext x. Explain exactly how
an active attacker can now replace x by an arbitrary x′ of his/her choosing and
compute c′ such that the receiver will verify the message as correct if a stream
cipher is used for the encryption function e(x). Assume that x and x′ are of equal
length. Will this attack work too if the encryption is done with a one-time pad?
What we are showing with this problem is that if confidentiality is broken, au-
thentication is also broken. A sound authenticated encryption scheme shouldn’t
have this behavior.

2. Is the attack still applicable if the checksum is computed using a keyed hash
function such as a MAC:

c = ek1(x||MACk2(x))

Assume that e(x) is a stream cipher as above.
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13.4. We will now discuss problems with an ad hoc MAC construction that is effi-
cient but cryptographically weak.

1. The message X to be authenticated consists of z independent blocks such that
X = x1||x2|| . . . ||xz, where every xi consists of |xi| = 8 bits. The input blocks are
consecutively put into a compression function h() that works as follows:

ci = h(ci−1,xi) = ci−1⊕ xi

with c0 = 0. Both the ci and the xi are 8-bit values. The MAC is computed from
the last output cz of the compression function:

MACk(X)≡ cz + k mod 28

where k is a 64-bit shared key. Describe how exactly the (effective part of the)
key k can be calculated with only one known message X .

2. Perform this attack for the following values and determine the key k:

X = HELLO ALICE!

c0 = 1111 11112

MACk(X) = 1001 11012

3. What is the effective key length of k?

13.5. MACs are, in principle, also vulnerable against collision attacks. We discuss
this issue in the following.

1. Assume Oscar found a collision between two messages, i.e.,

MACk(x1) = MACk(x2)

Assume an authenticated message exchange between Alice and Bob without en-
cryption. Show what Oscar has to do in order to exploit the collision.

2. Even though the birthday paradox can still be used for constructing collisions,
why is it much harder to construct them in a practical setting for MACs than for
hash functions? Since this is the case: What security is provided by a MAC with
a 128-bit output compared to a hash function with 128-bit output?

13.6. MACs can be an alternative to asymmetric signatures for verifying the au-
thenticity of entities (also referred to as identification). In Section 10.1.4, a simple
asymmetric protocol is shown for the identification of Alice.

1. Describe a similar protocol where Alice and Bob use a MAC for the authentica-
tion of Alice.

2. Extend the protocol in such a way that Alice and Bob mutually authenticate each
other.
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13.7. We consider MACs from hash functions. Show the two principle attacks
against secret prefix and secret suffix MACs:

MACk(x) = H(k||x) (secret prefix)
MACk(x) = H(x||k) (secret suffix)

where H(x) denotes a cryptographically strong hash function based on the Merkle–
Damgård construction.

13.8. In this problem we study an adaptive chosen-plaintext attack against CBC-
MAC. We’ll show that CBC-MAC can be insecure under certain assumptions.

Assume an attacker, Oscar, who has access to an oracle O that computes a MAC
for messages of arbitrary sizes with a key k, which is unknown to Oscar. (In practice,
such an oracle could be “built” if the attacker can trick Alice or Bob into authenticat-
ing messages that he sends to them.) We want to show that Oscar can use messages
with oracle-generated MACs to construct a new messages with a valid MAC. For
simplicity, we assume that an IV consisting of all zeroes is used.

1. The attacker’s goal is to construct a valid MAC for the message X ′ = x1x2x3
without requesting MAC(X ′) from the oracle. He first requests the MAC for the
message X = x1x2 from the oracle. What other message has to be send to the
oracle by the attacker so that he has MAC(X ′)? We assume that each xi has the
width of the block cipher used by CBC-MAC.

2. Explain why the attack works, i.e., what the problematic aspect of CBC-MAC is.
3. Is the attack still possible if the CMAC scheme is used? Justify your answer.



Chapter 14
Key Management

With the cryptographic mechanisms that we have learned so far, in particular sym-
metric and asymmetric encryption, digital signatures and message authentication
codes (MACs), one can relatively easily achieve the basic security services intro-
duced in Section 10.1.3:

� Confidentiality (using encryption algorithms)
� Integrity (using MACs or digital signatures)
� Message authentication (using MACs or digital signatures)
� Non-repudiation (using digital signatures)

Similarly, identification can be accomplished through protocols that make use of
symmetric or aysmmetric cryptographic primitives.

However, all cryptographic mechanisms rely on a proper generation of keys and
their secure distribution between the parties involved. In practice, the task of key
management is often one of the most important and most difficult parts of a cryp-
tosystem. We already learned some ways of distributing keys over insecure chan-
nels, in particular the Diffie–Hellman key exchange. In this chapter you will learn
more about key management and respective methods for generating and establishing
keys between remote parties. In particular, we will discuss:

� How to derive multiple session keys from an initial key
� How keys can be established using symmetric and asymmetric primitives
� Why public-key techniques still have shortcomings for key distribution
� What certificates are and how they are used
� The role that public-key infrastructures play
� The importance of management over the life cycle of a cryptosystem
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14.1 Introduction

In this section we introduce some terminology and show a simple key distribution
scheme. The latter is helpful for motivating more advanced methods, which we will
introduce subsequently. After this, we will introduce key derivation mechanisms in
Section 14.2. Later in this chapter we will first discuss the crucial issues of key
establishment techniques based on symmetric and asymmetric mechanisms (Sec-
tions 14.3 and 14.4, respectively). We will then introduce public-key infrastructures,
or PKIs, in Section 14.5, which are needed to make asymmetric key establishment
work in practice. The chapter will conclude with a discussion of practical aspects of
key management in Section 14.6.

Roughly speaking, key establishment deals with distributing a shared secret be-
tween two or more parties. Methods for this can be classified into key transport and
key agreement methods, as shown in Figure 14.1. A key transport protocol is a tech-
nique where one party securely transfers a secret value to others. In a key agreement
protocol, two (or more) parties derive the shared secret where all parties contribute
to the secret. Ideally, none of the parties can control what the final joint value will
be.

Fig. 14.1 Classification of key establishment schemes

Key establishment itself is strongly related to identification. There is always the
threat that an adversary tries to masquerade as either Alice or Bob with the goal of
establishing a secret key with the other party. To prevent such attacks, each party
must be assured of the identity of the other entity. All of these issues are addressed
in this chapter.

The n2 Key Distribution Problem

Until now we mainly assumed that the necessary keys for symmetric algorithms are
distributed via a “secure channel”, as depicted at the beginning of this book in Fig-
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ure 1.5. Distributing keys this way is sometimes referred to as key predistribution
or out-of-band transmission since it typically involves a different mode (or band)
of communication, e.g., the key is transmitted via a phone line or in a letter. Even
though this seems somewhat clumsy, it can be a useful approach in certain practical
situations, especially if the number of communicating parties is not too large. An ex-
ample from practice is key predistribution in a WiFi home network between a router
and a few end devices. The WiFi community uses the term pre-shared key (PSK) for
this approach. In most situations it is fairly easy to manually install the WiFi keys
on a limited number of laptops, smartphones or smart home devices. However, key
predistribution quickly reaches its limits even if the number of entities in a network
is only moderately large. This leads to the well-known n2 key distribution problem.

We assume a network with n users, where every party is capable of communi-
cating with every other one in a secure fashion, i.e., if Alice wants to communicate
with Bob, these two share a secret key kAB, which is only known to them but not to
any of the other n−2 parties. This situation is shown for the case of a network with
n = 4 participants in Figure 14.2.

Fig. 14.2 Keys in a network with n = 4 users

From this example, we can extrapolate several features of the scheme for the case
of n users:

� Each user must store n−1 keys.
� There is a total of n(n−1)≈ n2 keys in the network.
� A total of n(n−1)/2 =

(n
2

)
symmetric key pairs are in the network.

� If a new user joins the network, a secure channel must be established with every
other user in order to upload new keys.
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The consequences of these observations are not very favorable if the number of users
increases. The first drawback is that the number of keys in the system is roughly n2.
Even for moderately sized networks, this number becomes quite large. All these
keys must be generated securely at one location, which is typically some type of
trusted authority. The other drawback, which is often more serious in practice, is
that adding one new user to the system requires updating the keys of all existing
users. Since each update requires a secure channel, this is very cumbersome.

Example 14.1. A mid-size company with 800 employees wants to allow secure com-
munication among all possible pairs of employees using symmetric mechanisms.
This will allow confidentiality through symmetric encryption as well as authentica-
tion and integrity via MACs. For this purpose, 800× 799/2 = 319,600 symmetric
key pairs must be generated, and 800× 799 = 639,200 keys must be distributed
via secure channels. Moreover, if employee number 801 joins the company, all 800
other users must receive a key update. This means that 801 secure channels (to the
800 existing employees and to the new one) must be established.
�

Obviously, this approach does not work for medium or large networks, and cer-
tainly not for the internet. However, there are applications where the number of
users is (i) small and (ii) does not change frequently. An example could be a com-
pany with a small number of branches, which all need to communicate with each
other securely. Adding a new branch does not happen too often, and if this happens
it can be tolerated that one new key is uploaded to each of the existing branches.

To solve the aforementioned problems with efficient key distribution to individ-
ual parties, we need to discuss the general methodology of how to generate these
keys. In earlier chapters, we learned that secret keys need to be fresh and randomly
chosen. In practice however, there are also use cases where it is beneficial to de-
rive keys from an initial key or from a so-called master key. Such methods for key
derivation are useful, for example, for central authorities that are required to effi-
ciently (re-)generate keys for each user that communicates over a large network. If
individual user keys can be efficiently derived from the master key, the central au-
thority does not need to store all user keys. Furthermore, key derivation can also be
used for transformations of local secrets, such as for the conversion of passwords
or passphrases into secret keys. The following section will discuss many facets of
secure and efficient key derivation in detail.

14.2 Key Derivation

So far in this book, we have considered two ways of generating cryptographic
keys. Either we have assumed that they come from true random number generators
(TRNGs) or they are the result of an asymmetric protocol such as the Diffie-Hellman
key exchange. In practice, there are often additional problems. For instance, TRNGs



14.2 Key Derivation 487

require a reliable source of entropy, which simply is not available on many comput-
ing platforms. In the case of asymmetric key establishment protocols, the gener-
ated keys for the application often are larger than required and must somehow be
shortened. Also, there are applications in which it is necessary to generate many
ephemeral keys from one master key in order to ensure key freshness. The latter
ensures that if one ephemeral key is compromised, an attacker can only decrypt
a limited amount of plaintext. A solution in such scenarios is key derivation, i.e.,
generation of one or several cryptographic keys from a secret value. Here are some
scenarios in which key derivation is needed:

� Derivation of (many) keys from a pre-shared master key
� Derivation of a secret key from a password (which is easier to remember and to

enter for humans)
� Derivation of a symmetric key from an asymmetric key establishment protocol

that produces values which are too long to be directly used as symmetric keys
� Derivation of a key from biometric properties
� ...

In the following, we will describe the general principle of key derivation and discuss
password-based key derivation as an important application.

Key Derivation Functions

The basic idea behind a key derivation function (KDF) is to compute a key kd from
an existing secret value k. Figure 14.3 shows the principle of a KDF. As can be
seen, in most cases a second parameter s, which does not have to be kept secret, is
processed together with the joint secret k. Crucial for the KDF is that for every value

k

d

s

Fig. 14.3 Principle of key derivation

s a different key kd is derived. Often a non-secret value such as a counter or a nonce



488 14 Key Management

is used as s. With this setup, two parties (Alice and Bob) who have established a
joint secret can derive multiple session keys kd by using a synchronized counter for
the value of s. Alternatively, Alice can generate a nonce and send it in clear to Bob.
Both can then feed the nonce as input s into the KDF.

Internally, the KDF applies a pseudorandom function (PRF) to generate the out-
put. A PRF is a function whose output cannot be distinguished (with a reasonable
chance of success) from a truly random value. In practice, PRFs are usually con-
structed from hash functions or block ciphers. An example of a KDF built with the
HMAC (cf. Section 13.2) construction is given below:

kd = KDF(k,s) = HMACk(s)

Password-Based Key Derivation

Even though alternatives such as biometrics exist, passwords still are most com-
monly used for user authentication in computer systems. Even in two-factor au-
thentication, one of the two factors often is a password. Thus, it does not come as
a surprise that a major application for KDFs is key generation from passwords or
passphrases for user authentication. Since humans are bad at remembering even a
moderate number of random bits or digits, easy-to-remember passwords are com-
monly used as secret information for authentication. Obviously, within a computer
system, an entered password needs to be checked for correctness. A naı̈ve approach
would be to directly compare the password input to the passwords stored in a pass-
word file. However, this would constitute a major vulnerability since the loss of the
password file, e.g., through a hacked computer system, would immediately expose
all user passwords. In order to overcome this problem, each password is fed into a
KDF and only the KDF output is stored in the password file. If a user Alice wants
to authenticate herself and enters her password, the KDF of the password is com-
puted and the output is compared to the values stored under “Alice” in the password
file. The important KDF property is the one-wayness: Given the password file, an
attacker is not able to compute the original passwords. The only remaining option
that he has is to guess possible passwords, hash each guess and compare them to the
entries in the (stolen) password file.

Since stolen files with hashed passwords unfortunately are widely available
among cyber criminals (and some files can even readily be found on the internet),
one has to protect against a brute-force password search. For this, a large number
of common and not-so-common passwords are generated. The adversary feeds each
of these passwords into the KDF and checks whether the output is contained in
the file with hash passwords. A variant of such brute-force attacks is dictionary at-
tacks, which are precomputed tables that contain many commonly used passwords
together with their hash value. Even though this attack is — like all brute-force at-
tacks — in principle always possible, it can be made considerably harder through
the following two mechanisms.
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The first countermeasure is the introduction of a salt value for the password hash-
ing. The password itself is used as the input K to the KDF while the salt is used as
the second input s (cf. Figure 14.3). The salt does not have to be secret but every
user should have a different salt when the password is hashed for the first time. This
ensures that even if two users share the same password, the two resulting hash values
kd are different since two different salt values are used. For the salt, often a random
value is used. Please note that the salt is stored in clear on the computer system
together with the hash. If a user enters a password, the system looks up the user’s
salt value and feeds it into the KDF together with the password. With this setup,
dictionary attacks are prevented through the introduction of salt values. They also
prevent adversaries from employing a rainbow table, which is a powerful method
for accelerating password searches.

The second countermeasure against password-search attacks is to slow the com-
putation of the KDF down. This is commonly achieved through iterating the pseudo-
random function that is at the heart of the KDF. For instance, if a hash function is
used as PRF, a slow-down can easily be achieved if the output kd is computed by
iterating the hash function, for instance, 1024 times. This directly slows down the
adversary’s password search by a factor of 1024.

In the following, we look into a practical KDF that is often employed for
password-based key generation.

The Password-Based Key Derivation Function PBKDF2

One widely used key derivation function is PBKDF2 (Password-Based Key Deriva-
tion Function #2), which is also standardized as an RFC. PBKDF2 maps passwords
to secret keys, which can be used for cryptographic functions. An important prop-
erty of PBKDF2 and other modern key derivation functions is that the computational
effort for computing a key can be adjusted. In particular, for security reasons it is
attractive to make key derivation slow. As described above, this makes brute-force
attacks on password files considerably more difficult.

PBKDF2 is based on a keyed pseudorandom function such as HMAC (cf. Sec-
tion 13.2) and requires four inputs to generate the derived output key kd :

kd = PBKDF2PRF(Pwd,s, i,kLen)

where Pwd is the password, s the salt, i the iteration counter and kLen the desired
key output length in bytes. In practice, PBKDF2 is often used with the HMAC
construction, which in turn is based on the SHA-1 or SHA-2 hash function (cf.
Section 11.3.2). The hash function is used iteratively. The number of hash iterations
is determined by the value of i. The goal is to increase the time it takes to derive
a key from an entered password. In practice, common values range between the
recommended minimum of 1024 to 4096 iterations, while applications that require
long-term security may use several 100,000 hash iterations. Below is an example of
an instantiation of PBKDF2.
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Example 14.2. We consider PBKDF2 with a key length of kLen = 32 bytes (that is,
256 bits) and HMAC as pseudorandom function with SHA-256 as underlying hash
function. The 256 output bits of the HMAC form the 32-byte output.

As can be seen from Figure 14.4, the HMAC function is invoked recursively i
times, where the output U j of every HMAC computation is used as input for the
subsequent HMAC computations. The key kd is constructed as the bit-wise XOR
sum over all HMAC outputs, which prevents intermediate computations from being
easily skipped by an attacker.

i times

s Int

Fig. 14.4 Example of PBKDF2 with HMAC-SHA256

The input to the first HMAC computation is the salt s together with 32 bits with
the integer representation of the number 1. If more than 32 bytes are needed for the
key kd , the computation shown in the figure is performed again but with a different
integer as initial input. For instance, for computing key bytes 33–64, the initial input
is

U0 = s||Int(2)

The next key bytes 65–96 are computed with U0 = s||Int(3) etc.

14.3 Key Establishment Using Symmetric-Key Techniques

In practice, agreeing on keys between Alice and Bob, or among many more users,
is often one of the most challenging tasks when using cryptography. To this end,
we note that symmetric ciphers can be used to establish secret (session) keys. This
is somewhat surprising because we assumed for most of the book that symmetric
ciphers themselves need a secure channel for establishing their keys. However, it
turns out that it is in many cases sufficient to have a secure channel only initially,
when a new user joins the network. This is in practice often achievable for computer
networks because at set-up time a (trusted) system administrator might be needed
in person anyway who can install a secret key manually. In the case of embedded
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devices, such as smartphones or IoT devices, a secure channel is often given during
manufacturing, i.e., a secret key can be loaded into the device “in the factory”.

The protocols introduced in this section all perform key transport and not key
agreement.

14.3.1 Key Establishment with a Key Distribution Center

The protocols developed in the following rely on a Key Distribution Center (KDC).
This is a server that is fully trusted by all users and that shares a secret key with each
user. This key, which is named the Key Encryption Key (KEK), is used to securely
transmit session keys to users.

Basic Protocol

A necessary prerequisite is that each user U shares a unique secret KEK kU with
the key distribution center, which has been predistributed through a secure channel.
Let us look what happens if one party requests a secure session from the KDC, e.g.,
Alice wants to communicate with Bob. The interesting part of this approach is that
the KDC encrypts the session key, which will eventually be used by Alice and Bob.
In a basic protocol, the KDC generates two messages, yA and yB, for Alice and Bob,
respectively:

yA = ekA(kses)

yB = ekB(kses)

Each message contains the session key encrypted with one of the two KEKs. The
protocol looks like this:
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Basic Key Establishment Using a Key Distribution Center

Alice KDC Bob
KEK: kA KEK: kA, kB KEK: kB

RQST(IDA,IDB)−−−−−−−−−→
generate random kses
yA = ekA (kses)
yB = ekB (kses)

yA←−−−−−−−−− yB−−−−−−−−−→
kses = e−1

kA
(yA) kses = e−1

kB
(yB)

y = ekses (x)
y−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ x = e−1

kses
(y)

The protocol begins with a request message RQST(IDA, IDB), where IDA and
IDB simply indicate the users involved in the session. The actual key establishment
protocol is executed in the upper part of the drawing. Below the solid line, as an
example, it is shown how Alice and Bob can now communicate with each other
securely using the session key.

It is important to note that two types of keys are involved in the protocol. The
KEKs kA and kB are long-term keys that do not change. The session key kses is an
ephemeral key that changes frequently, ideally for every communication session. In
order to understand this protocol more intuitively, one can view the predistributed
KEKs as forming a secret channel between the KDC and each user. With this inter-
pretation, the protocol is straightforward: The KDC simply sends a session key to
Alice and Bob via the two respective secret channels.

Since the KEKs are long-term keys, whereas the session keys typically have a
much shorter lifetime, in practice sometimes different encryption algorithms are
used with the different type of keys. Let’s consider the following example. In a pay-
TV system AES might be used with the long-term KEKs kU for distributing session
keys kses. The session keys might only have a lifetime of, say, one minute. The ses-
sion keys are used to encrypt the actual plaintext — which is the digital TV signal in
this example — with a fast lightweight cipher (e.g., PRESENT with an 80-bit key,
cf. Section 3.7.3). The advantage of this arrangement is that even if a session key be-
comes compromised, only one minute’s worth of multimedia data can be decrypted
by an adversary. Thus, the cipher that is used with the session key does not nec-
essarily need to have the same cryptographic strength as the algorithm that is used
for distributing the session keys. On the other hand, if one of the KEKs becomes
compromised, all prior and future traffic can be decrypted by an eavesdropper.

It is easy to modify the above protocol such that we save one communication.
The modified protocol is shown in the following:
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Key Establishment Using a Key Distribution Center

Alice KDC Bob
KEK: kA KEK: kA, kB KEK: kB

RQST(IDA,IDB)−−−−−−−−−→
generate random kses
yA = ekA (kses)
yB = ekB (kses)

yA,yB←−−−−−−−−−
kses = e−1

kA
(yA)

y = ekses (x)
y,yB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

kses = e−1
kB

(yB)

x = e−1
kses

(y)

Alice receives the session key encrypted with both KEKs, kA and kB. She is able
to compute the session key kses from yA and can use it subsequently to encrypt the
actual message she wants to send to Bob. The interesting part of the protocol is that
Bob receives both the encrypted message y as well as yB. He needs to decrypt the
latter in order to recover the session key which is needed for computing x.

Both of the KDC-based protocols described above have the advantage that there
are only n long-term symmetric key pairs in the system, unlike the first naı̈ve scheme
that we encountered, where about n2/2 key pairs were required. The n long-term
KEKs only need to be stored by the KDC, while each user only stores his or her
own KEK. Most importantly, if a new user Noah joins the network, a secure channel
only needs to be established once between the KDC and Noah to distribute the KEK
kN .

Security

Even though the two protocols protect against a passive attacker, i.e, an adversary
that can only eavesdrop, there are attacks if an adversary can actively manipulate
messages and create faked ones.

Replay Attack One weakness is that a replay attack is possible. This attack makes
use of the fact that neither Alice nor Bob know whether the encrypted session key
they receive is actually a new one. If a previous key is reused, key freshness is
violated. This can be a particularly serious issue if an old session key has become
compromised. This could happen if an old key is leaked, e.g., through a hacker,
or if the encryption algorithm used with an old key has become insecure due to
cryptanalytical advances.
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If Oscar gets hold of a previous session key, he can impersonate the KDC and
resend old messages yA and yB to Alice and Bob. Since Oscar knows the session
key, he can decipher the plaintext that will be encrypted by Alice or Bob.

Key Confirmation Attack Another weakness of the above protocol is that Alice
is not assured that the key material she receives from the KDC is actually for a
session between her and Bob. This attack assumes that Oscar is also a legitimate
— but malicious — user. By changing the session-request message, Oscar can trick
the KDC and Alice into setting up a session between him and Alice, while Alice
assumes she has a secure session with Bob. Here is the attack:

Key Confirmation Attack

Alice Oscar KDC Bob
KEK: kA KEK: kO KEK: kA, kB, kO KEK: kB

RQST(IDA ,IDB)
−−−−−−−−−−−→

 substitute
RQST(IDA ,IDO)
−−−−−−−−−−−→

random kses
yA = ekA (kses)
yO = ekO (kses)

yA ,yO←−−−−−−−−−−−
kses = e−1

kA
(yA)

y = ekses (x)
y,yO−−−−−−−−−−−→

 intercept
kses = e−1

kO
(yO)

x = e−1
kses (y)

The gist of the attack is that the KDC believes Alice requests a key for a session
between Alice and Oscar, whereas she really wants to communicate with Bob. Alice
assumes that the encrypted key “yO” is “yB”, i.e., the session key encrypted under
Bob’s KEK kB. (Note that if the KDC puts a header IDO in front of yO, which
associates it with Oscar. Oscar can simply change the header to IDB.) In other words,
Alice has no way of knowing that the KDC prepared a session with her and Oscar;
instead she still thinks she is setting up a session with Bob. Alice continues with
the protocol and encrypts her actual message that is meant for Bob as y. If Oscar
intercepts y, he can decrypt it.

The underlying problem for this attack is that there is no key confirmation. If key
confirmation were given, Alice would be assured that Bob and no other user knows
the session key.
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14.3.2 Needham-Schroeder Protocol

A more advanced scheme that protects against both replay and key confirmation
attacks is the Needham-Schroeder protocol. It is the basis for Kerberos, which is a
popular protocol for authentication in computer networks. Kerberos was standard-
ized as an RFC in 1993 and is in widespread use. The Needham-Schroeder protocol
is also based on a KDC, which is named the “authentication server” in Kerberos
terminology. Le us first look at a simplified version of the protocol.

To prevent replay attacks, we introduces the nonces1 nA and nB to guarantee
freshness of the exchanged messages. The resulting protocol is shown below:

Key Establishment Using the Needham-Schroeder Protocol

Alice KDC Bob
KEK: kA KEK: kA, kB KEK: kB

generate nonce nA
RQST(IDA ,IDB ,nA)
−−−−−−−−−−−→

generate random kses
yA = ekA (kses,nA, IDB)
yB = ekB (kses, IDA)

yA ,yB←−−−−−−−−−−−
kses,n′A, IDB = e−1

kA
(yA)

verify n′A = nA
verify IDB

yB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
kses, IDA = e−1

kB
(yB)

verify IDA
generate nonce nB
yBA = ekses (nB)

yBA←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n′B = e−1

kses (yBA)
yAB = ekses (n

′
B +1)

yAB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n′B +1 = e−1

kses (yAB)
verify n′B +1 = nB +1

Needham-Schroeder ensures freshness through two measures. First, Alice gen-
erates a nonce nA for the session key. The nonce is encrypted in the answer of the
KDC. Hence, Alice knows that the session key has been generated after her request,
i.e., it is not a reused key from an earlier communication. Second, Bob likewise uses
a nonce nB that he sends to Alice in encrypted form. Alice decrypts and increments
the nonce. She then sends the new value n′B + 1 back to Bob. He verifies that the
incremented value is correct. If so, he is assured that Alice and he share the same
key kses.

1 We recall that nonce stands for “number used only once”, i.e., these are values that occur only
one time over the lifetime of a system. More about nonces is said in Section 5.1.2 in the context of
IVs.
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The protocol provides key confirmation and user authentication. In the begin-
ning, Alice sends a random nonce nA to the KDC. This can be considered a chal-
lenge because she challenges the KDC to encrypt nA with their joint KEK kA. If
the returned challenge n′A matches the sent one, Alice is assured that the message
yA was actually sent by the KDC. This method to authenticate a party is known as
challenge-response protocol. (Another example of a challenge-response scheme is
given in Section 10.1.4.) Through the inclusion of Bob’s identity IDB in yA, Alice is
assured that the session key is actually meant for a session between herself and Bob.
By including Alice’s identity IDA in yB, Bob can verify that the KDC generated a
session key for a connection between him and Alice.

Despite the improvements of the protocol, a specific replay attack is still possible.
We assume that Oscar was able to compromise an earlier session key kses (e.g., by
hacking into Alice’s computer system). He can then re-send yB to Bob. Bob will
verify IDA as correct and send yBA, which contains his encrypted nonce. Oscar can
intercept yBA and generate a valid yAB, which in turn will be verified as correct by
Bob. Bob will now assume he is in a legitimate session with Alice, while in fact he
is communicating with Oscar.

14.3.3 Remaining Problems with Symmetric-Key Distribution

Even though the Needham-Schroeder protocol can prevent certain attacks, there are
a number of general problems that exist for KDC-based schemes. They are sketched
below.

No perfect forward secrecy If any of the KEKs becomes compromised, e.g.,
through a hacker or software Trojan running on a user’s computer, the consequences
are serious. First, all future communications can be decrypted by the attacker who
eavesdrops. For instance, if Oscar gets a hold of Alice’s KEK kA, he can recover the
session key from all messages yA that the KDC sends out. Even more dramatic is the
fact that Oscar can also decrypt past communications if he has stored old messages
yA and y. Even if Alice immediately realizes that her KEK has been compromised
and she stops using it right away, there is nothing she can do to prevent Oscar from
decrypting her past communications. Whether a system is vulnerable when long-
term keys are compromised is an important feature of a security system for which
the following special terminology is used.

Definition 14.3.1 Perfect Forward Secrecy
A cryptographic protocol has perfect forward secrecy (PFS) if the
compromise of long-term keys does not allow an attacker to obtain
past session keys.
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Neither Needham-Schroeder nor the simpler protocols shown earlier offer PFS.
The main mechanism to ensure PFS is to employ public-key techniques, which we
discuss in Sections 14.4 and 14.5.

Secure channel during initialization As discussed earlier, all KDC-based proto-
cols require a secure channel at the time a new user joins the network for transmit-
ting that user’s KEK.

Communication requirements Another problem in practice is that the KDC needs
to be contacted if a new secure session is to be initiated between any two parties in
the network. Even though this is a performance rather than a security problem, it
can be a serious hindrance in a system with very many users. In Kerberos, one can
alleviate this potential problem by increasing the lifetime of the session keys. In
practice, Kerberos can run with tens of thousands of users. However, it would be a
problem to scale such an approach to “all” internet users.

Single point of failure All KDC-based protocols, including Kerberos, have the
security drawback that they have a single point of failure, namely the database that
contains the key encryption keys, the KEKs. If the KDC becomes compromised,
all KEKs in the entire system become invalid and have to be re-established using
secure channels between the KDC and each user.

14.4 Key Establishment Using Asymmetric Techniques

Public-key algorithms are especially suited for key establishment protocols since
they don’t share most of the drawbacks that symmetric key approaches have. In fact,
next to digital signatures, key establishment is the other major application domain
of public-key schemes. They can be used for both key transport and key agreement.
For the latter, the Diffie–Hellman key exchange or its variant elliptic curve Diffie–
Hellman (ECDH) are often used. For key transport, public-key encryption schemes
are used, e.g., RSA or Elgamal. We recall at this point that public-key primitives are
quite slow. For this reason the actual data encryption is usually done with symmetric
primitives like AES after a key has been established using asymmetric techniques.

For convenience, we restate the basic key transport protocol from Section 6.1. It
is assumed that Bob has set up an asymmetric encryption scheme with the key pair
kpub and kpr:
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Basic Key Transport Protocol

Alice Bob
kpub←−−−−−−−−−−−− kpub,kpr

choose random k
y = ekpub (k)

y−−−−−−−−−−−−→
k = dkpr (y)

encrypt message x:
z = AESk(x)

z−−−−−−−−−−−−→
x = AES−1

k (z)

With our discussion so far, it looks as though public-key schemes solve all key
establishment problems. It turns out, however, that all asymmetric schemes require
what is termed an authenticated channel to distribute the public keys. The remainder
of this chapter is chiefly devoted to solving the problem of authenticated public-key
distribution.

To study the problem of key authentication, we will look at the Diffie-Hellman
key exchange in the following section. We recall that the DHKE allows two parties
who have never met before to agree on a shared secret by exchanging messages over
an insecure channel. We restate the DHKE protocol here:

Diffie–Hellman Key Exchange

Alice Bob
choose random a = kpr,A choose random b = kpr,B
compute A = kpub,A ≡ αa mod p compute B = kpub,B ≡ αb mod p

A−−−−−−−−−−−−→
B←−−−−−−−−−−−−

kAB ≡ Ba mod p kAB ≡ Ab mod p

As we discussed in Section 8.4, if the parameters are chosen carefully, which
includes especially a prime p with a length of 2048 bits or more, the DHKE is
secure against eavesdropping, i.e., passive attacks.

14.4.1 Man-in-the-Middle Attack

We consider now the case where an adversary is not restricted to only listening to
the channel. Rather, Oscar can also actively take part in the message exchange by
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intercepting, changing and generating messages. This allows Oscar to perform what
is called a man-in-the-middle attack2, which is a very serious attack against public-
key algorithms. The underlying idea is that Oscar replaces the public keys of both
Alice and Bob with his own public key. This is possible whenever public keys are
not authenticated.

The MIM attack has far-reaching consequences for asymmetric cryptography.
For pedagogical reasons we will study the attack against the Diffie–Hellman key
exchange (DHKE). However, it is extremely important to bear in mind that the attack
is applicable against any asymmetric scheme unless the public keys are protected,
e.g., through certificates, a topic that is discussed in Section 14.4.2. The attack works
as follows:

Man-in-the-Middle Attack Against the DHKE

Alice Oscar Bob
choose a = kpr,A choose b = kpr,B
A = kpub,A ≡ αa mod p B = kpub,B ≡ αb mod p

A−−−−−−→  substitute Ã≡αo Ã−−−−−−→
B̃←−−−−−−  substitute B̃≡αo B←−−−−−−

kAO ≡ (B̃)a mod p kAO ≡ Ao mod p kBO ≡ (Ã)b mod p
kBO ≡ Bo mod p

Let’s look at the keys that are being computed by the three players, Alice, Bob
and Oscar. The key Alice computes is:

kAO = (B̃)a ≡ (αo)a ≡ α
oa mod p

which is identical to the key that Oscar computes as kAO =Ao≡ (αa)o≡αao mod p.
At the same time Bob computes:

kBO = (Ã)b ≡ (αo)b ≡ α
ob mod p

which is identical to Oscar’s key kBO = Bo ≡ (αb)o ≡ αbo mod p. Note that the two
malicious keys that Oscar sends out, Ã and B̃, have in fact the same value. We use
different names here merely to stress the fact that Alice and Bob assume that they
have received each other’s public keys.

What happens in this attack is that two DHKEs are being performed simultane-
ously, one between Alice and Oscar and another one between Bob and Oscar. As a
result, Oscar has established a shared key with Alice, which we termed kAO, and an-
other one with Bob, which we named kBO. However, neither Alice nor Bob is aware
of the fact that they share a key with Oscar and not with each other! Both assume
that they have computed a joint key kAB.

2 The “man-in-the-middle attack” should not be confused with the similarly sounding but in fact
entirely different “meet-in-the-middle attack” against block ciphers, which was introduced in Sec-
tion 5.3.1.
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From here on, Oscar has much control over the encrypted traffic between Alice
and Bob. As an example, here is how he can read encrypted messages in a way that
goes unnoticed by Alice and Bob:

Message Manipulation after a Man-in-the-Middle Attack

Alice Oscar Bob
message x
y = AESkAO (x)

y−−−−−−→ intercept

decrypt x = AES−1
kAO

(y)
re-encrypt y′ = AESkBO (x)

y′−−−−−−→
decrypt x = AES−1

kBO
(y′)

For illustrative purposes, we assumed that AES is used for the encryption. Of course,
any other symmetric cipher can be used as well. Please note that Oscar can not only
read the plaintext x but can also alter it prior to re-encrypting it with kBO. This can
have serious consequences, e.g., if the message x describes a financial transaction.

14.4.2 Certificates

The underlying problem of the man-in-the-middle attack is that public keys are not
authenticated. We recall from Section 10.1.3 that message authentication ensures
that the sender of a message is authentic. However, in the scenario at hand Bob
receives a public key that is supposedly Alice’s, but he has no way of knowing
whether this is in fact the case. To make this point clear, let’s examine how a key of
user Alice would look in practice:

kA = (kpub,A, IDA)

where IDA is identifying information, e.g., Alice’s email address or her name to-
gether with the date of birth. The actual public key kpub,A, however, is a mere binary
string, e.g., 2048 bits long. If Oscar performs a MIM attack, he changes the key to:

kA = (kpub,O, IDA)

Since everything is unchanged except the anonymous actual bit string which forms
the key, the receiver will not be able to detect that it is in fact Oscar’s. This ob-
servation has far-reaching consequences which can be summarized in the following
statement:

Even though public-key schemes do not require a secure channel, they
require an authenticated channel for the distribution of the public keys.
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We would like to stress again here that the MIM attack is not restricted to the DHKE
but is in fact applicable to any asymmetric cryptographic scheme. The attack al-
ways proceeds the same way: Oscar intercepts the public key that is being sent and
replaces it with his own.

The problem of trusted distribution of public keys is central in modern public-key
cryptography. There are several ways to address the problem of key authentication.
The main mechanism in practice is to use certificates. The idea behind certificates
is quite easy: Since the authenticity of the message (kpub,A, IDA) is violated by an
active attack, we apply a cryptographic mechanism that provides authentication.
More specifically, we use digital signatures3. Thus, a certificate for a user Alice in
its most basic form is the following structure:

CertA = [(kpub,A, IDA),sigkpr
(kpub,A, IDA)]

The idea is that the receiver of a certificate verifies the signature prior to using the
public key. We recall from Chapter 10 that a signature protects the signed message
— which is the tuple (kpub,A, IDA) in this case — against manipulation. If Oscar
attempts to replace kpub,A with kpub,O it will be detected. Thus, it is said that certifi-
cates bind the identity of a user to their public key.

Certificates require that the receiver has the correct verification key, which is a
public key. If we were to use Alice’s public key for this, we would have the same
problem that we are actually trying to solve. Instead, the signatures for certificates
are provided by a mutually trusted third party. This party is called the Certificate Au-
thority, commonly abbreviated as CA. It is the task of the CA to generate and issue
certificates for all users in the system. For certificate generation, we can distinguish
between two main cases. In the first case, the user computes her own asymmetric
key pair and merely requests the CA to sign the public key, as shown in the following
simple protocol for a user named Alice:

Certificate Generation with User-Provided Keys

Alice CA
generate kpr,A,kpub,A

RQST(kpub,A, IDA)−−−−−−−−−−−−→
verify IDA
sA = sigkpr ,CA(kpub,A, IDA)

CertA = [(kpub,A, IDA),sA]
CertA←−−−−−−−−−−−−

3 MACs also provide authentication and could, in principle, also be used for authenticating pub-
lic keys. However, because MACs themselves are symmetric algorithms, we would again need a
secure channel for distributing the MAC keys, with all the associated drawbacks.
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From a security point of view, the first transaction is crucial. It must be ensured
that Alice’s message (kpub,A, IDA) is sent via an authenticated channel. Otherwise,
Oscar could request a certificate in Alice’s name.

In practice it is often advantageous that the CA not only signs the public keys but
also generates the public/private-key pairs for each user. In this second case, a basic
protocol looks like this:

Certificate Generation with CA-Generated Keys

Alice CA

request certificate
RQST(IDA)−−−−−−−−−−−−→

verify IDA
generate kpr,A,kpub,A
sA = sigkpr ,CA(kpub,A, IDA)

CertA = [(kpub,A, IDA),sA]
CertA,kpr,A←−−−−−−−−−−−−

For the first transmission, an authenticated channel is needed. In other words:
The CA must be assured that it is really Alice who is requesting a certificate, and
not Oscar who is requesting a certificate in Alice’s name. Even more sensitive is
the second transmission, consisting of (CertA, kpr,A). Because the private key must
be sent, not only an authenticated but a secure channel is required. In practice, this
could be an out-of-band transmission, i.e., the private key is delivered by mail on a
USB stick or some other medium.

Before we discuss CAs in more detail, let’s have a look at the DHKE protocol
with certificates:

Diffie–Hellman Key Exchange with Certificates

Alice Bob
a = kpr,A b = kpr,B
A = kpub,A ≡ αa mod p B = kpub,B ≡ αb mod p
CertA = [(A, IDA),sA] CertB = [(B, IDB),sB]

CertA−−−−−−−−−−−−→
CertB←−−−−−−−−−−−−

verify certificate: verify certificate:
verkpub,CA (CertB) verkpub,CA (CertA)
compute session key: compute session key:
kAB ≡ Ba mod p kAB ≡ Ab mod p

One crucial point here is the verification of the certificates. Obviously, without
verification, the signatures within the certificates would be of no use. As can be
seen in the protocol, verification requires the public key of the CA. This key must
be transmitted via an authenticated channel, otherwise Oscar could perform MIM
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attacks again. It looks like we haven’t gained much from the introduction of certifi-
cates since we again require an authenticated channel! However, the difference from
the former situation is that we need the authenticated channel only once, at set-
up time. For instance, public verification keys are nowadays often included in PC
software such as web browsers or Microsoft software products. The authenticated
channel is assumed to be given through the installation of original software, which
has not been manipulated. What’s happening from a more abstract point of view is
extremely interesting, namely a transfer of trust. We saw in the earlier example of
DHKE without certificates that Alice and Bob have to trust each other’s public keys
directly. With the introduction of certificates, they only have to trust the CA’s public
key kpub,CA. If the CA signs other public keys, Alice and Bob know that they can
also trust those. This is called a chain of trust.

X.509 Certificates

In practice, certificates not only include the ID and the public key of a user, they
tend to be quite complex structures with much additional information. Figure 14.5
shows as an example of an X.509 certificate. X.509 is an important standard for
network authentication services, and the corresponding certificates are widely used
for internet communication, i.e., in TLS, IPsec and S/MIME.

Discussing the various fields in the X.509 structure gives us some insight into
what’s involved when using public keys and certificates in the real world. We look
into some of the issues below:

1. Certificate Algorithm: Here is specified which signature algorithm is being used,
e.g., RSA with SHA-2 or ECDSA with SHA-3, and with which parameters, e.g.,
the bit lengths.

2. Issuer: There are many companies and organizations that issue certificates. This
field specifies who generated the one at hand.

3. Period of Validity: In most cases, a public key is not certified indefinitely but
rather for a limited time, e.g., for one or two years. One reason for doing this is
that the private key, which belongs to the certificate, may become compromised.
By limiting the validity period, there is only a certain time span during which
an attacker can maliciously use the private key. Another reason for a restricted
lifetime is that, especially for certificates for companies, it commonly happens
that users leave the company. If the certificates, and thus the public keys, are only
valid for a limited time, the damage that may be caused by a former employee
can be controlled.

4. Subject: This field contains what was called IDA or IDB in our earlier examples. It
contains identifying information such as names of people or organizations. Note
that not only actual people but also entities like companies can obtain certificates.

5. Subject’s Public Key: The public key that is to be protected by the certificate
is here. In addition to the binary string that is the actual public-key value, the
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Fig. 14.5 Structure of an X.509 certificate

algorithm (e.g., Diffie–Hellman) and the algorithm parameters, e.g., the modulus
p and the primitive element α , are stored.

6. Signature: The signature over all other fields of the certificate.

We note that in every certificate two public key algorithms are involved: (i) the
one whose public key is protected by the certificate and (ii) the signature algorithm
with which the certificate is signed. These can be entirely different algorithms and
parameter sets. For instance, the certificate might be signed with an RSA 2048-bit
algorithm, while the public key within the certificate could be a 256-bit elliptic curve
Diffie-Hellman scheme.

14.5 Public-Key Infrastructures (PKIs) and CAs

The entire system that is formed by CAs together with the necessary support mech-
anisms is called a public-key infrastructure, commonly referred to as a PKI. As the
reader can perhaps imagine, setting up and running a PKI in the real world is a com-
plex task. Issues such as reliably establishing the identity of users during certificate
issuing and trusted distribution of CA keys have to be solved. There are also many
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other real-world aspects. Among the most complex are the existence of many differ-
ent CAs and revocation of certificates. We discuss some aspects of using certificate
systems in practice in the following.

14.5.1 Certificate Chains

In an ideal (simple) world, there would be one CA that issues certificates for, say,
all internet users on planet Earth. Unfortunately, that is not the case. There are many
different entities that act as CAs. First of all, many countries have their own “offi-
cial” CA, often for certificates that are used for applications that involve government
business. Second, most certificates for web services are issued by commercial enti-
ties or non-profit organizations. (Most web browsers have the public keys of those
CAs pre-installed.) Third, many large corporations issue certificates for their own
employees and external entities who do business with them. It would be virtually im-
possible for a user to have the public keys of all these different CAs to hand. What is
done instead is that CAs certify each other. This is referred to as cross-certification.

Let us look at an example where Alice’s certificate is issued by CA1 and Bob’s
by CA2. At the moment, Alice is only in possession of the public key of “her” CA1,
and Bob has only kpub,CA2. If Bob sends his certificate to Alice, she cannot verify
Bob’s public key. This situation looks like this:

Two Users with Different Certificate Authorities

Alice Bob
kpub,CA1 kpub,CA2

CertB = [(kpub,B, IDB),sigkpr,CA2
(kpub,B, IDB)]

CertB←−−−−−−−−−−−−

Alice can now request CA2’s public key, which is itself contained in a certificate
that was signed by Alice’s CA1:

Verification of a CA Public Key

Alice CA2

RQST(CertCA2)−−−−−−−−−−−−→
CertCA2←−−−−−−−−−−−−

verkpub,CA1 (CertCA2)

⇒ kpub,CA2 is valid
verkpub,CA2 (CertB)
⇒ kpub,B is valid
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The structure CertCA2 contains the public key of CA2 signed by CA1, which
looks like this:

CertCA2 = [(kpub,CA2, IDCA2),sigkpr,CA1
(kpub,CA2, IDCA2)]

The important outcome of the process is that Alice can now verify Bob’s key.
What’s happening here is that a certificate chain is being established. CA1 trusts

CA2, which is expressed by CA1 signing the public key kpub,CA2. Now Alice can
trust Bob’s public key since it was signed by CA1. This situation is called a chain
of trust, and it is said that trust is delegated.

In practice, CAs can be arranged hierarchically, where each CA signs the public
key of the certificate authorities one level below. Alternatively, CAs can cross-certify
each other without a strict hierarchical relationship.

Example 14.3. An example of a CA hierarchy is depicted in Figure 14.6. What is
shown are the users at the bottom with the CA hierarchy in the upper part. One can
see that there are different types of CAs: Issuing CAs, Intermediate CAs and Root
CAs. The actual user certificates — such as CAAlice — are generated by the Issuing
CAs. The Root CA, which is typically kept offline, plays a central role. A Root CA
is only used to certify underlying CAs, which happens very rarely (in contrast to
the frequent issuing of user certificates). Thus, Root CAs can stay securely offline
most of the time. The idea behind separating the Root CA from the Issuing CA is
to minimize risks. Issuing CAs are usually heavily exposed, e.g., on the internet or
in the production line of a company. With the shown architecture, if an Issuing CA
gets compromised, it can easily be revoked by the CA above and be substituted by a
new Issuing CA. In any case, for the user it is important to always check the entire
certificate chain up to the certificate of the Root CA.

If more than one Root CA is involved and they trust each other, they cross certify
each other, as shown with Root CA1 and Root CA2 in the figure. Root CAs can
either directly sign an Issuing CA, as shown in the middle of the figure. Or there can
can be an additional Intermediate CA to further reduce the direct dependency on the
Root CA. The Intermediate CA is typically also securely off-line most of the time.

In practice, CA architectures are often related to the hierarchy of the respective
company or institution. Most companies do have one Root CA and several CAs be-
low that. For instance, a large company with different business divisions often has
separate CAs for users and devices. Companies or organizations working closely
together can cross-certify each other’s Root CAs, which allows mutual trusted com-
munication between the companies involved.

14.5.2 Certificate Revocation

One major issue in practice is that it must be possible to revoke certificates. A com-
mon reason is that a certificate is stored on a hardware token such as a smart card
that is lost. Another reason could be that a person left an organization and one wants
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Fig. 14.6 Example architecture of a certificate hierarchy

to make sure that she is not using the public key which was given to her. In the
following we will discuss two methods to ensure the validity of certificates.

Certificate Revocation Lists

A simple solution in situations where we need to revoke certificates works as fol-
lows. Just publish a list with all certificates that are currently invalid. Such a list
is called a certificate revocation list, or CRL. Typically, the certificate serial num-
bers are used to identify the revoked certificates, cf. Figure 14.5. Of course, a CRL
must be signed by the CA because otherwise adversaries could maliciously revoke
certificates.

The problem with CRLs is their transmission to the users. The most straight-
forward way is that every user contacts the Issuing CA every time a certificate of
another user is received. The major drawback is that now the CA is involved in
every session set-up. This was a major shortcoming of KDC-based, i.e., symmetric-
key, approaches. The promise of certificate-based communication is that no online
contact to a central authority is needed.

An alternative is that CRLs are sent out periodically. The problem with this ap-
proach is that there is always a period during which a certificate is invalid but users
have not yet been informed. For instance, if the CRL is sent out at 3:00 am every
morning (a time with relatively little network traffic otherwise), a dishonest person
could have almost a whole day where a revoked certificate is still valid. To counter
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this, the CRL update period can be shortened, say to one hour. However, this would
be quite a burden on the bandwidth of the network. This is an instructive example of
the tradeoff between costs in the form of network traffic on one hand, and security
on the other hand. In practice, a reasonable compromise must be found.

In order to reduce the size of CRLs, often only the changes from the last CRL
broadcast are sent out. These update-only CRLs are referred to as delta CRLs.

Online Certificate Status Protocol

The Online Certificate Status Protocol (OCSP) is an internet protocol used to ob-
tain the revocation status of X.509 certificates, which were shown in Figure 14.5.
With OCSP, the current revocation status of a certificate can be determined with-
out requiring long CRLs. It is used in situations where a user wants to immediately
determine whether a received certificate has been revoked or not without waiting
for the next CRL update. For that purpose, the user (called an OCSP client) issues
a status request to an OCSP responder. Until a response is received by the client,
the acceptance of the certificates in question is suspended. Many current internet
browsers support OCSP and it has been published as RFC 6960.

Consider the following example: Alice obtains Bob’s public key embedded in
his certificate. The certificate has been issued by a CA some time ago. Alice is con-
cerned that Bob’s certificate is not valid anymore. In order to check the revocation
status of Bob’s certificate, she issues an OCSP status request that contains the serial
number of Bob’s certificate to the CA. This process is shown in the protocol below.

Example of an OCSP request to validate Bob’s certificate

Alice OCSP responder of CA

CertBob
kpub,CA

OCSP request(CertBob)
−−−−−−−−−−−−−−−−→

check revocation status
if CertBob is current: sign response

CertBob not revoked←−−−−−−−−−−−−−−−−
verkpub,CA (OCSP response)
⇒ CertBob valid
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14.6 Practical Aspects of Key Management

The focus of this book is on cryptographic algorithms and protocols to provide ba-
sic security services such as confidentiality, integrity and authenticity. A require-
ment for such systems to work properly is that the cryptographic keys involved are
handled correctly. It turns out that key management in practice is often a major
challenge. In fact, many security breaches in practice can be traced back to weak-
nesses in the key management. In the following we want to briefly sketch the various
aspects that have to be taken into account regarding key management when using
cryptography in the real world.

Clearly, keys have to be handled confidentially in the symmetric case and in an
authenticated manner in the case of public keys for asymmetric ciphers. But what
else is involved when it comes to designing and using a cryptosystem? It turns out
that we have to think carefully about many aspects related to keys during the entire
life cycle of a cryptosystem. Here are some of the questions that have to be addressed
when designing a security system:

� Do we use individual keys and/or global keys?
� How do we generate keys?
� How do we distribute keys?
� How often do we have to refresh the keys?
� How do we store keys?
� How are keys protected once they are in use?
� Do we have to back up the keys?
� Are the keys secure till the intended end of the lifetime of the system?
� How do we delete keys securely?

The answers to these questions should lead to a sound concept of key manage-
ment, which is crucial for the overall security of a real-world system. In contrast to
the purely cryptographic view of key management that was the main topic in this
book so far, real-world usage of keys has to take the whole life cycle of keys into
account, as depicted in Figure 14.7.

In the following, we will briefly discuss some of the important practical issues
when considering the key life cycle.

Key concept At the beginning of the life cycle, a sound key concept needs to be
developed. Besides how to use the keys during the operation of the system, the
concept has to cover the development phase as well as the decommissioning of the
key material. The concept addresses the choice of key type, i.e., whether a system
uses symmetric keys, asymmetric keys or both, and the respective parameters. Over
the lifetime of the system, it is important to consider all actors such as developers,
end users, system administrators etc., and to identify their rights and capabilities
with respect to key handling. Furthermore, the key concept addresses aspects such
as key diversity (e.g., global symmetric keys vs. device-specific keys) and public-
key infrastructure (cf. Section 14.5).
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Fig. 14.7 Life cycle of cryptographic keys

Key creation and key loading Generating or deriving keys securely is a crucial
part of the overall security. In Sections 14.3 and 14.2 we discussed methods for
key establishment and key derivation. However, in most applications we also need
to obtain an initial key — either a secret symmetric key or a trusted public key.
Two relevant options in practice are: generating keys inside the device or generat-
ing the keys outside and securely transferring the keys into the device. Generating
keys internally is an option for devices with a good source of entropy and sufficient
computational resources to compute a public/private-key pair. If this is not the case,
externally generated keys have to be loaded into the device. This can happen dur-
ing manufacturing or after the device has been fielded. Generating keys in a central
place might make sense for systems that need to store a backup of the keys or which
have other requirements such as throughput or quality of random numbers. On the
other hand, such a central key generation entity also requires a high level of security.

Lifetime The intended lifetime of a cryptosystem requires us to choose appropriate
parameters for the algorithms and keys. In particular, we have to make sure that the
security levels are still sufficient at the end of the lifetime. For instance, cars can
have a lifetime of two decades, which has to be taken into account when selecting
cryptographic schemes and key lengths. A prime example of a careful consideration
of lifetime security is the fact that asymmetric algorithms will become obsolete once
large-scale quantum computers become available in the future, cf. Section 12.1. In
such situations one has either to plan accordingly and equip the application from the
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beginning with post-quantum algorithms, or alternatively to allow for updates of the
cryptographic algorithm and key material. Since it is desirable that applications can
receive security updates anyway, the latter approach is attractive.

Key storage Keys need to be stored securely. Depending on the type of key, the
term securely has different meanings. In the case of symmetric keys we have to store
the keys confidentially. Additionally, we must distinguish between global keys and
keys for individual users or devices. A global symmetric key has extremely high
security requirements since a compromise will have system-wide consequences,
whereas loss of an individual key only affects a single user or device. The major
challenge when storing symmetric keys or asymmetric private keys is to protect
against read-out by malicious software. There are many approaches to achieve this.
One solution is to use a TPM, or Trusted Platform Module, which is a small hard-
ware device that provides secure key storage (and other security functions such as
cryptographic computations). There are also several software approaches to pro-
tect key material against unauthorized access. A certain level of protection can
be achieved if sensitive keys are stored in encrypted form and are only unlocked
through a user-provided password once they are needed.

14.7 Discussion and Further Reading

Key Derivation In Section 14.2, PBKDF2 has been introduced as an example
of a key derivation function. It is used in WPA2 (Wi-Fi encryption standard),
in VeraCrypt (an open-source disk encryption utility) and many other applica-
tions [100]. It is important to note that PBKDF2 allows the user to increase the
number of computations that an adversary needs when trying to guess passwords
but that this attack can be parallelized, for instance, by using special-purpose hard-
ware chips (ASIC), GPUs or FPGA machines such as COPACOBANA (cf. Sec-
tion 3.5.1). A remedy for this situation is key derivation functions that also increase
the amount of RAM memory needed by an attacker. The Password Hashing Com-
petition (PHC) was an initiative to select KDFs that are not only computationally
demanding for an attacker but also with respect to memory. PHC was held in 2013
and the algorithm Argon2 by Alex Biryukov, Daniel Dinu and Dmitry Khovratovich
(all University of Luxembourg) was selected as winner of the competition [5]. The
runners-up were the algorithms Catena, Lyra2, yescrypt and Makwa. An alternative
to the PHC functions is Balloon hashing by Dan Boneh, Henry Corrigan-Gibbs and
Stuart Schechter, which is part of the NIST guidelines for digital identities [240].

Symmetric Key Establishment Protocols Kerberos originated as a protocol for
authentication in computer networks as part of a project at the Massachusetts Insti-
tute of Technology (MIT) in the 1980s. As mentioned in Section 14.3.2, Kerberos
is based on the NeedhamSchroeder protocol. Steve Miller and Clifford Neuman
were instrumental in creating Version 5 of Kerberos, which was published as an
RFC in 1993 and updated as RFC 4120. Not surprisingly, the original Kerberos was
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designed with DES as symmetric cipher and this was replaced by AES in 2005.
Given that single DES can easily be broken, one should be careful not to use legacy
Kerberos implementations that use the Data Encryption Standard rather than AES.
Many derivatives of current Unix-like operation systems such as OpenBSD and
FreeBSD use Kerberos as authentication mechanism.

Asymmetric Key Establishment Protocols In most modern network security pro-
tocols, public-key schemes are used for establishing keys. In this book, we intro-
duced the Diffie–Hellman key exchange and described a basic key transport proto-
col in Chapter 6 (cf. Figure 6.5). In practice, more complex asymmetric protocols
are often used. However, most of them are based on either the Diffie–Hellman key
exchange or a key transport protocol. An overview of this area can be found in
Reference [63].

In the following are a few examples of generic cryptographic protocols that are
improvements of the basic Diffie–Hellman key exchange. The MTI (Matsumoto–
Takashima–Imai) protocols are an ensemble of authenticated Diffie–Hellman key
exchanges, which were already published in 1986. Good descriptions can be found
in [63] and [189]. A more recent method for authenticated Diffie–Hellman is the
MQV protocol, which is discussed in [170]. It is typically used with elliptic curves.

Prominent practical examples of protocols that realize key establishment are the
Internet Key Exchange (IKE) and TLS (or Transport Layer Security). IKE provides
key material for IPsec, which is the “official” security mechanism for internet traf-
fic. IKE is quite complex and offers many options. At its core, however, is a Diffie–
Hellman key agreement followed by an authentication. The latter can be achieved
either with certificates or with preshared keys. A good starting point for more infor-
mation on IPsec and IKE is reference [241, Chapter 16]. More detailed descriptions
can be found in a series of RFCs. While IKE and IPsec operate on the internet layer,
the TLS protocol provides security at the application layer. It is extremely widely
used for securing connections between a website server and a web browser. For
key establishment, TLS supports all three established asymmetric algorithms, that
is RSA, Diffie-Hellman and elliptic curve Diffie-Hellman. There were several vul-
nerabilities in earlier version of TLS and at the time of writing it is recommended
to use TLS 1.3, which is described in RFC 8446.

Certificates and Alternatives The terms “certificate” and “certificate revocation
list” as well as further PKI concepts were first introduced by Loren Kohnfelder in his
bachelor thesis (which was supervised by Leonard Adleman, the “A” in RSA) [178].
Even though certificates are a useful security tool, technical and organizational
reasons prevent most internet users from obtaining personal certificates. What has
emerged for securing internet traffic is that certificates are primarily used to authen-
ticate servers to end users. This asymmetric setup — the server is authenticated but
the user is not — is acceptable since the user is typically the one who provides cru-
cial information such as her credit card number. The needed CA verification keys
are often preinstalled in users’ web browsers or operating systems’ key storages.
In order to make certificates more widely adopted there are also initiatives such as
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Let’s Encrypt by the Internet Security Research Group (ISRG), which offers free
and open CAs for public use [152].

CAs are very promising targets for attackers. Once the private root key is known,
attackers can generate arbitrary certificates. With their public keys built into stan-
dard software, we implicitly trust several hundreds of signing authorities without
knowing much about their internal security level. Over the years, there have been
several incidents where CAs were compromised. For instance, in 2011 a bogus
“*.google.com” certificate was issued by an intermediate CA that gained its au-
thority from the CA Turktrust in Turkey. It turned out that Turktrust had acciden-
tally issued two intermediate certificates instead of normal site certificates in August
2011, including the one used to sign the fake Google certificate.

A comprehensive introduction to the large field of PKI and certificates is given
in the book [8]. An interesting and entertaining discussion about the alleged short-
comings of PKI is given in [111], and an equally instructive rebuttal is online at
[169].

We introduced certificates and a public-key infrastructure as the main methods
for authenticating public keys. Such hierarchical organized certificates are only one
possible approach, though the most widely used one. Another concept is the web
of trust, which relies entirely on trust relationships between parties. The idea is as
follows: If Alice trusts Bob, it is assumed that she also wants to trust all other users
whom Bob trusts. This means that every party in such a web of trust implicitly
trusts parties whom it does not know (or has never met before). The most popular
examples of such systems are Pretty Good Privacy (PGP) and Gnu Privacy Guard
(GPG), which are widely used for signing and encrypting emails.

Key Management Sound concepts for the key management in a cryptographic sys-
tem are crucial for the security of the entire application. A detailed coverage of tech-
nical as well as organizational aspects of key management can be found in a special
publication by NIST [207]. A more technical description of how to set up a good
key management over a system’s life cycle can be found in IEC 62351-9:2017 [4].
Though the latter reference was intended for power systems management, its de-
scription is rather generic and can be adapted to many other practical systems.
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14.8 Lessons Learned

� Key transport protocols securely transfer a secret key generated by one party to
other parties.

� In key agreement protocols, two or more parties negotiate a common secret key
and all parties determine the actual key value.

� In most symmetric-key establishment protocols, a trusted third party is involved.
Typically, a secure channel between the third party and each user is only required
at set-up time.

� Symmetric-key establishment protocols do not scale well to networks with large
numbers of users and, in most cases, they do not provide perfect forward secrecy.

� All asymmetric protocols require that the public keys are authenticated, typically
with certificates. Otherwise man-in-the-middle attacks are possible.

� Given an initial key between two parties, key derivation functions (KDFs) allow
generation of many distinct session keys. KDFs are also widely used for gener-
ating keys from passwords.

� Sound key management is crucial for the security of a cryptographic system and
requires consideration over the entire life cycle.
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Problems

14.1. In this exercise, we want to analyze some key derivation functions. A typi-
cal application is that a master key kMK is exchanged in a secure way (e.g., using
certificate-based DHKE) between the involved parties. Afterwards, session keys are
regularly generated by use of a KDF. This ensures key freshness in case a session
key is compromised. We consider three different methods:

(1) k0 = kMK , ki+1 = ki +1
(2) k0 = h(kMK), ki+1 = h(ki)
(3) k0 = h(kMK), ki+1 = h(kMK ||i||ki)

where h() denotes a secure hash function, and ki is the i-th session key.

1. What are the main differences between these three methods?
2. Which method provides Perfect Forward Secrecy?
3. Assume Oscar obtains the nth session key (e.g., via a computer virus). Which

sessions can he now decrypt (depending on the chosen method)?
4. Which method remains secure if the master key kMK is compromised? Give a

rationale!

14.2. Imagine a peer-to-peer network where 1000 users want to communicate in an
authenticated and confidential way.

1. How many keys are collectively needed if symmetric algorithms are deployed
and we do not use a key distribution center (KDC), i.e., distinct keys are needed
for every user pair?

2. How does this number change if we bring in a KDC as trusted third party?
3. What is the main advantage of a KDC-based system compared to the scenario

without a KDC?
4. How many keys are necessary if we make use of asymmetric algorithms?

14.3. You have to choose the cryptographic algorithms for a KDC where two differ-
ent classes of encryption occur:

� ekU,KDC(), where U denotes an arbitrary network node (user),
� ekses() for communication between two users.

You have implementations of two different ciphers, PRESENT with 80-bit keys and
AES-256, and you are advised to use different algorithms for the two encryption
classes. Which cipher do you use for which class? Justify your answer.

14.4. This exercise considers the security of key establishment with the aid of a
KDC. Assume that a hacker performs a successful attack against the KDC at the
point of time tx, when all keys are compromised. The attack is detected.

1. What (practical) measures have to be taken in order to prevent decryption of
future communication between the network nodes?
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2. What steps must the attacker take in order to decipher data transmissions which
occurred at an earlier time (t < tx)? Does such a KDC system provide Perfect
Forward Secrecy (PFS) or not?

14.5. We will now analyze an improved KDC system. In contrast to the previous
problem, all keys k(i)U,KDC are now refreshed at relatively short intervals with the
following scheme:

� The KDC generates a new random key: k(i+1)
U,KDC

� The KDC transmits the new key to user U , encrypted with the old one:

e
k(i)U,KDC

(k(i+1)
U,KDC)

What decryptions are possible if a staff member of the KDC is corruptible and
“sells” all recent keys e

k(i)U,KDC
of the KDC at the point of time tx? We assume that this

circumstance is not detected until the point of time ty, which could be much later,
e.g., one year.

14.6. Show a key confirmation attack against the basic KDC protocol introduced in
Section 14.3.1. Describe each step of the attack. Your drawing should look similar
to the one showing a key confirmation attack against the second (modified) KDC-
based protocol.

14.7. Show that PFS is in fact not given in the simplified Kerberos protocol. Show
how Oscar can decrypt past and future communications if:

1. Alice’s KEK kA becomes compromised.
2. Bob’s KEK kB becomes compromised.

14.8. Extend the Kerberos protocol using a timestamp such that a mutual authenti-
cation between Alice and Bob is performed. Give a rationale that your solution is
secure.

14.9. People at your new job are deeply impressed that you worked through this
book. As the first job assignment you are asked to design a digital pay-TV sys-
tem which uses encryption to prevent service theft through wire tapping. As key
exchange protocol, the Diffie–Hellman protocol with a 2048-bit modulus is being
used. However, since your company wants to use cheap legacy hardware, only DES
is available as data encryption algorithm. You decide to use the following key deriva-
tion approach:

K(i) = f (KAB ‖ i)

where f is a one-way function.

1. First we have to determine whether an attacker can store an entire movie with
reasonable effort (in particular, cost). Assume the data rate for the TV link is
1 Mbit/s (=106 bit/s), and that the longest movies we want to protect are 2 hours
long. How many GB (where 1MB = 106 bytes and 1GB = 109 bytes) of data must
be stored for a 2-hour film (don’t mix up bits and bytes here)? Is this realistic?
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2. We assume that an attacker will be able to find a DES key in 10 minutes using
a brute-force attack with special-purpose hardware. Note that this is a somewhat
optimistic assumption from an attacker’s point of view, but we want to provide
some medium-term security by assuming increasingly faster key searches in the
future.
How frequently must a key be derived if the goal is to prevent an offline decryp-
tion of a 2-hour movie in less than 30 days?

14.10. We consider a system which consists of an asymmetric key-exchange proto-
col and a symmetric cipher for bulk data encryption. A key kAB is established using
the Diffie–Hellman key-exchange protocol, and the encryption keys k(i) are then
derived by computing:

k(i) = h(kAB ‖ i) (14.1)

where h() is a secure hash function such as SHA-2 and i is just an integer counter,
represented as a 32-bit variable. The values of i are public (e.g., the encrypting party
always indicates which value for i is used in a header that precedes each ciphertext
block). The derived keys are used by the symmetric algorithm. New keys are derived
every 60 seconds during the communication session.

We now consider two hypothetical situations. In the first one, the asymmetric
system is used with parameters that are not secure anymore, and in the second case
an outdated block cipher is being used.

1. Assume the Diffie–Hellman key exchange is done with a 512-bit prime, and the
encryption algorithm is AES. Why, from a cryptographical point of view, doesn’t
it make sense to use the key derivation protocol described above? Describe the
attack that would require the least computational effort by Oscar.

2. Assume now that the Diffie–Hellman key exchange is done with a 2048-bit
prime, and the encryption algorithm is DES. Describe in detail what the advan-
tages are that the key derivation scheme offers compared to a system that just
uses the Diffie–Hellman key exchange for DES.

14.11. We consider the Diffie–Hellman key exchange. Assume that Oscar runs a
man-in-the-middle attack against the protocol. as introduced in Section 14.4.1. For
the Diffie–Hellman key exchange, use the parameters p = 467, α = 2 and a = 228,
b = 57 for Alice and Bob, respectively. Oscar uses the value o = 16.

Compute the key pairs kAO and kBO (i) the way Oscar computes them, and (ii) the
way Alice and Bob compute them.

14.12. We consider the Diffie–Hellman key exchange scheme with certificates. We
have a system with the three users Alice, Bob and Charley. The Diffie–Hellman
algorithm uses p = 61 and α = 18. The three secret keys are a = 11, b = 22 and
c = 33. The three IDs are ID(A)=1, ID(B)=2 and ID(C)=3.

For signature generation, the Elgamal signature scheme is used. We apply the
system parameters p′ = 467, d′ = 127, α ′ = 2 and β . The CA uses the ephemeral
keys kE = 213, 215 and 217 for Alice’s, Bob’s and Charley’s signatures, respec-
tively. (In practice, the CA should use a better pseudorandom generator to obtain
the kE values.)
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To obtain the certificates, the CA computes xi = 4×bi+ ID(i) and uses this value
as input for the signature algorithm. (Given xi, ID(i) then follows from ID(i) ≡
xi mod 4.)

1. Compute three certificates CertA, CertB and CertC.
2. Verify all three certificates.
3. Compute the three session keys kAB, kAC and kBC.

14.13. Assume Oscar attempts to use an active (substitution) attack against the
Diffie–Hellman key exchange with certificates in the following ways:

1. Alice wants to communicate with Bob. When Alice obtains Cert(B) from Bob,
Oscar replaces it with (a valid!) Cert(O). How will this forgery be detected?

2. Same scenario: Oscar now tries to replace Bob’s public key bB with his own
public key bO. How will this forgery be detected?

14.14. We consider the issuing of certificates with CA-generated keys (cf. Sec-
tion 14.4.2). Assume the second transmission of (CertA, kpr,A) takes place over an
authenticated but insecure channel, i.e., Oscar can read this message.

1. Show how he can decrypt traffic that is encrypted with a symmetric cipher whose
key was generated with the Diffie–Hellman protocol between Alice and Bob.

2. Can he also impersonate Alice such that he initiates a Diffie-Hellman key ex-
change with Bob without Bob noticing?

14.15. Given is a domain in which users share the Diffie–Hellman parameters α and
p. Each user’s public Diffie–Hellman key is certified by a CA. Users communicate
with each other securely by performing a Diffie–Hellman key exchange and then
encrypting/decrypting messages with a symmetric algorithm such as AES.

Assume Oscar gets hold of the CA’s signature algorithm (including its private
key), which was used to generate certificates. Can he now decrypt old ciphertexts
which were exchanged between two users before the CA signature algorithm was
compromised, and which Oscar had stored (explain your answer)? If not, describe
what other attack Oscar can perform.

14.16. One problem in PKIs is the authenticated distribution of the CA’s public key,
which is needed for certificate verification. Assume Oscar has full control over all
of Bob’s communications, that is, he can alter all messages to and from Bob. Oscar
now replaces the CA’s public key with his own. Note that Bob has no means to
authenticate the key that he receives, so he thinks that he received the CA public
key.

1. (Certificate issuing) Bob requests a certificate from the CA by sending a request
containing (1) Bob’s ID ID(B) and (2) Bob’s public key B. Describe exactly what
Oscar has to do such that Bob doesn’t find out that he has the wrong CA public
key.

2. (Protocol execution) Describe what Oscar has to do to establish a session key
with Bob using the authenticated Diffie–Hellman key exchange, such that Bob
thinks he is executing the protocol with Alice.
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14.17. Draw a diagram of a key transport protocol similar to the one in Section 14.4
in which RSA encryption with a certificate is used.

14.18. We consider RSA encryption with certificates in which Bob has the RSA
keys. Oscar manages to send Alice a verification key kpub,CA which is, in fact, Os-
car’s key. Show an active attack in which he can decipher encrypted messages that
Alice sends to Bob.

14.19. Pretty Good Privacy (PGP) is a widely used scheme for securing emails and
other digital data. PGP does not necessarily require the use of certificate authorities.
Describe the trust model of PGP and how the public-key management works in
practice.

14.20. Figure 14.8 shows two protocols for key establishment with a key distri-
bution center T . The protocols have small differences. Analyze the protocols for
weaknesses against an active attacker who is also a legitimate user of the key server.

1. Draw a key confirmation attack against the first protocol.
2. Describe why the second protocol protects against this attack.

14.21. We will now analyze the following protocol with which two users can au-
thenticate each other. It is assumed that each user has a digital signature algorithm
and that the public keys for signature verification have been correctly distributed to
all participants. Here is the authentication protocol:

Alice Bob
nB←−−−−−

nA ||sigA(nA ||nB || IDB)−−−−−−−−−−−−−→
n′B ||sigB(n′B ||nA || IDA)←−−−−−−−−−−−−−

nX denotes a random number, which functions as a nonce, generated by user X .

1. Describe all steps of both parties and explain the objectives of each step.

Now, Oscar executes a successful attack on the protocol. In the literature, this attack
is known as an interleaving attack.

Alice Oskar Bob
nA−−−−−→

nB ||sigB(nB ||nA || IDA)←−−−−−−−−−−−−−
nB←−−−−−

n′A ||sigA(n′A ||nB || IDB)−−−−−−−−−−−−−→
n′A ||sigA(n′A ||nB || IDB)−−−−−−−−−−−−−→

2. Explain how Oscar’s attack works and what the consequences are.
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Fig. 14.8 Two protocols with KDC for Problem 14.20

3. What is the difference between this interleaving attack and the man-in-the-middle
attack that is introduced in Section 14.4.1? Compare the consequences of the two
attacks.
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