Cryptography

Algorithms, Protocols, and Standards
for Computer Security

Zoubir Mammeri

WILEY

Cryptography

Cryptography

Algorithms, Protocols, and Standards for Computer Security

Zoubir Mammeri

WILEY

Copyright © 2024 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written
sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where
appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was
written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats.
For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Names: Mammeri, Zoubir, author. | John Wiley & Sons, publisher.

Title: Cryptography : algorithms, protocols, and standards for computer
security / Zoubir Mammeri.

Description: Hoboken, New Jersey : JW-Wiley, [2024] | Includes
bibliographical references and index.

Identifiers: LCCN 2023030470 | ISBN 9781394207480 (hardback) |
ISBN 9781394207497 (pdf) | ISBN 9781394207503 (epub) | ISBN 9781394207510 (ebook)

Subjects: LCSH: Cryptography. | Computer security.

Classification: LCC QA268 .M34 2024 | DDC 005.8/24--dc23/eng/20230807

LC record available at https://lccn.loc.gov/2023030470

Cover Design: Wiley
Cover Image: © zf L/Getty Images

Set in 9.5/12.5pt STIXTwoText by Integra Software Services Pvt. Ltd, Pondicherry, India

www.copyright.com
http://www.wiley.com/go/permission
www.wiley.com
https://lccn.loc.gov/2023030470

1.1
1.1.1
1.1.2
1.1.3
1.14
1.1.5
1.2
1.2.1
1.2.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.4
1.4.1
1411
1.4.1.2
1.4.1.3
14.2
1.4.3
1.4.3.1
1.4.3.2
1.4.3.3
1.4.3.4
1.4.3.5
1.4.3.6
1.4.3.7
1.4.3.8
1.44
1.5
1.5.1
1.5.2

Contents

Preface xviii

Introduction to Computer Security
Introduction 1
Why Do Attacks Occur? 1

1

Are Security Attacks Avoidable? 2
What Should Be Protected in Cyberspace? 2

Security vs Safety 3

Cybersecurity vs IT Security 3
Security Terms and Definitions 4
Assets and Attackers 4
Vulnerabilities, Threats, and Risks
Security Services 6

Confidentiality and Privacy 6
Integrity 6

Availability 7

Authentication and Authenticity 7

5

Non-repudiation and Accountability 8

Authorization 8

Attacks 8

Taxonomy of Attacks 8

Attacks According to Their Origin 9
Passive vs Active Attacks 9

Attacks According to Their Objectives
Taxonomy of Attackers 12
Malware Taxonomy 13

Virus 14

Worm 14

Trojan 14

Ransomware 14

Spyware and Adware 14

Botnet 15

10

Keylogger, Screen Scraper, and Web Shell
Exploit, Logic Bomb, Backdoor, and Rootkit

Daily Awareness to IT Security 15
Countermeasures/Defenses 16
Very Old Roots of Countermeasures
Methods for Defense 16

16

15

15

vi | Contents

1.5.2.1 Prevention/Detection/Reaction Methods 16
1.5.2.2 Level of Automation of Defense Methods 17
1.5.2.3 Design Orientations of Defense Methods 17
1.5.3 Overview of Security Countermeasures 18
1.5.3.1 Organizational Measures 18
1.5.3.2 Technical Countermeasures 19
1.5.4 Security Penetration Testing Tools 19
1.6 Overview of Defense Systems 20
1.6.1 Firewalls 20
1.6.2 Proxy Overview 21
1.6.3 Intrusion Detection Systems 22
1.6.4 Intrusion Protection Systems 24
1.6.4.1 Performance Requirements Regarding IDSs and IPSs 24
1.6.5 Honeypots 24
1.6.6 Network Address Translation 25
1.6.7 Virtual Private Networks 25
1.6.8 Layered-Security Architecture 26
1.7 Introduction to Privacy Protection 26
1.7.1 Overview of Privacy Issues 26
1.7.2 Introduction to the GDPR Directive 27
1.7.2.1 Personal Data and Acts of Processing 28
1.7.2.2 Principles of Data Protection 28
1.8 Concluding Remarks 29
1.9 Exercises and Solutions 29
1.9.1 List of Exercises 29
1.9.2 Solutions to Exercises 30

Notes 31

References 31

2 Introduction to Cryptography 33

2.1 Definitions of Basic Terms 33

2.1.1 Cryptography, Cryptanalysis, and Cryptology 33

2.1.2 Brief History of Cryptography 34

2.1.3 Basic Terms Related to Encryption Systems 36

2.14 Symmetric and Asymmetric Cryptographic Systems 37
2.14.1 Symmetric Cryptosystems 37

2.1.4.2 Asymmetric Cryptosystems 37

2.1.4.3 Symmetric vs Asymmetric Cryptosystems and Their Combination 37
2.1.4.4 Trapdoor Functions 38

2.2 Cryptographic Primitives 39

2.2.1 Encryption 40

2.2.2 Hash Functions and Data Integrity 40

2.2.3 Message Authentication Codes 40

2.2.4 Digital Signature 41

2.2.5 Digital Certificates and Non-Repudiation 42

2.2.6 Shared-Secret Generation 42

227 Pseudorandom Number Generation 43

2.3 Fundamental Properties of Cryptographic Algorithms 43
2.3.1 Should Cryptographic Algorithms Be Secret or Not? 43
2.3.2 Models of Security Proof 43

2.3.21 Computational Infeasibility 43

2.3.2.2 Provable Security 43

2.3.3 Perfect Secrecy 44

234
2.4
24.1
24.2
2421
2422
243
2431
2432
244
2.5
2.5.1
2.5.2
2.6
2.6.1
2.6.2

3.1
311
3.1.2
3.1.3
314
3.1.5
3.1.6
3.1.7
3.1.8
3.2
3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.3
3.3.1
33.1.1
3.3.1.2
3313
3.3.2
3.3.3
3331
3.3.3.2
3.34
335
3.3.5.1
3.3.5.2
3.3.6
3.3.6.1
3.3.6.2
3.3.7

Security Strength of Cryptographic Algorithms

Attacks Against Cryptographic Algorithms

What Is Cryptanalysis? 45

Categorization of Cryptanalysis Attacks 46
First Categorization of Cryptanalysis Attacks 46

Second Categorization of Cryptanalysis Attacks

45

47

45

Attacks on Implementations of Cryptographic Algorithms

Side-Channel Attacks 49
Fault-Injection Attacks 50

Practicality of Cryptanalysis Attacks

Steganography 51

Examples of Secret Hiding Without Using Computer

50

Examples of Secret Hiding Using Computer

Exercises and Problems 52
List of Exercises and Problems

Solutions to Exercises and Problems

Notes 57
References 57

Mathematical Basics and Computation Algorithms for Cryptography 59
Number Theory Notations, Definitions, and Theorems

52

53

Basic Terms and Facts of Number Theory 60

Sets 61

Modulo Operator and Equivalence Class

61

Basic Properties of Modular Arithmetic 62

Zy: Integers Modulon 62
Multiplicative Inverse 62
Modular Square Roots 63

List of Exercises and Problems
Basic Algebraic Structures 66

Groups and Rings and Their Properties

Fields 69

Extension Fields Fpm 71
Extension Fields 75

List of Exercises and Problems
Computation Algorithms 80

65

79

66

51

Euclidean and Extended Euclidean Algorithms

Euclidean Algorithm 80
Extended Euclidean Algorithm
Finding Multiplicative Inverse

80
81

80

Modular Exponentiation: Square-and-Multiply 81

Fast Modular Multiplication and Montgomery’s Multiplication 82

51

59

Single-precision Montgomery Multiplication Algorithm 83
Multi-precision Montgomery Multiplication Algorithm 84
Chinese Remainder Theorem and Gauss’s Algorithm 86

Finding Modular Square Roots

Tonelli-Shanks Algorithm for Finding Modular Square Roots of Primes

87

Finding Square Roots of Multiple Primes 88

Test of Irreducibility 89
Naive Approach 89

Efficient Approach (Rabin’s Test of Irreducibility) 90

List of Exercises and Problems

91

49

87

Contents

vii

viii

Contents

3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
4.5.8.1
4.5.8.2
4.5.8.3
4.6
4.7
4.7.1
4.7.2

5.1
5.1.1
51.2
5.1.3
5.1.3.1
5.1.3.2
5.2
5.2.1
5.2.1.1
5.2.1.2
5213
52.1.4
52.1.5
5.2.1.6
5.2.2
5.2.2.1
5.2.2.2
5.2.2.3
5.3
5.3.1
5.3.2
53.21

Birthday Paradox and Its Generalization 92
Solutions to Exercises and Problems 93
Notes 115

References 116

Symmetric Ciphering: Historical Ciphers 117
Definitions 117

Caesar’s Cipher 117

Affine Ciphers 118

Vigenere’s Cipher 120

Enigma Machine 122

Principle of Secure Communication Using Enigma 123
Rotors and Reflector 123

Plug Board 124

Machine Setting 124

Encryption and Decryption Procedures 124
Enigma Decryption Correctness 126
Complexity Analysis 128

Breaking Enigma Code 129

Weaknesses, Practices, and Other Features that had been Exploited 129
Crib-based Attack 130

Improvement of Settings Identification Process 132
One-time Pad 133

Exercises and Problems 133

List of Exercises and Problems 133

Solutions to Exercises and Problems 135

Notes 141

References 141

Hash Functions, Message Authentication Codes, and Digital Signature
Hash Functions 142

Properties of Hash Functions 142

Generic Attacks Against Hash Functions 143

Overall Operation Principle of Hashing Algorithms 144
Merkle-Damgérd Construction 145

Vulnerability to Length Extension Attack 145

Secure Hash Algorithms (SHA) 146

SHA-1 and SHA-2 Algorithms 146

SHA-1 Algorithm 147

SHA-256 Algorithm 148

SHA-224 Algorithm 150

SHA-512 Algorithm 150

SHA-384, SHA-512/224, and SHA-512/256 Algorithms 151
SHA-1 Security 152

SHA-3 Functions 152

Keccak-p Permutation 152

Sponge Construction 155

SHA-3 Functions 157

Message Authentication Codes 157

Objectives and Properties of MACs 157

Hash Function-based MACs 158

HMAC 158

142

5.3.2.2
5.3.2.3
5.3.3
5.4
54.1
54.2
5.5
5.6
5.6.1
5.6.2

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.3
6.1.4
6.1.4.1
6.1.4.2
6.1.5
6.2
6.2.1
6.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.4
6.2.4.1
6.2.4.2
6.2.5
6.2.5.1
6.2.5.2
6.2.5.3
6.2.5.4
6.2.6
6.2.6.1
6.2.6.2
6.2.7
6.2.7.1
6.2.7.2
6.3
6.3.1
6.3.2

KMAC 160

Generic Attacks Against Hash Function-based MAC Algorithms

Block Cipher-based MACs 161

Digital Signature 161

Digital Signature in Public Key World 161
Attacks Against Digital Signature Schemes 162
Concluding Remarks 163

Problems 163

List of Problems 163

Solutions to Problems 165

Notes 171

References 171

Stream Ciphers 173

Stream Ciphers 173

Principles of Stream Ciphers 173

Synchronous vs Self-synchronized Keystream Generators
Synchronous Stream Ciphers 175
Self-synchronized Stream Ciphers 175

How to Generate Random Keystream Bits? 177
Linear-Feedback Shift Registers (LFSRs) 177
LFSR Principle and Properties 177

Feedback Polynomial of LFSRs 180

LFSRs for Building Stream Ciphers 181
Examples of Standard Keystream Generators 182
A5/1 Keystream Generator 183

EO Keystream Generator 183

SNOW 3G Keystream Generator 184

Formal Description of SNOW 3G 184
Algorithmic Description of SNOW 3G 186

ZUC Keystream Generator 188

Principle of ZUC Keystream Generator 188

ZUC Algorithm 188

ChaCha20 Stream Cipher 191

ChaCha20 State 191

ChaCha20 Quarter Round 191

ChaCha20 Keystream Block Generation 191
Plaintext Encryption and Decryption Using ChaCha20 192
RC4 Stream Cipher 193

RC4 Key-scheduling Algorithm 193

Keystream Generation Phase 193

Lightweight Cryptography Stream Ciphers 194
Trivium Stream Cipher 194

Enocoro Stream Cipher 195

Exercises and Problems 197

List of Exercises and Problem 197

Solutions to Exercises and Problems 199
Notes 205

References 206

174

161

Contents

ix

x | Contents

7 Block Ciphers: Basics, TDEA, and AES 207
7.1 Construction Principles for Block Cipher Design 207
7.1.1 Confusion and Diffusion Properties 208
7.1.1.1 Substitution Boxes 208
7.1.1.2 Permutation 208
7.1.1.3 Key Expansion 208
7.1.2 Feistel Structure 209
7.2 Triple Data Encryption Algorithm (TDEA) 211
7.2.1 Data Encryption Algorithm (DEA) 211
7.2.1.1 DEA Encryption and Decryption 211
7.2.1.2 Initial Permutation and Its Inverse 213
7.2.1.3 Functionf 213
7.2.2 TDEA Construction and Usage 216
7.2.2.1 Bundle and DEA Keys 216
7.2.2.2 TDEA Encryption and Decryption 217
7.2.2.3 Key Schedule Function KS 218
7.2.3 Security Issues 220
7.2.3.1 Complexity of Attacks Against DES 220
7.2.3.2 TDEA Security Limit 220
7.2.3.3 Meet-in-the-Middle Attack Against Double DES and TDEA 220
7.3 Advanced Encryption System (AES) 222
7.3.1 Distinctive Features of AES 222
7.3.2 Data Representation in AES 222
7.3.3 Overall Structure of AES 223
7.34 AES Transformation Description 224
7.3.4.1 SubBytes and InvSubBytes Transformations 224
7.3.4.2 ShiftRows and InvShiftRows Transformations 226
7.3.4.3 MixColumns and InvMixColumns Transformations 227
7.3.4.4 AddRoundKey Transformation 227
7.3.5 Key Expansion 227
7.3.6 Mathematical Description of AES 229
7.3.6.1 Data Representation and Operations on Data 229
7.3.6.2 SubBytes and InvSubBytes Transformations 232
7.3.6.3 ShiftRows and InvShiftRows Transformations 233
7.3.6.4 MixColumns and InvMixColumns Transformations 233
7.3.6.5 AddRoundKey Transformation 234
7.3.7 Security of AES 234
7.4 Exercises and Problems 235
7.4.1 List of Exercises and Problems 235
7.4.2 Solutions to Exercises and Problems 236
Notes 245
References 246

8 Block Cipher Modes of Operation for Confidentiality 247
8.1 Introduction 247

8.1.1 Definitions 247

8.1.2 Overview of Standard Modes of Operation 248

8.1.3 Notations and Common Basic Functions 248

8.14 Common Aspects of Modes for Confidentiality 249
8.1.4.1 Plaintext Length and Padding 249

8.1.4.2 Initialization Vector 249

8.2 ECB Mode of Operation 249

8.3 CBC Modes of Operation 250

8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.4
8.5
8.6
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.8
8.8.1
8.8.2
8.8.3
8.9
8.10
8.10.1
8.10.2
8.10.3
8.10.4
8.10.5
8.11
8.11.1
8.11.2

9.1

9.2
9.2.1
9.2.1.1
9.2.1.2
9.2.1.3
9.2.2
9.2.3
9.2.3.1
9.2.3.2
9.2.3.3
9.2.3.4
9.2.4
9.24.1
9.24.2
9.2.4.3
9.2.4.4
9.2.4.5
9.2.4.6
9.2.5
9.2.5.1
9.2.5.2

Basic CBC Mode 250

CBC Variants (CS1, CS2, CS3) 251

CBC-CS1 Mode 251

CBC-CS2 and CBC-CS3 Modes 252

OFB Mode of Operation 253

CTR Mode of Operation 253

CFB Mode of Operation 255

Format-Preserving Encryption Modes of Operation 256
Common Aspects to FPE Modes 256

Encryption and Decryption in FF1 and FF3-1 Modes 258
FF1 Mode 259

FF3-1 Mode 262

XTS-AES Mode of Operation 264

Overview of XTS-AES 264

Encryption and Decryption Algorithms 265

Some Strengths and Weaknesses of XTS-AES 268
Comparison of Design Features of Modes for Confidentiality 269
Security of Modes of Operation for Confidentiality 269
Vulnerability to Block Repetitions and Replay 270
Vulnerability to Predictable IV or Tweak 271
Vulnerability to IV/Tweak that Is Not a Nonce 271
Vulnerability to Birthday Attacks 272

Vulnerability to Bit-Flipping Attacks 272

Exercises and Problems 273

List of Exercises and Problems 273

Solutions to Exercises and Problems 274

Notes 279

References 280

Block Cipher Modes of Operation for Authentication and Confidentiality 281

Introduction 281

Block Cipher Modes of Operation for Confidentiality and Authentication
Authenticated Encryption and AEAD Algorithms 282
Approaches to Data Authentication 282

Authenticated Encryption with Associated Data Algorithms 283
Limits of Authenticated-Decryption Modes 283

CMAC Mode of Operation 284

CCM Mode of Operation 285

MAC Generation and Encryption 285

MAC Verification and Decryption 287

Information Formatting Function 287

Counter Formatting Function 288

GCM and GMAC Modes of Operation 289

GCTR Encryption Mode 289

Hash Function of GCM 290

Authenticated Encryption with GCM 290

Authenticated Decryption with GCM 291

GMAC Mode 292

Forbidden Attack Against GCM with Repeated IV 293
AES-GCM-SIV Mode 294

What Does Nonce Misuse-resistance Mean? 294
Overview of AES-GCM-SIV Mode 294

282

Contents

Xi

xii | Contents

9.2.5.3 Key Derivation and Hash Functions 295
9.2.5.4 Authenticated Encryption with AES-GCM-SIV 295
9.2.5.5 Authenticated Decryption with AES-GCM-SIV 297
9.2.6 Polyl305 298
9.2.6.1 Polyl305-AES 298
9.2.6.2 ChaCha20-Poly1305 AEAD 299
9.2.7 Key Wrapping Modes 300
9.2.7.1 KW and KWP Modes of Operation 301
9.2.7.2 TKW Mode of Operation 305
9.2.7.3 Security of Key Wrapping Modes 305
9.2.8 Security of Authenticated-Encryption Modes 305
9.2.8.1 Block Repetitions and Replay 305
9.2.8.2 Chosen-Ciphertext Attacks 306
9.2.8.3 Birthday Attacks 306
9.2.8.4 Bit-flipping Attacks 306
9.2.8.5 Nonce Misuse 306
9.3 Exercises and Problems 306
9.3.1 List of Exercises and Problems 306
9.3.2 Solutions to Exercises and Problems 308
Notes 312
References 313

10 Introduction to Security Analysis of Block Ciphers 314
10.1 Pseudorandom Functions and Permutations 314
10.1.1 Definitions of Random and Pseudorandom Functions and Permutations 315
10.1.2 Indistinguishability and Security of PRFs 316
10.1.2.1 Indistinguishability and Security of PRPs 317
10.1.2.2 PRF/PRP Switching Lemma 319
10.2 Security of TDEA and AES 320
10.2.1 Security Against Key Recovery Attack 321
10.2.2 Birthday Attack Against Block Ciphers 322
10.3 Security Analysis Modes of Operation of BC for Confidentiality 322
10.3.1 Left-or-Right Indistinguishability 323
10.3.2 Some Bounds of Security of Block Cipher Modes of Operation 324
10.4 Security Analysis of Authenticity-only Schemes 326
10.4.1 Generic Models for Security Analysis of Authenticity Schemes 326
10.4.1.1 Game for Tag Forgery Analysis 326
10.4.1.2 Game for MAC Indistinguishability 327
10.4.2 Some Security Bounds for MAC Schemes 328
10.4.2.1 Security Bounds for CMAC 328
10.4.2.2 Security Bounds for HMAC 328
10.5 Generic Models for Security Analysis of Authenticated-Encryption Modes 329
10.5.1 Generic Modeling of Security of AEAD Modes 329
10.5.2 Some Security Bounds for CCM, GCM, and AES-GCM-SIV 330
10.5.2.1 Bounds for CCM 330
10.5.2.2 Bounds for GCM 330
10.5.2.3 Some Bounds for AES-GCM-SIV Security 331
10.6 Problems and Solutions 332
10.6.1 List of Problems 332
10.6.2 Solutions to Problems 333
Notes 336
References 336

11

11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.2
11.2.1
11.2.2
11.2.2.1
11.2.2.2
11.2.2.3
11.2.2.4
11.2.2.5
11.2.3
11.2.3.1
11.2.3.2
11.3
11.3.1
11.3.1.1
11.3.1.2
11.3.1.3
11.3.2
11.3.2.1
11.3.2.2
11.3.2.3
11.4
11.5
11.5.1
11.5.2
11.5.3
11.5.3.1
11.5.3.2
11.6
11.6.1
11.6.2
11.7
11.7.1
11.7.2

12

12.1
12.1.1
12.1.1.1
12.1.1.2
12.2
12.2.1
12.2.2
12.2.2.1
12.2.2.2

Introduction to Cryptanalysis Attacks on Symmetric Ciphers 338
Memory-Time Trade-off Attacks 339

Hellman’s Table-based Attacks 339

Offline Precomputation 339

Key Search 340

Rainbow Chains 343

Linear Cryptanalysis 347

Bias and Piling-up Lemma 348

Constructing Linear Approximation Expressions 349

Finding Linear Approximations Associated with an s-box 349
Measuring Quality of Linear Approximations 351

Finding Linear Expressions Associated with an s-box and a Key 352
Finding Linear Expressions Associated with Two s-boxes and a Key 352
Finding Linear Expressions Associated with a Full Cipher 353
General Methodology for Performing Linear Cryptanalysis 356
Algorithm 1: Deduction of a Bit-information about Cipher Key 356
Algorithm 2: Recovery of the Last-round Key 359

Differential Cryptanalysis 360

Difference Distribution Table 361

Difference Distribution Table: Construction and Properties 361
Difference-Propagation Probability 363

Effect of Round Key Addition 363

Differential Attack Design 363

First step: Selection of an Overall Difference-Propagation Probability 363
Second Step: Selection of Chosen Plaintexts 366

Third Step: Recovery of some Bits of the Last-round Key 366
Algebraic Cryptanalysis 366

Cube Attack 368

Main Idea of Cube Attack 368

Polynomial Representation 368

Cube Attack Mounting 369

Preprocessing Phase 369

Key Recovery Phase 370

Other Attacks Against Stream Ciphers 372
Divide-and-Conquer Attack 372

Correlation Attack 373

Problems and Solutions 374

List of Problems 374

Solutions to Problems 375

Notes 379

References 380

Public-Key Cryptosystems 381

Introduction to Public-Key Cryptosystems 381
Attacks Against Public-Key Cryptosystems 382
Attacks Against Encryption Schemes 383

Attacks Against Digital Signature Schemes 383

RSA Cryptosystem 383

RSA Encryption and Decryption 384

Implementation Issues 385

Fast Modular Exponentiation Methods 385

Chinese Remainder Theorem-based RSA Decryption 385

Contents

xiii

Xiv

Contents

12.2.2.3
12.2.3
12.2.4
12.2.5
12.2.6
12.2.6.1
12.2.6.2
12.2.6.3
12.3
12.3.1
12.3.1.1
12.3.1.2
12.3.2
12.3.3
12.3.4
12.3.4.1
12.3.4.2
12.3.4.3
12.4
12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.5
12.5.1
12.5.2

13
13.1
13.1.1
13.1.2
13.1.3
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.2.4.1
13.2.4.2
13.3
13.3.1
13.3.1.1
13.3.1.2
13.3.2
13.3.2.1
13.3.2.2
13.4
13.5
13.5.1
13.5.2

Why e = 65537 Is Often Used in RSA Cryptosystems? 387
Proof of Correctness of RSA 387

RSA Security 388

Optimal Asymmetric Encryption Padding (OAEP) 389
RSA Signature 391

RSA Signature Generation 392

RSA Signature Verification 392

Probabilistic Signature Scheme (PSS) 392

Finite Field-based Cryptography 394

Discrete Logarithm Problem 394

What Is the Discrete Logarithm Problem? 394

Attacks Against DLP 394

Diffie-Hellman Key Exchange 395
Menezes-Qu-Vanstone Key-exchange Protocol 396
ElGamal Cryptosystem 396

ElGamal Encryption 396

ElGamal Signature 398

ElGamal Digital Signature Security and Potential Attacks 399
Digital Signature Algorithm (DSA) 400

DSA Domain Parameters 400

DSA-Keys Generation 400

DSA Signature Generation 400

DSA Signature Verification 400

Advantages of DSA over ElGamal Signature Scheme 401
Exercises and Problems 401

List of Exercises and Problems 401

Solutions to Exercises and Problems 405

Notes 422

References 423

Public-Key Cryptosystems: Elliptic Curve Cryptography 424
Introduction 424

What Is Elliptic Curve Cryptography? 424

What Is an Elliptic Curve? 425

Order and Point Set of an Elliptic Curve 426

Elliptic Curve Cryptography over Prime Field Fp 426
Definition of Elliptic Curves over Prime Fields: E(F,) 426
Operations on Elliptic Curves 427

Generator and Cofactor of EC 429

Montgomery and Edwards Curves 430

Operations on Edwards EC Points 431

Operations on Montgomery EC Points 431

Elliptic Curve Cryptography over Extension Fields 431
Definition of EC over Extension Fields 432

Operations on Points of Curve E (Fzm) 433

Fast Scalar Multiplication 434

Set and Number of Points of an EC 435

Finding the Set of Points on an EC 435

Finding the Exact Number of Points on an EC 435
Security of EC Cryptosystems 436

Elliptic Curve-based Algorithms 437

Security Strength Levels of EC Algorithms 437
Domain Parameters 437

Contents | xv

13.5.3 EC Diffie-Hellman (ECDH) Key-Agreement Protocol 437
13.5.3.1 Small-Subgroup Attack Against ECDH 439
13.5.4 EC Menezes-Qu-Vanstone (ECMQV) Key-Agreement Protocol 440
13.5.5 Elliptic-Curve Digital-Signature Algorithm (ECDSA) 441
13.5.5.1 Setup Process 441
13.5.5.2 ECDSA Signature Generation 441
13.5.5.3 ECDSA Signature Verification 441
13.5.5.4 Correctness of ECDSA Algorithm 442
13.5.6 Edwards Curve Digital Signature Algorithm (EdDSA) 443
13.5.6.1 EdDSA Key Pair Generation 443
13.5.6.2 EdDSA Signature Generation 444
13.5.6.3 EdDSA Signature Verification 444
13.5.6.4 Comment on EdDSA Signature Verification Procedure 445
13.5.7 Elliptic Curve Encryption Algorithms 446
13.5.7.1 ECIES Framework 446
13.5.7.2 ElGamal Encryption Using EC Cryptography 448
13.6 Exercises and Problems 451
13.6.1 List of Exercises and Problems 451
13.6.2 Solutions to Exercises and Problems 453
Notes 463
References 463

14 Key Management 465
14.1 Key-Management-related Notions 465
14.1.1 Types, Security Strengths, and Cryptoperiod of Keys 465
14.1.1.1 Key Types 465
14.1.1.2 Security Strengths 466
14.1.1.3 Cryptoperiod 467
14.1.2 Key-Management Phases and Functions 468
14.2 Key-Generation Schemes 469
14.2.1 Key Generation for Symmetric-Key Systems 469
14.2.1.1 Key Generation Using DRBGs 470
14.2.1.2 Key Derived from a Password 470
14.2.1.3 Key-Generation by Key-Derivation Methods 471
14.2.1.4 Key Generated by Combining Multiple Other Keys and Data 474
14.2.1.5 Key-Derivation Functions 474
14.2.2 Key Generation for Asymmetric-Key Cryptosystems 476
14.2.2.1 RSA Key-Pair Generation 477
14.2.2.2 Key-Pair Generation for DH and MQV 478
14.2.2.3 ECC Key-Pair Generation 480
14.3 Key-Establishment Schemes 482
14.3.1 Overall View of Key-Establishment Schemes 482
14.3.2 Key-Establishment Using a Key Distribution Center 484
14.3.3 Key-Establishment Using Public-Key-based Schemes 486
14.3.3.1 Common Mechanisms and Functions 486
14.3.3.2 Key-Establishment Schemes Using RSA 487
14.3.3.3 DLC-based Key-Agreement Schemes 492
14.4.1 List of Problems 501
14.4.2 Solutions to Problems 503
Notes 506
References 507

xvi | Contents

15 Digital Certificate, Public-Key Infrastructure, TLS, and Kerberos 509
15.1 Digital Certificate: Notion and X.509 Format 509
15.1.1 Types of Digital Certificates 510
15.1.1.1 TLS (Transport Layer Security) Certificates 510
15.1.1.2 Code (or Software) Signing Certificates 510
15.1.1.3 Client Certificates 510
15.1.2 X.509 Standard Format 510
15.2 Public-Key Infrastructure 511
15.2.1 Components ofa PKI 512
15.2.2 Certificate Authority Hierarchy 512
15.2.3 Registration of a Public-Key and Certificate Acquisition 514
15.2.4 Chain of Trust and Trust Models 515
15.2.5 Validation of Certificates and Trust Paths 516
15.2.6 Digital-Certificate Revocation 516
15.3 Transport Layer Security (TLS 1.3) 517
15.3.1 TLS Certificates 517
15.3.2 TLS 1.3 Protocols 518
15.3.2.1 Handshake Protocol 518
15.3.2.2 Record Protocol 520
15.3.2.3 Alert Protocol 520
15.4 Kerberos 521
15.4.1 Kerberos Principles 521
15.4.2 Message Formats and Authentication Steps of Kerberos 523
15.4.2.1 Ticket and Authenticator Formats 523
15.4.2.2 Protocol Actions and Message Description 523
15.4.3 Advantages, Limits, and Security of Kerberos 526
15.5 Exercises and Problems 527
15.5.1 List of Exercises and Problems 527
15.5.2 Solutions to Exercises and Problems 528
Notes 529
References 530

16 Generation of Pseudorandom and Prime Numbers for Cryptographic Applications 531
16.1 Introduction to Pseudorandom Number Generation 531

16.1.1 Basic Notions and Definitions 531

16.1.2 Entropy 532

16.1.2.1 Source of Entropy 532

16.1.2.2 Entropy from a Statistical Point of View 533

16.1.3 Some Popular PRNGs (not to use in Cryptography) 535

16.1.3.1 Middle-Square Algorithm 535

16.1.3.2 Linear Congruential Generator 536

16.1.3.3 Mersenne Twister PRNG 536

16.1.4 PRNGs for Cryptography: Notions and Design Principles 536
16.1.4.1 Properties of PRNGs for Cryptography 536

16.1.4.2 General Guidelines for the Design of PRBGs for Cryptography 537

16.2 Pseudorandom Bit Generators Recommended for Cryptography 541
16.2.1 Common Mechanisms and Processes 541

16.2.1.1 Security Strength 541

16.2.1.2 Instantiatinga DRBG 541

16.2.1.3 Reseeding a DRBG 541

16.2.1.4 Internal State of a DRBG 542

Contents | xvii

16.2.1.5 Description Format of DRBG Functions 542
16.2.2 Hash-based DRBGs 542
16.2.3 HMAC-based DRBGs 544
16.2.4 Block Cipher-based DRBGs 546
16.3 Prime Number Generation 549
16.3.1 Basics and Facts about Primes 550
16.3.1.1 Definition of Some Prime Categories of Interest for Cryptography 550
16.3.1.2 Distribution of Prime Numbers 550
16.3.2 Methods for Primality Testing 551
16.3.2.1 Deterministic Methods for Primality Testing 551
16.3.2.2 Probabilistic Methods for Primality Testing 552
16.3.3 Generation of Probably-Prime Pair 554
16.3.3.1 Generation of Probably-Prime Pair for DH and MQV 555
16.3.3.2 Generation of Probably-Prime Pair for RSA 555
16.3.4 Generation of Provable Primes 556
16.3.4.1 Shawe-Taylor Algorithm 556
16.3.4.2 Generation of Provable-Prime Pair for DH and MQV 558
16.3.4.3 Generation of Provable-Prime Pair for RSA 559
16.4 Exercises and Problems 561
16.4.1 List of Exercises and Problems 561
16.4.2 Solutions to Exercises and Problems 562
Notes 565
References 565

Appendix: Multiple Choice Questions and Answers 566
Index 580

xviii

Preface

For millennia, human beings have used multiple forms of codes to protect their oral communications, entries of castles,
their messages, and other belongings. Indeed, cryptography existed early in human history and civilizations, before the
event of computers. Cryptography has been developed and improved over the centuries, in particular for protecting mili-
tary secrets and spying on enemies, then for protecting industrial and economical secrets, then for protecting recent appli-
cations made possible with the use of the internet, and ultimately for protecting the privacy of electronic devices’ users. In
a highly computerized world, cryptography is the pillar of security. Encrypting and signing are the most performed crypto-
graphic operations in the digital world.

Cryptography provides services to secure websites, electronic transmissions, and data repositories. For more than
three decades, public-key cryptography has been enabling people, who never met before, to securely communicate and
trust each other. Cryptography is not only used over the internet, but also in phones, bank cards, televisions, cars, air-
crafts, door locks, implants, and a variety of other devices. Without cryptography, hackers could get into victims’ emails,
listen to their phone conversations, tap into their cable companies and acquire free cable services, or break into their
bank accounts.

Cryptography is the discipline at the intersection of computer science and mathematics. It provides algorithms for guar-
anteeing confidentiality, integrity, authentication, and non-repudiation for parties that share data or exchange messages to
perform operations and transactions in cyberspace. For example, customers’ bank accounts or citizens’ votes must remain
confidential and not altered by any unauthorized third party. E-merchants, as well as clients, must be protected from each
other; a customer, who ordered an article, could not deny ordering; and a merchant, who has been paid, could not deny
having been. A person, who digitally signed an agreement or a contract, cannot deny having signed. Such protections, and
many others, are provided thanks to cryptography.

Cryptography standards are needed to enable interoperability in cyberspace. In general, standard protocols follow rig-
orous procedures of testing before their adoption. Therefore, it is highly recommended to use only standard security pro-
tocols to build information security systems. Security, in general, and cryptography, in particular, have evolved at a rapid
pace in the past two decades. Security technology has gone through tremendous changes in terms of protocols and stan-
dards. The continuous evolution of information technology, on one hand, and the discovery of vulnerabilities in standards,
on the other hand, motivate the development of new standards. In the last 15 years, cryptography standards made tremen-
dous advances that are not included in existing books. Some standards have become obsolete and others have recently been
recommended. This book aims at providing a comprehensive description of recent advances in cryptographic protocols.
The focus is on the NIST (National Institute for Standards and Technology, US) and IETF (Internet Engineering Task
Force) standards, which are commonly used in the internet and networking applications.

This book, also, aims at providing a comprehensive description of notions, algorithms, protocols, and standards in the
cryptographic field. It addresses algorithms through examples and problems, highlights vulnerabilities of deprecated
standards, and describes in detail algorithms and protocols recommended in recent standards. In addition, it focuses on
the basic notions and methods of security analysis and cryptanalysis of symmetric ciphers. The book is designed to serve
as a textbook for undergraduate and graduate students, as well as a reference for researchers and practitioners in

cryptography.

Preface | xix
Definitions Used in the Book

Definitions included in this book are inspired by NIST and IETF glossaries [1,2]. They are not formal definitions. Rather, they
are provided to summarize the basic notions of cryptography and facilitate the learning of algorithms and protocols.

1) Paulsen C, Byers RD. Glossary of Key Information Security Terms. NIST; 2019.
2) Shirey R. Internet Security Glossary, RFC 4949. Internet Engineering Task Force; 2007.

Organization of the Book

Chapter 1: This chapter introduces aims at introducing the main issues and notions of security in computer-based systems.
The main properties of security (namely confidentiality, integrity, authenticity, and non-repudiation) are introduced. A
taxonomy of attacks on digital assets is provided. Multiple components and practices, required to address from different
perspectives the security of computer-based systems, are introduced in this chapter. The main technical components of
security include cryptography, which is the focus of the remainder of the book.

Chapter 2: Cryptography has developed and improved over time. Chapter 2 aims at providing a brief history of cryptog-
raphy and presenting its main notions and techniques. Breaking cryptographic codes is a very ancient activity to disclose
secrets. An overall categorization of attacks on modern cryptographic algorithms is discussed in this chapter. There exist
two main categories of cryptographic systems: symmetric and asymmetric (also called public-key) cryptosystems. The
design differences between both categories are briefly discussed. Message digest, digital signature, and digital certificate
are of prime importance to establish trust between parties that share data and exchange messages. These notions are intro-
duced in Chapter 2.

Chapter 3: This chapter aims at reviewing and presenting, with examples and exercises, the mathematical background
useful to address cryptography algorithms. In particular, modular arithmetic and finite fields are of prime importance to
understand the design of cryptographic algorithms. Fundamental theorems for cryptography are provided. In addition, to
mathematical notions, computation algorithms (such as Extended Euclidean algorithm, square-and-multiply method to
perform modular exponentiation, modular multiplication, Gauss’s algorithm to solve congruence systems, Tonelli-Shanks’s
algorithm to find modular square roots, and Rabin’s algorithm to test irreducibility of polynomials), which are often used
in cryptographic algorithms, are introduced with examples and exercises. Readers who have a sufficient background in the
reminded notions and algorithms can skip this chapter.

Chapter 4: Shift and substitution ciphers have been used in written text transmission; and dominated the art of secret
writing for at least two millenniums. The most known historical ciphers in this category include Caesar’s, Vigenere’s,
Affine, One Time Pad, and Enigma ciphers. All those ciphers are original inventions, with ideas and principles that inspired
authors of modern cryptographic algorithms. Before presenting modern cryptographic algorithms, Chapter 4 aims at
providing an overview of historical ciphers and their ingenious ideas. Methods used to break historical ciphers have widely
been exploited to design modern ciphers.

Chapter 5: This chapter introduces three notions of cryptography: hash functions, message authentication codes, and
digital signature. All of them are of paramount importance for providing integrity and authentication guarantees. Hash
functions produce digital fingerprints, also called message tags, which are mainly used to verify the integrity of messages
and files, to generate and verify digital signatures, and to generate random numbers. Approaches to design hash functions
and standard hash functions (i.e. SHA-1, SHA-2, and SHA-3) and standard Message Authentication Codes (i.e. HMAC and
KMAC) are described in detail. Common attacks against MAC algorithms and digital signatures are discussed.

Chapter 6: Stream ciphers are symmetric ciphers that encrypt and decrypt bits individually. They are used, in particular,
to secure communications in wireless and cellular networks. Stream ciphers are well-suited to hardware implementation
and they are generally faster than block ciphers. They also are well-suited to encrypt and decrypt continuous data at high
rate and when devices have limited memory to store long messages. Often, stream ciphers are designed using LFSRs
(Linear-Feedback Shift Registers) combined with nonlinear filtering functions. Chapter 6 aims at providing a discussion of
the design principles of LFSRs and stream ciphers to produce keystream bits, used to encrypt plaintexts and decrypt cipher-
texts. It also provides a detailed description of the most known and standard stream ciphers: A5/1, EO, SNOW 3G, ZUC,
Chacha20, RC4, Trivium, and Enocoro.

Chapter 7: This chapter addresses block ciphers, which are the most used algorithms to secure data and messages. Data
or messages are split into blocks of a fixed size (e.g. 128 bits) and plaintext blocks are encrypted individually to generate

XX

Preface

ciphertext blocks of the same bit-length than that of a plaintext block. In addition to ciphering, block ciphers can be used
to generate pseudorandom numbers or to build hash functions and MACs (Message Authentication Codes). A huge
number of block ciphers are published in literature. However, a very small number of them are standards that are used in
operational cryptosystems. This chapter introduces the basics of construction of block ciphers and presents in detail the
standard block ciphers, currently in use, namely TDEA (Triple Data Encryption Algorithm) and AES (Advanced Encryption
Standard). Known attacks against block ciphers are discussed.

Chapters 8 and 9: A block cipher, such as AES or TDEA, takes a fixed-size plaintext block and returns a ciphertext block
of the same size. However, in many applications, a plaintext (e.g. a text file or an image) is composed of several (maybe in
thousands or even more) blocks. When plaintext blocks are repeated in the same data or message and identically encrypted,
an attacker may infer some information regarding the ciphertexts that he/she intercepted. In addition, in many applica-
tions, the recipient of a message may need to authenticate the message sender. Chapter 8 addresses standard operation
modes of block ciphers to guarantee confidentiality. The NIST recommends 11 modes (ECB, CBC, CBC-S1, CBC-S2, CBC-
S3, OCB, CTR, CFB, FF1, FF-3, and XTS-AES) for guaranteeing confidentiality. Chapter 9 focuses on modes of operation
of block ciphers to provide either authentication or confidentiality and authentication. NIST recommends three modes
(CMAC, GMAC, and Poly1305-AES), for authentication-only, and six modes (CCM, GMAC, AED-ChaCha20-Poly1305,
KW, KWP, and TKW) for authentication and confidentiality. All the 20 operation modes recommended by NIST are
addressed in detail in Chapters 8 and 9. Known attacks against operation modes are also discussed.

Chapter 10: Modern cryptographic security relies on the computational difficulty to break ciphers rather than on the the-
oretical impossibility to break them. If adversaries have enough resources and time, they can break any cipher. The secu-
rity analysis of block ciphers and their modes of operation is a wide field in cryptanalysis. It aims at finding bounds on the
amount of data to encrypt with the same key without compromising the security of encrypted data. Chapter 10 introduces
security analysis in which adversaries are given black boxes that simulate block ciphers or their modes of operation. Then,
adversaries query black boxes, receive ciphertexts, plaintexts, or tags, and try to guess some information about the used
keys or to forge signatures or message tags. Secure ciphers are those ciphers for which the advantage of adversaries is neg-
ligible if their resources and time remain below some limits. The analysis of different scenarios of attacks is an approach to
assess the security of ciphers from a probabilistic point of view.

Chapter 11: Cryptanalysis is the science and techniques of analyzing and breaking cryptographic algorithms and proto-
cols. It is a very exciting and challenging field. There exist hundreds of cryptanalysis attack variants. Chapter 11 aims at
presenting the most known cryptanalysis attacks against symmetric ciphers, namely memory-time trade-off attacks, linear
cryptanalysis, differential cryptanalysis algebraic cryptanalysis, cube attacks, divide-and-conquer attacks, and correlation
attacks.

Chapter 12: The turning point in modern cryptography occurred in 1976-1977, when Diffie and Hellman on one side and
Rivest, Shamir, and Adleman, on the other, proposed original schemes to secure systems without requiring a unique cipher
key shared by both parties. The proposed schemes were and are still used to design public-key cryptosystems. The latter
provide support to secure communications worldwide between people who do not a priori know each other. The first and
still most widely used public-key cryptosystem is with no doubt RSA. Modern cryptography is founded on the idea that the
key used to encrypt messages can be made public, while the key used to decrypt messages must be kept private. Chapter 12
aims to describe public-key algorithms and protocols, for providing confidentiality, integrity, and authentication guaran-
tees. They include RSA, Diffie-Hellman key exchange, Menezes-Qu-Vanstone, and ElGamal cryptosystems. The security of
public-key cryptosystems is based on either the integer factorization problem or the discrete logarithm problem over cyclic
groups. Those problems are known to be computationally infeasible for large numbers; and they are discussed in this
chapter. Known attacks against addressed algorithms are introduced.

Chapter 13: The second generation of public-key cryptosystems are based on elliptic curve theory. Elliptic curve (EC)
cryptography algorithms entered wide use in 2004. After a slow start, EC-based algorithms are gaining popularity and
the pace of adoption is accelerating. EC cryptosystems have been adopted by Amazon, Google, and many others to
secure communications with their customers. EC cryptosystems amply outperform RSA-based cryptosystems. Until
2015, the NSA (National Security Agency, US) recommended 256-bit EC cryptography for protecting classified
information up to the secret level and 384-bit for Top-secret level. Since 2015, the NSA has recommended 384-bit for all
classified information. IETF standards have been proposed to support EC for Transport Layer Security. Chapter 13 aims
at addressing different forms of EC-based algorithms, such as ECDSA, to provide confidentiality, integrity, and authen-
ticity guarantees. Compared to RSA, EC-based algorithms make use of more difficult mathematical operations, which
are addressed in this chapter.

Preface

Chapter 14: Keys are owned and used by entities that interact with each other to perform specific operations in different
fields of activities. These keys are analogous to the combination of a safe. If adversaries know the combination of a safe,
then the latter does not provide any security against attacks, even it is very complex. Keys are the most valuable items in
computer security. Therefore, their protection is of paramount importance. Chapter 14 focuses on key management, which
provides functions to secure cryptographic keys throughout their lifetime. It mainly includes key generation, storage, dis-
tribution, recovery, suspension, and withdrawal. This chapter aims at introducing the main mechanisms and protocols for
key generation, key agreement, key transport, and key distribution over unsecure channels.

Chapter 15: Parties, which exchange encrypted messages over the internet, need to trust each other to secure their oper-
ations and transactions in e-commerce, e-banking, e-voting, etc. In addition, parties that exchange messages or access
encrypted data inside a company or an institution, where messages/data are encrypted using symmetric keys, need to
securely share their keys. Chapter 15 addresses both situations and presents different notions, including key distribution
center, digital certificate, certification authority, and Public-key infrastructures (PKIs). PKIs are of paramount impor-
tance to establish trust between partners that do not a priori trust each other in the open digital world. Today, digital
certificates are used by billions of end-entities, including web servers and their clients, to authenticate each other. The
main protocol to secure communications over the internet is with no doubt TLS (Transport Layer Security); it is intro-
duced in this chapter.

Chapter 16: Modern cryptography is fundamentally based on large random and prime numbers. In particular, keys
should be generated using large random numbers; and RSA keys are generated using large prime numbers. Any weak-
ness (in term of randomness) in a selected key may result in damage of data and messages protected by that weak key.
Chapter 16 addresses algorithms and methods recommended to generate random and prime numbers. True random
numbers are hard to produce by computer. In consequence, deterministic random number generators (DRNGs) are of
common use in cryptography. However, it is of prime importance to use only DRNGs recommended by NIST and IETF.
DRNGs cannot guarantee that generated integers are prime. Therefore, algorithms for testing primality are of common
use in cryptography. When prime numbers are required, only provable and probable primes should be used. Probable
primes are those integers shown to be prime by probabilistic tests. Both types of primes are discussed in this chapter.

Appendix: A series of 200 multiple choice questions (with answers), relating to computer security in general and to cryp-
tography in particular, are proposed for knowledge testing. These MCQs were collected from various sources, including
questions for job applicants, course certification, and exams in IT security field.

Using the Book as a Course

Some chapters are independent of each other, while some chapters are grouped into blocks, because they share notions,
objectives, or mathematical background. Chapter blocks are marked with dotted lines. Therefore, the book may be used in
different ways, depending on the audience. In particular, chapters focusing on symmetric-key algorithms are independent
of those addressing public-key algorithms. Various learning paths are suggested in the figure below, where single arrows
show the recommended sequential reading order of chapters, while double arrows indicate that the reader can focus on
chapter blocks in any order.

Chapters 1 and 2 are introductive. Therefore, it is recommended to read them. Chapter 3 recalls mathematical background.
It could be skipped and, at any time, the reader can return to this chapter to learn about mathematical notions used in the
other chapters. For readers not familiar with modular arithmetic and algebra notions, it is recommended to take time to
address the exercises given in Chapter 3.

Chapter 4 is a review of historical ciphers. It is recommended in order to learn some roots of modern cryptography.
Chapter 5 presents notions relevant to both symmetric and asymmetric cryptosystems.

The two big chapter blocks (i.e. symmetric and asymmetric algorithms, protocols, and standards), may be addressed in
any order. However, we recommend finishing a block before starting the other one. Chapters 10 and 11 focus on advanced
notions in cryptanalysis of symmetric ciphers. Therefore, they are recommended for graduate students.

XXi

xxii | Preface

| Chapter 1: Introduction to computer security ‘

v

‘ Chapter 2: Introduction to cryptography ‘

|
v v

»{ Chapter 3: Mathematical basics and > | Chapter 4: Symmetric ciphering:

A

computation algorithms for cryptography | Historical ciphers

| |
v

‘ Chapter 5: Hash functions, MACs, and Signature ‘

1
1
1
1
1
. . o
g | i Chapter 7: Block ciphers: Basics Y
1 | Chapter 12: RSA and Finite Field i H : . TDEA andpAES ’ P
H Cryptography based schemes : I ’ 3 : H
! ¢ " 1 1
i ¢ ' o Chapter 8: Block cipher modes of : 1
i Chapter 13: Elliptic curve ' D operation for confidentiality .
i cryptography ! i v P
. 1
S . Chapter 9: Block cipher modes of : ;
! : operation for authentication and il
i confidentiality .
L '
L L L D L T L S L T T S D L S L S T D
5 }
" ettt ettty
: | Chapter 14: Key management | ' i Chapter 10: Chapter 11: i
H v : H Introduction to Introduction to !
1 . . .
H ‘ Chapter 15: Digital certificate, PKI, TLS, Kerberos | i i | security analysis of PR cryptanalysis !
H v ! 1 | blocks ciphers and attacks on ;
1 . .
E Chapter 16: Generation of pseudorandom and | | i their moqles of 2 AlI2IE !
1 | prime numbers for cryptographic applications ! : operation ciphers d
1 1

For feedback, contact the author at
zoubir.mammeri@irit.fr or zoubir.mammerill@gmail.com

mailto:zoubir.mammeri11@gmail.com
mailto:zoubir.mammeri@irit.fr

1

Introduction to Computer Security

Information and computer technologies (ICT), or simply IT technologies, are everywhere, in all fields of activities (business,
commerce, transportation systems, health, leisure, education, administration, national security, army, etc.). Nowadays,
human beings are more than ever dependent on IT technologies. Therefore, IT security became a paramount concern for
any owner or user of electronic devices.

Since the early stage of computers, cyberattacks have never stopped. Worse, statistics provided annually by cybercrime
observers and experts often show increases in attacks worldwide. In particular, ransom attacks have become the most
lucrative criminal activities in the cyberspace. Partial or total shutdown of systems, as long as ransoms are not paid, results
in losses in billions of dollars for companies, hospitals, e-merchants, banks, and individuals.

This chapter aims at providing an introduction to the main issues and notions of security in computer-based systems and
tries to answer the following questions:

e What are the security issues and requirements?
e Why and how do security attacks occur?
e How to face security attacks? That is, what are the countermeasures to security attacks?

Security techniques encompass at least two distinct domains:

e Technical domain, including hardware and software design to address security;
e Organizational domain, including education, staff training, and laws to make involved people aware of IT security.

This book addresses security from a technical point of view only; in particular, it addresses cryptography. However, it
should be clear that technology alone is not enough to address security. Imagine that you use a sophisticated alarm system
in your home, but the code to access the system is “1234”; or if a teenager in your family does not protect the house alarm
code when he/she is at school or at sport club; or even worse, he/she forgets switching on the alarm system when he/she
leaves your home. Therefore, organizational issues (including education to security) are of prime importance.

Several books (including [1-9] and journal papers [10, 11]) addressed in detail IT security. This chapter aims only to
present the notions of IT security, in particular the security services that can be supported by cryptographic algorithms.

1.1 Introduction

1.1.1 Why Do Attacks Occur?

Since the dawn of time, evil behavior of human beings have emerged: stealing or destroying belongings of others, injuring
or even killing others, having interest in details or even disclosing the private life of others, etc.
Different human’s defaults result in misbehaving; they include:

Ego (i.e. Be the best and the center of the world).

Greediness (i.e. Own all or the maximum of things/goods).

Curiosity (i.e. Know private details about the others).

Revenge (i.e. Having been mistreated, seek revenge without going through justice).

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

2

1 Introduction to Computer Security

o Competition (i.e. Be the first in sport, business, science, ...).
o Beliefs (religion) (i.e. Having some religious beliefs, do not agree with those of others or worse hate and fight them).
e Opinions (politics, ideology) (i.e. same reasons as those for religious beliefs).

Therefore, there is no unique profile (or reason) for potential attackers and criminals to act. Attacks on computer-based
systems are one of the evil facets of humanity. We would say, times change, but the original flaws remain. Attacks can be
prevented, detected, and handled to mitigate their effects. We cannot ignore them or naively hope that they will definitely
cease. From ICT point of view, attacks may be classified as:

o Theft of private or confidential data.

e Data disclosure regarding privacy of individuals (their home, their beliefs, ...) or disclosing industrial and business secrets
of companies, strategies of governments, and national defense secrets.

e Threats and ransoms (via email) to extort secrets (in case of spying) or money.

e Sabotage of ICT resources, which may be data alteration to force the use of erroneous/false/fabricated data, data
deletion to prevent data owners to access their data, or computer shutdown or slowing down to make it unusable by
its users.

e Sabotage of physical equipment (such as cars, trains, satellites, antennas, factories, smart grids, smart homes, nuclear
plants, hospitals, patients...), for example, exploiting vulnerabilities of wireless communications and/or viruses.

When we disregard security issues, all of us are convinced that computers and the internet would be a revolution never
seen before. Using Internet, communications between people and between devices became easy and worldwide.
Communication borders between people have been deeply transformed and abolished to some extent. Internet has
transformed earth into a village, from the communication point of view. Using Internet has so many benefits in almost
all domains: industry, economy, society, health, learning, leisure, politics, democracy, etc.

Unfortunately, when security is of concern, the internet is probably the worst technology that harms computer-based
assets. Internet became a haven for hackers, cyberterrorists, government-sponsored espionage agencies, etc., allowing
attackers to operate from anywhere on earth, in particular from hostile countries or countries without deterrent and appli-
cable laws.

1.1.2 Are Security Attacks Avoidable?

A drastic solution was suggested by Gene Spafford: “The only truly secure system is one that is powered off, cast in a
block of concrete and sealed in a lead-lined room with armed guards,” quoted in [12]. Unfortunately, Spafford’s solu-
tion prevents any use of computers or systems. In practice, using a computer (or any other electronic device) is risky
for any user.

The objectives of security techniques are to minimize the risks at reasonable cost. For example, protection of one’s family
pictures and the protection of national security and defense systems do not involve similar risks or similar costs. One thing
should be clearly understood: there is no 100% secure and reliable system, which is human-made and (directly or indi-
rectly) accessible to attackers. In practice, many risks are taken into consideration only when attacks are reported. In
preference, the attacks should first affect others, and we are happy to learn from their misfortunes (credit card stealing,
lock of cars, shutdown of hospital services, etc.).

1.1.3 What Should Be Protected in Cyberspace?

Definition 1.1 Cyberspace: it is the space composed of electromechanical devices, computers, communication links, and
applications servers where humans interact using the provided facilities.

Cyber comes from Cybernetics, which is a large discipline including control systems, electrical theory, mechanical engi-
neering, logic modeling, and others. The main component of cybernetics is the computer. Starting from the 1960s most of
engineering studies in cybernetics have been specialized and became computer science, electronics, automation, telecom-
munications, and so on.

From security point of view, protections focus on:

e Physical entities: including plants, labs, stores, parking areas, loading areas, warehouses, offices, machines, robots, vehi-
cles, products, materials, etc. At this level, the protection is physical (e.g. protect doors, PCs, cables, etc.).

1.1 Introduction |3

e People: protect life, health, the privacy of staff members, customers, and guests.
e Data: protect files, databases, messages, programs, servers...

This book focuses on data protection only. However, before focusing on data protection, below is a brief introduction to
barriers used for physical protection to enforce data protection.

i) Physical barriers
They are used to deter the potential attackers; they include:

e Guards: deploy security agents in and around vulnerable areas.

o Fences: build high and impassable fences and walls.

o Restricted access technologies (alarms, locks): deploy alarm systems to detect intrusions and highly-resistant locks to
prevent unauthorized access.

ii) Physical access restrictions
They are used to deter attacks; they include:

Isolation of computers or networks to make them inaccessible.

Encryption of removable media and storage in restricted-access areas.

Use remote storage systems (e.g. cloud servers) to store data in secure locations or to store copies of data to download in the
event of damage of the original copies.

iii) Personnel security practices
They participate in improving data protection; they include:

o Limited access zones: according to the criticality of zones, different access rights must be granted to staff, personnel, cus-
tomers, and visitors.

e Biometrics and badges: use biometrics and badges to enforce identification and authentication.

o Faraday cages: in some (critical) situations, Faraday’s cages are used to enforce data protection. There is no communica-
tion interception, when communicating devices are inside a Faraday’s cage.

o Training: security training includes awareness regarding the good practices, awareness regarding the abnormal behavior
reporting, and enforcement of the spirit of loyalty and patriotism.

Notes

— Physical access barring is the first defense line and it is deterrent against attackers. Without physical protection mea-
sures, it is very unlikely that data protection would be assured.

- Physical protection comes with high costs; and it is mainly deployed by institutions and companies. The costs depend
on the required protection level.

1.1.4 Security vs Safety

There are two different properties (or functional requirements) regarding ICT systems: safety and security. Unfortunately,
those two terms are sometimes mixed up and used interchangeably.

e Safety: it aims at addressing the issues to protect systems against risks and threats that come with technology, including
hardware failures, software errors, communication interferences, etc.
e Security: it aims at addressing the issues to protect systems against human attacks on computers, servers, and data.

To better understand the difference between safety and security, let’s take the case of home security. We use robust mate-
rials to build safe houses regarding flood, fire, heat, rain, snow, and wind; it is the safety concern. We use robust locks,
cameras, and alarms to make houses secure regarding thieves; it is the security concern.

1.1.5 Cybersecurity vs IT Security

Often, the three terms cybersecurity, IT security, or simply security are used interchangeably in the information technology
and science fields. However, there exists some difference between those terms, as stated by the NIST 1[13].

4

1 Introduction to Computer Security

Information-based assets
stored or transmitted
Information-based assets using ICT Non-Information-based assets
stored or transmitted ' that are vulnerable to
without using ICT threats via ICT

Information Cyber

security security

Figure 1.1 IT security vs cybersecurity.

e Information security is defined as: the protection of information and information systems from unauthorized access,
use, disclosure, disruption, modification, or destruction in order to provide confidentiality, integrity, and
availability.

o Cybersecurity is defined as: the ability to protect or defend the use of cyberspace from cyberattacks. Cybersecurity is about
securing devices (computers, mobile devices, applications, and data) that are accessible through ICT.

In practice, cybersecurity term is often used by people not directly involved or specialized in computer science (e.g.
police officers, judges, presidents, and mayors) to talk about attacks made via Internet. Whereas IT security or simply secu-
rity terms are used by those people directly involved in computers and software. In this book, security is used to designate
IT security. Figure 1.1 provides an overall comparison of IT security to Cybersecurity, where:

o Information (of a company, country, or an individual) includes digital and non-digital (i.e. papers, frames, books, films,
etc.). Non-digital information is not under the control of computers, while digital information is. Information security is
concerned by the security of information whatever is the support and ways of access.

e Cyberspace is composed of computers and by other equipment (e.g. trains, cars, grid installations, robots, and water
provisioning equipment). All those categories of equipment are vulnerable to attacks through ICT. Their protection
requires specific methods and techniques; some of them are out of the computer field (e.g. smart grids and industrial
equipment). Cybersecurity is concerned with the security of any assets vulnerable because they are connected to ICT
systems.

o Intersection of information and cyberspace security is the IT security focusing on digital data, which are vulnerable to
threats via ICT.

1.2 Security Terms and Definitions

1.2.1 Assets and Attackers
Three fundamental notions are at the core of security: asset, adversary, and attack vector.

Definition 1.2 Asset: it refers to any resource to protect. Assets to secure include hardware (laptops, work stations, disks, USB
keys, routers, switches, cables, antennas), software (operating systems, libraries, applications, severs), and data (files, data-
bases, messages).

1.2 Security Terms and Definitions

Definition 1.3 Adversary: it is any entity that attacks or that is a potential threat to a system. It is also called attacker or
threat agent.

Definition 1.4 Attack vector: it refers to any path or means by which an attacker can gain access to an asset. The adversary
uses attack vectors (such as email, web servers, physical access, etc.) to gain access to protected assets.

1.2.2 Vulnerabilities, Threats, and Risks

Definition 1.5 Vulnerability: it refers to a known weakness of an asset that can be exploited by attackers.

Example 1.1

- No password change for years, open account with no user in a company, and secret data stored in a place easy to access
are examples of vulnerabilities.

- No update of phone software with recent security recommendations and a web camera with code 1234 are other exam-
ples of vulnerabilities.

Any entities, including the following, using computer-based systems are vulnerable:

o Companies, banks, and financial institutions

o Internet service providers and Telecom operators
e Hospitals, museums, and universities

e Government and defense agencies

e Smart cities and smart grids

o Industrial installations and factories

e Nuclear plants

Definition 1.6 Attack surface: it is defined as the set of all vulnerability points of an asset, a system, or a network.
The larger the attack surface is, the more difficult the protection is.

Definition 1.7 Threat: it refers to any incident that has the potential to harm a system. A threat is something that may or
may not happen; but if happens, it has the potential to cause serious damage.

Threats depend on targets, for example:

e Threats on hardware: theft and sabotage.

o Threats on software: deletion, server access blocking, theft, alteration of functions or configurations, content change of
web pages, and web server hacking.

e Threats on data: theft of private data, theft of intellectual properties, file deletion, file access blocking, and data
alteration.

Definition 1.8 Risk: It is defined as the potential for loss or damage, if a threat exploits a vulnerability.

Example 1.2 Financial lofsses, loss of privacy, reputational damage, legal implications, and even loss of life are examples
of security risks.

Figure 1.2 summarizes the relationships between the main terms of security:

- The legitimate owner of assets needs protection of his/her assets.

- The adversary threatens to use, alter, or destroy the assets.

- The assets have vulnerabilities, which may be exploited by the adversary.

- Vulnerabilities are loopholes for the adversary to design and mount attacks.

- The owner deploys countermeasures to minimize the risks relevant to the threats.

5

6

1 Introduction to Computer Security

own
reduce
Money Ego

a; Countermeasures

Objectives =
o
0 Reduce
=
o
=
H .
i Vulnerabilities ‘
E on
o

Lead to on —
Threats —l_.
Assets
e Can abuse/damage
Deploy & run

Figure 1.2 Relationships between basic security terms.

1.3 Security Services

The three basic security services are referred to as the CIA triad. CIA stands for Confidentiality-Integrity-Availability.
Sometimes, CIA are called basic properties of security. In addition to CIA, authentication, authorization, and non-repudi-
ation are services often required in the cyberspace. Depending on the asset owner’s needs, a single, two, or several services
may be required. Figure 1.3 summarizes the main security services used to protect assets.

1.3.1 Confidentiality and Privacy

Confidentiality aims at guaranteeing that private or confidential information is not made available or disclosed to
unauthorized entities. Secrecy is a term usually used synonymously with confidentiality.

Privacy is a specific case of confidentiality. Privacy protection aims at preventing disclosure of private-life data (see
Section 1.7).

Example 1.3 The following are examples of information that require confidentiality protection:

- industrial secrets of companies

- business agreements

- defense secrets

- health data, bank accounts, and private meetings of individuals

1.3.2 Integrity

Asset integrity is a property whereby asset content and/or behavior have not been modified in an unauthorized manner
after being created, updated, maintained, stored, or transmitted. According to the category of asset, three types of integrity
are distinguished: data, system/software, and hardware integrity.

Data integrity: it is a property whereby data has not been modified in an unauthorized manner after being created, stored,
or transmitted. Data modification includes the insertion, deletion, and substitution of data.

System/software integrity: it is a property whereby a system (e.g. a web server) or a software (e.g. a library) has not been
modified in an unauthorized manner after being created, stored, or transmitted. Software modification includes deletion
and alteration of some functions or some configuration parameters. System/software integrity aims at guaranteeing that
a system or the software performs its intended functions in an unimpaired manner, free from deliberate or inadvertent
unauthorized manipulations of system or software.

1.3 Security Services

Authentication & authenticity

Integrity

Confidentiality Availability

Accountability Authorization
& Non-repudiation

Figure 1.3 Overview of security services.

Hardware integrity: it is a property whereby a hardware component (e.g. a camera, a sensor, or a card reader) has not been
modified in an unauthorized manner after being created and acquired or after maintenance operation.

Example 1.4 Examples of assets that require integrity guarantees:

— Your ID: if your ID is modified, you become somebody else.

— Web servers: if web server pages are modified, visitors would see inappropriate content or worse they would be asked
to enter confidential data.

— Braking system of a car: if car brakes are sabotaged, then passengers and driver could be injured.

1.3.3 Availability

Asset availability is a property whereby asset content or services are available to be used by its legitimate users. An asset
may become temporarily or definitely inaccessible, thus unavailable because of attacks. In a similar way to integrity,
according to asset category, three types of availability are distinguished: data, system/software, and hardware availability.

Data availability: it is a property whereby data (i.e. files and databases) is accessible whenever requested by legitimate
users. Both data deletion and data server blocking impact data availability.

System/software availability: it is a property whereby the function/service of a system (e.g. a web server) or a software is not
slowed down or stopped by an attack. Therefore, it is not denied to authorized users. For example, a web server should
process legitimate requests and not be blocked (totally or partially) by fraudulent requests.

Hardware availability: it is a property whereby a hardware component is available for use.

Notes

- Attacks targeting asset availability are frequent in today’s Internet. In general, after stopping partially or entirely a
system, attackers demand a ransom.
- Attacks against asset availability are the most difficult to address.

1.3.4 Authentication and Authenticity

Two types of authentication services are of interest in the IT security field: identity authentication and source
authentication.

Identity authentication service is used to provide assurance of the identity of an entity interacting with a system. The
question addressed by identity authentication is the following: Is the entity presenting an ID really the entity it
claims to be?

7

8

1 Introduction to Computer Security

Source authentication service is used to verify the identity of the entity that created a data and sent a message, that contains
that data, is the one included, as a source, in the message. The question addressed by source authentication is the follow-
ing: is the sender of a message really the entity that created the data included in the message?

Identity authentication and source authentication are very similar, but have different purposes. The first authentication
aims at controlling access to services, while the second aims at verifying the authenticity of a message. The latter is the prop-
erty whereby the recipient of a message has guarantees that the message was generated and sent by a trusted source.

1.3.5 Non-repudiation and Accountability

Non-repudiation of electronic operations (such as bank transactions, e-shopping, and e-voting) is of paramount importance
in the cyberspace. A digital signature, which is similar to handwritten signature, is used to provide assurance of authenticity
of the sender; and therefore, the signing individual cannot deny he/she was the signer. For example, when a person electron-
ically signs a house sale agreement; he/she cannot, one month later, deny having accepted to sell his/her house.

The accountability service provides capabilities to trace the responsible entity in case of a security incident or action in
order to protect against denial by one of the parties in a communication or a transaction. Authentication and accountability
services are commonly used in e-commerce: i) the buyer must provide multiple proofs, including name, card number, and
date of birth to be authenticated by the seller, and ii) the transaction is confirmed by a third party (e.g. e-commerce
platform) and a receipt is provided; thus, none of the buyer and seller could deny the transaction.

1.3.6 Authorization

Authorization is concerned with providing permissions to perform specific operations or activities on assets; for
example, read or copy files, use specific printers, or access some rooms or factories in a company. In general, authori-
zation follows authentication; i.e. the person identity is authenticated, and then, the requesting person is granted some
rights to access assets.

1.4 Attacks

Figure 1.4 summarizes the most common attacks in the cyberspace.

1.4.1 Taxonomy of Attacks

This section provides three criteria to categorize attacks in the cyberspace. Overall, the main objectives of attacks on digital
assets are to delete data, steal data, block a system, and prepare context for future attacks with malicious software.

[Cyber attacks]

—-{ Port scanning | —-| Buffer overflow ‘ | Dictionary |‘— ‘ Phishing |‘*

IP address TCP SYN
™ spoofing 7 flooding Spoofing |+
Replay |l—
L, P:)mket L] DN_S cthe Spam |
sniffing poisoning

DoS and DDoS

Figure 1.4 Main attacks in cyberspace.

1.4 Attacks

Boundary of an organization

|

Outsider

éf&
.

N A

Figure 1.5 Origins of attacks.

1.4.1.1 Attacks According to Their Origin
The first criterion of attack categorization is related to the origin of attack. Attacks can be triggered by outsiders (external
people) or by insiders (company personnel, friends, etc.). Figure 1.5 illustrates attack origins, where the solid arrows denote
message interception, data or message modification, and unauthorized accesses.

In general, it is harder to address attacks when they come from staff, personal, family members, and friends.

1.4.1.2 Passive vs Active Attacks
The second criterion attack categorization is related to how the attacks act on the assets: active and passive attacks.

1.4.1.2.1 Passive Attacks
Attacks in this category are made through the interceptions of messages via a network or any other means (access to unse-
cured areas and cupboards). Attacker may:

o Use the data internally (i.e. attacker knows your private data, your intellectual property, etc.).
e Use the stolen data to withdraw money and make payment while e-shopping.
o Release the content (private-life detail, industrial secrets, ...) to enemies or competitors to harm.

The main variant of passive attacks is referred to as eavesdropping, which is the act of secretly (stealthily or permanently)
listening to private conversations or communications of others without their consent. Such a practice is widely regarded as
unethical, and in many jurisdictions, it is illegal. Different methods are known as eavesdropping in ICT security; they
include port scanning, packet sniffing, phone call interception, etc.

Note. As passive attacks do not leave traces in ICT systems, they are difficult to detect. When they are detected, it is
already too late. With education of asset owners and users, passive attacks could be prevented or at least their number
minimized.

1.4.1.2.2 Active Attacks
Active attacks modify or destroy assets. They have different forms including:

Manipulation of communications (i.e. alteration of messages while being transmitted).

Masquerade: forge identity and pretend to be someone known and access assets.

Modification: change the content of an asset (e.g. change a bank account balance).

Replay: this is mixture of two attacks, capture passively and then replay a part of what has been captured.

Denial of service: it is one of the common attacks in the internet to prevent a system, a server or a network to work
properly.

Deny: once a transaction has been validated, the attacker may deny having participated in the transaction.

9

10

1 Introduction to Computer Security

1.4.1.3 Attacks According to Their Objectives

The third criterion of attack categorization is related to attacker’s objectives, which may be basic (e.g. find open TCP ports)
or complex (e.g. spying or ransoming). In other words, the objectives of attacks can be understood only by people with
skills in computers or also by the general public. For example, TCP connection hacking does not provide understandable
concern to general public, while ransoming does.

1.4.1.3.1 Basic (or Generic) Attacks
Basic attacks are building blocks of complex attacks. For example, searching open TCP ports may be used to install ransom-
ing code, and then ask the victim to pay. They include the following attacks commonly discussed in literature:

i) Port scanning attacks

Port scanning is one of the very basic attacks. It targets the status of ports? of computers. Its main goal is to find out open,
closed, and filtered® ports. When open ports are detected, attackers can exploit their vulnerabilities to mount specific
attacks (e.g. install viruses). Closed and filtered ports prevent attacks relying on port scanning.

ii) IP source address spoofing attacks

In general, unwanted users or websites are blocked by firewalls using their IP addresses. IP source address spoofing refers
to an attack where the adversary forges an IP address trusted by the targeted computers. Using a trusted IP address, the
attacker misleads the victims and steals or alters their data.

iii) TCP SYN flooding attacks

TCP SYN flooding attack takes advantage of the vulnerabilities of TCP (Transmission Control Protocol) to perform Denial
of service attacks. TCP is available on almost all devices connected to the internet. Roughly, in normal operation to estab-
lish a TCP connection between computers A and B: computer A sends a TCP segment with bit SYN=1; computer B responds
with a TCP segment with bits SYN=1 and ACK=1; and computer A sends a segment with bit ACK=1. A hostile user sends,
at a high rate, TCP segments with bit SYN=1 on distinct open ports and never sends any segment with bit ACK=1. The
result is that the attacked computer loses time in waiting segments that will never arrive, which prevents it establishing
connections with legitimate computers. To imagine what TCP SYN flooding would look like, consider a shop. A group of
people, who do not want to buy any article, enter the shop and take a long time asking the merchant about many details.
When some individuals of the group leave the shop, other people from the group, with the same objectives, enter in the
shop and sustain discussions with the merchant. When this situation lasts for a long time, the shop is full and no honest
client can enter.

iv) Packet sniffing attacks

Packet sniffing is a passive attack aiming to intercept and collect packets transmitted over a network, a channel, or a con-
nection. Many tools, such as tcpdump and wireshark, are available to help network and legitimate system administrators
to perform monitoring and traffic analysis. Such tools are exploited by attackers to collect packets for malicious purposes.

v) Dictionary attacks

Dictionary attacks are mainly used to disclose passwords or other secrets. In a dictionary attack, the attacker builds a large
table (the table is called a dictionary) containing potential passwords based on what is known about the targeted individ-
uals (their first names, family names, occupations, animals, preferred films and music, etc.). Then, attacker tries many
passwords before probably succeeding. Weak passwords are generally easily disclosed by dictionary attacks; that is why it
is highly recommended to use long and complex passwords, without information that could be exploited by attackers (i.e.
the name, the pseudo-name, the birthday, the city, etc.).

vi) DNS cache poisoning attacks

DNS (Domain Name Server) is a server available on most of devices connected to the internet. It translates human
readable domain names (for example, www.bmw.de) to machine readable IP addresses (for example, 160.46.252.15).
In general, the various client applications (such as mail clients, web browsers, etc.) maintain their own DNS caches
(i.e. the IP addresses and names of the recently used domains). DNS cache poisoning attack aims to alter the local cache
of a victim in order to redirect the flows to fake domains. The redirection of web browsers to fake websites also is called
pharming.

www.bmw.de

1.4 Attacks

vii) Buffer overflow attacks

Some applications use dynamic memory allocation to serve requests. In case the maximum amount of the memory is used,
any additional request (which requires memory to store relevant data) can result in a buffer overflow. When buffer over-
flow is handled correctly, only exceptions are raised and an adequate procedure is executed. When it is not handled cor-
rectly, the attacked system may stop and must be restarted, which is a kind of denial-of-service. Worse than that, the
attacker can write in protected memory zones, delete data, or upload a virus. Notice that well-coded applications are not
vulnerable to buffer overflow at tacks.

viii) DoS and DDoS attacks

With Denial-of-Service (DoS) attack, the attacker seeks to make a server, a computer, a router, or a network unavailable to
its intended users, by temporarily or indefinitely disrupting its services. DoS is typically accomplished by flooding the tar-
geted system or resource with superfluous requests; for example, using TCP SYN flooding. In DDoS (Distributed DoS)
attack, the incoming traffic flooding the victim originates from multiple sources. Several infected computers, and moni-
tored by the attacker, work together to overload the attacked system with massive amounts of forged traffic and do so to
such an extent that the attacked system becomes unusable by its legitimate users. This effectively makes it impossible to
stop the attack by blocking a single hostile computer. It is worth noticing that DDoS attacks are the most difficult to thwart.

ix) Replay attacks

In a replay attack, the cybercriminal intercepts messages and then he/she resends all or some of the intercepted messages
to the recipient. When no mechanism is used to detect retransmissions, some functions or data of the recipient may be com-
promised. For example, imagine that an encrypted software is sent, with the replay attack the content of the software is
altered on the recipient side, which may lead to erroneous executions of the software. Another example, imagine that
the sent messages include encrypted financial transactions. If a replay attack succeeds, the recipient records more transac-
tions than those sent by the legitimate sender. Last example, imagine that the attacker captured two encrypted messages,
one to lock a door and the other to unlock it. With a replay attack, if the encrypted messages are always the same, the
attacker can unlock the door without knowing the encryption key. Replay attacks are easy to perform because they do not
require any decryption operation from the attacker.

1.4.1.3.2 Attacks with Objectives Understandable to General Public
They include the following attacks commonly discussed in literature.

i) Phishing

Phishing is an online fraud that attempts to steal sensitive information such as usernames, passwords, and credit card num-
bers. When phishing is directed to a specific individual (or organization), it is referred to as spear phishing. In general,
phishing is a form of social engineering where the attacker attempts to fraudulently retrieve licit user sensitive information,
by imitating electronic communication from a trusted organization (for example, from a bank or from an administration).
It is typically carried out by emails or instant messaging. It often directs users to enter personal information on fake web-
site. Notice that phishing is the main form of attacks currently encountered in the cyberspace.

ii) Spoofing

Spoofing is similar to phishing, where the attacker steals the identity of a licit user and pretends to be the hacked user, in
order to breach the system security or to steal data. Spoofing is a kind of identity theft, while phishing is not. There are var-
ious types of spoofing attacks such as IP spoofing, Email spoofing, URL spoofing, and MAC spoofing, which mask the IP
address, user email, the URL, the MAC address, respectively.

iii) Spam

With no doubt, the most prevalent inconvenience that any computer user must face is reception of unsolicited messages,
known as spams. There are two categories of spams. In the first spam category, messages may be sent by honest individuals
or organizations with advertising or news purposes; we lose time to open and delete them. In the second category, the mes-
sages are issued by malicious individuals or organizations (imitating banks, government administrations, etc.) and include
links to launch phishing attacks. Those spams are dangerous. The use of spam filters (i.e. tools for statistical analysis of

emails to decide whether or not they are spams) is recommended. However, even with spam filters, users should remain
watchful, because ingenuity of cybercriminals sometimes exceeds the detection capabilities of spam filters.

11

12

1 Introduction to Computer Security

iv) Ransom attacks

The objective of ransom attacks is to require that an amount of money must be paid by the attacked individual or organi-
zation. Ransom attacks can be categorized into two classes. In the first class of attacks, the attacker sends an email to the
victim pretending that he/she possesses compromising pictures, videos, or SMSes; the victim must pay or the compro-
mising information will be disclosed to friends, family, and colleagues of the victim. In the second category, the attacker
installs a code (called ransomware) on a system of an individual or an organization; when the ransomware is launched, the
attacked system is blocked partially or entirely; then, the attacker sends an email to the attacked individual or organization,
asking to pay a ransom; otherwise, their system remains blocked, or worse, data and software will be infected or deleted
starting from a given date.

Notice that in the first category of ransom attacks, it is often unlikely that the attacker possesses any compromising
information, while in the second class, the effects of the attack are clearly visible to victims.

1.4.1.3.3 New Complex Attacks

The fraudsters’ ingenuity has no limit and new forms of attacks will appear in the future. The war is not ended and may
never end. In particular, new and complex attacks have been recently proposed. Such attacks would dominate in the
future; and they include the following:

o Al-generated fake video and audio: using machine learning techniques, attackers may forge videos and audios and
threaten people. Example, you receive a fabricated video of your mother asking you to do something (e.g. send money).
For more on the topic, refer to [14-16].

e Poisoning Al defenses: using machine learning, the attacker forges scenarios (i.e. data), which, once introduced in the
defense system, makes this system unable to detect the attack. In other words, this attack makes the defense system
unaware of the attacker. For more on the topic, refer to [17-19].

e Hacking smart contracts (attacks on blockchains): in a blockchain, transactions between people are written in a register,
with a reputation to be tamper-proof. Some new attacks on blockchains have been reported [20]. Blockchains (in
particular private ones) are strong but not perfectly. For example, a transaction indicating Bob has purchased the house
of Eve and paid $300k? Then, Eve (who is assumed to be expert in blockchain breaking) deletes the transaction.

e Breaking encryption using quantum computers: quantum computers (which are still in prototype stage) have computa-
tion capacities never seen before. Some attacks have been published to describe how the quantum power may be used to
break an RSA cyphering in a reasonable time (in hours) compared to the required time to break RSA with conventional
computers (in hundreds of centuries) [21, 22].

e Attacking from the computing cloud (e.g. Amazon and Google cloud, Edge computing...): attackers install servers in a
worldwide manner and then mount their attacks using the IP addresses of legal cloud servers.

1.4.2 Taxonomy of Attackers
Attackers can be categorized depending on their objectives and harmfulness capacities:

o Amateurs (not malicious crackers): they attack just for fun or vanity.

e Hackers: a hacker is someone who uses his/her skills and knowledge to find vulnerabilities in computer systems and
helps improve and patch those vulnerabilities. The hackers are often hired to locate and identify system vulnerabilities.
In practice, it is not easy to distinguish hackers from other malicious attackers.

e Crackers: a cracker is an individual who attempts to access computer systems without authorization. These individuals
are often malicious, as opposed to hackers, and have many means at their disposal for breaking into a system. Crackers
are motivated by vanity, ego, and money. Crackers also are called black hats.

o Cybercriminals: they are individuals or teams who use technology to commit malicious activities on servers or networks,
with the intention of stealing sensitive information of organizations or personal data and generating profit. They include
cyberterrorists, organized crime syndicates, and state-supported information warriors.

Cybercrime organizations are the most sophisticated structures and the most dangerous. They may be structured according
to multiple roles as in conventional organizations:

o IT experienced staff:
- Programmers who write codes or programs used by cybercriminal organizations. They may be IT engineers or data
scientists and have strong skills.

1.4 Attacks

- IT experts who maintain a cybercriminal organization IT infrastructure, such as servers, encryption technologies, and
databases. Very experienced IT engineers are employed by cybercrime organizations.

- Hackers who exploit systems, applications, and network vulnerabilities.

- Fraudsters who create and deploy schemes like spam and phishing.

- Distributors who distribute and sell stolen data to associated cybercriminals.

- System hosts and providers, which host sites that possess illegal contents.

o Business and finance experienced staff (who usually lack technical knowledge):

— Cashiers who provide account names to cybercriminals and control drop accounts.

- Money mules who manage bank account wire transfers.

- Tellers who transfer and launder illegal money by using digital and foreign exchange facilities.

- Leaders who are often connected to big bosses of large criminal organizations. They assemble and direct cybercriminal
teams.

Figure 1.6 summarizes the motivations of common attackers and cyberterrorists. Starting from the bottom, which is the
lowest complexity of organization:

o Insider threats that come from employees who are not happy because of salary, position, tasks, or simply because they
have been fired. It also can come from jealous friends or classmates.

e Thrill-seekers who want to show to others (friends and colleagues) that they at the top of their field and can act on
anything.

o Hacktivists who are guided by ideology (politics and other) and who try to spread their points of view through fake news
and sabotage of web servers.

e Terrorist groups that are guided by ideological violence (in other words, anyone who does not agree with their believes
should pay).

e Cybercriminals, whose objective is profit.

e Government-sponsored: for economical and/or geopolitical reasons some (may be all but with different capacities) coun-
tries use their citizens or foreign cybercriminals to collect data to disclose industry secrets, to threaten or worse to attack
other countries.

1.4.3 Malware Taxonomy

Definition 1.9 Malware: it stands for MALicious soft-
WARE. It is any software intentionally designed to cause

damage to a computer, server, or network. Attackers Motivations

i ™y
Malware is an umbrella term for any type of malicious soft- Governmentspon- | __ ____ o Spying(industry,
ware that is designed to infiltrate devices of others without \ sored organization |__Sconomy, politics)
their knowledge. There are many types of malware, which
include viruses, worms, spyware, botnets, trojans, rootkits, Cybercriminal ~ fe===-- - Money

and ransomware. Each works differently depending on its L)
goals; however, all malware variants share two defining p :
.tralts: they are.z sneaky and are actively working against Brvoristaroup |esm===- o Ideological violence,
interests of their targets. money

All malware variants follow the same basic pattern: exploit a

vulnerability to download and/or install a malicious code, then (.) (A
infect the target device or system. Emails, web links, free soft- e " |deology

ware, free music and movies, and corrupted storage devices (such b

as USB keys) are usual vectors that enable attackers to download () ()
and/or install their malware. Figure 1.7 shows the common mal- e e R
ware variants. It is worth noticing that malware variants are not

disjoint. Rather, some malware variants use entirely or partially " _ 3 (" Discontentand |
other variants to design more complex attacks. In the sequel, the X Insider threat o X jealousy)

main distinctive features of malware variants are presented. For
more on malware, refer to [23-25]. Figure 1.6 Categorization of cybercrime motivations.

13

14

1 Introduction to Computer Security

[Malware variants]

|
—{ vins | [Spyware | Botnet
—{ wom | [Adware | Exploit
! Trojan | Ransom- Screen |, Logic

ware scraper bomb

Rootkit

Figure 1.7 Malware variants.

f

1.4.3.1 Virus
Virus is the most known term of cyberattack. A virus is a program (often referred to as malicious code) that can link itself
to the executable files of a computer. It can replicate itself or modify the files to which it is attached and seek the other
programs appended to those files. It then infects other programs simultaneously.

Viruses in ICT inherited their name from biology. In biology, a virus infects a plant, an animal, or a human being and
compromises the health or the life of the infected host. The virus can spread quickly from host to another. In ICT, a virus
attacks digital assets to compromise their contents and can duplicate itself locally or via the network.

1.4.3.2 Worm

A worm is a self-replicating code that resides in the memory of an infected computer. Worm differs from a virus in the way
it is triggered. A worm is self-contained; i.e. it does not need to attach itself to another program. A worm is able to replicate
itself locally or send copies of itself to other machines. A worm triggers itself without relying on human actions.

1.4.3.3 Trojan
Trojan is a term derived from the ancient Greek story of the deceptive Trojan horse, which permitted the fall of the city of Troy.
Trojan is any malware, which misleads users about its true intents. Generally, Trojans are spread by some form of social engi-
neering (including emails, images, music, etc.). Therefore, a trojan may be embedded in a piece of code that actually does
something useful, but with a hidden malicious part, which is intended to perform compromising or destructive actions.
Trojans may allow attackers to access personal information of victims, such as passwords or IDs. They can delete files or
infect other devices connected to the network. Finally, they can create connections between infected system and the
attacker, to monitor some activities of infected devices (e.g. any captured image or keystroke on keyboard can be made
known to attackers).

1.4.3.4 Ransomware
Ransomware is a type of malware that threatens to publish victim’s data or perpetually blocks access to it unless a ransom
is paid. It is a means of performing ransom attacks.

1.4.3.5 Spyware and Adware

Spyware aims to gather information about a person (e.g. his/her credit card or health file) or an organization (e.g. industrial
and business secrets) and sends such information to other entities, without the owner’s consent.

Adware is the contraction of ADvertizing soft WARE. Today, multiple forms of advertising, over the internet, are used to
generate revenues to software and website developers. Developers provide free content (including games, movies,
courses, etc.), which are consumed daily by millions of users worldwide. Unfortunately, adware may become spyware;
i.e. some of free software and websites may include links, which are used to collect private data. Therefore, before click-
ing any link, be aware that, may be, somebody is collecting data about you somewhere.

1.4 Attacks

1.4.3.6 Botnet

Botnet is the contraction of roBOT NETwork. A botnet is a set of compromised computers or electronic devices used to
create and send spams or viruses or to flood a network or a server. Any equipment in a botnet is called bot. Trojans or other
malware variants are used to infect a large network of computers or devices. Then, all infected computers (which become
bots) are monitored remotely by a supervisor under the control of a single attacker or a group of cybercriminals. In general,
bots are not used to collect data from the infected computers; rather, they are used by cybercriminals to commit attacks,
such as DDoS or to monitor specific areas, using for example infected cameras.

Any device or computer connected to the internet may become a member of a botnet. Often, the bots consume few
resources (computation and bandwidth), because they operate very infrequently. Therefore, infected devices and com-
puters cannot be easily detected by legitimate users when they just observe their computers. Fortunately, most antiviruses
can help detect infected computers.

1.4.3.7 Keylogger, Screen Scraper, and Web Shell

Keylogger also is referred to as keylogging or keyboard capturing. It is the action of recording keystrokes on a keyboard.
Using a keylogger, the attacker can know some of the actions the users is performing.

Screen scraper is a malicious code to record and collect contents displayed on monitors of victim users. Using a screen
scraper, the attacker can see exactly the content seen by a victim.

Web shell is a malicious code, which can be uploaded to a web server to allow remote access to the web server and manip-
ulate its service.

1.4.3.8 Exploit, Logic Bomb, Backdoor, and Rootkit

Exploit is a generic term to designate any piece of software or a sequence of commands that takes advantage of a vulnera-
bility to cause an unanticipated behavior to occur on a system.

Logic bomb is a generic term to designate any piece of code intentionally inserted into a software system that will initiate a
malicious function on the attacked system, when specified conditions are met.

Backdoor is a typically covert method of bypassing normal authentication or encryption in a system. Roughly speaking, there
exist two categories of backdoors; those installed by attackers using trojans or other methods and those installed by the
manufacturers of the software and hardware. In today’s international ICT business competition, backdoors raise much
disputes (e.g. between USA and China regarding 5G infrastructures). Regarding the second category of backdoors, the
question is how one can trust the manufacturers of the software and hardware components? Hard question to answer.

Rootkit is any collection of malicious software installed by an attacker on a computer. It is designed to enable access to some
components of the computer that are not otherwise allowed; and it often masks its existence. Rootkits include keystroke
logging and recording of other user activities. In general, rootkits provide partial or full access to infected computers.

1.4.4 Daily Awareness to IT Security

Most daily activities require the use of electronic devices and access to the internet. Therefore, there is a high probability
to be a victim of cybercriminals each day, if some basic vigilance rules are ignored. Each click may get you in troubles.
Much of attacks presented above can be prevented, if the following common-sense rules are observed:

e Do not be naive and believe that someone somewhere in the world you never met before would offer you money (in mil-

lion dollars).

Never send your personal/private data unless you really trust the recipient.

Carry out e-commerce transactions only via secured websites with double authentication.

Do not open any suspicious file attached to an email.

Do not click on links in suspicious emails (even if the emails are forwarded by people you trust).

Do not download files from suspicious websites. Some websites provide you opportunity to download files. Unfortunately,

some files may contain malware.

Do not open folders and files in storage devices (such USB keys) unless the devices are checked by an antivirus tool.

e Use strong passwords and change them periodically.

e Limit your private data shared on social networks. A picture or a comment that you think innocuous can cause you big
problems some years later.

15

16

1 Introduction to Computer Security

Install security updates on your computer as soon as possible after being notified.

Use the up-to-date antivirus software.

Update your software regularly (outdated software have vulnerabilities).

Use software certified, or at least approved, by trusted parties.

Any new installed device (e.g. a webcam or a home alarm) should be secured by changing the default password.

1.5 Countermeasures/Defenses

This section provides an overview of defense actions, commonly called countermeasures.

1.5.1 Very Old Roots of Countermeasures

Most defense actions have been inspired by very old actions taken to protect castles in the middle ages. Technologies differ,
but objectives and roots of techniques are similar as illustrated by Table 1.1.
Let us see similarities between protecting castles and protecting IT systems:

o Castles are placed in specific locations, with natural obstacles (hills, mountains, islands, and so on). In the same way, IT
systems are located in locked rooms and spaces, with restricted access.

e Castle architectures are based on heavy doors, strong walls and gates, high towers, and no (or few) windows on the
external walls. In addition, guards are posted at vulnerable points. In the same way, IT systems use specific hardware
such as cameras, strong cables and boxes, firewalls, and proxies.

e Secret words and specific material (such as seals) were used for authentication to enter castles or to know confidential
information. In the same way, IT systems encompass mechanisms such as encryption techniques, authentication with
(passwords and biometric material), and deflection mechanisms (called honeypots to escape attacks).

1.5.2 Methods for Defense

There exist different criteria to categorize security defense methods out of which three are discussed in the sequel.

1.5.2.1 Prevention/Detection/Reaction Methods

Methods of defense are categorized into three classes: prevention, detection, and reaction methods.

Prevention methods: they are preferred and most effective methods (when possible). They aim to prevent attacks by block-

ing vulnerability points, and consequently making the system secure. Two approaches can be deployed:

o Deter attacks by making them impossible (e.g. deploying a permanent and armed guard team in front of the entrance of
a bank deters almost all the thieves!)

e Deter attacks with an ingenious idea based on the use of resources imitating the resource to protect (i.e. lures) to draw
attackers’ attention. Fake systems used to deter attacks are often referred to as honeypots.

Table 1.1 Defense of castles vs defense of IT system.

Castles in middle ages IT systems

e Location with natural obstacles e Locked rooms and spaces

e Surrounding moats e Hardware (cameras, strong cables, and
e Heavy doors and strong walls boxes...)

e Strong gates and high towers e Firewalls, Proxies

e No (or very few) windows, Guard e VPN, NAT, IDS, IPS...

Secret words to enter

Encryption
Authentication (Passwords, biometrics)

Specific material to enter (seal...)
e Deflection mechanisms (honeypot)

1.5 Countermeasures/Defenses

The cost of prevention methods may be high, which prevents their use. For example, a university cannot pay to have a
permanent guard in front of each lab and each classroom.

Detection methods: these methods are based on the ability to detect attacks when they occur. Intrusion detection systems
are commonly used as tools to detect attacks.

Reaction methods: it is the capability to deploy mitigation actions including recovery actions. For example, database
management systems store multiple copies of the DB and the list and dates of transactions. Whenever an attack is
detected, the stored data is used to recover the operational database. Depending on the attack, some of transactions may
be irretrievably lost. The mitigating actions aim at minimizing the data loss and unavailability.

Example 1.5 Let us take a simple example to see what security defense actions could be. The example is a simplified
version of e-shopping activities. The threat of interest in this example is: someone may steal your money.

- Prevention: multiple countermeasures are used in nowadays e-commerce: encrypt your order and card number, enforce
merchants to do some extra checks, use PIN and trusted tier (example banks), and do not send your card number in
cleartext via an insecure channel.

- Detection: be careful and check periodically your account to detect any unauthorized transaction appearing on your
credit card statement.

- Reaction: in the event of a fraud, notify your bank and complain, dispute and prosecute, ask for a new card number or
pay and forget (because you were not careful and you disclosed your data through social networks or by any other
channel; it is your mistake!).

1.5.2.2 Level of Automation of Defense Methods
Approaches of defense may also be categorized according to their level of automation. Automation of defense actions
means how they are implemented. There are three levels:

o Security is fully supported by ICT (software and hardware). In practice, the full automation of security is unrealistic in
most cases, because of its costs.

e Security is entirely manual. That is, human beings are permanently involved in detection and mitigation actions. Such
an approach is unrealistic when current IT systems are of concern, because of the frequency of attack occurrences and
their complexity of detection.

e The last class is the most used now: some actions are fully automated and others are manually done. Human being’s
involvement is still required. Nevertheless, it is clear that human actions are less and less admitted, because they are
error-prone and require a lot of attention at all times. In future, machine learning-based security systems would be more
likely to perform better than human beings.

1.5.2.3 Design Orientations of Defense Methods
The third classification criterion is related to when and how security components are designed regarding the applications/
services to protect. There exist three main ways to address security:

e Separation approach: the most (and still) used approach is based on two layers: applications are designed apart from
security services and it is assumed that they will be protected. There is a collection of security services expected to protect
almost all applications. Therefore, this approach is based on two separate layers: application layer and security layer.

e Secure-by-default approach: the principle is that each application sets up configuration parameters such that the system
is very likely to be secure. The system has clear limits; for example:

- No more than one transaction per hour (thus, DoS attack becomes ineffective).
- No client data storage (thus, it is impossible to steal client data from a server).
- No private data of clients manipulated (thus, confidentiality does not matter).
- Use of resilient and secure material (best material used to deter attackers).

It should be noticed that secure-by-default approach suffers from severe weaknesses, because of three main factors: 1)
the capabilities of the system are willingly limited; thus, such a system cannot react to unexpected conditions, 2) the
parameter limits are hard to set up (e.g. why two transactions per minute and not four?), and 3) the cost of the security
material.

17

18

1

Introduction to Computer Security

Secure-by-design approach: for a long time, application software developers and security components developers did not
collaborate; and the end-users buy and deploy applications and security components separately. Recently, both commu-
nities understood that IT security would be more efficient when they work in tandem. Consequently, application soft-
ware developers learn from security software developers and vice versa. Such a collaboration is more likely to dominate
in the future. It is more dynamic and efficient than secure-by-default approach. In secure-by-design approach, each com-
ponent of an application follows guidelines and methodology of vulnerability investigation. The security requirements
are taken into consideration throughout the life cycle of application development. For example, many OS functions
(such as gets or TCP socket use) have been identified as system vulnerabilities. Therefore, the application developer
should not use them, if he/she is not aware of their vulnerabilities.

Secure-by-design approach implies inclusion of security procedures in all the steps of software engineering (from
requirements specification to software maintenance). Secure-by-design does not mean that conventional security com-
ponents are no more useful. Rather, it means that in each step of software development, developers should 1) produce
attack resistant codes 2) determine which security components to use and which security components to include in the
system if they are not present. For more on security-by-design, refer [6, 26, 27].

Finally, remember what we mentioned regarding castle’s security. Castles were designed according to the secure-

by-design approach. Castle architects did not follow an orientation such as built smart, spacious, and all-round view
castles. They had important requirements from the king, which may be summarized in one requirement: the first concern
is to deter enemies.

1.5.3 Overview of Security Countermeasures

There are two categories of countermeasures: organizational and technical. Organizational measures to security are only
hovered up in this book; the focus is on the technical countermeasures.

1.5.3.1 Organizational Measures
The organizational security measures refer mainly to the following:

Manager awareness: ensuring that business leaders and those in charge of IT systems are aware of the security risks asso-
ciated with their assets, and the laws, regulations, and policies, which they must obey.

Education to good practices: users should be trained to assess the safety of their actions to prevent manipulations. In
particular, training should focus on the impacts of social engineering on the security of IT systems. Indeed, many viruses
and confidential data disclosure are due to social interactions between company or institution personal and external
parties (friends, family, and followers). Another aspect to teach is to do not bring inside their organization files on
untrusted key storage found outside.

Awareness to loyalty and patriotism: loyalty and patriotism are at the heart of confidential data protection, whatever the
IT system. Even if it is expected that nobody should deviate from the ethics of his/her organization, it is of prime impor-
tance to deploy strategies to check the behavior of staff regarding confidentiality. The access rights of any member leav-
ing the organization should be immediately withdrawn.

Staff’s liability: any individual acting on assets should be aware of his/her liability. In the event of security violation,
internal sanctions or even legal prosecutions should be applied. Liability is one of the keys to build secure systems.
Physical protection: areas (including rooms and spaces) where critical and sensitive data are either stored or processed
should be physically protected. None is allowed to enter an area without explicit authorization.

Security assessment: periodically check vulnerabilities of the assets and search new vulnerabilities. CVC (Common
Vulnerabilities Exposure) is a very valuable association, which regularly publishes vulnerabilities in operating systems,
in protocols, in web servers, etc. CVC vulnerability list should be accessed periodically by the security managers to assess
the security of their organization.

Risk assessment: periodically incurred risks should be evaluated to make decisions regarding how to enforce the security
system. A compromise between investment costs in IT security and risk costs should be revised periodically. For example,
the manager of a hospital who learned that the IT systems of some other hospitals have been blocked and ransoms
required, should immediately invest to secure his/her hospital against the emerging attacks.

Auditing policy: actions that may have an impact on security should be logged and secured. Then, recorded logs are used
for monitoring, detection, and analysis of security violations.

1.5 Countermeasures/Defenses

o Contingency plans: define the procedures to resume normal operation for each attack likely to occur. Train people to do
local and remote (cloud) backups.

o Certification label: for some organizations (e.g. banking, cloud services, stock exchange, and e-commerce), which store
and manipulate client data, it is more and more required that those organizations should have provable high-level secu-
rity systems. To reassure their clients, those organizations must receive and explicitly show a certification regarding their
good security practices. There exist specialized companies, which provide security certification services.

1.5.3.2 Technical Countermeasures
The basic technical countermeasures (or building blocks) to design a security system include the following:

o Identification: an identity is a document/info/card used to prove a person’s identity. Identification of any entity trying to
access a resource is the first and basic service to guarantee security. Identification may be formulated as a question: who
are you?

o Authentication: itis the process of verifying that a user trying to access a system holds the provided identity. Authentication
may be formulated as a question: prove that you are who you are pretending to be. Authentication is addressed in more
detail in Chapter 15.

e Access control: it is the function of specifying access rights/privileges (i.e. read, write, append, delete, close, open, etc.) to
system resources. It is used jointly with authentication.

e Encryption: it is the mechanism focusing on data and message ciphering to appear as noise for unauthorized readers.
Encryption is the fundamental mechanism to guarantee confidentiality and integrity. It is the pillar of security. Encryption
algorithms are the main objective of this book.

e Message digest: it is a fixed size numeric representation of the contents of a message or data; it is computed by a hash
function. To one chunk of data is associated one digest. Message digest is not used for providing confidentiality guaran-
tees. Rather, it is for guaranteeing data integrity. It is commonly admitted that it is not computationally feasible to forge
a message, which corresponds to a known digest. Message digest is addressed in more detail in Chapter 5.

o Intrusion detection: it aims at monitoring a network or system for malicious activity or policy violations. Any malicious
activity is reported either to an administrator or collected centrally using a security information and event management
system. Depending on the nature of attacks, detection may be done online (i.e. while the attack is running) or offline
(i.e. using log files that record the system activities). Notice that it is hard (or even very hard) to decide to mark a
behavior as a security violation if the behavior is occurring for the first time. Only known intrusions can be marked
easily. Suspecting any action makes the system slow and consequently unacceptable for its legitimate users. Suspecting
only few actions makes the system a strainer; and consequently untrusted by its legitimate users. In modern intrusion
detection systems, machine learning techniques are used as follows (in a simplified form): there is a step called learning
in which the detection system processes a dataset containing different forms of system activities where some of them
are marked as intrusions. Then, in a second step, called prediction, the detection system decides whether the current
action is an intrusion or not.

o Antiviruses: the antiviruses are well-known tools of security. They are used to detect and remove viruses. Many antivi-
ruses exist today.

1.5.4 Security Penetration Testing Tools

Tools that are very helpful for continuous security monitoring are called security penetration testing tools (SPTTs). They are
useful to simulate attacks and test if a system is resistant in detecting (some) attacks. Multiple functions can be provided
by SPTTs:

Scanning of networks and discovery of servers, and firewalls.

Traffic capturing and analysis.

Evaluation of systems security against older vulnerabilities.

Discovering vulnerabilities.

Monitoring host or service uptime and performing mapping of network attack surfaces.
Managing security evaluations and formulating defense methodologies.

Popular SPTTs include Wireshark, Aircrack-n, John the Ripper, Burpsuite, Metasploit, Nmap, Nessus, and pwnie express.

19

20

1 Introduction to Computer Security

1.6 Overview of Defense Systems

Figure 1.8 illustrates the main defense systems to deal with intrusions (i.e. attacks) made easy by communication net-
works. They include firewalls, IDSs (Intrusion Detection Systems), IPSs (Intrusion Protection Systems), honeypots, prox-
ies, Network Address Translation (NAT), and VPNs (Virtual Private Networks). The ultimate objectives of defense systems
are to continuously monitor incoming/outgoing traffic in order to prevent and detect intrusions and to limit their impacts.
The main objectives and characteristics of those systems are briefly discussed in this section.

Definition 1.10 Intrusion detection: it is the process of monitoring the events occurring in a computer system or network
and analyzing them for signs of possible intrusions (incidents).

Definition 1.11 Intrusion prevention: it is the process of discarding any suspicious traffic to avoid intrusions.
Definition 1.12 Packet filtering: it is a method to inspect packets and to reject packets issued by untrusted hosts or users.
Definition 1.13 Content filtering: itis a method that allows blocking internal users from receiving some types of content.

In general, “Is a traffic an intrusion or not?” is a hard question. To address intrusions, some knowledge or assumptions
should be considered:

o System activities are observable (i.e. the defense systems should know the activities of the assets to protect);

o Attacker behavior is (sufficiently) different from legitimate user behavior. In other words, the actions of the attackers
should exhibit some signs to detect them. Is any person entering a shop is a thief? Definitely not. However, any armed
person entering a shop is very likely to be an attacker.

o In practice, there exist overlaps between legitimate and illegal actions:

- Some legitimate behavior may appear malicious. For example, when the number of requests per second entering a web
server is beyond a given limit, should we immediately conclude that there is a DoS attack?

- Intruders can attempt to disguise their behavior as that of legitimate users. For example, forged mails are very similar
to those sent by the bank of the victim or any other entity known to him/her.

e Asset owners should assess intrusion detection risks: what would be the risks if intrusions were not detected?

1.6.1 Firewalls

Firewalls are the most commonly used defense systems in IT security. Like security guards at the entrance of a building
and specific areas, firewalls monitor and control incoming and outgoing packets based on predetermined security rules. A
firewall provides a central choke point for all traffic entering and exiting the system. Therefore, it provides perimeter
defense, aiming the following:

4

é Local hosts and servers |

R

Internet

Trusted

sessafessnnssesassnsnessnanne sy

raffic

-

b IP5
Administrator +—

Reactions

Sessssssspransfesnsarnnsnen

Figure 1.8 Big picture of defense systems.

1.6 Overview of Defense Systems

e Service control: what services can be accessed (inbound or outbound)?
e Behavior control: how services are accessed, so that attacks can be detected (e.g. what information to use for spam and
web content filtering)?

Therefore, firewalls are valuable to (partially) face multiple forms of attacks: illicit remote login, operation of backdoors,
denial of service, spams, trojans, phishing, etc. In firewalls, packet filtering is mainly based on transport-layer information:

e IP source address and/or IP destination address.
Protocol header (TCP, UDP, ICMP, etc.).

TCP or UDP source and/or destination ports.
TCP Flags.

Other IP and/or TCP fields.

Firewall configuration refers to:

o Specification of a security policy (what/why/how to defend).
o Specification of actions to apply to incoming/outgoing packets
- Forward: packet is forwarded
- Drop: packet is dropped
- Log: packet appearance is logged
- Alarm: packet appearance triggers an alarm
o Specification of default policies for firewalls (e.g. reject any packet coming from unknown hosts).
e Description of rules in terms of logical expressions based on packet fields.

Example 1.6 Below are examples of configuration rules (in a high-level language)

- Rule 1: remote host with name Zebra is denied any access and all its packets must be dropped.
— Rule 2: if local port is 25, then accept and forward packets.
— Rule 3: if local port is greater than 1024, then reject packets.

1.6.2 Proxy Overview

The second category of defense systems is that of proxies, which are frequently used to protect application servers (as illus-
trated by Figure 1.9). The proxy acts as an intermediary agent between its client and the server. A proxy acts as cache server or
as a firewall. No request is directly received by application servers. The requests must first be checked by the proxy. The appli-
cation servers are hidden from the clients; thus, they are protected from attacks based on the names or IP addresses of hosts.

Application

Client

Figure 1.9 Proxy in a security architecture.

21

22

1 Introduction to Computer Security

The main services/roles provided by proxies are the following:

e The first, and the most important, role of a proxy is authentication and access control. It checks if remote clients are
authorized to access local application services. The authentication process may rely on the IP addresses of clients or on
a protocol of authentication (discussed in Chapter 15).

e The second role of proxy is to control the requests of local users to prevent them accessing some specific (may be prohib-
ited) websites.

e The third role of proxy is providing anonymous communications to local users. In such a case, the proxy hides internal
users from the external network behind the proxy IP address. Notice that anonymity is partial because the proxy IP
address is known.

e The fourth role of proxy is the improvement of performance either for clients (which can use cached data) or for severs
(which can optimize resource utilization).

- Optimize local server activities: a server may take time (due to computations, database access, etc.) before delivering a
result associated with a query. To avoid performing the same tasks, for multiple requests, the proxy may cache the
outputs of frequent queries; and it replies to remote clients without involving new computations by the server. Such
an optimization is of paramount importance for some servers (such as those used in weather forecasting, in newspa-
pers, etc.).

- Optimize bandwidth: when local users access remote services, the proxy acts as local cache. If the requested data is in
the cache, it is immediately returned to the local client. Otherwise, the proxy sends the request to the remote server,
waits for response, and then delivers the received data to the local client.

To achieve the fourth role, i.e. optimization, proxies use statistics (regarding visited webpages, for example) and algo-
rithms (some of them are based on machine learning) to cache the appropriate contents.

e The last role of proxies is to anticipate system saturations (due to legitimate or malicious requests). For example, a proxy
may deny service when the bandwidth utilization rate is close to 90%.

Depending on the security requirements of each institution, company or individual, different types of proxies may be
deployed, including web proxy, FTP proxy, HTTP proxy, SMTP proxy, SOCKS proxy, and anonymous proxy.

Notes

- A firewall aims at filtering and discarding packets, while a proxy aims at controlling requests to access application ser-
vices and caching data to improve performance.

- A proxy may be a software installed on a computer, which performs multiple functions or a computer entirely dedicated
to proxy functions.

- One or multiple proxy servers can be deployed in the same private network.

— It is important not to confuse device with service. A router may implement (at the same time) routing, filtering, and proxy ser-
vices. Filtering (firewall) and proxy services may be implemented on the same device, which may be called Firewall or Proxy.

1.6.3 Intrusion Detection Systems

Definition 1.14 Intrusion detection system (IDS): it is defined as the tools, methods, and resources to help identify, assess,
and report unauthorized or unapproved network activities.

An IDS aims to detect specific types of malicious network traffic and computer usages that cannot be detected by firewalls
and proxies. IDSs are passive in nature. They detect potential security breaches, log the intrusion information, and signal
alerts; any reaction is taken by human administrators. Overall, an IDS is made of three main components:

e Sensors, which generate security events (when predefined conditions are met).

o Console to monitor events and alerts and control the sensors.

e Engines, which record events logged by the sensors in a database and use a system of rules to generate alerts from secu-
rity events received.

Figure 1.10 illustrates the overall operation of IDS:

o First, an IDS has two databases:
- One database containing the traffic models (which describe intrusion signatures).
- Decision rules, which are generally if-then-else rules, to specify the reactions regarding received packets.

1.6 Overview of Defense Systems

Incoming/
outgoing e —— Traffic preprocessor
traffic
Activity Data
Detection engine
Models Alarms
(traffic patterns)

—~ Reports
v a . — "
=— Decision engine Administrator
—

—— Logs

Decision rules

Figure 1.10 Components of IDS.

e Second, the IDS has three processing modules:
- Traffic pre-processor, which summarizes the traffic activity (in terms of packet volumes, source addresses, ports, etc.).
- Detection engine: traffic models and activity data provided by pre-processor are used to trigger events or alarms.
- Decision engine, which decides what to do regarding detected events or alarms; it logs the events and alarms; and
generates reports to be used by human administrators.

Example 1.7 The following situations may be marked as potential intrusions:

- Emails with a subject including Lottery winner.

- Emails with attachment of an executable file.

- Users that read files in other users’ personal directories.

— Users that write in other users’ files.

- Users who login often and copy a huge number of files.

- Users who open disk devices directly and do not make use higher-level OS utilities.
- Resources used simultaneously by too many remote processes.

- Users who make copies of system programs.

- The rate of bandwidth utilization exceeds 90% for a long period.

There exist three main approaches to intrusion detection: signature-based approach, anomaly-based approach, and stateful
protocol analysis approach.

Signature-based approach. An intrusion signature is like a footprint left behind the predators. For example, the following
is retrieved in the log of a system: scan directory, copy password file, try some passwords, access some accounts; and later
the security administrator concludes that an intrusion has succeeded in stealing some confidential data. To tackle intru-
sions people learn from each one another. When, in a given system, an intrusion is detected, a signature is associated with
it. Then, the new signature is broadcast to the community and included in IDSs. The easiest intrusion signatures to detect
are those relating to emails including executable files or links to malicious websites. The set of collected intrusion signa-
tures are used as training models to IDSs.

Anomaly-based approach. In this approach, the security administrator must first describe what is normal and what is
abnormal. There are multiple forms of anomaly-based detection depending on how normal and abnormal activities have
been described:

o Use of performance metrics (e.g. bandwidth utilization, frequency of requests, interval between remote logins, duration
of sessions, number of login failures) and thresholds associated with metrics.

o Use of the frequency of occurrence of specific events, within a specific period of time (e.g. activities during weekends).

e Use of traffic profile and deviation from a user-specific baseline.

e Sample network activity to compare to traffic that is known to be normal. When measured activity is outside baseline
parameters, IDS triggers an alert. For example, DoS results in abnormal bursts of packets received by the victim.

23

24

1 Introduction to Computer Security

Stateful protocol analysis approach. Any standard protocol follows a predefined order of actions. IDS can store the states of
a session running a protocol. Deviation of states of a session from the normal states of the used protocol may be considered
as intrusion. The basic example in this category is an IDS that checks how the segments received over a TCP connection
deviate from the normal operation of TCP. For example, when too many connections are opened without sending data and
these connections are not closed, there is a high probability of DoS attack.

1.6.4 Intrusion Protection Systems

IPS (Intrusion Protection System) is an IDS enhanced with reaction capacities. When an intrusion is detected, the reaction
to restore a secure state of the assets is performed by the IPS and may be with the assistance of human administrators. The
forms of reactions to perform include:

Terminate the network connection or user that is being used by attacker.

Block access to the target service/host/data.

Stop a host or a service.

Save a database.

Replace attacked file.

Remove a file (including a virus).

Remove or replace malicious portions of an attack material to make it benign (e.g. discard an infected file attachment
from an email).

e Reconfigure a device (such as firewall, router, or switch) to prevent a similar attack in the future.

The scope of reactions depends on the level of automation of the security system. There are three alternatives to perform
reactions:

e Full automatic: IPS decides what actions to undertake and launches them.

e Manual: IPS suggests the actions to undertake and human operators launch them.

e Semi-automatic: mixture of manual and fully-automatic reactions, depending on the complexity and/or the risks of exe-
cuting some specific countermeasures.

Today’s fully-automated security systems are known to be more efficient to react to intrusions than human beings are. It is
worth noticing that artificial intelligence in general and machine learning in particular are the core components of emerg-
ing IDSs and IPSs [28-30].

1.6.4.1 Performance Requirements Regarding IDSs and IPSs

IDSs and IPSs are used in real-time to check incoming (and may be outgoing) traffic and actions on the assets to protect.
Therefore, both defense systems may jeopardize the entire performance of the protected system, which may become slow
to perform legitimate actions. In all fields, excessive control is known to influence the utilization of resources. Therefore,
some requirements must be addressed to design or to setup IDSs and IPSs, including:

High-speed monitoring (i.e. do not impact response times).

Large volume monitoring (i.e. collect as much data as possible on objectives of traffics).

Real-time notification (i.e. react immediately when an intrusion is suspected).

Mechanisms separated from policy (i.e. define the decision rules separately from the mechanisms used to react, for mod-
ularity, extensibility and maintenance reasons).

Broad detection coverage (i.e. detect nearly all intrusions, even those considered as exceptional!).

e Economy in resource usage (i.e. optimize resource utilization and find a compromise between detection costs and risks).
¢ Resilience to attacks against IDS and IPS, because both IDS and IPS can be attacked.

1.6.5 Honeypots

One defense system of interest is honeypot. It is used in infrastructures requiring a high level of security. The basic principle
is to deploy (in parallel to assets to protect) fake assets to lure potential attackers. Instead of accessing genuine assets, the
attackers are deviated to fake assets that imitate the original ones. For example, make a copy of customer accounts with
fake data and lure the attackers to steal the fake copy. With the honeypot:

1.6 Overview of Defense Systems

e Attackers cannot see the genuine data.

e Operations of the attackers may be monitored by the honeypot (to some extent, the spy is being spied!).

o Since honeypot is not legitimate, any access to the honeypot is suspicious (thus, activity and traffic filtering is easier
when the traffic goes through honeypot).

Depending on the costs to bear, database, computers, servers, and networks can be deployed to form a honeypot. There are
two main potential locations for deploying honeypots:

o Honeypot is installed before firewalls:
— It can easily help detecting attempted connections to unused IP addresses and port scanning.
- There is no risk of compromised systems behind the firewall, since the traffic is defected to fake environment.
- However, it does not protect from internal attackers.
e When a honeypot is installed after firewalls
- It helps catching internal attacks.
- It can detect firewall misconfigurations/vulnerabilities (owing to a second check of traffic).

1.6.6 Network Address Translation

Another technique widely used for intrusion prevention is NAT (Network Address Translation). NAT is a router function,
where IP addresses (and possibly port numbers) of IP datagrams are replaced at the boundary of a private network to hide
the packet source. NAT may be used for:

e Security needs; i.e. hide resources or hosts, so that the names or the IP addresses of accessed servers are not visible
outside the private network.

e Asasolution to the problem of the depletion of IPv4 addresses. For example, local IP addresses: 10.0.0.0-10.255.255.255;
172.16.0.0-172.32.255.255; 192.168.0.0-192.168.255.255 are replaced by global addresses (many locals to one global).

o Load balancing between local servers and server fault tolerance: by using redundant servers with the same IP address,
one can improve response time and availability of provided services.

The basic operation of NAT may be summarized as follows:

e Private network is managed using a private address space; thus, the same addresses may be duplicated and used in dif-
ferent private networks.

e NAT device, located at the boundary between the private network and the public internet, manages a pool of public IP
addresses.

e When a host from the corporate network sends an IP packet to a remote host, the NAT device picks a public IP address
from the address pool, and binds this address to the private address of the host.

o IP address biding may be static or dynamic.

e NAT device also may change the port numbers.

Notes

- It is important to emphasize similarities and differences between proxy and NAT. Both proxy and NAT use address
translation. However, proxy operates at application layer (as proxies are associated with application services), while
NAT operate at TCP/IP level.

— NAT server should be in a secure location; otherwise, attackers can know the addresses of local hosts; and therefore,

their protection would be no more guaranteed.

1.6.7 Virtual Private Networks

A Virtual Private Network (VPN) provides a secure channel between two private networks through a backbone, often
Internet. It provides authentication and encryption to secure the messages, to participate in videoconferences or in call con-
ferences or to work remotely. VPN is an emulation of a secure point-to-point link, as if the partners were connected via a
direct (point-to-point) link. As illustrated by Figure 1.11, VPN client and VPN server functions are deployed on the routers
of both private networks of partners. VPN clients and servers perform authentication, encryption, and decryption functions.

VPNs are set up by network administrators of companies and institutions, Telecom operators, and Internet access
providers.

25

26

1 Introduction to Computer Security

Private network #1 — e T - Private nﬁE\'io.'fE 437
Internet (backbone) -

Tunnel

. VPN client/server .-~

-

Figure 1.11 VPN is a secure channel between private networks.

There exist four main scenarios of VPN usage:

e Private networks interconnection: for example, interconnecting local networks of a bank, where agencies are located
worldwide. With VPN, local networks form a kind of large and secure local network. In this use case, the VPN is (nearly)
permanent.

o Private network interconnection with specific routing: to speed up and secure traffic, a VPN may be used to route packets
from/to local networks. In this use case, the VPN is (nearly) permanent.

e Connection of mobile-PC to router: when people are traveling, they can use VPNs to securely access to their corporate
network, to their local work station... In this use case, VPNs are used on a per-session basis.

e PC-to-firewall and router-to-firewall: when the link between a firewall and a PC or a router is considered not sufficiently
secure, a VPN may be deployed. In this use case, the VPN is (nearly) permanent.

Tunneling. The fundamental mechanism used to install VPN is called tunneling. The latter is the process of encrypting
data and keeping it separate from other traffic on the internet. The main tunneling mechanisms include:

Encapsulation and decapsulation of packets.

Selection of a path connecting end-users providing the required QoS level (in terms of bandwidth, etc.).
Setup of encryption keys between endpoints.

Encryption and decryption of packets.

1.6.8 Layered-Security Architecture

Last but not the least point to highlight is the notion of layered-security system based on multiple security barriers or obsta-
cles that attackers must skip to reach the sensitive assets, as illustrated by Figure 1.12. The external prevention may be
composed of firewalls. Then, a barrier composed of specialized firewalls or other filtering equipment. Then, a sophisticated
intrusion detection system; some of detected intrusions may be either stopped or redirected to fake environment (to let the
attacker think he/she has succeeded in attacking). Last, when some intrusions reach the sensitive data, mitigating actions
are undertaken either while the intrusion is progressing or offline. It is worth noticing that most operation security systems
are built according to the layered-security notion, because a single security component is not enough to address the huge
variety of potential attacks.

1.7 Introduction to Privacy Protection

1.7.1 Overview of Privacy Issues

With the advent and daily usages of the internet, social networks, GPS, and smartphones in particular, privacy has never
been more threatened. Personal data are disclosed daily and sometimes sold. The boundaries and content of what is con-
sidered private differ among cultures and individuals. In addition, for national security reasons, almost all government
security agencies collect data about their citizens and also about foreigners (even in their country). There is no doubt, the
internet, smartphones, web cameras, and many other electronic devices are significantly impacting people’s privacy.

1.7 Introduction to Privacy Protection

External
. Internal
prevention .
prevention
I?
e LT T /--\ .
i EE— —F ———
x : - : ! \ f “; svstem
e Detection (Reaction) k Resources
Intrusion . > (assets)
attempts 5 \ f
.
Deflection
External Internal Fake environment
deterrence deterrence

Figure 1.12 Layered-security structure for IT systems.

Definition 1.15 Privacy: it refers to the ability of individuals to isolate themselves, or information about themselves, and
thereby express themselves selectively.

Definition 1.16 Data protection: it refers to legislation that is intended to protect the right to privacy of individuals and to
ensure that their personal data is used appropriately by organizations that may have it.

Definition 1.17 Data consent: it is any freely given, specific, informed, and unambiguous indication of the data owner’s
wishes by which he/she, by a statement or by a clear affirmative action, signifies agreement to the processing of personal data
relating to him/her.

Every day, each of us is receiving messages relating to commercial advertising he/she never asked for or worse he/she
receives threats regarding his/her privacy or ransom messages. In the same way, companies and institutions are attacked
via Internet. Consequently, citizens request protection laws to preserve their privacy and business. Roughly, protection
laws should clearly state:

e Who can use data of citizens?
e Who can store data and where data must be stored?
e How to file a complaint for damages?

Today’s picture of legislation may be seen at two levels:

e Protection inside a country: the protection is good to average depending on countries. National laws are applied when
the attacker and victim are in the same country and all the means used to deploy the attack are deployed entirely in the
same country. Federal (e.g. in USA), national (e.g. in France), or country union laws exist.

e Today’s laws for inter-countries protection are bad or even worse in some situations. There are multiple reasons, including
cultural, geostrategic, or competition reasons. Some attacks are considered as minor or meaningless if they occur in
other countries; and other attacks are encouraged by some hostile countries against others.

Notice that protecting private data in any country is required, but it is insufficient, because attackers can connect from
outside and mount their attacks. Therefore, worldwide collaboration is required. For more on privacy, refer to [7, 31].

1.7.2 Introduction to the GDPR Directive

One of the significant collaborative work done in the arena of cybersecurity has been achieved in European Union to pro-
tect privacy of European citizens. The work has resulted in the GDPR (General Data Protection Regulation); its application
started in May 2018. Very similar directives and laws have been promulgated and/or adopted in US, Canada, Japan, etc.

27

1 Introduction to Computer Security

The objectives of GDPR are to support rights of individuals, which include rights [32, 33]:

to be informed

to rectification

of access

of erasure

to restrict processing
to object to processing
to data portability

to be forgotten

The GDPR states (and clarifies) the responsibilities of data processors (i.e. any entities which store and/or process citizen
data). First, the GDPR provides guidelines to comply with GDPR (i.e. what should the data processors do to comply with
GDPR?). Second, the GDPR specifies, in general terms, the incurred penalties when the GDPR is violated: up to €20M or
4% of the global turnover for the preceding financial year in case of violation; national courts have responsibility to fix pen-
alties. It should be noticed that the compliance with GDPR has just started and it would take a long time to be fully
observed in Europe. GDPR defines notions useful to privacy protection, including concept of personal data, acts of
processing, data protection principles, and obligations of data processors. A brief presentation of the above concepts is
given below.

1.7.2.1 Personal Data and Acts of Processing
Personal data is any information that can be used to identify a natural person, including

Name, date of birth, address, and photographs.

Phone number, email address, and IP address.
Membership number (of associations, political parties...).
etc.

Some categories of information are defined as special categories of personal data. They require more stringent measures of
protection:

e Religion
o Ethnicity

e Sexual orientation

e Trade union membership
e Medical information

Acts on data that need protection awareness include:

e Collecting, recording, organizing, structuring, and storing data.

e Adapting, combining, updating, retrieving, consulting, and using data.

e Disclosing and disseminating data.

o Authorizing/restricting access to data.

o Erasing and destroying data.

e Migration of data from a location to another.

1.7.2.2 Principles of Data Protection

The main principles of data protection specified by GDPR to observe are the following:

e Data collection: collect data for specified, explicit, and legitimate purposes (i.e. specify a clear procedure for data collec-
tion and do not mislead citizens).

o Data minimization: collect adequate, relevant, and limited amount of data to what is necessary.

e Data accuracy: collect accurate and, where necessary, keep up to date.

o Data storage limitation: keep data for no longer than necessary for the specified purpose(s).

General-purpose obligations are provided to data processors:

o Lawfulness, fairness, and transparency of processing of data.
e Any data processing action must be agreed upon based on consent.

1.9 Exercises and Solutions

o Legitimate interest in the collected data; for example, a bank (which controls some of client data) has legitimate interest
to transmit client data (e.g. client phone numbers) to its partners (e.g. credit companies). The balance between citizen
rights and the business or interest to data processors is far from being clearly understood by concerned parties; much
effort remains to do.

o Integrity and confidentiality, which means processing data while ensuring appropriate security.

e Accountability, which means keeping necessary records to demonstrate compliance, when requested by citizens or by
courts.

It should be noticed that the principles above are hard to verify in practice, because:

o Itis not easy for citizens with few skills in IT systems to understand the risks when they accept data collection.

o Is the data collector fully complying with the principles? Who can check the compliance with principles at a fine granu-
larity? Hard question to answer.

o Nowadays, there is an atmosphere of mistrust regarding current usages of IT technologies by companies, and worse by
governments. Citizens are watched and tracked in their daily life. Not all what is considered as conspiracy is wrong or
false. Much work remains to be done to reassure citizens.

1.8 Concluding Remarks

This chapter provided an overview of IT security, which is a complex discipline, because of several reasons, including:

o The top issue is related to the malicious nature of human beings, which is limitless in terms of creativity.

o Users and managers are often unaware of the value of computing resources to decide which ones to protect. Frequently,
it is only when a confidential information is disclosed or destroyed that the owner becomes aware of its value. Example,
one may lose just an SMS, which would cause a disaster (in private life) some years later.

e Deploying a security architecture comes with a cost. Return on investment of security deployment is difficult to assess.
Therefore, users invest little. However, the way of addressing security investment is changing in recent years, because of
attacks that spread and affect all sectors; even hospitals have been blocked by cybercriminals requiring ransoms.

o Legal definitions are often vague or nonexistent in many countries. Therefore, legal prosecution is difficult even when
the attacker and the victim are in the same country. Legal prosecution becomes (nearly) impossible when the attacker is
hosted by an unfriendly state.

o Finally, from the technical point of view, many subtle technical issues to address and master, including protocols, algo-
rithms, infrastructures, and tools. Attack techniques are constantly changing and users and security managers have to
adapt all the time.

The objectives of this book are to address a fundamental field of security that is cryptography.

1.9 Exercises and Solutions
1.9.1 List of Exercises

Exercise 1.1
List some good practices to prevent identity theft.

Exercise 1.2
Consider a shop owner and show why some CIA properties are required. The assets are products (e.g. electronic devices),
agreements with suppliers, client invoices, and cash register.

Exercise 1.3

Consider six assets: a medical file, a university website, an aircraft design document, home camera, a video-surveillance
camera in a city, and a camera in a ski station (that broadcasts pictures). Use a table and show which CIA properties are
required for each type of asset.

Exercise 1.4
Cite some threats against e-voting system.

29

30| 1 Introduction to Computer Security

Exercise 1.5
Suggest actions of protection against ransomware attacks, virus infection, and spam attacks.

Exercise 1.6
You receive an email with the name of your bank as sender name. The message looks like a message from your bank,
which asks you to use a link in order to update your profile. The message may be genuine or fake. What do you do?

Exercise 1.7
Why DDosS attacks are (nearly) impossible to block?

Exercise 1.8

Somebody has subscribed to four free online magazines that belong to a unique company, but the subscribers do not
know the companies owning the magazines. To activate the subscription, the first magazine asked for the name, the
second asked for the birthday date, the third asked for the complete mailing address, and the fourth asked for the phone
number. What threat do you infer from this situation? How to prevent the identified threat?

1.9.2 Solutions to Exercises

Exercise 1.1

Below are some of good practices to prevent identity theft:

- Use well-constructed and unique password to access each server
- Avoid sharing confidential information on social networks

- Limit commercial transactions to known and trusted websites

— Install the latest versions of antiviruses

- Update your browser when you receive update notification

Exercise 1.2

Examples of requirements:

- Confidentiality: the content of the cash register is confidential; agreements (including prices of articles) with suppliers
are confidential.

- Integrity: the products on the shelves must not be damaged or altered by visitors or clients; customer invoices must not
be altered.

- Availability: no blockage of shop entrance to prevent business with customers; no blockage of the invoice-editing server.

Exercise 1.3

Confidentiality Integrity Availability

Medical file High High High
University website No High Medium
Aircraft design document High High High

Home camera High High Medium

City video surveillance camera ~ No High High/Medium
Ski station camera No High Medium/Low

Exercise 1.4

The following are threats on an e-voting system:
- Preventing citizens to vote after a given hour
- Inclusion of votes of unregistered people

- Disclosing votes

- Double voting

- Tampering the results

- Blocking access to the results

References

Exercise 1.5

Below are some protection actions

- Against ransomware attacks: regular back up of critical data in safe location; set up backup computers and internet
connections.

- Against virus infection: be aware of any file download; run antivirus regularly.

- Against spams: verify the source of any message that asks to click on a link or to send private data; do not blindly trust
any email attachments.

Exercise 1.6

- First of all, banks do not, in general, ask their clients to provide personal data using links included in emails. Rather, they
ask clients to connect to their account (using credentials and codes) and then perform actions. Therefore, an email
including a link, and with a bank as sender, is very likely to be a spam.

- If you can call your bank, do it to know more about the received message.

- In the extended header of the email, you can see the original source IP address of the sender. Copy the IP address and use
an online IP address locator, which helps you to see on a map the location of the IP address, say location X. Compare
location X to one of the website of your bank. Often, the location of the original source IP address of an attacker is very
different from that of your bank. For example, the attacker is located in a Russian city, while your bank is located in
Spain. Be careful, some attackers may use a cloud server located in the same zone than that of your bank to send their
email.

Exercise 1.7

DDosS attacks are (nearly) impossible to block, because they do not exploit vulnerabilities of the victim; they do not install
a malware on the attacked system. The requests from the attacking hosts are similar to legitimate requests. The more
widely distributed is a DDoS attack, the more difficult it is to distinguish legitimate requests from those that are not. The
harmfulness power of DDoS attacks relies only on the number of requests and the number and locations of attacking hosts.
One solution would be to increase the local resources to absorb the traffic and wait until the storm ends. Another solution
would be to use secondary resources, unknown to the attacker, and activate them when DDoS attack on the primary
resources is detected.

Exercise 1.8
If the publishing company is malicious, it can combine the four data provided by the subscriber and then either sell them
(to whom may be interested in the provided profile) or worse use them for identity theft.

To prevent the threat above, never provide personal data when you feel it is not necessary or to entities, you do not
personally trust. In the considered scenario, there is no legitimate need for an online magazine to know the complete
mailing address, the phone number, and the birthday date.

Notes

1 NIST: national institute of standards and technology, US.

2 Ports refer to TCP/UDP ports used at the transport layer.

3 A port is said to be filtered, if the incoming packets are processed by a firewall or another equipment to reject the packets
issued by suspicious sources.

References

1 Bidgoli, H. (2006). Handbook Information Security. John Wiley and Sons.

2 Bressler, S.E. and Grantham, C.E. (2000). Communities of Commerce: Building Internet Business Communities to Accelerate
Growth, Minimize Risk, and Increase Customer Loyalty. Mc Graw Hill.

3 Horton, M. and Mugge, C. (2003). Hacknotes: Network Security - Portable Reference. McGraw Hill.

4 Schneier, B. (2003). Beyond Fear: Thinking Sensible about Security in an Uncertain World. Copernicus Books.

5 Weaver, R. (2006). Guide to Network Defense and Countermeasure. Thomson.

6 Griffor, E. (2016). Handbook of System Safety and Security. Syngress.

7 Stallings, W. (2020). Information Privacy Engineering and Privacy. Addison Wesley.

31

32

1 Introduction to Computer Security

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

Pfleeger, C.P. (1997). Security in Computing. Prentice Hall.

Russel, D. and Gangemi, G.T. (1991). Computer Security Basics. O Reilly.

Pongle, P. and Chavan, G. (2015). Real time intrusion and wormhole attack detection in internet of things. International
Journal of Computer Applications 121 (9): 1-9.

Abombhara, M. (2015). Cyber security and the internet of things: vulnerabilities, threats, intruders and attacks. Journal of
Cyber Security and Mobility 4 (1): 65-88.

Dewdney, A.K. (1989). Computer recreations of worms, viruses and core war. Scientific American 260 (3): 110-113.

NIST. Glossary terms and definitions. [Online]. Cited 2023 April. Available from: https://csrc.nist.gov/glossary.

Agarwal, S., Farid, H., Gu, Y. et al. (2019). Protecting world leaders against deep fakes. In: Computer Vision and Pattern
Recognition Workshops, 38-45. Long Beach, CA: IEEE Xplore.

Verdoliva, L. (2020). Media forensics and deepfakes: an overview. IEEE Journal of Selected Topics in Signal Processing 14 (5):
910-932.

Chesney, R. and Citron, D.K. (2019). Deep fakes: a looming challenge for privacy, democracy, and national security.
California Law Review 107: 1753-1820.

Jagielski, M., Oprea, A., Biggio, B. et al. (2018). Manipulating machine learning: poisoning attacks and countermeasures for
regression learning. In: IEEE Symposium on Security and Privacy, 19-35. San Francisco: IEEE Xplore.

Chen, S., Xue, M., Fan, L. et al. (2018). Automated poisoning attacks and defenses in malware detection systems: an
adversarial machine learning approach. Computer & Security 73: 326-344.

Li, M., Sun, Y., Lu, H. et al. (2020). Deep reinforcement learning for partially observable data poisoning attack in
crowdsensing systems. IEEE Internet of Things 7 (7): 6266-6278.

Sayeed, S., Marco-Gisbert, H., and Caira, T. (2020). Smart contract: attacks and protections. IEEE Access 8: 24416-24427.
Shankland, S. Quantum computers could crack today’s encrypted messages. That’s a Problem. [Online]. Cited 2023 April.
Available from: https://www.cnet.com/tech/computing/
quantum-computers-could-crack-todays-encrypted-messages-thats-a-problem.

Deign, J. Quantum computers will crack your encryption - maybe they already have. [Online]. Cited 2023 April. Available
from: https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2022/mo03/is-2022-the-year-encryption-is-doomed.html.
Creutzburg, R. (2016). Handbook of Malware - A Wikipedia Book. Wikipedia.

Monnappa, K.A. (2018). Learning Malware Analysis. Packt.

Sikorski, M. and Honig, A. (2012). Practical Malware Analysis. No Starch Press.

Vehent, J. (2018). Securing DevOps: Security in the Cloud. Manning.

Johnson, D.B., Deogun, D., and Sawano, D. (2017). Secure by Design. Manning.

Raza, S., Wallgren, L., and Svelte:, V.T. (2013). Real-time intrusion detection in the Internet of things. Ad Hoc Networks
11 (8): 2661-2674.

Meidan, Y., Bohadana, M., Mathov, Y. et al (2018). N-BaloT: network-based detection of IoT botnet attacks using deep
autoencoders. IEEE Pervasive Computing 17 (3): 12-22.

Liu, H. and Lang, B. (2019). Machine learning and deep learning methods for intrusion detection systems: a survey. Applied
Sciences, MDPI 9 (20): 1-28.

Richards, N. (2021). Why Privacy Matters. Oxford University Press.

EU (2016). Protection of natural persons with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation) - Regulation (EU) 2016/679. European Union
Parliament.

Taal, A. (2021). The GDPR Challenge: Privacy, Technology, and Compliance in an Age of Accelerating. CRC Press.

https://csrc.nist.gov/glossary
https://www.cnet.com/tech/computing/
https://newsroom.cisco.com/c/r/newsroom/en/us/a/y2022/m03/is-2022-the-year-encryption-is-doomed.html

2

Introduction to Cryptography

For millennia, human beings used multiple forms of cryptographic codes to protect their oral communications, entries of
castles, their messages (in particular between armies and their commanders), their money, etc. Therefore, cryptography
had existed very early in human history and civilizations, before the advent of computers.

Since the early times, Human beings were in need to communicate, share information, and communicate selectively.
These two needs gave rise to the art of message coding (i.e. encrypting) in such a way that only the intended people could
have access to the information.

Cryptography has been developed and improved over centuries; in particular for military and defense reasons (protec-
tion of military secrets and spying of enemies), then for industrial reasons (protection of industrial secrets), afterward for
securing the recent applications made possible thanks to the internet (e-banking, e-commerce, bitcoins, ...), and ultimately
for protecting the privacy of electronic devices’ users.

In modern digitalized society, cryptography is the pillar of security. Cryptography is used to protect data while in transit
over unsecure channels and data on storage devices (i.e. USB devices, disks, etc.). Encryption is everywhere in the cyber-
space. Encrypting and signing are the most performed cryptographic operations. Cryptography secures websites and
makes electronic transmissions safe. In particular, public-key cryptography enables people (e.g. a client and a merchant),
who never met before, to securely communicate and trust each other. Cryptography is not only used over the internet, but
also in phones, television, cars, aircrafts, door locks, implants, and a variety of other devices. Without cryptography,
hackers could get into users’ emails, listen to their phone conversations, tap into their cable companies and acquire free
cable service, or break into their bank accounts.

As cryptographic algorithms protect sensitive data, they have been (and still they are) the target of attackers. Who can
imagine what would happen if suddenly the cryptographic techniques used in the cyberspace were to be broken?

In Chapter 1, we saw that confidentiality, integrity, non-repudiation, and authentication services are of paramount
importance for IT security. Cryptographic algorithms and protocols provide all those services. This chapter succinctly
introduces the terminology, notions, algorithms, and attacks relating to cryptography, which will be addressed in more
detail in the subsequent chapters.

2.1 Definitions of Basic Terms

2.1.1 Cryptography, Cryptanalysis, and Cryptology

The word cryptography is the contraction of two Greek words, kryptds, which means hidden or secret and graphein which
means write.

Cryptography may be defined as the art, techniques, and science of concealing the data and messages to include secrecies,
which protect data and messages from unwanted usages [1-4]. In other words, cryptography enables to store sensitive
information or to transmit it across insecure channels, so that it cannot be read by anyone except the intended recipient(s).
Cryptography not only protects sensitive data from disclosure or alteration, but also enables user and message authenticity
verification.

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

34| 2 Introduction to Cryptography

Definition 2.1 Cryptosystem: it is an implementation of cryp-
Cryptology tographic techniques to provide information security services
| (such as confidentiality and integrity).

‘ | Cryptanalysis is the science and technique of analyzing and
‘ Cryptography ‘ | Cryptanalysis | breaking cryptographicalgorithms and protocols. Cryptanalysts
: ¥ are also called attackers, who may be categorized into two
groups. The first category of cryptanalysts intensively analyzes
Try any new cryptographic algorithm to find vulnerabilities. When
{ to break the algorithm is broken (sometimes under very specific condi-
i tions), the result of analysis is published, which helps improving
the security of the proposed algorithm or recommending not to
use it. The second category is more dangerous; this type of
cryptanalysts search vulnerabilities and exploit them to design
attacks and disclose sensitive data.
Cryptology is the discipline of cryptography and cryptanal-
ysis combined, as illustrated by Figure 2.1.

Design |

Algorithms
and
protocols

Figure 2.1 Cryptology = Cryptography + Cryptanalysis.

2.1.2 Brief History of Cryptography

Since the beginning of time, multiple techniques have been used to make messages secret. Different forms of ingenious
ideas were used depending on four factors:

e The worth of the message to protect: is the cost of message protection reasonable compared to the value of the
message?

e The available resources (technological or not) to encrypt and decrypt.

e The period to keep a message secret: how long the message should remain secret? Almost all secrets were/will be dis-
closed over time.

e The power (capabilities) of potential attackers against messages. Any secret message may be broken when required
resources to break are available.

The art of cryptography was (certainly) born when secrets during battles had to be protected; including number of soldiers,
weapons, troop positions, attack and pullback orders had to be protected. Modern cryptography techniques have many
roots in ancient civilizations: Egyptian, Greek, and Roman. Below is a brief of major inventions and highlights in
cryptography.

Ancient Egypt. The earliest known encrypted text found in Egypt dates back to (nearly) 1900 BC. Hieroglyphics on pha-
raohs and dignitaries tombs had been hiding secrets, and were disclosed (nearly) four millennia later. Secrets were repre-
sented as symbols (i.e. hieroglyphics), unreadable to those who did not (and still do not) know the hieroglyphics
alphabet.

Greece. In 500s BC, Greeks developed cylinder messages. The cipher made use of a baton (called scytale). Each
baton round had the capacity to write k letters. k represents the secret key. First, a parchment was wound up in spiral
around the baton. Second, the text to be encrypted was written on the parchment in straight lines (in rows). Third,
the parchment was unrolled; and it represented the ciphertext. The recipient of the ciphertext was required to possess
a baton (with the same diameter than that of the sender) on which the received parchment was wound up to recover
the plaintext. Figure 2.2 illustrates an example of a message encryption using the Greek scytale. The plaintext is TWO
THOUSAND SOLDIERS ONSITE ON SATURDAY; spaces are removed before writing the plaintext on a parchment
wound up around a baton with a diameter of six letters. When the parchment is unrolled, the yielded ciphertext is
TUOSEUWSLOOROADNNDTNISSAHDEIAYOSRTT.

Rome. With no doubt, the most known cipher was developed in Rome 2000 years ago, and referred to as Caesar’s cipher.
The code was mainly used to secure communications between commanders and troops on battlefields or between Rome
and provincial governors. Caesar’s cipher is a substitution cipher, where a letter is shifted by some fixed position number;
i.e. letter at position i in alphabet is replaced by letter at position i +k mod 26. This number, k, was the secret key of the
cipher. Caesar’s cipher is presented in more detail in Section 4.2.

Vigenere’s cipher. In the 1500s, Blaise de Vigenere made improvements to Caesar’s cipher. A 26-by-26 table is used to
substitute letters, so that the same letter is not always replaced by the same letter as Caesar’s cipher does. This is the base

2.1 Definitions of Basic Terms

concept of polyalphabetic ciphers, which are harder to break than Caesar’s cipher. Vigenere’s cipher is presented in more
detail in Section 4.4.

Jefferson’s wheel cipher. In the late 1700s, Thomas Jefferson came up with a cipher system similar to that of Vigenere,
but with higher security, because it has much more combinations to select keys. As illustrated by Figure 2.3, Jefferson’s
cylinder is composed of 36 disks (or wells), stacked on top of each other around an axle. The 26 Latin letters are randomly
inscribed on each disk. The disks are numbered; they are removable and can be mounted on the axle in any desired order.
The order of disk mounting represents the secret key. Both the sender and receiver of a message had to mount the disks in
the same way.

The message to encrypt is split into 36-letter fragments. To encrypt a 36-letter fragment, the sender rotates each disk, so
that the fragment appears on a horizontal row parallel to the rotation axis. Then, he/she chooses any row parallel to the
plaintext row and sends it as ciphertext. Upon reception of a ciphertext, the recipient rotates the disks so that the ciphertext
appears on a horizontal row parallel to the rotation axis; then, looks for the row, which contains the plaintext. There is a
very low probability that the recipient keeps a row, which does not correspond to the correct plaintext. Jefferson’s wheel
cipher may be considered as the ancestor of the Enigma machine presented below.

TOW \ T W O T H O

row 2 U S A N D S

S YATATATATATA

VAN

Figure 2.2 [llustration of Greek cylinder message.

2 3
E DN &
C T
VvV \R
M
J
A
R /O W
0N X

Figure 2.3 Overall structure of Jefferson’s wheel cipher.

0
>
=

1

O g

35

36

2 Introduction to Cryptography

Enigma machine. The Enigma machine, invented during World War I and improved during World War II, was mainly
used by the army of the third Reich. Enigma is one of the first electromechanical devices used for encryption and decryp-
tion; and the most used in practice at that time. It is a very sophisticated version of Jefferson’s cylinder. Enigma was very
hard to break; but Alan Turing did it. Enigma machine is presented in more detail in Section 4.5.

Vernam’s cipher. In 1917, the one-time pad (OTP) cipher was (re)invented by Gilbert Vernam and patented in the US. OTP
cannot be cracked, because a single-use random key is required for each message, and the key must be at least of the same
bit-length than that of the message to encrypt. Vernam’s cipher was a cipher that combined a message with a key read from a
paper tape or pad; hence, the word pad in the name of the cipher. OTP was used in limited number of applications, including
military applications, because a new key is required for each message. OTP is discussed in more detail in Section 4.6.

Modern cryptography. Much progress has been achieved since the early 1970s and many cryptographic algorithms
were proposed; they are discussed in this book. From our point of view, the following six steps are the most prominent in
the modern cryptography:

In the early 1970s, IBM developed Lucifer cipher, which became the Data Encryption Standard (DES) in 1976.

In 1976, Whitfield Diffie and Martin Hellman introduced the principle of public-key cryptography.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman came up with the RSA algorithm.

In 1987, Neal Koblitz proposed elliptic curves to design public-key ciphers.

In 1995, the first Secure Hash Algorithm (SHA1) was approved by the NIST.

In 1998, Joan Daemen and Vincent Rijmen came up with the symmetric cipher Rijndael, which became AES in 2001.

| Note. [5] is an excellent book for readers who are interested in the history of cryptography.

2.1.3 Basic Terms Related to Encryption Systems

Confidentiality is supported by encryption and decryption algorithms, which process three basic elements, namely plain-
text, ciphertext, and key, as illustrated by Figure 2.4. Channel is any unsecure means to access the encrypted data. It may
be a communication network (e.g. Internet, a private network, or a cellular network) or storage device (e.g. a USB key). The
attacker can listen to the channel or read the storage device.

Definition 2.2 Plaintext (or cleartext): it is a data either on a storage device or in transit over a communication network.

Definition 2.3 Ciphertext: it is data after encryption; it is not readable for human beings or usable by any application,
without possession of the decryption key.

A ciphertext is either transmitted over an unsecure channel or stored in an unsecure area. It can be intercepted or com-
promised by anyone who has access to the communication channel or the storage area.

Definition 2.4 Cryptographic key (also called secret key or simply key): it is a parameter used by encryption and decryp-
tion algorithms. It is the most critical material.

Static keys are intended to be used for a long period of time (e.g. the PIN code to access a bank account), while ephemeral
keys are used for a very limited time (e.g. to encrypt one message).

Definition 2.5 Encryption algorithm (also called enciphering): it is the process of creating a ciphertext. It makes use of a key
to scramble the input (i.e. the plaintext), so that the result (i.e. the ciphertext) looks like a noise for any observer who does not
know the decryption key.

Definition 2.6 Decryption algorithm: it is the process of transforming a ciphertext into a plaintext; i.e. it is the reverse pro-
cess of encryption.

Encryption key Decryption key

|

Decryption

(= I—

Unsecure
channel

Hello Encryption Hello

Plaintext Ciphertext Plaintext

Figure 2.4 Main components of encryption/decryption chain.

2.1 Definitions of Basic Terms

Definition 2.7 Encryption key: it is a secret value that is known to the sender.

Definition 2.8 Decryption key: it is a value that is known to the receiver. The decryption key is related to the encryption key,
but it is not always identical to it.

Definition 2.9 Cipher (also called encryption system): encryption and decryption algorithms form together a cipher.

2.1.4 Symmetric and Asymmetric Cryptographic Systems

There exist two types of cryptosystems: symmetric-key encryption and asymmetric-key encryption. The main difference
between those two cryptosystems is the relationship between the encryption and the decryption keys. In any cryptosystem,
it is practically impossible to decrypt a ciphertext with the key that is unrelated to the encryption key.

2.1.4.1 Symmetric Cryptosystems

Till the late 1970s, all cryptosystems were symmetric. Even today, symmetric cryptosystems are used extensively in many
cryptosystems, in particular to encrypt and decrypt data. Collectively, the algorithms used in symmetric cryptosystems are
referred to as symmetric cryptography. The well-known symmetric algorithms include AES (Advanced Encryption
Standard) and DES (Digital Encryption Standard).

As illustrated by Figure 2.5, in symmetric cryptosystems, the entity, which encrypts a data, and the entity that decrypts
an encrypted data share the same key. Before any cryptographic operation, both entities need to exchange the key using a
secure channel. In addition, a shared key should be changed periodically or after encrypting a given amount of data to pre-
vent some attacks.

If a group of n people need to securely exchange encrypted data, n * n-l

keys are required, because each
member shares a key with each of the other n —1 members. Example, for 1000 staff members, nearly half a million keys

are required to be generated, exchanged, and periodically changed.
In general, symmetric cryptography has two restrictive challenges:

o Key establishment: agreement on a secret symmetric key requires to make use of secure channel (e.g. a phone call, a bag,
post mail, etc.) or a specific key-agreement protocol.

o Trust: since both parties (i.e. sender and recipient) use the same key, there is an implicit requirement that they trust each
other. If an attacker exploits the weaknesses of one party to recover the key, the other party is not informed and con-
tinues to send sensitive data, which would be easily disclosed by the attacker. Symmetric cryptography alone is not prac-
tical to provide security when parties do not belong to the same circle. For example, in e-shopping, the client does not
trust the merchant and vice versa.

2.1.4.2 Asymmetric Cryptosystems

In the late 1970s, asymmetric cryptosystems were invented to overcome the limitations of symmetric cryptography.
Asymmetric cryptosystems are considered as a turning point in cryptography history. Encryption and decryption keys are
distinct, a private key, which must remain secret, and a public key. Both keys are linked by a mathematical relationship
relying on one-way functions, i.e. given a key, it is impossible (in practice) to disclose the second key.

When the owner of the private key, say A, needs to receive encrypted data from a party, B, the latter encrypts messages,
using A’s public key; and the receiver decrypts using his/her/its private key. When party A wants to sign a message, he/she/
it generates the signature using his/her/its private key; and the recipient verifies the signature using A’s public key. The
overall structure of asymmetric ciphers is illustrated by Figure 2.6.

Public-key cryptography is divided into three classes:

1) Integer factorization cryptography, which mainly incudes RSA cryptosystem, addressed in detail in Chapter 12.
2) Finite field Cryptography, which is based on computations over finite fields, addressed in detail in Chapter 12.
3) Elliptic curve cryptography, which is based on computations over elliptic curves, addressed in detail in Chapter 13.

2.1.4.3 Symmetric vs Asymmetric Cryptosystems and Their Combination
As we will see in this book, there exist many symmetric ciphers, while only a few asymmetric algorithms exist. The primary
advantage of symmetric-key algorithms is that they are often significantly faster than asymmetric-key algorithms.

37

38

2 Introduction to Cryptography

Shared key

¥

¥

a—
. Unsecure .
Hello Encryption channel Decryption Hello
= =
Plaintext Ciphertext Plaintext

Figure 2.5 Overall structure of symmetric-key cryptosystem.

Private key Public key

- o
| |

a——o
. Unsecure
Hello Encryption channel Decryption Hello
a =
Plaintext Ciphertext Plaintext
Public key Private key

Figure 2.6 Overall structure of asymmetric-key cryptosystem.

The second advantage is that symmetric keys are shorter in length for the same security strength. The key length may be
an important consideration, if memory for storing the keys or the bandwidth for transporting the keys are limited. In
addition, advances in cryptanalysis and computational efficiency have tended to reduce the level of protection provided by
public-key cryptography more rapidly than that provided by symmetric-key cryptography. The third advantage of symmet-
ric-key algorithms is that they are based on simple bit operations (substitution, XORing, shifting, swapping), while public-
key algorithms are based on mathematical notions (modular arithmetic and operations over finite fields). In the next
chapter, we introduce the useful theorems and facts before going in depth in cryptography. Public-key cryptography has,
at least, two advantages compared to symmetric cryptography:

1) Increased security of private keys: unlike symmetric cryptosystems, the private keys never need to be transmitted or
shared with anyone, when public-key cryptosystems are used.

2) Asymmetric cryptography provides digital signatures, so that authentication of message can be assured. In addition,
using digital certificates and signature provides non-repudiation assurance.

In operational security systems, symmetric and asymmetric algorithms are combined to provide performant security ser-
vices. Roughly, public-key algorithms are used to generate shared session keys, to sign messages and verify signatures, and
to authenticate users, while symmetric-key algorithms are used to encrypt and decrypt messages using shared session keys.

2.1.4.4 Trapdoor Functions

Definition 2.10 One-way function: let f: {0,1}m — {O,l}n be function, which receives m-bit input and returns n-bit output.
f is said to be one-way, if it is easy to compute f(x)=y for xe{O,l}m, but it is computationally infeasible to find a preimage
x=f"'(y) given yc{0,1}

Example 2.1 Below are examples of one-way functions:

n

— Given two large primes a and b, it is easy to find the product p = a = b, while given p, it is not easy to find a and b, such
that a = b = p. This problem is referred to as factorization problem.

— Given three integers a, k, and n, it is easy to compute b, such that a® mod n= b, while it is not easy to find k, such that
a*mod n=>b, when a, b, and n are given. This problem is referred to as discrete logarithm problem.

2.2 Cryptographic Primitives

— Any hash function H is a one-way function, because given a, it is easy to compute ¢, such that H(a) =t, while given ¢,
it is not easy to find a, such that H(a) =t¢.

Definition 2.11 Trapdoor function: it is a one-way function for which the inverse direction is easy if some useful
information is known, but difficult otherwise.

Generally, public-key cryptosystems are based on trapdoor functions. The public key gives information about the
particular instance of the function; and the private key gives information about the trapdoor. Anyone who knows the
trapdoor can compute the function easily in both directions, but anyone who does not know the trapdoor can only easily
perform the function in the forward direction. In public-key cryptosystems, the forward direction (i.e. the public key) is
used for encryption and signature verification; the inverse direction (i.e. the private key) is used for decryption and signa-
ture generation.

Note. Public-key cryptosystems used in practice are based on functions that are believed to be one-way. However, no
function has been mathematically proven to be so.

2.2 Cryptographic Primitives

Definition 2.12 Cryptographic primitive: it is a basic cryptographic algorithm used to build computer security systems.

Over millennia, cryptography has focused on keeping messages and data confidential. Today’s cryptography is more than
encryption and decryption. Data integrity, authentication, digital signature, and non-repudiation are security services
provided by cryptography. Common cryptographic primitives may be categorized into six classes (as illustrated by Figure 2.7):

e Encryption/decryption primitives
Hash functions

Message authentication codes
Digital signatures

Shared-secret generation

e Pseudorandom number generation

Table 2.1 summarizes the security services provided by each cryptographic primitive.

Stream ciphers
Symmetric-key
Encryption Block ciphers
Public-key
Hash functions
Integer factorization
cryptography
Cryptographic Message authentication
primitives codes Finite field
cryptography
#» Digital signature
Elliptic curve
hy
Shared-secret generation COPIOSTIPYY
Pseudorandom number
generators

Figure 2.7 Common cryptographic primitives.

39

40 | 2 Introduction to Cryptography

Table 2.1 Cryptographic primitives and services.

Primitives
Service Encryption1 Hash function MAC? Digital signature®
Confidentiality Yes No No No
Integrity No No* Yes Yes
Availability No No No No
Message authentication ~ No No Yes Yes
Entity authentication No No No Yes
Non-repudiation No No No Yes

2.2.1 Encryption

The main objective of encryption primitives is to assure confidentiality. Scrambling data makes it unusable (i.e. looks
like a noise) by those who do not know the decryption key. There exist two families of symmetric ciphers: block and
stream ciphers.

e Stream ciphers are encryption algorithms that apply encryption algorithms on a bit-by-bit basis (one bit at a time) to
plaintext using a keystream. If P is the plaintext and S is the keystream (of the same length than the plaintext), then the
ciphertext C is defined by C = P @ S, where @ is the bitwise XOR operator. Inversely, P = C @ S. Therefore, encryption
and decryption are identical operations. In general, stream ciphers are by far faster than block ciphers.

e Block ciphers are encryption algorithms that encrypt/decrypt plaintexts of a fixed size (e.g. 128 bits), called blocks. The
encryption (or decryption) operation works in the form of a series of sequential rounds. Each round makes use of substi-
tutions and permutations of fragments of its input (initial plaintext, secret key, and output of the preceding round). In
general, the decryption operation performs substitutions and permutations operations in the inverse order of encryption.
Two of the most known and used blocks ciphers are DES and AES. To encrypt plaintexts longer than a single block,
modes of operation are used to split a plaintext into blocks, and then call the block cipher to encrypt each block. Blocks
of ciphertext and plaintext may be combined to prevent some attacks.

The main public-key encryption algorithms include RSA, ElGamal, and ECIES (Elliptic Curve Integrated Encryption
Scheme) cryptosystems.

2.2.2 Hash Functions and Data Integrity

Encryption provides assurance regarding confidentiality. However, encryption alone cannot protect against alterations
(i.e. add, delete, or modify bits) of the ciphertext, which result in a decrypted plaintext that differs from the original one.
To protect the integrity of data, one-way functions, called hash functions, are used to produce digital fingerprints, also
called digests or tags. A hash function takes a variable-length data (maybe in hundred gigabytes) and produces a fixed-
length digest (of a few hundred bits). The data and its tag are stored or sent together. As illustrated by Figure 2.8, to check
the integrity of data, the recipient computes a digest of the received data and compares it to the received tag. If both tags
are identical, the recipient accepts the received data. Otherwise, the data is rejected. The two fundamental properties of
hash functions are:

1) If one or a few bits of data are changed, a completely different tag is produced.
2) If one knows a tag associated with a data, he/she cannot find another data which maps to the same tag; that is why the
term fingerprint is used in cryptography.

2.2.3 Message Authentication Codes

Message authentication code (MAC) algorithms are cryptographic algorithms used to provide message source authentica-
tion and integrity. They produce authentication tags, also called MACs. In general, MACs can be generated by:

2.2 Cryptographic Primitives

Figure 2.8 Principle of integrity verification using
a hash function.

Image/text Hash
content function

Unsecure channel

— N’D
unction message

Yes

Accept message

o Algorithms that rely on hash functions and a key; that is why they are called hash MAC (or HMAC) or keyed-hash
functions. The data and the key are hashed together to produce a MAC, which is then stored or transmitted with
data.

o Algorithms based on stream ciphers, where the final state of internal cipher registers contain the MAC.

o Algorithms based on block ciphers, where data is encrypted block by block and the ciphertext of each block is used to
encrypt the next block. The encryption of the final block represents the MAC.

The sender generates a MAC using data to protect and a key shared with the recipient. At reception of a pair (data, MAC),
the recipient computes a MAC using the received data and the shared key and then compares it to the received MAC. If
both are equal, the recipient concludes that the received data has not been altered (i.e. integrity verification) and it has been
sent by an entity that shares the secret key (i.e. source authentication).

2.2.4 Digital Signature

Definition 2.13 Digital signature: it is a message hash encrypted with a private key; and used to authenticate the message
source.

As illustrated by Figure 2.9, a digital signature is obtained as follows: the data to sign is hashed to yield a tag, then the tag
is encrypted with the private key of the signer; the signed tag is called digital signature. When a message-signature pair is
received, the recipient computes a tag H of the received data, decrypts the received signature, and obtains a tag H'. If both
tags are identical, the recipient concludes that the data was signed by the entity owning the private key associated with the
used public key and the message was not altered in transit. In the event the data or the signature is altered, the authentica-
tion fails. Therefore, digital signature provides assurance regarding the message integrity as well as the authenticity of
message.

Both digital and handwritten signatures rely on the fact that it is very hard to find two people with the same signature.
While the handwritten signature is the same on all the signed documents, a distinct digital signature is associated with
each signed message. Handwritten signatures can be reproduced (mimicked), which results in fraudulent documents.
Unlike handwritten signatures, digital signatures are very unlikely to be mimicked. Therefore, they are considered as fool-
proof. In addition, handwritten signatures do not protect the integrity of a signed document (the fraudster can change a
picture, words or letters, while keeping the authentic signature), while any alteration of the original data results in an
invalid signature.

41

42

2 Introduction to Cryptography

House sale Hash
contract function

Signer private-key

-

Unsecure channel

Hash Signer public-key
function

S

Accept message Reject message

Figure 2.9 Integrity protection provided by digital signature.

2.2.5 Digital Certificates and Non-Repudiation

Definition 2.14 Digital certificate or public-key certificate: it is an electronic document used to prove the ownership of a
public key.

Public-key cryptosystems have one primary challenge; the recipient of a signed message needs to trust that the public key
that he/she/it is using to authenticate the message is really owned by the entity who signed the message and not stolen
by a malicious adversary. The trust can be established using digital certificate. The latter is an electronic document
signed by using the private key of a trusted authority, called Certificate authority, to certify that the name of the entity on
the certificate owns the public key included in the certificate. A digital certificate functions like a physical certificate, such
as a passport delivered by an administrative authority. Two entities (individuals or organizations) with distinct names and
IP addresses cannot have the same certificate.

Digital certificates are used in the cyberspace to prevent malicious entities (individuals or organizations) impersonate
others and receive sensitive data or send fake data to their target. They allow verification of the claim that a specific public key
does in fact belong to a specific individual or organization. To verify a signature included in a message, the recipient requests
the signer to send his/her/its certificate. Then, he/she/it makes use of the public key in the certificate to verify the signature.

In addition to data integrity and message authentication, digital certificates provide a second service, which is of prime
importance for electronic transactions (e-shopping, e-banking, e-voting, etc.). It is non-repudiation assurance. Since it is
assumed that only the entity owning a key-pair (private and public) can sign using his/her/its private key, he/she/it can
only create unique signature on a given data. Thus, the recipient can present data and the digital signature to a third party
as evidence if any dispute arises in the future. The legitimate signer cannot deny having signed the message.

2.2.6 Shared-Secret Generation

One major progress in cryptography is due to Whitfield Diffie and Martin Hellman, who proposed a protocol, called Diffie-
Hellman exchange protocol, which enables two parties to agree on a shared secret. The parties make use of their public
keys to agree on a shared secret that does not need to be sent over a network. Then the shared secret can be used as a
session key (to encrypt data) or used to derive a session key. Key derivation is a method, which takes an input, performs

2.3 Fundamental Properties of Cryptographic Algorithms

specific operations, such as hashing, and then truncates the hash function result to yield a key. This issue is addressed in
detail in Chapter 14.

2.2.7 Pseudorandom Number Generation

Random numbers are used in a wide variety of cryptographic operations, such as key generation and key agreement pro-
tocols. A random number generator (RNG) is a function that outputs a sequence of numbers, such that at any point, the
next number cannot be predicted based on the previous numbers. Unfortunately, true random number generation is diffi-
cult to realize on computers, which are deterministic. Instead of true RNs, pseudorandom RNs (PRNGs) are used in many
cryptographic algorithms. A PRNG produces a sequence of numbers that is very likely to appear as random. With each
distinct initialization value (called seed), a PRNG generates a distinct sequence of numbers.

As discussed in Chapter 26, in general, PRNGs are based on hash functions. It is worth noticing that the security of cryp-
tographic algorithms relies on the randomness in the sequence of random numbers used. If an attacker can predict the next
values to be produced by a PRNG, he/she can infer secret information.

2.3 Fundamental Properties of Cryptographic Algorithms

2.3.1 Should Cryptographic Algorithms Be Secret or Not?

In the past, some cryptographic algorithms or mechanisms were kept secret and the security they provide relies on the
assumption that the attackers do not know the details of targeted cryptosystems. Modern cryptographic algorithms are
publicly known. Keeping an algorithm secret may act as a significant barrier to honest cryptanalysts who could discover its
weaknesses and would suggest mechanisms to make it secure. Without involvement of honest cryptanalysis, a crypto-
graphic algorithm would be the target of only malicious cryptanalysts, who could take advantage of the discovered weak-
nesses to attack IT systems using the algorithm. Keeping the algorithms secret is possible only when they are used in a very
limited circle and are not expected to operate at a large scale.

In 1883, Auguste Kerckhoffs, a Dutch cryptograph, stated a fundamental principle for the design of cryptographic sys-
tems: “a cryptosystem should be secure even if everything about the system, with the exception of the key, is public
knowledge.” Cryptographic algorithms used in the current (civilian) cyberspace are based on Kerckhoffs’s principle.

2.3.2 Models of Security Proof

One of the most important properties of cryptographic algorithms is the proof of their security. The models of security
proof include two classes: unconditional security and computational security.

e Unconditional security (also called information-theoretic security): a system is said to have unconditional security, if it is
secure against attackers with unlimited computing resources (memory space and time).

e Computational security refers to the amount of computational resources needed to break an algorithm using the best
known attack. Most of the currently used algorithms fall in this class. Computationally secure algorithm is any algorithm
that cannot be broken using reasonable computing resources.

2.3.2.1 Computational Infeasibility

In theory, any algorithm can be broken, if the attacker has an infinite amount of computation resources (processors,
memory, and bandwidth). In practice, any attacker has a limited capacity to perform an attack and the attack would take
a time depending on the deployed resources.

An attack is said to be computationally infeasible, if the required amount of resources is beyond the capacity of any
attacker (with probably the exception of governmental agencies). Currently, an attack that requires at least 2°° operations
is considered as computationally infeasible. Notice that the strength level of 80 bits (i.e. the required number of operations
is of at least 2°°) is no more considered secure.

2.3.2.2 Provable Security

As far as we know, no cryptographic algorithms used in practice have been mathematically proven to be entirely secure. In
general, under specific and restrictive conditions, an algorithm can be declared secure. Since the key space is finite, the
probability to recover a secret key is not 0, even if the key bit-length is large. In addition, some plaintexts (e.g. bank

43

44

2 Introduction to Cryptography

transactions or personal communications) have a format known to attackers, who can infer, using traffic analysis,
information that could help breaking the encryption algorithm. Therefore, the security of cryptographic algorithms is
based on probabilistic approach; and not on a formal proof.

In practice, given a cryptographic algorithm and a set of talented cryptanalysts, if none of them can break it after a long
time, using reasonable computation resources, users of the algorithm can reasonably assume that it is secure. After the
publication of a weakness that resulted in breaking (partially® or totally) an algorithm, the use of the algorithm should be
stopped as soon as possible.

One of the best citations regarding proof of security was stated by Brice Schneier, who wrote, “Anyone, from the most
clueless amateur to the best cryptographer, can create an algorithm that himself can’t break. It’s not even hard. What is hard is
creating an algorithm that no one else can break, even after years of analysis. And the only way to prove that is to subject the
algorithm to years of analysis by the best cryptographer around” [6].

The lifetime cycle of a cryptographic algorithm may be summarized in four steps:

1) A talented cryptograph publishes a new algorithm, either spontaneously or to participate to a call® for new algorithms.
He/she believes that the algorithm is secure. Publishing a new cryptographic algorithm is understood as a challenge for
cryptanalysts, as try to break my algorithm. Sometimes, organizations, such as the NIST, publish security challenges,
with rewards for those who succeed in breaking the algorithms.

2) Worldwide talented cryptanalysts deeply analyze the robustness of the published algorithm regarding known attacks.

3) When a weakness is discovered by cryptanalysts, the algorithm is updated as soon as possible; and a new version is
published.

4) If the discovered weakness is critical (i.e. no cure exists without deeply redesigning the algorithm), the algorithm is
deprecated.

2.3.3 Perfect Secrecy

Perfect secrecy (or information-theoretic security) property means that the ciphertext conveys no information about the
content of the plaintext. In other words, no matter how much ciphertexts the attacker has, they do not convey anything
about what the plaintexts and the key were. In terms of probability, perfect secrecy property means that the probability
distribution of the possible plaintexts is independent of the ciphertexts. More formally,

An encryption scheme over plaintext space M has the perfect secrecy property, if for every probability distribution over
M, every message me M, and every ciphertext cc C, for which Pr[C = c] >0,

Pr[M =m|C=c|=Pr[M=m| (2.1)

where M and C are random variables associated with plaintext and ciphertext, respectively.

The probability distribution of ciphertexts is defined by:

VeeC,Pr[C=c|= " Pr[C=cIM =m|« Pr[M=m| (2.2)
meM

Example 2.2 Consider the Caesar’s cipher, where 26 keys (from 0 to 25) can be used equally (i.e. with a probability of
1/26) to encrypt one letter of the Latin alphabet. Each plaintext letter is encrypted with a key randomly selected. Observing
a ciphertext of one letter does not provide any information about the encrypted letter. Therefore, the cipher has the perfect
secrecy property.

Perfect forward secrecy (PFS) property: a cryptosystem is said to have the PFS property, if the compromise of long-term keys
does not allow an attacker to obtain past session keys. In other words, PFS property protects past sessions against future
compromises of long-term keys. In addition, by generating a unique session key for every session initiated by a party, the
compromise of a single session key will not affect any data other than that exchanged in the specific session protected by
that particular session key.

We will see in Chapter 14 that Diffie-Hellman exchange protocol and its variants have the PFS property.

Example 2.3 Attimet, aclient and a server make use of the following protocol to agree on a session key. The client sends
its public key to the server. The latter computes a session key, encrypts it using the client public key, and sends it to the

2.4 Attacks Against Cryptographic Algorithms

client, over an unsecure channel. No other entity, with the exception of the client, can read the session key. Next, parties
exchange messages encrypted using the session key and terminate the session. An attacker listening to the channel, copies
all the encrypted messages, but he/she cannot decrypt them. Sometime later (may be after months), the same attacker
recovers the public key of the client. He/she decrypts the message containing the encrypted session key, and then discloses
all the messages he/she intercepted some time ago. The key agreement protocol above has not the PFS property. That is, a
compromise of the long-term public-key of the client results in disclosing ciphertexts sent in the past.

2.3.4 Security Strength of Cryptographic Algorithms

Security strength is expressed in the total amount of computations an attacker needs to perform in order to break an
algorithm (i.e. disclose a plaintext, recover the key, forge a message tag, etc.). It also is referred to as the computational
complexity.

In current recommended cryptographic algorithms, the security strength is specified in number of bits (e.g. 112, 128, 192,
256, and 512). At the security strength of 256 bits, an attacker would require a computation of roughly 2*°* or more bit oper-
ations to compromise security. The security strength of a system is the minimum of the bit-lengths of its components
(private key, public key, signatures, random generator, etc.). For example, if the security strength is 256 bits for all compo-
nents except one, which has a security strength of 128 bits, then the security strength of the whole system is 128 bits.

2.4 Attacks Against Cryptographic Algorithms

In Chapter 1, we presented cyberattacks, including phishing, spam, DDoS, and ransoming. Those attacks mainly aim to
collect sensitive and personal data, block system access, threaten private life, and demand ransoms. Most of those attacks
exploit vulnerabilities due to naivety, recklessness, and greed of users, weaknesses of operating systems, and broadcasting
and dissemination capacities provided by networks. They are launched by cybercriminals who, in general, are not cryptan-
alysts. Attacks discussed in this section address weaknesses of cryptographic algorithms; they mainly aim:

To disclose one or several plaintexts associated with known ciphertexts.

To forge a tag or a signature without knowledge of the secret key.

To recover the secret key (used to encrypt, to compute MAC, or to sign).

To infer a partial internal state of a cipher (e.g. a key round used in block cipher or a fragment of keystream of a stream
cipher).

Malleability is the ability to transform a ciphertext into a different ciphertext that will produce a new and different plaintext
when decrypted in the recipient side. It also is the ability to transform a data, while keeping the same tag or signature, so
that the recipient will consider the data authentic, while it is not. Malleability is generally an undesirable property. For
example, a bit-flipping attack takes advantage of the malleability of stream ciphers.

Attacks against cryptographic algorithms are designed and performed by cryptanalysts. They take advantage of the
design weaknesses of algorithms, their implementation, and/or their usages. In particular, social networks are used by
attackers to infer some useful information regarding targeted individuals (or organizations). For example, from discussions
between individuals, attackers may infer some parts of encrypted plaintexts (infer names, greetings, and discussion topics)
and then use the inferred knowledge to disclose more information about targeted individuals.

2.41 What Is Cryptanalysis?

Cryptanalysis is considered as the flip side of cryptography. It is the science and technique to break cryptographic algo-
rithms. Academic cryptanalysts, national security agencies (in US, Europe, Japan, etc.) cryptanalysts, and cyberterrorists
have been intensively involved in this field. Since the emergence of modern cryptography, governments have employed
staff and hired code cracker services for studying encryption and breaking codes. Wars and spying (in many domains
including industry, agriculture, health, finance, and politics) have been the main vectors of cryptanalysis development.

Cryptanalysis relies on knowledge of the design details of encryption algorithms (in particular, algorithms for civilian
applications are often public knowledge) and information about the structure of the plaintexts (such as the structure of
e-banking transactions and administrative documents). The efficiency of cryptanalysis mainly depends on computation
resources, plaintexts, and ciphertexts available to the attackers.

45

46 | 2 Introduction to Cryptography

..........................

i| Ciphertext-only-attack

E I Known-plaintext attack

Chosen-ciphertext attack
Related-key attack

Cryptanalysis | | 3
attacks [T EE T e PP LT

|
. |
—u{l Chosen-plaintext attack] '
i 1

} i

| | Brute-force attack

' | Birthday attack

; | Man-in-the-middle attack
i

i I Meet-in-the-middle attack

Attacks on

cryptographic
algorithms

i | Bit-flipping attack
i

E | Replay attack

|
|
|
|
! I Dictionary attacks |
|
|
|

[Frequency analysis

Side-channel analysis

attacks (time, power,
Aftacks on temperature, EM radiations...)

implementations

Fault injection attacks

Social engineering
attacks

Figure 2.10 Common attacks against cryptographic algorithms.

Figure 2.10 summarizes the common attacks on cryptographic algorithms. In the following chapters, we only focus on
cryptanalysis attacks.

Note. Cryptanalysis is not always a malicious activity. Indeed, all the standard cryptographic algorithms currently in use
have been improved and secured due to the valuable involvement of cryptanalysts worldwide.

2.4.2 Categorization of Cryptanalysis Attacks
Cryptanalysis attacks may be categorized according to two main criteria:

o What information is available to attackers?
e What techniques are used to design the attacks?

| Note. Cryptanalysis attacks are not exclusive; rather, they are commonly combined to design powerful attacks.

2.4.2.1 First Categorization of Cryptanalysis Attacks
One common approach to categorize cryptanalysis attacks is based on the kind of information available to attackers.
Availability of ciphertexts or plaintexts is either obtained by intercepting messages in transit or by accessing storage devices
containing encrypted and signed files. The amount of available information depends on when the attackers can collect
information, i.e. permanently or at specific times (weekends, working times, etc.). The larger the collected information is,
the higher the probability of attack success is. It is worth noticing that wireless technologies (in particular Wi-Fi) make
message interception very easy, while interception through wired networks is much harder. In addition, stealing or copy-
ing storage devices (such as USB keys) give access to all ciphertexts.

There exist five types of attacks, when the information availability criterion is considered: ciphertext-only, known-plain-
text, chosen-plaintext, chosen-ciphertext, and related-key attacks.

2.4 Attacks Against Cryptographic Algorithms

Ciphertext-only attack (COA): in this type of attack, the adversary has access to a subset or all ciphertexts; but, he/she
has no access to plaintexts. The attacker tries to disclose some or all plaintexts from known ciphertexts or to recover the
encryption key. COA is the easiest attack to mount in practice, because ciphertexts can be collected easily when wireless
communications are used. However, COA alone is very unlikely to succeed, because the attacker lacks useful information
on plaintexts.

Known-plaintext attack (KPA): in this attack type, the adversary has access to limited number of pairs of plaintexts and
the corresponding ciphertexts. The KPA aims to recover the key. For example, spies can collect plaintext-ciphertext pairs
and try to recover the key in order to disclose other plaintexts. Different methods (such as linear cryptanalysis) can be used
to guide the key search.

Chosen-plaintext attack (CPA): in general, this attack type is used to identify the vulnerabilities of an algorithm. CPA
assumes that the adversary has access to a black box (called oracle) which implements or emulates the algorithm to be
analyzed. The attacker randomly chooses some plaintexts and queries the oracle to process the plaintexts. The returned
result may be a ciphertext or signature, depending on the algorithm. Then, the adversary makes use of the collected plain-
text-ciphertext pairs or data-tag pairs in order to recover the key or to generate message tags without knowing the key
(so that a forged message—tag pair is validated by the recipient, which compromises the security of the authentication
service). The adaptive CPA is a specific variant of the generic CPA, where the adversary selects the subsequent plaintexts
to be processed by the oracle, depending on what has been learned from the previous queries. Examples of adaptive CPA
are discussed in Chapter 10.

Chosen-ciphertext attack (CCA): like CPA, this attack type is used to identify vulnerabilities of a cryptographic algorithm.
CCA assumes that the adversary has access to an oracle, which implements or emulates the algorithm to be analyzed. The
attacker randomly chooses some ciphertexts or message tags and queries the oracle to process them. The returned result
may be plaintexts or a signature validation results (i.e. the input tags are valid with regard to the provided messages),
depending on the algorithm. Then, the adversary makes use of the collected plaintext-ciphertext pairs or data—tag pairs in
order to recover the key or to generate message tags without knowing the key. The adaptive CCA is a specific variant of the
generic CCA, where the adversary selects the subsequent ciphertexts or data-tag pairs to be processed by the oracle,
depending on what has been learned from the previous queries.

Related-key attack: in this attack type, it is assumed that the adversary has access to a set of ciphertexts produced for the
same plaintext, using two or several unknown keys (e.g. the attacker intercepted the traffic generated in several sessions;
and in each session, a new key is used to encrypt a subset of plaintexts known to the adversary). In addition, the adversary
knows that the keys have some mathematical relationships (for example, keys are generated with the same pseudorandom
number generator,7 which is initialized one time for all the sessions; or more naively, the session keys are generated with
a linear function, i.e. K; = f(K,_,), where f is a linear function). The adversary tries to infer the key currently in use from
the known plaintext-ciphertext pairs and relationships between keys. Notice that related-key attack is unrealistic against
commonly used algorithms, mainly because key generation does not yield keys that have linear relationships.

2.4.2.2 Second Categorization of Cryptanalysis Attacks

The second categorization criterion refers to how the available information is processed to perform attacks. The naive tech-
nique is to try everything in the search space; the other techniques aim to limit the resources (especially, computation
time), while keeping high the success probability of attacks.

Brute-force attack (also called exhaustive search attack): in this attack model, every possible key is tried until the correct
one is found. For example, if the bit-length of the key is 128, the attacker has to try 2'** ~ 10" keys. The attacker is assumed
to have access either to plaintext-ciphertext pairs or to plaintexts and ciphertexts without known association. In the first
case, the attacker considers each pair and encrypts the known plaintext with each possible key and compares it to the
corresponding ciphertext, until the correct key is recovered. Depending on the cipher,® one or several pairs are needed to
disclose the correct valid key. In the second case, each ciphertext is decrypted with each possible key and the decryption
result is compared to the known plaintexts, until the correct key is recovered. Like the first case, more than one ciphertext
may be considered before recovering the correct key. If no ciphertexts known to the attacker map to the known plaintexts,
the attack cannot succeed.

Almost all cryptographic algorithms are vulnerable to brute-force attack. Fortunately, brute-force attack is computation-
ally infeasible against cryptosystems used in practice. One fundamental requirement for any cryptographic algorithm to be
used in operational cryptosystems is that brute-force attack must be computationally infeasible against the algorithm.
However, an algorithm considered secure against brute-force attack at a given period may be no more secure some years
later, because of advances in computer technologies.

47

48

2 Introduction to Cryptography

Birthday attack: it refers to the birthday paradox (see Section 3.4), which states that given a group of persons, if one
picks randomly 1.18 * \/365 ~ 23 persons, the probability to have two persons with the same birthday date is close to V2.
Intuitively, one may think that more persons are required to get two individuals with the same birthday date at a prob-
ability of 2. In cryptanalysis, birthday attack is a variant of brute-force technique, which is mainly used against hash
functions and signature algorithms. For example, given a 128-bit signature algorithm, when the attacker knows a sig-
nature S for a message M, he/she can find, with a probability of /2, another message M’, among 2°* messages, distinct
from M, such that M and M’ have the same signature S. Then, he/she can send a signed message, which will be vali-
dated by the recipient, while the message has never been signed by a legitimate user. Brute-force attack requires trying

in average 2'*’ messages, while birthday attack requires \/21—28 =2%, which results in a significant reduction of the
search space.

Meet-in-the-middle attack: it is another variant of brute-force attack, which drastically reduces the effort to perform a
brute-force attack. It is a compromise (hence the term meet in the middle) between memory space and computation time.
For example, a brute-force attack that requires 2'°* time can be reduced to 2°° time and 2°° memory space. We'll see in
Section 7.2.3.3 how the meet-in the middle attack was used to break block ciphers. Notice that meet-in-the-middle attack
has no similarity with man-in-the-middle attack.

Man-in-the-middle attack: it is one of the most known attacks, which targets mainly public-key algorithms. In this attack,
it is assumed that the attacker can intercept and modify messages exchanged between two legitimate users. Such an
assumption is realistic in wireless networks and when the attacker can take control of routers. To illustrate how the attack
works, consider the following scenario: a user A wants to receive encrypted messages from user B (see Figure 2.11). User A
sends his/her public key to B. The attacker intercepts A’s public key and instead sends his/her public key to B. Upon recep-
tion of a public key, user B is misled, thinking he/she is communicating with user A. User B encrypts messages with
attacker’s public key, and not with that of A. The attacker intercepts and reads any message sent to A; and can encrypt the
received plaintexts using A’s public key and send them to A or alternatively, he/she can relay fake messages. Notice that
digital certificates, when available, prevent the attack above, because the attacker cannot modify the certificate of A to
include his/her public key.

Dictionary attacks: there exist many variants referred to as dictionary attacks, among which:

o Build a list of passwords that are likely to be used by the target. Then, try one by one the selected passwords to log into
the attacked system.

e Build a table (also called dictionary), which contains all the pairs of plaintext-ciphertext learned over a long period.
Then, for each intercepted ciphertext, search in the table the corresponding plaintext. This attack is efficient when the
vocabulary of plaintexts is limited.

o Build a subset of the key space composed of the keys that are the most likely to be used by the attacked entity. Then, for
each intercepted ciphertext, try each key in the subset to recover the correct key. The probability of success depends on
how the key subset is selected.

Replay attack: it is a variant of man-in-the-middle attack, where

User A User B the attacker intercepts messages sent to the victim. Then, he/she
- resends some or all messages to the victim, in such a way that the
e victim receives multiple copies of some fragments of the original

== —_— traffic, which results in undertaking inconsistent actions, thus
compromising integrity. Imagine that the attacker knows an
intercepted message, which corresponds to money transfer to
his/her account. He/she can resend several times the same mes-
sage to the bank to have his/her account credited multiple times.
Fortunately, protocols used by banks are resistant to replay
attacks; they use techniques such as assigning a unique number
(such as a timestamp) to each transaction.

Bit-flipping attack: it is an attack against stream ciphers in
which the attacker changes one or several bits in the cipher-
text, at specific positions, in such a way that the plaintext
changes at the same positions. The attacker cannot control the
resulting plaintext, if he/she does not know the original plain-
Figure 2.11 Illustration of Man-in-the-middle attack. text format. However, if he/she knows the message format and

Unsecure
channel

Attacker

2.4 Attacks Against Cryptographic Algorithms

Table 2.2 Relative frequency of letters in English texts (from Wikipedia).

Letter % Letter % Letter % Letter %
E 12.70% D 425% Y 1.97% 1 0.15%
T 9.06% L 4.03% P 1.93% X 0.15%
A 817% C 2.78% B 1.49% Q 0.10%
(0] 751% U 2.76% V 098% Z 0.07%
I 6.97% M 241% K 0.77%

N 6.75% W 2.36%

S 6.33% F 2.23%

H 6.09% G 2.02%

R 5.99%

the content of the bits to change, he/she can control the modified plaintext, because the ciphertext in stream ciphers is
yielded by XORing the plaintext with the key. For example, if the attacker knows the format of a bank transaction,
which contains the value 50 in bits at positions 100 to 120, he/she can change the value to 50+1024. Another example
is discussed in Problem 4.9.

Frequency analysis: it is an attack particularly efficient when the attacker tries to disclose ciphertexts corresponding to
texts in a natural language. The attacker exploits the frequency of letters in texts, the frequency of the first letter in words,
the repetitions of words and spaces in texts; all these features differ from a language to another. For example, Table 2.2
shows the relative frequency of letters in English texts. When the same letter is always mapped to the same code, the
attacker can compute the frequency of each code in the ciphertext, and then assumes that the code with the highest fre-
quency is space, then the next is letter E, etc. In World War II, this technique (partially) helped to disclose some messages
encrypted with the Enigma machine.

2.4.3 Attacks on Implementations of Cryptographic Algorithms

Implementation-oriented attacks are not performed against the design of cryptographic algorithms, but against their
implementations. They are more difficult to perform, because the attacker material needs (in general) to be very close to
the attacked system. The attacker needs to know all about the attacked cryptosystem (in particular characteristics of pro-
cessors and software implementation of cryptographic operations); and he/she needs to have very accurate probes to get
measurements. In general, implementation-oriented attacks are performed by attackers with excellent skills in electronics
and by security agencies.

The two most popular categories of implementation attacks are side-channel analysis and fault injection attacks [7]. The
attacks in the first category are passive; and exploit the information leakage related to cryptographic device internals
through side channels. The attacks in the second category are (in general) invasive. Both categories can be combined to
design powerful attacks.

2.4.3.1 Side-Channel Attacks
Side-channel attacks mainly include timing, power, electromagnetic radiation emission, and temperature analysis. These
attacks are non-invasive; thus, they cannot be detected by attack systems.

Timing attacks: this type of attacks exploits the fact that different computations take different times, depending on the
used processor. By measuring such times, it is possible to infer that a processor is carrying out some specific computations.
For example, if the encryption takes a longer time, it indicates that the secret key is long. Another example is that the time
taken by a multiplication varies significantly depending on the operands (e.g. multiplication by a power of 2 is performed
by a left shift rather than a series of multiplications and additions). From the time taken by a modular exponentiation, used
for example in RSA, the attacker may infer the number of 1s in the private key.

Power analysis attacks: they are effective ways to extract the content of cryptographic devices, such as smartcards [8].
With power analysis, the variation in power consumption of a device is used to infer some useful information about the
secret content of devices. There exist two types of power analysis (PA): simple PA and differential PA. In the simple PA, the
attacker observes the device’s current consumption over a period of time. Different operations (e.g. multiplication and

49

50

2 Introduction to Cryptography

additions) exhibit different power profiles. In addition, when transferring data from a memory to CPU, the ratio of 1s vs 0s
is reflected in the power profile. Therefore, the attacker can infer what type of function is being performed at any given
time and what data pattern is being transferred or processed. Devices protected against simple PA create noise (by
performing random computations) to avoid collecting the correct physical traces. Differential PA is a statistical method for
analyzing power consumption to identify data-dependent correlations in order to improve the quality of information
inferred by the attacker. It is more difficult to thwart than simple PA.

Electromagnetic emission attacks: these attacks exploit the electromagnetic radiations emitted by the attacked device,
while running cryptographic code. Codes and their execution are characterized by electromagnetic radiation emission pro-
files. From the electromagnetic emission traces, the attacker can infer useful information on attacked device.

Temperature attacks: these attacks exploit the observed temperatures of the attacked device, while running cryptographic
code. Codes and their execution are characterized by temperature profiles. From the temperature traces, the attacker can
infer useful information on attacked device.

2.4.3.2 Fault-Injection Attacks

Fault-injection attacks rely on specialized hardware (such as laser beam) to inject faults on devices, such as smartphones,
during the execution of a cryptographic algorithm. The voltage and clock frequency alterations are frequent attacks in this
category. For example, the attacker can inject faults to disturb the last round of a block cipher or to erase data currently in
use by the algorithm. Then, he/she observes the outputs of the device and derives useful information to recover a key or
other secret data.

2.4.4 Practicality of Cryptanalysis Attacks

The attacks on cryptosystems described in this chapter are highly academic, as majority of them come from the
academic community. Academic attacks are often against weakened versions of cryptographic algorithms (such as
stream and block ciphers, message authentication code generation algorithms, and signature algorithms). In fact,
many academic attacks involve quite unrealistic assumptions about application context as well as the capacities of
attackers. For example, in some chosen-ciphertext attacks, the attacker needs an impractical number of plaintext-
ciphertext pairs. Another example of unrealistic assumptions is to break a block cipher with 8 rounds, while in practice
16 rounds are required; and it is known that the time complexity of an attack grows (near) exponentially with the
number of rounds. However, any probably realistic attack is carefully considered to improve the attacked algorithm.
Another assumption is the availability of an oracle that implements or emulates the algorithm to attack. Under such
assumption, the attacker can collect as much plaintext-ciphertext pairs and message-tag pairs as he/she wants.
Chosen-plaintext and chosen-ciphertext attacks are likely to be used when testing the earlier versions of an algorithm
rather than for attacking it in a real application.

Some attacks assume that the implementation or usage of cryptographic algorithms are not complying with standards.
For example, a cryptosystem makes use of secret keys, which were not generated by a recommended pseudorandom
number generation, or with small prime numbers. Under such assumption, keys become easy to recover. Some crypto-
graphic algorithms, such as DES, have been deprecated without a clear proof that the block cipher has been entirely broken
in practice, and sensitive data disclosed.

Cryptanalysis methods from governmental security and spying agencies are not public and make use of much more
resources than those of academic cryptanalysts to break algorithms. Even if security agencies are able to break codes used
by millions of people, they do not publish anything about their findings. Worse, most countries prohibit the civil use of
cryptographic techniques beyond a certain key-size limit, or even prohibit the transfer of cryptographic technologies,
which reduces the number of cryptosystems that could be attacked in practice. Therefore, the entire list of cryptographic
algorithms, broken in practice, is not a public knowledge. As a precaution, immediately following a suspicion about the
vulnerability of a cryptographic algorithm, the standardization bodies deprecate it.

Finally, it is worth noticing that cryptanalysis in the future (starting in the 2030s) would rely on quantum computers,
which would have computation speeds surpassing those of current computer technologies. Attacks that are currently con-
sidered computationally infeasible would be easily feasible with quantum computers. For example, the recovery of RSA
private key that would take (thousands or even more) years of computations using the current technologies would take
minutes using quantum computers. Waiting for the massive arrival of quantum computers, the cryptographic algorithms
currently used in civil applications are considered robust against known attacks, made by nongovernmental organizations.
For more on security and quantum computers, refer to [9].

2.5 Steganography

2.5 Steganography

The last section is a brief overview of steganography, which is another complex and ingenious category of techniques to hide
contents. Unlike cryptography where intruders are aware that sensitive data is being communicated, because they can see the
scrambled messages, in steganography, an unintended recipient or an intruder is unaware of the fact that observed data or
message contains hidden information. With steganography, people not only want to protect the secrecy of an information by
concealing it, but they also want to make sure any unauthorized person gets no evidence that the information even exists.

Steganography may be defined as the art and techniques of information hiding in other contents, referred to as con-
tainers. It existed before the advent of computers. Containers used by steganography may be texts, images, videos, audio
files, etc. Since the early 2000s, steganography is used by spying and security agencies and by terrorists to disseminate mes-
sages through the internet. Before discussing some examples, it is worth noticing the limitations of steganography:

e Steganography results in a high overhead, because hiding a secret at an undetectable position in a container is not easy;
and it requires time for the receiver to retrieve the hidden secret.

e Steganography requires some genius of concealment for both parties, the sender and the receiver of a content.
Steganography applications are easy to understand once explained, but they are (very) difficult to design.

o Steganography looks like a symmetric cipher. Therefore, the sender and recipient must agree on the container to use and
locations to retrieve the hidden secret.

2.5.1 Examples of Secret Hiding Without Using Computer

The first example is a steganography text, exchanged during World War II. A German spy sent to his hierarchy a secret in
a telegram. In literature, the story is narrated in two message versions.

First version:

President’s embargo ruling should have immediate notice. Grave situation affecting
international law. Statement foreshadows ruin of many neutrals. Yellow journals uni-
fying national excitement immensely.

Second version:

Apparently, neutral’s protest is thoroughly discounted and ignored. Isman hard hit.
Blockade issue affects pretext for embargo on by-products, ejecting suets and veg-
etable oils.

Tacking the first letter (in first message) or second letter (in second message), the following message emerges: Pershing
sails from NY June I.(Pershing was the name of a warship of US.)

The second example is to hide secrets in paintings. The technique consists of hiding letters in trees, people’s hair, flowers,
etc. Then, by retrieving and grouping the letters, texts are discovered.

2.5.2 Examples of Secret Hiding Using Computer

The first example consists of hiding a secret in a binary image file of an image (e.g. in a file.png). The technique takes
advantage of how pixels are coded using three bytes to code RGB (Red, Green, and Blue) colors. It is used to adapt the least
significant bits (say two bits) of each byte to insert the secret. The image recipient extracts the two least-significant bits of
each byte to reconstruct the secret. When observed by people not suspecting any hidden secret, both pictures are similar,
just a difference in pixel brightness.

The second example consists of hiding a secret in an audio file. A typical WAV (Waveform Audio File) represents one
audio sample with a 16-bit number. A person could split up the secret message into bits and embed them, one at a time, into
each audio sample; thus changing only the amplitude of the sample by 1 at maximum. Human ear is far from detecting this
change. In this manner, the secret is embedded in the audio file without noticeable change and without altering the file size.
When people not suspecting any hidden secret listen to both versions of the WAV, they are unable to detect any difference.

The story of the third example is linked to Joe Biden’s inauguration, in 2020; but, the technique could have been used in
other contexts. The white house website presented the main events of the ceremony with a picture of the president and

51

52

2 Introduction to Cryptography

other details. Some hours after posting the content, crackers published on social networks, a message to explain how white
house services have included call-for-hackers. The included secret was in an HTML comment line and says: <!-- If
you're reading this, we need your help building back better >.The lesson to learn from this
example is that comment lines in a code (of any programming language) may be used to hide secrets without affecting the
code itself. This form of steganography is the easiest technique to hide secrets, which can reach not only a single person,
but also a wider public in a country or worldwide.

The last example is related to the terrorist attack of September 11, 2001. Many people claim that the terrorist attack was
planned using steganography over Internet. On February 5, 2001, USA Today reported the following: “Lately, al-Qaeda
operatives have been sending hundreds of encrypted messages that have been hidden in files on digital photographs on the
auction site eBay.com.” The lesson to be learned from this example is that banal web pages can serve as vectors for the dis-
semination of messages, thus escaping security agencies that can break ciphers with very large keys.

2.6 Exercises and Problems
2.6.1 List of Exercises and Problems

Exercise 2.1

How many distinct keys can be generated?
- using five distinct Latin letters

- using five Latin letters

- using 10 decimal digits

Exercise 2.2

What is the primary difference between Meet-in-the-middle and Man-in-the-middle attacks?

Exercise 2.3
Explain why a cipher designed according to Kerckhoffs’s principle is very likely to be stronger than one that does not follow
the same principle.

Exercise 2.4
What is the main drawback of One-time pad cipher?

Exercise 2.5
How computational security differs from unconditional security? Which one is realistic when we consider existing crypto-
graphic algorithms?

Exercise 2.6
Assuming that an attacker can test, per second, 2%° keys of a bit-length of 50. How long would a brute-force attack take?

Problem 2.1

Consider the following cryptosystem:
Plaintext space: M =1a,b, c
Ciphertext space: C =1{1,2,3
Key space: £ = {kl, k,, k3}

With the following probability distributions:
- Probability distribution of plaintexts: Pr[M =a|=1/2, Pr[M =b|=1/3,Pr[M =c|=1/6

- Probability distribution of keys: Pr[K = ki} =1/3,forie {1, 2, 3}.
The encryption matrix is as follows:

o
N = W Q9

b c
2 1
3 2
1 3

Does the cryptosystem as defined above satisfy the perfect secrecy condition?

https://www.eBay.com

2.6 Exercises and Problems

Problem 2.2
Consider the following cryptosystem:
Plaintext space: M =1a, b,c}
Ciphertext space: C =11, 2, 3, 4}
Key space: K = {kl, k,, k3}
With the following distributions:
- Probability distribution of plaintexts: Pr[M = a] =1/2, Pr[M = b] =1/3, Pr[M = c} =1/6.

- Probability distribution of keys: Pr[K = ki] =1/3,foric {1, 2, 3}.
The encryption matrix is as follows:

a b C
k1 2 3
k, 2 3 4
k 3 4 1

Does the cryptosystem as defined above satisfy the perfect secrecy condition?

Problem 2.3
Consider the following cryptosystem:

Plaintext space: M = {0, 1, 2}
Ciphertext space: C = {0, 1, 2}
Key space: K = {kl, k,, k3,k4}
With the following distributions:
— Probability distribution of plaintexts: Pr[M = 0] =1/3, Pr[M = 1] =1/4, Pr[M = 2} =5/12
— Probability distribution of keys: Pr[K = kl.] =1/4forie {1, 2, 3,4}.
The encryption operation is defined by E, (m)=2m + i mod 3, form e {0,1, 2} andie {1, 2, 3,4}.
Does the cryptosystem as defined above satisfy the perfect secrecy condition?

Problem 2.4

Prove that One-time pad cipher satisfies the perfect secrecy condition. Assume that all plaintexts and ciphertexts have the
same probability distribution of 27", where n denotes the bit-length of plaintext (or ciphertext). Also assume that each
plaintext is encrypted using a distinct 2n-bit key.

Problem 2.5

Consider a cryptosystem where messages of two Latin letters are encrypted using Caesar’s cipher; both letters of a message
are encrypted with the same key. Prove that the cryptosystem does not satisfy the perfect secrecy condition. Assume that
all letters and all keys (0 to 25) have the same probability distribution.

2.6.2 Solutions to Exercises and Problems

Exercise 2.1

- 26 %25 =24 * 23 x 22 keys can be generated using five distinct letters.
- 26 keys can be generated using five letters.
- 10" keys can be generated using 10 decimal digits.

Exercise 2.2

The primary difference between Man-in-the-middle and Meet-in-the-middle attacks is that the first one is interactive (i.e.
the attacker participates online in the communication), while the second one is not (i.e. the attacker collects some plain-
text-ciphertext pairs, prepares some encryption or decryption operations, and stores them in memory, and then tries a set
of keys to disclose the correct one).

Exercise 2.3
Kerckhoffs’s principle states that “a cryptosystem should be secure even if everything about the system, with the exception
of the key, is public knowledge.” This means that the only secret that the adversary can discover is the key. If the design of

53

54

2 Introduction to Cryptography

a cipher does not fulfill Kerckhoffs’s principle, it means that some design features (e.g. computation formulas, constants,
format of data) are hidden because they increase the security of the cipher. Therefore, the cipher has multiple points of
weaknesses, and discovering each point provides more information to the attacker to break the cipher. In addition, when
the design of a cipher is public, the honest cryptanalysts may participate in its analysis and then address any discovered
weakness to make the cipher stronger. However, when the internal design of a cipher is hidden, only malicious cryptana-
lysts may be interested in breaking the cipher and disclose sensitive data.

Exercise 2.4
The main drawback of OTP cipher is that it is impractical when a huge number of messages are to be encrypted. Each mes-
sage requires to use a distinct key, which is communicated to the recipient before sending the encrypted message.

Exercise 2.5

Unconditional security means that whatever the resources used by adversaries, the cryptographic algorithm cannot be
broken, while computational security means that the code cannot be broken, assuming that the adversaries make use of
limited and reasonable resources. All existing cryptographic algorithms used in practice are (assumed to be) computation-
ally secure.

Exercise 2.6 “
2
The key space has 2°° elements. The time required to test all keys is 2*° /2% seconds. ———————— ~34 years.
60 * 60 *24 *365
Problem 2.1
In general, given the plaintext probability distribution (i.e. Pr[M = m] is known for each m € M), the probability distribu-

tion of a ciphertext ¢ € C yielded by any key k € IC using a plaintext space M is defined by:

PrlC=c|= ;C(Pr[K =k|» Pr[M =D, (c)])

where M, C, and K denote the plaintext, ciphertext, and key spaces, respectively; M, C, and K denote the random variables

associated with plaintext, ciphertext, and key, respectively. D, (c) denotes the decryption of ciphertext ¢ using the key k.
Compute the probability distribution of the ciphertexts:

Pr[C=1]=Pr[K =k,|* Pr[M = a)|+ Pr|[K = k;| Pr[M = b)|+

Pr[K:kl]*Pr[M:c)]:é*%+§*§+§*%:§

PV{CZZ]:E*—JF—*—JF_*_ZE
3 3
Pr{C_3]=—*—+_*_+_*l:l'
6 3

Compute the conditional probability distribution of the plaintexts

11
PriM=al|+*PriC=1I1M=a| 5*; 1
Pr[M=alC=1]= [Lr{c[_q }:213=5

3

11
PrM:alczz]:Pr[M:a]*Pr[czmM:a]:g*g:l

Pr(c =2] 1 2

3

M]| |33
PriM=a|«Pr|C=3IM=a| 573 1
Pr[M=alC=3|= Pc=3 :21325

3

11

1, 1.1

3 3

PrM:bIC:1:313 :% PriM=biCc=2]=33=
3

2.6 Exercises and Problems |55

11
— %k — —x— 1

PriM=bIC=3]=33-2 pr[M=clc=1]=63-"
1 1 6
3 3
63 1 63 1

priM=clc=2]=8 3= pM=cic=3]=03-=.
1 6 1 6
3 3

The cryptosystem satisfies the perfect secrecy condition.

Problem 2.2
We reuse the solution to Problem 2.1 (which provides the general formula to compute the probability distribution of
ciphertexts):

Compute the conditional probability distribution of the plaintexts

11
PrM=a|+Pr[C=1IM=a| 3*3

3
PrM=aic=1]= Pric=1] T2 4

9

[M =a|xPrC=2| | 33

PriM =al|*PriC=21M=a 52
PriM=aic=2]= Pric=2] :253:§

11
PriM=al«Prlc=3I1M=a|] 5*3 1
PrM=alC=3|= [Lr[C{—S.] }:213:5

1
Pr[M:a]*Pr{C:MM:a]_‘*O

PrM=alC=4]= 2 _

Pr(C =4 1

6
Z%0 2.2 5
Pr[M=bIC=1]=3—=0 PrM=biC=2]=33="=
2 5 5

9 18

1

e L
priM=blCc=3]=3 325 PriM=blC=4]=3 325

1 1
3 6

56 | 2 Introduction to Cryptography

11
O 1 Zx0
PrM=cic=1]=23-2 prM=cic=2]=6_—0
2 4 S
9 18
1
e Ll
PrM=cIC=3] 6 3_1 Pr[M=clC=4 6 3_ -2
1 6 1 3
3 6

The cryptosystem does not satisfy the perfect secrecy condition.

Problem 2.3
Matrix of encryption is as follows:

0 1 2
k, 1 0 2
k, 2 1 0
k, 0 2 1
k 1 0 2

N

We reuse the solution to Problem 2.1 (which provides the general formula to compute the probability distribution of
ciphertexts):

43 6

1
Pr(C:l):l*l+l*l+1 1+l* 5 1
4 3 4 3 4 4 4 12 3

Pr(C= 2)_l*l+l*l+_ i+l*i 17‘
4 3 4 4 4 12 4 12 48

Compute the conditional probability distribution of the plaintexts

11
B B _Pr{M:o}*Pr[c:MM:o] g*;
Pr[M =0IC=0|= Pc—0 B =

16
Pr[M = 0]+ Pr|C=11M =0 Te2en 1
PrlM=0IC=1|= o1 =3 - 4:5
3
Pr[M =1]xPr[C=2IM =1] .
B g Pr =1|«*PriC=2 :1_21_3
PrM =11C=2|= Prc—7] =5 =

None of the three pairs above satisfies the perfect secrecy condition. Notice that a single pair is sufficient to state that the
cryptosystem does not satisfy the perfect secrecy condition.

Problem 2.4
Let M, C, and K denote the plaintext, ciphertext, and key spaces, respectively. Let M, C, and K denote the random vari-
ables associated with plaintext, ciphertext, and key, respectively. Let me M be a plaintext and c € C, a ciphertext. Let n
denote the bit-length of plaintext, ciphertext, and key.

By definition of OTP cipher, givencandm,3kc KIm @& k=c.

Since all plaintexts and ciphertexts have the same probability of 27" and each plaintext is encrypted using a distinct key,

References | 57

Pr{C:clM:m}:Pr[M@K:clM:m]
:Pr[m@K:c]:Pr[K:m@c]:T”. (@)

Using the conditional probability:
Pr[M=m|«Pr[C=cIM=m|
Pr[C = c]

Pr{MzmlC:c]: (b)

Pr{C:c]: Z (Pr{C:clM:m’]*Pr[M:m’D. (c)
m'e M
Using (a), (b), and (c)
Pr[M =m|«2""
PrM=m|C=c|= — =
S (2 «Pr[M=m])
Pr[M = m} B Pr[M :m]

Zm,eM (Pr[M :m’D 1

Therefore, the OTP cipher satisfies the perfect secrecy condition.

Problem 2.5
To prove that a Caesar’s cipher where both letters of the same message are encrypted using the same key does not satisfy

the perfect secrecy condition (2.1), we need just to find a counterexample. By Bayes’s theorem, condition (2.1) becomes:
Pr[C=cIM =m|«Pr[M =m]|

= Pr[M =m|,
Pr{C = c]
Take a plaintext m ="AC" and a ciphertext c ="ZZ". When all the plaintexts have the same probability distribution,
Pr[M="AC"|= L
2626
Pr[C ="ZZ"|M :"AC"]:O, because no key can associate the ciphertext "ZZ" with the plaintext "AC". Therefore,
0% Pr[M =m| 1
Pr[M ="AC"IC="ZZ "}:—:0¢ ———, which contradicts condition (2.1). Therefore, the considered
Pr(Cc=c] 26%26

Caesar’s cipher does not satisfy the perfect secrecy condition.

Notes

Both symmetric and asymmetric cryptography.

Symmetric cryptography only.

Asymmetric cryptography only.

Integrity is verified only if either data or tag may be altered, but not both.

For example, some ciphers have been deprecated because attackers had broken the cipher assuming 8 rounds, while the

cipher makes use of 14 rounds. It is a partial breaking.

Some standard cryptographic algorithms have been selected after a call (e.g. NIST calls).

7 We'll see in Chapter 16 that the initialization value of pseudorandom number generator (PRNG) must be secret, because
PRNGs used in practice are deterministic. If the adversary knows the initialization value of a PRNG, then he/she can
compute the sequence of generated random numbers.

8 We’ll see later in the book that some plaintexts may be mapped to the same ciphertext using more than a single key.

Ui ph N B

o

References

1 Xatz, J. and Lindell, Y. (2007). Introduction to Modern Cryptography. CRC Press.
2 Menezes, A., van Oorschot, P.,, and Vanstone, S. (2001). Handbook of Applied Cryptography. CRC Press.

58

2 Introduction to Cryptography

3 Paar, C. and Pelzl, J. (2010). Understanding Cryptography. Springer.

4 Trappe, W. and Washington, L.C. (2020). Introduction to Cryptography with Coding Theory. Pearson.

5 Singh, S. (2000). The Code Book: The Evolution of Secrecy from Ancient Egypt to Quantum cryptography. Anchor books.

6 Schneier, B. (2003). Beyond Fear: Thinking Sensible about Security in an Uncertain World. Copernicus Books.

7 Shepherd, C., Markantonakis, K., van Heijningen, N. et al. (2021). Physical fault injection and side-channel attacks on mobile
devices: a comprehensive analysis. Elsevier Computer & Security 111: 1-31.

8 Mangard, S., Oswald, E., and Popp, T. (2007). Power Analysis Attacks, Revealing the Secrets of Smart Cards. Springer.

9 NIST. Post-Quantum Cryptography. [Online]. Available from: https://csrc.nist.gov/projects/post-quantum-cryptography
(Cited 2023 April).

https://csrc.nist.gov/projects/post-quantum-cryptography

3

Mathematical Basics and Computation Algorithms for Cryptography

Cryptography is a discipline that requires a background in mathematics. All encryption, decryption, and signature algo-
rithms are based on notions and theorems known in number theory, modular arithmetic, and abstract algebra. Before we
start the presentation and analysis of cryptographic algorithms, we need to review basics from number theory and abstract
algebra. This chapter aims to review and present, with examples and exercises, the mathematical background to address
cryptography algorithms. Seminal theorems are given with the names of their authors. Proofs of theorems are not included
in this chapter and can be found in many books and papers on the topics [1-6].

To make attacks against cryptosystems computationally infeasible, numbers used in cryptographic algorithms are very
large (in magnitude of 2100 256 52048 etc.). Therefore, optimized (in term of execution time) computation methods are
needed. In addition to mathematical basics, algorithms commonly used to do fast computations in cryptographic algo-
rithms are addressed in this chapter. Finally, the birthday paradox is presented; it is useful for the analysis of attack
complexity.

According to the mathematics and computation algorithms skills of the reader, he/she may:

o Skip this chapter and address directly cryptographic algorithms.
e Learn basics, move to cryptographic algorithms, and return to this chapter to retrieve the needed facts and results.

e Learn the basics and theorems and deepen through the examples and exercises included, then move to cryptographic
algorithms.

3.1 Number Theory Notations, Definitions, and Theorems

Notations

N: set of natural numbers {0,1,2,3,...}

7Z: set of integers {...,—3,—2,—1,0,1,2,3,...}
D: set of decimal numbers

Q: set of rational numbers

R: set of real numbers

x| y: x divides y (or y is a multiple of x)
expl|exp2: expl such that exp2 holds

[x]: greatest integer less than or equal to x
[x]: least number greater than or equal to x
GCD(a,b: greatest common divider of a and b
LCM (a, b: least common multiplier of a and b
V: logical operator or

A: logical operator and

—: logical operator not

(Continued)

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Z. Mammeri.
© 2024 John Wiley & Sons Inc. Published 2024 by John Wiley & Sons Inc.

60| 3 Mathematical Basics and Computation Algorithms for Cryptography

Z,: set of positive integers less than n, i.e. Z;, ={0,1,2,...,n—1}

Z;: set of invertible elements of Z,, i.e. Z; ={a€eZ,| GCD(a,n)=1}
E,: finite field with p prime

F . finite field with power prime ™

F,:set of nonzero elements of a field, i.e. F; =F,- {0}

(g): group generated by generator g

F[x]: set of polynomials over the field F

Fpm [x]: set of polynomials of degree less than m with coefficients in Z,
E,.[x]: set of polynomials of degree less than m with coefficients in Z,
FE,.[x]/ f(x): field F,, under the reduction polynomial f (x)

3.1.1 Basic Terms and Facts of Number Theory

Definition 3.1 Greatest common divider: a positive integer cis the greatest common divider of two integers a and b if
D) (cla) A (clb)
i) Vc’l(c’la) A (c’lb):>(c’|c) A (czc’)

Example 3.1

GCD(15,100)=5 GCD(150,700) =50

Definition 3.2 Least common multiplier: a positive integer m is the least common multiple of two integers, a and b, if
D) (alm)A(bIm)
ii) Vm'l (alm’) A(blm’)é(mlm’)A(mgm’)

Example 3.2

LCM(15,100) = 300 LCM(lSO, 700) =2100

Definition 3.3 Prime: a prime is an integer greater than 1 that is not a product of two (or more) smaller integers.

Example 3.3
3,11,47,73,97, and 103 are primes.

Definition 3.4 Coprime or relatively prime: two positive integers a and b are coprime (also called relatively prime) if
GCD(a,b)=1.

Example 3.4 (12, 49) and (39, 32) are two pairs of coprimes.

Definition 3.5 Prime power: a prime power is an integer that can be expressed as p™, where p is a prime and m a positive
integer.

Example 3.5 22,2%,5%,101* are prime powers.

123,25% and 100 are not prime powers, because 12, 25, and 100 are not prime.

Definition 3.6 Integer factorization and composite number: every integer N > 2 can be written as a product of powers,
ie. N =p" *pl*.. . *pl, wherep,, p,,..., p, are distinct prime factors of N and n, n,, ..., n, are positive integers. For
every integer N, the factorization is unique (the order of the primes in the product does not matter). A number is said to be

composite if it has at least two factors.

3.1 Number Theory Notations, Definitions, and Theorems

Example 3.6

91476 = 2% 3% % 7% 11%.
2,3,7,and 9 are primes and are factors of the composite number 91476.

Definition 3.7 Euler’s totient function (or Euler’s phi function): for an integer N >1, the number of integers in the
interval [I,N} which are coprime to N is denoted go(N). is called Euler totient function (or Euler phi function).

Example 3.7 go(n) =7

— n=12: integers in range [1,12], which are relatively prime to 12, are 1, 5,7, and 11. Hence, ©(12) = 4.
- n=9: integers in range [1,9], which are relatively prime to 9, are 1,2, 4, 5,7, and 8. Hence, ©(9) =6.

- n=7:integers in range [1,7}, which are relatively prime to 7, are 1, 2, 3,4, 5, and 6. Thus, ¢(7) = 6.

Theorem 3.1 Euler totient function properties
LetN, a b, p, k, p;, pys .o D> Nys s ..., and ny be nonnegative integers.
i) If p is a prime, then ¢(p)=p—1.
ii) If GCD(a,b) =1, then p(ax*b) = p(a)*p(b).
iii) If N=pp*py> *...*p2and Vi, je (1,k) with i = j, p, = P and p, is prime Vi € (1, k), then
(N = (p} =P (5 =Py) (p =P).

Theorem 3.2 For integers a, b, cifalc and b | c and a and b are coprime, then ab | c.

Example 3.8 Leta=7,b=12,and ¢ =420; a and b are coprime. The following hold:

71420, because 420 is multiple of 7. 121420, because 420 is a multiple of 12.
(7*12)1420, because 420 is a multiple of 84.

3.1.2 Sets

Definition 3.8 Set:

i) Asetis a collection of elements.
ii) A finite set is a set that has a finite number of elements.

Example 3.9
S = {O, 1,2,3,4,5,6,7,8, 9} is a finite set composed of 10 integers.

S, = { —s—2,—1,0,1,2,3, } is an infinite set of negative and positive integers.

Definition 3.9 Order (or cardinality): the order, also referred to as cardinality, of a set S is the number of elements of S. It
is denoted |S| or ord(S).

Example 3.10

S, ={0,1,2,3,4,5,6,7,8,9} = ord(S,) = |5, = 10.

3.1.3 Modulo Operator and Equivalence Class

Definition 3.10 Congruence: let a, b, and n be three positive integers. a is congruent to b modulo n, which is denoted
a=b mod n, ifnl(a—>b). In other words,a=b mod n=3k € Zla=Db+ kn. In the congruence relationa=b mod n, n is
called the modulus and b the residue (or the remainder).

61

62

3 Mathematical Basics and Computation Algorithms for Cryptography

The congruence also is denoted a=b (mod n) The remainder b is such |b| < n. In the usual convention, b is the least
positive residue. Negative residue also can be used.

Example 3.11

17 =2 mod 5, which is the same as 17 = —3 mod 5.
17 =1 mod 8, which is the same as17 = —7 mod 8.

In general, computations in cryptography algorithms make use of least positive residues.

Definition 3.11 Congruence class (or residue class): the congruence class modulo n of an integer a € Z, such that |a| <n,
is the set of all integers x that have the same residue modulo n: {x € Z|x = a mod n}. An equivalence class is an infinite set.
All elements of an equivalence class mod n are equivalent, i.e. they are congruent to the same value mod n. Congruence class
of integer a modulo n is denoted a,,. It also is called residue class or simply residue of integer a.

Example 3.12

- Tg = { .,—17,-8,1,10,19, 28,37, } is the congruence class mod 9 associated with element 1.
-1317 = { ..,—21,—4,13,30,47, 64,81, } is the congruence class mod 17 associated with element 13.

3.1.4 Basic Properties of Modular Arithmetic
Leta, b, k, and n be integers. The following are properties of modular arithmetic:

i) Reflexivity:a =a mod n
ii) Symmetry: ifa =b mod n, then b=a mod n
iii) Transitivity: ifa =b mod n and b= c mod n, then a =c mod n
iv) Compatibility with translation: if a =b mod n, thena+k = (b + k) mod n
v) Compatibility by scaling: ifa =b mod n, thenk*a=k*b mod n
vi) Compatibility with exponentiation: if a = b mod n, then a* =b* mod n
vii) Ifa, = b, mod n, fori=1,2, ...,m, then:
o Compatibility with addition: >_}" , @, =>_" | b, mod n

o Compatibility with multiplication: [1}, a; =II", b, mod n

o Compatibility with subtraction: a;— a;= bj —b, mod n,1<i<m,1<j<m
viii) Compatibility with polynomial evaluation: If a = b mod n and p(x) is any polynomial, then p(a) = p(b)mod n.

The following lemma is very useful to reduce the amount of calculations. It is a direct consequence of property vii) above.

Lemma 3.1' Modular arithmetic exponentiation rule: if a, n, and k are positive integers, then:

a* mod n= (a mod n)k mod n.

Lemma 3.2% Let N be a product of primes n,, n,, ..., n,. If x=a mod n, then x=a mod n,for1 <i<k.

3.1.5 Z,: Integers Modulo n

The set of integers modulo n is denoted Z / n’Z, Z. / n, or simply Z, and is defined by: Z = {O, 12,...,n— 1}. 7., operations
(such as addition and multiplication) are defined modulo n.

Example 3.13

~ Z,={0,1}:100 mod 2 =4 mod 2=1000 mod 2=0
— Ly, = {0, L23, .., 11} :1mod 12 =13 mod 12 =25 mod 12 =1.7Z,, may be used to represent the set of hours of day).

3.1.6 Multiplicative Inverse

Definition 3.12 Modular multiplicative inverse®: let a Z,. The modular multiplicative inverse of a, if it exists, is an
element a™' €7, such thata*a™"' =1 mod p.

3.1 Number Theory Notations, Definitions, and Theorems

Example 3.14

~InZ,: 27" =5, because 25 =1 mod9
~1InZ,,;: 27" =12, because 212 = 1 mod 23

Definition 3.13 Invertible element: an element a € Z,,is said to be invertible if its multiplicative inverse exists in Z,.

Theorem 3.3 Existence of multiplicative inverse: an element a € Z, has a multiplicative inverse modulo n if and
only if GCD(a,n) =1G.

Definition 3.14 Z:: the multiplicative group of Z, denoted Z; is the set of invertible elements of Z,. Formally,
Z,={a€ Z,| GCD(a,n)=1}.

Lemma 3.3 Cardinality of 7. : ‘Z;‘ =¢(n).

Theorem 3.4 Euler’s theorem: ifac Z;, then a“a(") =1mod n.

Theorem 3.5 Fermat’s little theorem: if p is a prime and a is a positive integer coprime with p, then a? ' =1 mod p.

Fermat’s little theorem is a special case of Euler’s theorem. If p is a prime, by Euler’s totient function properties,
¢(p)=p-1.

| Note. Euler’s and Fermat’s little theorems are of prime importance to cryptography.

3.1.7 Modular Square Roots

Definition 3.15 Modular square root: a modular square root r of an integer a modulo n is an integer greater than 1 such
that: r* = a mod n.

Definition 3.16 Quadratic residue: an integer a is called quadratic residue of n, if there exists an integer r, such that
r? = a mod n. Otherwise, a is called a quadratic nonresidue.

Theorem 3.6 Modular square root: if a square r mod n exists, then there exists a second square root —r modulo n.

Example 3.15

— 51s a modular square root of 4 mod 7, because 52 =4 mod 7. Thus, —5, which is equal to 2 mod 7, also is a modular
square root of 4 mod 7, because 22 =4 mod7.

— 9is a modular square root of 3 mod 13, because 9* = 3 mod 13. Thus, —9, which is equal to 4 mod 13, also is a modular
square root of 3 mod13, because 4* = 3 mod 13.

3.1.7.1 Square Root of Primes

Let p be a prime. With the exception of integer 2, all primes are odd. Thus, pT_l is an integer, for p > 2. In addition, gp(p), the
Euler totient of p, is equal to p —1. Given two integers a and p, r* = a mod p may have a solution or not. Before trying to
find a square root, one must first check if a solution exists. Given below is the condition to square root existence.
Suppose r* = a mod p has a solution. Raising both sides to power pT’l results in:

p-1
By Euler-Fermat theorem (Theorem 3.5), P =1 mod p.-Hence,a 2 =1 mod p. Therefore, if r? =a mod p has asolution,
p-1
thena 2 =1 mod p.

63

64| 3 Mathematical Basics and Computation Algorithms for Cryptography

Theorem 3.7 Euler’s criterion: given two integers a and p, such that p >2 and a and p are coprime,
1

i) a 2 =1mod p, if there exists r such that r? =a mod p
1

ii) @ 2 =—1 mod p, if there does not exist r such that r* = a mod p.

Definition 3.17 Legendre symbol: let p be a prime greater than 2 and a an integer, Legendre symbol, denoted [g], is
defined by: p

0 if GCD(a,p)=1
[E] =:41 if ais quadratic residue
—1 if ais quadratic nonresidue

Example 3.16

2
=1, because 1° =1 mod 7 [;] =1, because 2° =1 mod 7
3 4 3
= —1, because 3° = 1 mod 7 [;} =1, because 4° =1 mod 7

=—1, because 5° = 1 mod 7 [g] =—1, because 6° = 1 mod 7

QN O Nlwm N w9 e

=0, because GCD<7,7) =1.

Pl
The Euler’s criterion tells us that 7* = a mod p has a solution if and only ifa 2 =1 mod p. However, it does not tell us
how to find the solution.

Example 3.17
— Does r? = 3 mod 13 have a solution?
13—1
Since3 2 =3°=1 mod13, there are two solutions to r* =3 mod 13.
— Does r* =31 mod 83 have a solution?
83-1
Since31 2 =31 =1 mod 83, there are two solutions to > = 31 mod 83.

Lemma 3.4°

. . . —1 * . . —1 . .
if p is a prime greater than 2, then pT elements of Z) are quadratic residues; and pT are quadratic nonresidues.

Example 3.18 Letp=7.

p—1
=7= ——=3.
P 2

Z,={1,2,3,4,5,6}.
Check using the Euler’s criterion (Theorem 3.7):

1*=1mod7 22 =1mod7 4*=1mod7
P =—1mod7 53=—1mod7 6°=—1mod7.

Hence, three (i.e. the half) elements in Z; are square residues and three are square nonresidues.
The Euler’s criterion is used to test if a solution exists. However, it does not tell us how to find the solution. Therefore,

we need to do some (not easy) work. Given a prime p, there are three® alternatives to address: p =2, p=1 mod 4, and
p=3mod 4.

3.1 Number Theory Notations, Definitions, and Theorems

i) Casep=2
In such a case,a =0 mod 2 or a=1 mod 2.
r=0,ifa=0mod2and r=1, ifa=1 mod 2.
ii) Case p=3 mod 4

Lemma 3.5” If p is a prime such that p =3 mod 4 and a is a quadratic residue of p, then a solution to r* = a mod p is

b+l

givenbyr=a 4 .

Example3.19 p=83anda=4
83-1

By the Euler’s criterion, 4 mod 83 has a solution, because 4T =1 mod 83.
83+1

The modular square roots of 4 mod 83 are +4 4 mod 83, i.e. + 81 and — 81.
Check: 81> = 4 mod 83. — 81 mod 83 = 2. Hence, 2> = 4 mod 83. Thus, 2 and 81 are square roots of 4 mod 83.

iii) Casep=1mod4
The hardest case to find a modular square root is that when p =1 mod 4. The most commonly used algorithm to find
square roots in such a case is Tonelli-Shanks algorithm, which is described in Section 3.3.5.1.

3.1.7.2 Square Roots for Multiple Primes

In case n is a product of k primes denoted n,, n,, ..., n, finding a square root to r* = a mod n requires much more effort.
The method to solve such a problem is based on two well-known algorithms, Tonelli-Shanks’s and Gauss’s algorithms,
which are presented in Sections 3.3.4 - 3.3.5.1.

3.1.8 List of Exercises and Problems

Exercise 3.1
Determine the integers, which are coprime with N, and then apply the Euler’s totient function ¢() to check the result.
Consider N =17, 42, 25.

Exercise 3.2
1) Find the additive and multiplicative inverses of 27 in Z
2) Find the Euler totient: @(101), @(102), and 99(500).

*

100°

Exercise 3.3

1) Find an integer x such that 3* =13 mod17.
2) Show that there does not exist an integer x such that 4* =5 mod31.
3) In general, how hard is it to find x | a* = b mod n with known integers a, b, and n?

Exercise 3.4
Apply Euler’s theorem (Theorem 3.4) to find modular inverses of integers from 1 to 8 in Z;.

Exercise 3.5
Use (if applicable) theorems of Euler and Fermat (Theorems 3.4 and 3.5) to find a~' mod n:

1) a=6,n=7

2)a=7,n=15

3) a=19, n=101. Hint: 19°° = 1 mod 101,19 =5 mod 101, and 19° = 84 mod 101
4) a =97, n=100. Hint: 97%° = 1 mod 100 and 97"° = 33 mod 100.

Exercise 3.6
Find x such that:
x=4"mod 17
9* =13 mod 17
5 =13 mod17
7* =11 mod 13

65

66

3 Mathematical Basics and Computation Algorithms for Cryptography
Problem 3.1
Prove Lemma 3.1.

Problem 3.2
Prove Lemma 3.2.

Problem 3.3
Prove Lemma 3.3.

Problem 3.4

1) Prove that if p is even, then any even integer has no multiplicative inverse in Z;.
2) Prove that the cardinality of Z;m is at most 2" .

Problem 3.5
Let p=11. Show that prl elements of Z; are square residues and pr1 are square nonresidues.

Problem 3.6
Prove Lemma 3.4.

Problem 3.7
Prove Lemma 3.5.

Problem 3.8
Let u be an element Z;. Prove that:

1) a= u(p*l)/2 is a square root of 1

2) u(p_l)/2 is1or—1.

Problem 3.9
Prove the following lemma:

Given two distinct primes p and q, p(pflmod q) + q(qilmod p) =pq+1.

3.2 Basic Algebraic Structures

3.2.1 Groups and Rings and Their Properties

3.2.1.1 Groups and Rings

Definition 3.18 Group: a group, denoted (G,0), is a set equipped with an operation o, which is usually the addition or the
multiplication modulo n, satisfying the following properties for all elements x, y, z € G:

i) Closeness: the group operation o is closed. Thatis:x oy =c,c€G

ii) Neutral element (also called identity): there exists an element e in G such thateox=xoe=x
iii) Inverse: for every x € G there exists x' € Gsuch thatx ox' =x'ox=e
iv) Associativity of operationo:x o(y 0z)=(xo0y)oz

Definition 3.19 Abelian group: a group G is said to be abelian (or commutative) ifx 0y =y 0x, ¥x € G, Vy €G.

Definition 3.20 Subgroup: H, a subset of a group G, is called a subgroup of G if H is a group with respect to the operation o
overG.

Definition 3.21 Additive and multiplicative groups: if a group G is equipped with the addition operation (+), it is called
additive group and denoted (G,+) and its neutral element is 0. If a group G is equipped with the multiplication operation (x),8
it is called multiplicative group and denoted (G,x) and its neutral element is 1.

3.2 Basic Algebraic Structures

Definition 3.22 Order of a group: the order of a group G, denoted |G|, is the number of elements in G. A group G is infinite
if |G| is infinite.

Example 3.20

— R (the set of real numbers) is a group under the addition operation as well as under the multiplication operation. Any
number x € R has an additive inverse (i.e. —x € R) and a multiplicative inverse (i.e. x ' € R).

— N (the set of positive integers) is neither a group under the addition operation nor a group under multiplication
operation, because additive inverses are negatives and multiplicative inverses of most integers are not integers.

-7, (the set of integers modulo p) is a group under the addition operation, but it is not a group under multiplication
operation, because some multiplicative inverses do not exist in Z , when p is not prime.

Definition 3.23 Order of element: the order of an element a € G, denoted ord(a), is the smallest positive integer k such that
a*=ao0ao...0a=e wheree is the neutral element of G. If no such k exists, the element a is said to have an infinite order.

Theorem 3.8

Let G denote a group (Z p,*) and a € G. If a* =1 mod p, then a™* =1mod p for any positive integers m and k.

Theorem 3.8 is very useful to compute modular exponentiation. For example, one can immediately find that 2° = 64 =1 mod 9.
However, finding 2666666666666 154 9 is more complex without using Theorem 3.8. Indeed, since the exponent is a multiple of 6 and
2° mod 9 is known, by the previous theorem, one can easily find that 200066666666666 4,54 9 — 1,

Example 3.21

— Let (Z,,+) denote the group over the set {O, 1,2,3,4,5, 6} equipped with the addition operation. (Z,,+) is a finite group.
Its cardinality is |Z7| =7. The order of element 4 is 3, because 4 x4 x4 =1 mod 7.

— Let S denote the set {1, 2,3,4,5, 6,7,8}. Let us check if S is a finite group under the multiplication operation. We have to
check if all elements have inverses:

1+¥1=1mod9 2x5=1 mod9 4%x7=1mod9
5#2=1mod 9 7x4=1mod9 8x8=1mod9

Elements 3 and 6 have no multiplicative inverses. Therefore, the set S is not a finite group under the multiplication oper-
ation, while §' = {1, 2,4,5,7, 8} is.
- LetG= {1, 2,4,5,7, 8} be a finite group under the multiplication operation. We check if all element orders are finite:

ord(1)=1, because1*1 =1 mod9

ord(2) =6, because 222+ 2% 2+2=1 mod 9
ord(4) =3, because 4 x4 x4 =1 mod9

ord(5) =6, because 5x5*5%5%x5%x5=1 mod 9
ord(7)=3,because 777 =1 mod 9

ord(8) =2, because 8 *8 =1 mod 9

Therefore, all the elements of the group have an order less or equal to 6, which is the order of the group.

Definition 3.24 Ring: a ring, denoted (R, +, X), is a set R equipped with two operations, addition and multiplication, satisfying
the following properties:

i) <R,+> is an abelian group

ii) Associativity of operation x:ax(bxc)=(axb)xc
iii) Distributivity:ax(b+c)=(axb)+(axc) and(b+c)xa=(bxa)+(cxa)
iv) Multiplicative identity: there exists an element1 € Rlax1=1xa=a.

Definition 3.25 Commutative ring: a commutative ring, denoted (R, +, X), is a ring satisfying the following property:
Commutativity of operation Xx: axb=>bxa, foralla,b € R.

67

68

3 Mathematical Basics and Computation Algorithms for Cryptography

3.2.1.2 Cyclic Groups

Definition 3.26 Cyclic group: a cyclic group is a finite group that is generated by a single element g, called generator (or
primitive element) of the group.

Properties of elements of a cyclic group
Let g be a generator of a cyclic group G with elements in Z, Each element a € G can be written:

i) asamultiple of g in (Z,,+) group:
Vanp, Jk,(keN) |l k*g=a mod p
Alternatively, we can write:
G={a=k*gmod p,0 <k <¢(p)~1)}={0,8 2838 (»(p)~1g|
ii) asapowerof g €(Z p,*) group, i.e. with the multiplication operation:
Van;EI k,(keN) | gk =a mod p
Alternatively, we can write:
G= {gk =a mod p,0 <k <p(p)— 1)} = {1,g, g, g“’(")’l}

Property of a generator of a multiplicative group

If p is a prime and g is a prime and a generator of the group Z;, then g ' =1 mod p. Such a property is a result of Fermat’s
little theorem.

Definition 3.27 Primitive root modulo n: a number « is called primitive root modulo n, if every number coprime to n is
congruent to a power of « modulo n. Formally, « is a primitive root if for any integer a such that GCD(a,n) =1, there exists
an integer k such that o = a mod n.

Theorem 3.9 Primitive root conditions and properties:

i) Primitive root mod n exists only
o ifnis2or4
e orifn = p*, with p a prime >3 and k a positive integer > 1
e orif n=2p*, with p a prime >3 and k a positive integer > 1.
ii) Given an integer n, if primitive roots mod n exist, then the number of primitive roots mod n is equal to ¢ (p(n)).
iii) If o is a primitive root mod n, then the smallest k such that o* =1 mod nis equal to (n).

Theorem 3.10 For every prime p, Z; is an abelian finite cyclic group under the multiplication operation.

Properties of cyclic group (Z;,*)

i) If g is a generator of a cyclic group G, then the order of g is equal to the cardinality of group G. Formally: ord(g) = |G|
ii) For any elementa in a cyclic group G: a‘G‘ =1 mod p.
iii) Any generator of a cyclic group G = Z;,* is a primitive root mod p.
iv) For any element a € G, the set of powers of a forms a group H, which is a subgroup of G:
H={b=d,0<i<ord(a)-1}={lLa, d’,.., a”"}.
v) For any element a in a cyclic group G: ord(a) divides|G| .
vi) Every cyclic group is an abelian group.
vii) Every finitely generated abelian group is a direct product of cyclic groups. The direct product is an operation that
takes two groups G, and G, and constructs a new group G, such that G =G, x G,.
viii) Every cyclic group of prime order is a group, which cannot be broken down into smaller groups. Cyclic groups of
prime order (also called elementary groups) are the building blocks from which all groups can be built.

Theorem 3.11 Lagrange’s theorem:

If G is a finite group and H is a subgroup of G, |H | divides ’G‘

3.2 Basic Algebraic Structures

Corollary 3.1 Va € G, ord(a) divides|G|
Corollary 3.2 If |G| is prime, then Ya G, a=e, ord(a)=G|.

Example 3.22
— Let G =(Z,,,+) be a cyclic group. Elements of G are {O, 1,2,3,4,5,6,7,8,9, 10}. Element 5 is a generator of Z,,, because:
0*5=0mod 11 9*5=1mod 11 7*5=2 mod 11
5*5=3mod 11 3*5=4mod 11 5*1=5 mod 11
10*5=6 mod11 8*5=7 mod 11 6*5=8 mod 11
4*5=9 mod 11 2*5=10 mod 11

— LetG=(Z;,*) be a cyclic group. Elements of G are {1, 2,3,4,5,6,7,8,9, 10}. Element 2 is a generator of G, since all its
elements are generated as follows:
2°=1mod11 2'=2 mod 11 2*=3 mod 11
2’=4mod11 2*=5 mod 11 2°=6 mod 11
2’=7 mod 11 2°=8 mod 11 2°=9 mod 11
2° =10 mod 11

— Let G = (Z;,,*) be a cyclic group. Let us check if the orders of all elements of Z;, divide‘Z;‘, which is equal to10:

ord 1) =1, becausel' =1 mod 11 ord(z) 10, because2'* =1 mod 11
3) 5, because3’ =1 mod 11 ord(4) 5, because:4° =1 mod 11
) 5, because5® =1 mod 11 ord(6) 10, because6™ =1 mod 11
7)=10, because7'* =1 mod 11 ord(8)=10, because8'’ =1 mod 11
ord(9)=5, because9’ =1 mod 11 ord(10)=2, because10’ =1 mod 11

Hence, the orders of the elements of Z;, are all dividers of ’ZH It should be noticed that the elements 2, 6,7, and 8 have
an order of 10 (which is equal to ‘ZH‘) So, they are all generators of Z; .

3.2.2 Fields

Definition 3.28 Field: a field F is a set of elements’ together with two operations, Addition (+) and Multiplication (x), satis-
fying the following properties:

i) (F,+) is an abelian group with a neutral element denoted 0 such that a+b=b+a anda+0=a, Va, Ybe F.
ii) (F— {0} X) is a commutative group under the multlpllcatlon operation with an identity element1:axb=>bxa and
axl=a, Va,VbeF.F — {0} is often denoted F".
iii) Associativity:(a+b)+c=a+(b+c),(axb)xc=ax(bxc), Va, Vb, Vc € F.
iv) Distributivity: ax(b+c)=axb+axc, for a,b,c € F.
v) Every nonzero element a € F has a multiplicative inversea ' € Flaxa ' =1.

In other words, a commutative ring where all nonzero elements have multiplicative inverses is a field.

3.2.2.1 Prime Finite Fields

Definition 3.29 Finite field: a finite field F,, also called Galois field and denoted GF(p), is a field with a finite number of
elements p. It is a set with two operations, addition (+) and multiplication (x), which are both commutative and associative.

Notations:
Finite field with prime p is denoted F, F(p), or GF(p).
Finite field with prime power p™ is denoted F o F(p), or GF(p™).
F" is the set of nonzero elements of finite F (1 e.F ' =F— {0})

69

70 | 3 Mathematical Basics and Computation Algorithms for Cryptography

Theorem 3.12 Finite field: a field F,is finite if and only if p is prime or a prime power.

Theorem 3.13 If F, is finite field, then the group F,’ is cyclic.

Definition 3.30 Prime field: any field F,, also denoted’® 7, pWith prime p, is unique and called prime field.

Operations over prime finite fields
Leta, b, ¢, and h be elements of Fp.

e Addition and subtraction modulo p
-a+b=cmodp
- a—b mod p=a+(—b) mod p=d: subtraction is defined as an addition of the negative of b
e Multiplication: a xb=h mod p
e Division: {: mod p 2 axb " mod p, where b™' is the inverse of b. Division is defined as a multiplication by the inverse.

Theorem 3.14 Multiplicative inverse property in prime fields: let a be an element of a prime field F,and g a gen-
erator of F. Element a and its multiplicative inverse ale F, are linked by the following property:

a€F,a=0,3ieN,0<i<p-2lg'=amodp andg’ " =a " mod p

| Note. Theorem 3.14 is very useful to quickly compute multiplicative inverses.

Example 3.23

—3—-5mod7=3+2=5, because —5=2 mod 7
- % mod 7 =3x(5') =2, because 3 is the multiplicative inverse of 5 mod 7.

Example 3.24 7., under the usual addition and multiplication operations + and * is a finite field, because:
— The number of elements of Z is finite.

- (Z,,+) and (Z;,*) are commutative groups.

— Each nonzero element of Z, has its multiplicative inverse in Z.. Below is the table of computations for Z:

o v A W N R O
o v A W N R O
S o A W N
== LY, B NIV N
N 2 O O Bt AW
w N = O O un A
A W N = O O W
A W N R O O
SN Bk W N = O
o O O o o o ©
A »n kA W N = O
w W = ok N O
A H U N O W O
w o N o= O
N R OB W W O
= N W A U oy O
< N, T N VU SR
= N W ks U1 O O
[« N VS I SRV

Example 3.25

— Zy 0> With the usual addition and multiplication operations + and *, is not a finite field, because some elements (i.e. even
elements and multiples of 5) have no multiplicative inverse mod 100. Recall that the multiplicative inverse of a € Z,
exists only if GCD(a, p) =1.

3.2 Basic Algebraic Structures

— Zg, with the usual addition and multiplication operations + and * is not a finite field, because even elements (i.e. 2,4,
and 6) have no multiplicative inverse mod 8. However, Z, can be written as F,, and by Theorem 3.12, Z; should be a
field. To make Z, a field, we need to redefine addition and multiplication (see Section 3.2.3).

Example 3.26 Elements of the field F,, are {O, 1,2,3,...,21, 22} . Element 5 is a generator of F2*3, since its powers give all

the elements of F,,, as follows:

5 =1mod 23 5'=5mod23 5°=2mod23 5° =10 mod 23
5*=4mod23 5 =20mod23 5°=8mod23 57 =17 mod 23
58=16mod 23 5= 11mod23 5°=9mod23 5" =22mod?23
52=18 mod 23 5% =21mod 23 5 =13 mod 23 5 =19 mod 23
5%=3mod 23 57 =15mod 23 5 =6 mod23 5 =7mod 23
5°=12mod 23 5*=14 mod 23 5** =1 mod 23

Example of inverse calculation based on the generator of F,:
6" =4 mod 23, since 6*4 =1 mod 23. Since 5 is a generator of F,; and 5'* = 6 mod23,6 ' =571 =5% =4.

Properties of prime fields

i) The set of elements of field F, is {0, 1,2,...,p— 1} .

ii) The order of field F,, with prime p, is the number of the elements in the field and it is denoted |Fp| and it is equal to p.
iii) Adding p copies of any element of F, results in zero, i.e. foranya € Z , p*a =0 mod p.

iv) Every nonzero element in F, has a multiplicative inverse in F,,.

V) F,—0, denoted Fp* , is a cyclic group of order p —1.

3.2.3 Extension Fields Fpm

Definition 3.31 Extension field: a field F is said to be an extension of a field E, if E is a subfield of F. That is denoted
F | E or F over E. An extension field also is called extended field.

Definition 3.32 Characteristic of extension field: if E, is an extension of field F,,, it has a characteristic of p. That is,
adding p copies of any elements of Fpm results in adding the neutral element 0.

Example 3.27
— R, the set of real numbers, is an extension of QQ, the set of rational numbers, and Q is an extension of 7Z, the set of
integers.

-F,= {0, 1,2,3,4, 5,6,7} is an extension field of Z,. It has a characteristic of 2. Hence, Va € F.,a+a=0, because
addition is done modulo 2.

-F.= {0, 1,2,3,4, 5,6,7,8} is an extension field of Z,. It has a characteristic of 3. Hence,Va € F,,a+a+a=0, because
addition is done modulo3.

To do operations on elements of extension fields Fpm , we need to represent them as polynomials. That is, any element of
an extension field is a polynomial with coefficients in a subfield E,.

3.2.3.1 Basics of Modular Polynomial Arithmetic

Definition 3.33 Polynomial: a polynomial P(x) of degree d is an expression of the form P(x)=c (le‘i’1 +c dfzxd’2 +o
clx1 +c¢y, wherec;,i=0,1, ...,d —1 are called coefficients and are elements of some field F . x is called the unknown.

71

72

3 Mathematical Basics and Computation Algorithms for Cryptography

Example 3.28
Let A(x)=x>+x*>+x+1and B(x)=x*+1.
- Computations over Z :
A(X)+B(x)=x>4+2x" +x+2
AX)*B(x)=x"+ x* +2x + 2x? + x +1
- Computations over Z,:
A(x)—B(x)=x>+x
AX)*B(x)=x"+ x* +x+1

Notation:
G[x] denotes the set of polynomials over the group G.

Definition 3.34 Polynomial congruence: let A(x), P(x), and R(x) be polynomials with coefficients in some field F .
A(x) is said to be congruent to R(x) modulo P(x), if P(x) divides A(x) — R(x). The congruence relation is denoted
A(x) = R(x) mod P(x).

Example 3.29
- (x* +1) =7 mod (x +1) in Z, x|
Since (x+1D)*(x+1)=x>+2x+1, (x* +1)=0mod (x +1)
- (x> +1)=?mod (x +1) in Z, x|
Since (x—1)*(x+1)+2=x*+1, (x* +1) = 2mod (x +1)
— (11X + x+7)=(?) mod (x* +2x +9) in L, [x]
(X 4+2x4+9)x(x+9)=x> +11x> +27x + 81
=x>+11x* + x4+ 7+ (26x +74)
Hence, (x* 4+ 11x% + x +7) = —(26x + 74) mod (x* + 2x +9)
- (> +11x* +x+7)= (V) mod (x* +2x+9) in Z,, {x]
InZ,,, —(26x+74)=—(2*13x +5*13+9)=—9 mod13 =4
Hence, (x* 4+ 11x% + x +7) = 4 mod (x* +2x +9)
Properties of polynomial congruence
Let A(x),B(x),C(x), A;(x), B,(X), ..., A.(x), B,(x) ,and P(x) be polynomials and k a positive integer. The following prop-
erties hold:
i) A(x)= A(x)mod P(x)
ii) If A(x)= B(x)mod P(x), then B(x) = A(x)mod P(x)
iii) If A(x)= B(x)mod P(x) and B(x) = C(x)mod P(x), then A(x)= C(x) mod P(x)
iv) If A(x)= A, (x)mod P(x) and B(x) = B,(x) mod P(x), then
A(x)+ B(x) = (A, (x) + B,(x)) mod P(x) and
A(x)* B(x) = (A, (x)*B,(x)) mod P(x)
v) If A,(x)=B,(x)mod P(x), fori=1,2, ...k, then
£ AM=X"" B(x)mod P(x)
15, A(x)=TIL, B,(x) mod P(x)
Aj(x) - A= Bj(x) —B,(x)mod P(x),1<i<k,1<j<k

Definition 3.35 Polynomial root: a € Z,,is a root of polynomial f (x), if f(a) = 0. Therefore, if a is a root of f(x), there
exists a polynomial g(x) of degree less than that of f(x), such that f(x)=(x—a)* g(x).

Definition 3.36 Irreducible polynomial: a polynomial f(x) is said to be irreducible in Z, if it does not factor as a product
of two or more polynomials with coefficients in Z, each of degree less than that of f(x).

3.2 Basic Algebraic Structures

In other words, an irreducible polynomial over Z, has no root in Z,. Irreducible polynomials are counterpart of primes:
irreducible polynomials cannot be expressed as a product of two other polynomials like primes cannot be factorized.
Therefore, irreducible polynomials are used as polynomial moduli to construct finite fields.

Theorem 3.15 Irreducibility conditions: let f(x)be a polynomial over Z,,. Then,

i) if f(x)hasaroota e Zp, then f(x) is reducible over Zp.
if) if f(x)has no roots and its degree is 2 or 3, then it is irreducible.

In general, if a polynomial has no root, it does not necessarily mean that it is irreducible. For example, in Z., x*4+2x* +1can
be written as a product (x* +1)(x* 4+ 1). Therefore, it is reducible, but it has no roots in Z., because (x* +1) has no roots in y/m

Example 3.30

— Reducible polynomial over F,: P(x) = x> +1.
Since P(1)=0,1 is a root; and P(x) can be written as a product, i.e. x* +1 = (x —1)(x —1).

— Reducible polynomial over F;:
P(x)=x*+2x> +3x+1.
Since P(3) =145=0 mod5, 3 is a root; and P(x) can be written as a product, i.e.
(x=3)(x*+3)=(x+2)(x* +3)=x* +2x> +3x+ 6= x* +2x° +3x+1.

— Irreducible polynomials over F,
P(x)=x*+x+1: P(0)=1 and P(1) = 1. Thus, P(x) has no root over F,. Hence, by Theorem 3.14, P(x) is irreducible.
P(x) = x* 4 x +1: check if there exist two polynomials Q(x) and R(x) of degree less than 4 such that P(x) = Q(x) % R(x):
candidate polynomials for Q(x) and R(x) are: x +1,x* +1,x* + x +1,x* +1, x> + x + 1, and x* + x* + x + 1. No product
of a pair of candidate polynomials results in P(x). Therefore, the latter is irreducible.

3.2.3.2 Representation of Finite Fields as Polynomials
The general representation of elements of a field F ., with prime p, is a polynomial basis representation, in which a distinct
polynomial of degree less than m is associated with each element of the field F ,. That is, each element a € Fpm has a
unique polynomial A(x) with degree less than m. For example, a=2€ F,, and b=13 € F},, are represented by A(x)=x
and B(x) = x* + x* + 1, respectively, because 2 = 2! and 13 = 2* + 2% +2°.

Let Fpm [x} denote the set of polynomials of degree less than m with coefficients in F,.

Theorem 3.16 Let f(x)be an irreducible polynomial of degree m with coefficients in F, Fpm [x} / f(x) is a finite field
of order p™.
p

Note. Fpm [x] / f(x) denotes the set of polynomials yielded by operations modulo f(x) on polynomials in the set Fpm [x}
Addition of two polynomials is done by usual polynomial addition with modulo p on the coefficients. Multiplication of
two polynomials is performed with modulo f(x) on the usual product of two polynomials.

Definition 3.37 Reduction polynomial: the irreducible polynomial f(x)used to reduce the product of polynomials in
Fpm {x] is called reduction polynomial.

Theorem 3.17 Uniqueness of finite fields:

for every prime power p™, there exists a unique finite field of order p".

Theorem 3.18 Existence of reduction polynomial:

for prime power p”, there exists at least one irreducible polynomial of degree m over Fp-

Example 3.31
- F,= {O, 1,2,3,4,5,6, 7} is represented by the set of polynomials F, {x] = {O, Lx,x+1 x% x2+1, x> +x, x> +x+ 1}.
With the reduction polynomial f(x) = x> + x +1 over F,, examples of operations are:
P +x)+xD)+Q)=x+1
(x* +1)(x 4+ 1) mod f(x) = (x* + x* + x +1) mod f(x) = x>

73

74 | 3 Mathematical Basics and Computation Algorithms for Cryptography

° F32 = {O, 1,2,3,4,5,6,7, 8} is represented by the set of polynomials F32 [x] = {0, L,2,x,x+1,x+2,2x,2x+1,2x + 2}.
With the reduction polynomial f(x) = x* +1 over F,, examples of operations are:
(x+2)+(x+2)=2x+1
(x +2)(2x +2) mod f(x) = (2x* + 6x +4) mod f(x) = 2.

3.2.3.3 Construction of Finite Fields as Polynomials

Definition 3.38 Primitive polynomial: f(x), a polynomial of degree m, irreducible in F, [x], and with coefficients in F,, is

said to be primitive polynomial if it has a root o« € F_,, such that {0, Lasatal. o } is the entire field Fpm. In other words,
a root of a primitive polynomial is a field generator.

Example 3.32 Below is a non-comprehensive list of primitive polynomials with degree up to 32.

Degree Polynomial Degree Polynomial

2 X2 4Ex+1 13 AP X xd g1
3 ¥ 4x*+1 14 x4t xS x 41
4 ¥ x4 15 P+ xt +1

5 X +x 41 16 X+ x 4 x" +xr+1
6 x4+ x° 41 17 x7+x% 41

7 x+x8+1 18 x4

8 x4+ 1 +xt 41 19 x4 1
9 x+x° 41 20 ¥ +x'7+1

10 x0+x" 41 30 x4 xP i x41
11 x4 31 x4

12 x?4x0 41 32 x4 xP4x+x+1

Theorem 3.19 Properties of primitive polynomials: let f(x)be a primitive polynomial of degree m, with coefficients in E,

i) Ifae Fpm is a root of f(x), then all the roots of f(x) are given by elements a, ap,apz, .,af
ii) f(x)divides x* —1 for k = p” —1 and for no smaller positive integer k.

The consequence of Theorem 3.19 is that given a root «v of a primitive polynomial f(x) of degree m and with coefficients in
F,, we can generate all elements of the extension field Fpm as powers of @ modulo f(x).

Example 3.33 Let f(x)=x’+x +1 be a primitive polynomial over Fz{x]. According to Theorem 3.19, f(x) has three
roots a,a?, and a* in E,; [x} By definition of a root, if o is a root of f(x), then f(a)=a’+a+1=0in F, [x]/f(x) .
Let us show that if & = 2 is a root, then o* and o* are roots, too.
Since operations in extension fields are done modulo the reduction polynomial f(x), x> + x +1= 0 mod f(x).
Since o = x, f(a?) =(x*)’ +x* +1= x® +x*> +1=0 mod f(x). Hence, o’ is a root to f(x).
fleH)=(*) +a* +1.
Sincea = x, f(a*) = (x*)* + x* +1=x" + x* +1 =0 mod f(x). Hence, o isaroot to f(x). Notice that: x* = x* + x mod f(x).
Polynomials x, x?%, and x* + x represent elements 2, 4, and 6 in E,, respectively.
Let us check the roots above:
f(2)=2* +2+1=11Iis represented by polynomial x* + x + 1. Since, x* + x +1= 0 mod f(x), f(2) =0.
f(4)=4> + 4 +1 is represented by polynomial x® + x* 4 1. Since, x® + x* +1= 0 mod f(x), f(4)=0
f(6)=6>+6+1 is represented by polynomial (x*+x)*+(x*+x)+1=x°+x"+x*+x*+x*+x+1. Since
X4+ +x°+ x> +x+1=0 mod f(x), f(6)=0.

Definition 3.39 Polynomial basis: given a polynomial f(x) of degree m and irreducible in F, and « a root of f(x) and «

a primitive element in F,,, the set of polynomials {1, al,...,a™2,a™ ' is called polynomial basis of Fp.

3.2 Basic Algebraic Structures

Theorem 3.20 Any element a € Fpm can be expressed as a linear combination of elements of the polynomial basis.
Thatis,a=a, ,a" ' +a, ,a" %+ -+ aa+a,witha, €F,foro<i<m-1.

Alternatively, a € Fpm can be expressed as a power of f(x) root. That is,

Vae Fpm ,JkeN,0<k< p"—21a=a mod f(x). Therefore, Fpm = {0, Lal,...,am,..., « Pm—z}

Lemma 3.6': It is not true that a root . of any polynomial f(x) of degree m, irreducible over F,, can generate all ele-
ments of field Fpm.

Example 3.34 Let us consider the extension field F,, under the irreducible polynomial f(x) = x* + x +1 and check that
{1, a,az} is a polynomial basis to F,..

The eight elements of the binary field F,: over F,, in polynomial and binary representations, are as follows:
0 (000) 1 (001) x (010) x+1 (011)
x* (100) x*+1 (101) x*+x (110) x*4x+1 (111)

Sinceaisarootoff(x),a3+a +1=0= a*=—a-1= a+1.

The powers, till 22 -2 of give:

a’=1 al=a a?=a? ad=a+1
at=ala+D)=a’+ «a =al®*+a)=a’+a+1
a’=a@*+a+1)=a’+1

Hence, F; can be written in three forms:

Fsz:{o, L 2 3 4, 5, 6, 7 }

0o 1 3 2 6 4 5
:{O,a,a,a, a’, a, a’, a }

:{0, L, o a4+l 042, a2+l, a2+a, a2+a+1}

To see polynomials in unknown x, we have just to replace a by x. Since « can generate all nonzero elements of F,;,
1, a,o?! isa polynomial basis.

3.2.4 Extension Fields

First of all, it is worth noticing that in cryptography, F,, fields are often used. In computers, data is represented as bit strings
spanning one or multiple words. For example, a positive integer may be represented as a 64-bits word. Hence, it is of
interest to consider fields built over binary set {0, 1}.

In Example 3.25, it is shown that Z . is not a finite field under the usual addition and multiplication operations mod8. In
general, Z,, is not a field under the usual addition and multiplication operations, because even numbers have no
multiplicative inverses mod 2™. Thus, there exist two alternatives: i) use only Z,, with prime p or ii) redefine the addition
and multiplication operations to make F,, a finite field for any positive integer m. It is worth noticing that computations
are faster in F,, than in Z . For example, F,, uses the XOR bitwise operation, while Z , makes use of addition mod m.

3.2.4.1 Special Case: F,
F, field is the smallest field. The set of elements of field F, is {0,1}.
Addition operation: 0+0=0,14+0=1, 0+1=1, 1+1=0. Therefore, the addition operation in F, is the binary XOR
operation (denoted).
Multiplication operation: 00 =0,1+0=0,0%1=0,1x1=1. Therefore, the multiplication operation in F, is the binary
AND operation (denoted A).
Additive inverse:1-+1=0. Thus, 1 is the additive inverse of 1; and 0 + 0 = 0; so, 0 is the additive inverse of 0.
Multiplicative inverse: 1*1 =1. Thus, 1 is the multiplicative inverse of 1. 0 has no multiplicative inverse.

75

76

3 Mathematical Basics and Computation Algorithms for Cryptography

3.2.4.2 Representation and Construction of F,, Fields

Definition 3.40 Binary polynomial: a binary polynomial is a polynomial over E,, i.e. with coefficients in {0,1}.

Definition 3.41 Binary field: a field of the form F,, is called binary field and it has exactly 2™ elements, which are usually
represented as m-bit strings (a,, ,q ..a,a,) ranging from (000...000) to (111...111).

m—2"°
Each element a € F,, is commonly represented as an m-bit string (a,,_,a, _,...a,a,) and a polynomial
A(x)=(a,_x""+ a, X"+ +ax' +a,)€F, [x] is associated with it.
F,, [x] denotes the set of F,, polynomials defined by:
F

[x]= {amflx’"*1 +a, X"t tax + ao}, whereq, , . €{0,1}.

Definition 3.42 Polynomial basis of F,..: the set of polynomials {xmfl, X" .,xl,l} forms a basis to the field E,,..

Corollary 3.3 Existence of binary reduction polynomial: for every field F,,,, there exists at least one polynomial of degree
m irreducible over F,.

Corollary 3.3 is a consequence of Theorem 3.18.

Operations over field F,,
Leta, b, and c be elements in F,, and their respective polynomials:
AX)=a, X" +a, x"7 4+ +ax' +ay;Ax)€F,[x]|

B(x)=b,,_x"" +b, ,x"?+-+bx'+by; B(x)€F,,[x]

CX) =, X" ¢, X" 2+ dox! +¢; C(x) € Flx]
o Addition: A(x)+ B(x) = C(x), where ¢, = (a, + b)) mod2= a, ® b,
e Subtraction: A(x) — B(x) = C(x), where ¢, = (a, +b,) mod 2= a, & b,. Subtraction is the same as addition over F,.
e Multiplication: A(x)* B(x)=R(x)= mflxm’1 +r

m
product A(x)x* B(x) divided by the reduction polynomial f(x).
e Multiplicative inverse: ifa € F,, (a is a nonzero element), then the multiplicative inverse of a is denoted a1, such that:

A(x)* A" (x) =1 mod f(x), where A '(x) = (1r,171)c"171 + dmfzxmf2 +e dlx1 +d, is a polynomial in F,, [x}

72xm’2+ ...+r1x1 +1,; R(x) is the remainder of the polynomial

3.2.4.3 Generator of Field F,,
By definition 3.38, a primitive polynomial of an extension field E,., is of degree m, with coefficients in F,, and irreducible in F, [x}

Definition 3.43 Field generator or primitive element: given a field F,, and a primitive polynomial f(x) of degree m,
an element g € F,, is called generator (or primitive element) of F,,, if and only if g is a root of f(x) in F,, and every nonzero
element of F,, can be uniquely written as a power of g.

Theorem 3.21 Multiplicative inverse property in field F,.:

let a and & be elements of E,, and A(x) and G(x) their respective polynomials and § be a generator of F,. .a andits
multiplicative inverse a ' € F,, are linked by the following property:

acF,,a=0,3ieN,(0<i<2™—2) | (G(x))'=A(x)mod f(x)

oms

and (G(x))* ! = A7 (x) mod f(x).

Theorem 3.22 Generator property in field F,,.:
if g is a generator of field F,,, then, (G(x)* ' =1 mod fx).

Lemma 3.7 Property of primitive polynomial in F ,: if f(x) is a primitive polynomial of degree m, with coefficients in
F,, and a root in F,,,, then f(x) divides x* ~* +1.

The two theorems above are very useful to quickly calculate multiplicative inverses and exponentiation with large
exponents.

3.2 Basic Algebraic Structures

Theorem 3.23 Number of generators of F,, field: The number of primitive elements (or generators) of field F,, is
p2" -1).

Theorem 3.24 Given a positive integer m, if 2™ —1 is prime, then any element of F,,, with the exception of elements
0 and 1, is a generator of F,,..

Corollary 3.4 By Theorems 3.22 and 3.24, if 2" — 1 is prime, then the square root of any element x € F,,, isvx = .
Example 3.35 Verification of Lemma 3.7 with an example.

P(x) = x* 4 x* +1 s a primitive polynomial in E,.

P 1= 0 D)+ + X+ x + D+ x +1)(x% +x +1)(1+ x) over F,. Therefore, x* + x* + 1 divides x° +1.

Example 3.36 The eight elements of the binary field F,. over F, are as follows in polynomial and binary representations:
0 (000) 1 (oo1) x (010) x+1 (011)
x* (100) x*+1 (101) x*+x (110) x*4+x+1 (111)

2* —1is prime. Therefore, by Theorem 3.23, F,: has six generators, which are 2,3,4,5,6,7.
Let f(x) = X’ + x 41, which is an irreducible polynomial, be the reduction polynomial for field F,.

— Example of addition over F,: (111) + (100) = (011)
In polynomial form over F,, [x} O Fx+D)+ ()= x+1

— Example of multiplication over F,; : (100) x(011) = (111) explained as follows:
() *(x+1) mod f(x)= (x> +x*) mod (x*+x+1)=x*+x+1

— One of the generators of F, is the element 6, which can be checked as follows:
Generator 6 is represented by polynomial x* 4 x

(x* +x)"mod (x* + x +1) = 1, which represents element 1
(x* +x) ' mod (x* + x +1) = x* 4+ x, which represents element 6
(x* +x)*mod (x* + x +1) = x, which represents element 2
(x* +x)*mod (x* + x +1) = x> + x + 1, which represents element 7
(x* +x)*mod (x* + x +1) = x*, which represents element 4
(x* +x)’mod (x* + x +1) = x* + 1, which represents element 5
(x* + x)°mod (x* + x 4+ 1) = x 4 1, which represents element 3
(x* +x)"mod (x* + x +1) = 1, which represents element 1
Therefore, all nonzero elements of F,. are powers of 6 mod (x® + x +1).
— Example of inverse calculation: calculate 37"
Calculation without Theorem 3.21: one has to find a polynomial Q(x) of degree less than 3 such
that: (x 4+ 1) * Q(x) mod (x* + x +1) =1. Q(x) = x* + x is the appropriate polynomial to fulfill the previous condition.
Q(x) represents the bit string (110). Thus, the inverse of 3 in F, is6.
Calculation using Theorem 3.21 under generator g = 6: Element 3 is generated by g power 6. Hence, by Theorem 3.21,
37'is given as follows:
(x* + x)zz’ﬁ’lmod (P +x+1D)=x*+x

Since x? + x is the polynomial associated with the element 6, the inverse of 3 in F23 is 6.

Example 3.37 The 16 elements of the binary field F,. over F, are as follows in polynomial and binary representations:

0 (0000) x*+1 (0101) x*+x (1010
1 (0001) x*+x (0110) x*+x+1 (1011)
x (0010) x*4x+1 (0111) x*+x* (1100)
x+1 (oo11) x* (1000) x*+x*+1 (1101)
x> (0100) 41 (1001) x*+x*+x (1110)
4 x*+x+1 (1111)

77

78

3 Mathematical Basics and Computation Algorithms for Cryptography

By Theorem 3.1, (16 —1) = (5) * ¢(3) = 4 *2 = 8. By theorem 3.23, F,. has (16 —1) =8 generators.
Let f(x) = x* + x +1, which is an irreducible polynomial over F,, be the reduction polynomial for field F,..

e Example of addition: (1101) + (1000) = (0101)
In polynomial form over F,, : (x* +x* + 1)+ (x*) = 2x° + x* +1=x% +1.
o Example of multiplication over F,, : (1110) * (1000) = (1001) explained as follows:
(o +x* +x)*(x*) mod f(x) = (x* +x° +x*) mod(x* + x+1) = (x*+1).
e One of the generators of F. is the element 2, which can be checked as follows (element 2 is represented by polynomial x):

Polynomial Binary Decimal
x* mod f(x) 1 0001 1
x'mod f(x) x 0010 2
x* mod f(x) x?2 0100 4
x* mod f(x) X3 1000 8
x*mod f(x) x+1 0011 3
x> mod f(x) X2 +x 0110 6
x%mod f(x) x4 x2 1100 12
x” mod f(x) X +x+1 1011 11
x8 mod f(x) x2 1 0101 5
x° mod f(x) X +x 1010 10
x' mod f(x) X2 +x+1 0111 7
x"mod f(x) X +xt4x 1110 14
x"? mod f(x) X+xP+x+1 1111 15
x"mod f(x) X 4+xr+1 1101 13
x" mod f(x) X +1 1001 9
X mod f(x) 1 0001 1

e Example of inversion calculation: calculate 37" (3 is represented by polynomial x 4 1):
Calculation without using the inverse property (i.e. Theorem 3.21): one has to find a polynomial Q(x) of degree less than
4, such that: (x +1) % Q(x) mod (x* + x +1) =1. Q(x) = x’ + x* + x is the appropriate polynomial to fulfill the previous
condition. Q(x) represents the bit string (1110). Thus, the inverse of 3 in F,. is 14.
Calculation using Theorem 3.21 with generator g = 2:
Element 3 is generated by g power 4. Thus, by Theorem 3.21, 3 ' is equal to

X mod (x* + x + 1) = xMmod (x* + x+1) = x> + x* + x.

Since x> + x? + x is the polynomial associated with element 14, the inverse of 3 in F, is 14.

3.2.4.4 Selection of Reduction Polynomial for Field F.,,,
By Theorem 3.18, given a prime power q = 2™, there always exists at least one reduction polynomial f(x) of degree m over
F, to construct the field Fzm. Notice that the set of elements of a finite field is the same, whatever is the selected reduction
polynomial. However, the calculations (i.e. addition, subtraction, multiplication, and multiplicative inverse) on elements
yield different results under different reduction polynomials.

To simplify the Euclidian division, the polynomial f(x) usually selected is a trinomial of the form x™ + x +1 or, if all
trinomials are reducible, select pentanomials of the form x™ + x4+ xR 4 XM 41, with k1, k2, k3 € 1, m-1) [7].

For real cryptosystem implementation, the standard X9.142 [8] recommends the following reduction polynomials
depending on q:

If g = 2**, then use f(x)=x*> +x"* +1.
If g = 2°*°, then use f(x) = x™ + x> +x7 +x° +1.
If g = 2", then use f(x) = x*" +x¥ +1.
If g=2"", thenuse f(x)=x""" +x" +x° +x* +1.

3.2 Basic Algebraic Structures

3.2.5 List of Exercises and Problems
Exercise 3.7 What is the order of each of the following groups? Z-, Z,,, and Z,.
Exercise 3.8 What is the order 2, 5, and 6, which are elements in Z,?

Exercise 3.9
1) Calculate 5 in Zg.

2) Is Zz (i.e. set of invertible elements mod 6) a cyclic group?
3) Is Z; (i.e. set of invertible elements mod 8) a cyclic group?

Exercise 3.10 Compute 997" mod 100.
Exercise 3.11 How many elements are generators of Zzg?
Exercise 3.12 Build the multiplication table of the extension field F, with the irreducible polynomial f(x) = x4+ x*+1.

Exercise 3.13 Do the following computations over the extension field F,; with the irreducible polynomial f(x) = x? 4+ 2x 42
1) 445

2) 3*%2

3) 4*5

4) 8

Exercise 3.14 Do the following computations over the extension field F,. under the irreducible polynomial f(x) = x4 x+1
1) x 'and x73

2) /(P +x*41)

3) (P HxP4+x)/ (P +x+1)

4) Which of the computation results (obtained for the three previous questions) change if f(x) = x* + x* +1?

Exercise 3.15 Check if the following polynomials are reducible in F,

1) fl(x):xﬁ—i-x“—i-x2
2) fz(x):x3+1

3) f3(x):x4+x3+x+1
4) f4(x):x4+x2+1

Exercise 3.16 Let o be a root of polynomial f(x) = x> + x + 2, which is irreducible over F,. Check that o can generate all
nonzero elements of F,.

Exercise 3.17 Let f(x) = Xx*+ x + 2 be a polynomial irreducible over F,. Let ¢ be aroot of f(x)in F,,. Assume that o is
the element 3. Using the properties of a root o, compute the following over F,.:

1) 37!

2) 37

3) 37 (k integer greater than 1)

4) 6%7

Exercise 3.18 Letx* +x +1 be a polynomial irreducible over F, associated with the field F,,. Assuming that 2 is a gener-
ator, do the following operations over F,.:

1) 9%6

2) 97! (hint: use Theorem 3.21)

3) (9+1)* (hint: do not compute usual addition and use 2 as generator)

Exercise 3.19 The 256 elements of field F,, are represented as polynomials F, [x] mod f(x), where
f)=x*+x*+x*+x+1.
1) Calculate the sum of 01010011 and 11001010.

2) Calculate the product of 01010011 and 11001010.
3) Find the multiplicative inverse of 00000010.

Problem 3.10 Let g be a generator of Z;. Prove that g " also is a generator of Z;.

Problem 3.11 Prove the correctness of Lemma 3.6 by counterexamples:
1) Show that a root a of the irreducible polynomial f(x)= x* 41 cannot generate all nonzero elements of the field F,.

79

80

3 Mathematical Basics and Computation Algorithms for Cryptography

2) Show that a root a of the irreducible polynomial f(x) = x> + 2x + 2 cannot generate all nonzero elements of field F.

Problem 3.12
1) Let g, g,, ..., g,, be the generators of Z;, with p > 3. Prove that

Hfj g, =1mod p.
2) Let F, be a prime field. Prove that ZueF u=0 mod p.
Problem 3.13 Show thatZ, is not a field. p
Problem 3.14 Consider field F,. with reduction polynomial f(x) = x° 4+ x? +1. Show that g = x is a generator of E,..

Problem 3.15 Let f(x)=x*+x+1 be an irreducible polynomial over F,. f(x) is used for computations over field F,..
Solve the following linear equations:

1) 3y=4

2) 9y+3=2

3.3 Computation Algorithms

The previous sections presented theorems and lemmas, which are of paramount importance to cryptographic algorithms.
Often, computations are needed to find elements (e.g. multiplicative inverses, square roots, etc.). Such computations are
time consuming in particular when large numbers are of concern. Many algorithms exist in literature aiming to optimize
computations in general and in cryptosystems in particular. This section presents the most commonly used algorithms to
speed up computations in cryptographic algorithms. They include Extended Euclidean algorithm to find the greatest
common divider and multiplicative inverse, Square-and-multiply method to perform modular exponentiation, Montgomery
multiplication to compute modular multiplication, Gauss’s algorithm to solve congruence systems, Tonelli-Shanks
algorithm to find modular square roots, and Rabin’s algorithm to test irreducibility of polynomials.

3.3.1 Euclidean and Extended Euclidean Algorithms

3.3.1.1 Euclidean Algorithm

The Euclidean algorithm is the most known and used method for computing the greatest common divider (GCD) of two integers.
There exist different ways to describe the Euclidean algorithm. Below is a pseudocode for the description of the Euclidean
algorithm:

function Euclidean_Algorithm_GCD(a, b)
aand b are integers such that a 2 b

while b # 0 do
t=b;b=amodb;a=t
return a

3.3.1.2 Extended Euclidean Algorithm

Theorem 3.25 Bezout’s theorem (also called Bezout’s identity): for every pair of two non-negative integers a and
b, there exist two integers x and y, such that GCD(a,b) =ax+by.

In addition to the GCD computation, the Extended Euclidean algorithm computes two coefficients (called Bezout’s identity
coefficients) x and y, such that ax 4+ by = GCD(a,b). The pseudocode of the extended Euclidean algorithm is as follows:

function Extended_Euclidean_Algorithm (a, b)
aand b are integers such thata 2 b
r=a;rl=b;x=1;x1=0;y=0;yl=1
while r1 # 0 do

Q =rdivrl (quotient)
aux=r1;rl=r-Q"rl;r=aux

3.3 Computation Algorithms

aux = x1; x1 = x-Q*x1; x = aux
aux=y1l;yl=y-Q%1;y=aux
return “Bezout coefficients?”, (x,y), “GCD:", r

3.3.1.3 Finding Multiplicative Inverse
Finding multiplicative inverse in Z;, with p a prime, is a very frequent operation in cryptography. Below, two methods,
often used to find multiplicative inverses, are introduced. They differ in terms of time computation.

3.3.1.3.1 Finding Multiplicative Inverse Using Euler’s Theorem
Euler’s theorem states that if @ and p are two coprime positive integers, then ap(p)= 1 mod p, where go(p) is the Euler’s
totient.

Multiply both sides of the congruence by a ' yields a?® g1 = ¢! mod p.

Hence, am’ 1= a~! mod p, which means that the multiplicative inverse is obtained by exponentiation.

We know, by Theorem 3.1, that if p is a prime, then ¢(p) = p — 1. Hence, a?P T — P2 = g1 od p, if p is prime.

Example 3.38

— Compute modular inverse of 2 in Z;,
By Theorem 3.1, p=11isprime = ¢ (11) =12 =22 mod 9 = (2*) *(2°) mod 11 = 6
Check:2*27! mod11=2%6 mod11=1
— Compute modular inverse of 2 in Z,,
By Theorem 3.1, p =23 is prime = @(23) =22
27 1'=2""2 mod9=12
Check:2*27! mod9=2%12 mod23=1

3.3.1.3.2 Finding Multiplicative Inverse Using Extended Euclidean Algorithm
The Extended Euclidean algorithm finds x and y such that ax + by = GCD(a,b). Let us see why the Extended Euclidean
algorithm isappropriate to compute the multiplicative inverse. By definition of a multiplicative group Z;, anyelement o € Z;
is less than n and has an inverse o' € Z;. Since « is invertible in Z:, GCD(p,a) =1.

By definition of multiplicative inverse:

a*a'=1modn=3keZ laxa '=1+k*n

Thus,a*a ' —k*n=n* (—k)+ « *(ofl) =1= GCD(n,a).
Hence, given « and n, applying the Extended Euclidean algorithm to n * (—k) +a* (a’l) =1 returns —k and o ". In other

words, we substitute n toa, o to b, —k to x, and & to y in the equality ax + by = GCD (a, b) and keep the returned value for y.

3.3.2 Modular Exponentiation: Square-and-Multiply

Some cryptographic algorithms, such as RSA, make use of modular exponentiation to encrypt or decrypt messages. Since
cryptographic algorithms use very large numbers (in magnitude of thousands of bits), it is of paramount importance to use
efficient modular exponentiation algorithms to get messages encrypted or decrypted in reasonable time to not jeopardize
the performance of cryptosystems.

Square-and-Multiply algorithms are useful to compute large integer powers of a number, for example 7°'***°”'7 mod 1001.
The most known and used algorithm in the Square-and-Multiply algorithm family is called right-to-left'> binary exponenti-
ation algorithm, or simply binary exponentiation algorithm. To better understand the Square-and-Multiply method, recall
the following rules of modular arithmetic:

For any positive integers a, a;, b, b, k, m:
o If(a=a,mod n)A(b= b, mod n)=> (a*b) mod n= (a,*b,) mod n

o d“modn= (a mod n)k modn

In the congruence a™ mod n, a is called the base, m the exponent, and n the modulus. To compute a™ mod n, the right-
to-left binary exponentiation method is based on the reuse of powers of 2 of a. Let us see an example to show computation
principle of the method:

81

82 | 3 Mathematical Basics and Computation Algorithms for Cryptography

5" mod14=17
11 _ z4%24241 .
57 =5 (11, the power of 5, is expressed as a sum of powers of 2.)

5" mod14 = [[(52)4] « (52) %5

By the modular arithmetic rules recalled above:

mod 14.

4

5" mod 14 = [(52 mod 14) * (52 mod 14) *(5 mod 14)} mod 14.

Replace 5% mod14 =11 and 5 mod14 = 5 in the previous equation:

5" mod 14 = (11)" *(11)*(5) mod 14 = (115 * 5) mod 14

5 2 2 2

11° mod 14 = (11 mod 14) *11| mod 14 = (9)" *11 mod 14 =9.

Thus, 5! mod14=9*5 mod 14 =3.
The right-to-left binary exponentiation method computes a* mod n = b as follows:
1) Convertk in binary notationk =k; .k, ,---ky, k; € {0,1}, (0 <i<L- 1).
2) Thus, k = Zjif}’lzi *k,.
= i=L-1 ol kp) i
3) a* is considered as a product of powers of 2: a* = a(z‘:“) == (ak‘) .

2i

4) ForifromOtoL—1:b, = (ak") mod n.
5) b= (Hié’l bi) mod n.

One of the most efficient pseudocodes proposed in literature to implement the right-to-left exponentiation is as follows:

function Right_to_Left_Binary_Exponentiation
input a: base; n: modulus; k: exponent
output res
res=1;a=amodn
while k> 0 do
if (k mod 2 == 1) then res = res*a mod n
k=1[k/2];a=a*amodn
return res

3.3.3 Fast Modular Multiplication and Montgomery’s Multiplication

Given three positive integers a, b, and n, the modular multiplication a*b mod n finds an integer r such
that: 3q e Nlaxb=q+n+r.Ifa and b are less than N, then the product a *b is less than or equal to (n — 1)2.

In regular modular multiplication, the bit-length of arguments a, b, and n are assumed to be less than or equal to w, the
word bit-length of the underlying hardware. Often, w is 32 or 64. If arguments a and b have a bit-length less than or equal
to w, then the naive modular multiplication is performed with four basic operations: a multiplication P, = a b, a division

o[
n

It is commonly admitted that division is an expensive operation (in time computation) and numbers used in cryptog-
raphy are (very) large integers, which have bit-length in hundreds or in thousands (128, 512, 1024, 2048, etc.). Consequently,
cryptographic numbers may be composed of several machine words and the naive modular multiplication results in exces-
sive computation time. That would jeopardize the performance of cryptosystems. Therefore, to implement cryptographic
algorithms, specific computation techniques are required. This chapter presents the Montgomery multiplication [9], which

is the most known and fast used modular multiplication method in cryptographic algorithm implementation. The efficiency
of Montgomery multiplication comes from the avoidance of expensive division operations.

, amultiplication P, = q * n, and a subtractionr = P, — P,.

3.3 Computation Algorithms

3.3.3.1 Single-precision Montgomery Multiplication Algorithm

Basic Montgomery multiplication is applicable if single-precision arguments, i.e. a, b, and n take values less than 2", where
w denotes the word bit-length of the underlying hardware. When properly implemented, the Montgomery multiplication
reduces the computation time due to division and consequently it accelerates modular multiplication. The main principle
behind Montgomery multiplication is to change the representation of arguments a and b and change the modular multi-
plication accordingly. The Montgomery multiplication does not directly compute ax*b mod n. Instead, it computes
M(a, b)= (((a *Rmod n) * (b * Rmod n))) * R""modn for a carefully chosen integer R, which is called Montgomery radix.
When Montgomery multiplication is used in cryptosystems, R is chosen to be equal to a power of 2, greater than n, and
coprime to N. For example, if n =103, R may be 128, 256, etc.

Definition 3.44 Montgomery reduction: let n and R be two integers such that R>n and GCD(n,R):l. For any
integer T, such that 0 <T <n*R, the Montgomery reduction of T, denoted REDC (T) modulo n w.r.t. R is defined by:
REDC(T)=T*R ' mod n.

Montgomery reduction function described below enables to quickly compute T* R ' mod N from T

function REDC
input T:integer suchthat0<T <R*n
n,n',R: integers
output ¢
1.m=(T mod R)*n' mod R
_T+m™n
R
3.ift<nthent=t—n
4.returnt (#t =T*R"* mod n)

2.t

Next, the Montgomery reduction function REDC is used to compute the modular multiplication a * b mod N as follows:

function Modular Multiplication _withg, a,b,n)

1.# Choose R such that GCD(n,R)=1and n <R = 2k <

2.# Compute ' = —n"* mod R

3. # Compute the Montgomery transforms of a and b
5za*Rmodn;Ezb*Rmodn

4. # Compute the Montgomery reductions ¢’ and c:
= REDC(&*B); c=REDC(c’)

5.returnc

| Note. The correctness of the Montgomery multiplication is discussed in Problem 3.17.

Example 3.39 We make use of the Montgomery reduction to find a * b mod n with a =43, b =56, and n =97.
n =97 is less than 27, we can pick R =128 =2’.

n' mod R=97" mod2’ =33, —n ' =95,

Montgomery conversion of arguments a and b:

a=43*2" mod97 =72,b=56*2" mod 97 =87

¢’ =REDC(ax f)) = REDC(6264) =55

c= REDC(C’) = 80, which is equal to 43 56 mod 97.

Why does Montgomery’s method speed up the modulation multiplication?

1) First, in cryptosystems that use Montgomery multiplication, R, R ', n"", and n’ are computed once and used in several
modular multiplications. Therefore, their computation time has a negligible impact on the cryptosystem performance.
For example, in RSA the modulus n is computed from two large primes, then the public and private keys are computed
and the same pair (public and private keys) is used to encrypt and decrypt messages for a long time (maybe in months).

83

84

3 Mathematical Basics and Computation Algorithms for Cryptography

2) Second, when R is a power of 2, multiplication and division by R are efficiently performed with left and right bit-shift-
ing, which are very fast operations in hardware. Therefore, ¢ in line 2 of DECR is computed with a w-right-shift.

3) Third, in line 1 of DECR function, mod R is used instead of mod n. Since R is a power of 2, mod R can be efficiently
computed with shifting operations as follows: for any integer x, x = z mod R =z mod2". By definition of modulo

X
Z=X—|——
w

X
*2" Therefore, z is computed by a w-right-shift (i.e. 4 = o), a w-left-shift (i.e. p= ¢ *2"), and a subtrac-

tion (i.e. z = x — p).
3.3.3.2 Multi-precision Montgomery Multiplication Algorithm

A large integer X is represented as an array of [w-bit-words (xo, s xH) such that:

X=Y1"Txx2") =Yt x « B, (0<x;<B, i=0,...,1-1)

i=0""i i=0""

where B=2" is called representation basis. For example, in hexadecimal format,

X =1122334455667788399 AABBCCDDEEFF00 is represented as:

two 64-bit words: x,, = 1122334455667788 et x; = 99AABBCCDDEEFF 00

or alternatively, as four 32-bit words: x, = 11223344, x, = 55667788, x, = 99 AABBCC, x, = DDEEFF00.

Large integers are called multi-precision integers and arithmetic operations on large integers are said to be multi-preci-
sion operations. One multi-precision operation requires multiple simple-precision operations to be performed. Multi-
precision addition, subtraction, and multiplication are introduced.?

function MultiprecisionAddition
input X,Y :two large integers X = (x,,...,X,_¢) and Y = (yo.....y, 1)
Integer with less than [words is left-padded with zero-words
B: base (in cryptography, B is a power of 2)
output S # sum represented in base Bas S = (s,,...,s,)
1.c =0 #cis the carry digit. It is O or 1.
2.fori=0to/—1do
s;=(x;+y;+c) modB
if(x;+y;+c)<Bthenc=0elsec=1
3. s=¢
4.return (S)

function MultiprecisionSubtraction
input X,Y:two large integers X = (X,...,x,_;) and Y =(yq,...,y, 1)
Integer with less than [words is left-padded with zero-words
To simplify the function, assume X >Y
B: base (in cryptography, B is a power of 2)
output D # difference represented in base B as D = (dy,...,d, ;)
1.c =0 # cis the carry digit. It is O or -1
2.fori=Oto[—1do
d;=(x;—y;+c) modB
if (x,—y;+¢)>0thenc=0elsec=—1
4. return (D)

function MultiprecisionMultilpication
input X, Y: two large integers X = (X,,...,X,_;) and Y = (yo,...,¥,_1)
k <[(arguments are ordered to reduce operations)
B: base (in cryptography, B is a power of 2)

3.3 Computation Algorithms

output P # Product represented in base B as P = (do,...,dH,H)
1.fori=0to([+k—1)do P =0
2.fori=0to k—1 do
21r=0
2.2for j=0tol[—1do
V =p,;,;+x;*y;+r # Multiplication in base B
r = leftWord (V)
2.3 P =r
3. return (P)

When computing modular multiplication X Y mod n over large integers, the Montgomery multiplication is valuable to
speed up computations. The modulus n and arguments and X and Y are represented as [words in base B:

n=>""'nx(B).x= S xx(B) Y=y +(B)

Arguments are padded on the left with zero-words if needed.

The Montgomery radix R is chosen such that n is coprime to R and n < R = B' (in cryptography R = 2" where w denotes
the word bit-length). Before performing modular multiplication,n’ = —n"' mod B is computed. Notice that mod B is used and
notmod R (as in single-precision Montgomery reduction). R and n’ are computed once and used in several modular multipli-
cations with the same modulus n. Pseudocode of the multi-precision Montgomery multiplication is as follows:

function MultiprecisionMontgomeryMultiplication
input n, X,Y:l-word integers; n is an odd integer
n'": one-word integer
B: base (in cryptography, B is a power of 2)
[: word-length of arguments n, X,Y,R
ConditionR = B',R > nand GCD(R,n) =1
output X Y xR modn
1.A=0#A= (a,_l,a,_z,...,ao), where ds are words in base B.
2.fori=Oto/—1do
A=A+x;xY;q=Axn"modB; A=(A+nxq)/B
3.ifA>nthenA=A—n
4. return A

The multi-precision Montgomery multiplication computes X *Y % R™' mod n. Therefore, to find the modular multiplica-
tion, the returned result is multiplied by R.

Note. The multi-precision Montgomery multiplication makes use of multi-precision addition, subtraction, and multipli-
cation. In addition, division by n" and mod B operations are performed using shift operations.

Example 3.40 »n=50021 (n is a prime), X =15063,Y = 37551, Base B=100
X is three 2-decimal-digit-words: X = (Ol, 50, 63).
We choose R = 100*, which meets the conditions R > n and GCD(R,n) =1.
R=100*=100'=1=4
Computen’=—n"' mod B

n' =—50021" mod 100 = —81 mod 100 = 19.
Below are the computations in multi-precision Montgomery multiplication:

i X, A+ xxY q=Axn'modB A=(A+nxq)/B
0 63 2365713 47 47167
1 50 1924717 23 30752
2 01 68303 57 29195
3 00 29195 5 2793

85

86 | 3 Mathematical Basics and Computation Algorithms for Cryptography

The multi-precision Montgomery multiplication returns 2793, which represents X **R " mod n. Multiplying by R yields
(X*Y*R)*R mod n=X*Y mod n.
Thus, 2793 %100* mod 50021 = 15063 * 37551 mod 50021 = 43266.

3.3.4 Chinese Remainder Theorem and Gauss’s Algorithm

The Chinese remainder theorem (CRT) was introduced in the 3rd century. It provides a powerful tool for solving problems
involving congruences. In particular, the CRT helps solving congruences including large numbers (see Exercise 3.26).

Theorem 3.26 Chinese remainder theorem: if k integer numbers n,,i =1, ...,k, are pairwise coprime and greater than
1, and if k numbers a,, ..., a, are such that 0 < a; <n, for every i, then there is one and only one integer x such that:

0<x <H§jni andx =a,modn,, forevery i € [Lk].

Example 3.41
x=1mod5
Xx=2mod7
X =3 mod9
x=4mod1l

In the equation system above,n, =5, n, =7, n, =9, n, =11,a, =1, a, =2, a, =3, and a, = 4. All n’s are pairwise coprime
and 0 < a, <n, for everyi. x =17311is a solution, since:

i) 1731<5%7%9%11=23465
ii) 1731=1 mod5 1731= 2 mod7 1731 = 3 mod9 1731= 4 mod11

Gauss’s algorithm

The Chinese remainder theorem says that there is a unique solution when some conditions are met, but it does not say how
to find it. This is usually done using Gauss’s algorithm.

Given a system of k congruence equations that fulfill the conditions of application of Chinese remainder theorem,
Gauss’s algorithm finds the solution to the congruence equation system as follows:

1) Compute the common modulus N = [T.=% n,

N)
2) LetN,~=n—,for1§/§k

!

3) Compute N; * the modular inverse of N; mod n,, for 1 <i < k
i.e.N,xN ' =1mod n,forl <i<k
4) The solution to the congruence equation system is

X—{i(a,*N,*N,.—l)

i=1

mod N

Example 3.42 Find x for the following congruence equation system using Gauss’s algorithm.

x=1mod5
xX=2mod7
x =3 mod9
x=4modl1l

The constants of the congruence equation system are:
n=5n=7n=9n,=11
a,=1,a,=2, a,=3,a,=4

Alln’s are pairwise coprime and a, < n,, for every i. Therefore, the conditions to use the Chinese remainder theorem are met.

Steps of calculation of x using Gauss’s algorithm:

e Common modulus N =5%7%9x%11=3465
3465 3465 3465 3465
o Ny==— =693 N,=—== = = = =
e Multiplicative inverses:
N;'*N,=1mod5= N,'=2 N,'*N,=1mod7= N,'=3
N;'*N,=1mod9= N;'=4 N,'*N,=1mod11= N, =8

. x:[i(ai #N,*N)

i=1

mod N

=((1*693+2) +(2%495#3) + (3%385+4) + (4 %315 %8)) mod 3465
=19056 mod 3465 =1731

e Check of correctness:
1731=346%5+1=1mod 5
1731=247+7+2=2 mod 7

1731=192%9+3=3 mod 9
1731=157*11+4 =4 mod 11.

3.3.5 Finding Modular Square Roots

3.3.5.1 Tonelli-Shanks Algorithm for Finding Modular Square Roots of Primes

The most commonly used algorithm to find modular square roots,

i.e.

3.3 Computation Algorithms

to solve congruence of the

form r* = a mod p, when p =1 mod 4 is Tonelli-Shanks algorithm [10]. Pseudocode of the latter is as follows:

function Tonelli_Shanks
input p,a: prime p and integer a,with0 <a < p
output r:r€Z, such that r*=amod p
1.# Use Euler’s criterion to check that a square root exists and stop,
if it does not exist.
2.# Find g and s such that: p=2°q+1 and g is odd.
3.#1In Z;, select' a quadratic nonresidue u.

4. # Variable initialization g+1
m=s; c=u? modp;t=a? modp;R=a 2 mod p.
5.loop
51.ift =1,thenreturnr =R
5.2.else
i.k=0

while not(tzk =1 mod p) do:k=k+1
the loop above is to find the least k, such that t* =1 mod p.

ii. # Variable update
olm—k-1

b=c >modp;m:k;c:bzmodp
t =t*b* mod p; R=Rxbmodp

Example 3.43 Find the square roots of 111 mod 113.

— Check, by Euler’s criterion (Theorem 3.7), that a square root exists:
113-1

111 2 mod113=111"° mod 113 = ((72)56)mod 113 =1. Thus, there exists a solution.

87

88 | 3 Mathematical Basics and Computation Algorithms for Cryptography

-113=2"*741.Thus,s=4 andqg=7.
— Selection of a quadratic nonresidue u using an iterative search:
113-1

Check element1:1 2 mod113=1. Thus, 1 is a quadratic residue.
113—-1

Check element2:2 2 mod 113 =1. Thus, 2 is a quadratic residue.
113-1
Check element2 3 mod113=—1. Thus, 3 is a quadratic nonresidue. We keep u = 3.

— Initialization

m=4

¢=3" mod113=40

t=111" mod113 =98

7+1
R=1112 mod113=16
— Loop

a) Iteration 1:¢ is not equal to 1. Hence, computations continue
98% =1 mod 113. Thus, k =2
b=40"" mod113= 40> mod113 =18
m=2
c=18" mod113 =98
t=98%18" mod113 =112
R=16%18 mod113 =62

b) Iteration 2: ¢ is not equal to L. Hence, computations continue
112* =1 mod113. Thus, k =1.
b=98"" mod113=98" mod113=98
m=1
c =98 mod113 =112
t=112*%98 mod113=1
R=62%98 mod113=287.

c) Iteration 3:t is equal to 1. Thus, return r = 87.

Hence, the solutions to 111 mod 113 are 87 and 26 (i.e. —87 mod 113).

3.3.5.2 Finding Square Roots of Multiple Primes
This subsection considers the following problem:
Find the solutions to y* = a mod n, with n a multiple of two or more primes.

3.3.5.2.1 Case of Two Primes

Let us start with the following example: find solutions to r* =29 mod 35.

In such a scenario, N =35 is a product of two primes 5 and 7.

By Lemma 3.2, if there exists r such that r* = 29 mod 35, then r* =29 mod 5 and r* =29 mod 7.
r* =29 mod 5 is equivalent to r* = 4 mod 5.

r* =29 mod 7 is equivalent to ¥’ =1 mod 7.

4 mod 5 has two quadratic squares: 2 and 3.

1 mod 7 has two quadratic squares: 1 and 6.

Thus, there are four congruence systems to solve:

B xX=2mod5 5 x=2mod5
' lx=1mod7 2 |x=6mod7
B x=3mod5 s _ x=3mod5
37 lx=1mod7 * 7 |x=6mod7

Recall that the commonly used method to solve congruence systems is Gauss’s algorithm. Below are calculations to solve
S, system:

3.3 Computation Algorithms

The constants of the congruence equation system are:n, =5, n, =7, a, =2, a, =1.
Common modulus is N = 5% 7 = 35

35 35
le_:75 NZZ_:S.

5 7
Multiplicative inverses: N,' * N, =1 mod5= N, ' =3
N,'*N,=1mod7= N,'=3

x=((247%3)+(1%5%3))mod 35=22.
Applying Gauss’s algorithm to the four congruence systems yields the following:
x =22is asolution to S,
x =27 is a solution to S,
x =8 is a solution to S,
x =13is asolution to S,
Now, check that the values are square roots of 29 mod 35
x=22:22" =484 =29 mod 35
x=27:27" =729 =29 mod 35
x =8:8" =64=29 mod 35
x=13:13*=169=29 mod 35
Thus, 29 mod 35 has four square roots.

3.3.5.2.2 General Case (2 or More Primes)
When n is a product of k primes denoted n, n,, ..., n,, the commonly used method to find the square roots of a mod n is
composed of two steps:

Step 1: Find the square roots of prime moduli

i) From congruence a mod n, derive congruences a, mod n,, ..., a, mod n,, where a, = a mod n,, for1 <i<k.

ii) Then, find the square roots to each of congruences a, mod n, 1<i<k. The result is a set of k pairs (rt.,frl.), where
ri= a,modn,, 1<i<k. At this step, depending on each n, either Lemma 3.5 or Tonelli-Shanks algorithm should be

i

used to find square roots to r, ’= a,mod n,.

Step 2: Solve a set of congruence systems
iif) Build a set of 2k distinct congruence systems denoted S, S,, ..., S, such that each congruence system is composed of
exactly k congruences (a congruence for each of the k primes) as follows:

S, :{rl mod n,, r, mod n,, ..., r, , mod n,_,, r, mod nk}

S, = {r1 mod n,, r, mod n,,,r, mod n, ,—r, mod nk}

S, :{r1 mod n,, r, mod n,, ...,—r,_ mod n, |, r, mod nk}

S, :{—r1 mod n,,—r, mod n,, ...,—1, , mod n,_ ,—1, mod nk}

iv) Use Gauss’s algorithm to find the solutions to each of the 2" congruence systems. The 2* found solutions represent the
square roots to a mod n.

3.3.6 Test of Irreducibility

In cryptography, before using a polynomial f (x) of degree m over a field F, as a reduction polynomial to construct a field
Fpm, one must first check that p is prime and f (x) is irreducible over F,. Hence, algorithms for testing irreducibility are
needed in cryptography. There exist two approaches to test if a polynomial f (x) of degree m over a finite field F, is irreduc-
ible: naive approach and Rabin’s test for irreducibility.

3.3.6.1 Naive Approach

Take each element in {0,2, <D — 1} and check if f(O), f(l), - f(p — 1) is equal to 0. When the first element a such that
f (a) =0 is found, stop testing, because there exists at least a root of f (x) and f (x) can be factorized as f (x) = (x — a) * q(x),
with g(x) a polynomial of degree less than m, and consequently f x) is reducible.

89

920 | 3 Mathematical Basics and Computation Algorithms for Cryptography

Example 3.44 Test irreducibility of f (x) =x"+x*+x+1overF,:
F, ={0,1}. Thus, the check is:
f(0)=0*+0*+0+1mod2=1 f()=1"4+1+1+1mod2=0.
Therefore, f (x) is reducible and can be expressed as (x + 1)(x3 +x*+ 1).
Irreducibility test of f(x)=x*+x"+x+1 over F:
F,={0,1,2,3,4). Thus, the check is:
f(0)=0"+0’+0+1mod5=1 f(1)=1"+1°+1+1mod5=4
f(2)=2'+2+2+1mod5=2 f(3)=3"+3"+3+1mod5=2
f(4)=4"+4+44+1mod5=0.
Hence, f(x) is reducible and can be expressed as (x — 4)<x3 + 1), which is the same as (x + 1)(x3 + 1) over F,.

Such a naive method is easy to understand and implement. Unfortunately, it suffers two weaknesses: 1) it does not scale
(remember that in cryptography very large numbers are used) and 2) a polynomial may be reducible even if it has no roots.

For example, in field F,, x* +2x* 41 can be written as a product (x2 + 1) (x2 + 1). Therefore, it is reducible, but it has no

roots in Z., because (x2 + 1) has no roots in F,.

3.3.6.2 Efficient Approach (Rabin’s Test of Irreducibility)
One of well-known algorithms for testing the irreducibility of polynomials over Z is the Rabin’s test [11], which results
from the following theorem:

Theorem 3.27. Rabin test’s of irreducibility: let f (x) be a polynomial of degree m over E, Then, f (x) is irreducible
over F, if and only if:

f(x) divides x?" — x and GCD

m

)
f(x), xp[—X

=1, for each n, that is prime divisor of m.

Pseudocode of Rabin’s test of irreducibility is as follows:

function Rabin_Irreducibilility_Test
input f(x): polynomial of degree m over a field F,
my, m,, ..., m, are all distinct prime dividers of m
output “Reducible” or “Irreducible”
1.for j=1tokdop;, =m/m,
2.for j=1 to k do
21 h(x)= x7 —x mod f(x)
2.2 g(x) = GCD (f(x), h(x))
2.3 if g(x) = 1, then return “Reducible”}
3.9(x)=x7" —xmod f(x)
4.if g(x) = 0, then return “Irreducible”
5. else return “Reducible”

Example 3.45
— Check of irreducibility of f(x)=x*+x*+x+1overF,

m = 4, so the prime divider of m is 2.

4
pl:EZZ

Iteration #1 (test of prime divider 2, i.e. p, = 2):
¥ =xt=xt+x+1 modf(x)
h(x)=x"+x+1-x mod f(x)=x+1
g(x) = GCD(f(x), h(x)) =x+1
g (x) =1;thus, f (x) isirreducible over F, as it was checked by the naive method (see Example 3.44). Stop the algorithm.
— Check of irreducibility of x* + x +1 over F,

3.3 Computation Algorithms

m = 3is a prime. Thus, the prime divider of m is 3.

p, = 37 1
Iteration #1 (test of prime divider 3, i.e. p, = 1):
h(x)=x>—x mod f(x)=x>+x
g(x) = GCD(f(x),h(x)) =1
g(x)=1; hence, the algorithm continues.
Second step of the algorithm
g(x):le —x=x"+x mod f(x)=0.
Thus, f (x) is irreducible.

3.3.7 List of Exercises and Problems

Exercise 3.20 Use the Euclidean algorithm to compute the GCD of:
1) 726 and 1144

2) 2184 and 16170

3) 113and 13

Exercise 3.21 Use the Extended Euclidean algorithm to find GCD(654, 123) and to find integers u and v such that
654u +123v = GCD(654,123).

Exercise 3.22 Find the multiplication inverse of the following using the Extended Euclidean algorithm
1) 137" mod 31
2) 111" mod 4111

Exercise 3.23
1) Compute 147'* mod 23 with the right-to-left binary exponentiation method.
2) Use Fermat’s little theorem to reduce the number of iterations in the right-to-left binary exponentiation method.

Exercise 3.24

Compute X xY mod n, using the Montgomery multiplication with:
n=50021(50021 is a prime), X =15063, Y = 37551, Base = 16.

Exercise 3.25 Find x for the following congruence equation system using Gauss’s algorithm:

x =3 mod5
S=1x=1mod7
X =6 mod8

Exercise 3.26 Use Gauss’s algorithm and Lemma 3.1 to compute 11372°°%%°%3 1104 105,

Exercise 3.27 Use the Tonelli-Shanks algorithm to find the square roots of:
1) 37 mod 43
2) 36 mod 43
3) 53 mod 97

Exercise 3.28 Find the solution(s) to y* = 3 mod 143.

Exercise 3.29 Find the solution(s) to y*> = 421 mod 693.

Exercise 3.30 Check the irreducibility of f (x) =x" +x’ +1 over F, using Rabin’s test of irreducibility.

Exercise 3.31 Check that f (x) =x"+x*+ x>+ x* +x —1is irreducible over F, using Rabin’s test of irreducibility.
Problem 3.16

1) Compute 147"*° mod 23 using Fermat’s little theorem.
2) How many iterations are needed to compute 147" mod 23 with the right-to-left binary exponentiation? What do you
conclude?

91

92

3 Mathematical Basics and Computation Algorithms for Cryptography

Problem 3.17
1) Prove the correctness of the Montgomery reduction function REDG, i.e. prove thatt =T * R mod n.
2) Prove the correctness of the Montgomery multiplication algorithm based on REDC.

Problem 3.18 Prove the correctness of Gauss’s algorithm.

Problem 3.19 Prove Lemma 3.8, which is stated as follows:

ifa" "2 75 +1 mod n, with n coprime to a, then n must be composite.

3.4 Birthday Paradox and Its Generalization

First of all, it is worth noticing that Birthday paradox is used to find the complexity of some attacks against cryptographic
algorithms that will be discussed in next chapters.

Birthday paradox, also referred to as Birthday problem, is relating to the probability that, in a set of n randomly chosen
people, a pair of them will have the same birthday. In a group of 23 people, the probability of a same birthday exceeds 50%,
while a group of 70 has a 99.9% chance of a same birthday. Birthday problem is a paradox, because it first appears counter-
intuitive that with 23 people, there is 50% chance that two people share the same birthday.

Proof:
It is assumed that all 365 birthdays have the same probability of occurrence.
Let P(n) represent the probability that at least a pair among the n people have the same birthday.
P(n) =1— P(n) represents the probability that no pair among the n people have the same birthday. It is obvious to deduce
that P(n) =0, if n > 365.
Let us consider n < 365:
Without loss of generality, assume that persons are numbered from 1 to n.

P(n)=p(1)*p(2)*p(3)*...x p(n—1)
p(1) is the probability that person 2 does share birthday with person 1 and p(k) is the probability that person k + 1 does
share birthday with the other k persons.

Blny— 3651 [365-2].(365-3), 365—(n—1)
365 365 365) 365 |

After some arrangements,

— |
B(n) = 365! '
365" (365 - n)!
365!

Thus, P(n) = lfm

Forn =23, P(n)>~50.07 % For n=30, P(n) =70.06 %
Forn =50, P(n) =97 % For n=70, P(n) = 99.97%

The generalization of the birthday paradox to any set of M values with a uniform distribution is relating to the probability
that two values among n values from the set M are equal. Such a probability is
!
P, M)=1-— " _
M"(M—n)!
In cryptography field, P(n, M) is called collision probability.
Approximation and bounds to collision probability

The following two approximations are proposed in literature to compute the number n of required people given M, the size
of the population, and the expected probability of success P(n):

3.5 Solutions to Exercises and Problems

n=+/2* M * P(n), which works well for P(n) less or equal to 0.5.

o N \/2 *M* ln(l;P()) , where In is the napierian logarithm.
—P(n

Using the approximation below, to have 50% chance that at least a pair of persons have the same birth-

1
day,n~ /2 *365%* 5 ~ 20 and n ~/2*365 *In(2) ~ 23 for the first and second approximations, respectively.

If P(n) = 0.5, the first approximation results in n ~ VM and the second in n ~ V2FM *In(2) ~ 1.18VM.
In [12] and other references in literature, the following bounds have been proven to delimit the collision proba-
bility P(n,M). The first upper bound is as follows:

P(n’ M) S M
2M

If is large, may n is large, n* —n may be approximated by n”. Thus, a second upper bound is used:

2

P(n,M)<——.
2M

The upper bound to probability of no collision P(n,M) is
a(q-1)

P(n,M)<e .

Thus, the lower bound to P(n,M) becomes
alg—1)

1—e 2§ <P(n,M).

The following property holds for any real number x € [0,1]:
(I—eM*x<l—e*<x.
Finally, using the property above, the lower bound to P(n, M) can be approximated as:

q(q—1
N

0.316*) < P(n,M).

3.5 Solutions to Exercises and Problems

Exercise 3.1
Pro perties of Euler’s totient function are given by Theorem 3.1.
1) N =17 is a prime. Hence, all the 16 integers in range [1,16] are coprime to 17.17 is prime = @(17) =17-1=1e.
2) N=42:
12 integers, which are coprime to 42, are:1,5,11,13,17,19, 23, 25,29, 31,37, 41.
42=7+3%2= p(42)=(7-1)(3-1)(2-1)=12.
3) N=25:
20 integers, which are coprime to 25, are: 1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19, 21,22,23,24
25=5"= p(25)=(5" —5)=20.
Exercise 3.2
1) More generally, a’ is the additive inverse of a modulo p if a’+a=0 mod p and a™' is the multiplicative inverse of a
modulo p if axa™' =1 mod p. The additive inverse of 27 is 73, because if 27 +73 = 0mod 100 and its multiplicative
inverse is 63, because if 27 x« 63 =1701 =1 mod 100.
2) By properties of Euler’s phi function (Theorem 3.1):
e 101is prime. Thus, 30(101)
o 102=2+3x17. Thus, (102) ()xe(3)*¢(17)—1*2*16:32
o 500=2"%5" Thus, ¢(500) = (2* —2')(5* — 5*) = 200.

1

93

94

3 Mathematical Basics and Computation Algorithms for Cryptography

Exercise 3.3
1) Find x such that 3* =13 mod 17: we can use a trial-and-error method and find x = 4.
3*=81=4*17+13=3*13mod 17
2) If x <5, there is no solution to 4* =5mod 31, because 4',4%,4°,4*, and 4° are not congruent to 5mod 31. In particular,
4’=1mod 31.
If x is greater than 5, it can be written as x = 5k + x’, for some positive integer k and x’, an integer less than 5. Thus,
k x' x' /
4% mod31= (4°) (4)" mod31= (1) (4)" mod31=4"mod31.
Since x' is less than 5, 4 #5 mod 31. Therefore, there does not exist x such that 4* =5 mod 31.
3) In general, the modular exponentiation is an invertible function. It is what is called Discrete Logarithm Problem.

Exercise 3.4

By definition of multiplicative inverse, a has an inverse modulo n, if and only if GCD(a,n) =1. Thus, Z; has only six ele-
ments; Z, = {1, 2,4,5,7, 8}.

Euler’s theorem (Theorem 3.4 states that ifa € Z', then a”") =1 mod n, which can be written asa*a”" " =1 mod n. Using
the definition of multiplicative inverse, we deduce that a’" " is the inverse of a.

By definition of Euler’s totient (Theorem 3.1), @(9) = (33 - 3) = 6. Therefore, using Euler’s theorem, the inverses are
computed and checked as follows:

1*'=1mod 9=1.Check:1*1 =1 mod 9

27'=2’ mod 9=5. Check: 2*5=10=1 mod 9

47" =4 mod 9=7. Check: 4*7 =28=1mod 9

5'=5" mod 9=2. Check:5*2=10=1 mod 9

7' =7 mod 9=4. Check: 7*4=28=1mod 9

8 =8’ mod 9= 8. Check:8*8=64= 1mod 9.
Let us try to find 37! using Euler’s theorem:

37" =3’ mod 9= 0, which is incongruous, since 0 is not the inverse of any other integer. Therefore, Euler’s theorem is
applicable only if a and n are coprime.

Exercise 3.5
If n is prime and n and a are coprime, then Fermat’s little theorem states that "' =1 mod n, which can be rewritten as
a*a"* =1 mod n. Using the definition of inverse, we deduce that a"* is the inverse of a.Euler’s theorem states that if
ac Z;, then a”"” =1 mod n, which can be written as a * """ =1 mod n. Using the definition of inverse, we deduce that
a*"'! is the inverse of a.
1) a=6,n=7:

7 is prime and coprime to 6. Thus, Fermat'’s little theorem is applicable.

6 ' =6’ mod 7=6.Check:6*6=1mod 7.
2) a=7,n=15:

15 is not prime. Thus, Fermat’s little theorem is not applicable. We use Euler’s theorem.

By Theorem 3.1, p(15)=(5—1)(3—-1)=8

7'=7"" mod 15= 13.

Check: 7*13 mod 15=1
3) a=19,n=101:

101 is prime and coprime to 19. Thus, Fermat’s little theorem is applicable.

19" = 19" mod 101

197 = (19%%)(19°)(197) mod 101 = 1%5+84 mod 101= 16.

Check:19%16 mod101=1
4) a=97,n=100:
100 is not prime. Thus, Fermat’s little theorem is not applicable. We use Euler’s theorem.
By theorem 3.1, (100) = (25— 5)(4 —2) = 40
977" =97" mod 100 = (9720 * 97”) mod 100 = 33.
Check: 97 %33 mod100 =1

3.5 Solutions to Exercises and Problems

Exercise 3.6
1) x=4"" mod 17
4= —1mod17
Thus, 4'° =mod17= 4**° mod17 = (—1)50 mod17 = 1.
Therefore, x =1.
2) 9 =13 mod17
9% = 13 mod 17. Therefore, x =2
3) 5 =13 mod 17
5° =8 mod17
(5°)%(5%) = 88 mod 17 = 13. Therefore, x = 4

4) 7 =11 mod 13
(7)*(7*) % (7")=10%10%7 mod 13=9%7 mod 13=11.
Therefore, x =5.

Exercise 3.7
By definition, the order of a group is the number of the group elements.
1) Z,:7is prime. Thus, ’Z7 =17.
2) Z,,,:101is prime. Thus, |Z*

101

|: 101.

3) Z,,: 18 is not prime. Thus, we need to identify the invertible elements that belong to Z,. In general, an integer a € Z,

*

1

if and only if GCD(a,n) = 1.Thus, Z;, = {1,5,7,11,13,17} and |Z, | =6.

Exercise 3.8

By definition, the order of an elementa € Z, is the smallest integer k such that
1) a* =1 mod n.

2) 2 =1 mod 13. Thus, ord(2) = 12.

3) 5* =1 mod13. Thus, ord 5) =4.

4) 3* =1 mod13. Thus, ord 3) =3.

Exercise 3.9
2 .
1) Calculate 5 inZ,
2_ 2%57!

5
5*5=1 mod 8; hence, 5' =5

2 B
Hence,§:2*5:2 inZg

2) Is Z, a cyclic group?

Recall that an integer b has a multiplicative inverse mod p if and only if GCD(b, p) =1.Thus, Z, = {1,5}.
Recall that a cyclic group is a finite group that is generated by a single element g, called generator.

5° =1 mode, 5' =5 mod6.
Hence, 5 is a generator for Z;. Therefore, Z, is a cyclic group.
3) Is Z, a cyclic group?
z, ={1,3,57}
3° =1 mod 8, 3'=3mod8 3=1mod8 3’ =3 mod8..
5°=1mod8, 5'=5mod8 5 =1mod8 5 =5mod8..
7°=1mod8, 7'=7mod8 7°=1mod8 7°=7mod8..
No element in Z can generate Z,. Therefore, Z_ is not a cyclic group.

Exercise 3.10

99" mod 100 = (100—1)"" mod 100 .

By Lemma 3.1, for integers a, m, and n, a" mod n= (a mod n)m mod n .
Thus, 99" mod 100 = (—1)""" mod 100.

The exponent 707*"' is odd. Thus, there exists k such that 707*"' =2k +1.

997" mod 100 = (—1)* *(—1) mod 100 = 99-

95

96

3 Mathematical Basics and Computation Algorithms for Cryptography

Exercise 3.11

More generally (by Theorem 3.9), if p is a prime number, then Z; has cp((p(p)) generators (also called primitive roots), where
©() is the Euler’s totient function. By Theorem 3.1, since 29 is prime, ¢ (29) = 28. Integers between 1 and 28, which are coprime
with 28, are {1, 3,5,9,11,13,15,17,19,23, 25, 27}. Thus, ¢(28) =12. Therefore, by Theorem 3.9, Z;Q has 12 generators.

Exercise 3.12

In general, to build the multiplication table of a finite field Fpm with an irreducible polynomial f (x):
i) associate with each elementi e Fpm a polynomial P, (x) of degree m and with coefficients in F,.

ii) compute Rl.‘j(x) = (P. (x)*Pj(x)) modf(x) for all pairs of elementsiand jin F)".

i

iii) Let MulTab be the multiplication table of 8 rows by 8 columns. MulTabli, j]:Z::(zk*r

i,j,k

), Viel[0,m—1],

Y j €[0, m—1], where Lk

k=0, ...,m—1, are the binary coefficients of the polynomial Rw. (x)

Now, build the multiplication table of field F, with the irreducible polynomial f (x) =x+x*+1
F,={0,1,2,3,4,5,6,7}.

Polynomial representation of field elements:
B (x)=0 P (x)=1 P(x)=x P(x)=x+1 P,(x)=x"
P(x)=x*+1 13’6(x):x2+x P7<x):x2 +x+1
P (x) denotes the polynomial associated with elementi of F..
Recall that the multiplication is commutative in finite fields.
B (x)«P (x)mod f(x)=0,Yj €F,

x) =P (x).v] €F,

(x) B
P,(x)xP,(x)mod f(x) =x* = 2x2=4
P,(x)*P,(x)mod f(x)= x>+ x=2%3=6
P,(x)*P,(x) mod f(x)=x" mod f (x)=x* +1=2%4=5
P,(x)*P,(x)mod f(x)= x*+x mod f (x)=x* + x +1= 2%5=7
P,(x)*B,(x) mod f(x)=x*+ x> mod f(x)=1=2x6=1
P,(x)*P,(x)mod f(x) =X’ +x* +x mod f(x)= x+1=>2%7=3
P3(x)>kP3(x>modf(x>E>f+1 modf(x)z X +1=3%3=5
}"3(x)>kP4<x)modf(x)zx3+x2 modf(x>51$3*4:1
Ps(x)*Ps(x)modﬂx)E XX+ x+1mod f(x)= x=3%5=2
P,(x)xP,(x)mod f(x)=x’+x mod f(x)= X’ +x+1=>3x6=7
P,(x)*P,(x)mod f(x)= x’ +1 mod f(x)= x* = 3x7=4
P,(x)*P,(x)mod f(x)= x* mod f(x)= X’ + x+1=> 4x4=7
ﬂ(x)*l{,}(x)modf(x)zx“+x2modf<x)5x+1:> 4%5=3
P,(x)xP,(x) mod f(x)= x*+x’ mod f (x)=x=4x6=2
P,(x)P,(x)mod f(x)=x"+x +x* mod f(x)=x"+x= 4x7=6
P,(x)P,(x)mod f(x)= x*+1mod f(x)= X’ +x=5%5=6
P,(x)xP,(x) mod f(x)= x*+x* + x> +x mod f(x)= x* =5x6=4
P,(x)*P,(x)mod f(x)= x*+x*+x+1mod f(x)=1=5%7=1
Pe(x)*Pé(x)modﬂx)E x* +x modf(x)z X+1=6%6=3
Pﬁ(x)*F;(x)modf(x)E x*+x modf(x)z X +1=6%7=5
P7(x)*P7(x>modf(x)Ex4+x2+1 modf(x)z X=7%7=2

3.5 Solutions to Exercises and Problems

Finally, the multiplication table of F,, with irreducible polynomial f (x) =x’+x* +1 is as follows:

*
o
[N
N
W
N
v
o
~N

N O A WD~ O
S O O O O o o ©
N O LR WD = O
W F N9 u o B NN O
A 9 D H U Y WO
(o) S R Y e N]
= oA OO W NN B O
(S VS R L N e S)
N B = O R W O

Notice that all the nonzero elements of F, appear seven times in the table.

Exercise 3.13
Elements of field F3 , are {O, 1,2,3,4,5,6,7, 8}.

f(x)=x"+2x +2 is irreducible over field F,.

Note thatin F;: -1 =2mod3 and —2 =1 mod3.

Also note that coefficients in polynomial representation of elements of F, are in {O, 1, 2}. Polynomial representation of the

elements of field 173 .

B(x)=0 B(x)=1 P(x)=2

P(x)=x P(x)=x+1 PB(x)=x+2

P(x)=2x P(x)=2x+1 P(x)=2x+2

P (x) denotes the polynomial associated with element i of field F,,.

1) 4+5:
<x+1)+(x+2):2x+3:2x+x:3x:0.Therefore,4+5:0.
2) 3%2:
(x) * (2) modf(x) = 2x. Therefore, 3%2=6.
3) 4*5:
(x+1)*(x+2)=x"+3x+2=x*+2
x> 42 mod (x2+2x+2)5—2x: x . Therefore, 4 x5 =3.
4) 8%
(2x+2)*(2x +2) =4x" +8x + 4 =x" + 2x + 1 mod f(x)
X’ +2x+1mod f(x)= —1 =2. Therefore, 8" = 2.

Exercise 3.14

Recall that adding/subtracting twice the same element with coefficients in F, is equivalent to adding/subtracting 0, which

has no effect.

Let f (x) = x"* +x +1 be the irreducible polynomial used in multiplication over F,..

1) Compute x ' and x*

(x)*(x3+1)) mod <x4+x+1)51:> x'=x*+1
((xs)*(xs+x2+x+1))mod<x4+x+1) =1l=x
2) Compute (xz)/(x3 +x? +1) = (xz) * (x3 +x? +1)71
First, compute the inverse of (x3 +x*+ 1) mod (x4 +x+ 1)
<x3+x2+1)*x2:x5+x4+x2:x5+x4+x2+(x—x)+(1—1)
=x(x' +x+1)+(x* +x+1)+1
(x3+x2+1)*x2 mod(x“+x+1)z 1.
Thus, (x3 +x* +1>71mod <x4 +x +1> =x"

=x*+x*+x+1L

97

98 | 3 Mathematical Basics and Computation Algorithms for Cryptography

Second, compute (xz) * x% mod (x4 +x+ 1)
(x“)mod (x“ +x+1> =x+1
Therefore, (x2) / (x3 +x*+ 1) =x+1.
In numeric form, +L=3.
3) Compute (x3 +x*+ x) / (xz +x+ 1)
First, compute the inverse of (x2 +x+ 1) mod f (x)
(xz —|—x—i—1)*(x2 —&—x):x4 +X X+ X+ x=x"+x
(xz —|—x+1)*(x2 +x)mod (x4 +x+1)51.
Thus, (x2 +x+ 1)71 mod(x4 +x+ 1) = (xz + x))
Second, compute (x3 +x*+ x) * (x2 + x) mod (x“ +x+ 1)
(x3 +x° +x)*(x2 +x):(x5 +x2)
(x5 +x2) mod (x4 +x+1)zx .
Therefore, (x3 +x*+ x) / (xz +x+ 1) =x.
. 14
In numeric form, 7 =2.

4) All the previous computations make use of multiplication in a finite field, which—by design—is based on a computa-
tion modulo f (x) Therefore, if f (x) changes, the computation results change.

Exercise 3.15

Check of polynomial reducibility in field F,. Recall that adding twice the same polynomial with coefficients in F, is
equivalent to adding 0.

1) fi (x) =xS+xt+x*=x2 (x4 +x*+ 1) . Hence, f| (x) is reducible in F,.
2) 5 (x) =x*4+1=x>+ (2x2) +1= (x + 1)(x2 +x+ 1) . Hence, f, (x) is reducible in F,.
3) filx)=x*+x"+x+1= x(x3 + 1) + (x3 + 1) =(x+ 1)(x3 + 1) . Hence, f;(x) is reducible in F,.
2
4) fa (x) =x*+x?+1= (x2 +x+ 1) . Hence, f; (x) is reducible in F,.
Exercise 3.16
Let us consider the extension field F,; under polynomial f (x) = x* + x +2 irreducible over F,. aisarootof f (x)
Thus, o’ +a+2=0=a’=—a—2=2a+1.
The powers, till 32 -2,of give:

a’=1

a?=2a+1

o 8.

|
o R

3 (2a+1):2a+2

a4:a(2a+2):2 o’ a(2):2a

aﬁza(Za):a—i—Z o

«Q (a + 2) =a+1.
Thus, « can generate all nonzero elements of F,, . The latter can be written in three forms:
Fo={0, 1, 2 3 4 5 6 7, 8}
:{0, a®, ot o', o7, of, o, a?, ozs}
={0, 1, 2 o a+l, a+2 20, 20+1, 2a+2}

Exercise 3.17
a=3isarootof f(x)=x*+x+2 over F,,.

3.5 Solutions to Exercises and Problems | 99

1) Compute 3
f(a):az+a+2:a(a+1)+2:0:>a(a+1):—2:1.

Thus, (a + 1) is the inverse of «. Therefore, 37* =4 over F32 /(x2 +x+ 2).
2) Compute 3’
Since a 1sarootoff(), f() o’ +a+2.Thus, o’ =—a—2=2a+1

(a) =a’*a (2a+1 2a+1))

((a +a+1)(2a+1))* =((2)(2a+1))*a
:(a+2>*a:az+2a=2a+1:1

Thus, 3’ =1.

3) Compute 37

B =) =0 =1

4) Compute 6*7
6=2a,7=2a+1
2a*(2a+1):4a2+2a:a2+2a:2a+1+2a:a+1.
Thus, 6*7 =4.

Exercise 3.18
Let x* + x+1 be a polynomial irreducible over F, associated with the field F,
Do the following operations over F,.:

1) 9%6 =2
9 is represented by polynomial x* +1 and 6 by x* + x.
P+ +x)mod (x* +x+1)=x+1.
Thus, 9*6 =3 over field F,..

2) 9'=2
9 is represented by polynomial x* 41 and 2 by x.
xX'=x*+1mod (x* +x+1) = i=14.
Let A~ (x) denote the polynomial associated with 971
By Theorem 3 21, () M = AT (X) mod f(x)=> A” () X.
Hence, 9 ' =

3) (9 + 1)357
9is represented by polynomial x* 41 and 1 by constant polynomial 1. Thus, the addltlon over F,,, is F+D+Q)=x".
2 is chosen as generator, which is represented by polynomial x. By Theorem 3.22, x> ' = x'°> =1 mod f(x).

(9+1)* is represented by polynomial x**3%7 = X157+

Thus, x> = (17)(x®) mod f(x) = x* + x%
Hence, (9+1)*7 =12

Exercise 3.19
1) Addition in field binary F,; is an XOR operation.
01010011 + 11001010 = 10011001.
2) Find the product of 01010011*11001010 over F,, with reduction polynomial f(x) =x*+x*+x* +x+1.
Represent bit strings as polynomials, then find the mod f (x):
01010011 — A(x)=x"+x* +x+1
11001010 — B(x)=x"+x° +x* +x
01010011*11001010 =C | C(x)= A(x)* B(x)mod fx)
A(x)*B(x)= x" + x4 x" x4 27 +x° + X0+ x4 x
A(x) * B(x) modf(x) =
Thus, 01010011*11001010 = 00000001.
3) Find the multiplicative inverse of 00000010, in field F,, with reduction polynomial f (x) =x*+x*+x*+x+1.
a = 00000010 is represented by polynomial A(x)=

100 | 3 Mathematical Basics and Computation Algorithms for Cryptography

By definition of the multiplicative inverse, if a’ is the multiplicative inverse of x, then A(x)*A’ (x) =1mod f (x),
where A(x) and A’(x) are the polynomials associated with a and a’, respectively. f (x) can be written as follows:
f(x):x8+x4+x3+x+1:x*(x7 +x* 4+ x* —|—1)+1
Thus, (x” +x* +x2)*x51 modf(x) .
Hence, the multiplicative inverse of x mod (x8 x4 x+ 1) is x4+ x*>+x*+1. In binary representation, the
multiplicative inverse of 00000010 is 10001101.

Exercise 3.20

The Euclidean algorithm is based on the principle that the GCD of two numbers does not change if the larger number is
replaced by its difference with the smaller number. The algorithm is iterative and stops when the remainder is zero and the
returned value of GCD is the remainder of the last but one step.

1) Steps of computation of GCD(1144, 726) are shown in Figure 3.1. The remainder of the 5 step, i.e. 22, is the GCD of
1144 and 726.

19step: 1144 =726+ 1+ 418

. !
dgtep: 726 = 418+1+ 308

Isep: 418= 308+1+110
4% step: 308 = 110a2+8|3

w ’l S
Ststep: 110 = 88«1+ (22)
6% step: 88 22«4 40

Figure 3.1 Computation of GCD(1144,726) using Euclidean algorithm.

2) Steps of computation of GCD(16170, 2184) are shown in Figure 3.2. The remainder of the 3" step, i.e. 42, is the GCD of
16170 and 2184.

15step: 16170 = 2184=7 1 882

o |
2™ step: 2184 = BBZ + 2 + 420
v l'/'“'\‘
3vstep: BBZ = 420=2+42)
4t step: 420 = 42«10+ 0

Figure 3.2 Computation of GCD(16170,2184) using Euclidean algorithm.

3) Steps of computation of GCD(113, 13) are shown in Figure 3.3. The remainder of the 3rd step, i.e. 1, is the GCD of 113
and 13.

I#step: 113 =13+ 8+9

20 gtep: 13 = 9+1 +4

v o
3step: 9= 4+2+(1)
40 step: 4 = 45140

Figure 3.3 Computation of GCD(113,13) using Euclidean algorithm.

3.5 Solutions to Exercises and Problems | 101

Exercise 3.21

The steps of computation of GCD(654, 123) are as follows:
1% step: 654 =123 %5+ 39

2" step: 123 =39%3+6

3" step: 39 = 6% 6+ 34" step: 6=3*2+0

Thus, GCD(654,123) =3.

To find u and v such that 654u +123v = GCD<6S4, 123), do backward calculations starting from the result of the 3 step:
3=39-6%6

(654 —123*5)—6*(123—39*3)

=(654—123*5)—6*123+(39*18)

=(654—123%5)—6*123+18*(654 —123*5)

=654*%19+4123*(—5-6-90)

=654%19+123*(—101)

Hence, u =19 and v =—101.

Exercise 3.22
Use the Extended Euclidean algorithm to find multiplicative inverse of a mod n. We need to find u and v such that
n*u+a*v=1.Then, v=a ‘mod n.

1) 137 mod31=2
The steps of computation of GCD(31, 13) are as follows:
1% step: 31=13*2+5
2" step: 13=5%2+3
3" step: 5=3%1+2
4t step: 3=2%1+41
st step:2=2%1+40
Thus, GCD(31,13):1
To find u and v such that 31u +13v =1, do backward calculations starting from the result of the 4™ step:
1:(3)—(2):(13—2*5)—(2):(13—2*(31—2*13))—(2)
1=(5%13-2%31)—(2)=(5*13-2%31)—(5-3)
1:(5*13—2*31)—((31—2*13)—(3))
1:(5*13—2*31)—((31—2*13)—(13—2*5))
1:(5*13—2*31)—((31—2*13)—(13—2*(31—2*13)))
1=31%(—5)+13*(12)
Hence, 137! mod 31 =12

2) 1117 mod 4111="2
The steps of computation of GCD(4111,111) are as follows:
1% step: 4111 =111*37 +4
2" step: 111 =4*%27+3
3" step: 4=3%1+1
4 step: 1=1%140
Thus, GCD(4111,111) =1.
To find u and v such that 4111u+111v =1, do backward calculations starting from the result of the 3rd step:
1=(4)—(3)=(4111-111%37)— (111—4*27)
1= (4111—111*37)—(111—(4111—111*37)*27)
1=(28)*(4111)+(—38-37*27)*111
1=(28)*(4111)+(—1037)*111.
Hence, 111" mod 4111 =—-1037 mod 4 111 =3074.

102

3 Mathematical Basics and Computation Algorithms for Cryptography

Exercise 3.23

1) 147'% mod 23 =72
165=128+32+4+1=2"+2° +2*42°
L=8k =1k =0k =1k =0k=0k =1k =0k =1

b = (1471) mod 23 =147 mod 23=9

 =(147°] mod 23=1

4
=(147")" mod 23=147* mod 23 = (147 mod 23) mod 23=6

= 1470) mod 23=1

= 1471) mod 23 = 147 mod 23 = (147 mod 23)32 mod 23 =18

26
= 1470) mod 23=1

b =(
(
(
= (1470) mod 23=1
(
(
=

b, = (147) mod 23=137" mod 23= (147 mod 23) ' mod 23=4
147" mod23=9%1%6+1%1%18x1%4 mod 23 = 3888 mod 23 =1.
2) Fermat’s little theorem states that if p is prime and a is an integer not divisible by p, then a’ ' =1 mod p.

By Fermat’s little theorem, 147% mod 23 = 1, because 147 is not divisible by 23.
Also,147%*"7 mod 23 =1.

Thus, 147'° mod 23 = (147%7 (147" mod 23 =1" 147" mod 23.
Then, solve 147" mod 23 using the right-to-left binary exponentiation method.
11=8+2+1=2"+2+1
L=4,k=1k =0k =1k =1

20
by=(147"] mod 23=147 mod 23=9

1

L= (1471)2 mod 23 = (9)2 mod 23 =12
b= (1470)2 mod 23=1 mod 23
2} 4
b,=(147') mod 23= (12)' mod 23=13

147" mod 23=9%12%1%13 mod 23=1,
Therefore, using Fermat’s little theorem before applying the binary exponentiation algorithm reduces significantly the
number of squaring and multiplication operations.

Exercise 3.24

n=>50021, X =15063, Y = 37551, Base B=16.

Hexadecimal representation of arguments:

n=50021,, = C365,

X =15063,, = 3AD7,,, Y =37551,, = 92AF,,

X is four 16-bit words: X = (3, 10,13, 7). Words are in decimal representation to make the computations by hand easy.
We keep R= 16*, which meets the conditions R >n and GCD(R,n) =1.

R=16'=16'=1=4

Compute n’ = — n ' mod B: n' =—50021" mod16=—13 mod16=3.

Below are the computations in multi-precision Montgomery multiplication:

i X A+ x*Y q=A*n"mod B

A=(A+n*q)/B

0 7 262857 11
1 13 538981 15
2 10 456091 1
3 3 144285 7

50818
80581
31632
30902

3.5 Solutions to Exercises and Problems

The multi-precision Montgomery multiplication returns 30902, which represents X *Y * R~ mod n. Multiplying by R

yields (X*Y*Rfl)*R mod n= X *Y mod n.

Thus, 30902 % 16* mod 50021 = 15063 37551 mod 50021 = 43266.

Exercise 3.25

Let us consider the following congruence system:

x=3mod 5
S=1x=1mod 7
X =6 mod 8

The constants of the congruence equation system are:

n1:5,n2:7,n3:8 a1:3,a2:1,a3:6.

Alln,s are pairwise coprime and a, <, for i =1,2,3. Thus, the conditions to use the Chinese remainder theorem are met.

Steps of calculation of x using Gauss’s algorithm:
Common modulus N =5%7*8 =280.

__ 280 __ __ 280 __ __ 280
N, =20=56, N, =20 =40, N, =20 =35

Multiplicative inverses:

N;'"*N,=1mod 5=N,;'=1 N,'*N,=1mod7=N,"'=3

N;'"*N,=1mod 8= N,;' =3
x:(le(ai*Ni*Ni_l)) mod N

=((3*56*1)+(1*40*3)+(6*35*3)) mod
=918 mod 280 =78,

280

Check:78=3 mod 5,78=1 mod 7,78 =6 mod 8

Exercise 3.26

105=3*5%*7
e 113=2mod 3
By Lemma 3.1:

72000 000 000013
10372 000 000 000013 = (2> mod 3

72000 000000012

mod 3)

P
7200000000012

=2%(1) 2 mod 3 =2 (because 2° =1
e 113=3mod 5

By Lemma 3.1:

11372000000000013 mod 5 = (3)72000000000013 mod 5

7200000000012
= (31) *(34) 4 mod 5

72000 000 000 012
=3* (1) 4

mod 5=3 (because 3* =1 mod 5)

103

104

3

Mathematical Basics and Computation Algorithms for Cryptography

113=1 mod 7.
By Lemma 3.1:

72000 000 000 013
113

mod 7 = mod7=1-

(1)72 000 000000013
Thus, we have the following congruences:
11372000000000013 =2 mod 3
11372000000000013 =3 mod 5
11372000000000013 =1 mod 7

There exist two positive integers k and x <105, such that 11372%00%0000013 _ p+705 4 x . Thus, from the congruences
above, we derive the following congruence equation system:

x=2mod 3
S=1x=3mod 5
x=1mod 7

The constant of the congruence system above are: n, =3, n, =5,n,=7,a, =2, a, =3, and a, =1. All moduli are pair-
wise coprime and a, <n,, for i =1,2,3. Therefore, the conditions to use the Chinese remainder theorem are met. Hence,
according to the CRT there exists a unique value of x mod 357 that satisfies the three congruences. The solution to
the congruence equation system is as follows:

N=3%5%x7=105
N,=5%7=35 N,=3*7=21 N,=3%*5=15
N;'=2 N, =1 Ny =1

x:((2*35*2)+(3*21*1)-1—(1*15*1))mod105:8-

Exercise 3.27

1

2)

3)

First, use the Euler’s criterion (Theorem 3.7) to test if 37 mod 43 has a solution.

37(4371)/2 =42 mod 43 = —1. Therefore, no solution exists.
First, use the Euler’s criterion to test if 36 mod 43 has a solution.

3 6(4371)/2
The steps of Tonelli-Shanks algorithm are as follows:
43=2"*21+41.Thus,s=1 and g =21.
Find a square nonresidue modulo 43. u =2 is a square nonresidue.
Initialization: m=1; ¢ =2* mod 43 =42; t =36* mod 43=1

R=36"""2 mod 43 =6,
Loop: the algorithm stops at the first iteration, because t =1, and returns r = 6.
Check: (i6)2 =36 mod43.
First, use the Euler’s criterion to test if 53 mod97 has a solution.
53'(97_1)/2 =1 mod 97. Thus, two solutions exist.
The steps of Tonelli-Shanks algorithm are as follows:
97=2°*3+1.Thus,s=5and g =3.
Find a square nonresidue modulo 97: u =5 is a square nonresidue.
Initialization: m=5; c =5 mod 97 =28; t = 53° mod 97 =79

R=53"""2 1mod 97 =93,

=1 mod 43. Thus, two solutions exist.

Loop:

3.5 Solutions to Exercises and Problems

Iteration #1: Iteration #2:
79* =1 mod 97. Thus, k = 4. 50 =1 mod 97. Thus, k= 3.
0 _o2° _
b=1282 mod 97 =28 b=8" mod97=38
m=4 m=3
c=28 mod97 =38 c=8 mod 97 =64
t =79%28% mod 97 =50 t=50*8" mod 97 =96
R=93*28 mod 97 = 82 R=82%8 mod 97 =74
Iteration #3: Iteration #4:
962 =1 mod 97. Thus, k =1. t =1 mod 97. Hence, stop and return r = 76..

b= 64> mod 97 = 22
m=1

c =22 mod 97 =96
t=96%22% mod 97 =1
R=74%22 mod 97 =76

Check: (76" = 53 mod 97.

Exercise 3.28
Find the solution(s) to y* = 3 mod 143.
143 has two prime factors 13 and 11.

Step 1: Find the square roots of prime moduli.
From congruence 3mod143, two congruences are derived using Lemma 3.1:
3 mod 11 and 3 mod 13.

Step 2: Solve a set of congruence systems.
Build a set of 2° distinct congruence systems denoted S,, S,, S;, and S, as follows:

x=5mod11 x=5mod11
1" | x =4 mod 13 2 |x=9mod 13
xX=6 mod11 xX=6 mod11
3 |x=4 mod 13 47 |x=9mod3

Use Gauss’s algorithm to find the solutions to each of the four congruence systems. Below, only the calculations to solve
S, are included.

The constants of congruence equation system S, are: n, =11, n, =13, a, =5, a, = 4.

Common modulus is N =11*%13 =143.

_ 1113 _11*13 __
N, =11 =13, N, = LB =11.

1
Multiplicative inverses: N; ' * N, =1 mod11= N; ' =6
N,'*N,=1mod13= N, "' =6
x=((5%13%6)+(4*11*6)) mod 143 = 82-
Applying Gauss’s algorithm to the four congruence systems yields the following:
x =82 is a solution to S
x =126 is a solution to S,
x =17 is a solution to S,
x =61 is a solution to S,.

105

106 | 3 Mathematical Basics and Computation Algorithms for Cryptography

Now, check that the four values are square roots of 3 mod 143
x =82:82> = 6724 =3 mod 143

x =126:126% =15876 =3 mod 143
x=17:17> =289 =3 mod 143

X =61:61> =2304 =3 mod 143.
Thus, 3 mod 143 has four square roots.
Exercise 3.29

Find the solution(s) to y* = 421 mod 693.
Since 693 =7*9*11 is a product of three primes, there should exist 2° square roots. Procedure to find the square roots in
case of multiple primes is composed of two steps:

Step 1: Find the square roots of prime factors.
By Lemma 3.2:
x=421mod 7= x=1mod 7
X =421 mod 6931 x =421 mod 9= x =7 mod 9
x =421 mod11= x =3 mod 11
Find square roots for each of the three congruences above:
1 mod 7 has two square roots: 1, =1 and —r, =6.
7 mod 9 has two square roots: r, =4 and —r, =5.
3 mod 11 has two square roots: r, =5 and —r, = 6.

Step 2: Find solutions to congruence systems.

From the squares roots of the primes factoring 693, eight congruence systems are derived:

x=1mod 7 x=1mod7
S,=1x=4mod9 S,=1x=4mod9
x=5mod11 X =6 modll
x=1mod7 x=1mod 7
S,=1x=5mod9 S,=1x=5mod?9
xX=5mod11 XxX=6 mod11
x=6mod7 xX=6mod7
S;=1x=4mod9 Sg=1x=4mod?9
X=5mod11 x =6 mod 11
xX=6 mod7 xX=6 mod7
S,=1x=5mod9 Sg=1x=5mod9
xX=5mod11 X=6 mod11

Gauss’s algorithm is used to find solutions to the eight congruence systems. Below are calculations to solve S, system:
The constants of the congruence equation system are n, =7, n, =9, n, =11, a, =1, a, =4, a, =5.
Common modulus is N =7%*9*11

7%9*11 7%9*11
N=F——=99,N,=——=
7

9

_7%9%11

77, Ny ="

63.
Multiplicative inverses:

N;/'*N,=1mod7=N;'=1

N,;'*N,=1mod 9= N, ' =2

N;'*N,=1mod11=N;' =7

x = ((1%99%1)+ (4577 %2) + (5 63%7)) mod 693 = 148-

3.5 Solutions to Exercises and Problems | 107

Applying the SRT to the eight congruence systems yields the following:
x =148 isasolutionto S; x =589 is a solution to S,
x =302 isasolutionto S; x =50 isasolution to S,
x =643 isasolutionto S; x =391 is a solution to S,
x =104 isasolutionto S, x =545 is a solution to S.

Check if the eight solutions to the congruence systems are square roots of
421 mod 693:
X =148 : 1482 = 21904 = 421 mod 693
x =589 : 5897 = 346921 = 421 mod 693
X =302:302% = 91204 = 421 mod 693
X =50: 50" = 2500 = 421 mod 693
X = 643 : 643% = 413449 = 421 mod 693
x =391:391% = 152881 = 421 mod 693
x =104 :104%> =10816 = 421 mod 693
X = 545 545% =297025 = 421 mod 693.
Finally, notice that

—148 mod 693 = 545 —545 mod 693 =148
—589 mod 693 =104 —104 mod 693 = 589
—302 mod 693 =391 —391 mod 693 =302
—50 mod 693 =643 —643 mod 693 =50,

Thus, 421 mod 693 has exactly eight square roots: four roots and their negatives.

Exercise 3.30
Note that to do computations with large numbers, a tool implementing the polynomial extended Euclidean algorithm is
required.

In the following, —ax mod p is replaced by (p — a)x mod p.

Check the irreducibility of f (x) =x" 4+ x> +1 over E,.

Degree of f(x) is m =10. The prime dividers of 10 are 5 and 2.

10 10
pl :?:2, p2 :?:5
Iteration #1 (test of prime divider 5, i.e. p, =2):
¥ =x* mod f (x)
h(x)=x*—x mod f(x)=x*+x
g(x) = GCD(f(x),h(x)) =1 g(x) =1; hence, the algorithm continues.
Iteration #2 (test of prime divider 2, i.e. p, =5):
x* E(x8 +x° +x* +x? +x) modf(x)
h(x):x8 +x° x4 x—x modf(x):x8 +x° +x* +x?
g(x) = GCD(f(x),h(x)) =1
g(x)=1; hence, the algorithm continues.
Second step of the algorithm
g(x) =x* —x modf(x): 0.
Thus, x"° + x* +1 is irreducible over F,.
Exercise 3.31

Note that to do computations with large numbers, a tool implementing the polynomial extended Euclidean algorithm is
required.

108 | 3 Mathematical Basics and Computation Algorithms for Cryptography

In the following, —axmodp is replaced by (p— a)x mod p.
Letf(x):x5 +xt X x—1.

First, notice that, over F,, f(0)=2, f(1)=1, and f(2)=1. Hence, f(x) has no roots in F,. Since f(x) is of degree 5, we
cannot conclude that f (x) is irreducible. Thus, let us check f (x) irreducibility using Rabin’s test.

The given polynomial is of degree 5. Thus, only one prime divider is to be considered.
5

p,= E =1.

Iteration #1 (test of prime divider 5, i.e. p, =1):
X =x*=x*mod f(x)
h(x): x*—x modf(x) =x>42x modf(x)
GCD(f(x),h(x) =1.
Hence, the algorithm continues.

Second step of the algorithm
g(x): X —x modf(x)zzx2 +2x+1

Thus, f(x) =x"+x* +x* +x* +x -1 is irreducible over F,.

Indeed, xS+x4—|—x3+x2—|—x+2:<x2+2x+2)(x3+2x2+x+1).

Problem 3.1 (Proof of Lemma 3.1)

Lemma 3.1 states that if a, n, and k are positive integers, then a* mod n = (a mod n)k mod n.

By definition, for any integers a and b: a*b mod n=(a mod n)*(b mod n)mod n.

Thus, a*a mod n= (a mod n)2 mod n.

Then, a*a*a mod n= (a mod n)3 mod n, which may be generalized to a* mod n= (a mod n)k mod n for any integer k > 2.
O

Problem 3.2 (Proof of Lemma 3.2)

= — kg kX .
x:amodN—amod(n1 n,*... nk)

Thus, there exists an integer u such that x=a+u* (”1 ny kLK nk>.
u*N

Let N, = ,for 1<i<k. N, is an integer because n; is a factor of N.

n;

x can be expressed as x =a+ N, *n;, for 1 <i<k.

a+N,*n,=amod n;= x=amod n, for 1 <i<k. 0

Problem 3.3 (Proof of Lemma 3.3)

By definition, ¢ (n) is the number of elements of Z ,, which are coprime with n. By Theorem 3.3, all the <p<n) elements have
multiplicative inverse mod n. Therefore, they are elements of Z, . Hence, ‘Z;‘ = ga(n). O

Problem 3.4

1) By definition of multiplicative inverse, given two elements x and x’ of Z;, if x’ is a multiplicative inverse of x, then
x*x"=1mod p.
Let a be an even integer less than p. There exists a positive integer m such that a =2m. a’, the multiplicative inverse
of a, does not exist because the condition a*a’ =1 mod p cannot be satisfied, if p is even, which is proven as follows:
If @’ was the multiplicative inverse of a, then:

a*a'=1mod p=3k|2m*a’ =k*p+1. (a)

3.5 Solutions to Exercises and Problems | 109

Since p is even, there exists q such that p =2gq.
Statement (a) becomes:

a*a'=1mod p=TFki2m*a’' =k*2q+1
2(m*a’)=2(k*q)+1. (b)
Statement (b) cannot hold because the left side of equality is even while the right one is odd. Thus, no even integer is
an element of Z; if p is even.
2) Z; means Z; with p=2". Since p is even, Z; does not include any even elements, because their multiplicative inverses
do not exist in Z;m. Thus, Z;m includes only odd elements. Hence, its cardinality can be at most % =2m 1,
Problem 3.5
Zy, ={1,2,3,4,5,6,7,8,9,10}
p=11=L2=5and—1=10 mod 11.
Check by Euler’s criterion (Theorem 3.7):
1’ =1mod11,3° =1 mod 7,4’ =1 mod 11,5’ =1 mod 11,9° =1 mod 11

2’=-1mod11,6°=—-1mod11.7° =—1mod 11,8 = —1 mod 11, 10° = —1 mod 11.

11-1

. * . .
5—) of elements in Z,, are square residues and five elements are square nonresidues.

Thus, five (i.e.

Problem 3.6 (Proof of Lemma 3.4)
z,={1.2,...p—-1}.
Since p is a prime greater than 2, the number of elements of Z; is even.

By definition of Z;, if—ac Z;, then —a € Z; (i.e. any element and its additive inverse are elements of Z;). Any element
of Z; has one and only one additive inverse.

z,={12, ...,p—l}:{l,Z, B ...,p—Z,p—l}.

By definition of the additive inverse (or negative):
—1=p—1mod p, 72:p72modp,...,—pT_lzp—pT_1 modp:pT—i_1

* o p—1 p—1
Thus, Z, = {1,2, ...p—1} = {1,2, 2, ...,72,71}.

. 2 2 . ~
The squares that are elements of Z, are: 1%, (—1)2, 22, (—2)2, . (pT’l) ,(7"7’1) .Since Va€Z,, a’ = (—a)z, there exist pTl

distinct squares. It is easy to prove that if a and b are two distinct elements in Z;, with b = —a, then a® mod p and b* mod p
are two distinct elements. By definition, an element a € Z; is a quadratic residue if there exists y e Z; such that
y* =a mod p. Since there are exactly pT’l distinct squares in Z;, the number of square residues is ’%1. Hence, the remain-

ing pT‘l elements are square nonresidues. O

Problem 3.7 (Proof of Lemma 3.5)

p-1 p+l
Since a is a quadratic residue of p, we know by Euler’s criterion (Theorem 3.7) that a 2 =1 mod p. Thus,ifr=a * ,then
p+1 p—1

r’=a? =a*a? =r’=a*(1)mod p=a- O

110 | 3 Mathematical Basics and Computation Algorithms for Cryptography

Problem 3.8

By definition, Z; ={acZ, | GCD(a,p) =1}.

a1

Let u be any element of Z

S

(p-1)2 (p1

=

=a’=u
By Fermat’s little theorem (Theorem 3.5), u?Y =1 mod p-
Thus, a® =1 mod p. Hence, a is a square root of 1.

(p-1)/

e A=U

e From answer to question 1, we know that u *isa square root of 1 mod p. Thus, u(lH)/2 is1 or —1 in modulo p.

Problem 3.9
Prove that: given two distinct primes p and q:

q(tf1 mod zo)er(zf1 mod q) =pq+1.

Let N = q(q*1 mod p)—kp(p*1 mod q). (a)
By definition of multiplicative inverse:
p(p’lmodq>ElmodqﬁﬂkeNlp*p’I:k*q+1 (b)
q(q’lmodp)zlmodpﬁﬂk'Equ*q’l:k’*p—i—l. (b”)
By substitution of (b) and (b’) in (a):
N:q(qflmodp)+k*q+1:>NE 1 mod q (©
N:k’*p+1+p(p*1mod q);sNE 1 mod p. ©)

Since p and q are coprime, from (c) and (¢’):

N =1mod p*q @
All integers (p, plaq q_l) in (a) are greater than 1, so:

N>2. (e)
By definition of modulo:

p’lmodng—1:>p(p’1modq)<p>s<q ®

q’lmodpgp—1:>q(q’1 mod q)<q*p. ()
From (a), (e), (f), and (f):

2<N<2*p*q. (®
The unique value of N, which fulfills (d) and (g), is p*q +1.
Therefore, q(q’1 mod p) + p(pi1 mod q) =1+pxq.

Problem 3.10
Let q be the order of Z; and 1 its neutral element.
If g is a generator of Z;, then elements of Z; can be expressed as powers of g:

Z; :{l,g, g, gq’l}.

Since g is a generator of Z and ‘Z;‘ =q,g9=1modp.
By definition of multiplicative inverse: g* g ' =1.

3.5 Solutions to Exercises and Problems

e, g5~ <1 g0(e) <101 1 e

Since the order of g ' is q, g ' is a generator of Z;.

Problem 3.11 (Proof of Lemma 3.6)
To prove that Lemma 3.6 is correct, we need to prove that the statement “any irreducible polynomial of degree m can gen-
erate all the elements of field Fpm ” is false. The two following scenarios are counterexamples to the statement above.

1

2)

Let f (x): x* 41 and « its root over field F,.
Since « isarootoff(x), then a’4+1=0=a’=—-1=2.

Let us see how powers of o generate elements of field F,, :
a’=1 al=a

a’=2 a3:a(a2):20z

at :a(2a>:2 a?=1

asza(l):a a6:a(1>:2.
Thus, a cannot generate all the eight nonzero elements of F32 . Hence, o, which represents the element 3, is not a prim-

itive element in F32 .

Let f(x) = x>+ 2x+2 and « its root over field F33 .
x" mod f(X) Element x'mod f(x) Element
1 1 5
o’ o’ a+2
al o 3 atl a? + 2« 15
o? o? att 20 +a+1 22
o’ a+1 4 al? o? +1 10
at a4 a 12 ot 1 1
o’ ad+a+1 13 o™ a 3
ab a? +2a+1 16 o o? 9
o’ 207 +2a+1 25 ot a+1 4
a® 2% +2 20

Root «r can generate only 12 nonzero elements among the 26 nonzero elements of F; .
Both examples above prove (by counterexamples) that not all polynomials of degree m and irreducible over field F,
have a root « that can generate all elements of a field Fpm . O

Problem 3.12

1

If g, is a generator, then its multiplicative inverse g, ! also is a generator.

By definition of multiplicative inverse: g; * gi’1 =1mod p.

Let q be the number of generators of Z; and G the set of Z; generators denoted {gl, 82 -+ 84 } Each element in G has
its multiplicative inverse in G. Without loss of generality, assume that, if q is even, the set G is organized into two halves

q . . . _ -
such that g, , 1<k < >’ is the inverse of 84 k1016 G=18, &, g ggl’ g 1,g1 1l
2 2

The product Héj 8; = 8 * &, * " * §, may be rewritten as

Hillcgi:(gl *8{1)*(g2*g2’1)*...*

-1
8,%8,]
2 2

Thus,]_[i’fgizl*l*...*lzl mod p.

111

112

3 Mathematical Basics and Computation Algorithms for Cryptography

If q is odd, G is organized as [gl, 8y 841> 8q1 ,g;il, g;l,gfl } Since, the elements in the subset of G on the right of
2 2 2

8,1 and the elements on its left are pairwise inverses, g, = qu Hence, l_[‘ g =1*.1..*1=1mod p.

2 2 2
2) Let F, be a prime field. Thus, F,= {0, 12,...,p— 1}. Each element u € F, has one and only one additive inverse u’ € E,,

such that u +u’ = 0. The elements of Fp can be organized as follows: {0, 1,-1,2,—2, ..., %,—(%)}. Therefore,
— p—1_ p-1 _
Yer, :(0)+(1—1)+(2—2)+...+(T— T) mod p =0

Problem 3.13
Z,= {0, 12, 3} is not a field, because 0 and 2 have no multiplicative inverse in Z,.

Problem 3.14
Consider field F,,; with reduction polynomial f (x) = x° 4+ x* +1. Show that g = x is a generator of F.
The set of elements of F,; is {0 1,2, ...,30, 31}

By definition, if g is a generator of a field F,,, then every nonzero element of F,, can be uniquely written is a power of g.
That is: Fy, = F,, —{0} = {2", o<l<2’"—2}

g =X isita generator of F, ?

In this problem 2™ = 32. Thus, we have to check the powers of x from 0 to 30.
x° mod f(x)=1=(00001)=1 x' mod f(x)=x=(00010)=2

x? modf(x) =x’= (00100) =4 x’ modf(x) =x’= (01000) =8

x* mod f(x)=x*=(10000)=16 X’ mod f(x)=x +1=(00101) =5
From power 5, we make use of the following rule of modular arithmetic:
(A(x) B(x)) mod P(x) = ((A(x) mod P(x))+(B(x) mod P(x))| mod P(x)
for any polynomials A(x) B(x) and P(x)

x® mod f(x)= ((x modf(x mod f (x)

:x*<x2+1) mod f(x)= x* +x =(01010) =10

x’ modf(x): ((x2 mod f(x modf))

:xz*(xz—i-l) mod f(x)= x* + x> = (10100) =20
xsmodf() ((x modf(x modf)

=5 *(x2 +1) mod f(x)= x>+ x> +1= (01101)43
x” mod f(x)= ((xl mod f(x))*(xs mod f(x)))

= (x4 %7 +1) = x* 4+ x° + x=(11010) = 26

x'° modf(x) = ((x1 mod f(x)) * (x9 mod f(x)))

- x*<x4 +x° +x) mod f(x)= x* +1=(10001)=17
x" mod f(x) = ((x1 mod f(x))*(xm modf(x)))
—x*(x4 +1) mod f(x)= x> +x+1=(00111)=

x'? mod f(x)= ((xl mod f(x))*(x“ mod f(x)))
:x*(x2 +x+1) mod f(x)=x*+ x* +x=(001110)=

3.5 Solutions to Exercises and Problems | 113

):(11100):28
) (11101)=29
):(11111):31

x® mod f(x))| mod (f)= (11011) =27
)

x)= ((x16 mod f(x))*(x“ mod f(x))) mod f(x)
= (x4 +x° +x+1)*(x4 +x2)2mod f(x): xt+x= (10010>: 18-
Problem 3.15

Let f (x) =x* +x +1 be an irreducible polynomial over E.f (x) is used for computations over field F,.. Solve the follow-
ing linear equations:

1) 3y=4
y=4*371
Operations are done using polynomial representation.

371 (x+1)(x3+x2+x)mod (x4+x+1):1;s3*1:14

#3701 (%) + 2%+ x) mod (x* +x+1)=x" 427 +1-
Hence, y =13

2) 9y+3=2
y:(2—3)*9*1.
Operations are done with polynomial representation.
2-3:x—x—-1=-1=15
97! (x3 +1)(x) mod (x“—i—x—kl)=1:>9*1 =2

(2—3)*9’1 :15x mod (x4 +x+1):15x:—x
Hence, y=—-2=14.

Problem 3.16

147"° mod 23="

1) Fermat’s little theorem states that given two positive integers m and p, such that p is prime and m is not divisible by p,
then m? ' =1 mod p.
In this problem m =147 and p=23. m and p are coprime. Thus, Fermat’s little theorem is applicable. Thus,
147*2 =1 mod23 is used to reduce the computations as follows:

114 | 3 Mathematical Basics and Computation Algorithms for Cryptography

147" mod 23=147"2"" mod 23 = (14722)7 +(147) mod 23
= (1) #(147) mod 23=9.
To use the right-to-left binary exponentiation method, we need to represent the exponent as a sum of powers of 2:
155=128+16+8+2+1=2" +2* +2° +2' +2°.
The number of iterations of the right-to-left binary exponentiation method depends on the rank of the leftmost

significant bit of the exponent. If the exponent is 155, the number of iterations of the algorithm is 8 (i.e. 7+1). Conse-
quently, when applicable, Fermat’s little theorem is a very fast method to perform modular exponentiation.

Problem 3.17
1) We need to prove thatt*R=T mod n,0 <t <n (because a residue is less than the modulus), and ¢ is an integer.
t*R=T mod n? (a)

In line 2, t = (T +m*n)/ R). Multiplying both sides by R yields ¢t * R = (T +m* n)) =T mod n, because adding m*n
does not change the residue. Therefore, condition (a) holds.

0<t<n? (b)

From line 3, the returned result is either <n or t =t —n. Therefore, we need to prove that t <2n. From definition in
line 1, 0 <m < R. Thus, 0 <n*m <n*R. By definition 3.44,0<T <n*R. Thus, 0 <T +n*m <2*n*R. Dividing the
inequality by R yields 0 < (T +n*m)/ R <2*n. Thus, condition (b) holds.

tis it an integer? (©

Multiplying both sides in line 1 by n yields n*m=n*T*n' =T * (—n * nil) = —T mod R. Therefore, there exists some
integer k such thatn*m=k*R—T and hencet = % = k*TR is an integer. O

2) We need to prove that ¢ = a*b mod n, where ¢ denotes the result of the Montgomery multiplication. We proceed by
substitution starting from the definition of c:

CEREDC(C’)EC'*R_1 mod nz(REDC(d”‘B))"‘R‘1 mod n
E((d*B)* R’l)"‘R’1 mod n
E(((G*R mod n)*(b*R mod n))* R’l)*R’l mod n

E(((a*R*R’l mod n)*(b*R*R’l mod n)) mod n=axb mod n- U

Problem 3.18 (Proof of Gauss’s algorithm)
Gauss’s algorithm is correct if and only if the returned value of x satisfies all the congruence equations. Recall that to apply
the Chinese remainder theorem, the moduli in congruence equations must meet the following condition:

For 1<i<k, n; is coprime with n;, for i= j and 1< j<k.

Proof:
f i=k
=1l 1 for1<i<k.Thus,

n;

By construction, N; =

i) Since the n,’s are pairwise coprime and N, does not have a factor equal to n,, GCD(N i ni) = 1. Thus, the multiplicative
inverse of N; mod n,, for every i in[1, k], exists.

ii) For every j in (l,k), N; =0 mod n, for every i in[1, k] and j = i, because , is a factor of N .
From i) and ii), for i and j in[1, k]:
(aj *N; *N;l) mod n; =0 if j=1i (because n, is a factor ofNj).

(ai *N, *Ni‘l) mod n, = a, mod n, (because (Ni *Ni_l) mod n; =1).

Notes

= (Zle (al. *N, *N;l)) mod n, = a; mod n,, Vi €[1,k],

By construction: x = (Zfl (ai *N;*N; 1)) mod N. Hence, there exists a positive integer m such that
x:Zfl(ai * N, *Ni_l)—m*N

= x mod n, :(Efil(ai N, *lel)—m*N) mod n,.

Since N is a multiple of n,,

x mod n, :(ke (ai * N, *N[l)) mod n, = a; mod n;, Vie|[1,k]. O

i=1

Problem 3.19 (Proof of Lemma 3.8)
First, we need to prove that if n and x are integers such that 1 < x <n and x* = 1 mod n, then n is composite.

Proof. x* =1 mod n=>x*> —1=0 mod n=(x+1)(x—1)=0 mod n. If x>=1 and x =n—1, n must be composite because
(x+1)and (x —1) are less than n and their product is a multiple of n. For example, 5> = 1 mod 24,(5+1)(5—1) =0 mod 24,

and 24 is composite.
n—1

Second, let n and a be integers such that GCD(a,n) =1and aT;é +1 mod n.Eithera"™ 75 1mod nor a" =1 mod n

holds. By Fermat’s little theorem, if a" ' =1 mod n, then n must be composite.

a" ! =1 mod n is the same as (a n-1)/2)* =1 mod n, which means that a("%)/z, which is different from 1 and —1, is a square
root of 1 mod n. Therefore, by the fact proven above, n must be composite. O
Notes

1 See Problem 3.1 for proof of Lemma 3.1.

See Problem 3.2 for proof of Lemma 3.2.

In the sequel, multiplicative inverse or simply inverse is used instead of modular multiplicative inverse, because we only
consider calculations in modular arithmetic.

See Problem 3.3 for proof of Lemma 3.3.

See Problem 3.6 for proof of Lemma 3.4.

It is easy to prove that if p is a prime and greater than 2, then p # 0 mod 4 and p # 2 mod 4.

See Problem 3.7 for proof of Lemma 3.5.

W N

0 N o6 1 h

The multiplication operation x may refer or not to the usual integer multiplication operation denoted “*” mod n. Unless

explicitly redefined, X means *.

9 Elements of a field can be (integer or real) numbers, booleans, literals, strings, etc. In this book, field elements are integers.

10 If p is prime, F, and Z , have exactly the same elements {0,1,2, ...,p—1).

11 See Problem 3.11 for proof of Lemma 3.6.

12 There exists a second variant of binary exponentiation, called left-to-right binary exponentiation, which proceeds in the
inverse direction of the bit rank, i.e. form the most significant bit to the least significant bit of the exponent. Both methods
have equivalent complexity.

13 Multi-precision division is not given, because it is not used in the sequel.

14 Comments for selection: i) The half of Z; elements are quadratic nonresidue. ii) Depending on the implementation of the

algorithm, the selection of a candidate element in Z; may be at random or by starting from 1 and incrementing. iii)

Candidate elements can be tested by Euler’s criterion. iv) Stop the selection when the first quadratic nonresidue element is

found.

115

116

3 Mathematical Basics and Computation Algorithms for Cryptography

References

NOoO v A WNBR

10

11

12

McEliece, R.J. (2011). Finite Fields for Computer Scientists and Engineers. Kluwer Academic Publishers.

Hachenberger, D. and Jungnickel, D. (2020). Topics in Galois Fields. Springer.

Mullen, G.L. and Panario, D. (2013). Handbook of Finite Fields. CRC Press.

Stein, W. (2009). Elementary Number Theory: Primes, Congruences, and Secrets: A Computational Approach. Springer.
Rosen, K.H. (1984). Elementary Number Theory and Its Applications. Addison Wesley.

Tattersall, J.J. (2005). Elementary Number Theory in Nine Chapters. Cambridge University Press.

Blake-Wilson, S., Bolyard, N., Gupta, V. et al. (2006). Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS) - RFC 4492. Internet Engineering Task Force (IETF).

ANSI. (2020). Financial Services - Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm - ECDSA - ANSI X9.142. American National Standard Institute.

Montgomery, P.L. (1985). Modular multiplication without trial division. Mathematics of Computation 44 (170): 519-521.
Shanks, D. (1972). Five number-theoretic algorithms. In Second Manitoba Conference on Numerical Mathematics.
Winnipeg, MB, Canada: American Mathematical Association, 51-70.

Rabin, M.O. (1980). Probabilistic algorithms in finite fields. STAM (Society for Industrial Applied Mathematics) Journal of
Computing 9 (2): 273-280.

Katz, J. and Lindell, Y. (2007). Introduction to Modern Cryptography. CRC Press.

4

Symmetric Ciphering

Historical Ciphers

Shift and substitution ciphers have been used for written text transmission and dominated the art of secret writing for at
least two millenniums (and maybe more). The most known historical ciphers in this category, include Caesar’s, Vigenere’s,
affine, OTP, and Enigma ciphers. With the advent of computers, shift and substitution ciphering were abandoned, because
it has become easy to break them. However, it is important to learn them since they had inspired the modern cryptography.
The material below is mostly collected from [1-5].

4.1 Definitions

Definition 4.1 Alphabet: it is a set of elements, which may be letters, words, or any other form of bit strings that are used to
generate plaintexts and ciphertexts.

In the sequel, the alphabet elements are either Latin letters or bits.

Definition 4.2 Substitution cipher: it is a cipher in which an alphabet element is replaced by another alphabet element to
yield a ciphertext.

Definition 4.3 Shift cipher: it is a special type of substitution cipher in which a letter is replaced by another letter located a
few positions away.

Definition 4.4 Monoalphabetic cipher: it is a cipher in which the letters of the plaintext are mapped to ciphertext letters
based on a single substitution key and each letter is always replaced by the same letter. The transformation is bijective.

Definition 4.5 Polyalphabetic cipher: it is a cipher, which makes use of multiple alphabets and a letter may be replaced
by many other letters depending on its position in the plaintext. It makes use of multiple keys. The transformation is not
bijective.

Definition 4.6 Information-theoretic secure cipher: a cipher is information-theoretic secure if it cannot be broken even if
the adversary has unlimited computation resources.

4.2 Caesar’s Cipher

One of the most known shift ciphers is Caesar’s cipher used in the Roman Empire to encrypt messages exchanged between
Roma (i.e. the emperor and his attorneys) and roman armies around the world. At ancient Rome, the romans had an intel-
ligence system comparable to the one in today’s USA.

A message to encrypt is a string of letters over an alphabet .4 of m letters. Each letter has an index in interval [0, m —1].
Let Ind (y) be a function that returns the index of a letter y in the alphabet .4 and Let (¢), a function that returns the letter
of index c. Caesar’s cipher may be formulated as follows:!

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

117

118

4 Symmetric Ciphering

Encryption: given akey k (k > N, k <m) and a letter to encrypt, the encryption is a shift right to yield the encrypted letter !'.
Formally:

Enc(l)=1'= Let (A((Ind () 4+ k) mod m)).
Decryption: It is a shift left. Formally,

Dec(l"y=1= Let (A((Ind (I") — k) mod m)).

Example 4.1 Let A be the Latin alphabet, m =26, and k = 3.
The encryption table would be:

T UV WXYZ

ABCDEVFGHIJ K KLMNOPAQ QRS
STUV WXY Z A BC

DEF GH I J KLMNOZP QR
The decryption table would be:

ABCDETVFGH1JKILMNOZPI QRSTUVWIXYZ
XY Z ABCDEVFGIHUJI KLMNOPOQRSTUVW

Encryption of plaintext CAESAR is yielded as follows:
Il = Let (A((Ind(C)+3) mod 26)) = Let (A(5))=F
I, = Let (A((Ind(A)+3) mod 26)) = Let (A(3))=D
I; =Let (A((Ind(E)+3) mod 26)) = Let (A(7))=H
I, = Let (A((Ind(S)+3) mod 26))= Let (A(21))=V
I =Let (A((Ind(A)+3) mod 26)) = Let (A(3))=D
Il = Let (A((Ind(R)+3) mod 26)) = Let (A(20))=U

Therefore, the encrypted message is FDHVDU.

The decryption is performed as follows:
I, = Let (A((Ind(l)—3) mod26)), fori=0,1, ..., 25. Therefore, the plaintext is the same as the original message.

Caesar’s chipper security

Caesar’s ciphering was very robust at Roman time. It required frequent changes of the secret (i.e. the key k) to prevent
attacks. For example, during a secured mission that could not be jeopardized by enemies, a list of keys was transmitted to
the governors of districts and then the keys were used for specific periods and for specific communicating entities (e.g. one
key for each exchange between Roma and any other location in the empire).

Caesar’s cipher had been used for centuries because computer did not exist at that time. Unfortunately, Caesar’s cipher
has two flaws. First, since there are only 26 letters in Latin alphabet, there exist 25 shifts (k =0 or 26 results in no shift).
Second, since frequency of letters in human readable texts is dependent on the language in use (e.g. “E” is more frequent
than “X”) and since each letter is always encrypted with the same letter once the key is fixed, the distribution of letters in
ciphertexts is the same as the one in plaintexts. Therefore, Caesar’s cipher is vulnerable to frequency-analysis attacks.
Hence, with the event of computers, Caesar’s cipher can be easily broken either with brute-force attack or by frequency
analysis (see Problem 4.1).

4.3 Affine Ciphers

In affine ciphers, each letter is encrypted using an affine substitution based on indices of letters in the alphabet. Formally:

Encryption: Enc(x)=a*x+bmodm=1y.
Decryption: Dec(y)=a ' % (y—b)mod m = x.

where:
pair (a, b) denotes the key of substitution

m denotes the number of letters in alphabet

1

a is the multiplicative inverse of a mod m

I denotes the letter in plaintext and x, its index in alphabet; i.e. x = Ind(l)

I’ denotes the letter in ciphertext and y, its index in alphabet; i.e. I’ = Let(y).

The intercept b can be any value in the interval [0, m —1]. The decryption operation makes use of multiplicative inverse a .

4.3 Affine Ciphers

1

Therefore, not all values in [1, m — 1] can be used for slope a. Indeed, a must be an element of Z:‘n. Recall that an element a

belongs to Z, if and only if GCD(m, a) = 1.

| Note. Shift ciphers, including Caesar’s cipher, are affine ciphers with a = 0.

Example 4.2 Let A be the Latin alphabet. Thus, m = 26.

Zys = {1,3,5,7,9,11,15,17,19, 21,23, 25}.

Therefore, the slope a can take distinct 12 values. For each element of Z there exists a multiplicative inverse in Z as

shown in the following table:

a 1 3 5

11

15

17

19

21

23

25

a71 1 9 21

15

19

23

11

17

25

Let CAT be the plaintext,a=5,and b=7.
The encryption is done as follows:

I'=Let (A((Ind(C)*5+7) mod 26)) = Let (A(17)) =R

I, = Let (A((Ind(A)*5+7) mod 26)) = Let (A(7)) = H

I; = Let (A((Ind(T) *5+7) mod 26)) = Let (A(24)) =Y.

Resulting ciphertext is RHY. The decryption is done as follows:

First letter:

X, =5" % (y, —7) mod26=21(17—7) mod 26 =2

I, =Let(2)=C.

Second letter:

x,=5"%(y,—7) mod26=21(7—7) mod 26 =0

I, =Let(0)= A.

Third letter:

X, =51« (y; —7) mod 26 =21(24—7) mod 26 =19

[, =Let(19)=T.

Affine cipher security

The total number of key combinations is |Z,,

*m, where m denotes the cardinality of the alphabet and

Ly,

, the cardinality

of the group Z; . For example, with Latin alphabet, the number of keys is 12+ 26 = 312. Even if an affine cipher provides

more keys than Caesar’s cipher, it has the same flaws when computers are used in attacks.

119

120

4 Symmetric Ciphering
4.4 Vigenere’s Cipher

To make attacks based on frequency analysis harder, polyalphabetic ciphers have been invented in the 16th century. One
of the most famous polyalphabetic ciphers is the one invented by Blaise de Vigenere.

Vigenere’s cipher was proposed in the middle of the 16th century and it resisted all attempts to break it for three cen-
turies. Vigenere’s cipher is an improvement of Caesar’s cipher. It makes use of several Caesar’s ciphers in sequence with
different shift values. A table T, called Vigenere’s table, is defined as follows (see Figure 4.1): the first row is composed of
the 26 letters of the Latin alphabet, the second row is one-position circular left shifting of the first row, ..., the 26th row is
one-position left circular shifting of the 25th row. Letters and table columns and rows are numbered from 0 to 25.

o 1 2 3 4 5 & 7 & 8 10 11 12 13 14 15 16 17 18 18 20 21 22 23 24 25
o |lA|B|C|D|E|F|G|[H|I J|K|L M| N|O|P|Q|R|S|T|U|V | W|X|Y|Z
1 B C D E F G H |] K L{M]|N (o] P Q s T u VW | X Y Zz A
2| C|D|E|F|G|HI|I J KfL|IM|[N|]O|P|Q| R|S|T|U |V | W|X|Y |Z|A|B
“wulYlZ|A|B|C|D|E|F|G|H]|I]| K| LIM|N|]O|P|Q|R|S|T | U|V | W|X
sZ |A|B|C|D|E|F|G|H]|I J K| LI M| N|O|P|Q|R|S|T|U|V | W|X|Y

Figure 4.1 Vigenere’s table.

Encryption:

1) Before any encryption operation, the sender and receiver of message M must agree on a secret key word k.
2) Key expansion K: the key word k is repeated until the size of the expanded key equals the size of the message M to

encrypt.
3) For each letter M i (j=0, ...,len(M)—1) of message M, Vigenere’s table T is used for substitution as follows:

Let Ind(M j) be the index of letter M i and Ind(K j), the index of the jth letter of the expanded key. Then, the encryption is
Enc(M;)= Mj’ =T (K;, Ind(M,)).

Decryption:
For each letter M ; (j=0,...,len(M") —1) of the received message M’, the decryption is performed as follows:
Go toraw K j of Vigenere’s table, locate the column of letter M ; on raw K psayc;. Then, use the letter T(0, ¢ j).
Formally, Dec(M J’)=M i= T(0, Col(Kj, M J’)) where Col(i,l) is a function that returns the column of letter [in raw i of
table T.

The original version of Vigenere’s ciphering is based on a table (see Figure 4.1), because encryption and decryption were
carried out by hand. With computers, the implementation of both operations does no more require the table. Indeed,
Vigenere’s ciphering may be described without using a table as follows:

- Letters are ordered from 0 (A) to 25(Z).
~ Encryption of j® letter of message M, denoted M b ds:
M ; =M jtK j) mod 26 (K jis the j® letter of the expanded key).
- Decryption of the j letter encrypted message M’, denoted M ;, is:
M;= (M;. —K;)mod 26.

The second description of Vigenere’s cipher makes it an extension of Caesar’s cipher.

4.4 Vigenere’s Cipher

Example 4.3 Let HORSE and LEAVEHOUSE be the shared secret and the plaintext, respectively.
Key expansion yields HORSEHORSE, which is of the same length as the plaintext. Then, the indices of expanded key letters
are

Ind(K,)=7 Ind(K,)=14 Ind(K,)=17 Ind(K,)=18 Ind(K,)=4
Ind(K,)=7 Ind(K,)=14 Ind(K,)=17 Ind(K,)=18 Ind(K,)=4.

- Encryption and decryption using Vigenere’s table

Encryption
My=L— My=T(7,11)=S M,=H— M{=T(7,7)=0
M, =E— M;=T(14,4)=S M,=0— M;=T(Q14,14)=C
M,=A— M,=T(17,0)=R M,=U— M,=T(17,20)=L
M,=V — M;=T(18,21)=N Mg=S— Mg=T(18,18)=K
M,=E— M,=T(4,4)=1I My=E— My=T(4,4)=1I

Thus, the ciphertext is SSRNIOCLKI.

Decryption
Mj=S— M,=T(0,Col(7,5)) =L M{=0— M, =T(0,Col(7,0)) = H
M| =S— M, =T(0,Col(14,S))=E M;=C— M, =T(0,Col(14,C))=0
M, =R— M, =T(0,Col(17,R))= A M) =L— M, =T(0,Col(17,L)) =U
M;=N — M, =T(0,Col(18,N)) =V Mg =K — My =T(0,Col(18,K)) =S
M;=I1— M,=T(0,Col(4,1))=E My=1— M,=T(0,Col(4,1))=E

Thus, the plaintext is LEAVEHOUSE.

- Encryption and decryption without Vigenere’s table

Encryption
M,=L— M,=Let(1147)=S M;=H — M[=_Let(7+7)=0
M,=E — M, =Let(4+14)=S M,=0— M, =Let(14+14)=C
M,=A— M)=Let(0+17)=R M,=U— M, =Let(20+17)=L
M,=V — M, =Let(21+18)=N M,=S— M;=Let(18+18)=K
M,=E— M,=Let(4+4)=1 My=E— My=Let(4+4)=1

Thus, the ciphertext is SSRNIOCLKI.

Decryption
M{=S—M,=Let(18—7)=L M{=0— M =Let(14—7)=H
M;=S— M, =Let(18—14)=E M;=C— M, =Let(2-14)=0
M);=R—M,=Let(17-17)= A M) =L— M, =Let(11-17)=U
M;=N— M, =Let(13-18)=V Mg =K — Mg =Let(10—-18)=S
My=I—M,=Let(8—4)=E My=I—M,=Let(8—4)=E

Thus, the plaintext is LEAVEHOUSE.

Vigenere’s cipher security

Vigenere’s cipher makes use of a repeated key of length L. If the key length is known to adversary, the number of keys
to test is 26", which is the space size of keys taken in the Latin alphabet. The adversary tests each candidate key either
using a known pair of plaintext and ciphertext or using only a ciphertext until a clear and comprehensible text is found.
When the adversary knows the upper bound of key length, denoted I', he/she tries all the combinations of keys with
length less than I' — 1 until a key matching with a known pair or a comprehensible text is discovered. In the worst case,

121

122 | 4 Symmetric Ciphering

the number of keys to test is 2;26". If the upper bound of key length is unknown to the adversary, the number of keys

. I i .
to test is Z:Tlx(en(M))26’, where max(len(M)) denotes the maximum message length.

With a key length of 3, there exist 1.75*10* keys; and 9.5 = 10'® keys, with a length of 12. That is why Vigenere’s cipher
was unbreakable by brute-force attack until the era of computers.

4.5 Enigma Machine

The first modern cyphering machine, which had been widely used, is with no doubt the Enigma machine. Many modern
ciphering algorithms were inspired by Enigma machine design, whose internal structure looks like a symmetric ciphering
algorithm.

A German engineer (Arthur Scherbius) at the end of World War I invented enigma machine; it had been used commercially
from the early 1920, and was adopted by Nazi Germany before and during World War IT (WW?2). Enigma has played a significant
role in 3™ Reich domination. However, when the ciphering technique of Enigma has been broken by the British (with the
support of the mathematician Alan Turing), the fall of Nazi army started. Most of secret messages transmitted by Nazi com-
mandment were disclosed by the English and allies secrecy agencies. For more detail on the story of Enigma, refer to [6].

Enigma machine is an electromechanical design of a polyalphabetic substitution cipher. It consists of multiple elements,
among which six are of prime importance to understand how encryption and decryption are performed (see Figure 4.2%):

o Batteries for power supply of bulbs.
o Keyboard for keying plaintext and ciphertext.
e Lamp panel in which the letter resulting from the encryption or decryption of a keyed letter is illuminated.

Rotors - 81 23 11 -
Reflector --—- b -f’zpﬁ.; l;% }-.On
- OCICIOCIOICIOIC
mp board - @
He © @ 0@ ee@e
3
Keyboard --—-=-s--m- b4
-
*4
bod
$44 e
f \q A 2T o
Plug board ——-————- 3{' Adar_ S "‘1‘ F'---:f::"‘" ")
P ¥ - [3 }“qL-—j " .

Figure 4.2 Enigma machine.

4.5 Enigma Machine

e Three or four rotors selected out of five or eight.

o Plug board to swap letters.

e Reflector, which is a component that sends electrical impulses that have reached it from the rotors back in reverse order
through those rotors.

4.5.1 Principle of Secure Communication Using Enigma

Enigma machines were not connected to any network. Any long messages were fragmented into smaller messages sent
separately. A message to encrypt is a text entered by an operator using the Enigma keyboard. When a key, say 2, is pressed
on the keyboard, one of the 26 bulbs just above the keyboard lights up and illuminates a letter, say T. Then, the operator
writes on a piece of paper letter T. If the same letter A is pressed again, another letter is illuminated, say G. For example, a
message AABBCCA would be encrypted as XTYGFEK. Thereby, the same letter in plaintext may take 25 distinct encryptions
in the produced ciphertext. Therefore, frequency analysis attacks become infeasible using the computation resources avail-
able in WW2.

Once all the letters of message keyed, the operator stops the encryption process. Then, the ciphertext written on paper is
delivered to a radio operator for transmission. Another operator, at the message destination, receives the encrypted mes-
sage by radio, writes it on a piece of paper, and delivers it to an Enigma operator. The latter keys one by one the letters of
received message and writes on a piece of paper each illuminated key. Once all the letters of the encrypted message keyed,
a full plaintext, written on a piece of paper, is delivered personally to whom it may concern.

Enigma machines were produced in thousands and sent worldwide to German army. Some earliest versions of Enigma
were commercially available before the beginning of WW2 and several Enigma machines were found or stolen by British,
American, spy agencies, etc. In modern cryptosystems, the security does not rely on used algorithms (such as RSA, AES,
etc.), because they are public, but on secret keys. In the same way, the security of Enigma machine does not rely on its
internal electromechanical structure, but on secret keys. With Enigma, the secret key is formed by the settings of the rotors
and the plug board connections. Therefore, the operator who decrypts a message must have exactly the same machine set-
tings as the operator who encrypted the message.

4.5.2 Rotors and Reflector

Enigma machine is delivered with three, five, or eight rotors, also called wheels, numbered from I to VIII (see Figure 4.3a)
and two reflectors (numbered B and C). Depending on the machine model, three or four rotors are inserted in the machine
every day at midnight. Each rotor has a specific cross-wiring that maps letters of alphabet to wiring to connect the pressed
key to a bulb (see Figure 4.3b). Each rotor has 26 internal connections, which differ from a rotor to another. In addition,
the order to insert the rotors in the machine is important (because of their internal wiring).

Before insertion of a rotor in the Enigma machine, its wiring must be setup; the operation is called rotor setting and it
enables to change the positions of the internal wiring relative to the rotor. Changing the rotor settings modifies the

02 24 12

01 23 11
26 22 10
25 22 09 -

24 20 08

23 19 07

22 18 06

(a) Three rotators aligned together (b) Internal cross-wiring of rotor

Figure 4.3 Rotors of Enigma machine.

123

124

4 Symmetric Ciphering

positions of the wiring relative to the turnover-point and start position. With three rotors selected out of five, there
exist 5 4% 3 = 60 permutations to fit the rotors.

The reflector receives a signal coming from the keyboard and propagates it toward the lamp board to illuminate the
appropriate bulb.

When a letter is pressed on the keyboard, a bulb lights up and the rightmost wheel makes a single step (one-contact move
position). Each rotor has a notch? on its left side at a specific location (from 1 to 26). When the rightmost rotor makes a full
turn (after 26 pressed keys), its notch triggers the stepping motion, by engaging a pawl, of the rotor to the left, which makes
a single step, and so on until the leftmost rotor makes a single step. Therefore, 26° keystrokes are needed to the Enigma
machine to return to its start position (see Problem 4.7).

4.5.3 Plug Board

The plug board is a technique to scrambling letters. The plug board has 26 sockets that are marked with the letters (see
Figure 4.4). Each 2-pins-socket associated with a letter can be connected to another socket. Therefore, letters are swapped
in pairs. A cable is used to connect two letters. Plug board connections do not change after pressing keys. Figure 4.4 shows
some connection settings: Q<>X, R<P, Z«L, I«H, and Ve&N.

4.5.4 Machine Setting
To enforce the security level, sending a message requires two keys, called daily key and message key.

Daily key
Each operator receives monthly a table (called codebook), which specifies, for each day:

1) Model of reflector to use (B or C)

2) Numbers (from I to VIII) of rotors to install and order of rotor insertion into machine
3) Settings of each rotor

4) List of pairs of letters to swap on the plug board

5) Identification groups

Figure 4.5 shows a piece of Enigma codebook. The operator selects accordingly the reflector and the rotors, performs the
settings of each rotor, and then inserts the rotors inside the Enigma machine. Once an Enigma machine is configured, it
becomes ready for encrypting and decrypting messages.

On battlefields, some encrypted messages may be delayed and delivered to Enigma operators after one or maybe several
days after being sent. To enable operators apply the settings of the transmission day of delayed messages, a list of codes
(3-letters strings) are used to identify each day in the codebook. The identification groups are unique for each day in the
month.

Notice that one of vulnerabilities of Enigma-based security is its codebook, which can be intercepted by enemies. In the
event of loss of a codebook, a radio message was sent to stop using the current codebook and a new codebook was imme-
diately sent to groups.

Message key

During the same day, a lot of messages may be encrypted.
Sending all the encrypted messages of the day is insecure,
because the adversary may exploit some features to break the
code. To strengthen the ciphering security, each message is
encrypted with a distinct random start position called mes-
sage key.

4.5.5 Encryption and Decryption Procedures

Recall that any encryption or decryption may be performed
only when the Enigma machine has been configured
Figure 4.4 Enigma plug board. according to the settings of the day.

4.5 Enigma Machine

Figure 4.5 Example of a piece of Enigma codebook. Tag: day in month (the first day of month is located on bottom of the sheet, because
the operators are required to cut off and destroy expired settings), UKW: model of reflector—Walzenlage: roller position (rotor numbers
and order). Ringstellung: rotor settings—Steckerverbindungen: connections on the plug board. Kenngruppen: |dentification groups.

A start position is a string of three or four letters each associated with one and only rotor. For example, in case of three
rotors, the start position WXZ means the leftmost rotor should be placed on letter W, the middle rotor on letter X, and the
rightmost on letter z.

Enigma encryption

1) If not yet done, install the Enigma machine according to the settings of the day.

2) Let M be the message content to encrypt.

3) Select randomly a start position, say WXz, and a message key, say XTS, and write both values on paper.

4) Turn the rotors to the start position WxZ and encrypt the message key XTS and write the encrypted message key, say
ASV, on paper.

5) Change the start position to the message key XTS.

6) Encrypt message content and write the resulting letters on paper. Let M’ be the encrypted message content.

7) Form a key identification as follows: select two random letters, say FE and select one of the strings in the identification
groups from the settings of the day, say CGY.

8) Write on paper an encrypted message 9t of four parts: key identification (FECGY), start position (WXZ), encrypted mes-
sage key (ASV), and the encrypted message content (p7/).

9) Deliver the encrypted message 21 to the radio operator for transmission.

Enigma decryption

1) If not yet done, install the Enigma machine according to the settings of the day.

2) Let 91 be the encrypted message, which is received by the radio operator. The latter delivers the encrypted message to
Enigma operator. 9t is composed of four fields: identification group (in clear), say FECGY, start position (in clear), say
WXZ, encrypted message key, say ASV, and encrypted message content.

3) Thefirst task of the operator is to check message freshness. If the message has been encrypted in the current day, identification
group (in our example, CGY) in the message header appears in the identification groups of the current day (in the codebook).
Otherwise, the message had been received within a delay exceeding one day and the operator must inspect the codebook to
find the day associated with the received identification group and then select and reinstall the rotors accordingly.

4) Set rotors in start position WXz and decrypts ASV (the encrypted message key) to yield the message key XTs.

5) Set rotors in start position XTS and decrypts ps’/ (the encrypted message content) to yield the message content M. Write
on paper, one by one, the illuminated letters.

6) Deliver the plaintext M to whom it may concern.

Example 4.4 Figure 4.5 shows a piece of codebook of Enigma settings for five days.

Assume that the current day is 29. The operator selects reflector C, and rotors IV, I, and V. Then, Rotor IV is set on position
01, rotor I on position 12, and rotor V on position 21. Reflector and rotors are inserted in the machine. Next, letters are
interconnected on the plug board: A<R, BeY, Co I, DoX, EoN, FoV, Goll, Ho0, JoQ, Ko T. If a message is received
with identification group in {QGL, IXI, VIT, SGU} the message is decrypted with the settings of the current day.

125

126

4 Symmetric Ciphering

If a message is received with identification group equal to SYT, the operator must reconfigure the machine according to
the settings of day 27 to decrypt.

4.5.6 Enigma Decryption Correctness
Without loss of generality, we consider configurations with three rotors.

Encryption
In Figure 4.6, letter Z is swapped with I; and letter O with M. It shows the electrical flow from letter Z to the bulb, which
illuminates letter M. Electrical connections are established in the following order:

z in keyboard — Z in plug board — I in plug board —

G of rightmost rotor (right side) — Vv of rightmost rotor (left side) —
H of middle rotor (right side) — W of middle rotor (left side) —

P of leftmost rotor (right side) — R of leftmost rotor (left side) —

Q of reflector input — T of reflector output —

H of leftmost rotor (left side) — J of leftmost rotor (left side) —

F of middle rotor (left side) — N of middle rotor (right side) —

D of rightmost rotor (left side) — O of rightmost rotor (right side) —
M on plug board — M on lamp board.

Decryption

When letter M is keyed, the Enigma machine has exactly the same configuration as the one used when Z is keyed at encryption
stage. Therefore, connections between the rotors and between the leftmost rotor and the reflector are the same. Recall that the
internal wiring of rotors does not change. Figure 4.7 shows the electrical flow from letter M to the bulb, which illuminates
letter Z. Therefore, the encryption and decryption of a letter follow the same electrical path but in opposite directions.

I i

h 4

=
13

SERfF

Lamp board
@ __®
® 0O
- ®,®
® O
- ® 5O
@@
(@@ OO OO G ®o@®
(I ® 0000600 | @ ik
PO 00O O®® 0 ® ©

Figure 4.6 Electrical flow inside Enigma machine—Letter Z is encrypted to M.

4.5 Enigma Machine

Formal modeling of encryption and decryption

Encryption
Formally, the encryption of a letter x € {A, B,C,....Z } can be expressed as:

x' = Enc(x,s,) =P~ [L1 [M’l (R’l (U(L(M (R(P(x)))))))]] (4.1)

where:

x' is the encryption output, i.e. the illuminated letter on the lamp board.

t, denotes the time when letter x is pressed.

s, denotes the state of the Enigma configuration at time £ :

s, = (u,p,r(t,), m(t,), l(t,)), where u denotes the reflector model, p, the matrix of connections on plug board, and r(t,),
m(t,), and [(t), the positions of rightmost, middle, and leftmost rotor at time ¢ , respectively.

R(z), M(z), and L(z) denote the substitutions yielded by rightmost, middle, and leftmost rotors, respectively, if the input
from the right rotor side is z and the state of Enigma machine is s, . For example, in Figure 4.6, letter I is connected to
letter G of the rightmost rotor whose output is letter V. Thus, R(I) = V.

R '(z), M '(z), and L '(z) denote the substitutions yielded by rightmost, middle, and leftmost rotors, respectively, if the
input from the left rotor side is z and the state of Enigma machine is s, . For example, in Figure 4.7, letter J of leftmost
rotor is connected to letter F of the middle rotor whose output is letter N. Thus, M “(J)=N.

P(z) denotes the swapping of pressed letter z to enter the ciphering components. For example, P(Z) = I.

P '(z) denotes the swapping of letter z to exit the ciphering components (toward the lamp board or keyboard). For
example, P '(I) = Z.

U(z) denotes the substitution yielded by the reflector.

Lamp board

Plug board

@@ 606 O\ o

® 0 0606 6 O\®
® O ® 00 OO ©

Figure 4.7 Electrical flow inside Enigma machine—Letter M decrypted to Z.

Keyboard

e0elio00®0

127

128

4 Symmetric Ciphering

Decryption
The decryption is correct if and only if the encryption of an encrypted letter yields the initial letter, i.e. Enc(Enc(x,s,),
Sy) = x, for any letter x in the plaintext. Let x’ = Enc(x,s) and ¢ ,, the time when letter x’ is pressed. x” denotes the illu-
minated letter resulting from x’ encryption. To decrypt, operators on both sides are required to use same Enigma state (i.e.
same deflector, same connections on plug board, and same rotor positions). Thus, s,, =s,. By definition of Enigma
encryption:

x" = Enc(x,s,) =P [Rl [M’l (L’l (U(L(M(R(P(x’))))))) (4.2)

P(), P71(), and U() depend only the initial machine settings. Thus, U(U(z)) =z and PY(P(z)) = z, for any letter z.

During the encryption of a letter, the state of the Enigma machine remains unchanged. It changes at the end of
encryption process. Therefore, inverting the result of a rotor transformation is equivalent to not transforming the input.
That is, F ' (F(z)) =gz, for F G{R,M ,L}. Below are the substitutions of (4.1) in (4.2), starting from the innermost
function,

poy— 1 oe 1o)
Rr) =07 {10 (v()
M(R(PG))) = L7 (U(L(M(R(Pw))
L(M(R(P(x))))=U(L(M(R(P(x))))
U(2(M(R(PG))) =1 (M (R(PG0)

1 (o2 (m(R(PeN)) = M(R(PCO)
1o (o0 - ()
o (1 (o) -
e 1w o))

Hence, encrypting twice a letter results in the same letter. Therefore, Enigma decryption is correct.

=x=x".

Pl[Rl

4.5.7 Complexity Analysis

The Enigma cipher generates a polyalphabetic substitution cipher with a period, which was much longer than any mes-
sage, or even a set of messages, sent with the same key. (see Problem 4.7.) The strength of the security provided by Enigma
is the product of multiple choices of machine settings.

Let R be the number of rotors delivered with an Enigma machine and r the number of rotors to insert in the Enigma
machine, with R > 3 and 3 <r < 4. The rotors have distinct wirings and their order inside the machine matters. Therefore,
r

R!%26

there exist (RR%'V)' arrangements to install the rotors; each rotor has 26 positions. Therefore, there exist W distinct
configurations to setup the rotors.

In addition to rotors, Enigma machine makes use of a plug board to letter swapping, which results in letter scrambling
that is difficult to guess by adversary. Let ¢ be the number of connections to set on the plug board; in practice ¢ was 10.
There are 26 letters in the alphabets and the operator has to connect c letters to ¢ other letters and the connections are
symmetric (i.e. connect A to Q is the same as connect Q to A). Therefore, the total number of distinct configurations of the

26!

plug board is — .
¢ (26 —2¢)txctx2¢

4.5 Enigma Machine

Table 4.1 Number of distinct settings of Enigma machine.

Security strength level 1 3 4

Reflectors 1outof2 1outof2 1outof2

Rotors 3outof3 3outof5 4outof 8

Letter swapping 6 10 10

Settings 2%1.059%10' 2%1.58910% 2#1.157%10%
~ 254 ~ 268 ~ 277

Finally, the operator selects one of the reflectors. Therefore, the number of distinct settings that an Enigma machine may
26!

have as a whole is 2 * —— % .
(R —r)! (2672c)!* clx2°

Table 4.1 shows the number of settings depending on the strength level of security to guarantee. Strength levels 2 and 3
were the most deployed by Nazi army from 1940 onward, which had an equivalent of security strength of 68 and 77 bits of
modern digital ciphers. In WW2, breaking a 77-bits code was very difficult though Turing did it.

4.5.8 Breaking Enigma Code

Enigma settings space was very large (see Table 4.1), which made pure brute-force attack to disclose the daily or message
key infeasible with the computational resources available in WW2. In addition, the average messages encrypted with
Enigma were only a few hundred letters. Therefore, the alphabet never repeated in an Enigma message. That is what made
Enigma very hard to break with frequency analysis.

Huge efforts were made to break Enigma code. Hundreds (or even more) of mathematicians, electronic engineers,
mechanical engineers, chess players, spies, and secret intelligence services in Europe (in particular Great Britain and
Poland) and USA were committed to break Enigma code. Several ideas and devices were proposed based on real Enigma
machines or only on traffic analysis. Some intercepted messages had been decrypted. Unfortunately, till Turing’s machine,
key searching took too much time (around ten days or more), which made the disclosed keys or content of message useless
in a context of war. Recall that the keys were changed daily or even per-message.

The most known machine that had a paramount effect to break Enigma is with no doubt the Bombe machine [7]. The
first version of Bombe machine was built by Rejewski, a Polish mathematician, and it reproduced six* Enigma machines,
without plug board, operating in parallel. Unfortunately, Rejewski’s machine was limited to the earliest versions of Enigma
machines that were abandoned by Nazi army during the WW2. Turing, a British mathematician, and his team improved
the Bombe machine to make it capable of breaking the Enigma machines used during WW2 within 20 minutes. Turing’s
Bombe machine reproduced 36 Enigma machines operating in parallel.

The efforts to break the Enigma machine have long story and took around two decades (before and during WW2). In this
chapter, we only present the main principles of Turing’s Bombe machine, which widely helped the allies to break Enigma
code and then to win the war.

4.5.8.1 Weaknesses, Practices, and Other Features that had been Exploited
To reduce the search space, cryptanalysts tried to discover weaknesses in the Enigma design, message contents, practices
of Enigma operators, and German language.

4.5.8.1.1 Enigma Design Weaknesses
The first cryptanalysts focused on the Enigma design, which had multiple weaknesses that could be used to disclose the
keys (daily and message keys). The following had been the most exploited weaknesses:

o A letter could be never encrypted to itself. Because of the reflector, the electrical pathways of a letter and its encryption
are always distinct (see Figures 4.6 and 4.7). This was the biggest weakness of Enigma.

e Regular stepping of the rotors: after 26, 262, and 26, the 1%, 2nd, and 3" rotor, respectively, returns to its initial position.
In addition, turnover notches on rotors were distinct, but at fixed (and known) positions, and some rotors make steps
triggered by two turnover notches. This weakness helped cryptanalysts to derive when some rotors made steps and
guessed initial positions of some rotors.

129

130

4 Symmetric Ciphering

e The plug board connections are reciprocal. Therefore, for example, if T is connected to F on the plug board, then pressing
TFTFFTTTEF... results in an output where T and F are never present.

4.5.8.1.2 Practices of Enigma Operators

Weaknesses relating to Enigma operators were harder to identify and exploit compared to weaknesses related to Enigma wir-
ings. Weaknesses in Enigma operator practices included many aspects and required huge resources and time to discover them.
Spies and captured or surrendered Enigma operators provided valuable information including codebooks and practices.
However, guessing the plaintext for a message to decode was a highly skilled task. Broadly speaking, from the known (i.e. inter-
cepted plaintexts, origin and destination of messages, the time of message transmission, the conditions of war at specific places,
etc.), the keyword selection task was to decide which keyword would be likely to appear in the message under analysis. Among
the weaknesses in practices of Enigma operators, the following ones had contributed to break the Enigma code:

o A letter is swapped with the same letter for 24 hours or not swapped at all. The number of connections that could be fixed
on the plug board is 13. In practice, only 10 or worst 6 connections were mandatory. Such a limitation resulted in a
reduction of connection combinations and consequently less effort was needed to break the code.

e Messages had a standard format, which enabled cryptanalysis to address each part of ciphertext with appropriate
technique (for example, techniques for guessing a 3-letters message key or guessing a person name in the ciphertext
were different).

o The first messages of a day often included the weather of the day (“sunny”, “rain”, “snow”, “

first messages of day).

Numbers were written in letters, which helped guessing them.

Some expressions were included under specific context (e.g. “Nothing to report”, “Attack enemy”, “cross bridge”, etc.).

Some messages were retransmitted from a location to another in an identical form.

Like weak passwords in today’s systems, operators used weak message keys (e.g. ABC, AAA, XY7, etc.), easy to disclose,

or repeated the message keys.

wind”, etc. appeared in the

4.5.8.1.3 Frequency Analysis of German Language
German language has its specific frequency of letters. Some letters are often doubled in words. Most German plaintexts
contained roughly 20% of repeated letters.

4.5.8.2 Crib-based Attack
The term Crib was introduced by the British to denote a fragment of plaintext. Crib-based attack (i.e. plaintext attack)
includes three main steps: crib selection, ciphertext fragment selection, and settings identification.

Step 1: Crib selection
The crib task was to decide which keyword was (very) likely to appear in the message being decoded. As mentioned previ-
ously, keywords such as “nothing to report”, “significant damage”, “weather report”, “sunny”, “cloudy”, “twenty”, etc. may
be included in plaintext. It is worth noticing that guessing the portion of plaintext given a ciphertext was a highly skilled
task and the success to break the code depends on the selected crib (or keyword). Several keywords may be tried in parallel
depending on the context (the weather of the day, the attacks of the troops and their locations, etc.).

Assume the following scenario: the sending operator encrypted a message including WETTER SONNENTAG UND HOHE
TEMPERATUR (Weathersunnydayand hightemperature)and theassociated ciphertextwas OYWMMGJQKBHMEOCKOMAJUY S
XPGLVIKKU. The intercepted message was the first message of a hot day in July. From what was already known, the crib

team suggested HOHE TEMPERATUR (high temperature) as a crib to break the code.

9 <
)

Step 2: Selection of ciphertext portions

Once the crib had been selected, the next task was the identification of fragments in the ciphertext that could match the
crib. Let s be the length of the crib. Crib letters are pairwise compared to letters at positions 1 to s in the ciphertext. If the
fragment under check is complying with Enigma encryption, i.e. a letter is never encrypted to itself and double letters never
encrypted to the same letter, the fragment is kept as a candidate for next step. Then, the first letter of the ciphertext is
removed (or shifted to the left) and the next fragment is checked. When all the fragments are checked, the second step
ends. Figure 4.8 shows the comparison process. Any ciphertext fragment with a cell in black is discarded. For example,
QKBHMEOCKOMAJU is discarded, because letter E in plaintext is encrypted to itself.

4.5 Enigma Machine

ZE|lx|(wm|= m

Ilm|l=|o|-Z

x| wnl=<lc|l-|p|Z(lo|=x|n|Oom|E|T|w|(=|D|o

mlo|v|x|vn|<|c|—|=|Z(O0|=|0O|0O

Elx|m|=|o|—|crm

w|=p|l-|aZ|Z|sx

=
=
wni=|Cl—|r20=|00mMmE[(T|m|=|0|-|0|=|A

= |C|—=|=|Z|0|=|N|O

Ilw| =|p|l-=a|Z|Z|m
Zlo|l=|nlo|m[Z|z|>

—|xZ|0O|l=[njom|Z |4
—|>» | Z2|0|=|O|0|m|c

Clm|=|l—|=<|(r|g|9|x|n|l=|C|l—=|>|Z|O|=<|0|O|=

o= ||O|m

w|=|p|-|a|Z2(2|s|<|o|x
mZ|x|e|=xp|-|0|Z|Z|(=|<|0

|0

= O|omZ

B

wl<|c|—|=

El—|=|r|O|o|x|n|=<

<|r|O|o(x|lun|=< | Cl-|r|Z|0|=00(mE (T |m|o

x| wn|=<|C|l—=|>|Z|0|=|Nn|O

Cl=[=|Z|0|=|n|O|m
—|=Z ||| ln|=<|C|-—
A== || = |=<|C

NBE
=NE

X
PIG
Figure 4.8 Example of tests of matching between ciphertext and crib. Letters in black boxes denote non-compliance with Enigma
encryption. Letters in gray denote letters that are not yet checked.

-~

The number of candidate fragments depends on many

factors including the length of the crib and its chance to w R z u (0)
appear in the plaintext and the distribution of letters in
the plaintext. A b G ®_® K

Y x c N (1)

v B

Step 3: Identification of Enigma settings

Each ciphertext fragment identified in step 2 was
assumed to be associated with the crib and it is a candi-
date for guessing the Enigma settings. However, only
one candidate had helped to break the code. If a selected fragment was the right one and the selected crib was included in
the encrypted message, then, there was a high probability for Bombe machine to disclose the Enigma settings.

First assume that rotor settings are correct and try to guess six (the same approach is used for 10) connections on the plug
board. Figure 4.9 shows an example of the plug board connections of the sender’s Enigma machine that Bombe machine
tries to guess.

The processing of any ciphertext fragment, which does not match the crib, may take a long time and ends without recov-
ering the Enigma settings. Thus, a huge number of combinations are tested before a potential conclusive result.

To show how the settings are guessed, assume that the crib is HOHETEMPERATUR. Then, let the ciphertext fragment to
test be AJUYSXPGLVIKKU, which is the right one. Assume that the rotor settings are correct and let us see how plug board
connections can be guessed using two examples.

Figure 4.9 Example of connection settings to guess.

First attempt:

1) Start with the 1% letter of the ciphertext, which is 2, and decide to connect letters W and A. Then, press letter A and identify
on Bombe machine on which letter the signal from the rightmost rotor returns to the plug board, say J. If the connection
AW is correct, then J must be connected to the 1% letter of the crib, i.e. H. Then, keep connections A<W and J«H.

2) Continue with the 2" letter of the ciphertext, which is J. Letter J is already connected to H. Then, press J and identify
on which letter the signal from the rightmost rotor returns to the plug board, say L. If the previous decisions were right,
L must be connected to the 224 letter of the crib, i.e. 0. Then, keep connection L«0.

3) Continue with the 3™ letter of the ciphertext, which is U, and decide to connect letters U and R. Then, press U and iden-
tify on which letter the signal from the rightmost rotor returns to the plug board, say K. Therefore, letter K needs to be

131

132

4 Symmetric Ciphering

connected to letter H, which is already connected to J. Such a situation is called contradiction. Therefore, the previous
decisions were wrong and the work must restart from the first letter of the ciphertext fragment.

Second attempt:

1) Start with the first letter of the ciphertext, which is 2, and decide to not connect letter A. Then, press letter A and iden-
tify, on Bombe machine, on which letter the signal from the rightmost rotor returns to the plug board, say J. From letter
J on plug board, the signal has to travel to letter H on the lamp board. Therefore, keep connection J<H.

2) Continue with the 2™ letter of the ciphertext, which is J. Letter J is already connected to H. Then, press J and identify
on which letter the signal from the rightmost rotor returns to the plug board, say L. If the previous decisions were
correct, L must be connected to the 2™ Jetter of the crib, i.e. 0. Therefore, keep connection L«0.

3) Continue with the 3™ letter of the ciphertext, which is U, and decide to not connect letter U. Then, press U and identify
on which letter the signal from the rightmost rotor returns to the plug board, say J. Since letter J is already connected
to H, no new connection is guessed.

4) Continue with the 4" letter of the ciphertext, which is Y, and decide to not connect letter v. Then, press Y and identify
on which letter the signal from the rightmost rotor returns to the plug board, say S. If the previous decisions were right,
S must be connected to the 4™ letter of the crib, i.e. E. Therefore, keep connection E<S.

5) Continue with the 5t Jetter of the ciphertext, which is S that is already connected to E. Then, press S and identify on
which letter the signal from the rightmost rotor returns to the plug board, say F. If the previous decisions were right, F
must be connected to the 5™ letter of the crib, i.e. T. Then, keep connection F<T.

6) Continue with the 6™ letter of the ciphertext, which is X, and decide to not connect letter X. Then, press X and identify
on which letter the signal from the rightmost rotor returns to the plug board, say S. Therefore, no new connections are
guessed.

7) Continue with the 7" letter of the ciphertext, which is P, and decide to connect P to Q. Then, press P and identify on
which letter the signal from the rightmost rotor returns to the plug board, say I.If the previous decisions were right, I
must be connected to letter of the crib, i.e. M. Therefore, keep connection P«<>Q and I <M.

8) At this stage, six connections have been guessed. The remaining letters of the ciphertext fragment do not raise contra-
dictions and no connections are added: when G is pressed, the signal returns via Q and then goes to P; when L is pressed,
the signal returns via S and then goes to E; when V is pressed, the signal returns to R; when I is pressed, the signal
returns to A; when K is pressed, the signal returns via F and then goes to T; when the second X is pressed, the signal
returns to U; when U is pressed, the signal returns to R.

Guessing the right connections requires a huge number of attempts before success. If a contradiction occurs while
addressing the i letter of ciphertext fragment, take another decision (not connect the i letter or connect it to a not-yet
tested letter). If all decisions regarding the i letter lead to a contradiction, return to i-1" letter and take another decision.
If all the decisions regarding the first letter of the chosen ciphertext fragment lead to contradictions, then select another
ciphertext fragment in the list of candidates and retry. If all the fragments lead to contradictions, change the rotor settings
(the position of rightmost rotor is changed first). If all the settings of rotors lead to contradictions, then change the crib
and retry.

4.5.8.3 Improvement of Settings Identification Process

In addition to parallelization of computations in the Bombe machine, Turing (but also some other cryptanalysts) proposed
useful approaches to optimize to settings identification process in order to break Enigma code within an acceptable time.
In particular, the following techniques greatly reduced the search time:

o The initial settings of rotors before starting to guess plug board connections are of paramount importance. Using a
ciphertext, Bombe machine tests several configurations (i.e. rotor types, positions, and settings) of Enigma machine. If
the tested configuration is close to the sender’s configuration, then the result of decryption provides a text, which is not
the original plaintext, but with indications such as repetitions of letters. Then, after frequency analysis, the promising
configurations are changed a little and results observed. The most promising configuration is kept and used to guess plug
board connections.

¢ In the process of identification of plug board connections, Turing noticed that when a decision regarding a letter in the
ciphertext fragment leads to a contradiction, all the following decisions are wrong and they are no more made. Then, he
built the Bombe machine with electric circuits in such a way that when a letter of ciphertext fragment is tested all the
wrong connections appear instantaneously, thus reducing the space and time of search.

4.7 Exercises and Problems

4.6 One-time Pad

Definition 4.7 One-time pad: it is a symmetric encryption technique impossible to break in which each message is encrypted
with a unique random key no smaller than the plaintext.

The principle of OTP was first used, in the 19th century, to secure communications in telegraphy. It has been improved in
the 20th century using the progress in electronics and computer engineering. The principle of OTP is as follows:

e Encryption

For each plaintext M to encrypt, select a random key K, at least as long as the plaintext. Then, each element (bit or character)
of message M is encrypted using a transformation T. Formally, C = Enc(M,K), where C, =T(M,K,), i=1,..., |M | M;s,
K;s, and C;s are bits of M, K, and C, respectively.

e Decryption

Given a ciphertext C and a shared secret key K, the plaintext is yielded as:
M = Dec(C,K), where M, =T '(C,,K)), i=1,..., ||

With modern electronics, the transformations T and T~ ' are a bitwise XOR operation.
Assuming that the channel for key exchange is secure, the one-time pad cipher is impossible to break because of the
following:

e The key is at least as long as the plaintext.
e The key is random and independent of the plaintext.
e The key is used only once.

In the 1940s, Claude Shannon, one of the fathers of information theory, provided a proof that OTP (which he called per-
fect secrecy) is unbreakable in the sense that the ciphertext gives absolutely no additional information about the plain-
text. Shannon stated that given a plaintext M in the plaintext space M and ciphertext C in the ciphertext space C, if C is
yielded by a key K randomly” selected in the key space K, which is larger than plaintext space M, then K binds M to C
as one-time pad. In other words, when the ciphering key is randomly selected in a key space larger than the message
space, the entropy® of the plaintext, denoted H(M), is equal to the conditional entropy’ of the plaintext given the cipher-
text, denoted H(M | C).

Drawbacks of OTP in practice

The property of unbreakability makes the OTP a perfect cipher from the security point of view. However, in practice, OTP
suffers the following:

e Imagine that a 10 GB video is to be sent. To use OTP, the parties must share a key of at least 10 GB. Another alternative
is to fragment the file into 10 000 pieces of 1 MB each and the parties must share 10 000 distinct keys of at least 1 MB
each. Thereby, OTP is impractical.

e To provide perfect secrecy, true random selection of keys is required. Unfortunately, generating true random values
requires time in practice. Imagine the time needed for a coin flipping procedure to generate a secret key for a message
larger than 1 M bytes. This is a second reason for OTP impracticability.

e Being a symmetric cipher, OTP is as secure as the protocol for key exchange and destruction.

Only a few fields of applications, such as military and spying communications, made use of OTP. For example, before
moving to battle field, the troop commander receives a list of secret keys (on paper) to use in a specified order. Then, in the
field, the received messages are decrypted with secret keys and each key is used once.

4.7 Exercises and Problems
4.7.1 List of Exercises and Problems
Exercise 4.1

OTP is known to be unconditionally secure. However, it is uncommon in modern ciphering systems. Discuss some of the
reasons, which make OTP impracticable.

133

134

4 Symmetric Ciphering

Exercise 4.2
Explain why brute-force attack cannot succeed in breaking an OTP-based security system even if infinite computational
resources are available to the adversary.

Exercise 4.3
If the most repeated letter in a long ciphertext encrypted by an affine cipher y = ax + b is S, what are the most likely values
for a and b such that0 <a <4 and b <10? Assume an English plaintext.

Exercise 4.4
An affine cipher with modulus 31 encrypts 3 as 22 and 7 as 11. Determine the secret key.

Exercise 4.5

An adversary intercepted a text encrypted with an affine cipher. The ciphertext starts with LSRB; and the adversary knows
that the plaintext starts with DEAR. Assume that only lowercase Latin letters and space are in the text and space has index
0, A, index 1, ..., and Z, index 26.

1) Determine the encryption key.
2) Use the recovered key to decrypt the ciphertext.

Problem 4.1

1) How many attempts are required to brute-force attack to disclose a message encrypted with Caesar’s cipher?

2) Assume a sender that encrypts people’s names using Caesar’s cipher with k = 3. Also, assume that hundreds of cipher-
texts are known to an adversary, who also knows the frequency of letters in names as shown by the table below. Explain
how the adversary could try to recover the name contained in the encrypted message PDUWLQ.

A|B|C|D|E|F|G|H|T|J|KXK|L|{M|N|O|P|Q|R|S|T|U|V|IW|X|Y]|Z
9/2|4|6|100(3|0|4|5|6|2|6|5|6|5|4|1|4]6|5|1|1|1]0]1

Problem 4.2
Consider an affine cipher y = (ax +b) mod 26, where a € Z. Using Euler’s theorem (Theorem 3.4) show that a !used in

decryption (see Section 4.3) is derived asa ' = a'' mod 2.

Problem 4.3

Assume that an affine cipher is used and brute-force attack is done by hand. Show that widening an alphabet may jeopar-
dize its resistance to brute-force attack. In other words, larger alphabets are not always more brute-force-attack-resistant
than smaller alphabets.

Problem 4.4
An adversary knows that a sender encrypted a plaintext with a Vigenere’s cipher using the plaintext as a key. Can the plain-
text be recovered?

Problem 4.5
Assume that the following ciphertext has been produced by an affine cipher and it includes a message written in English.
KAR KRPYREFKNER DH ADXA. KAR FMFHJF IRFE MRUK KAR IMNR PVNSKFDS F TRRJ FXV FSO PVQRO
KV KAR EDQRE. DK UDHARH HFMPVS.
Make use of frequency analysis to recover the plaintext. The table of letter frequency used in English is given in Table 2.2.

Problem 4.6
How many pairs of letters (plaintext and ciphertext) are required to recover the key of the following ciphers?

1) Caesar’s cipher
2) Affine cipher
3) Vigenere’s cipher, assuming a key length of L

Problem 4.7
What is the period of Enigma alphabet?
Hint: a rotor may have one or two notches to trigger its step-rotation.

Problem 4.8

It is recommended to never use the same OTP key to encrypt two distinct messages. However, by mistake a user can encrypt
more than one plaintext with the same key. Such a mistake has been reported in cryptography literature. Show how an
adversary can break the code if two ASCII-coded English texts, with space character, are encrypted with the same key.

4.7 Exercises and Problems | 135

Problem 4.9

1) Show that OTP suffers malleability vulnerability, i.e. an adversary can change the content of the original plaintext, thus
impacting its integrity. Notice that malleability attack is applicable in man-in-the-middle context.

2) Assume that Eve knows the format of Bob’s plaintext and she knows that the plaintext includes an amount of $1000,
located at position p in the plaintext, which indicates a penalty that Eve should pay to Alice. Show how Eve can lower
her penalty to $10.

4.7.2 Solutions to Exercises and Problems

Exercise 4.1
OTP is known to be unconditionally secure. However, OTP is not used in practice for many reasons among which:

o The size of the encryption key is the same as (or even greater than) that of the data to encrypt. It would be infeasible in
practice to generate OTP keys, store, and send them to the receivers, when large amounts of data are of concern. For
example, secure transfer of multiple-terabyte database or secure periodic remote data sensing based on OTP would be
impracticable.

o Even if one can generate very large OTP keys, their secure exchange would be difficult in almost all commonly used
applications and services over digital networks. For example, spies, diplomatic staff, and armies in the field receive the
keys in hand via diplomatic bag or dedicated persons. Such key exchange protocols would jeopardize the performance of
any modern cryptosystem.

o OTP key generation requires secure random generators with capacity of generating long keystreams without periodicity.
If not enough secure, the algorithm used to generate the OTP keys would be a vulnerability of the security system.

Exercise 4.2

An OTP key is random and with the same length as (or even longer than that of) the plaintext and each message is
encrypted with a distinct randomly generated key. Therefore, there is no information in the ciphertext (such as letter fre-
quency) that the adversary could use to recover the plaintext/key. Also, even if enough resources are available to the adver-
sary to apply a brute-force attack, where the adversary decrypts the ciphertext with all possible keys, the adversary would
have no way in knowing which plaintext is the original plaintext. This is because a brute-force attack would produce many
potential plaintexts that make sense to the adversary.

Exercise 4.3
The most common letter in English texts is E. Therefore, letter E is likely to be replaced by S in the ciphertext under
consideration.

In Latin alphabet, letters A, E, and S have indices 0, 4, and 18, respectively. Substitution in equation y = ax + b mod 26
yields 18 = a x4 + b mod 26.

There exist two solutionsa=2,b=10 anda=3,b=6.

Exercise 4.4
By definition of an affine cipher, a plaintext P is encrypted as C = a * P 4+ b, where (a,b) is the key. Two plaintexts and their
ciphertexts are known. Therefore, we have two equations:

22=a=*3+bmod 31
11=a=7+bmod 31
Combining the equations yields:
—11=a+*4 mod31=a=20*4""mod 31
=a=-11*8mod31=a=>5

22=5%*3+bmod31=b=7

Therefore, the key of the affine cipher is (5,7).

Exercise 4.5
An affine cipher maps an integer x to an integer y = ax + b mod N, with y < N. Let Idx(l) denote the integer representing
letter .

136 | 4 Symmetric Ciphering
1) Key recovery:

Since the adversary knows that the plaintext starts with DEAR, we get the following congruences
Idx(L)=12=a=*Idx(D)+ b mod 27 =a*4+ b mod 27
Idx(S)=19=a=*Idx(E)+bmod 27 =a+*5+ b mod 27
Idx(R)=18 =a*Idx(A)+b mod 27 =a+*1+ b mod 27
Idx(B) =2 =a*Idx(R)+ b mod 27 = a *18 + b mod 27

Take the following congruences:
12=ax*4+bmod 27
19=a=*5+bmod 27
Subtracting the first congruence from the second yields a =7, then b =11.

2) Decryption with the recovered key:
Make substitution in the formula y = ax + b mod N:

y=7x+11mod 27
—7x =—y-+11mod 27
x= (y—11)*7 'mod 27
x=4y+10 mod 27

Now, decrypt:
y=12=x=4%12+10 mod 27 =4 = letter is D
y=19=x=4%19+10 mod 27 =5 = letter is E
y=18= x=4%18+10mod 27 =1 = letter is A
y=2=>x=4%2+4+10mod 27 =18 = letter is R

Problem 4.1

1) The key used to shift letters in Caesar’s cipher is a value in the interval [1, 25]. Therefore, the adversary should try
each of the 25 keys to retrieve the plaintext. Given a ciphertext, 25 distinct texts are found, but only one matches the
original plaintext.

2) Since the letter substitution is bijective when Caesar’s cipher is used, the adversary builds a similar frequency table for
ciphertext letters as follows:

A|/B|C|D|E|F|G|H|T|J|K|L{IM|{N|O|P|Q|R|S|T|U|V|W|X|Y|Z
of1(0|9(2|4|6|100|3|0|4|5|6|2|6|5]|]6|5|4|1|4]6|5]|1]|1

When likelihood is high, the adversary makes association between plaintext letters and ciphertext letters as follows:

Ciphertext Plaintext
H E A
D E, A

G,M0O,QV D,J,L,N,S

Assume the adversary receives the ciphertext PDUWLQ. The letter with the highest frequency is D. Now, the adversary
assumes that D results from either E or A and the key is either 25 or 3, respectively.

First, try key = 25:
I, = A((Ind(P) —25) mod 26) = O

4.7 Exercises and Problems

L, = A((Ind(D) —25) mod 26) = E
L, = A((Ind(U) —25) mod 26) =T
I, = A((Ind(W)—25) mod 26) =V
l, = A((Ind(L) —25) mod 26) = K
I, = A((Ind(Q) — 25) mod 26) = P
Guessed name is OETVKP, which does not sound as a name. Therefore, the adversary tries the second key = 3:
I, = A((Ind(P) —3) mod 26) = M
L, = A((Ind(D) —3) mod 26) = A
L, = A((Ind(U) —3) mod 26) =R
I, = A((Ind(W)—3) mod 26) =T
I, = A((Ind(L) —3) mod 26) = I
l, = A((Ind(Q) —3) mod 26) = N

The second guessed name is MARTIN, which is widespread name. Therefore, the adversary may stop searching or try other
alternatives starting with Q, which may result from D, J, L, N, or S.

Problem 4.2

Euler’s theorem states that ifac Z;, then a*™ =1 mod n, which can be written as a*a*"™ " =1 mod n. Using the defini-
tion of multiplicative inverse, we can derive that a?™~1is the inverse of a.

By definition of Euler’s totient (Theorem 3.1), $(26) = (13—1)(2—1) =12.

Therefore, using Euler’s theorem (Theorem 3.4), a '=a"Ymod 26 = a*' mod 26.

Problem 4.3
Recall that in affine ciphers, letters are mapped to integers, which represent letter indices in the alphabet. In order to
decrypt, affine ciphers do calculations over multiplicative group Z; , where m denotes the number of letters in alphabet. An

affine function is defined by: y = ax + b; the slope a €|Z; | and the intercept b € {0, 1 .., m—l}. A key is a pair (a,b).

Therefore, the number of distinct keys is ’Z:n‘ * M.

Assume that we start with an alphabet of 13 letters. Hence, m =13. Since 13 is prime, the cardinality of Z;, is of 12.
Therefore, the slope a can take any of the 12 values of Z],,i.e.a € {1, 2,3, ..., 12}. The intercept b is any value in {0,1, 2,3, ..., 12}.
Therefore, the number of combinations of the key is12%13 =156.

Now, assume that we widen the alphabet to 18 letters. First, compute Z]. (See how to find the elements of a multiplicative
finite field in Section 3.2.2): Z]; = {1, 5,7,11,13, 17}.

%

With the second alphabet, the slope a can take any of the six values of Zj,, while the intercept b can take any value in
{0,1, 2,3, ..., 17}. Hence, the number of combinations of the key is 6 +18 =108.

Therefore, the number of attempts, in a brute-force attack, is larger with a smaller alphabet.
Problem 4.4
Let M; and K denote the j™ letter of the plaintext and the j™ letter of expanded key, respectively.
If the plaintext is used as a key in Vigenere’s ciphering, then K; = M, for 0 < j < length(M). Vigenere’s encryption for
letter M is
M; =(M; +K;) mod 26 = (2M) mod 26

Therefore, M; = 27 M j’ mod 26 is used as decryption function by the adversary to recover the plaintext.

In general, it is recommended not to use English texts as keys when encrypting with Vigenere’s cipher.

137

138

4

Symmetric Ciphering

Problem 4.5

Let the ciphertext be

KAR KRPYREFKNER DH ADXA. KAR FMFHJF IRFE MRUK KAR IMNR PVNSKFDS F TRRJ FXV EFSO PVQRO KV
KAR EDQRE. DK UDHARH HFMPVS.

Frequencies of letters in ciphertext are:

Letters Frequency Letters Frequency
R 15/92 M,P,S 4/92
F, K 10/92 N 3/92
A 7/92 LJ,O,Q U, X 2/92
D 6/92 TY 1/92
E,H,V 5/92 B,C,G,L,W,Z 0/92

Using the frequency of letters in English texts, the search should start with the highest-frequency letters, that is:

Letter Frequency Letter Frequency

12.02 i 7.31
9.10 n 6.95
8.12 S 6.28
7.68 r 6.02

In the ciphertext, the guessed letters are in lower cases. Since there is lot of attempts before disclosing the plaintext, we only
show the guesses that lead to recover the plaintext:

e,t, oracouldbeR, F, orkK.
Associations R&e and K<t lead to

“tAe tePYeEFtNEe DH ADXA. tAe FMFHJF IeFE MeUt tAe IMNe PVNStFDS F Teed FXV FSO PVQeO
tV tAe EDQeE. Dt UDHAeH HEFMPVS”.

Since two sentences start with tAe, there is a high probability that A is associated with h. F is alone; it is likely to be asso-
ciated with article a. Associations A<>h and F«a lead to

“the tePYeEatNEe DH hDXh. the aMaHJa IeaE MeUt the IMNe PVNStaDS a Teed aXV aSO
PVQeO tV the EDQeE. Dt UDHheH HaMPVS”.

Next high-frequency letter is o. It may be associated with D, E, H, or V. Association V<o leads to

“the tePYeEatNEe DH ADXh. the aMaHJa IeaE MeUt the IMNe PoNStaDS a Teed aXo aSO
PoQeO to the EDQeE. Dt UDHheH HaMPoS”.

Next high-frequency letter is i. It may be associated with D, because Dt at the beginning of a sentence is likely to be i t.
Association D« 1 leads to

“the tePYeEatNEe iH hiXh. the aMaHJa IeaE MeUt the IMNe PoNStaiS a Teed aXo aSO
PoQeO to the EiQeE. it UiHheH HaMPoS”.

The next high frequency letters are n, s, and r; they may be associated with E, H, M, P, and S. Associations E<r, Hes,
and S« n lead to

“the tePYeratNre is hiXh. the aMasJa Iear MeUt the IMNe PoNntain a Teed aXo anO
PoQeO to the riQer. it Uishes saMPon”.

It is likely that aXo is ago and anO is and. Associations X«<g and O«<d lead to

“the tePYeratNre is high. the aMasJa Iear MeUt the IMNe PoNntain a Teed ago and
PoQed to the riQer. it Uishes saMPon”.

4.7 Exercises and Problems

e From “the tePYeratNre is high” itislikely that Pism, Y is p, and N is u. Associations P<m, Yp, and Nu lead to

“the temperature is high. the aMasJa Iear MeUt the IMue mountain a Teed ago and
moQed to the riQer. it Uishes saMmon”.

o The remaining letters have low frequency; hence, many attempts are to do before recovering the plaintext.
If “Uishes” is “fishes”, then “saMmon” is “salmon.” Associations U« f and M« 1 lead to

“the temperature is high. the alasJa Iear left the Ilue mountain a TeeJ ago and moQed
to the riQer. it fishes salmon”. “moQed to the riQer” islikely tobe “moved to the river”,

Associations Q< leads to

“the temperature is high. the alasJa Iear left the Ilue mountain a TeedJ ago and moved
to the river. it fishes salmon”.

From the words river, fishes, and salmon, we can guess Alaska and week by associations J«k and T<w. The
last words to guess are bear and blue.

Therefore, the plaintext was: “the temperature is high. the alaska bear left the blue mountain
a weeJ ago and moved to the river. it fishes salmon”.,which hasbeen encrypted with an affine cipher
y=3x+5.

Problem 4.6

1) In Caesar’s cipher, any letter x is replaced by a letter y using formula y = x 4 k mod 26. Therefore, a single letter x, and
its encrypted letter y, are enough to recover Caesar’s cipher key k. That is, k = y, — x, mod 26.

2) Inaffine cipher, any letter x is replaced by a letter y using formula y = x 4 k mod 26, wherea € Z; and b € Z,. Therefore,
two distinct letters x, and x, and their encrypted letters y, and y, are enough to recover an affine cipher key (a,b). That
is, given two equations y, = ax, +b mod 26 and y, = ax, + b mod 26, a and b are unique.

3) In Vigenere’s cipher, any letter M ; of message M is encrypted using letter K i of the expanded key, as
M j’ =(M; +K;) mod 26,0 < j <len(M). Thus, M]’. —M; =K, mod 26. Therefore, L distinct pairs of letters and their
encryptions are enough to recover a Vigenere’s cipher key of length L.

Problem 4.7

Let n be the number of rotors installed in an Enigma machine, where n = {3, 4}. Letr, and r, denote the leftmost and right-
most rotors, respectively.

If all rotors have a single notch, then each rotor r;,; makes a step when rotor r, finishes a full revolution. Therefore,
Enigma returns to its start position after pressing 26" keys.

As mentioned previously, some rotors may have two (or even more) notches. If a rotor r, has two notches, then in a full
revolution, it triggers two steps of rotor r,_,. Thus, rotor r,,, makes a full revolution after 13 full revolutions of rotor .
Therefore, the period of ciphering alphabet of Enigma with n rotors is

— where ¢, € {1,2} denotes the number of
C.
=11

notches of rotor .. Therefore, doubling the notches on rotors reduces the security strength of ciphering.

Problem 4.8
Let (M,,C,) and (M,,C,) be two pairs of plaintext-ciphertext. The same OTP key k is used to encrypt both plaintexts.
Hence,C, = M, ©k andC, = M, & k.C, and C, are known to the adversary. Thus, the latter can compute:
C, BC,=(M & k)& (M,ok)
=(M,&M,)s(kek)= M,&M,
Notice that to recover both plaintexts, the latter must be of the same bit-length.

Let M, ; and M, ; denote letter i in plaintexts M, and M,, respectively. Also, let left3(l) denote the three leftmost bits of a
7-bit ASCII letter L

Without loss of generality, we only focus on uppercase letters and space. Recall the ASCII codes (in Hexadecimal):
space — 20,,, A— 41,,, B—42,., O —4F,, —50,,..., —Y59,,, Z — 5A,, The ASCII code has some characteristics

16° 16 167 °° 16°
that can serve the adversary to speed up the attack (i.e. recover plaintexts):

139

140

4 Symmetric Ciphering

o If M, ;&M,, =00, then M, ; = M, ;. Therefore, recovering a letter in one ciphertext results in recovering the same letter
in the other ciphertext.
o Space code is 20 ¢, having a single 1-bit, and the codes of uppercase letters are greater than 41,.. If M, ; and M, ; are two

letters, then Ml’i ®M2,i <1A. IfMLi ®M2,i > 20,, then either Ml,i or Mz,i is a space. Hence, (Ml,i @Mz,i) 20, is a letter

included in one plaintext; and the other plaintext has a space at the same position. Example, 54, ©20,, = 34, > 20,.
Therefore, one plaintext has a letter Z and the other has a space. Such a property is very useful to speed up the attack,
since spaces are very frequent in English text (nearly 19% of characters are spaces). In addition, spaces are unlikely
to occur at the same positions in distinct plaintexts, which results in more letters recovered in both ciphertexts.

e Codes of letters A to O start with 100, while codes of letters P to Z start with 101. If left3(MLl. @Mz’i) =000, then both

letters M, ; and M, are in the same half of alphabet, i.e. either in [A,0] or in [P,Z]. If left3(M,;®M,) =001, then
letters M, ; and M, ; are not in the same half of alphabet. Such property is useful while testing different letters.

The adversary takes advantage of the ASCII characteristics to automatically recover some letters. Then, he/she applies a
crib dragging technique, i.e. guess some words likely to be in the original plaintexts, XOR them with the ciphertexts and
derive a part of the key, which, in turn, serves to recover a word in the other ciphertext. Repeat the guess until both plain-
texts are recovered.

Problem 4.9

1) Indeed, OTP suffers malleability vulnerability under the man-in-the-middle attack, which can be shown as follows:
Bob sends a ciphertext C; = M, @ k to Alice.
Eve, the adversary, intercepts ciphertext C; and computes C' = C, & M’, where M’ is either a random or a specific
plaintext chosen by Eve.
When Alice receives the ciphertext C’, she obtains, after decryption, a plaintext M,:
M,=C'"®k=C,eM & k=M, koM k=M &M
M, is distinct from M, . Therefore, integrity is no more assured to Alice.

2) In the ciphertext C intercepted by Eve, a value of 1000,, = 001111101000, is included starting from bit-position p. Eve
forges a ciphertext as follows:
Copy the ciphertext: C' =C

Change bits at locations p to p+-11:
N =(001111101000,) & (000000001010,) = (001111100010,)

C'=C[Lp-1] Il C[p,p+11] & N[1,12] Il C[p+12,len(C)|

Send C’ to Alice. s[i,i + k} denotes bits i to i + k of any bit-string s.
At reception, Alice decrypts as follows:

M,=C'®k= M,, || M,, Il M, , with
M,,=C'[Lp-1] @ k[Lp—1]= M,[1,p-1]
M,,=C'[p,p+11] & k[p,p+11]

=Clp.p+11| @ N[1,12] ® k[p,p+11]

=(C[p.p+11] @ k[p,p+11) @ N[1,12]

=M, [p.p+11] & N[1,12]

=(001111101000,) & (001111100010,) = 000000001010,

M, =C'[p+12,len(C)| & k|p+12,len(C)|= M,[p+12, len(C)|

Therefore, Alice concludes that penalty is of $10 instead of $1000.

References

Notes

1 Congruence was discovered in the 18th century and Caesar’s ciphering made use of tables. Congruence is used in this chapter
to formalize the idea of Caesar’s cipher.

2 Genuine pictures of ENIGMA are available from several national army museums and websites including Wikipedia and
Cryptomuseum.com.

3 Rotors numbered VI, VII, and VIII have two, or even more, turnover notches; thus, they trigger two (or more) steps for the
rotor on their left after a full revolution. It has been shown that it was not a good idea from security point of view, because
double stepping of the rotor on the left reduces the substitution alphabet period.

4 “Six” is the number of rotors arrangements in the earliest versions of Enigma machine.

1
5 “Randomly selected” means that any key K has a probability of E to be selected.

6 In the information theory, the entropy of a random variable X, denoted H(X), is the average level of uncertainty inherent in
the variable possible outcomes (see Chapter 16).

7 1In the information theory, the conditional entropy, denoted H(M | C), quantifies the amount of information needed to
describe the outcome of a random variable M given that the value of another random variable C is known.

References

1 Katz, J. and Lindell, Y. (2007). Introduction to Modern Cryptography. CRC Press.

2 Menezes, A., van Oorschot, P., and Vanstone, S. (2001). Handbook of Applied Cryptography. CRC Press.

3 Trappe, W. and Washington, L.C. (2020). Introduction to Cryptography with Coding Theory. Pearson.

4 Singh, S. (2000). The Code Book: The Evolution of Secrecy from Ancient Egypt to Quantum Cryptography. Anchor Books.

5 Stallings, W. (2020). Information Privacy Engineering and Privacy. Addison Wesley.

6 Webl. Cryptanalysis of the Enigma. [Online]. (Cited 2023 April). Available from: https://en.wikipedia.org/wiki/
Cryptanalysis_of_the_Enigma.

7 Hodges, A. (2014). Alain Turing: The Enigma. Princeton University Press.

141

https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma
https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma
https://www.Cryptomuseum.com

142

5

Hash Functions, Message Authentication Codes, and Digital Signature

This chapter introduces three aspects of cryptography, namely hash functions, Message Authentication Codes, and Digital
signature. All of them are of paramount importance for providing integrity and authentication guarantees. Hash functions
produce digital fingerprints, also called Message Authentication Codes (MAC), which are used to meet multiple needs:

o Verifying integrity of messages and files: a hash works like a fingerprint, which uniquely represents data. Thus, any change
in an email, a file, a software, an image, and so on, results in a hash, which does not match the hash generated by the sender.

e Generating and verifying digital signatures,' which enable to verify the authenticity of a message. If the encrypted hash
is altered, the verification fails and if the message is altered, the hash computed by the recipient does not match the mes-
sage. In both cases, the message is rejected.

o Facilitating secure password storage and verification: instead of storing and exchanging passwords, hashes of passwords
are stored and used to control local and remote logins.

o Since hashes look like random values, hash functions may be used as pseudorandom bit generators.

It is worth noticing that MAC algorithms provide stronger assurance of data integrity than a checksum or an error detect-
ing code. The verification of a checksum or an error detecting code is designed to detect only accidental modifications of
data, while MAC is designed to detect intentional, unauthorized modifications of data, as well as accidental modifications.

MAGCs can be generated either by hash functions alone or by block ciphers. The first category of MACs is addressed in
this chapter, while block cipher modes of operation that generate MACs are addressed in Chapter 9.

5.1 Hash Functions

Definition 5.1 Hash function: it is a mathematical function that takes an arbitrary data input and produces a fixed-size
output called a hash value, digest, hash code, or just hash. A hashing algorithm? is an algorithm founded on a hash function
and implements hashing operations.

Formally, a hash function H() is defined by: H : {0,1} — {0,1}", where {0,1}" is the set of input space and {0,1}" the set of

output space. N and n are the bit-lengths of spaces. H(x) is the hash or digest of input x. In practice n is between 160
and 512, while N may be very large.>

Since the input space is much larger than the output space, two distinct inputs x and x’ may result in the same output,
which is a circumstance called collision. The larger the number of possible hashes, the smaller the chance that two values
will create the same hash. In existing hash functions, collisions are unavoidable, but the probability of collision occurrence
should be minimized.

5.1.1 Properties of Hash Functions

In order not to compromise either the security or the performance of the underlying systems, hash functions should pos-
sess the following properties:

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

5.1 Hash Functions

e Determinism: the same input always results in the same output.
o Efficiency: the computation of hash value should be low.
e Security: hash functions should be practically irreversible (i.e. one-way) in order to be attack resistant.

Preimage resistance

This property means given a hash value z, it should be computationally infeasible to find an input value x that hashes to
z. Formally:

v z €{0,1}", Pr(Finding x|x € {O,I}N, H(x)=z)=0

Pr() denotes probability. Preimage resistance property of hash function protects against an attacker who has a hash and
wants to find the associated data. For example, the attack would be the recovery of a password from the hash of the
password.

Second preimage resistance (also referred to as weak collision resistance)

This property means given an input x;, it is computationally infeasible to find an input x, distinct from x, with the same
hash. Formally:

V' x e {O,l}N, Pr(Finding x, | x, € {0,1}N, X, # Xy, H(xl): H(xz)) ~0

Second preimage resistance property of hash function protects against an attacker who has an input value and its hash and
wants to substitute a forged value to the original input value. In other words, pre-image resistance preserves data
integrity.

Collision resistance

This property means it should be computationally infeasible to find any two inputs that result in the same hash. Formally:
Pr|Finding x,, x, | x;,x, € {0,1}N, H(xl) = H(x2>) =0

Notice that if a hash function is collision-resistant, then it is second preimage resistant (see Problem 5.7). Collision resis-
tance prevents from creating two distinct data or messages with the same hash. For example, in password management
systems, hashes are associated with passwords. Passwords are supplied to users when they register and hashes are stored
in the password file in the authentication system. When a user tries to log in the system, he/she provides his/her password,
then the verification system computes the hash of the password entered by the user and compares it to the one stored in
the password hash file. Consequently, distinct hashes should be associated to distinct passwords; otherwise, a user may be
admitted to access a service granted to another user.

Even the hash functions, which have been considered secure for a long time, may have collisions. For example, Figure 5.1
shows a collision attack against MD5, a hash function widely used in the past. Two documents, Filel.ps and File2.ps, with
distinct contents have the same MD5 hash.

The output of hash functions used in operational cryptosystems looks like* a random string and any small change (of one
bit or one byte) results in entirely different hash. Below are three examples of hashes produced by SHA256 algorithm asso-
ciated with two strings “Hello” and “hello” which have major differences:

SHA256(“Hello”) = 185f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969
SHA256(“hello”) = 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

5.1.2 Generic Attacks Against Hash Functions

A generic attack is an attack that tries to break hash functions without any knowledge of their internal structure. In other words,
generic attacks apply to all hash functions, while specific attacks take advantage of the internal structure of hash functions. By
internal structure, we mean for example the number of rounds and the forms of block transformation operations.

Attacks against hash functions are directly linked to resistance properties. Thus, attacks against hash functions are cate-
gorized into three classes:

143

144

5 Hash Functions, Message Authentication Codes, and Digital Signature

1) Collision attacks aiming to find a hash collision.

2) Preimage attacks aiming to recover a data given its hash (for example, recovering a password once its hash has been
intercepted).

3) Second preimage attacks aiming to alter the content of message while keeping its hash.

The number of steps> of a generic attack is the number of hash function tries before breaking the hash function. The best
known generic (second) preimage attack is brute-force attack, which requires 2" steps and the best known collision attack
is birthday attack, which requires ol)2 steps, where 2" denotes the cardinality of the hash space. Proof of attack com-
plexity is addressed in Problems 5.13 and 5.14.

(nt1)2 _ 112 4 on/2

2n/2

It is worth noticing that in literature, 2 is often approximated by , when n is large. Therefore, the

security strength of hash functions to resist to all three forms of generic attacks is min (2”/ 2 2”) =22

5.1.3 Overall Operation Principle of Hashing Algorithms

There are many hashing algorithms used by services and applications with different security and performance require-
ments. The most popular hashing algorithms include:

e SHA family (SHA-0, SHA-1, SHA-2, SHA-3)
e MD family (MD2, MD3, MD4, MD5, MD6)
o Blake family (Blakel, Blake2, Blake3)

e RIPEMD, Tiger, Whirlpool, etc.

MD5 (Message Digest 5) was the most popular and widely used hash function for many years. It was adopted as an internet
standard. In 2004, collisions were found in MD5. Published collision-attacks showed that MD5 is not entirely secure and
hence it is no longer recommended. Figure 5.1 shows an example of MD5 collision.

Julius. Caesar Julius. Caesar

Via Appia | Via Appia |

Rome, The Roman Empire Rome, The Roman Empire
May, 22, 2005 May, 22, 2005
To Whom it May Concern: Order:
Alice Falbala fulfilled all the requirements of the Roman Empire Alice Falbala is given full access to all confidential and secret
intern position. She was excellent at translating roman into her gaul information about GAUL.

native language, learned very rapidly, and worked with considerable
independence and confidence.

Her basic work habits such as punctuality, interpersonal deportment, Sincerely,
communication skills, and completing assigned and self-determined
goals were all excellent. Julius Caesar

I recommend Alice for challenging positions in which creativity.
reliability, and language skills are required.

I highly recommend hiring her. If you’d like to discuss her attributes
in more detail, please don’t hesitate to contact me.

Sincerely,

Julius Caesar

Figure 5.1 Example of collision attack against MD5. MD5(Filel.ps) = a25f7f0b29ee0b3968c860738533a4b9. MD5(File2.ps) =
a25f7f0b29ee0b3968c860738533a4b9. From: http://web.archive.org/web/20071226014140 /http://www.cits.rub.de/MD5Collisions.

http://web.archive.org/web/20071226014140
http://www.cits.rub.de/MD5Collisions

5.1 Hash Functions

5.1.3.1 Merkle-Damgard Construction
Most hashing algorithms, including MD5, SHA-1, and SHA-2, are designed according to model known as Merkle-Damgard
construction [1, 2], which operates as follows (see Figure 5.2):

o Padding bytes are appended to the data so that the length of padded data is multiple of a chosen block bit-length L.
Padding bits are appended to the end of the initial data in a format known to both parties; so that the verifier of the hash
uses the same padding bits. There exist different ways to encode the data length in the padding field depending on hash
functions. Then, padded data to hash is divided into m blocks B', B ..., B™ of equal length L.

o Each block is hashed separately with additional input as follows:

Block B': the hash function takes a combination of B' and an initialization value, also known as initialization vector (IV'),
and returns a hash value H'. Block i (i=2, ..., m): the hash function takes a combination of B and the hash value H'™*
and returns hash value H'.

e The hash function is a series of rounds and each round is made of a series of transformations (bit string additions, per-
mutations, etc.).

o The output of the final round of the last block of message is the hash to the entire message. Hash bit-length is denoted .

If any block or the final hash is altered, the final hash computed by the data integrity verifier does not match the data. Hash
bit-length n is a parameter of hashing algorithms. In existing hashing functions, parameter n takes its value form the set
{128, 160,192,224, 256,384, 512}. The security and performance of the hashing algorithm are dependent on the hash length.
The larger the hash length is, the lower the collision probability is. The larger the hash length is, the higher the hash com-
putation time is.

5.1.3.2 Vulnerability to Length Extension Attack
Some cryptographic algorithms using hash functions based on Merkle-Damgérd construction are vulnerable to a specific
attack called length extension attack. In the latter, the adversary knows a message M, a hash H(key || M), and the length of
key, len(key), but the value of the key is unknown. Problem 5.15 discusses why the key length is required. For example,
after signing a message, the sender transmits the message and the signature, but the private key used to sign is not sent. In
a similar way, when MAC (message authentication code) is used, the sender transmits the message and its MAC, but not
the key used to generate the MAC. If the three items (M, H(keyll M), and len(key)) are available to an adversary, he/she
can extend the original message and generate a hash without using the key. Upon reception, the verifier validates the
(forged) message as if it were generated by a legitimate party using the appropriate key.

Below is how the length extension attack can be realized:

When the legitimate party generates H(key || M) using the key known to him/her, a padding string P is appended at the

end of the string key || M. The length of padding string P is such that len(key || M || P) is a multiple of the block length L
of the hash function H (e.g. L=1024 in case of SHA-2). Then, before hashing, the string key || M || P is represented as a
sequence of m blocks (B!, B ..., B™) with equal length L.

Recall that in hash functions based on Merkle-Damgard construction (see Figure 5.2), block B' and initialization
vector IV, which also is referred to as H?, are used by the hash function to produce H ! then H' and B? are used to pro-
duce H?, ..., and finally, H™ represents the hash of the entire message.

Length extension attack assumes that the length of

Data the key is known to the adversary. Thus, the latter
1|’ Data length is can easily compute the padding string P and forges a
Data Podding |+~ - er;:zc;?:s'" string f' starting with P and continuing with a fake
. data string J of interest to him/her. The forged mes-
ey .

/,/ e sageisM'= M || P||T.
e T Length extension attack takes advantage of the
B! p? B gm design of Merkle-Damgard construction to adapt®
l l l the hash function H, such that H, is not the
HE 5 e - constant initialization vector, rather it takes the

I H H H H H H Final . .

- d hash value of H(key| M || P), which is known to the

adversary Thus, hashing block(s) of J looks like a
Figure 5.2 Overall operation of hashing algorithm.

145

146

5 Hash Functions, Message Authentication Codes, and Digital Signature

continuation of blocks of string key || M || P and the resulting hash H(§) matches the hash H(key || M || P Il F) that would be
produced by a normal hash function.

Proof of correctness
Let P’ be the padding string to append to fake data F, such that len(F Il P") is a multiple of the block size L and K, the
number of blocks of the string ' 1| P'.

Let M’ be the bit string M || P || J that the recipient receives.

Leth (B,v) denote a one-block hash function, which hashes one block B using an initialization vector v and returns a
hash.

Let (Bl, B, ..., B’") be the sequence of blocks representing the string key || M || P and (B'"“, B2, .., B"K) be the block
sequence representing the string f' || pP’.

By design of Merkle-Damgérd construction-based hash functions, given a bit-string X of N blocks B', B%, ..., BY, the
hash function H() is defined by:

H(X,IV) = H", such that:

H'=h(B*, H*), 1<k<N

H!=T(B",1V), where IV denotes the initialization vector.
Upon reception of padded message M’, the legitimate verifier computes the following hash:

H((Key |l M 1| P 1l j—"IIP’),IV):H((Bl,BZ,..., B™ B™H pmt2 Bm+K),IV)

- H((B’"“,B’"“, B"”K),H((Bl,Bz, B’"),Iv))
=H(FII P, H((key || M || P),IV))

The adversary knows the hash v computed by the legitimate sender, v = H (key Ml P,IV). He/she modifies the hash
function to use a chosen initialization vector and computes H(f || P’,v). Thus, the hash computed by the adversary is the
same as the one computed by the verifier; and the received message M’ is validated. [

5.2 Secure Hash Algorithms (SHA)

SHA algorithm family is the most used hashing algorithms in current cryptosystems and it is very likely to dominate in the next
decade(s). SHA family is a set of NIST standards named SHA-0, SHA-1, SHA-2, and SHA-3. The most popular algorithm is SHA-
1. SHA-0 was published in 1993, SHA-1 in 1995, SHA-2 in 2002, and SHA-3 in 2015. SHA-0 was replaced by SHA-1, which in turn
was attacked with success, but still used. Current and future cryptosystems are either using or moving to SHA-2 or SHA-3.

Each subfamily may have more than one variant. SHA variants differ in terms of maximum message size, hash size,
block size, and number of rounds (see Table 5.1). SHA-1 and SHA-2 are similar in design, while SHA-3 relies on different
design principles. SHA-1 and SHA-2 make use of Merkle-Damgérd hash construction model [1, 2], while SHA-3 makes use
of sponge construction model [3, 4].

SHA-2 and SHA-3 offer the same set of hash lengths and the same security strengths levels. Main characteristics of SHA
variants are summarized in Table 5.1. It is worth noticing that the most important characteristic, when security is of con-
cern, is the message digest size.

5.2.1 SHA-1 and SHA-2 Algorithms

The first version of SHA-1 was published in 1995 [5]. The last revisions of SHA-1 and SHA-2 algorithms were published in
2012 under the name of SHS (Secure Hash Standard) [6]. SHS includes seven variants: SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, and SHA-512/256. Notice that SHA-2 is not used alone in certificates, instead its variants are used.
In the sequel, SHA-x denotes one of the seven SHS variants.

The following principles are common to all SHA-1 and SHA-2 variants:

e Input and output
Input of SHA-x is a bit string of an arbitrary size. However, the maximum message size is fixed (see Table 5.1).
SHA-x produces hashes with fixed length (see Table 5.1).

5.2 Secure Hash Algorithms (SHA)

Table 5.1 Main characteristics of SHA algorithms.

Message size Block size Message Number of
Algorithm (bits) (bits) digest (bits) rounds
SHA-1 <2% 512 160 80
SHA-224 <28 512 224 64
SHA-256 <2% 512 256 64
SHA-384 <2 1024 384 80
SHA-512 <! 1024 512 80
SHA-512/224 <2'® 1024 224 80
SHA-512/256 <2'% 1024 256 80
SHA3-224 No limit’ 115218 224 24
SHA3-256 No limit 1088 256 24
SHA3-384 No limit 832 384 24
SHA3-512 No limit 576 512 24

e Data representation

~Hashing algorithms manipulate words of either 32 or 64 bits. An integer between 0 and 2** —1 (or 2 —1) s repre-
sented by a word of 32 or 64 bits, respectively. The least significant bits of an integer are rightmost bits of the word.

—Message to hash is split into blocks with a fixed size of either 512 or 1024 bits.

~Blocks of the message to hash are labeled B',..., B", where m is the number of blocks of the message including pad-
ding bits.

—To be processed, each block B' is stored in 16 words labeled B, , Bi, ..., BL..

e Message padding

The purpose of padding is to ensure that the bit-length of the padded message is a multiple of block size. Padding bits are
appended to the end of the initial message in a format known to both parties. Let | denote the bit-length of the message
M to hash. Two distinct padding methods are used:

Padding in SHA-1, SHA-224, and SHA-256 is done as follows: append a bit “1” at the end of message M, followed by k
zero bits, where k is the smallest positive integer such that [+1+ k = 448 mod 512, then append the binary value of [
represented on 64 bits.

Padding in SHA-384, SHA-512, SHA-512/224, and SHA-512/256 is done as follows: append a bit “1” at the end of
message M, followed by k zero bits, where k is the smallest positive integer such that [+1+ k =896 mod 1024, then
append the binary value of [represented on 128 bits.

Bit operations used by SHA-x

Bitwise operations used by SHA-x are: A (and), v (or), & exclusive or, and = (complement).

The sum of integers x and y isz = (x + y) mod 2** (or mod 2°*).

ROTL"(x) denotes the circular shift (i.e. rotation) of a word x by n bit-positions to the left.

ROTR"(x) denotes the circular shift (i.e. rotation) of a word x by n bit-positions to the right.

SHR"(x) denotes the right shift of a word x by n bit-positions.

Logical functions and constants

SHA variants make use of logical functions and constants to brew the blocks. Constants appear as random values and are
in hexadecimal representation.

5.2.1.1 SHA-1 Algorithm

SHA-1 sizes, constants, and logical functions

SHA-1 processes 512-bit blocks. It uses a schedule of 80 rounds and five 32-bit working variables a, b, ¢, d, and e. 32-bit
round words are labeled W,,, ..., W_,. 32-bit words of hash value of block B' are labeled H(i), Hli, H ;, H ;, Hi (i.e. 5*32 bits =
160 bits). SHA-1 uses a sequence of eighty constant 32-bit words, K, K, ..., K, defined by:

K, =5a827999if 0<i<19 K, = 6ed9ebal if 20 <i<39
K, =8f1bbcdc if 40 <i <59 K, =ca62c1d6 if 60 <i<79

147

148 | 5 Hash Functions, Message Authentication Codes, and Digital Signature

SHA-1 uses a sequence of functions f;, f}, ..., f,. Each function f, operates on three 32-bit words and produces a 32-bit
word as output. The computation of logical functions depends on their index as follows:

f(x,3,2) =Ch(x,y,2) =(x N y) ®(~x Az) if 0<i<19

f:(x,y,2) = Parity(x,y,2) =x Dy Dz if 20<i<39
f(x..2) = Maj(x,y,2) = (x A y)B(x Az)@(yAz) if 40 <i<59
f(x,y,2) = Parity(x,y,2) =x® y®z if 60<k<79

e SHA-1 initialization

Hp = 67452301 H, = efcdab89 H) = 98badcfe
H? =10325476 H] = c3d2e1f0
e Computing message hash
For each block B'(i =1, ..., m) of padded message do:
1) Prepare the message schedule words Wy, W, ..., W_:
B 0<t<15
ROtz (W W, oW, oW,) 16<i<70
2) Initialize the five working words:
a=H', b=H " c=H',d=H", e=H,"
3) Process 80 rounds:
fort=0to79 do
Tmp = ROTL(a) + f;(b,c.d)+e+K, + W,
e=d; d=c; ¢c=ROTL(b;b=a; a= Tmp

4) Compute the hash of block i:

H,=a+H, 5 H =b+H " Hy=c+H,"
, o -
Hy=d+H; ; Hy=e+H,

5) After processing block B, Hy' || Hy" || H," || H3" || H}' is the 160-bit string representing the hash of the entire message.

5.2.1.2 SHA-256 Algorithm
o SHA-256 sizes, constants, and logical functions

SHA-256 processes 512-bit blocks. It uses a schedule of 64 rounds and eight 32-bit working variables a, b, c, d, e, f, g, and
h. 32-bit round words are labeled W, ..., W,. Words of hash value of block B' are labeled H}, H|, H., H., H}, H, H., H.
(i.e. 8+32 bits = 256 bits).

A sequence of six logical functions are used in SHA-224 and SHA-256. Each function operates on one or three 32-bit
words and produces a 32-bit word as output. Those functions are defined by:

Ch(x,y,2)=(x Ny) ®(-xAz)
Maj(x,y,2)=(x Ay)&(xAz)@(yAz)

S 1% (x) = ROTR*(x) & ROTR™ (x) & ROTR™ (x)

S 1% (x) = ROTR®(x) & ROTR" (x) & ROTR* (x)

aé256}(x) = ROTR’(x) & ROTR*(x) & SHR*(x)
o129} (x) = ROTRY (x) & ROTR™ (x) © SHR™ ()

5.2 Secure Hash Algorithms (SHA) | 149

SHA-224 and SHA-256 use the same sequence of 64 constant 32-bit words, K(’?%}, ey Kg%}, defined as follows, from the left
to the right:

42822198 71374491 b5cOfbef e9bSdbasS 3956¢25b 59f111f1
923f82a4 ablcSed5 d807aa98 12835b01 243185be 550c7dc3
72be5d74 80deblfe 9bdcO06a7 cl19bfl174 e49b69cl eftbed786
0fc19dc6 240calcc 2de92c6f 4a7484aa 5cb0a9dc 76f988da
983e5152 aB31c66d b00327c8 bf597fc7 c6e00bf3 d5a79147
06ca6351 14292967 27b70a85 2el1b2138 4d2c6dfc 53380d13
650a7354 766a0abb 81c2c92e 92722c¢85 a2bfe8al allab664b
c24b8b70 c76c51a3 d192e819 d6990624 {40e3585 106aa070
19a4c116 1e376c08 2748774c 34b0bcb5 391cOcb3 4ed8aada
5b9ccadf 682e6ff3 748f82ee 78a5636f 84c87814 8cc70208
90befffa a4506ceb bef9a3f7 c67178f2

o SHA-256 Initialization

Hy = 6a09e667 H, =bb67ae85 H, =3c6ef372
H) =a54ff53a Hj =510e527f HJ=9b05688c
Hy =1f83d%ab HY = 5be0cd19

o Computing message hash

For each block B (i=1, ..., m) of padded message do:

1) Prepare the message schedule words Wy, Wi, oy Wit

B 0<t<15

W, =
t 256 256
‘71{ }(u/t—2>+vvt—7 +Ué }<u/t—15)+u/t—16 16<t<63

2) Initialize the five working words:

a:Hé_l; b:HlH; c:H;_l; d:H;'_1
e:Hffl; f:H;’l; g:Hé’l; h:H;’1
3) Process 64 rounds:

fort =0 to 63 do

Tmpl =h+ 3 &)+ Che, f,0) + K= +w,
Tmp2 = Z({]m} (a)+ Maj(a,b,c)

h=g g=f f=e
e=d+Tmpl;d=c;c=b; b=a; a=Tmpl+Tmp2

4) Compute the hash of block i:
Hy=a+H,"; H=b+H;'; Hy=c+H,'; Hy=d+H;'

H,=e+H';, Hi=f+H."; H =g+H."; H.=h+H"

5) After processing block B™, Hy" || Hy" I| Hy' || HY* || Hy' || H* || HY' || HY' is the 256-bit string representing the hash of
the entire message.

150 | 5 Hash Functions, Message Authentication Codes, and Digital Signature

5.2.1.3 SHA-224 Algorithm
SHA-224 is defined exactly as SHA-256, with two exceptions:

o The constants used in the initialization step are as follows:

H,=c105%d8 H, =367cd507 H,=3070dd17 H,= f70e5939
H, = ffc00b31 H,=68581511 H,=64f98fa7 H,=befadfa4

e The message hash is obtained by keeping only 7 words of the final block hash, i.e. Hy" | H" | H)" || Hy" || H}' || H".

5.2.1.4 SHA-512 Algorithm

o SHA-512 sizes, constants, and logical functions
SHA-512 processes 1024-bit blocks. Blocks of padded message are labeled B, B .., B™, where m is the number of blocks
of padded message. Each block B' is represented as sixteen 64-bit words labeled Bti (0<t<15).
SHA-512 uses a schedule of 80 rounds and eight 64-bit working variables a, b, c, d, e, 8 and h. 64-bit round words are
labeled W, ..., W,,. Words of hash value of block B' are labeled H,, H,, H,, H;, H,, H, H;, H- (i.e. 8 +64 bits = 512 bits).
A sequence of six functions are used in SHA-3, SHA-512, SHA-512/224, and SHA-512/256. Each function operates on
one or three 64-bit words and produces a 64-bit word as output. Those functions are defined by:

Ch(x,y,z) :(x /\y)@

<ﬂx/\z)

Maj(x,y,z) = (xAy)@(xAz)@ (yAz)
S B () = ROTR? (x) & ROTR* (x) & ROTR® (x)

0

S (x) = ROTR™ (x) & ROTR'®(x) & ROTR* (x)

1

o7 (x) = ROTR! (x) ® ROTR®(x) @ SHR’ (x)
o112 (x) = ROTRY (x) ® ROTR® (x) @& SHR® (x)

428a2f98d728ae22
3956¢25bf348b538
d807aa98a3030242
72be5d74£27b896f
e49b69c19ef14ad2
2de92¢6f592b0275
983e5152ee66dfab
¢6e00bf33da88fc2
27b70a8546d22ffc
650a73548baf63de
a2bfe8aldcf10364
d192e819d6ef5218
19a4¢116b8d2d0c8
391c0cb3c5¢95a63
748f82eeSdetb2fc
90befffa23631e28
ca273eceea26619c¢
06f067aa72176fba
28db771523047d84
4ccS5d4becb3e42b6

7137449123ef65¢cd
59f111£1b605d019
12835b0145706fbe
80deblfe3b1696b1
efbe4786384125¢3
4a7484aa6eabe483
a831c66d2db43210
d5a79147930aa725
2e1b21385¢26¢926
766a0abb3c77b2a8
a81a664bbc423001
d699062455652910
1e376c085141ab53
4edBaadac3418ach
78a5636f43172f60
a4506cebde82bde9
d186b8c721c0c207
0a637dc5a2c898a6
32caab7b40c72493
597f299cfc657¢2a

b5c0fbefec4d3b2f
923182a4af194f9b
243185bedeedb28¢
9bdc06a725¢71235
0fc19dc68b8cd5b5
5cb0a9dcbd41fbd4
b00327¢898fb213f
06ca6351e003826f
4d2c6dfcSacd2aed
81c2c92e47edace6d
¢24b8b70d0f89791
f40e35855771202a
2748774cdf8eeb99
5b9ccadf7763e373
84c87814alf0ab72
bef9a3f7b2c¢67915
eada7dd6cdeleble
113f9804bef90dae
3c9ebelal5cObebe
Sfcb6fab3ad6faec

SHA-384, SHA-512, SHA12/224, and SHA-512/256 use the same sequence of 80 constant 64-bit words, Kém}, s Kglz},
defined as follows, from left to right:

e9b5dbas58189dbbe
ablcSed5da6d8118
550c¢7dc3d5ftb4e2
c19bf174c1692694
240calcc77ac9c65
76f988da831153b5
bf597fc7beefOecd
142929670a0e6e70
53380d139d95b3df
92722¢851482353b
¢76¢51a30654be30
1062a07032bbd 1b8
34b0bcb5e19b48a8
682¢6ff3d6b2b8a3
8cc702081a6439ec
c67178£2¢372532b
f57d4f7fee6ed178
1b710b35131c471b
431d67¢49¢100d4c
6c44198c4a475817

5.2 Secure Hash Algorithms (SHA) | 151
e SHA-512 initialization

Hy = 6a09¢667 f3bcc908 H) = bb67ae8584caa73b
H) =3c6ef372fe94f82b Hj =a54ff53a5f1d361
HJ =510e527 fade682d1 ~ H_ =9b05688c2b3e6cl f
H =1f83d9abfb41bd6b ~ HY = 5be0cd19137¢2179

o Computing message hash
For each block Bi (i =1, ..., m) of padded message do:

1) Prepare the message schedule W,, W,, ..., W_g:

B 0<t<15

t = 0_1{512} (W/t,2> n I’Vti7 i O_éSIZ} (W

t715> W 16<1<63

2) Initialize the five working words:
a= Hé_l; b= Hi_l; c= H;_l; d= H;_l
e= Hf"l; f= H;’l; g= Hé’l; h= H;’l
3) Process 80 rounds:

for t=0 to 79 do

Tmpl = h+ 35 () + Chie, f.9) + K 4w,
Tmp2 = Zim}(a) + Maj(a,b,c)
h=gg=f;f=ee=d+Tmpl;d=c;c=b;b=a
a=Tmpl+Tmp2

4) Compute the hash of block i:

Hy=a+H,"'; H =b+H ", Hi=c+H),"; Hi=d+H,"
H.=e+H,'; Hi=f+H."; H,=g+H.,"; H,=h+H"

5) After processing block B™, Hy' [| H{" I| H,' || H;" [| H,' | H" || H¢' || HY' is the 256-bit string representing the hash of
the entire message.

5.2.1.5 SHA-384,SHA-512/224, and SHA-512/256 Algorithms
SHA-384, SHA-512/224 algorithms are defined exactly as SHA-512 algorithm with the following exceptions:

o Initialization values are as follows:
— SHA-384 initialization
H{ = cbbb9d5dc1059ed8 H) = 629a292a367¢d50
HJ) =9159015a3070dd17 ~ Hj =152 fecd8 f70e5939
H, = 67332667 ffc00b31 H{ = 8eb44a8768581511
H{ =db0c2e0d64 f98fa7 Hj = 47b5481dbefa4 fad

- SHA-512/224 initialization

Hy =8c3d37¢819544da2 H, =73e1996689dcd4d6
H) =1dfab7ae32f9c82 HY =679dd514582 f9 fcf

152

5 Hash Functions, Message Authentication Codes, and Digital Signature

H. =0f6d2b697bd44da8 H? =77e36f7304c48942
Hy =3f9d85a86a1d36c8 H) =1112e6ad91d692al
- SHA-512/256 initialization

Hy =22312194 fc2bf 72¢ H, =9f555 fa3c84c64c2
HY =2393b86b6 f53b151 HY =963877195940eabd
H, =96283ee2A88effe3 H = be5ele2553863992
HY =2b0199 fc2c85b8aa H? =0eb72ddc81c52ca2

e After processing block B™, the message hash is obtained by truncation as follows:

- SHA-384 keeps six 64-bit words, Hy" || H)" || Hy' || Hy" || H)' || H!
- SHA-512/224 keeps three 64-bit words and the left half of the fourth 64-bit word, H' I| H;" || H}" || left_half (Hg")
- SHA-512/256 keeps four 64-bit words, H' || H," || HY" || Hy'

5.2.1.6 SHA-1 Security

In 2005, a method was proposed for finding SHA-1 collisions under restrictive conditions; the number of rounds was 53
instead of 80 in the standard SHA-1. From that time, SHA-1 security became doubtful, but no formal proof of its insecurity
was provided. As of 2020, attacks against SHA-1 have become practical. As such, it is recommended to withdraw SHA-1
from existing products as soon as possible and use SHA-2 or SHA-3 instead. As far as we know, the most efficient attack
against SHA-1 has been published in 2020 [7]. It belongs to chosen-prefix collision attacks. In the designed attack, the adver-
sary starts with two prefixes P and P’, then computes two parts M and M, such that H(P || M) = H(P'|| M"). Chosen-prefix
collision attack has a complexity of 2°** and is far from the brute-force attack that has a complexity of 2'°*/2

5.2.2 SHA-3 Functions

SHA-3 is based on an instance of Keccak® algorithm, which was selected as the winner of SHA-3 public cryptographic hash
algorithm competition, initiated by NIST in 2007, after serious attacks were published against SHA-1. SHA-3 was published
in 2015 [8]. The security strength levels provided by SHA-3 are the same as the ones of SHA-2.

Four hash functions, namely SHA3-224, SHA3-256, SHA3-384, and SHA3-512 along with two extendable-output
functions, Shake128 and Shake256, form the SHA-3 family. Shake128 and Shake256 are not hash functions, but can be
specialized to hash functions. They are not described in the sequel. The four SHA-3 functions are based on the sponge
construction model [3, 4] in which the main component is the Keccak permutation.

Notation:

SHA-3 function specification makes use of polymorphic functions. To be used in a specific context, a polymorphic function
¢ must first be instantiated to produce a concrete function, which in turn is called at multiple times to return a result.
In ¢[Il, L, ...](cl, >), I,, I,, ... denote the instantiation parameters and ¢;, ¢,, ... denote the call (or input) parameters.
For example, Sponge function is instantiated to produce a hash function of a cryptosystems, then the produced hash
function is used to return hash digests (see Section 5.2.2.2).

5.2.2.1 Keccak-p Permutation
A Keccak-p!'? permutation is denoted Keccak_p [b, N, }, where b is the input bit-string size and N, the number of rounds.
Input string size b is any value in {25, 50,100, 200, 400, 800, 1600} and N, is any positive integer. Keccak_ p provides foun-
dations to design a large variety of hash functions to fulfill specific application requirements. However, the current SHA-3
standard chose a single pair of value parameters b =1600 and N, =24.

A round consists of a sequence of five transformations, which are called step mappings labeled 6, p, 7, X, and 7.

5.2.2.1.1 State Array

Bit strings manipulated by Keccak-p transformations are represented as 3-dimensional arrays of bits, called state arrays. Any
string used in a permutation is represented as a 3D array, 5x5Xxw array of bits, where w=>b/25. The 2D sub-arrays are
called sheets, planes, and slices; and 1D sub-arrays are called rows, columns, and lanes (see Figure 5.3). Thus, the state array

5.2 Secure Hash Algorithms (SHA)

& s]
\,'3{\ I.J P - ~ I.’ ' ‘ ’
. . , 1
\1‘/' ‘p - : F ,“‘-1 g
‘p“/f' 7, P L P
r # 4 # Q.
. / ey # :
.t prd ’/ Tl/ ’ I
_f‘l:’,a' 74 ’ / ’ I
Fa ‘ f, I/ : Eu f'l :
s S . 78 .
’ A ~ r“ : % :
s -, u L
PR SO -.\‘._.:..e‘_ ________________________ rl '
—— b p)
1 I
7 1
I 1
* | 1 1
Column ——+ \;,/* ' 4 !
T 1
! s
I _// .
Fi 1 7,’T
i 1 P
| A
! / v | A7 Sheet
I'j. o 4 * s
N ‘f 1 .
N /
Z
4w W bits Row Slice
0 4 X

Figure 5.3 Parts of the state 3D-array (100-bit string).

Table 5.2 Keccak-p permutation (width b and related
quantities,w and ().

b 25 50 100 200 400 800 1600

w 1 2 4 8 16 32 64
1 0 1 2 3 4 5 6

associated with a bit string of a bit-length of b is composed as follows: five planes, five sheets, and w slices. Two quantities,
labeled w and [, are associated with each bit string length b (see Table 5.2). They are used in transformation specification.

Rules for conversion
1) Astring S of size b, whose bits are labeled S[O}, SM, s S[b — 1] is converted into a state array A as follows:
For all triples (x,y,z) such that 0 < x <5,0<y <5, 0<z <w do:
A[x,y,z] = S[W(5y+x)+z}
2) Astate array A is converted into a bit string S of size b, whose bits are as follows:

S = Plane(0) || Plane(1) || Plane(2) || Plane(3) || Plane(4)

where:

Plane(j) = Lane(0, j) Il Lane(1, j) || Lane(2, j) || Lane(3, j) || Lane(4, j),0 < j <5

Lane(i, j) = Ali, j,0] 11 A[i, j1] | A[i, j,2] ... 1| A[i, jw—1],0<i<5and 0< j<5

153

154

5 Hash Functions, Message Authentication Codes, and Digital Signature

S[80] | s[B4] | S[88] | S5[92] | S[96] 5[81] | 5[85] | S§[89] | 5[93] | 5[97]
Sle0] | S[64] | S[68] | S[72] | S[76] 5[e1] | 5[65] | §[69] | S[73] | S[77]
S[40] | S[44] | S[48] | 5[52] | S[56] 5(41] | S[45] | 5[49] | S[53] | S[57]
5[20] | S[24] | 5[28] | S[32] | S[36] 5[21] | 5[25] | §[29] | S[33] | S[37]
5[0] 5[4] 5[8] | S[12] | S[16] 5[1] 5[5] 5[9] | 5[13] | S[17]
Slice 1 Slice 2
s[82] | S[86] | S[90] | S[94] | S[98] 5[83] | S[87] | S[91] | 5[95] | S[99]
S[ez] | S[ee] | S[70] | S[74] | S[78] 5[63] | s[67] | S[71] | S[75] | S[79]
S[42] | S[46] | S[50] | S[54] | S[58] 5[43] | S[47] | S[51] | S[55] | S[59]
s[22] | s[z6] | S[30] | S[34) | S[38] S[23] | s[27) | s[31) | S[35] | S[39]
5[2] | s[6] | s[10] | 5[14] | S[18] S[3] | s[7] | s[11] | S[15] | 5[19]
Slice 3 Slice 4

Figure 5.4 Mapping of a 100-bit string to a state array.

Example 5.1
Let b=100.

Any string of 100 bits is organized into four slices of 25 bits each. Figure 5.4 shows the location of each bit on the four
slices.

5.2.2.1.2 Step Mappings
A round is composed of five step mappings (i.e. transformations) denoted by 6, p, 7, x, and 7. With the exception of the
mapping 7, the input A and output A’ of step mappings are state arrays. Step mappings are defined as follows.

Step mapping 0
The effect of # is to XOR each bit of the state with the parities of two column in the array. More formally, 6 is specified as

follows:
— For all pairs (x,z) such that 0 <x <5 and 0<z<w do:

C[x.z]= A[x,0,z) & A[x,1,z] @ A[x,2.2]® A[x,3,z] @ A[x.4,2]

~ For all pairs (x,z) such that 0<x <5 and 0<z<w do:
D[x,z]=C[(x —1)mod 5,z C|(x +1)mod 5,(z—1)mod w|

— For all triples (x,y,z) such that0<x <5,0<y<5,and 0<z<w do:
A'[x,y.2]= A[x.y.2] ® D[x.2|

Step mapping p

The effect of p is to rotate the bits of each lane by a length, called offset, which depends on x and y coordinates of the lane.
More formally, mapping p is specified as follows:

— For all z such that 0<z<w do: A’[0,0,z] = A[0,0,z]

- (o2)=(10)
— For t=0 to 23 do:
i) For z suchthat0<z<w do: A’[x,y,z]:A[x,y,(z—(t+1)<t+2)/2) mod w]
i) (x,y)= (y, (2 +3y) mod 5)
Step mapping

The effect of 7 is to rearrange the positions of the lanes. More formally, mapping 7 is specified as follows:
For all triples (x,y,z) suchthat 0<x <5, 0<y<5,and 0<z<w do:

5.2 Secure Hash Algorithms (SHA)
A'[x,y,2]= A[(x+3y) mod 5,z

Step mapping x
The effect of x is to XOR each bit with a nonlinear function. More formally, mapping x is specified as follows:
For all triples (x,y,z) such that0 <x <5,0<y<5,and 0<z<w do:

A/{x,y,z} = A[x,y,z] ® (A[(x +1) mod S,y,z] P 1) A (A[(x +2) mod S,y,zD

Step mapping T

The effect of 7 is to modify some of the bits of Lane(0,0) in a manner depending on the index of the round. The input of
T is a pair (A,i,), where A is a state array and i, a round index; its output is a state array A’. More formally, mapping 7
is specified as follows:

~ For all triples (x,y,z) such that 0 < x < 5,0< y < 5,and 0 < z < w do: A’[x,y,z] = A[x,y,z]

- RC=0" (RC isastring of w 0-bits)

I=log,(b/25)

~ For j=0 to I do: Rc{zf —1] =re(j+7i,)

For all z such that 0<z<w do: A’[0,0,z] = A/[0,0,Z] &) RC{Z}

Function re(t) is specified as follows:

Ift mod 255=0, then return 1

R =10000000 (R is an array of eight bits)
For i=1 to 255 do:

R=0IIR R[0]= R[0] ® R[8] R[4]= R[4]& R[8]
R[S|=R[S|®R[S] R[6]=R[6]® R[S]
R = Trunc, [R] (keep the eight leftmost bits of R)

Return R

5.2.2.1.3 Keccak_p[b, N,] Permutation

Keccak_ p[b, Nr} permutation takes a string S of a bit-length of b, and a number of rounds N, and returns a bit string S’
of the same length b. The permutation consists of N, rounds. More formally, Keccak_ p[b, Nr} is specified as follows:
Convert the input bit string S into a state array A.

I=log, (b / 25)

For i, = 12+21—N, to 124211 do: A=7(x(r(p(6(4)))). i

Convert the final state array A into a bit string S’

5.2.2.1.4 Keccak_f[b] Permutation
Keccak_ f [b] permutation is a specialization of the generic Keccak_p permutation, where the number of rounds N, is
omitted, since it is fixed at 24.

Keccak_ f [b] is equivalent to Keccak_p|b,12+-2log,(b/ 25)].

Keccak_ p[1600, 24} is the underlying permutation to all SHA-3 functions and it is equivalent to Keccak_ f {1600}.

5.2.2.2 Sponge Construction
Sponge construction is a framework for specifying functions of binary data with arbitrary output length [3, 4]. The functions that
the framework produces are called sponge functions. The latter are denoted by Sponge [f,Padding, r} where: f isafunction that
takes a string of length b and returns a string with the same length, r is called rate, and Padding is a padding rule.

A sponge function takes as inputs, a bit string N and an output bit-length d; and it returns a string Z of length d (see
Figure 5.5).

In its generic form, given two inputs x and m, Padding(x,m) returns a sequence of padding bits with a length such that
m + len(Padding(x,m)) is a multiple of x. In sponge construction x =r and m = len(N).

155

156 | 5 Hash Functions, Message Authentication Codes, and Digital Signature

| :
i Py Py P i
! rhits rhits Fhits | i
| |
i . OGTUU A __@_' _____________ -é:)* l rbits
| ' !
s f f £l
i i Chits
| 00.00 ——n L \
I]
I 1
! c0s E
i Absorbing :
e i
R
{0)
i
I
[| |
:) o e — -
rhits : rhbits rbits
: f f
i
: = .
!
|
d —
| Squeezing

Figure 5.5 Sponge construction.

Bit string N is concatenated with the padding bits produced by Padding function to yield a sequence of bit strings
F,,P,F,, ..., P,_,. Each bit string P,,0 <i <n—1, has a fixed length of r bits. n, the number of strings, is equal to bit-length
of padded input by r,i.e.n= (len(N)+len (Padding (r, len(N))) / r). Notice that bit strings F,, P, F,, ..., P,_; are equivalent to
blocks B', B*...in SHA-1 and SHA-2.

Sponge function is composed of two stages: absorbing and squeezing. In absorbing stage, the transformation of each bit
string P, 1<i<n—1,isyielded by function f whose inputis P, and the result of transformation of bit string P,_,. The bit
string S yielded by the absorbing stage is used as input to the squeezing stage in which function f is applied L times and

in each iteration, the r most-left bits of the result of function f are appended to a bit string Z initialized to empty string.

]

The algorithm of Sponge{ f ,Padding,r](N ,d) is specified as follows:

The number of iterations of squeezing stage is L =

1. P =Nl Padding(r,len(N))
2. n=len(P)/r (by construction, len(P) is a multiple of r)
3. Lethy, A, R,..., P,_; beasequence of strings of lengthr suchthatP =P, || P Il ... P,_;
4. c=b—r (r is always less than b)
5. S=0°(S is a sequence of b 0-bits)
6. fori=0ton—1 doS=f(SEB(Pl o‘))
7. Let Z be the empty string
8. Z=1Z||Trunc,(S) (keep the , most-left bits of string g)
9. if d < len(Z), then return Trunc,(Z); else continue

10. S=f(S)

11. gotostep 8

5.3 Message Authentication Codes

5.2.2.3 SHA-3 Functions

When the sponge function is specialized for hashing, N represents the message, d the hash length, and Z the message
digest. In SHA-3 hashing algorithms, the underlying function f isa Keccak _p permutation. Thus, the generic form of
hashing functions produced by sponge construction is:

H(N,d) def Sponge|Keccak_ p[b,Nr], Padding, r](N,d)

b, the length of bit string size manipulated by Keccak_ p permutation, is greater than d, the hash size. ¢ =b —r is called the
capacity of the sponge function.
SHA-3 standard made the following choices:

e b=1600: the size of state arrays manipulated by mapping steps of Keccak-p permutation is 1600. The rationale of choice
is that all SHA-3 variants have the same implementation support and 1600 is a multiple of 64 and 32;
hence, Keccak_ p[1600,.] favors 64-bit CPUs and remains efficient on 32-bit CPUs.

¢ = 2d: with such a capacity, there are no generic attacks with expected complexity below 2¢.

r =1600 — 2d: since by design b =r+c, r =1600 — 2d.

N, =24: 24 rounds are estimated sufficient to provide resistance against potential attacks.

SHA-3 Padding function is labeled "pad10=1". It returns a string equal to "1l 0/111", where j=((~len(N)—2) mod r
and 0’ is a sequence of j 0-bits. pad10=1 is easy to specify and implement, while providing compliance regarding the
randomness of padding bits.

Concrete sponge function model used to specify SHA-3 functions is labeled Keccak[c], where ¢ is the capacity of the
sponge function:

Keccak [c] def Sponge|Keccak_ p[1600, 24], pad 10*1,1600 — c]

Given an input bit string N and an output length d, Keccak[c](N,d) produces a bit string of length d, which is a hash of N..
SHA-3 standard specified four hash functions based on sponge function whose capacity is the double of the hash
bit-length:

SHA3-224 (M) = Keccak|448|(M 11 01,224)
SHA3-256 (M) = Keccak|512|(M | 01, 256)
SHA3-384 (M) = Keccak|768|(M |1 01,384)
SHA3-512 (M) = Keccak|1024](M |1 01,512)

Notice the two additional paddings bits are appended to message M before launching the sponge function.

5.3 Message Authentication Codes

Message signature and message authentication codes (MACs) are the main applications of hash functions. Both mecha-
nisms produce a key-based message digest for guaranteeing message integrity and authenticity. MACs differ from digital
signatures as MAC values are both generated and verified using the same secret, while signatures may be generated by
private keys and validated by public keys (see next chapters).

5.3.1 Objectives and Properties of MACs

A message authentication code (MAC) is a piece!! of information associated with a message, which is used to authenticate
message sender and to protect the integrity of message transmitted over an insecure network. MACs are used between two
parties that share a secret. MAC algorithms have two parameters: a secrete key k, used to verify authenticity, and a hash
function H, used to produce message digests (see Figure 5.6). A MAC system is composed of three components (or functions):

o A key generation algorithm, which selects keys from the key space uniformly at random and periodically refreshed.

e A tag generation algorithm, which returns a tag given the key and a message.

o A verifying algorithm, which verifies the authenticity of the message given the key and the tag. If the hash computed by
the receiver is identical to the received one, the message is accepted. Otherwise, it is rejected.

157

158

5 Hash Functions, Message Authentication Codes, and Digital Signature

This chapter focuses on the second component, i.e. generation of tags. The other components depend on the underlying
cryptosystems either symmetric or asymmetric. In symmetric systems, the shared secret is used to encrypt and to sign. In
public key cryptosystems, specific methods are used to generate private and public key and to generate signatures using
hash functions and verifying them (see Chapters 12 and 13).

MAC Properties:

1) P1: MAC systems should adapt to a large number of applications. Thus, they should accept arbitrary length of message,
while producing a fixed length output.

2) P2:preserve the integrity of message.

3) P3:authenticate the message sender.

P1 and P2 properties are fulfilled by hash functions, while P3 is provided by using a shared secret key. It is worth noticing that

MACs do not provide the property of non-repudiation assured by signatures, because any user who share the secret key can verify

and generate MACs. In contrast to MAC, a digital signature is generated using the private key of a user. Since this private key is

only accessible to its holder, a digital signature proves that a message was signed by none other than that private keyholder.
There exist two main standard categories of MACs:

1) Hash function-based MACs, which are addressed in this chapter.
2) Block cipher-based MACs, which are addressed in Chapter 9.

5.3.2 Hash Function-based MACs

The naive, but simple, idea to designing MAC algorithms is to use the concatenation of key k and message M as input to
the hash function leading to two design alternatives:

MAC(M,k)= H(kll M), called secret prefix MAC.
MAC(M,k)= H(M |l k), called secret suffix MAC.

Secret prefix MACs, when used alone, are known to be vulnerable, while secrete suffix are not (see Problem 5.18). MAC
algorithms used in practice, such as HMAC or KMAC, include additional mechanisms to provide secure MACs. Both
HMAC and KMAC are called keyed hash functions and make use of a secret key, known as MAC key.

5.3.2.1 HMAC
HMAC is the acronym for either keyed-hash message authentication code or hash-based message authentication code. HMAC
was originally proposed by Bellare, Canetti, and Krawczyk [9] and then adopted by the IETF in 1997 [10]. HMAC is widely used
in particular jointly with SHA-1 or SHA-2. Before being broken, MD5 also was widely used in HMAC implementations.
HMAC is a MAC family parameterized with the underlying hash function. HMAC instances are denoted HMAC-H, where
H may be any hash function including SHA-1, MD5, SHA-256, SHA3-512, etc. HMAC takes two parameters M, the message,
and k, the secrete key, and generates a digest HMAC(M, k) of a length of n bits, which is the same as the hash function output
bit-length. HMAC can be used with any secret key length. However, secret keys with length less than the length of block size
processed by the hash function are strongly discouraged, because they would decrease the security strength of the HMAC as a
whole. Figure 5.7 illustrates the diagram of HMAC. HMAC is a double hashing method to provide resistant MACs.

Sender { ; Receiver

Key
Key

MAC
algorithm

Message M MAC

algorithm

Figure 5.6 Overall diagram of MAC algorithms.

5.3 Message Authentication Codes

oPad Key k iPad Message M
Key expansion |
Lblock| ., Message M Padding
\
."\,
\
LY

v HMAC(M, k)

Figure 5.7 HMAC diagram.

ik’ denotes the block yielded after XORing the expanded key k” with i Pad block.
ok’ denotes the block yielded after XORing the expanded key k” with o Pad block.
h;, denotes the inner hash and P(h(l.)>, the block yielded after padding hy-

Given a message M and a secret key k, the yielded MAC is expressed as:
HMAC(M.k)=H((k' & oPad) Il (H(K' & iPad Il M))

which is computed with the following procedure:
HMAC(M,k) description

Notations:

- M is the message for which integrity and authentication are required.

- nand L denote the output bit-length and the block size of the underlying hash function H , respectively.
- len(k) denotes the bit-length of the secret key.

- iPad"? is a constant byte string of length L /8 bytes all equal to 0x36.

- oPad is a constant byte string of length L /8 bytes all equal to 0x5C.

1) Secret key expansion:
If len(k) is less than L, then append zeros to the end of key k to produce an expanded key k’ with length of L bits.
If len(k) is greater than L, then first hash the key k to produce a hash H(k). Then append zeros to the end of H(k) and
use the resulting bit-string as expanded key k' of a bit-length of L bits.

2) Inner hash computation: h ;) = H(k' @ iPad || M)

3) Outer hash computation: hy = H(k’ @ oPad | h(i))

4) hy,)is the MAC of message M.

159

160

5 Hash Functions, Message Authentication Codes, and Digital Signature

Security of HMAC

The security of HMAC depends on the security strength of the underlying hash function H, which in turn depends on the
size of hash function output. HMAC is resistant to common attacks against MAC, including recovering the private key or
altering the message content. In HMAC, the inner hash (i.e. h(i)) would be vulnerable to length-extension attack, while the

outer hash (i.e. HMAC(M,k)) is not (see Problem 5.19).

5.3.2.2 KMAC

KMAC is the acronym for Keccak Message Authentication Code. It is based on Keccak function of SHA-3 [11]. Two variants
exist, KMAC-128 and KMAC-256. Notice that 128 and 256 in KMAC variants refer to the capacity of the sponge function

(see Section 5.2.2.3). KMAC functions take the following parameters:

M, a message of a variable bit-length.
L, the requested bit-length of the output (i.e. the tag length), with L <2
S, an optional customization bit-string, which may be empty, of length len(S) <2

2040

Let KMAC(m) denote either KMAC128 or KMAC256. KMAC(m) is defined by:

function KMAC(m)(K,M,L,S)

ifm=128 thenR =168 else R =136

X! = BytePad(EncodeString(K),R) || M || RightEncode(L)
T = BytePad (EncodeString(" KMAC") || EncodeString(S),R)
Res = Keccak[2+=m](T || X”11 00, L)

return Res

nhuwnN e

KMAC internal functions

K, a key of a variable bit-length, which depends on the required security strength, but len(K) is at most 2°*.

2040

function EncodeString(Y)

1. Y’ = LeftEncode(len(Y)) || Y
2. returny’

function RightEncode(x) :

encode integer x as byte-string ending with the byte-length of x:

n is the smallest positive integer such that 28" > x

Let X1, ... X, be the representation of x in base 256, i.e.x = E;(xf *28(”‘f))
fori=1tondo 0, =enc8(x;) (>

0,41 =enc8(n)

return (O, 110, II...110,,4)

A uwN e

function LeftEncode(x) :

encode integer x as byte-string starting with the byte-length of x:
n is the smallest positive integer such that 25" > x

Let x;x,... X, be the representation of x in base 256

fori =1ton do O, = enc8(x;)

0 = enc8(n)

return (O 1 O, 11 Oy I ... Il O,)

Ul A NN

function BytePad(Y,w):

Prepend an encoding of w to the input-string bit- string Y,
then pad it with zeros until the new bit-string is multiple of w

1. z = LeftEncode(w) || Y

5.4 Digital Signature

2. while len(z) mod 8= 0doz=2z]0
3. while len(z) /8 mod w = 0 do z = z || 00000000
4. return z

5.3.2.3 Generic Attacks Against Hash Function-based MAC Algorithms
MAC systems may be a target for attacks either to recover the secret key or to forge messages. More specifically, the
common generic attacks against MACs include:

e Al: Recover the secret key.

A2: Append fake information to the end of the original message.

A3: Substitute a fake message for the original one.

e A4: Existential forgery: it is the ability of the adversary to create a message and its MAC that have not been generated in
the past by the legitimate sender.

In Al, given a message M and the keyed hash MAC(M, k), the attack (without knowledge of the internal structure of the
hash function) is a brute-force attack, which requires to test all potential keys concatenated to M, either on the left (in case
of secret prefix MAC) or on the right (in case of secret suffix MAC) of k. Thus, the resistance to attack A1 depends on the
length of the secret key.

In A2, given a message M and the keyed hash MAC(M, k), adversary can append fake data to M and generate a keyed
hash without knowledge of the secret key if the secret prefix MAC approach is used, i.e. MAC(M,k) = H(k || M). (see
Section 5.1.3.2 and Problem 5.18).

In A3, given a message M and the keyed hash MAC(M, k), to substitute M’ to k|l M or to M || k, without controlling
the content of M’, the adversary must find a second preimage collision, which is known to be computationally infeasible.

In A4, the adversary has to find a collision, which is known to be computationally infeasible. In addition, MAC algo-
rithms, such as HMAC, make use of two hash function calls (producing inner and outer hashes), which makes them very
secure regarding collision attacks (see Problem 5.19).

5.3.3 Block Cipher-based MACs

Modes of operation of block ciphers have been standardized by the NIST to provide methods for authenticated encryption
and MAC generation. They include CMAC (Cipher MAC), CCM (Counter with Cipher block chaining-MAC), GCM
(Galois/Counter MAC), GMAC (Galois MAC), and AES-GCM-SIV. All those MAC generation methods will be addressed
in Chapter 9.

5.4 Digital Signature

Digital signature algorithms are the most important application of hash functions in the cyberspace.

5.4.1 Digital Signature in Public Key World

In paper documents, the issuer manually signs his/her documents to provide proof of authenticity that can be checked by
document recipients. In the digital space (or cyberspace), data included in messages are used for Internet shopping,
banking, stock exchange, voting, company transactions, etc. Public key cryptosystems evolve in a world where messages
and unencrypted data (including public keys) are not hidden to observers. The big question is: how can the recipient trust
the sender? Message signature is the answer to this question.

A digital signature (or simply signature) is a cryptographic transformation, which is similar to handwritten signature to
provide assurance of authenticity of the sender. Digital signature also is used for non-repudiation: the signing individual
cannot deny he/she has not been the signer. For example, one may electronically sign a car rental contract, which states
he/she must pay monthly $500. Then, he/she cannot claim either the amount to pay is $400 or worse, he/she has never
signed the contact. Non-repudiation is of paramount importance in the cyberspace. Digital signature also is a means of
guaranteeing integrity. If a message is altered during transport, the signature will no more match the received message and
the received message is rejected. Two digital signature methods exist:

161

162

5 Hash Functions, Message Authentication Codes, and Digital Signature

e Signature with appendix'*: given a message M, the signer generates a signature S from the hash of message and sends a
pair (S,M). The verifier decrypts the signature S to yield a hash H’, computes H, the hash of the received message, then
compares both hashes (see Figure 5.8).

o Signature with message recovery: given a message M, all or some of message M is embedded in the signature S. When the
message is entirely embedded, the verification procedure requires only the signature S and recovers M from the
signature.

In symmetric cryptosystems, the same key, which is shared by both parties, is used for generating and verifying signature.
In asymmetric cryptosystems, the signer makes use of his/her private key to generate the signature, while the verifier
makes use of the public key of the signer to verify the signature.

Digital signature algorithms include:

RSASSA (RSA Signature Scheme with Appendix), presented in Section 12.2.6.

DSA (Digital Signature Algorithm), presented in Section 12.4.

ElGamal signature algorithm, presented in Section 12.3.4.2.

ECDSA (Elliptic Curve Digital Signature Algorithm) and EdDSA (Edwards Elliptic Curve Digital Signature Algorithm),
presented in Sections 13.5.5-13.5.6.

All those algorithms make use of hash functions. They are addressed in detail in Chapters 12-14 when the foundations
of the underlying public key are introduced. Then, attacks against digital signatures produced by public key algorithms are
discussed.

5.4.2 Attacks Against Digital Signature Schemes

Hand signature is approximately the same in all documents signed by a given person. The difficulty in forging a hand sig-
nature is directly linked to the graphic pattern elaborated, thanks to the ingenuity of the signer. Some hand signatures are
easy to reproduce, while others are too complex requiring a high level of imitation to reproduce them. Hand signatures
may be imitated even carefully designed by their owners. To enforce signature, public notaries play a third party role. It is
commonly considered that a document, double-checked and signed by a notary, includes an authentic signature.

In the cyberspace, digital signature is a cryptographic transformation. Consequently, the difficulty in forging signatures
is linked to the mathematical foundations used to design digital signature schemes. Thus, digital signatures are by far more
difficult to forge than hand signatures.

Alice Bob

Message M

e]
! M

Message digest h
Signature
generation

Alice’s g Shared
private key key

Not valid

Message digest h h’

Unsecure

S (S P T [Hash } [Encrypt]

Key
A

network

Shared key ' """"" :"“m""'g

e R B R R R B B R SR SR RS R EE SR RS EE A — £l

Figure 5.8 Overall scheme of digital signature with appendix.

5.6 Problems | 163

Attacks against digital signature may be categorized into three groups:

o Universal forgery: adversary is able to recover the private key of the signer and then signs any message on behalf of the
legitimate key owner.

o Selective forgery: adversary is able to create valid signatures for messages of his/her choice.

o Existential forgery: adversary can generate a pair composed of a signature and a message without controlling the mes-
sage content.

5.5 Concluding Remarks

Digital signature and MACs are used for guaranteeing message integrity and authentication. MAC algorithms do not pro-
vide non-repudiation service because the secret used to produce MACs may be shared by more than two users; and even
with two users, both can produce MACs. Whereas with digital signatures, each key is private to each user; hence, there is
non-repudiation as only the private keyholder can sign with his/her key.

It is worth noticing that message authentication and user authentication are distinct services. Message authentication,
also called message origin authentication, enables the receiver to check that the MAC accompanying a message has been
generated by a user sharing a key with him/her. Whereas user authentication (also called entity authentication) enables
the recipient to check if the message sender engaged in the current session is really the person who is pretending to be. Let
us take the following two scenarios to show the difference between both authentications.

Alice, Bob, and Eve share a secret. Bob computes the MAC of a message, then sends the message and its MAC to Alice.
Alice forwards the message and the MAC to Eve, who can verify that the message was originated by a holder of the shared
secret. However, Eve is not communicating with Bob; thus, she cannot authenticate him.

Alice and Eve know the public key of Bob. Bob signs a message and sends the message and its signature to Alice. Alice
forwards the message and signature to Eve, who can verify that the message was signed by Bob. However, Eve is not com-
municating with Bob; thus, she cannot authenticate him. Thus, used alone, neither MACs nor signatures provide entity
authentication. Other mechanisms are required to provide user authentication (see Chapter 15).

5.6 Problems
5.6.1 List of Problems

Problem 5.1
Fundamental security properties include confidentiality, integrity, authenticity, and non-repudiation.

1) Which of the above properties are provided by digital signature?
2) Which of the above properties are provided by MACs?

Problem 5.2
Hashing and encryption are two cryptographic functions, which manipulate inputs to produce a kind of random output.
What is the fundamental difference between those functions from a security point of view?

Problem 5.3
Discuss why the following functions cannot be used as hash functions regarding preimage and collision resistance properties:

1) H,(x) is a function that returns the parity bit of x.

2) H,(x)is defined by H,(M) = P(M) mod g(x)

where P(M) is a polynomial associated with M such that P(M) = mi.xi + mH.xi’1 + ml.x1 +m,, where m,, ..., m
bits of M and g(x) is a given polynomial of degree k.

o are

Problem 5.4
Discuss the hash function properties of the following function for generating MACs.
Let X be a bit-string; X = X NXG I X where X, . are 128-bit blocks.

Given a 128-bit key K, the MAC is generated as follows:
MAC(X,k)=C, +K mod 2'**
where: C; =99 andC,=C, , ®X,,i=1,...,m

164

5 Hash Functions, Message Authentication Codes, and Digital Signature

Problem 5.5
Discuss why CRC (Cyclic Redundancy Check), used to protect against transmission errors, is not appropriate for use as
hash functions? Which hash function properties are not fulfilled with CRCs?

Problem 5.6
Why collision-free hash functions do not exist?

Problem 5.7
Prove that a collision-resistant hash function also is second-preimage resistant.

Problem 5.8

Let H: {0,17*™ —{0,1)™ be a collision-resistant hash function.

Define H,: {0,1}*" —{0,1}" as follows:

H,(x, Il x,)= H, (Hl(xl) I Hl(x2)>, where x, € {0,1}*™ and X, € {0,1}*"
Prove that H, also is collision-resistant.

Problem 5.9
Let H,() be a collision-resistant hash function. Do the following constructions provide collision-resistant hash functions?

1) H,(x)=H,(x) Il x
2) Hi(x)=H,(x®1)
3) H,(x)=H,(x®c), c is a constant integer less than max (x).

Problem 5.10

One of the applications of hash functions is the protection of passwords in authentication systems. Instead of storing the pass-
words in clear, only password hashes are stored. To authenticate a user, his/her password is hashed and the resulting hash is
compared to that stored on the authentication system. Therefore, even if the password file is stolen, the passwords are very
hard to recover. Assume that the hash function used by an attacked authentication system is known to the adversary.

1) Isitsecure to use a hash bit-length of 10 to protect 500 passwords?

2) Assume that an adversary has access to 1000 hashes of 8-byte passwords. Is it difficult, from the computational feasi-
bility point of view, for the adversary to gain access to the system as a legitimate user with a brute-force attack?

3) Assume that each of 1000 passwords is concatenated to a random input called salt so that the appended password has a
bit-length of 512. The authentication system stores the 128-bit hashes of passwords in a file and the salts in another file.
Consider an adversary who has access to the hash file but not the salt file. Can the adversary gain access to the system?

Problem 5.11

Assume that the hash function used by Alice manipulates blocks with a length of 512 bits and the maximum size of data to
hash is 1 G bytes. Alice has an album of 1000 pictures each of 1 M bytes. She has two alternatives to send her album to Bob:
either hash and send each picture separately or zip the album, then hash and send the hashed zipped file.

1) What is the most attack-resistant alternative?
2) Assume that the second preimage is feasible but at a high cost for the adversary. Which alternative is preferred if integ-
rity is of interest?

Problem 5.12

Deterministic generic attacks are attacks that break hash resistance whatever is the hash function. What is the maximum
number of steps required for a generic deterministic attack to succeed in finding a preimage, a second preimage or a
collision? Assume that no dictionary is built in advance.

Problem 5.13
Prove that the number of steps required to preimage brute-force-attack to succeed (at a probability close to 1) is approxi-
mately 2", where n is the hash bit-length. Use Taylor’s approximation of e*, which states that: e* ~ 1+ x, when| x I« 1.

Problem 5.14

1) Prove that the number of steps required for a collision birthday attack to succeed at a 50% probability is approxi-
mately 2”2, where n is the hash bit-length. Birthday paradox is presented in Section 3.4.

2) Infer that the number of steps required to collision birthday attack to succeed at a probability close to 1 is approxi-
mately 22,

5.6 Problems

Problem 5.15
Why key length is required in length extension attack?

Problem 5.16
Length extension attack is introduced in Section 5.1.3.2.

1) Explain why SHA-512/224 and SHA-512/256 are not vulnerable to length extension attack.
2) Explain why SHA-3 is not vulnerable to length extension attack.

Problem 5.17

Imagine that a journalist and an editor use a MAC algorithm for message authentication. Then the editor posts a content
sent by the journalist who claims he/she never authored the posted content. In case of legal dispute, who is the winner? In
security terms, do MACs provide non-repudiation service?

Problem 5.18
In length extension attack (see Section 5.1.3.2), the adversary takes advantage of the internal operation of Merkle-Damgard
construction, to append fake data at the end of the original and to generate a MAC without knowledge of the secret key.

1) Show that secret prefix MAC is vulnerable to length extension attack.

2) Assume that the MAC algorithm includes the length of message in the hash computation, i.e.
MAC(M,k) = H(key |l len(Message) Il Message). Does the length extension attack still work against secret prefix MAC,
designed with such a hash function, under the assumption the key length is known to adversary?

3) Show that secret suffix MAC is not vulnerable to length extension attack.

Problem 5.19
Explain why HMAC inner hash is vulnerable to length extension attack, while the outer hash is not vulnerable.

5.6.2 Solutions to Problems

Problem 5.1
Fundamental security properties include confidentiality, integrity, authenticity, and non-repudiation.

1) Digital signature provides guarantees regarding integrity, authenticity, and non-repudiation. However, if the plaintext
is not encrypted, the digital signature cannot provide confidentiality.

2) MACs provide integrity and message authenticity guarantees. They do not guarantee confidentiality, if the message is
not encrypted. They do not provide non-repudiation guarantees, as well.

Problem 5.2

Hashing and encryption are two distinct cryptographic functions. Encryption is something used to convert plaintext (read-
able) into ciphertext (indecipherable). Decryption is done either with the same ciphering key, which is a secret, in symmetric
systems or with a key mathematically related to the encryption key in asymmetric systems. In asymmetric systems, mes-
sages are encrypted with public keys and then decrypted with private keys. Hashing is a technique used to produce a fin-
gerprint to characterize uniquely a data, while it does not hide data. In hashing, nothing is secret. Encryption is for ensuring
confidentiality, while hashing is for ensuring integrity.

Problem 5.3
1) H,(x) is a function that returns the parity bit of x.
Given a value of parity bit (i.e. 0 or 1), the half of the input space matches the chosen value. Thus, H, is not preimage
resistant.
The probability of collision is 50%. Thus, H, is not collision-resistant.
2) H,(x)is defined by H,(M) = P(M) mod g(x).
Let k denote the degree of polynomial g(x), L denote the degree of polynomial P(M), and Q(x) a polynomial of
degree L —k.
Given a hash z, any message M such that P(M) = g(x) * Q(x) 4+ P(z) matches the chosen hash z. P(z) denotes the
polynomial associated with the bit string representing z . Thus, H, is not preimage-resistant.
All message M’ such that P(M") = g(x) = Q(x) +r(x), where r(x) is a polynomial of degree less than k, have the same
hash, which is r(x). Thus, H, is not collision-resistant.

165

166

5 Hash Functions, Message Authentication Codes, and Digital Signature

Problem 5.4

With the given function, the MAC is computed as: MAC(X,K)=C,, +K mod 2'**
Cn=Cp 10X, = (Cm—z GBmel)@Xm =6oX 86X,9...0X,.

The function defined above does not match any hash function property.

No collision resistance: it is easy to find collisions. For example, all permutations of three blocks have the same MAC. That
is:

MAC(X, Il X, Il X;,K)=MAC(X, Il X; | X3,K)=MAC(X; Il X, Il X,,K)=...

No preimage resistance: given a MAC h, it is easy to find a preimage. For example, a preimage with a single block X, can
be easily found, if C, and K are known, by the congruence relationship: h = (CO DX,) + K mod 2'*

No second preimage resistance: given a bit string X and its MAC h, it is easy to find another bit string X' with the same
MAC. For example, we can replace blocks X, and X, in X to obtain X' with the same MAC:

h=C,, +K mod 2"** =(C, ©0)+K mod 2'** =(C,, ® B® B) + K mod 2'**
=C,®(X,®B) ®(X,®B) ®...®X,, + K mod 2'* = MAC(X",K)

where B is an arbitrary 128-bit block.

Problem 5.5
Recall that CRC-based technique to detect transmission operates as follows:

Let S denote a bit string to transmit. A polynomial S(x) is associated with the string S, where the polynomial coeffi-
cients are the bits of S. A generator polynomial G(x) of degree n (n is the number of bits of CRC) is used to compute
the CRC as:

CRC(x)= (S(x)*x”) mod G(x).

For example, compute a 3-bit CRC for string 10111 with G(x) = x> +x + 1.
CRC(X)E((X4 +x* +x+1)*x3) mod (x3 +x+1):x+1.

Thus, the CRC is 011.
CRC-based functions cannot be securely used as hash functions, because of the following:

No collision resistance: it is easy to find collisions, because any pair of bit strings S, and S, such that
S,(x) = 8,(x) +q(x) *G(x) or S,(x) =S, (x) + q'(x) *G(x), where q(x) and q'(x) are two polynomials with binary coeffi-
cients, have the same CRC.

No preimage resistance: it is easy to find the preimage given a CRC C, because any bit string S such that
S(x)=C(x)+q(x)*G(x) is a preimage to C, where q(x) is a polynomial.

No second preimage resistance: it is easy to change a bit string S, to another bit string S, while keeping the original
hash C, if S, (x) = S, (x) + q(x) * G(x).

Problem 5.6
Collisions are intrinsic to all existing hash functions. Collison-free hash functions do not exist for, at least, the following
reasons:

In practice, the input space is much larger than the input space. Thus, the same output value is an image for multiple input
values. In mathematics, the pigeonhole principle states that if N items are put into m containers, with N >m then at
least one container must contain more than one item.

Even if the output space size is equal or greater than the input space size, the probability of collision in all existing hash
functions is not zero. In addition, increasing the size of the hash function output results in more consumption or storage
and communication resources.

5.6 Problems

Problem 5.7

Recall that attack-resistance of hash functions qualifies the difficulty, from the computational point of view, of finding col-
lisions or preimage and not the property that collisions do not exist or that preimage can never be found. The statement to
prove is: a collision-resistant hash function also is second-preimage resistant. The suggested proof is by contradiction.
Assume that a hash function H is collision-resistant but not second-preimage resistant. If H is not second-preimage resis-
tant, then, given an input x, one can find an input x’ such that x = x’ and H (x) =H (x’) However, if one can find two
distinct inputs with the same hash, he/she can prove that H is not collision-resistant, which is a contradiction with the
hypothesis that H is collision-resistant.

Problem 5.8
Let H,: {0,1}*™ — {0,1}" be a collision-resistant hash function.
Let H,: {0,1}*™ — {0,1}™ be a hash function defined by:

Hz(xlll xz): Hl(Hl(xl) I Hl(x2)>.

The suggested proof of H, collision-resistance is by contradiction.
If H, is not collision-resistant, then one can find two pairs (x,, x,) and (x;,x}) such that x, = x| or x, = x} (“or” is
inclusive) and H, (xl I xz) =H, (x{ I x;)

By substitution:
H, (H,(x,) Il H, (x,))=H, (H, (x]) Il H,(x})).

Since H, iscollision-resistant, it is computationally infeasible to find two bit strings H, (xl) Il H, <x2> and H, (xl’) Il H, (xz’)
that have the same hash. In consequence, H, also is collision-resistant.

Problem 5.9
Let H,() be a collision-resistant hash function.
1) Hy(x)=H,(x) Il x
If H, is not collision-resistant, then one can find x; = x, such that

H,(x,)=H,(x,).
By substitution, the equality becomes:
H (x) Il x; =H;(x,) Il x,

Since H, is collision-resistant, if x, = x, , then H, (x,)= H, (x,)
Thus, the bit strings H, (xl) Il x, and H, (xz) Il x, are distinct. Hence, H, is collision-resistant.
2) Hy(x)=H,(x®1).
Let z beabitstringand x; and x, two bit strings starting with z and ending with distinct bits, i.e.

x,=zI10and x,=z 11
X, ®1l=(zI10)®1=z110

x,®l=(II)el=2z10
By construction of H,:
H,(x,)=H,(x, ®1)=H,(z | 0)

H,(x,®1)=H,(z Il 0)

ST
=
no
Il

Thus, a collision is found and consequently H, is not collision-resistant.
3) H,(x)=H,(x®c), c isaconstant integer less than x.
Let ¢y,cy, ..., ¢, _, be the bits of constant c.

167

168

5 Hash Functions, Message Authentication Codes, and Digital Signature

Let x;, and x, be two bit strings that differ at least by one bit at position i such that 0 <i<k—1:x, =zl 0 lly and
x,=zll1lly
If ;=1,thenx, c=x,Oc=zIl 0lly.

By construction of H,:

H,(x,)=H,(x, ®c)= H,(zll 0l y)
H,(x,)=H,(x,&c)=H,(zll 01l y)

Thus, a collision is found and consequently H, is not collision-resistant.

Problem 5.10
1) With a hash bit-length of 10, the hash space is of 2'°. If the number of hashed passwords is 500, any randomly chosen

.. 500 1 L. . C o
password, whatever is its length, has a chance of —~~ 5 to have a hash, which is present in the authentication system
2

list. Therefore, using small hash length is not secure to protect passwords.

2) The password space is of 28"®. Computing the hashes of all potential passwords is computationally feasible. The number
of hash computations is 2%4, which is low compared to the bound of 2%° (i.e. the limit of computationally feasibility with
current technologies). Then, the adversary builds an attack dictionary of 1000 entries each containing a valid hash (i.e.
a hash that is included in the list stolen by the adversary) and the corresponding passwords. Then, the adversary selects
a password to log in the system.

3) The space of passwords with salt is of 2°'* and that of hashes is of 2'*® but only 1000 passwords were hashed. The prob-

1000 1
ability to pick a random password and a random salt such that the resulting hash is in the system list is ——~——.
2 2

Computing the hashes of 2°'* distinct passwords is computationally infeasible. Therefore, adding salt and using large
hash bit-length make the authentication system resistant to hash file theft.

Problem 5.11

1) Attack-resistance means resistance to preimage, second preimage, and collision attacks. The security strength of a hash
function depends on the hash size and not on the size of the hashed data size. Thus, from the hash attack perspective,
both alternatives are equivalent.

2) Integrity means integrity of pictures received by Bob. In the first alternative, if a picture is second-preimage attacked,
Bob receives a fake picture (but he does know it is a fake picture!). In the second alternative, if the entire album is sec-
ond-preimage attacked, Bob receives a fake album (but he does know it is a fake album!). Finding a fake image for each
of the 1000 pictures takes more time than finding one fake image for the entire album. Therefore, the first alternative
provides more chance to Bob to receive authentic pictures.

Problem 5.12

A deterministic attack provides absolute guarantees that the searched information is found when the attack ends. Let 2"
be the hash space size and S the size of the input space. In generic deterministic attack, the adversary tests one by on each
element in the input space and stops when the searched element is found.

Let C(i), 0 <i<2", be the number of elements, which hash to i.

Let E(i), 0 <i< 2", be the set of input elements, which hash to i.

Deterministic preimage attack:
The worst case to the deterministic preimage attack is when the given hash z has the lowest value of C(i), i.e. C(z) = min C(i),
0<i<2"

and the elements of the subset E(z) are last to be tested. The attack ends when the first element of E(z) is tested. Thus, the worst

case of test number for a deterministic preimage attack is: S —| min C(i) — 1].
0<i<2"

Deterministic second-preimage attack:

The worst case to the deterministic second-preimage attack is when the given element x hashes to z, which has the

lowest value of C(i), i.e. C(z) = min C(i), and the elements of subset E(z)—{x} are last to be tested. The attack ends
0<i<2"

when the first element of E(z) —{x} is tested. Thus, the worst case of test number for a deterministic second-preimage

attack is: S —

minC(i)—1— 1].

0<i<2"

5.6 Problems

Deterministic collision attack:

The attack may be history-aware (i.e. the adversary caches the hashes already computed) or memoryless (i.e. adversary
does not cache the hashes already computed). In memoryless attack, the adversary selects randomly an input element and
tries to find another input element with the same hash. The worst-case test number is the same as for the second-preimage
attack. In case of history-aware, the worst case for testing occurs when all the first 2" input elements have distinct hashes.
Thus, the worst-case test number is 2" +1 for history-aware collision-attack.

Problem 5.13

Preimage brute-force attack takes as input a hash h and tries to find a message x that hashes to h. The adversary takes a

random message and compares its hash to h. If hashes are distinct, he/she tries another message until the calculated hash

matches the given hash h. Let P(N) denote the probability that the hash of the N message matches the given hash .
P(N)=1-P(N) denotes that the probability that no matching hash is found with the N tested (distinct) messages. Since

N
1 = 1

there exist 2" hash values, given a random message M, the probability'> that H(M) = h is 1 — —.- Thus, P(N)= [1 — —n] .
2 2

1 . , - . . o
— isavery small value. Therefore, we can use Taylor’s formula for exponentiation approximation: e 2" ~1— ln
2 2
By substitution and simplification:
N

e 2 ~1—P(N)

N

2" z;
1- P(N)

N
In|e?" |~1In

=
1- P(N)

N=~~2"+In 1
1-P(N)

1
In the previous formula, P(N)=1 cannot be used. Thus, the probability of success is 1—e. N ~ 2" *ln[— . At £=0.01,

€
1

3

L 3.0 andate =10"%,In

In|—
€

]— 6.79. Thus, when n is large, 2" is a good approximation of N.

Problem 5.14

1) In the basic birthday paradox, the problem is to find the minimum number of people such that at least a pair among
them share the same birthday. When collision attack is of concern, the birthday problem may be reformulated as: find
the number of input elements so that two elements have the same hash. In case of collision birthday attack, input ele-
ments are selected randomly and hashes are associated with them. The hash is the equivalent of the birthday in the
basic paradox. Hence, the input space is the hash space. The attack terminates when two hashes are equal. In Section
3.4, three approximations of the number of elements to use for finding two elements with the same value are presented.
In the general case, two formulas may be used to approximate the required number of elements: N ~/2S * P(N)
or N ~ \/25 *In(1/ (1 —P(N)) where S denotes the cardinality of the input space and P(N) the probability of finding
two equal elements among N randomly selected elements. In case of collision birthday attack, S is the cardinality of
the input hash space function of 2", where n is the hash bit-length. By substitution with P(N) = 0.5:

First approximation yields: N ~ 2 #2" 0.5 = J2r — o2
Second approximation yields: N ~ \/S 2% In(2) = 2"/ ¥1.77 < 21"*1)/2.

2) “always succeed” means finding a collision with a probability of 1. Approximation N ~ 4/2S * P(N) may be used with
P(N)=100% and results in N &~ 2"/? *2"/2 which may be approximated by 2"/* when n is large.

Approximation \/ZS *In(1/ (1 — P(N)) cannot be used with P(N) =100%, but with P(N)=1—¢, where ¢ is a positive

integer very close to 0. Thus, the approximation becomes: N ~ fS D ln[l =27 x /2 i ln[l .
9 9

169

170

5 Hash Functions, Message Authentication Codes, and Digital Signature

1
€

1
€

2n/2

Ate=0.01, [2%* ln[=3.0andate=10"", [2%In is a good approximation of

N.

]:6.7. Thus, when n is large,

Problem 5.15

Given a message M, the adversary easily computes the length of padding string for M. However, the sender computes the
padding string for string key || M to generate H(key || M). Without knowing the length of key, the adversary is unable to
compute the length for padding string key || M. Therefore, he/she cannot run the length extension attack.

Problem 5.16

1) In SHA-384, SHA-512/224, and SHA-512/256, the initialization hash H° and the block hashes H',i=1, ..., N, are rep-
resented as eight words of 64 bits. But, the message hash is produced by truncation of H", the hash of the last block.
From the later, SHA-384 keeps six 64-bit words, SHA-512/224 keeps three 64-bit words and the left half of the fourth
64-bit word, and SHA-512/256 keeps four 64-bit words. Message hash and initialization hash H® have different lengths.
Consequently, the message hash cannot be used as H® to enable the adversary extend the original message. In other
words, hash obtained by truncation prevents the hash function from length extension attack.

2) In SHA-3, the hash function output length d is the half of Keccak-p permutation capacity c. Inside the sponge function,
Keccak-p permutation takes an input of b bits, called state array, with b > c. In squeezing step, the message hash is
produced by truncation. Consequently, the message hash intercepted by the adversary cannot be substituted to the
initial state array to realize a length extension attack.

Problem 5.17

Recall that non-repudiation is the assurance that a message originator cannot deny having sent the message (e.g. denying
having sent a newspaper article). First, since MACs do not address confidentiality, messages with MACs can be checked by
more than one receiver and any user who share the secret with the sender(s) can produce valid MACs. For example, a pool
of journalists shares the same secret with their editor. Second, in case the sender is malicious (e.g. a malicious editor), he/
she can generate a MAC and then claims he/she received it from a journalist. Consequently, if the sender and receiver get
involved in a dispute over message origination, MACs cannot provide a proof that a message was indeed sent by the
designated sender.

Problem 5.18
Length extension means appending a bit string F to the end of the original message. Without loss of generality, assume
that the length of string F is a multiple of the block length of the targeted hash function.

1) In secret prefix MAC, MAC(M,key) = H(key || M).
The input bit string key [| M || P are structured into a sequence (Bl, B .., B”) of blocks of fixed size L, which is a param-
eter of the hash function. P denotes the padding bits added so that the length of key || M || P is a multiple of the block
length of the hash function.

MAC(M.key) = H(key Il M Il P):H(Bl Il B> 1I...II B")

In Merkle-Damgard construction, block B! and initialization vector, which also is referred to as H°, are used as inputs
of the hash function to produce H', then H' and block B? are used to produce H?, etc. and finally, H" represents
H(keyll M Il P). Length extension attack takes advantage of the design of Merkle-Damgard construction to adapt the
hash function H, such that H° is not a constant vector, rather it takes the value of H (key Il M 1| P). Hashing block(s)
of fake data F with H° = H(key || M || P)looks like a continuation of blocks of the string key || M || P, and the result-
ing hash H(key Il M Il P Il F) is a MAC that would be produced by a legitimate party. Consequently, secret prefix
MAGCs are vulnerable to length extension attack.
2) The hash available to the adversary is H(key |l len(M) || M || P).

Let B be the sequence of blocks (Bl, B, ..., B") such that

B'Il B*II...I1 B" = key |l len(M) Il M || P

Let F be the bit string appended by the adversary. Upon reception of the forged message, the verifier computes the
hash as H(key || (len(M)+len(F)) Il M || F || P'),where P’is the padding bits for the string key || (len(M) +len(F)) I M || F.

Let A be the sequence of blocks (Al, A% A" A"*d) such that

References | 171

ANl A% NAM =key || (Ien(M) +len(F)) || M || F ||l P, where d depends on the bit-length of string F .

The sequences B and A start with the same blocks, which represent the key. Then, after hashing the key block(s),
both sequences are distinct; sequence B continues with a block including len(M), while sequence A continues with a
block including len(M) + len(F). Consequently, H(A" Il A II...Il A™™) computed by the verifier with H® = IV is dis-
tinct from H(F) computed by the adversary with H® = H(B' |l B*|l...Il B"). Since the hash known to the adversary is
computed with the original message and the adversary has no means to find a new hash computed with the lengths of
the original message and the appended data F , the length extension attack cannot succeed.

3) In secret suffix MAC, MAC(M,key)= H(M || Pl key).

The hash available to the adversary is H(M Il Pl key). Suppose that the adversary appends a string F. The verifier
computes the hash as H(M || P|| F || key) with H® = IV, and the adversary computes H(F) with H* = H(M || P key).
The input hash of the verifier when he/she starts hashing blocks of F is H(M Il P), while the input state used by the
adversary is H(M || P |l key). Those two hashes are distinct. Thus, the adversary cannot realize a length extension attack.

Problem 5.19

Inner hash of HMAC is h(l.) =H(k' ®iPad || M) and its outer hash is h(o) =H(k'® oPad || h(l.)). The outer hash is the
output of HMAC algorithm.

The inner hash is designed according to the secret prefix MAC; hence, it is vulnerable to length extension attack (see
Problem 5.18).

Assume that the adversary appends a fake string F to the original message M. Let M’ = M || F. The length extension
attack works like if the first part of M', i.e. M, is hashed at sender and the second part, i.e. F, is hashed at adversary as a
continuation using the hash produced by the sender. However, the inner hash is not available to the adversary and the
output of HMAC is a hash of a hash combined with the key. Hence, the adversary has no means to use a hash output to
substitute to initialization vector to continue hashing. Thus, HMAC algorithm is not vulnerable to length extension attack.

Notes

1 Digital signature is an encrypted hash.

2 Sometimes, hash function and hashing algorithm are used interchangeably.

3 The maximum value of N depends on the used hash function.

4 Such a property is called avalanche effect.

5 The time complexity of attacks refers to the same issue than the number of steps.

6 Here “adapt” means changing the implantation of the hash function to make the attack feasible.

7 SHA-3 standard does not fix any bound on the message size.

8 SHA-3 transformation functions manipulate blocks with a fixed length of 1600 bits divided into two parts: 1600 — 2d bits are
message bits and 2d bits are bits specific to the permutation function at the core of SHA-3. d is the hash bit-length, a value in
{224, 256, 384, 512}.

9 Keccak is the name of the research team who proposed the hash functions based on sponge construction.

10 “p”is used in Keccak-p permutation to distinguish it from other types of Keccak permutations.

11 Sometimes MAC is referred to as tag or cryptographic checksum.

12 iPad and oPad stand for inner and outer pads.

13 For an integer z in [0,255], enc8(z) is the byte-encoding of z, with bit 0 being the low-order bit of the byte.

14 In the three digital signature standards currently in use, namely RSASSA, DSA, and Elliptic-curve-based DSA, only signa-
ture with appendix is supported.

15 Assuming that the hash values are uniformly distributed.

References

1 Merkle, R. (1989). One way hash functions and DES. 9th Annual International Cryptology Conference, Advances in Cryptology -
CRYPTO’89, 428-446. Santa Barbara, California: Springer, LNCS 435.

2 Damgard, I. (1989). A design principle for hash functions. 9th Annual International Cryptology Conference, Advances in
Cryptology - CRYPTO’89, 416-427. Santa Barbara, California: Springer, LNCS 435.

172

5 Hash Functions, Message Authentication Codes, and Digital Signature

3

4

Bertoni, G., Daemen, J., Peeters, P. et al. (2007). Sponge functions. ECRYPT Hash Functions Workshop, 1-22. Barcelona,
Spain.

Bertoni, G., Daemen, J., Peeters, P. et al. (2008). On the indifferentiability of the sponge construction. 27th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Advances in Cryptology, 181-197.
Istanbul, Turkey: Springer, LNCS 4965.

NIST. (1995). Secure hash standard - FIPS PUB 180-1. National Institute of Standards and Technology.

6 NIST. (2015). Secure hash standard - FIPS PUB 180-4. National Institute of Standards and Technology.

10

11

Leurent, G. and Peyrin, T. (2020). SHA-1 is a shambles: first chosen-prefix collision on SHA-1 and application to the PGP
web of trust. 29th USENIX Security Symposium, 1839-1856. Boston, US: Unix Association.

NIST. (2015). SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions - FIPS PUB 202. National
Institute of Standards and Technology.

Bellare, M., Canetti, R., and Krawczyk, H. (1996). Keying hash functions and message authentication. Annual International
Cryptology Conference, Advances in Cryptology - Crypto’96, 1-15. Santa Barbara, California: Springer, LNCS 1109.

Krawczyk, H., Bellare, M., and Canetti, R. (1997). HMAC: Keyed-Hashing for Message Authentication - RFC 2104. Internet
Engineering Task Force.

Kelsey, J., Chang, S., and Perlner, R. (2016). SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and ParalleHash, Special
Publication 800-185. National Institute for Standards and Technology (NIST).

6

Stream Ciphers

Stream ciphers are symmetric ciphers that encrypt and decrypt bits individually. They are used to secure communications
in wireless and cellular networks. Stream ciphers are well-suited to hardware implementation and they are generally faster
than block ciphers. They also are well-suited to encrypt and decrypt continuous data (e.g. phone communication) at high
rate and when devices have limited memory to store long messages. That is why, stream ciphers are often used in telecom-
munication networks, such as 3G, 4G, and 5G.

ChaCha20 stream cipher is an Internet standard; it is recommended as a cipher in TLS protocol to secure communica-
tions between clients and web servers [1]. Most common stream ciphers are built around linear feedback shift registers,
which makes them easy to implement in hardware.

This chapter aims at presenting the principles and standard algorithms related to stream ciphers.

6.1 Stream Ciphers

6.1.1 Principles of Stream Ciphers

Definition 6.1 Stream cipher: it is a symmetric cipher where plaintext bits are pairwise combined with bits of a key stream.
Each bit of ciphertext is yielded by a bitwise XOR operation.

Definition 6.2 Initialization vector (IV): it is a bit string computed for each plaintext (or for a set of plaintexts) and used
Jjointly with the secret key to generate the keystream.

There are two main reasons to use and frequently change initialization vectors: 1) long sequences of keystream require
periodic synchronization of encryption and decryption processes (because of transmission errors) and 2) encrypting dis-
tinct plaintexts with the same key is insecure. Therefore, initialization vectors is a solution to generate different pseudo-
random sequences without necessarily changing the secret key.

Definition 6.3 Key-Scheduling Algorithm (KSA): it is the operation of mixing the secret key and the Initialization vector to
yield a key, which is then used to encrypt/decrypt a single plaintext.

As shown in Figure 6.1, the main building block of cipher stream is the keystream generator. The latter is a PRNG (pseudo
random number generator), which generates a stream of bits given a secret key and an initialization vector.

Stream ciphers were inspired by One-time pad cipher (see Section 4.6). Unlike OTP cipher, in which the key stream is at
least as long as the data to encrypt, stream ciphers make use of periodic PRNGs.

The secret key is shared by both parties. Therefore, the keystream generators on both sides generate the same sequence
of keystream bits. Encryption and decryption operations are very simple. Let a; and s i be the current plaintext and key-
stream bits, respectively. Formally,

Encryption is: ¢, = a; &s; mod 2
Decryption is: a; =¢; &s; mod 2

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

173

174 | 6 Stream Ciphers

Bits of plaintext

m-1
Sender (encryption)
a
3,
Secret
key K Key stream sees Sy Sp1eeeer 510 Sp
5 generator (up)
Initialization A (PRNG) Keystream bits :
vector > 5 Bits of ciphertext
' Cm-1
- . PG
Recipient (decryption) :
Secret i
key K Keystream ..., S, Sp1s+-r S1s Sp A
5 |3 generator -
Initialization A (PRNG) Keystream bits
vector

8y, - 8y, 8y

Figure 6.1 General structure of stream cipher (synchronous model).

where @ denoted the XOR bitwise! operation.

Since the keystream generator produces a keystream, which is periodic, the same keystream may be used to encrypt
(or decrypt) more than one plaintext (or ciphertext). That is why two distinct indices i and j are used.

It is very easy to check that the decryption process is correct:

ciést mod Zz(ai@sj mod 2) ést mod 2:ai®sj69sj mod 2=a,

In binary field, adding twice an element is equivalent to adding 0.

Example 6.1

Encryption
Plaintext 1100110101001110
Keystream © 1000011111001011
Ciphertext 0100101010000101

Encryption
Ciphertext 0100101010000101
Keystream ©1000011111001011
Plaintext 1100110101001110

6.1.2 Synchronous vs Self-synchronized Keystream Generators

To decrypt correctly, both parties must use the same keystream to encrypt and recover the same plaintext bit. Therefore,
both parties need to be synchronized when using keystream bits. There exist two types of keystream generators: synchronous
and self-synchronized.

Definition 6.4 Synchronous stream cipher: it is a cipher in which the keystream is generated independently of the plaintext
and of the ciphertext.

Definition 6.5 Self-clocking stream cipher: it is a cipher in which the keystream is generated from a key function and a
fixed number of previous ciphertext bits.

6.1 Stream Ciphers

6.1.2.1 Synchronous Stream Ciphers

In a synchronous stream cipher, both parties initialize one time (per session or message) their keystream with the same
values (i.e. secret key and initialization vector) and then encrypt and decrypt bits until the end of session or message.
Formally, encryption and decryption may be described as follows:

Let Init (K I V) be a function that initializes the keystream cipher using a secret key K and an initialization vector IV and
Next() a function, which yields the next state of the keystream generator. In section 6.1.4, Next() function will be addressed
in detail. Let o, denote the state and g(al.), the output of the keystream generator at cyclei,i =0,1, ... Then, encryption and
decryption can be described as:

Encryption side # Decryption side

oy = Init(K,IV) oy = Init(K,IV)

for each plaintext biti do for each ciphertext biti do
s =g() s, =g(7)
¢ =a;®s; mod 2 a4, =c;®s; mod 2
Tin :NEXt(Ui) i :Next(ai)

Synchronous stream ciphers have at least two advantages and one drawback.

Advantages: i) If a bit is modified but not deleted, the process of decryption continues to correctly decrypt the remaining
bits. Therefore, synchronous stream ciphers are not error-propagation sensitive. ii) If some bits are inserted, by an adver-
sary, the receiver will lose synchronization and the forged bits as well as the remaining bits are very likely to be discarded.
Therefore, synchronous stream ciphers are more prone to support the detection of some attacks.

Drawback: if a bit is lost (because of transmission error), the receiver is desynchronized and the decryption may fail
starting from the missing bits if no re-synchronization mechanism is used.

Therefore, synchronous stream ciphers are very useful to encrypt streaming media (voice, audio, and video) where the
speed of data-traffic is more important than the integrity of the data (e.g. loss of a few pixels or images in video streaming
is not damaging).

It is worth noticing that synchronous stream ciphers are the most common in practice. To alleviate the drawback above,
the common approach, is to reinitialize the keystream generator each limited-length message.

6.1.2.2 Self-synchronized Stream Ciphers
As mentioned previously, stream ciphers are well-suited to secure continuous-flow communication such as voice in which
a continuous message is encrypted bit per bit. Transmission errors may occur while bits are transmitted through the
channel. Can you imagine phone subscribers accepting phone call breaks because of loss of one bit? Self-synchronizing
stream ciphers are a solution to prevent desynchronization due to bit loss or fraudulent insertion. They are suited to flows
(such as voice of video) that tolerate bit loss. One simplest way to describe self-synchronizing stream ciphers is given below.
Self-synchronizing stream ciphers rely on a synchronization window of length [bits. At the beginning of cycle i (i.e. cycle
of processing the plaintext bit a,), the synchronization window denoted C, is the set of the most recent ciphertext bits, i.e.
C=(¢_pci iy - ¢p)- Afunction w(QK) computes the output s; of the keystream generator at cycle i using the synchro-
nization window bits and the secret key K (see Figure 6.2). If neither bit loss nor bit insertion occur, the set C, is the same
on both sides. Therefore, both sides compute the same keystream bit s;. Now, let us consider two scenarios: bit loss and bit
insertion.

Bit loss. In the event of transmission error,? no ciphertext bit is correctly received during cycle i. Thus, the receiver has no
valid ciphertext bit to append to the synchronization window set. Rather, it appends the undefined binary value denoted
O. Therefore, it cannot correctly compute the keystream bits for bits fromi +1 toi + L. The synchronization resumes at bit
i+ 1+ 1. One strategy, under the assumption that the application is loss-tolerant, is to discard [bits starting from bit i. Thus,
self-synchronizing stream ciphers have the advantage of limiting the propagation of transmission errors to a few bits of a
continuous flow. Example 6.2 illustrates how the self-synchronization is reestablished.

Bit insertion.> By adversary: assume that bit ¢, is replaced by bit ¢;. In such a case, the set G, , at sender differs from the set

C,., atreceiver, which results in distinct keystream bits for bitsi +1 to i + [, which results in a decryption error. The syn-

A
chronization resumes at biti + [. Example 6.2 illustrates how the self-synchronization is reestablished.

Self-synchronizing stream ciphers have the advantage of limiting the propagation of transmission errors and malicious bit
alterations to a few bits of a continuous flow. Below is the pseudocode of self-synchronizing stream cipher operations.

175

176

6 Stream Ciphers

Sender (encryption) A e 8y B
Secret
key l Key stream wer Spr Smteeer 510 Sp
5 ¥ generator SV
Initialization A {PRNG) Keystream bits | Bits of ciphertext
vector i €y, €, Cp
Recipient (decryption)
! most recent
Synchronization ciphertext bits
Secret window C i
o i
kE'\' K i
5 3 .
Initialization A i
vector o(Cy, K) wess Spe Spoeees 310 S @
b Keystream bits

g, e Ay, Bg

Figure 6.2 General structure of self-synchronizing stream cipher.

Encryption side # Decryption side

C, = Init(IV) C, = Init(IV)

for each cycle i do for each cycle i do
5= w(Ci,K) if Tx_err()
¢;=a;&s; mod2 then {C,, = Update(C,0}
C= Update(Ci, ci) else {s, = (Q,K)

a :ci@sj mod 2
Cn= Update(Ci, cl.)}

Tx_err is a function, which returns True, in the event of a bit-transmission error.
Update(Ci, e) is a function that removes the oldest element of set C; and adds element e.

Example 6.2
- Bit loss

Assume that [, the length of synchronization window, is 5 and a transmission error occurs on bit i. The table below shows
the synchronization window bits at each cycle on both sides. At, cycle i, both parties have the same bit set, but the receiver
cannot decrypt the errored bit. Therefore, it includes the undefined value O in its set. Next, from cycle i +1 to cycle i + 5,
the receiver has a distinct synchronization window set and consequently, it cannot not decrypt correctly. Next, staring from

cycle i+ 6, both parties have the same set and the decryption resumes correctly.

. Bits of ciphertext

Cycle Sender synchronization window Receiver synchronization window Synchro

i (cz 5:C 40 G 3> G o ci—l) (ci—s’ci—zt’ Ci30 Cigr G 1) Yes
i+1 (Cl 4> Cl 3’ cl 20 Cl 1° C) (cl 4> cl 3’ cl 27 1 1’ O)) NO
i+2 (Cl 32 l 2’ z 1’ C‘ ct+1> (Cl 3 1 2’ 1 1’ O c1+1) No
i+3 (C 2 G G Gy Cz+2) (Cip Cl v & Gy ci+2> No
i+4 (Ci1 G Ciyrs Cipps Ci+3) (¢ O € €y Cl+3) No
i+5 (Cl’ Civ1o Cis Cigso ci+4) (Civrr Cig2s Cigao ci+4> No
i+6 (Civp> G2 Cip30 Civao cz+5) (Citrr Cirar Cipzs Cipgs Cz+5> Yes

6.1 Stream Ciphers

- Bit insertion

Assume that [, the length of synchronization window, is 4 and a bit i has been altered by an adversary. Let ¢ denote the
received ciphertext bit. The table below shows the synchronization window bits at each cycle on both sides. At cycle i, both
parties have the same bit set, but the receiver decrypts an altered bit and updates its synchronization set with ¢;. Next, from
cyclei+1 tocyclei+ 4, the parties have two distinct synchronization sets. Therefore, their keystream bits are distinct result-
ing in bits of plaintext that are different from the decrypted bits. Starting from cycle i + 5, both parties have the same set and
the decryption resumes correctly. Notice that the receiver has no means, at this stage, to know that a bit had been altered.

Cycle Sender synchronization window Receiver synchronization window Synchro
i (14’13’12’C11> (14’13’12’011) Yes
i+1 (cl 3 Cias i1 cl) (cl 3 Ci s Gy ’) No
i+2 (cz 2 G G 1) (Cz 2 G C 1+1) No
i+3 (Cl 1’ l+l’ H—Z) (Cl 1’ L’ l+1’ l+2> No
i+4 (cl’ i+1° 1+2’ t+3) <cl,’ c1+]’ i+2° 1+3) No
i+5 (Civ1s Civpr Ciyso Cz+4) (Cit1 Cipar Ciyas Cz+4) Yes

6.1.3 How to Generate Random Keystream Bits?

Keystream generators are the core of stream ciphers. They are Pseudo Random Bit Generators. There exist two main
approaches to design the keystream generators: linear congruential generators (LCG) and Linear-feed-back-shift-register-
based generators. Most common stream ciphers belong to the second category, which is addressed in detail in the next
section. This subsection just surveys the linear congruential generators.

In general, a linear congruential generator is defined as a process that produces random values as follows:

Let A, B, m, and z, be parameters of the generator. The number generated at cycle i, denoted z, is defined by:
z, = A=z, +Bmodm.lItis easy to find A and B with plaintext attack (see Problem 6.2).

If the LCG is used in a stream cipher, its output z, is a string of [log2 m\ bits used for encryption and decryption.
At least A and B must be secret. Like affine cipher presented in Section 4.3, stream ciphers relying on LCG are vul-
nerable to plaintext attacks. 3* [logzm] bits of plaintext and their corresponding ciphertext bits are enough to recover
the secret key formed by A and B (see Problem 6.3).

6.1.4 Linear-Feedback Shift Registers (LFSRs)

6.1.4.1 LFSR Principle and Properties

Linear-feedback shift registers (LFSRs) are building blocks for a wide variety of applications including cryptography, cyclic
redundancy check (CRC), and pseudorandom number generators. When cryptography is of concern, LFSRs provide key
streams to encryption and decryption operations of stream ciphers.

An LFSR is a register composed of m flip-flop* elements (also called cells or simply bits) driven by a clock; i.e. at each
clock impulse the state of register changes. The output of each element i, denoted FF, is the current output value in the
element. The rightmost element of the LFSR is the register output.

Figure 6.3 shows a simplified structure of shift register without feedback, where p denotes the register output. The m
flip-flop (FF) elements of the register are initialized to a selected value, called seed, say 10...10. That is, the first register

FF, FF, FFna FFrm
1 0 1 0
Seam1 M Stmz | S St > P
L F 9

Clock

Figure 6.3 General structure of no-feedback shift register.

177

178

6 Stream Ciphers

output is s, = 0. Then, at next clock impulse, the register elements are one-position right-shifted and the second register
outputs, ; =1. Atthem — 1" clock impulse, the register outputiss =1. Then, the register output does not change (i.e.
all register elements are zeros).

If a non-feedback register has enough bits, it can be used to deliver the key in one-time pad cipher. Unfortunately, since
the secret key is at least as long as the message and messages may have a long length, non-feedback shift registers are not
appropriate to implement OTP ciphers in hardware.

Shift registers, used in hardware implementation of stream ciphers, are characterized by feedback; that is why they are
called Feedback Shift Registers. That is, the output of some or all flip-flop elements are used to generate an input to the first
element. Not all the elements are required to generate feedback. Thus, binary coefficients, denoted ¢, c,,, _,, ..., and ¢;, indi-
cate if the output of flip-flop elements are used or not. In Figure 6.4, the operation ® denotes binary multiplication (i.e. the
output of FF, participates in the feedback only if ¢, = 1). The flip-flops that impact the feedback are called taps or feedback
coefficients. The feedback is yielded by a linear function; that is why LFSRs are called linear. There exist other LFSRs that
are not linear. The operation of an LFSR can be described as follows:

t+m—1

m: number of elements (or bits) of register

c: vector of feedback coefficients

FF: vector of element states

Seed: a vector of booleans for register initialization
m: number of elements (or bits) of the register
(FFm, FF, 1, FF, FFl) = Seed

p=FF,

At each clock impulse:

£ =(327(c;+FR)) mod 2
Register right-shift: FF/. = F/-']._1 vi=m,..,2

Input the feedback: FF, = f
Deliver the register output: =FF

The state of an LFSR at time ¢, denoted o(t), is the product of the states of its flip-flop elements. That is,
o(t)= (FFm (t),FE, (D), ..., FFl(t)), where FF,(t) denotes the state of flip-flop i at time ¢. In bit representation, the state of
LFSR is a bit string ranging from 000...001 to 111...111.

At each clock impulse, the LFSR delivers a bit and register elements are right-shifted. Therefore, the register output is a
bit stream that starts with string s N s,. The first bit produced by the LFSR is s,. The next bits of the key-
stream are computed as follows:

trm—12Stem—2> = Spy10

I 4 I VA (N
= Crn1 Cry
FF, Frns FFy
L, P
Stem-1 e S, -
Clock

Figure 6.4 General structure of Linear-Feedback Shift Register.

6.1 Stream Ciphers
m—1
Stom = Stim1C1 P8 26D - DS 16 D S0, = Zst+jcm—j mod 2
j=0
m—1
Stimi1 = Stim € B8y 16D - D S50, DS Gy = Zst+j+lcm—j mod 2
j=0
m—1
Sermii = Stamtio1€1 DS imyi 26 O oo B8y C 1 DS €y = zstﬁ»ﬂ»icmfj mod 2 (6.1)
Jj=0

Lemma 6.1°
An LFSR with m flip-flop elements can generate N distinct states such that N < 2™ —1. N is called cycle (or period) of
LFSR.

Properties of LFSRs

i) The output of LFSR, which has N distinct states, is a bit string, which repeats every N bits. Therefore, the state of
flip-flop i at time ¢ + kN, with k a positive integer, is the same as at time ¢.

ii) An LFSR with n flip-flops is said to be maximal-length LFSR, if it has exactly 2" —1 distinct states.

iii) An LFSR, which reaches a state where all flip-flop states are 0s, has a constant® output equal to 0.

Example 6.3
Figure 6.5 shows an example of LFSR with four FF elements. To simplify the LFSR structure, an equivalent representation
is used; if ¢, =1, then the output of element FF, is connected to the XOR feedback line; and there is no connection
otherwise.

The initial state of the LFSR is 1100. ¢ denotes clock impulses. It is worth noticing that the first LFSR has only 6 distinct
states, while the second has 15 distinct states. The second LFSR is maximal-length. Table 6.1 shows the state changes of the
considered LFSR.

MM A
P =)
FFy FFs FFy FF,
1 0
1 1 2] o O 0 ,
Clock
AR
N
F 3
FFy FFs FFy FF,
1
1 1 2] o O o |oLfs
Clock

Figure 6.5 Examples of Linear-Feedback Shift Registers.

179

180

6 Stream Ciphers

Table 6.1 Example of LFSR state changes.

Register state Register state
t (Figure 6.5a) t (Figure 6.5b)
0 1100 0 |1100
1 1110 1 1110
2 0111 2 | 1111
3 0011 3 10111
4 0001 4 1011
5 1000 510101
6 1100 6 | 1010
7 1110 7 | 1101
8 0111 8 10110
9 0011 9 | 0011
10 0001 10 | 1001
11 1000 11 | 0100
12 1100 12 | 0010
13 1110 13 | 0001
14 0111 14 | 1000
15 0011 15 [1100
16 0001 16 [1110

6.1.4.2 Feedback Polynomial of LFSRs

To build stream ciphers, LFSRs with m cells are commonly used under computations over either extension fields (i.e. fields
of the form F,,) or prime fields (i.e. fields of the form F, with p prime). Most common stream ciphers based on LFSRs rely
on extension fields. In such a case, an LFSR with feedback coefficients ¢;,i =1, ..., m, where m is the number of register bits
ande,_, € {0,1}, can be represented as a polynomial, called feedback polynomial, 7(x), defined by:

m .
> ex'

i=1

F(x)=1+ mod 2 (6.2)

In Example 6.1, F(x) = x* + x* + x 4 1; in Figure 6.5a and F(x) = x* 4 x +1in Figure 6.5b. Polynomial and diagram rep-
resentations are equivalent. That is, from a feedback polynomial, the structure of LFSR can be drawn; and from a structure
of an LFSR, the feedback polynomial can be derived. Polynomial representation is used when mathematical analysis is of
concern.

Lemma 6.2
Given a m-bit linear-feedback shift register R represented with a feedback polynomial F(x) and initialized with a non-
zero binary vector, if 7 (x) is a primitive polynomial, then R is a maximal-length LFSR (i.e. with a period of 2" —1).

A proof of Lemma 6.2 is given in [2]. Recall that a primitive polynomial p(x), of degree m, is a polynomial irreducible in Z,
that can generate all elements of a field F,, (see Section 3.2.4). For any integer m > 2, there exists at least one primitive poly-
nomial of degree m to generate a field F,,. The number of distinct primitive polynomials of degree m grows quasi-exponen-
tially with m. Therefore, there exist multiple combinations of tags to build LFSRs with a cycle of 2" —1. To reduce the
hardware implementation of LFSRs (i.e. reduce the number of connections and XOR circuits due to tags), sparse primitive
polynomials of degree m, i.e. with the least number of monomials, are preferred.

Table 6.2 [3] provides a list of examples of feedback polynomials with minimal cost (i.e. with minimum electronic cir-
cuits) to build LFSRs with 2 to 32 bits.

6.1 Stream Ciphers

Table 6.2 Feedback polynomials of LFSR with 2 to 20 and 32 bits.

Feedback Polynomial Feedback Polynomial
Number of bits Cycle length Example 1 Example 2
2 3 x? +x+1
3 7 x3+x2+1 x3+x+1
4 15 xt+xP+1 xt+x+1
5 31 X +x+1 X +x*+1
6 63 X +x°+1 X +x+1
7 127 x +x0+1 X +x+1
8 6 5 4 8 6 5
8 255 X +x +x+x"+1 X +x +x+x+1
9 511 X +x°+1 X +xt 41
10 1023 x4+ x"+1 x4+ x*+1
11 2047 A +x®+1 x4 x?+1
12 4095 X2 4+x’+1 X243 +1
13 8191 B4 x4+ x% 1 B4 xt 4+ x+1
14 16 383 x4 x4 x+1 X+ X x+1
15 32767 B xt 41 X Hx+1
16 65 535 X4+ x X7 X241 X+ x4+ x+1
17 131071 X7 +x%+1 X7 Hx3+1
18 262 143 B xtt 41 B +x7 41
19 524 287 x4+ x4 x4 x4 x4+ x X7+ x+1
20 1048 575 X2 +x7 41 X2 +x%+1
32 4294967295 xZ4+x?4+x*4+x+1

6.1.5 LFSRs for Building Stream Ciphers

LFSRs are common building blocks to design and implement stream ciphers. In such a case, the seed of initialization of
LFSR is the secret key shared between parties. Unfortunately, a single LFSR is vulnerable to plaintext attacks (see Problem
6.7). Therefore, it is not recommended to use a single LFSR.

There exist two basic approaches to use LFSRs to build stream cipher. The first is to use several LFSRs in parallel and
combine their outputsin a secure way (i.e. hard to attack) to generate the key stream. Such generators are called combination
generators. The second approach is to use a single LFSR, then apply a nonlinear function to its output to generate the key
stream. The registers in the second category are called filter generators. Both approaches can be mixed to yield highly secure
stream ciphers. Therefore, the recommended approach to build LFSR-based stream ciphers is to mix several LFSRs that
run in parallel and combine their outputs.

A huge number of solutions have been proposed to design LFSR-based stream ciphers. They differ regarding how the
LFSRs are clocked and how their outputs are combined. As shown in Figure 6.6, the LFSR-based stream ciphers are char-
acterized by two components: Logic of clocking and logic of output combination. Thus, LFSR-based stream cipher design
approaches can be classified according to their components.

i) Clocking technique
— Regular clocking: all the LFSRs are clocked at the same rate to produce their output.
— Irregular clocking: only LFSRs that match a given condition are clocked. In general, the output or some
specific bits of certain LFSRs are used to clock other LFSRs. Figure 6.7 shows an example of irregular clocking.
LFSR, is clocked only if both outputs of LFSR, and LFSR, are 1, and LFSR, is clocked only if the output of LFSR, is
0. The standard EO, which is presented in 6.2.1, is based on irregular clocking.

181

182

6 Stream Ciphers

s ~ i . ™
T o T
¥
Clocking _)| ‘ | |LSFR1‘ ‘ | | }ih Logic of LFSR | Keystream
logic output [bits
! combination
T Tl TTTH-
| T Tom [T

Figure 6.6 General architecture for building LFSR-based stream ciphers.

LSFR,

Clock

bits

LSFR,

Figure 6.7 Example of irregular clocking of LFSRs.

ii) Combination of LFSR outputs
There exist two main approaches:

- Use of a nonlinear function F to combine the outputs of the LFSRs. Since a function is used to filter outputs,
the generators are called filtering generators. In Figure 6.8, the output of the keystream generator is a nonlinear
combination of four LFSRs. Let s, denote the output of LFSR,. Therefore, the output of the entire keystream generator

is F(1,2,3,4) = (ﬁsl A sz) &) (ﬁ(ss @s4>).

- Use of Finite state machine (FSM): to increase nonlinearity, function F may be designed as an FSM. With FSM, the
keystream generator makes use of past computations to produce keystream bits, thus reinforcing the security level.
Most standard stream ciphers, including SNOW 3G and ZUC presented in 6.2, rely on FSM.

Note. Since mathematical proofs of security of LFSR-based keystream generators are not yet known, such generators can

only be deemed as computationally secure.

Keystream

6.2 Examples of Standard Keystream Generators

Several stream ciphers have been proposed and some of them have been standardized and widely used in operational net-
works. Recall that standardization organizations involved in networks and telecommunications are mainly IEEE,” 3GPP}

ETSL’ IETF,'® and 1SO,™*

LSFR,

Clock

-

FO)

Keystream
" bits

/

Figure 6.8 Example of nonlinear combination generator.

6.2 Examples of Standard Keystream Generators

Standard stream ciphers include A5/1, EO, SNOW 3G, ZUC, Chacha20, and RC4, which are presented in the sequel.

Note. In the sequel, the presentation of keystream generators preserves the notations of standards. Therefore, different
notations for numbering cells and states will be used depending on the standard.

6.2.1 A5/1 Keystream Generator

A5/1 is a cipher stream used to secure communications between mobile phones and base stations in GSM networks (i.e.
2G cellular networks). Billions of phones used A5/1 to protect communications while propagating over the air.

A5/1 relies on a key stream generator composed of three LFSRs with irregular clocking and defined by feedback
polynomials:

.E(x):x19+x18+x17+x14+1]_-2(x):x22+x21+1
f_;)(x):x23+x22+x21+x8+1

Therefore, in total, 19 + 22 4 23 bits are used to deliver a key stream. The registers are initialized using a key of 64 bits stored
on the mobile phone.

A5/1 output is an XOR of the output of the three registers. In each register, a specific bit, called clocking bit, is used to
know when the shift operation is to perform. In Figure 6.9, bit 8 is the bit clocking of the first and second registers and bit
10 is the bit clocking of the third register. At each cycle, the clocking bits of the three registers are examined. A register is
clocked (i.e. a clock signal is delivered to the register; thus, it shifts its cells to the right) if the current state of its clocking
bit agrees with the majority of clocking bits. Therefore, at each cycle, two or three register shifts are performed. The state
of register of which the clocking bit differs from the clocking bits of the other registers does not change.

The irregularity of register clocking was a countermeasure against plaintext attacks against LFSR (see attack against
LFSR, Problem 6.7). Unfortunately, even with irregular clocking of registers, several attacks succeeded and showed that
A5/1 was not secure. From then on, A5/1 was no longer a solution for cellular networks.

Another countermeasure was proposed in A5/2 cipher, with four registers, but it is no more recommended, because of
reported attacks.

6.2.2 EO Keystream Generator

EO is a stream cipher used to encrypt and decrypt data packets between two Bluetooth devices [4]. EO makes use of a key
stream generator composed of four LFSRs defined by feedback polynomials:

.7-'1(x):x25+x20+x12+x8+1 J”-'z(x):x31+x24+x16+x12+1
.7-"3(x):x33—|—x28+x24+x4—|—1 .7-'4(x):x39+x36+x28+x4+1

10)11)12|13}14|15|16|17|18|19|20|21

¥
Bt il
L

L 4

Clocking logic

r
=
=
[%]
(T%)
=9
w
o
=

[|

o

—» 0|1(2|2|4|5|6|7|8|9 11|112113|14|15|16|17|18|19(20[21 (22—
Y rx
%

Figure 6.9 General structure of random generator of A5/1 cipher.

183

184

6 Stream Ciphers

Therefore, in total 128 (=254 31+ 33+ 39) bits are used to deliver a key stream. The output of LFSRs is combined with a
state machine called summation combiner (see Figure 6.10).

In addition to the four registers, EO cipher makes use of two internal 2-bit-words denoted ¢, ; and c, initialized to 00. The
main steps of EO cipher are Generation of key stream and Initialization.

Generation of key stream bits

Let the start time be t = 0.

Let xtk denote the output of register k(k =1,2,3,4) at time ¢.

Let ctlf1 and ct1 denote the left bit of words ¢, _, and c,, at time ¢, respectively.
Let 0?71 and c? denote the right bit of words ¢,_, and ¢, at time ¢, respectively.

Let (W? , wtl) denote the two bits of a 2-bit-word w.
The output of the key stream generator is performed as:

1) Compute the sum over integers:
1 2 3 4
Y, =X, +x; +x; +x;. Thus,0<y, <4.
2) The output of the entire keystream generator is z, € {O, 1}, where

1 2 3 4 0
Zt—xt@xt@xt@xt@ ct

1 0

Cr1 = (Ct+1’ ct+1) =8, 9 Tl[ct] @Tz[ctq]
10 yte

Sin :(st+1’ St+1): % .

T H and T, H are two linear functions defined by:
a0 1 0). a0 o 1 0
T‘l : (Ct ’ ct)'_><ct’ ct)’ TZ ‘ (thl’ thl) = (thl’ thl thl)'

Initialization of LFSRs (Key Scheduling Algorithm)

Before starting the generation of key stream bits, the four LFSRs and the two 2-bit words, ¢_, and c,, are initialized using
four inputs: an encryption key K, , 128 publicly known random bits, a 48-bit Bluetooth device address, and 26 central’s
clock bits. All the initialization inputs (i.e. len(KW) +128 4 48 4 26 bits) enter the four registers, in a specific order, and
keystream generator is clocked without producing key stream bits. Then, after some cycles of registers, the entire key
stream generator becomes ready to deliver the first bit of the key stream. The encryption key K, . is derived by a function
called E3 using the link key exchanged during the authentication step performed by Bluetooth devices.

6.2.3 SNOW 3G Keystream Generator

SNOW 3G is keystream generator chosen by 3GPP for confidentiality and integrity guarantees in 3G cellular networks [5].
SNOW 3G also is included in the ISO/IEC 18033-4 standard [6]. Unlike A5/1 and EO keystream generators, in which LFSR
elements are bits, SNOW 3G is a word-keystream generator. That is, the elements (also called stages) of SNOW 3G LFSR
are 32-bit words. At every clock tick, SNOW 3G produces a 32-bit word of output, which is then used to encrypt/decrypt 32
bits of data. SNOW 3G is composed of two components: an LFSR of sixteen 32-bit stages and an FSM of three 32-bit regis-
ters (see Figure 6.11). FSM registers are not LFSRs; they are updated using substitutions.

6.2.3.1 Formal Description of SNOW 3G
LFSR of SNOW 3G is defined over field'* F,... The 32-bit elements of LFSR are denoted s,s, 5, ..., 5, (see Figure 6.11).

232 15°

Notice that stage s, is the rightmost element of the LFSR. Hence, the feedback polynomial of SNOW 3G is defined by:
FX)=ax"ox* & a 'x’ +1€ Fu[x]

The feedback word, at cycle ¢ + 1, is recursively computed as:

6.2 Examples of Standard Keystream Generators | 185

Summation combiner logic

X

LFSR1 i
2

X

LFSR2 t
Z

Iat Key srtream
LFSR3

x?
LFSR4 t ™

L

[Z;r} Y

Figure 6.10 General structure of random generator of EO cipher.

2-bit word update logic

N

D

a
%

(T

ot o

m WaA) F Nan z;
g 1/ L/
S g |
R, > R, 22 Ry
. Jany v
FSM N

Hﬂ Addition modulo 232 @ Multiplication by o or a* over field F(2%?) Si i Substitution using S-box i

Figure 6.11 SNOW 3G keystream generator.

1 -1
St+ = «

¢ ‘ ¢
15 #5, DS, Baxs,

where:
sit denotes the state, at cycle ¢, of stagei (i=0, 1, ..., 15),

186 | 6 Stream Ciphers
a € F,.[x]is aroot of F[x] polynomial x4 B33 4 328X + %% + 57,

B € F[x] is a root of F,[x] polynomial XBrx+x0+x3 41

a~!'is the multiplicative inverse of a over Fy.

For detail on finite fields Fzm’ see Section 3.2.4.

The output of FSM, at cycle ¢, denoted F', is computed as: F' = (sis +R;) SR,

The update of FSM registers, at cycle ¢, is defined by:

R=R+(R7os) R=5,(R7) R=s, (R

where S, and S, are two 32-bit to 32-bit substitution boxes. S, and S, s-boxes make use of two small 8-bit s-boxes S, and S,. Sy
is the well-known s-box used in AES cipher (see Section 7.3).

After the initialization step, the output of the SNOW 3G keystream generator, at cyclet, isz' =z' @ s(t).

Before starting the generation of the first bit of the keystream in cycle ¢, the value of S{SS is s{ss =a s
si sk @axsy T@F

6.2.3.2 Algorithmic Description of SNOW 3G
SNOW 3G relies on a series of functions, substitution boxes, and clocking modes, which are presented below.

6.2.3.2.1 Notations and Functions of SNOW 3G

Notations

0Ox: hexadecimal notation of an 8-bit value (i.e. a byte).

Ox <, t: t-bit left shift of an n-bit register; ¢ is the number of shifting positions.

V', c: 8-bit values. W: 32-bit word

W =W, || W, [| W, || W;:32-bit word, with W, the most and W, the least significant byte.
s;:elementiof LFSR,i=0, ..., 15 S byte k (k =0,1,2,3) of element s,

Rj: register Rj (j =1,2,3) of the FSM

@: addition modulo2 @: addition modulo 2>

SNOW 3G makes uses of four functions:
1) MULx function: maps eight bits to eight bits as follows:

(V < 1) G if the most significant bit of V =1

MULx(V,c)= .
(V < 1) otherwise

For example, MULx(0x2A, 0x12) = 0x54; MULx(0xA2, 0x12) = 56.

2. MULXPOW function: recursively maps eight bits to eight bits as follows:

14 i i=0
MULXPOW(V..i.¢) = {MULX(MULXPOW(V,i ~10)c) othe{wise
3. MUL,, function: maps eight bits to 32 bits as follows:
MUL, (¢) = MULXPOW (c, 23, 0XA9) || MULXPOW (c, 245, 0XA9) ||
MULXPOW (c, 48, 0xA9) || MULXPOW (c, 239, 0XA9).
4. DIV, function: maps eight bits to 32 bits as follows:

DIV, (¢) = MULXPOW (c, 16,0xA9) || MULXPOW (c, 39, 0XA9) ||
MULXPOW (c, 6,0xA9) || MULXPOW (¢, 64, 0xXA9)
6.2.3.2.2 Substitution Boxes of SNOW 3G

SNOW 3G makes use of two substitution boxes S, and S,.
Given a word W, S-box S, returns a result S, (W) =r, ||, || r, || r, defined as follows:

6.2 Examples of Standard Keystream Generators

r, = MULX(Sg (W,),0x1B) @ Sy (W,) & S (W,) ® MULx (S, (W,),0x1B) & S, (W)
r = MULX(S, (W,),0x1B) @ Sy (W,) ©MULX (S, (W,),0x1B) &S, (W,) &S, (W)

ry =S (W,) ® MULX(Sg (W,),0x1B) & S (W,) © MULX (S (W,),0x1B) @ S, (W,)
r,=Sg (W,) & S (W,) & MULX(S, (W,),0x1B) &S, (W,) & MULx(S, (W,),0x1B)

where S,, which is called Rijndael’s s-box, is a table of 256 8-bit-constants that, given u=i*16+ j (i and j are row and
column numbers of a cell in Rijndael’s table), returns a 8-bit constant. For example, S,(17)= S,(0x11)=0x63,
S,(127) = S, (0X7F) = 0xD2, S, (255) = S, (0XFF) = 0x16.

Given a word W, S-box S, returns a result S,(W) =r, || 1, || 7, || r, defined as follows:

ry = MULX (S, (W,),0x69) © S, (W) @ S, (W,) © MULX(Sy (W,),0x69) @ S, (W)
i, = MULX(S, (W,),0x69) & S, (W,) & MULX (S, (W,),0x69) &S, (W,) @ S, (W)

ry = So(W,) ®MULX(S, (W,),0x69) & S, (W;) & MULX(S, (W,),0x69) @ S, (W)
ry=So(Wo) @ So(W;) © MULX(Sy (W,),0%69) & S, (W,) @ MULX (S, (W,),0x69)

where S, is a second table of 256 8-bit-constants used in the same way as table S, but with distinct arrangements of constants
inside the tables. For example, S,(17) = S,(0x11) = 0x25, S,(127) = S, (0X7F) = 0x5A4, 5,(255) = S, (0xFF) = 0x86.

6.2.3.2.3 SNOW 3G Clocking
Clocking the LFSR
Two modes of LFSR clocking are distinguished:

1) LFSR clocking in initialization mode
LFSR receives a 32-bit word F from the FSM, then performs the following:

V= (so’l I S0 I S03 I OXOO) ® MUL, (SO,O) s,
(0X00 |1 5,30 11 80, 11 81,,) © DIV, (5,,5) ©F.

Shift LFSR elements using the feedback v

si:si+1,forl:O,...,14; S5 =V

2) LFSR clocking in keystream mode
It performs the following:

V=5 I o II S 1| 0x00) & MUL, (s,) &5, &

(OXOO 813011 Sy10 1l 511,2)@D1Va (511,3)

Shift LFSR elements using feedback v

si:si+1,f0rl:0,...,14; S,5=V

Clocking the FSM
FSM is clocked to produce a 32-bit word denoted F as follows:

-F=(s BR) OR,
- Update registers: r = R, H <R3 @s5>; R, = Sz(Rz); R, =S, (R1)? R =r.

6.2.3.2.4 Operation of SNOW 3G

Initialization (Key Scheduling Algorithm)

SNOW 3G is initialized with a key K composed of four 32-bit words, denoted K, K,, K;, and K, and an initialization vari-
able IV composed of four 32-bit words, denoted IV}, IV,, IV,, and IV,. LFSR element initialization is as follows (where
) = OXFFFFFFFF):

187

188

6 Stream Ciphers

815 = Ky @1V, S =K, 13 =K S, = Ky @1V,
s, =K, ®Q 5,=K, ®QalIV, s, =K, ®Q DIV, sy =K, ®Q
s, =K; s =K, ss =K, s, =K,

s, =K, ®Q s,=K,®Q 5, =K, ®Q s, =K, ®Q

The FSM registers R, R,, and R, are all set to 0. Then, the following two steps are repeated 32 times:

1) FSM is clocked to produce a 32-bit word F.
2) LFSR is clocked according to initialization mode using word F.

Generation of keystream

First, the FSM is clocked once and its output is discarded. Then, the LFSR is clocked according to the keystream mode.
After that, keystream 32-bit words are produced by repeating the following steps as long as keystream bits are needed to
encrypt/decrypt messages:

1) FSM is clocked to produce a 32-bit word F.
2) The next keystream word is produced asz, = F &,
3) LFSRis clocked according to the keystream mode.

| Note. For interested readers, some issues regarding the resynchronization mechanism of SNOW 3G are discussed in [7].

6.2.4 ZUC Keystream Generator

6.2.4.1 Principle of ZUC Keystream Generator

ZUC! is stream cipher proposed in China for support of security in cellular networks [8]. ZUC also is an ETSI standard [9)].
There exist two ZUC versions: ZUC-128 for 4G/LTE and ZUC-256 for 5G networks. The structure and operations of both
versions are the same; they differ in the length of the key and the initialization vector and in the register initialization
phase. ZUC-128 is 128-bit key-based, while ZUC-256 is 256-bit key-based. Therefore, ZUC-256 provides a higher security
strength. In the sequel, ZUC description refers to ZUC-128.

ZUC is organized into three logical layers: LFSR, bit reorganization, and an FSM (see Figure 6.12). It is worth noticing
that the bit reorganization layer extracts halves of eight LFSR stages, which are then used in a nonlinear function F. Such
a design makes (till now) the standard cryptanalysis against common stream ciphers not directly applicable to break ZUC
cipher.

Like SNOW 3G, ZUC is a word-keystream cipher. It takes a key of 128 bits and an initialization vector of 128 bits to
deliver a 32-bit word of keystream bits used to encrypt/decrypt data.

ZUC has an LFSR of sixteen 31-bit stages denoted s, s, ..., S 4, 5;5-

The design of ZUC differs from common stream ciphers, such as SNOW 3G, which are defined only over extension fields,
ie. F,, F,,, and F,,. Rather, the LFSR of ZUC is defined over a prime field E,, with p=F,. |, while the FSM registers'* are

2

defined over extension field Fy.

The feedback word, at cycle t 41, is recursively computed as:
st =2 sl 42 sl + 2% wsl + 270 5, + (1 + 28) x 55 mod (231 — 1).
LFSR feedback polynomial of ZUC is:

F(x)=x16—(215x15+217x13+221x10+220x4+(1+28)).

6.2.4.2 ZUCAlgorithm

Notes

- InZUC, addition and multiplication of LFSR stages are over prime field F,. .

-1Ifs;;' =0, thens;," is replaced by 2* —1 (because in F,, p and 0 are equivalent).

- Any elementa € F,, | can be written asa = Z:ioaizi, a4 5 6{0,1}. Then, Vx€F, , k<31, 2"x = x <, k. This
makes implementation of ZUC quite efficient. x <<, k denotes a left circular shift of 31-bit element by k positions.

6.2 Examples of Standard Keystream Generators

A A
21s % 217 2u 22 (1+23)
S15 | S1a | S13 | S12 | Su | Sw | So | Sg | Sz | Se | S5 [Sa | S3 [S2 | Sy | So
= I I l . I I
BT """""""h::""" s N S
g |
= 5 : ! : i
@ Eﬂ : X, L% % X
< A
[1 Y
| 2 P w D .
; % ! N
i !
i L Rl RZ o+ i
' P any |
E (N N !
i Wy W, |
n
E Y L 4 E
b SW T TWa) S(L(Wa | Wy,)) |
: FSM |
N, — J— — e ———
Addition A Addition Multiplication Use of S-box and
EH modulo 2% modulo 231-1 ® over field F(231-1) linear transformation

Figure 6.12 SNOW 3G keystream generator.

6.2.4.2.1 ZUCLFSR Modes

Stages of LFSR are 31-bits. Like in SNOW 3G, the LFSR of ZUC operates in two modes: Initialization and keystream

generation.

1) LFSR Initialization mode (Key Scheduling Algorithm)
In LFSR initialization mode, ZUC performs the following:
Receive a 32-bit word W from the nonlinear function.
u=W>1(i.e. remove the rightmost bit of W to match LFSR stage length)

V= 215s15 —1—217s13 + 221s10 +22°s4 + (1+28)s0 mod (231 —1)
T:(u+v)m0d (23171)
IfT=0,thenT =2 -1

(sl, Sy5 eees S145 SIS,T) — (so, 15 eees S1g S1s> (i.e. shift stages).

2) LFSR work mode
In LFSR initialization mode, ZUC performs the following:

T =25, +27s;,+2%5,, +2%s, + (142°)s, mod (2% 1)

IfT=0,thenT =2 —1

189

190 | 6 Stream Ciphers
(sl, Sy eees 8145 slS,T) — (so, 815 eees Sy4 315)

6.2.4.2.2 ZUC Bit Reorganization
From the stages of the LFSR, four 32-bit words are formed as follows:

Xo=5S1sy sy, Xi=suplisoy Xy=5, 11555 X;=5, 1Sy

where s;; and s,;; denote the leftmost and rightmost 16 bits of stage i, respectively.

6.2.4.2.3 ZUC Nonlinear Function F
The core of the FSM of ZUC is a nonlinear function denoted F, which makes use of two 32-bit registers R, and R, and the
three words yielded by bit reorganization to deliver a 32-bit word W as follows:

F(Xy. X, X,):
{(w=(x,0R)BR; W,=RBX;; W,=R, 0X,;

R =S(L (W, Il Wy) By =S(Ly (W, I Wm))}

S is a 32-bit substitution box, which is defined by four juxtaposed 8-bit s-boxes similar (but with distinct ordering of 16-bit
constant) to Rijndael’s table used in SNOW 3G.
L, and L, are two 32-bit linear transforms defined by:

Li(X) =X (X <5, 2)8(X «;,10) 0 (X <5, 18) B (X <3, 24)
L(X) = X&(X <5, 8) @ (X <5, 14) @ (X <5, 22)8(X <3, 30)
where a <<, k denotes the k-bit cyclic left-shift of the n-bit register a.

6.2.4.2.4 ZUC Initialization
LetK=K, | K ||...1| K, || K,5 be the secret key and IV = IV, || IV, ||... || IV}, || IV, the initialization vector. Each K, or
IV,i=0,..,15, is an 8-bit value. The secret key and the initialization vector are expanded to sixteen 31-bit values to ini-
tialize the LFSR stages as follows:

s;=K; |14 I 1V,i=0,1, .., 15 whered,_, ,,are 15-bit constants defined by:

d, = 0x44D7 d, =0x26BC d, =0x626B d, = 0x135E
d, =0x5789 d, =0x35E2 d,=0x7135 d, =0X09AF
d, =0x4D78 d,=0x2F13 d,, =0x6BC4 d, =0x1AF1
d,, =0x5E26 d,; =0x3C4D d,, =0x789A d,, =0x47AC

Perform the following steps:

- R;=R,=0

- Run Bit reorganization

- W=F (X X1, X2)

- Run LFSR initialization mode with w > 1. (w > 1 denotes 1-bit right shift of w).

6.2.4.2.5 Keystream Generation
After the initialization phase, execute once the following steps and discard the output of function F:

e Run Bit reorganization
o W=F(X,,X,X,)
e Run LFSR work mode.

Then, ZUC enters in phase of generation of keystream bits. At each cycle, a 32-bit word Z is produced as an output of the
ZUC keystream generator as follows:

6.2 Examples of Standard Keystream Generators

e Run Bit reorganization B]
o Z=F(X,X,.X,)®X, So 51 Sz 53
e Run LFSR work mode.

S, S: S, S,
6.2.5 ChaCha20 Stream Cipher 53 Sg 5“? Sfj
ChaCha20"? is a stream cipher designed by D. Bernstein [10]. It is an IETF standard [11] rec- S, Sz S Sic

ommended in particular as a cipher in TLS protocol [1]. L

Some performance analyses showed that ChaCha20 is around three times fast as AES (the Figure 6.13 ChaCha20
standard block cipher, presented in the next chapter), when both are software-only imple- state structure.
mented. Another interesting property of ChaCha20 is that it is not sensitive to timing attacks.

ChaCha20 takes a 256-bit key, a 32-bit counter, and a 96-bit nonce; and generates a 64-byte — —
keystream block.

v L L L B
6.2.5.1 ChaCha20 State K, K; K, K;
The state of Chacha20 is composed of sixteen 32-bit words, denoted S, ..., S,, generally
organized in a matrix, as illustrated by Figure 6.13. Kaf KS Ké KF

The initial state of Chacha20 is set as shown in Figure 6.14: C N, N, N,
o The first matrix row is initialized using four constants: — -

Figure 6.14 ChaCha20

S, = a, = 0x61707865 S, = a; =0x3320646e initial state.

S, = a, = 0x79622d32 S, = a; = 0x6b206574

e The second and third matrix rows are initialized using a 256-bit key K (represented by eight 32-bit integers, denoted K,
Ky s K.

e The fourth matrix row is initialized using a 32-bit counter, denoted C, and a 96-bit nonce (represented by three 32-bit
integers, denoted N, N;, N,).

6.2.5.2 ChaCha20 Quarter Round
The basic function of the ChaCha20 algorithm is the quarter-round, denoted QRound; it takes four 32-bits integers a, b, c,
and d; and it performs the following operations:

function QRound
input a,b,c,d # four 32-bit words
output a,b,c,d
n <, denotes m-bit left-rotation of a 32-bit integer n
la=a+bmod 2*;d=d@a;d =d <44
2.c=c+dmod °;b=b@c;b=b <4,
3.a=a+b mod 232;d=deaa;d=d<<<3
4.c=c+d mod 232;b=bEBc;b:b<<<7
5. return (a,b,¢,d)

6.2.5.3 ChaCha20 Keystream Block Generation

To generate a 512-bit keystream block, ChaCha20 takes an initial state. Then, ten series of quarter-rounds are performed.
Each series is composed of eight quarter-rounds; therefore, in total 80 quarter-rounds (i.e. 20 full rounds) are run to yield
one keystream block. As shown in Figure 6.15, quarter-round operating on words of the same column are called column
quarter-rounds; and those operation on words in four distinct columns are called diagonal quarter-rounds. Figure 6.15 also
shows the order in which the state words are used to form inputs of quarter-rounds. Using such a scanning of state words,
ChaCha20 realizes a very fast diffusion.

The full pseudocode of the Keystream block generation function is given below.

191

192

6 Stream Ciphers

K
Q'-rl
[
1=

] o | N]
o S
-4 |
- —|
Fy

L]

s.g' SIO 511 53 ._--"- | 59) s]ﬂ |, “"_i_ SII
l l i e T 5
| S12 ‘ [Si3 ‘ 514 | ‘ Sis }_ ‘ 5{12 | ‘ S.E ‘ S14 S_.‘[S

Column quarter-rounds Diagonal quarter-rounds

Figure 6.15 Order in which state words are used to form one 8-quarter-round series.

function KeyStreamBlock_Generation

input K: 256-bit key; Ctr: 32-bit counter; Nonce: 96-bit nonce

output Kstr: 64-byte keystream

1. Constants = 0x61707865|| 0x3320646e || 0x79622d32 || 0x6b206574

2. InitState = Constants || K || Ctr || Nonce

3.S = InitState

4.for i=1 to 10 do
perform four column quarter-rounds
Qround (S[0], S[41,5[8],5[12]); Qround (s [1], 5[51,5[9], S[13])
Qround (S[2],5[6],5[10],5[14]); Qround (S[3],5[7], S[11], S[15])
perform four “diagonal” quarter-rounds
Qround (S [0],5[5], S[10],[15]); Qround(S|1],5[6],S[11],5[12)
Qround (S|2],5[7],5[8}, 5[13]); Qround s[3],5[4],5[9], S[14])

After 80 quarter-rounds

5.Kstr = null

add the initial state to the current

6.for i=0 to 15 do
S[i] = S[i] + InitState[i] # (addition mod 2°?)
Kstr = Kstr || LittleEndianEncode (S[i])

7.return Kstr # Bit-length of Kstr is of 512 bits

6.2.5.4 Plaintext Encryption and Decryption Using ChaCha20

A nonce is associated with each plaintext. Then, the plaintext is split into 64-byte blocks. An initial counter C is associated

with the first plaintext block; the counter is incremented for each plaintext block. A 512-bit keystream is XORed with each

plaintext block to yield a ciphertext block. If the plaintext byte-length is not a multiple of 64 bytes, the last plaintext block

is a non-complete block; only a portion of the last generated keystream block is used to yield the last ciphertext block.
Below is the pseudocode of ChaCha20 plaintext encryption. The decryption is identical to the encryption (only the input

and output differ). Blen(P) means the byte-length of byte-string P.

function ChaCha20_Encryption
input K: 256-bit key; C: 32-bit counter; Nonce: 96-bit nonce
P: variable-length plaintext
output Ciphertext: bit-string
1.Ciphertext = null
2.m=|Blen(P)/ 64|—1# m + 1 is the number of full 64-byte blocks

6.2 Examples of Standard Keystream Generators

3.for j=0tomdo
Kstr = KeyStreamBlock_Generation (K, C+j, nonce)
Ciphertext= Ciphertext || (P[j*64 : j* 64 + 63]@ Kstr)
4.if (ByteLen(P) mod 64 = Q) then
| =|ByteLen(P) / 64|, r = Blen(P) — j * 64
Kstr = KeyStreamBlock_Generation(K, C + j, nonce)
Blk = P| j*64: Blen(P)-1]
Ciphertext = Ciphertext || (Blk & Kstr{O: r - 1])
5. return Ciphertext

6.2.6 RC4 Stream Cipher

RC4 (also known as Rivest Cipher 4) is a stream cipher, initially protected by US patent. After the discovery of its internal
operation, it became public and widely used as building block in many services including SSL (secure socket layer), TLS
((transport layer security), SSH (Secure Shell), Wired Equivalent Privacy (WEP), and Wi-Fi Protected Access (WPA).
However, because of flaws discovered, the IETF has banned the use of RC4 since 2015 in almost all security services. Some
vulnerabilities of RC4 are discussed in [12].

RC4 is presented in this chapter for pedagogical purpose as it is a well-known cipher not based on LFSRs and which is
easy to implement in software [13].

RC4 does not rely on LFSRs. It makes use of a permutation vector S of 256 elements denoted S [O], S [1], S [2], vy S [255].
Each element S[i] is a byte. Vector S contains all the values from 0 to 255, stored in a random way. Therefore, taking one
element of vector S looks like a generation of a random number between 0 and 255.

6.2.6.1 RC4 Key-scheduling Algorithm
RC4 takes a key K of a variable-length ranging from 1 to 256 bytes. In initialization phase, called key scheduling algorithm,
RC4 produces the first permutation S as follows:

for i=0 to 255 do S[i] =i

j=0

for i=0 to 255 do
j=(+ S[i] + K[i mod len(K)]) mod 256
Swap(S[i], S[j])

K [l] denotes byte i of key K, withi =0,1, ..., len(K) and len(K) denotes the byte-length of key K. Swap(S/i/, S[j]) is a function
to swap the contents of elements S/i] and S[j].
If the length of key K is 256, key K is used once. Otherwise, it is used many times.

6.2.6.2 Keystream Generation Phase
Keystream generation of RC4 is depicted on Figure 6.16. From two current variables i and j, do the following: swap ele-
ments S[i] and S[j], then deliver S[S[i] + S[j} mod 256] as keystream output.

The pseudocode of RC4 keystream generation is as follows:

i,j=0

while (GeneratingOutput) do
i=(i+1) mod 256
j=(* S[i]) mod 256
Swap(S[il, S[jl)
Z = S[(S[i] + S[j]) mod 256]
output Z

The encryption and decryption with RC4 are XOR operations.

193

194

6 Stream Ciphers

i i
B {2; .
1 2 i 5 %5, S 254 255
S -8 -ee " a8 e L N
A\
(3) (4) (3)

it

mod 256 \

z

Figure 6.16 General structure of RC4 stream ciphering.

6.2.7 Lightweight Cryptography Stream Ciphers

Lightweight cryptography (LWC) is a vital and fast growing field in today’s world where billions of IoT (Internet of Things)
devices (including RFIDs, sensors, and actuators) need to communicate wirelessly. Such devices have limited resources
(memory, CPU, and battery) and require light techniques to secure their communications. LWC is a collection of solutions
of encryption techniques that features low computational complexity devices. It is aimed at expanding the applications of
cryptography to limited-resource devices, while providing a high level of security.

Many companies and laboratories proposed various solutions to secure limited-resource-devices. Almost all the LWC
ciphers make use of nonlinear feedback shift registers (NLFSR).

From the standardization perspective, the ISO/IEC 29192-3 standard [14] specified two LWC stream ciphers, Trivium
and Enocoro v2, which are presented in this subsection.

6.2.7.1 Trivium Stream Cipher

Trivium is a synchronous stream cipher inspired by the design of block ciphers [15, 16]. It takes an 80-bit key and an 80-bit
IV and generates a keystream of length up to 2° bits. 2° bits represent the number of bits transmitted at 1 Gbps over 23*
seconds. The period of the keystream generator output is 2°° —1, which makes Trivium secure against cryptanalysis. As
shown on Figure 6.17, Trivium architecture makes use of three NLFSR registers of variable length, providing a total of 288
bits. The three registers are connected with nonlinear functions.

L S288

5243 51

d

—H z

-

S162 S94

Figure 6.17 Internal structure of Trivium keystream generator.

6.2 Examples of Standard Keystream Generators | 195

i) Keystream generation

Trivium interval state is composed of 288 register bits, denoted s, s,, ..., S, among which 15 bits are iteratively used to
generate N keystream bits, N < 2%, as follows:

fori=1to N do
1. # Compute one bit of the keystream
1 = Se6 D So3: 1y = S162 D S177: 63 = S243 D 5288, Z; =1, B, DL
2.# Update the internal state
ty =t B (S91/\S92) BS171; t2 =ty B (S175/\S176) P S264
t3 =3 ©(S286/\5287) P Se9
(51, 52, -+, S93)<— (3, S1, 52, +-» S92)
(S94, 595, ---, S177)<— (t1, 594, S, -+, S176)
(5178 51795 -+ S288) < (t3, S178, 179, ---» S287)

ii) Initialization

The internal state of Trivium is initialized using 80-bit key K and 80-bit IV as follows:

1. # Load the key and IV into the registers
(51, S9, -y Sg3)—(K1, Ko, ..., K50, 0,0, 0,0,0,0,0,0,0,0,0,0,0)
(So4, Sgs, .., S177)—(IV1,1V;, ..., V30, 0,0,0,0,0,0,0,0,0,0,0,0,0)
(5178, S179, .-, S288)—(0,0, ..., 0,1,1,1)
2. # Make four full rotations of the three registers as follows:
fork=1to 4 do
fori=1to 288 do
t; =1t @ (Sor A Soz) B S1715t =1, B (175 A S176) B Spes
ts = t5 B (S5 A S287) B Se9; (5152044 S93) < (t3,51, 53, +++,597)
(5947595,---5177)<—(t1,594’52,---’5176)
(5178)5179:"':5288) (_(t3s5178:5179:"':5287

6.2.7.2 Enocoro Stream Cipher

Enocoro stream cipher family consists of two algorithms, Enocoro-80, which has a key length of 80 bits and Enocoro-128v2,
which has a key length of 128 bits [17]. Enocoro-80 is obsoleted because of its weak security level. In the sequel, Enocoro
implicitly refers to Enocoro-128v2.

Enocoro has a reduced hardware circuit size. Compared to AES, the current de facto standard for data encryption,
Enocoro achieves the encryption process with about 1/10 of the amount of power consumption.

Enocoro keystream generator (KSG) consists of an initialization function, an output function, and a finite state machine.
The latter consists of an internal state S, which is updated by a function Next at each clock step. Init function generates
the first state S'°. Output function generates the keystream bit Z ")

The internal state of Enocoro KSG has two parts: a state a and a buffer (NLFSR) b (see Figure 6.18). The state a is com-
posed of two bytes denoted a, and a,. Buffer b is composed of n;, bytes denoted b, ..., b, _;.

Enocoro is a byte-keystream cipher. Thus, the operations are byte-oriented. Addition is the XOR bitwise operation and
the multiplication is performed over the extension field F,;, under the primitive polynomial ¢ (x) =x*+x*+x> +x° +1.

At time t, the content of state a is denoted a ") and that of the buffer, b Y The update function Next is composed of two
functions denoted p and A. Thus, Enocoro may be specified as follows:

s\ = Init(Key, Iv)

1

S0 ('),) - w51 - [o[, 5). A, b(r))]

Z(t) = Output S([) = a(t)

196

6 Stream Ciphers

Enocoro family has 11 parameters denoted:

e n,: byte-length of the buffer.
® q;, P;» 45, Py» G5, and p;: numbers of buffer elements (boxes) used in X function.
e k, k,, k;, and k,: numbers of buffer elements used in p function.

Different choices of the parameters result in different internal structures. In the standard Enocoro 128-v2, the parameters
are fixed as follows:

o n, =32
®q=2p =6 q,=7p,=15 q;=16, p, =28
o k,=2k,=7, k=16, k, =29

Function p
It takes four elements of buffer b, numbered 2, 7, 16, and 29, to update the a-state bytes as follows:

u, :a((f) ® S[bgﬂ u, :a@ P S[bgt)} (vo,vl):L(uo,u1>

o =sg0 o] o) =05

where L is a linear transformation over finite field F.

AT I

S is a substitution box, which maps eight bits to eight bits to provide nonlinearity to operation of the KSG.

defined by:

v
0 , where d = 0x02

Yy

Function A
It rotates buffer b and then updates three bits of the buffer as follows:

A b() 1» 1%0,3,8,17 (partial shifting of register)

b(()t+1) gl) @ a() bgtﬂ) =b§t) @ bét)
A o) o) d) ol
Initialization

For each encryption, a distinct pair (Key, IV) is selected. The Init function takes a 128-bit key K and a 64-bit initialization
vector IV and performs the following:

bo bq, bp, | bq, bp, | bq, by, bny-1 Qo a;
B a
S D ——
S " S D

i

=

e s 1
STTITTTIINII |
bo b'h b?-‘h. bfh Pz b‘&'s st b“'ﬂ_l 2o a1

Figure 6.18 Internal structure of Enocoro keystream generator [17].

6.3 Exercises and Problems

b =K, 0<i<16
B =1, 0<i<s

bl —0x66 ;") =0xe9

b —oxab b*) —ox4d

bg%) = Oxef bg;%) =0x8a
b(f%) 96)
30

a((;%)

=0x2¢c bg;

—oxss

=0x3b
=0x4c

After initialization of the state (i.e. a and b) using the key, the initialization vector, and constants, the state is updated with
96 iterations of two functions (namely, XORing the iteration counter and register element b,; followed by Next function).
The iteration counter is initialized by 0x01 and incremented by the multiplication by 0x02 over the extension field F,,
under the primitive polynomial g (x) Then, the KSG delivers the first byte of the keystream, which is used to encrypt or
decrypt one byte.

6.3 Exercises and Problems
6.3.1 List of Exercises and Problem

Exercise 6.1
Let R be an LFSR defined with the following parameters:
Seed: FF, = 0,FF, =0, FF, =1
Feedback coefficients: ¢, =1, ¢, =0, =1
Show the states of R in the eight first clock impulses. What is the cycle of the register?

Exercise 6.2

Show the table of states of the following LFSRs for nine clock impulses:

1) First LFSR: feedback polynomial F, (x) = x*4+1and seed = (0,1,0)
Second LFSR: feedback polynomial F,(x) = x* +x*+1 and seed = (0,1,0)

2) Why the second LFSR has more states?

Exercise 6.3
1) What is the maximum byte-length of plaintexts that can be encrypted with ChaCha20?
2) What is the maximum amount of data that can be encrypted with the same ChaCha20 key?

Problem 6.1

1) Consider a self-synchronizing stream cipher (S3C) with a large synchronization window. Discuss why synchronous
stream ciphers (S2Cs) are less impacted by transmission errors than S3Cs.

2) Consider a self-synchronizing stream cipher (S3C) with a short synchronization window. Discuss why it is more diffi-
cult to detect bit deletion or insertion with S3Cs than with S2C.

Problem 6.2

1) Show that it is easy to recover the parameters A and B of a linear congruential generator if three outputs and the mod-
ulus m, which is a prime, are known.

2) Assume that three LCG values are known: z, =13, z, = 6, and z, = 5 and the modulus m is 20. Find parameters of LCG.

3) Assume that three LCG values are known: z, = 6, z, =5, and z, = 2 and the modulus m is 20. Find parameters of LCG.

4) What do you conclude?

Problem 6.3

1) Show that it is easy to recover the secret key (A, B) of a stream cipher based on a linear congruential generator if 3n bits
of plaintext and their cipher bits and the modulus m of the LCG are known. Assume that m = 2" —1 is a prime. Assume
that the known bits are the first bits of a message. Hint: use the result of Problem 6.2.

2) Find the secret key (A, B), if n =3 and the known plaintext is @ =101010101 and the ciphertext ¢ = 000100111.

197

198

6 Stream Ciphers

Problem 6.4
Let R be an LFSR defined by feedback polynomial F(x) = x* + x + 1. Show that the output sequence of R is defined by the
initial entries and the recursion s, ; = s, ; +5;.

Problem 6.5

In the feedback of SNOW 3G, there are two multiplications one by « and one by o . a is an element of extension field F,.
! is its multiplicative inverse. The field F,. is generated by o, which is a root of F,.[x] polynomial
1

and o
Pa(x) = x* + px*x’ + 7°x? + 3*x + 3°%. 3€ F,[x]is a root of F,[x] polynomial P8(x) = x® + x” 4 x* + x’ +. How x~
can be expressed using 3?

Hint: check with parameters of DIV, function.

Problem 6.6
Prove Lemma 6.1.

Problem 6.7

Assume that the adversary knows 2m bits of plaintext (for example, he/she knows the header of a message) and their
ciphertext. He/she also knows that the sender is using a stream cipher based on an LFSR with m bits. Assume that known
bits of plaintext are located at the beginning of a message. Show that LFSR-based ciphers are vulnerable to plaintext attack.

Problem 6.8

A plaintext M =10010010011011011001 0010 0110 is encrypted with an LFSR-based stream cipher and the ciphertext is
C =1011 1100 0011 0001 0010 1011 0001. Assume that the pair (M M’) is given and the period of the keystream generator
is less than 15.

1) What is the period of the keystream generator used to encrypt M?

2) What is its degree, initialization value, and feedback polynomial?

Problem 6.9
Consider a keystream generator with a period of L bits. The adversary can intercept all the traffic. All the encrypted mes-
sages start with a content (e.g. an application protocol header) of k bits known to adversary. No other characteristics of the
code are known.

What is the potential vulnerability of the considered encryption system (i.e. under which conditions the code can be
broken)?

Problem 6.10

Consider a user who has a series of documents to encrypt with a stream cipher and then store them. All documents are
English texts including only uppercase letters and space in 7-bit ASCII code. Given the large size of the documents, the user
decides to restart (with the same initial value) the keystream generator to encrypt each document. Show that if the number
of documents is enough large, an adversary, who has copies of the encrypted documents, can recover partially or entirely
all the documents.

Problem 6.11

Imagine a text-source sending a text in natural language. In such a case, some portions of plaintext are likely to be the same.
The adversary can take advantage of plaintext redundancy to derive relations between keystream bits, which contribute to
recover the key. Consider a simple stream cipher composed of an LFSR with feedback polynomial x* + x +1 and a key
K= (KO, K, KZ) =(0,0,1), as illustrated by Figure 6.19. Show how an adversary who knows the positions, denoted i and j,
of two portions of plaintext of L-bit length, L > 3, can recover the key.

M\
N

» Keystream

Figure 6.19 Simple LFSR.

6.3 Exercises and Problems | 199
6.3.2 Solutions to Exercises and Problems
Exercise 6.1

Seed: FF, = 0,FF, = 0,FF, = 1. Feedback coefficients: ¢, =1, ¢, =0, ¢, = 1.
Below are the states of LFSR R in the 9 first clock impulses.

Clock FF, FF, FF,
0 0 0 1
1 1 0 0
2 1 1 0
3 1 1 1
4 0 1 1
5 1 0 1
6 0 1 0
7 0 0 1
8 1 0 0

From the table above, we see that the register has a cycle of 7. Another way to find the register cycle is to inspect the
feedback polynomial, which is equal to x* 4 x + 1. Such a polynomial of degree 3 is a primitive polynomial (see Table 6.2).
Therefore, the register is maximal-length, with a cycle of 2* —1.

Exercise 6.2

1) Below are the state tables for both LFSRs.

ﬂ(x):x3+1 .7-'2(x):x3+x2+1
Clock FF FF, FF; Clock FF, FF, FF;
0 0 1 0 0 0 1 0
1 0 0 1 1 1 0 1
2 1 0 0 2 1 1 0
3 0 1 0 3 1 1 1
4 0 0 1 4 0 1 1
5 1 0 0 5 0 0 1
6 0 1 0 6 1 0 0
7 0 0 1 7 0 1 0
8 1 0 0 8 1 0 1
9 0 1 0 9 1 1 0

2) F,(x)is a primitive polynomial. By Lemma 6.2, the LFSR is a maximal-length LFSR; it has a cycle of 2* —1. The polyno-
mial F (x) is reducible in F,. That is, X 4+1=(x 410> +x+1). J,(x) cannot be a primitive polynomial; thus, the first
LFSR has a cycle less than 2° —1.

Exercise 6.3

1) The same ChaCha20 key and nonce are used to encrypt each plaintext. Up to 2** counter values can be used with the
same nonce to generate a maximum of 2** keystream blocks. Each keystream block is used to encrypt a 64-byte plaintext
block. Therefore, the maximum byte-length of any plaintext is of 2*® bytes (i.e. 256 Gb).

2) The same ChaCha20 key can be used with up to 2°° nonces; and each nonce can be used with up to 2** counter values
to generate a maximum of 2°° * 2** keystream blocks. Each keystream block is used to encrypt a 64-byte plaintext block.
Therefore, the maximum amount of data that can be encrypted with the same ChaCha20 key is of 2'** bytes.

200

6 Stream Ciphers

Problem 6.1
Let n be the number of bits in the synchronization window of a self-synchronized (S3C).

1) Assume thatn islarge and a transmission error occurs when transmitting biti. With a synchronous stream cipher (S2C),
the receiver just discards the bit i. With an S3C, the receiver cannot correctly decrypt n bits, starting with bit i. For
example, if the continuous flow being transmitted is composed of pixels represented with eight bits, with an S2C, a
single pixel is discarded, while [n / 8} pixels are discarded with an S3C.

2) Assume that n is low and a few bits have been inserted or deleted by an adversary. In the S2C, the receiver loses syn-
chronization and the forged bits as well as the remaining bits are very likely to be discarded. This helps in detecting
attacks because of inconsistency between the message content before and after the alteration. In S3C, only bits altered
in synchronization window may be discarded, which reduces the chance to detect attacks. For example, imagine that
the adversary changes an amount 10 to 1000 in a text. On the receiver side, in S2C, it is very likely that the part of the
message starting from the altered amount will be entirely different from the original one and the receiver has chance to
detect the attack. In the S3C, only the amount and may be a few other characters in encrypted message will be different
from the characters in decrypted message. Therefore, the receiver has less chance to detect the attack.

Problem 6.2

1) Assume that three successive outputs, denoted z,, z,, and 255 of a linear congruential generator are known as well as the
modulus m.
In the following, computations are over Z,, (i.e. the set of invertible elements of Z,,). By definition of LCG, the following
equalities hold:

Z,=A%*z, +Bmodm
Z,=A%*z,+Bmodm
Thus,
B=z,—Axz modm
B=z,—Axz, modm
Z, —Axz, mod m=z, — A%z, mod m
-1
= A=(z,—2,)(z,—2,) modm
Since z,, z,, and z, are known, A and B can be easily derived in Z, .

2) Make substitutions in the last equation:

A=(6-5)(13—6)"" mod 20
=(7)"'mod 20=3

Then, B=6—3%*13 mod 20 = —33 mod 20 =7.
3) Make substitutions in the last equation:

A=(5-2)(6—2)"* mod 20
=3%(4)"! mod 20

Since 4 and 20 are not coprime,4 ' mod 20 does not exist. Thus, A and B cannot be recovered.

4) From the previous example, we conclude that if the modulus m is not a prime, some elements of Z,, do not belong to Z .
In particular, (zl - zz)_l may not exist in Z, and consequently, the 3-known-value attack may fail to recover A and B.
Therefore, a non-prime modulus is preferred when security is of concern.

6.3 Exercises and Problems

Problem 6.3
1) Let the known bits be a,,, a,, ,, ..., a,, a, and their corresponding cipher bits be ¢, , ¢;, ;, ..., ¢, ¢;. The modulus 2" —1
of the linear congruential generator (LCG) also is known. Each LCG output is of a length of n bits. Thus, LCG output k
(k=1,2,3) can be written as z, = (zk,n, Zpp 15 o Zk,l)‘
Assume that the known bits are the first bits of a message. Therefore, the keystream bits used to encrypt them form the
first three outputs of LCG, i.e. z;, 2,, and z,. From the plaintext and ciphertext, keystream bits can be derived as follows:

z,;,=a,®c.,fori=1, .., n
2 =, DC fori=1,...,n.
23, =0 5, D Cpp fori=1, .., n

Then, once the three values z,, z,, and z, are computed, it easy to recover the key (A,B) as in Problem 6.2.
2) Find the secret key (A,B), if the modulus is m =7 and the known plaintext is a =101010101 and the ciphertext
¢=000100111. From the known elements, keystream bits are derived as:

21‘1:1@120 21’2:()@1:1 11,3:1@1:0
22’1:0@020 12‘2:1@0:1 12,3:0@121
2, =180=1 2,=000=0 z,,=160=1

Thus, z, =2,z, =6,and z; =5
By design of LCG:
6=A*2+ Bmod7

5=A#*6+Bmod7

Hence,
1=—Ax4mod7

A=(-1*4"mod7=—-2mod7=5
B=6—-2*Amod7=—-4mod7=3

Problem 6.4
R is an LFSR defined by feedback polynomial F(—1) = x* 4 x + 1. Hence, its feedback coefficients are ¢, =1,¢,=0,¢,=0,
¢, = 1. The property of the output sequence of R is proven by induction.

I=1, 84,1 =846, D86, D8,c;D 8,6, = 5, D)

i=2, S40 =850, D 8,6, D 850, DS, = 55D,

L=, 8y = S4inaC O S4pn a0 OS4p 36 D8,0,= 84,4 DS,
Assume that the recurrence is valid for i = n. Then,

E=nt1 8y 0 = 840C O 8y 16 O85BS, 164 =S40, DS,y

Therefore, the output sequence of LFSR R is defined by the recurrence s, ; = s, ; +s; for any positive integer i.

Problem 6.5

Since o €F,.[x] is a root of F,,[x] polynomial P4(x) = x* + 37x* + 3*¥x* + 3%x + 3°”, the field F,, is equivalent to the
set {0, 1, o', o2, ..., a**?}. Any element of F,.. can be represented by a polynomial of degree less than 32 with coefficients
in {0,1} or as a polynomial of degree less than 4 with coefficients in F,.

By definition of a field F,, generated with a primitive polynomial P(x), multiplication of two elements a and b, repre-
sented by their polynomials a(x) * b(x) and b(x), is the element c, such that c(x) is the remainder of the Euclidean division
of a(x) = b(x) by p(x).

Since X' €F,u[x], x(-V(y) is represented by a polynomial ¢,x’ + ¢,x* + ¢,x + ¢, with¢, g, € Fy..

By definition of multiplicative inverse, Va € F,.,aa™" '=1=x(cx’ +c,x* +ex+ co) mod P4(x)

The Euclidean division of (c3x4 + c2x3 + clx2 + cox) by x* 4 52x* + 32x* + 3*x + **° returns a remainder equal to

=1.Thus, x*x~

201

202 | 6 Stream Ciphers

(c2 — csﬂ23)x3 + (c1 —c,8P)x? + (¢, — c3548)x —c, =1

By Theorem 3.22, since § € Fy [x} is a root of x® + x7 + x° + x%; so, ﬁztl =3 =1
To match the remainder equation, we need:
C3ﬂ239 —1= 5255 = C3 _ ﬁ16
(c2 fc3ﬁ23) =0 =c=0"
(cl fc3ﬂ245) =0 =c¢=0°
(co — c3648) =0 =c,=p"
Therefore, x ' is expressed by polynomial 5'°x* + 3¥x* + 5%x 4 5*.
Check: in function DIV_, which is an implementation of multiplication by x ", the constants 16,39, 6, and 64 are present.

Problem 6.6
LFSR state is the content of a register of m bits. The maximum number of distinct values of an m-bit register is 2™. If an
LFSR reaches a state with all flip-flops at 0, it will no more change its state. Therefore, the maximum of non-zero states

is2" —1.
Leto, = (sll, S7y s stm> denote the initial state of the register and s; the state of each element i, respectively. After N iterations,
the register returns to its initial state. Therefore, o, AN (st1 N° st2 LN sﬁ N) = (stl, stz, e slm), then after one iteration,

1 2

1 2 m . _ m I S B m
. SHI),etC. untilt + 2N, whereo, , —<st+2N, SpyaNs St+2N)_(st’ Sps s S,)

_ m (1 2
N+ T (St+N+1’ SN St+N+1) = (St+1’

o St+1, .

The same repeats after kN iterations (k is a positive integer). Thus, the output of LFSR follows a cyclic pattern of bits with
a period of N. O

Problem 6.7
Assume that the adversary knows 2m bits of plaintext (for example, he/she knows the header of a message) and their
ciphertext. He/she also knows that the sender is using a stream cipher based on an LFSR with m bits.

Without loss of generality, assume that known bits of plaintext are located at the beginning of a message and denoted
..., a;, 4,. The ciphertext bits are denoted a},, ,.a},, ,. .. a,,a,. By definition of a stream cipher, given a

5 so). That is,

Bm-1> Bom—2>

plaintext and its ciphertext, it is easy to compute the key bit string (s N

2m—1° “2m-2’ ***?

!
SZm—l - a2m—1 @ a2m—1

o
Som—2 = Qo D Uy

o
so—ao @ao

With equation (6.1), and t = 0, we build a system of m linear equations:

m—1
_ _
s, =a, da, = Zsjcmfj mod 2
Jj=0
m—1
s . =a ®a = s...C mod 2
m+1 m+1 m+1 JH+1"m—j
=0
m—1
s =d @a = Z s c mod 2
2m—1 2m—1 2m—1 j+m—1"m—j
Jj=0

Feedback coefficients c,, ¢ ..., ¢y are given by solving the linear equation system above.

m—1°

6.3 Exercises and Problems

Example:

The LFSR output is given by the rightmost bit. As shown on Figure 6.5b, the first eight outputs of LFSR R defined by poly-
nomial x* + x +1 are (1,0,1,1,1,1,0,0); they represent the key bit string of the stream cipher. Hence, s, =1,5=0,5=1,
s,=1,5,=1,5,=1,5,=1,and s, =0.

Leta =(1,1,0,1,1,1,0,0) be the plaintext. The ciphertext yielded by a stream cipher relying on LFSR Risa’ = (0,1,1,0,0,0, 0, 0).
Given the plaintext and ciphertext, the adversary derives the keystream bits as follows:

/
a,=0=s, Ba,Na,=0=s,=0
a/=0=s®a ANa =0=5 =0
/
a,=0=s5,®a,Na,=1=s,=1
/
a,=0=s;,8a,Na;=1=s,=1
a,=0=s,®a, Na,=1=s,=1
al=1=s;®a;Aa;=0=>5,=1
a,=1=s,da,Na,=1=s,=0
/
a,=0=s5,0a,Na;,=1=s,=1

By definition of LFSR with m =4, s, , is yielded by feedback polynomial using s, ,, s, ,, S;,,, §;- Hence, we can build the
following linear equation system:

8, =850, DS, B 56 Dsyc,=¢ b, =1

85 =158,¢, B s;c, Ds,e, Bsc,=c¢ be, De;=1

S¢ =850, D5,¢, B 8,0, Ds,c,=¢, D, ;B ¢, =0

5, =846, DSsC, DS, DSye, =0, Bey b, =1
The previous linear equation system can be easily solved with Gaussian elimination, which yields the solution: ¢, = 1,
¢,=0,¢,=0,¢,=1.

Problem 6.8

M =1001001001101101100100100110 and
C=1011 1100 0011 0001 0010 1011 0001.

1) Period and degree of the keystream generator
The keystream used to encrypt M is:

10010010 011011011001 00100110 @
10111100 00110001 001010110001 =

0010111001011100101110010111

We observe that the repeated keystream pattern is either 0010111 or 00101110010111.
Therefore, the period of the keystream generator is either 7 or 14.

2) Degree of the keystream generator
By Lemma 6.1, an LFSR with m bits can have a maximum period of 2" — 1. Therefore, the LFSR under consideration
cannot have less than m = 3 bits. Therefore, the degree is m > 3. Notice that at this point, we are not yet sure that the
degreeism =3 orm=4.

3) Initialization vector and feedback polynomial
If the degree is 3, then the keystream bits generated in the first period are:

(SO:O, 5,=0,s5,=1,8,=0,5,=1, 8, =1, 36:1)

Under the assumption that the degree is m = 3. The initialization vector is 100, because the m first bits (i.e. s, s;, and s,)

delivered by a keystream generator are equal to the initialization vector. Then, the coefficients of the LFSR result from the
following equations:

Sy :(szcl) EB(Slcz) @(s0c3):(1 : cl)@(o : cz) 69(0 : 03): 0=c¢=0

203

204

6 Stream Ciphers

M N
D% N
FF, FF, FF,
1 0 » 0 »

Clock

Figure 6.20 LFSR structure.

Sy :(s3c1)@<s2c2)@(slc3):(0-cl)@(l-cz)@(o-g):lécz =1
Ss :(s4cl>@(sscz)®(szc3):(l~0)@(0~1)6}9(1-c3)21:>03 =1

S¢ :(sscl) @<s4c2) @(s303>:<1-O)@(Ll)@(o-l):l

Therefore, the feedback polynomial is F(x) = x* + x* +1, which is a primitive polynomial; that is why the period of the
LFSR is 2* —1 =7 (by Lemma 6.2). The internal structure is shown in Figure 6.20 . Now, we are able to confirm that degree
ism=3.

Problem 6.9
Assuming that all the encrypted messages start with a known header of k bits, an adversary can break a code based on a
keystream generator with a period of L bits if the adversary can collect a set of ciphertexts such that he/she can rebuilt an
entire period of the keystream generator as follows:

Let my, m,, ..., m; be the intercepted messages and I (ml) denote the index of the first bit used in the keystream period to
encrypt message m;. For example, L =127 and five intercepted messages of the following lengths:

len(ml):72 len(mz)zllo len(ms):40
len(m4):33 len(ms):77

Thus, I(m,) =0,1(m,)=72,1(m,)=55,1(m,)=95,1(m;)=1
Assume that intercepted messages m,m, ..., m are ordered such that:

I{m) <1(m, |<..<1(m,).

Ifm, =0,I () <I () +k,Vj,i, <j<i,andI (m) +k > L, then the adversary can recover all the keystream generator
output in an entlre perlod Therefore, the code is vulnerable.

Problem 6.10
LetC,, C,, ..., C, be the n known encrypted documents. Each document is composed of uppercase letters and space in 7-bit
ASCII code. Let C; , denote the k™ character of ciphertext i.

Recall ASCII codes (in Hexa): space — 20,,, A— 41,,, B—42,,,0— 4F, P —50,,..,Y —59,,Z — 5A,
The attacker exploits two advantages: i) space character is frequent in English texts (nearly 19% characters are spaces in English
texts) and ii) XORing any letter with space character returns a value greater than 20,, and XORing two letters returns a value

less than 20, .. Attacker exploits all pairs of ciphertexts, and for each pair (Ci,C i), 1<i,j<n,i= j, performs the following:

K is the keystream generator output, which is the same for all ciphertexts.

Lets= mln(len() len())

Reduce both bit string C; and C; to the same bit-length s, i.e. the longer document is truncated.
XOR the ciphertexts:

C, ®C;=(D, ®K)®(D;®K)=D, D,

D, ®D;=(D,;,D;5, s Dy,)& (D50, 5, Dy)

D, & D; represents the XOR of two original documents.

Notes

Exploit the property of XORing a letter and space.
Foreachk,1<k <s:

IfD,, &D;, ©20,, then D, is a space and D; , is a letter or vice versa. Check which alternative is more likely to appear
in the documents under consideration and act accordingly (i.e. either confirm a letter and a space in documents or mark
pending alternatives).

The more spaces are discovered, the more letters are confirmed in documents. If the number of encrypted documents is
enough, and given that the spaces do not appear at the same positions in distinct English text documents, it is very likely
that the attacker recovers all the documents entirely. Nevertheless, it takes time to succeed!

Problem 6.11

Since the LFSR has a primitive feedback polynomial of degree 3, it generates a periodic 7-bit sequence equal to 0111001.
Assume that two portions of a plaintext P, located at positions i and j, of bit-length L, are identical, i.e. P, = PJ b for
b=0,...,L—1. Let C be the ciphertext associated with P. Thus,

Cipy®Cipp= (Pi+b 69Si+b) ©® (Pj+b @Sj+b) =8, 8 forb=0,...,L-1.

Encryption step
Consider a plaintext P =1101100111011001 composed of two identical bytes. The keystream, denoted S, used to encrypt P
is composed of bits of two LFSR periods plus two bits, i.e. S =0101110010111001.

Thus, C =P @ S =10000101 01100000. Let P, C;, and S, i =0, ..., 15, denote bits of plaintext, ciphertext, and keystream,
respectively. The first bit has index 0. After 16 clock impulses, the bits of the keystream are computed as follows:

Sy=8,=8,=K,=1 S5 =S,=5,=K, =0 S,=S,=K,=0
S,=S,=K,0K,=1 5,=8,=(K,+K,+K,)=1
S;=8,=(K,+K,)=1 S;=8,=(K,+K,)=0

Attack step

The adversary builds an equation system as follows:

C,®Cy=1=5,® S, =K, ® K,
CoCy=0=8&S5 =K, & K,
Cz@Cm:l:Sz@Sw:Ko D (Ko@Kz):Kz

Therefore, K, =1, K; =0, and K, = 0.

Notes

Recallthat0 $0=0,190=1,0541=1,1H1=0.

“Transmission error” means that at the physical layer, the signal received cannot be sampled as 1 or 0.

Bit insertion means either modification or appending of bits in the original message.

Flip-flops are the basic building blocks of digital systems. Broadly speaking, a flip-flop circuit can be modeled as a black
box, which has two stable states, 0 or 1. A flip-flop stores one bit. When it receives a clock impulse, it changes its state to
the state of its input. Then, the output is the state of the flip-flop until the next clock impulse.

For proof of Lemma 6.1, see Problem 6.6.

It should be noticed that LFSRs using only XOR operation may remain in 0-state. There also exist LFSRs, which use jointly
XOR and XNOR (i.e. exclusive NOR), that do not stay in 0-state.

IEEE: Institute of Electrical and Electronics Engineers.

3GPP: 3™ Generation Partnership Project.

H W DN P

o un

O 00 N

ETSI: European Telecommunications Standards Institute.

10 IETF: Internet Engineering Task Force.

11 1ISO: International Organization for Standardization.

12 Addition (4) and multiplication (x) are done over finite field F.., while XOR operation (@) is over F,. See Chapter 3 for
more on operations over finite fields.

13 ZUC acronym comes from Zu Chongzhi, a Chinese mathematician and scientist (5th century).

14 FSM registers are of 32 bits; hence, they are adapted to computations over extended fieldF...

15 ChaCha20 is an instance of ChaCha algorithm, with 20 rounds. ChaCha20 is a variant of another stream cipher, called

Salsa20; both algorithms are proposed by the same author.

205

206

6 Stream Ciphers

References

10

11

12

13
14

15

16

17

Rescorla, E. (2018). The transport layer security (TLS) protocol version 1.3, RFC 8446. Internet Engineering Task Force
(IETF).

Fredricksen, H. (1982). A survey of full length nonlinear shift register cycle algorithms. SIAM (Society for Industrial and
Applied Mathematics) Review 24 (2): 195-221.

Webl. Primitive polynomial list. [Online]. [Cited 2023 April]. https://www.partow.net/programming/polynomials.

BLE. (2021). Bluetooth core specification, Revision v5.3. Bluetooth SIG, Inc.

ETSI. (2006). Specification of the 3GPP confidentiality and integrity algorithms UEA2 & UIA2, document 2 - SNOW 3G
specification. European Telecommunications Standards Institute.

ISO/IEC. (2011). Information technology security techniques - encryption algorithms - part 4: stream ciphers — ISO/IEC
18033-4. International Organization for Standardization/International Electrotechnical Commission.

Biryukov, A., Schmid, D.P., and Zhang, B. (2010). Analysis of SNOW 3G Resynchronization Mechanism. In International
Conference on Security and Cryptography, 327-333. Athens, Greece: IEEE Xplore.

Mukherjee, C.S., Dibyendu, R., and Maitra, S. (2021). Design and Cryptanalysis of ZUC: A Stream Cipher in Mobile
Telephony. Springer.

ETSI. (2011). Specification of the 3GPP confidentiality and integrity algorithms 128-EEA3 & 128-EIA3, document 2 — ZUC
specification. European Telecommunications Standards Institute.

Bernstein, D. (2008). ChaCha, a Variant of Salsa20. [Online]. [Cited 2023 April]. http://cr.yp.to/chacha/chacha-20080128.
pdf.

Nir, Y. and Langley, A. (2018). ChaCha20 and Poly1305 for IETF Protocols, RFC 8439. Internet Engineering Task Force
(IETF).

Fluhrer, S., Mantin, I., and Shamir, A. (2001). Weaknesses in the key scheduling algorithm of RC4. In: 8th Annual
International Workshop on Selected Areas in Cryptography, 1-24. Toronto, Canada: Springer, LNCS 2259.

Schneier, B. (1996). Applied Cryptography: Protocols, Algorithms and Code in C. Wiley.

ISO/IEC. (2012). Information technology - security techniques - lightweight cryptography — part 3: stream ciphers. ISO/
IEC 29192-3. International Organization for Standardization/International Electrotechnical Commission.

DeCanniere, C. (2006). Trivium: a stream cipher construction inspired by block cipher design principles. In: 9th
International Conference ISC, 171-186. Samos Island, Greece: Springer, LNCS 4176.

DeCanniere, C. and Preneel, B. (2006). Trivium specifications. [Online]. [Cited 2023 April]. https://www.ecrypt.eu.org/
stream/p3ciphers/trivium/trivium_p3.pdf.

Hitachi. (2010). Pseudorandom number generator Enocoro, Specification Ver. 2.0. Hitachi Corporation.

https://www.partow.net/programming/polynomials
http://cr.yp.to/chacha/chacha-20080128.pdf
https://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf.
http://cr.yp.to/chacha/chacha-20080128.pdf
https://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf.

7
Block Ciphers: Basics, TDEA, and AES

This chapter focuses on block ciphers, which are the most commonly used algorithms to encrypt confidential data. In
addition to ciphering, block ciphers can be used as stream ciphers and pseudorandom number generators or used to build
hash functions and MACs (Message Authentication Codes). Therefore, block ciphers are of prime importance to build
cryptosystems.

A huge number of block ciphers are published in literature; but a very small number of them are standards used in oper-
ational cryptosystems. This chapter aims at introducing the basics of construction of block ciphers and present in detail the
standard block ciphers, currently in use, namely TDEA (Triple Data Encryption Algorithm) and AES (Advanced Encryption
Standard). Both ciphers are NIST (National Institute of Standards and Technology, US) standards. It is worth noticing that,
because of some reported attacks (even if they are theoretical) against TDEA, AES would be the dominating block cipher
in the near future and for a long time.

7.1 Construction Principles for Block Cipher Design

Definition 7.1 Block cipher: it is an encryption—decryption scheme where a block of plaintext is treated as a single block and
is used to obtain a block of ciphertext with the same size.

Modern ciphering was inspired by mechanical ciphering machines such as Enigma, presented in Section 4.5. The most
commonly used cyphers, called block ciphers, operate as follows (see Figure 7.1):

e The plaintext is divided into a series of fixed-length blocks (P, P,, ..., P,)). In the standards currently in use, the block bit-
length is of either 64 or 128.

e An encryption key K (with a known length of 56, 128, 192, or 256 bits).

e Encrypted blocks (C}, C,, ..., C,) are of a fixed length, which is the same than that of plaintext blocks.

e Decryption is the inverse operation.

A block cipher is composed of two algorithms: encryption and decryption algorithms, which make use of the same secret
key K. The algorithms are denoted E, () and D, (), which operate on input of fixed-length and produce output with the
same length. Formally:

E: {01} x {01}" — {0.1}"

D: {01} x {01}" = {o.1}"

where 7 is the block bit-length and k, the key bit-length.

For any block plaintext P, the following property holds: D, (E (P)) = P.
Encryption and decryption algorithms are based on iterated operations, mainly substitutions and permutations.

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

207

208

7 Block Ciphers: Basics, TDEA, and AES

Shared secret 7.1.1 Confusion and Diffusion Properties

In the cryptography field, Claude Shannon proposed in the
1940s two fundamental properties of operation of secure
ciphers called confusion and diffusion [1]. Both properties
aim to make statistical-analysis-based attacks impracticable.
With robust methods of confusion and diffusion, block

|
i
I
I
i
A 1
i ciphers appear as generating random ciphertexts, which are
I
i
I
I
I
!
I
I
I
I
i

independent from the key and the plaintext.

F
Er:-:r;;:n;lnn
Decryption
; ﬁ

Definition 7.2 Confusion: it is a cipher operation where each
bit of the ciphertext should depend on several bits of the key.
Therefore, the statistical relationship between the plaintext and
ciphertext should be hidden.

Figure 7.1 Block-based ciphering.

Definition 7.3 Diffusion: it is a cipher operation where when a single bit is changed in the plaintext, several bits in the cipher-
text should change. Similarly, when a single bit changes in the ciphertext, several bits in the plaintext should change.

Definition 7.4 Avalanche effect: changing a few bits in the plaintext (resp. in ciphertext) results in a lot of changes in the
ciphertext (vesp. in plaintext), which is known as avalanche effect; i.e. a small change in either the key or the plaintext should
cause a drastic change in the ciphertext.

Affine and Caesar ciphers, presented in Sections 4.2-4.3, do not make use of diffusion and confusion methods. Therefore,
they are very easy to break. In block ciphers, the common techniques to achieve confusion and diffusion are: substitution
boxes, permutations, and key expansion.

7.1.1.1 Substitution Boxes

An S-Box is an array of R rows by C columns. It contains elements of a specific length; for example, TDEA S-Boxes are
of a length of four bits, while those of AES are of a length of eight bits. In general, the number of rows or columns is at
most 16.

The bit-length of the elements of an S-box depends on each cipher. For example, Elements of TDEA S-boxes are of a
length of four bits, while those of AES are of a length of eight bits. The element space of an S-Box is at most equal to that of
the input space; otherwise, some elements of the S-Box are never used. In some ciphers, such as TDEA, some elements may
be repeated in an S-Box. Figure 7.2 illustrates the access to an S-Box. The value to replace D is converted into two indexes,
r and c. Then, the content of the cell, D' = S_ Box (r,c), is returned as the element to replace D.

The following properties are expected not to compromise security and to enable decryption:

i) S-Boxes include elements that appear as random sequences of elements; therefore, no relationship between elements
could be inferred to design attacks. Such property is referred to as the nonlinearity of S-Boxes.
ii) S-Boxes are deterministic; i.e. the same input is always mapped to the same output.

7.1.1.2 Permutation

Definition 7.5 Permutation: a function E : {0,1}" — {O,l}n is a permutation if there exists an inverse function E~ such
that E-*(E(x)) = x, for any x& {0,1}".

S-Box Block ciphers make use of permutations to swap a part of a block with
another, so that the diffusion is increased. In block ciphers addressed in
this chapter, permutations are defined either by permutation tables or
with shifting and mixing.

D ;}, 7.1.1.3 Key Expansion

Block ciphers are iterated ciphers, which perform the same operations
at all (with some exceptions) rounds. To increase confusion in the
Figure 7.2 S-Box mapping. resulting ciphertexts, instead of using the same cipher key in all the

7.1 Construction Principles for Block Cipher Design

Cipher key K

Permutation

tables Key expansion

S T, e I N
f ¥ L ¥ 1

Input | ! Output
f Round 1 Round 2 } ------ > Roundr i
| -
: J
e e o ot ek L et f o+t h b+ .

Figure 7.3 Key expansion.

rounds, each round has its own key called round key. The result is that the ciphers make use of r keys, where r is the
number of rounds. The key expansion function, also called key schedule function, is the component of block ciphers
that generates the round keys from the initial key (also called cipher key). In general, key expansion function makes use
of permutations and s-boxes (see Figure 7.3).

7.1.2 Feistel Structure

Many block ciphers (including DEA, Blowfish, CAST-128, and Kasumi) are based on Feistel network. The latter is also
called Feistel structure.! The main component of a Feistel network is the round function F, which takes an input block and
a round key and returns an output of the same length than that of the input block. The round function may be invertible or
not. The number of rounds, denoted n, is a setting parameter of cryptosystems; often, n =10,12, 14, or 16. The number of
rounds depends on the tradeoff between the desired security level and the efficiency. The latter is measured in terms of
computation time or hardware implementation complexity.

When Feistel structure is used in cryptography, each round i, 1 <i <n makes use of a round key K, and performs a
substitution and a permutation. Round keys are derived from the initial secret key by a key expansion function.

As shown on Figure 7.4, the data block under processing (either for encryption or for decryption) is divided into two
halves, denoted L (left) and R (right), and the cipher operates only on a single half in each round of encryption or decryp-
tion. Between rounds, the left and right halves are swapped.

Below are the encryption and decryption procedures:

Encryption

input B: plaintext

output C:ciphertext

1.(LEy,REy) = B # B is the plaintext divided into two equal-length halves,
LEy and RE,. Abbreviations: L (Left), R (Right), E (encryption).

2.fori=1tondo
LE; =RE;_{;RE; =LE;_; ®F(RE;_1,K;)

3.C=RE, || LE,; return C

Note. The halves computed in the last round are concatenated in this order RE, followed by LE, to form the ciphertext
block.

Decryption? is the same as the encryption with one difference: the round keys used in encryption are used in the reverse
order.

209

210 | 7 Block Ciphers: Basics, TDEA, and AES

| Plaintext block | L CiDhEﬂ?Xt block
!f‘. lE -, e -_.\l
LE, RE, 3 LD, «RE,| RD, «LE,

Round,
N
r ‘}
=
-
M
4
l—
Round,

{f' h 4 "'\\
_é\l """] E _cl;d

i i
c i Ky Le
= T e (R L S : v -
=] ¥ I o
& T\ P

R :

\ i J

M, -~

e A

i 1 H
'UE 1-__I(_i_ _: i i -c;c
c H i c
3 i (-]
[=] H 1 Q
o= ! | =

H i

L /

1 T] L I]
Ciphertext block Plaintext block

Figure 7.4 Feistel structure (encryption on the left and decryption on the right). Halves are indexed by the round number; and
E and D denote encryption and decryption.

Decryption
input C: ciphertext
output B: plaintext
1.(LDy,RDy) = C# Divide C into two equal-length halves, with
abbreviations: L (Left), R (Right), D (Decryption)
Thus, LDy = RE, and RD, = LE,,.
2.fori =1tondo
LD; =RD;_1; RD; = LD;_; ® F(RD;_1,K,_j11)
3.B=RD, || LD,; return B

Note. The halves computed in the last round are concatenated in this order RD, followed by LD, to form the plaintext
block.

7.2 Triple Data Encryption Algorithm (TDEA)
7.2 Triple Data Encryption Algorithm (TDEA)

The first version of TDEA was approved by the NIST in 2004; and the most recent revision of TDEA was published in
2017 [2]. Till now, TDEA is considered as a secure block cipher. It applies the DEA (Data Encryption Algorithm) cipher
three times to each data block. To understand how TDEA works one must first understand the basics of DEA.

7.2.1 Data Encryption Algorithm (DEA)

It is worth noticing that DEA was originally specified in the Data Encryption Standard (DES®), which became effective in
1977 and widely used for nearly three decades. DES was proposed by IBM researchers and its internals were covered by a
patent.* However, they became public afterward. DES is the most studied cipher; and the lessons learned from the vulner-
abilities of DES contributed to the design of more secure ciphers.

However, since 2005, the last version of DES [3] is no longer recommended to be used alone, after some vulnerabilities
were discovered. DES was withdrawn from NIST standards and DEA is specified as an engine of TDEA, i.e. DEA is repeated
three times to encrypt or decrypt 64-bit blocks.

7.2.1.1 DEA Encryption and Decryption
DEA is a block cipher with a block length of 64 bits and a key of a bit length of 56 bits (see Figure 7.5). DEA encryption and
decryption transformations are very similar:

e Both encryption and decryption run in 16 rounds numbered from 1 to 16, forming a Feistel network (see Figure 7.6).

o Each round takes a 64-bit input block and yields a 64-bit output block. Each input or output 64-bit block is split into two 32-bit
halves, denoted L (left) and R (right). In encryption, the input halves of round i are denoted LE, , and RE, ; and its output
halves LE, and RE,. In decryption, the input halves of round i are denoted LD, , and RD,_,; and its output halves LD, and RD,.

e Each round i makes use of its 48-bit round key, denoted K, which is derived from a DEA key, denoted KEY, using a key
schedule function KS (see Section 7.2.2.3); K, = KS(KEY ,i).

o All the rounds use the same core function f (see Section 7.2.1.3) to process the right half of their input.

The algorithms of encryption and decryption differ only by the order in which the round keys are used. In more detail, the
algorithms are as follows:

function £ # DEA encryption

input B,KEY: 64-bit plaintext block and a 56-bit key

output C: 64-bit ciphertext block

1. # The initial permutation /P is applied to the block B
(LEy,REy) = IP(B)

2.forj=1to16 do
LE; =RE;_;
RE; = LE;_{ @ f(RE;_1,KS(KEY,i))

3. # Halves of the 16" round are arranged to form a 64-bit block Pre_output
Pre_output = RE¢ || LEq4

4. # The inverse initial permutation /P~ is applied to the block Pre_output
C=IP Y (Pre_output)

5.return C

Figure 7.5 Overall view of DEA.
DEA
nput - 1 o b | Output
(64 bits) # Round 1 » Round 16 > (64 bits)
Key

(56 bits)

211

212 | 7 Block Ciphers: Basics, TDEA, and AES

64-bit plain'iext block KEY (641) 64-hit ciphfrtext block
¥
[Initial permutation] Key schedule [Inverse initial permutation J
[T = I
| LE, RE, | LD, RD, |
=5 | Ky (48b) Ky (48 b) | 5
€ | ! i i L | €
3 | : Y -
" fr | s> il =
M Vi "\‘ —— Y
4 F r ™ e ¥ v \\I
| LE, RE, | | LD, RD; ||
= | Ky(e8b) | | Kig(asb) | | 5
c | : i [€
g : ¥ * | | v ¢ g
o R f i | fd W f |
Lo~)) NP N J
\\—.....rn..-l-w.u.:_ _...:...........‘.:_...._..w“wl..........——/ \"""""'""""-U'H e ——— P —
r‘_____a-—q. ______ , e e \
I/ ¥ ¥ ™ [;" ¥ Y
< LE;s RE,s | ’ ! LD;s RD,s -
= | | Kiglasb)| | Ky(asb) | | &
sy | ¢ g
B~ | BN, ;
l_ —— A A A
LEq RE; LE;, RE 6
= — F——%
v ¥
RE LE,; [« Pre-output —* REj LE,,
[Inverse initial permutation l [Inverse initial permutation]
v
64-bit ciphertext block 64-bit plaintext block

Figure 7.6 DEA encryption and decryption diagrams.

function D # DEA decryption

input C,KEY: 64-bit ciphertext block and 56-bit key

output B: 64-bit plaintext block

1.# The initial permutation /P is applied to the block C
(LDy,RDy) = IP(C)

2.fori=1to16 do
LD; =RD;_4
RD; =LD;_4 @ f(RD;_1,KS(KEY,16 —i +1))

3. # Halves of the 16" round are arranged to form a 64-bit block Pre_output
Pre_output = RDy¢ || LDy

4. # The inverse initial permutation /P~ is applied to the block Pre_output
B=IP~Y(Pre_output)

5.return B

As shown in the encryption and decryption algorithms above and in Figure 7.6, DEA makes use of specific internal
components: initial permutation and its inverse, key schedule function KS, and function f; all these components are
described below.

7.2 Triple Data Encryption Algorithm (TDEA)

Note. DEA permutation and substitution tables are two-dimension arrays. In the sequel, both rows and columns indices
start with 0; T{0,0} denotes the first element of any table.

7.2.1.2 |Initial Permutation and Its Inverse

The input and output of the initial permutation and of its inverse are 64-bit blocks. An input block is permuted according
to a predefined rule to yield the output. Both permutations are keyless and deterministic. Therefore, they only aim at mak-
ing bit transpositions. In literature, it is argued that the initial permutation and its inverse were introduced to be imple-
mented in hardware to thwart the attacks against DEA by software.

Initial permutation TP
Let B[l : 64] and B’ [1 : 64] be the input and output bit-vectors of permutation IP, respectively. Let IP (Table 7.1) be the table
used by the permutation IP. Block B’ is yielded from block B as follows:

B'[i]= B[IP[i,,i, || fori=1, ..., 64, where i, =[i/8]~1and i, =i—8xi, —1
Example:
B/[1]= B[IP|0,0]| = B[58] B'[2] = B|1P[0,1]|= B[50|
B'[64]= B[IP[7,7]|= B[]
Inverse permutation P!
LetC [1:64] and C’ {1:64] be the input and output bit-vectors of permutation IP~*, respectively. Let IP~' (Table 7.2) be the
table used by the permutation IP'. Block C’ is yielded from block C as follows:
C'li)=c[tP (i1,]| fori=1, .., 64, wherei, =[i/8|~1andi, =i—8xi, ~1
Example:
c'1)=c[p"[o,0]|=c[40] c'l2]=clip o] =c[s]
C'[64]=c[1p[7,7]| = C[2s]
7.2.1.3 Function f

Function f is the core of DEA, as it makes use of selection functions to scramble a 32-bit round input using a round key,
an expansion operation Exp, and a permutation P (see Figure 7.7). The pseudocode of the function f is as follows:

function f
input R, k: 32-bit string and round key
output R’ # 32-bit string
1.Rxp = Exp(R) # expand R to 48 bits
2.Z=k®Rxp
3. Let Z[1: 48] be the bit-vector representation of Z
4.7 = 2[6 #(i—1)+1,6+ i], i=1,...,8 # Split vector Z into 8 sub-vectors
5.fori=1to8do
Y, = SF.(Z;) # selection function SF, compacts Z; to four bits
6.Y =Y, IS 1 Ys Y4l Y5 11V, 11 Y5 1 Vg # Concatenate the eight values
7.R’ = P(Y) # Permute the 32 bits of Y
8. return R’

Table 7.1 Initial permutation /P table.

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9

59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

N U W= oo RN

213

214

7 Block Ciphers: Basics, TDEA, and AES

Table 7.2 Inverse permutation IP~! table.

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
R (32 bits)
r
f Exp ‘,
r
48 bits k (48 bits)
:‘/—h\\:
L

L 4

[Permutation]
P

k4

R’ (32 bits)

Figure 7.7 Diagram of function f of DEA.

Expansion function Exp

It takes a 32-bit string and expands it to a 48-bit string using the table E (Table 7.3). Notice that in table E, values in the
rightmost two columns (i.e. 1,4,5,8,9,12,13,16,17, 20, 21, 24, 25, 28, 29, 32) are repeated, so that the number of values in the
table E is 48. Given Y, a 32-bit string, the expanded bit-string Y’ = Exp(Y) is defined by:

Y'li]=Y|[E[i.»i,|, fori=1, ..., 48, wherei, =[i /6| -1 and i, =i—6*i, —1
Example:
Y'[1]=Y|E[0,0]| = Y[32] Y'[4]=Y|E[0,3]]=Y[3]

Y'[48]=Y[E[7,5]| = Y[1]

Table 7.3 Table E.

32 1 2 3 4 5
4 5 6 7 8 9

9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Selection functions

7.2 Triple Data Encryption Algorithm (TDEA)

Selection functions also are called substitution boxes (or S-boxes). They are nonlinear (see Exercise 7.4), which pro-
vide some level of security to DEA. DEA makes use of eight selection functions, denoted SFj,j:L ..., 8, Which
operate like compression functions. Each selection function SF; has a table S; associated with it (Table 7.4). Tables
of selection functions are represented as 4 rows by 16 columns matrices. Given a 6-bit value v, each selection function
SF;, j=1,..,8, yields a 4-bit value w; = SFj(v). SFj(v) returns the table element Sj(Vrch) such that v , the row number,
is a 2-bit value formed by the first and the last bits of v; and v,, the column number, is a 4-bit value formed by the

ond 3rd 4t and 5™ bits of v.

For example, let v =27 = 011011,. Then, v, = 01, and v, = 1101,. Hence, the reductions of v = 27 are:

SF,(27)—S,(1,13) =5

SF,(27) —S,(1,13) =10
SF,(27) —5,(1,13) =15

SF,(27) — 5,(1,13) =9

SF,(27) — S,(1,13) =9

SF,(27) — S4(1,13) = 14

Table 7.4 Tables of selection functions S; - Sg.

SF,(27)—S,(1,13) =11

SF,(27)— S,(1,13)=11

Sy

Sa

S3

14

15

15

13

10
13
13

13
10

15

12

13

10

13

15

13
17
14
8

10

13

14
11

1
4
8
2

14

o

a O wun W

14
13

N O W O

(=]

12
10

15

11

15

15

15
11

11
13
2
1

13

10

13

10
15

12

11

15

10

12

N 0 O 3

N B S

[, B VS I SN

12
11

14

13
10

12

14
12

12
14
11

10

12

11
12

11

11

12

10

w W O O

11
10

12
10

N »n W O

11

14

15
14

13

10

15

12

15

4
14

(Continued)

215

216

7 Block Ciphers: Basics, TDEA, and AES

Table 7.4 (Continued)

Ss 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 9 8 6
4 2 1 1 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
Se 12 1 10 15 9 2 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 1 3 8
14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S, 4 11 2 14 15 O 8 13 3 12 9 7 10 6 1
13 0 1 7 4 9 1 10 14 3 5 12 2 15 8
1 4 1 13 12 3 7 14 10 15 6 8 5 9
6 1 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Sg 13 2 8

11 4 12 14 2 0 6 10 13 15 3 5 8

Permutation P
It takes a 32-bit string and yields a bit string of the same length, using table P (Table 7.5). Table P is an 8-row by 4-colum
matrix. Given a 32-bit value Y, the permuted bit-string Y' = P(Y) is defined by:

Y'[i| = Y[P[i,.i,]] fori=1, .., 32, wherei, =[i/4| -1 and i, =i—4*i, —1
Example:
Y'[1]=Y[P[o.0]|=Y[16] Y'[4]=Y[P[03]|=Y][21]

Y'[32] = Y[P[7,3]|= Y 25]

7.2.2 TDEA Construction and Usage

7.2.2.1 Bundle and DEA Keys
In the previous section, DEA the engine of TDEA, was introduced. The next step is to discuss how secret keys are used to
feed the function F with round keys.

Table 7.5 Table P.

16 7 20 21
29 12 28 17

1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

7.2 Triple Data Encryption Algorithm (TDEA) | 217

A TDEA key, called bundle key, consists of three DEA keys, denoted Key,, Key,, and Key,; i.e. BundleKey = (Key,,Key,,Key,).
Two options are permitted:

1) The three keys are all distinct (i.e. Key, = Key j,Vi = j,i,j €{1,2,3}); in such a case, the block cipher is called three-key
TDEA (and denoted 3TDEA). It is the recommended option.

2) Two keys are identical and are distinct from the third one, which is an option for legacy use only. The selection of keys
shall fulfill the following condition: Key, = Key,, Key, = Key,, and Key, = Key,; in such a case, the block cipher is called
two-key TDEA (and denoted 2TDEA”).

When a DEA key is used, it has a length of 56 bits. However, when DEA keys are generated, distributed, or stored, they are
represented as a 64-bit strings, where eight extra bits are odd parity bits (i.e. one odd parity bit is added on the right of every
seven bits in the initial key), which may be used for error detection. Odd parity bits are dropped by the key schedule
function; they have no impact on security.

Weak keys and semi-weak keys
A key Key is said to be weak, if all the round keys generated from it are identical. The bad property of a weak key is that
encrypting twice a plaintext M yields M and decrypting twice a ciphertext C yields C. Formally,

Weak(K):>(EK (E((M))=M,VM € {0,1}64)A(DK (De(©)=c,vC € {0,1}64)

The following keys are considered weak, when used in DEA engine, and should be avoided:

0101010101010101,, FEFEFEFE FEFEFEFE,
EOEOEOEO F1F1F1F1, 1F1F1F1F 0EOEOEOE,

A key Key is said to be semi-weak, if only two distinct round keys can be generated from it. If two keys key, and key, are
semi-weak keys and have the same round keys, they form a pair of semi-weak keys. In other words, encryption with one of
the keys in the pair is equivalent to decryption with the other (and vice versa). The bad property of a pair of weak keys is
that encrypting a plaintext M with both keys in cascade yields M. Formally,

WeakPair(Keyl,Keyz) = Ey,, (EKey (M)) =M, VM € {0,1}**

The following six pairs are pairs of semi-weak keys and should be avoided:

011F011F010E010E,, and 1F011F010E010E01,,
01E001E001F101F1,, and E001E001F101F101,,
01FEO1FEO1FEOIFE,, and FEOIFEOIFEOIFEO],,
1FE01FE00EF10EF1,, and EO1FEO1FF10EF10E,,
1FFE1IFFEOEFEOEFE, and 1FFEIFFEOEFEOEFE,
EOFEEOFEF1FEFIFE,, and FEEOFEEOFEF1FEF1,

Finally, there is a list of 48 keys that produce only four distinct round keys when the key schedule is applied and when it
should be avoided (see NIST recommendation [2]).
Problems 7.6 and 7.7 discuss examples of weak and semi-weak keys.

7.2.2.2 TDEA Encryption and Decryption
TDEA encryption of a 64-bit plaintext P is defined by:

(TDEA) _ _
E(Keyg-Keyz JKey,) (P)= EK% (DKeyz (EK% (P))) =C
TDEA decryption of a 64-bit ciphertext C is defined by:

(TDEA) _ —
[)(I<ey3,l{ey2,Keyl) (C) - DKey1 (EKeyz (DKey3 (C))) =P

Figure 7.8 shows an overview of how DEA is used to perform TDEA encryption and decryption. Notice that a TDEA bundle
key bit-length is 3* 64 when it is stored or distributed, while its bit-length from the cryptographic perspective is 3 * 56.

218 | 7 Block Ciphers: Basics, TDEA, and AES

TDEA encryption
64-bit . B4-bit
Plaintext DEAEnc |+ DEADec |— DEAEnc Ciphertext
.
Key, Key; TKBJ"s
Bundle key = (Keyy, Keys, Keys)

Keyg Key: Keyl
64-bit | | | 64-bit
Ciphertext » DEADec |+ DEAEnc |+ DEADec ™ laintext

TDEA decryption
Figure 7.8 Overall TDEA encryption and decryption.

7.2.2.3 Key Schedule Function KS

The key schedule function KS, shown on Figure 7.9, generates sixteen 48-bit round keys using a 64-bit key, denoted KEY’;
KEYG{Keyl,Keyz,Key3 } The round keys are denoted K, i€[1,16}. Two permutation tables, PC1 (Table 7.6) and PC2 (Table
7.7) are used in the KS function to perform compression permutations (i.e. it computes 48-bit round keys from a 64-bit
key). Table PC1 is an eight by seven matrix containing numbers from 1 to 63, but the eight odd parity bits (i.e. bits with
numbers 8, 16, 24, 32, 40, 48, 56, and 64) are dropped. Table PC1 is divided into two parts; the upper half (i.e. bits 57 to 36)
to choose a 28-bit string, denoted C,, and the lower half (bits 63 to 4) to choose a 28-bit string, denoted D,,.

Permuted choice function is used once; it takes a 64-bit key KEY and makes use of permutation PC1 to compress and per-
mute KEY to yield two 28-bits blocks C, and D, defined by:
Cylil= KEY [PC1i, i,]|, fori =1, ..., 28, wherei, =[i/7]|~1 and i, =i—7*i, ~ 1.
D,lil= KEY[PCl[ir,ic]], fori=1,...,28, wherei, =[(i+28)/7|-1and i, = (i+28)—7*i, 1
Example:
C,l11=KEY[PC1[0,0]|= KEY[57] ~ C,[2]=KEY|PC1[0,1]|= KEY[49]
C,[28]=KEY[PC1[3,6]] = KEY[36] ~ D,[1]=KEY|PC1[4,0]] = KEY[63]
Dy[2]=KEY|PC1[4,1]| = KEY[55] D,[28]= KEY|PC1[7,6]|= KEY[4]
Compression permutation is used for each iterationi,i =1, ..., 16; it takes two 28-bits blocks C; and D, and makes use of com-
pression permutation PC2 to yield the round key K,. Each 28-bit block C, (resp. D) is yielded from C, , (resp. D,) using a

left rotation by one or two positions. The number of rotation positions for each iteration is given by the vector NLR (Table
7.8). Pseudocode of the key scheduling function KS is as follows:

function KS # Key schedule

input KEY: 64-bit block
output K, ie[1,16]: 16 round keys
1.(C,,D,) = PermutedChoice(KEY') # first pair of 28-bit blocks
2.fori=1to16 do

2.1.C, = LeftRotate(C;_;,NLR,)

2.2. D, = LeftRotate(D, ,,NLR,)

2.3. # Generate the i round key

K, = CompressionPermutation(C; | D,)

3.return K, i€[1,16]

KEY (54 bits)

Permuted o Table PC-1
choice

28 bﬂ:ﬁ‘l

i 28 bits

Left rotate

Left rotate

Table PC-2

Left rotate

Left rotate

56 hits

permutation

48 bits K,
W
: \ Compression
56 bits | permutation
Left rotate Left rotate i 48 bits K,
Cis Dyg v
| I Compression
56 bits permutation
48 bits Kis
Figure 7.9 Key schedule function.
Table 7.6 Table PC1.
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
Table 7.7 Table PC2.
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

220

7 Block Ciphers: Basics, TDEA, and AES

Table 7.8 NLR: Number of left rotations in KS iteration.

Iteration number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
of left rotations 11 2 2 2 2 2 2 1 2 2 2 2 2 2 1

7.2.3 Security Issues

7.2.3.1 Complexity of Attacks Against DES
Three main attacks against DEA key have been investigated in literature: brute-force attack, differential cryptanalysis, and
linear analysis. Differential analysis and linear analysis are discussed in Chapter 11.

e Brute-force attack: given a pair of plaintext and ciphertext blocks (P,C), the adversary needs to test, in the worst case, 2°°
keys to find a key K such that C = E(K, P). Notice that the brute-force attack complexity becomes 2% (i.e. reduced by a
factor of %) if the attacker exploits the complementation property of DES (see Problem 7.5).

e Biham and Shamir [4] showed that DES could be broken with 2*” tests using differential cryptanalysis.

e Matsui [5] showed that DES could be broken with 2** tests using linear cryptanalysis.

It is worth noticing that both bounds of Biham and Matsui are theoretical and their attacks have not been successfully
experimented in practice, because of the huge amount of the required plaintext-ciphertext pairs. Therefore, DEA is vulner-
able to attacks using current technologies; and should not be used alone. In 2007, an FPGA-based machine, called
COPACOBANA (Cost-Optimized Parallel Code Breaker), at a cost of $10,000, broke DES in less than a week.

7.2.3.2 TDEA Security Limit

Recall that the security of data depends on the security provided for the keys used to protect data and the amount of data
protected by a same key. A collision occurs when two distinct plaintext blocks map to the same ciphertext block. A collision
in ciphertext blocks, once detected, may leak information about the corresponding plaintext blocks. By&Ehe birthday par-

adox (see Section 3.4), with a block length of 64 bits, a ciphertext collision will likely occur when about 2 2 plaintext blocks
are encrypted with the same key. In the 2012 revision of TDEA, it was recommended that the number of blocks should not
exceed 2%, In response to known security weaknesses, 2017 revision [2] lowered the 3TDEA limit to 2*° 64-bit data blocks
per key bundle and disallows the use of TDEA alone for applying cryptographic protection to new information. Therefore,
TDEA should be used with modes of operation of block cipher (such as CBC and CTR); modes of operation are introduced
in the next chapter. In addition, it is worth noticing that in 2017, NIST urged all users of TDEA to migrate to AES as soon
as possible.

7.2.3.3 Meet-in-the-Middle Attack Against Double DES and TDEA

Double-DES (denoted 2DES) is defined by a double encryption/decryption using two (independent) keys as follows:
. . (2DE _ —

Encryption: E((Keyz,)Keyl)(P) = EKeyZ(EKeyl (P)=cC
.. (2DE

Decryption: D((Key2 ?Keyl)(P) = DKeyl (DKeyz(C)) =P

where P is the plaintext, C the ciphertext, and Key, and Key,, the keys.

At afirst glance, one may think that the brute-force attack against 2DES has a complexity of . Therefore, dou-
bling the key length would result in a secure cipher. Unfortunately, 2DES is insecure; therefore, it is not recommended.
2DES is insecure under the meet-in-the-middle attack, which is presented below. Its effective key length is 2°”

In a similar way to 2DES, the meet-in-the-middle attack reduces the complexity of TDEA, with three distinct keys, to
Therefore, tripling the key length of DES does not result in a security of 2'°® as naively expected. However, TDEA, with three
distinct keys, has an effective key length of 112. Therefore, an attack of a complexity of 2! is computationally infeasible with
current technologies, which makes TDEA a secure cipher.

2%56 __ 112
2970 =2

112
27

7.2.3.3.1 Meet-in-the-Middle Attack Against Double DES

One of the well-known attacks against the key pair of double DES is the meet-in-the-middle attack described below. In
general, the meet-in-the-middle attack (MITM attack) is a generic space-time tradeoff cryptographic attack against encryp-
tion schemes that rely on performing multiple encryption in sequence using the same cipher.

7.2 Triple Data Encryption Algorithm (TDEA)

Assume that an adversary knew a plaintext-ciphertext pair (P,C) and has the capacities to compute and store the cipher-
texts associated with the plaintext P encrypted with all the 2°° DES keys. The MITM attack takes advantage of the following
observation:

(X = Egy, (P) A(C=Ey,, (Eg, (PY) = Dy, (C)=X

The principle of MITM attack is to perform encryptions of the known plaintext with all values of Key, and perform decryp-
tions of the known ciphertext with all the values of Key, and join both computations to find key pair candidates (K, K,),
such that: E, (P)= Dy (C). Hence, the notion of meet in the middle.

In the attack compléxity analysis, it is assumed that only encryption and decryption operations, which are the most
time-consuming, are of interest. The MITM attack algorithm is as follows:

1.for Ky = 0 to 2°° —1 do T [K;] = E¢, (P) #Encryption: build a table T
including the encryption of P for each of the 2°® keys
2.CandidatePairList = EmptyList()
3. #Decryption and test:
for K, =0t0 2°® —1 do
Z =Dy (C) # Decrypt C
for K, =0t02°° —1do
ifT[Kl] = Z,then
a candidate pair (K,K;) is found
CandidatePairlList = Append.CandidatePairList((K,, K1))
else continue

In the attack above, the worst case of the number of encryptions is 2°° and that of decryptions is 2°°. Therefore, the attack
complexity is of 2°’. However, only one of the key pair candidates is the real pair (Key,,Key,). In Problem 7.9, we address
the probability of success of the MITM attack.

In the pseudocode above, the table T is a vector, where T[i] contains the ciphertext of plaintext P encrypted with key i.
However, when a decrypted value Z = D(K,,C) is searched in table T, the search time would be very high, because one
needs, in average, to test half of the table. One optimization of the MITM attack algorithm is to use a table with two col-
umns T|0:2%° —1,1:2|, where T[i,l} = E(i,P) and T[i,z} =1i. Then, sort the table on the first column. Then, a dichotomic
search may be applied to reduce the computation time of the attack.

7.2.3.3.2 Meet-in-the-Middle Attack Against TDEA
TDEA encryption is defined by:

(TDEA) _ _
E(KEys,Keyz,Key,) (P)= EK% (DKeyz (EKey1 PM)=C

Like Double DES, TDEA is defined by a repetitive use of the same cipher. Therefore, it is vulnerable to MITM attack. The
principle of MITM attack against TDEA is very similar to the attack against double DES. It takes advantage of the following
observation:

(X - EKeyl (P))/\(C - EKey3 (DKeyz (EKeyl(P)))) = EKeyZ (DKeyz(C)) =X
The MITM attack against TDEA may be formulated as follows:

1) For each of the 2°° values of K,, compute E, (P) and build a 2-column table T, sorted on the values of the computed
ciphertexts. That is, the first column of T contains the ciphertext and the second column the used key.

2) For each of the 256+2 pairs of keys (K}, K,), compute Z = E,. (D, (C)). Then, try to find entries i, j, ..., in the table T, such
that T[i,1]=Z, T[j,1]= Z, ... Each matching table entry results in a candidate triplet (K, K,, K,).

3) False alarms may occur and one or two additional plaintext-ciphertext pairs are required to get, at a probability close to
1, a key triplet identical to the real one.

In the first step attack mentioned above, 2°° operations are performed, while in the second step one, 2''* operations are
performed. Therefore, the complexity of MITM attack against TDEA is of 2''%.

221

222

7 Block Ciphers: Basics, TDEA, and AES
7.3 Advanced Encryption System (AES)

The Advanced Encryption Standard (AES), also known by its original name Rijndael,’ was proposed by Daemen and
Rijmen in the late 1990s. Rijndael algorithm was one of the finalists to the public call issued by the NIST in 1997 to replace
DES, because of the discovered weaknesses. Rijndael algorithm was the winner and it was confirmed by the NIST as a stan-
dard in 2001, but under the name AES [6]. The only difference between Rijndael and AES is the range of supported values
of block length and key length.

AES is by now the most widely used cipher in cryptosystems and it is expected to dominate for long time. In 2003, the
NSA (National Security Agency) allowed AES for protection of classified data up to Top secret with keys of 192 or 256 bits.

7.3.1 Distinctive Features of AES
The main features of AES include the following:

e AES operates on 128-bit blocks using three different key bit-lengths: 128, 192, and 256 bits. Unlike DEA, no weak or
semi-weak AES keys have been reported until now.

o Like DEA, AES is an iterated block cipher; the encryption or the decryption follows a sequence of Nr rounds, which
depends on the key length: 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys (see
Figure 7.10). Thus, AES may be referred to as AES-128, AES-192, and AES-256.

o AES makes use of Nr +1round keys. Before starting the first round, an initial round key is added to the input and then
each round ends with an addition of its round key to the output of its last transformation. Such a design is called
key-alternating.

e AESis a byte-oriented cipher, unlike DES, which is a bit-oriented cipher. The basic unit of processing in AES is the byte.
The 128-bit input and output of rounds are organized as 4x4 arrays of bytes, which are called states.

e With the exception of the last round, all other rounds are identical. Each encryption round includes four transforma-
tions: byte substitution, row shifting, column mixing, and round key addition.

e Very similar steps are used in encryption and decryption. However, the encryption transformations are inversed in
decryption, and, unlike DEA, two distinct algorithms are used in AES, one for encryption and another for decryption.

e Unlike DEA, AES is not based on Feistel structure even though it makes use of a substitution-permutation network
structure. All the input bits of each round are processed, unlike DEA where only the right half of input is processed.

e AES computations are performed over extension fields (i.e. Galois fields, introduced in Section 3.2.4). Therefore, the
design rationale and the proof of correctness of AES rely on mathematical notions.

For more detail on the design criteria and rationale of the Rijndael algorithm, the reader may refer to Daemen and
Rijmen’s book [7].

7.3.2 Data Representation in AES

Input and output of rounds follow specific forms of data representation, which will be addressed before going into detail of
AES transformations. The basic unit of processing in AES is the byte. The input, output, and the round keys are processed
as 4x4 arrays of bytes.

AES
Input state Output state
(128 bits) Round 1 % Round Nr " (128 bits)
$ i
v
4x4 byte array T 44 byte array
4 - !
5 Key v

(128, 192, or 256 bits)

128~-bit string 128-bit string

Figure 7.10 Overview of AES.

7.3 Advanced Encryption System (AES)

Input bitsequence |0 |1 |2 |3 |4 |5|6|7 |8 |9 |10{11|12(13 |14 |15|16|17|18|19(20|21| 22|23

Byte number 0 1 2

Bit indicesinbyte | 7| 6|5 4|3 /2 |1|0|7 |6 |5|4(3 |2 |1(0|7|6|5|4|3|2(1|0

Figure 7.11 Indices for bytes and bits of data.

Let A be an input, an output, or a round key of 16 bytes. A is represented in one of the following forms:

1) byte representation: A= AA,... A,
2) word representation: A = W,W,W,W,, where W,,_, are 32-bit words

2773
3) bit representation: A =byb, ... b,,..

Bit indices of a 128-bit block are represented by Figure 7.11.

State notion
AES transformations are performed on two-dimensional arrays of bytes called states. A state has four rows each of four
bytes (i.e. 4 * 4 bytes = 128 bits). Notice that in the current version of AES, the block length is of 128 bits; it might change
in the future. Therefore, the number of bytes per row should change.
Each byte within a state S is denoted Sm, where r, 0 <r <3, denotes the row number and ¢, 0 <¢ < 3, the column
number. The mapping from the cipher input to the state and from the state to the cipher output is illustrated by Figure 7.12.
The four bytes in each column of a state form a 32-bit word. Therefore, a state S can be considered as an array of four
words W, W,, W,, and W, defined as follows:
W, =[S

0,0

S

1,0°

S

2,0 S3,o] W, = [SO,I’
Sz,z] W, = [50,3’

S, S

]

11> P21 53,1
S3,3]

W, = [So,z’

S, 5 S

2,2°

S

1,3°

S

1,2 2,3’

7.3.3 Overall Structure of AES

The encryption and decryption follow a sequence of Nr rounds, where Nr depends on the key bit-length. Like DEA, the
cipher key K is processed by the key expansion function to generate an array, called key schedule, denoted W, form-
ing Nr +1round keys each of Nk words. Therefore, W is an array of (Nr +1) * Nk words.

Each encryption round, with the exception of the last round, consists of four transformations denoted SubBytes (byte
substitution), ShiftRows (left shift of state rows), MixColumns (mixing three state columns), and AddRoundKey (i.e.
XORing the round key with the output of the previous transformation). The decryption rounds are similar to those of
encryption, but make use of inverse transformations (i.e. InvSubBytes, InvShiftRows, and InvMixColumns), and
use the round keys in the inverse order of that of the encryption.

The overall structure of AES is illustrated by Figure 7.13; and the pseudocodes are given below.

fﬂ ;4 Ig 'fzz Sﬂ,u 50,1 Su,z 50,3 Da 04 Da 012

"1 fS .1'9 'II_:I' 51 a0 S_i 1 51,2 51,3 ol 05 05 013
—> —>

I | s | lo | I S20 | S21| S22 | 523 O, | Os | Ogp | Oy

Iy | ;| ly | hs 530 | S31| 532 | 533 O; | 07 | 043 | Oy5

Cipher input bytes State bytes Cipher output bytes

Figure 712 Mapping between the cipher input, output bytes, and the state bytes.

223

224

7 Block Ciphers: Basics, TDEA, and AES

function E # AES Encryption
input P: 128-bit plaintext block; W: key schedule array
output C:128-bit ciphertext block
1. State = CopyCipherlnputToStateArray(P)
2. AddRoundKey (State,W [0,3])
3.for Round =1 to Nr—1 do
SubBytes(State); ShiftRows(State)
MixColumns(State)
AddRoundKey (State,W [Round * 4,(Round + 1)+ 4 —1])
4. # Transformations of the last round
SubBytes(State); ShiftRows(State)
AddRoundKey(state,W [Nr « 4,(Nr + 1)« 4 —1])
5. C = CopyStateToCipherOutput(State)
6.return C

function D #AES Decryption

input C:128-bit ciphertext block; W: key schedule array

output P: 128-bit plaintext block

1. State = CopyCipherlnputToStateArray (C)

2. AddRoundKey (State, W [Nr + 4,(Nr +1) =4 —1])

3.for Round = Nr — 1 downto 1

InvShiftRows (State); InvSubByes(State)
AddRoundKey(state,W [Round = 4,(Round + 1) » 4 —1]).
InvMixColumns (State)

4. # Transformations of the last round
InvShiftRows(State); InvSubBytes(State)
AddRoundKey(state, ¥ [0,3])

5. C = CopyStateToCipherOutput(State)

6. return P

CopyCipherInputToStateArray and CopyStateToCipherOutput are conversion functions to convert a bit-string (i.e. plaintext
or ciphertext block) to a state array and vice versa.

7.3.4 AES Transformation Description

7.3.4.1 SubBytes and InvSubBytes Transformations
SubBytes transformation aims at providing optimal diffusion, which results in resistance against differential and linear
cryptanalysis. It consists in using a 16x16 lookup table, called S-box (Table 7.9), to replace each of the 16 bytes of the state
by another byte. Byte substitution of a byte b is performed as follows:

Let b= b,b.b.b,b,b,b b, be the sequence of bits of byte b. Let i = b,b.b.b, be the four leftmost bits of b and j = b,b,b,b,, its
four rightmost bits. Then, i and j are used as row and column indexes to yield b’ = S_Box(i, j).

InvSubBytes makes use of the InvS-box (Table 7.10) to yield the inverse byte substitution of that yielded by SubBytes.

| Note. Unlike DEA, which makes use of random S-boxes, the AES s-boxes have an algebraic structure (see Section 7.3.6.2).

Example 7.1
SubBytes and InvSubBytes make use of tables S-box and InvS-box, respectively. Byte [3c]16 is replaced
by S_Box(3,12) = [eb] . Byte [eb]1 is replaced by InvS_Box(14, 11)—[3c]

Byte[75] is replaced by S_Box(7,5)= {] . Byte [9d] is replaced byInvS Box(9,13) = [] .

128-bit plaintext block AES key 128-bit ciphertext block

// W[o..3] WL-3..L]
LddRoundKey I-J. # AddRoundEey I
SubBytes | InvzhiftRows |
L
% ShiftRows w(4.7] W(L-7..1-4] | Inv3ubBytes | %
= N > =
g [ndamoundrey | | 8
AddRoundKey | InvMixColumns |
i g
! 2 !
¥ E v
SubBytes % | InvshiftRows |
o
—
L ShiftRows WIL7.1-4] E‘ Wi4.7] | InvSubBytes | | o
= 4 » 15
. 3
E MixColumns | AddRoundKey | 2
AddRoundEey | InvMixColumns |
SubBytes 1 | InvShiftRows |
= WJL-3..L wio..3
E ShiftRows 4 {] 03] | InvSubBytes | E
= 3
é AddRoundKey J —Ll addRoundKey | .E/

128-bit ciphertext block L=(Nr+1)*4 -1 128-bit plaintext block

Figure 7.13 Overall structure of AES.

Table 7.9 S-box (in hexadecimal representation).

y
0 1 2 3 4 5 6 7 8 9 a b C d e f
X 0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 9 7d fa 59 47 {0 ad d4 a2 af 9c a4 72 ¢0
2 b7 fd 93 26 36 3f 7 cc 34 a5 e5 f1 71 d8 31
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c la 1b 6e 5a a0 52 3b de b3 29 e3 2f 84
5 53 d1 00 ed 20 fc bl Sb 6a cb be 39 4a 4c 58 cf
6 do ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c of a8
7 51 a3 40 8f 92 9d 38 5 bc b6 da 21 10 ff f3 d2
8 cd Oc 13 ec 5f 97 44 17 c4 a7 Te 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5 Ob db
a e0 32 3a Oa 49 06 24 5¢ c2 d3 ac 62 91 95 e4 79
b e7 8 37 6d 8 d5 4e a9 6¢ 56 f4 ea. 65 7a ae 08
c ba 78 25 2 1c a6 b4 c6 e8 dd 74 1f 4b bd 8 8a
d 70 3e b5 66 48 03 f6 Oe 61 35 57 b9 86 cl 1d 9e
e el 8 98 11 69 d9 8e 94 9 le 87 €9 ce 55 28 df
f 8c al 89 od bf €6 42 68 41 99 2d of b0 54 bb

226

7 Block Ciphers: Basics, TDEA, and AES

Table 7.10 InvS-box (in hexadecimal representation).

y

0 1 2 3 4 5 6 7 8 9 a b C d e f

52 09 6a ds 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
54 7b 94 32 a6 2 23 3d e 4 95 Ob 42 fa c3 4de
08 2e al 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
72 8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
6c 70 48 50 fd ed b9 da 5 15 46 57 a7 8 9d 84
90 ds ab 00 8c bc d3 Oa f7 e4 58 05 b8 b3 45 06
do 2c 1le 8 ca 3 Oof 02 c¢1 af bd 03 01 13 8a 6b
3a 91 11 41 4f 67 dc ea 97 f2 cf ce fo b4 e6 73
96 ac 74 22 e7 ad 35 85 e2 9 37 €8 1c 75 df 6e
47 f1 la 71 1d 29 c5 89 6f b7 62 Oe aa 18 be 1b
fc 56 3¢ 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
1f dd a8 33 88 07 c7 31 bl 12 10 59 27 80 ec 5f
60 51 7f a9 19 bs 4a od 2d e5 7a of 93 c9 9¢c ef
a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3¢ 83 53 99 61
17 2b 04 7e ba 77 deé 26 el 69 14 63 55 21 0Oc 7d

OO0 o 0NNk WNHEO

7.3.4.2 shiftRows and InvShiftRows Transformations
In the shiftRows transformation (see Figure 7.14), the row 0 of the input state S remains unchanged and each of the
other three rows, r =1,2,3, are rotated by r byte(s) to the left. Formally, ShiftRows transformation is defined by:

S e =S, (et LRotate(rNbY mod npy fOT 1 <7 <4 and 0 <c < Nb
where LRotate(r,Nb) operation rotates r with Nb positions to the left. Recall that when the block bit-length is 128, Nb, the
number of state columns, is 4.

Note that ShiftRows transformation ensures that the four bits of one column are spread out to four different
columns.

InvShiftRows transformation (see Figure 7.15) inverses the ShiftRows output. The row 0 of the input state S
remains unchanged and each of the other three rows, r = 1,2,3, are rotated by r byte(s) to the right. Formally, InvShi f tRows

transformation is defined by:
/
Sr,c = Sr,(c+RRotate(r,Nb)) mod Nb) forl <r< 4 and 0 <c< Nb

where RRotate(r,Nb) operation rotates r with Nb positions to the right.

Left rotation

B ST »| S22 | 523 S20 521
Syo | Sy | Sz | Sas | s, s, [50 [50
Input state bytes Ouiput state bytes

Figure 714 sShiftRows of a state.

7.3 Advanced Encryption System (AES)

Right rotation

500 | S01 | So2 | S03 [----- LLLL] —»| S00 | So1 | S0z | So3
S0 | S11 | S1z2 | 513 L"D:EDJ.. S13 | Spo | Su1 | Sz
Ss0 | Sz1| S22 | S23 L.'EEI:EIJ, 5;2 | S23 | 520 | Sz1
S50 | S31| S35 | Si3 L‘l:l:l:l:l"* S31 | 532 | 533 | S30
Input state bytes Outpuf state bytes

Figure 715 InvShiftRows of a state.

7.3.4.3 MixColumns and InvMixColumns Transformations
MixColumns operates on the state column-by-column using a linear function, which provides a strong diffusion. More
precisely, each byte in a column of the input state is replaced by twice that byte, plus three times the next byte, plus the byte
that comes next, and plus the byte that follows in the column. In each column, bytes are used in a circular way.
InvMixColumns undoes the MixColumns transformation.

7.3.4.4 AddRoundKey Transformation
AddRoundKey XORes a round key with the input state, byte-by-byte. The key of round rnd, rnd =1, ..., Nr, is composed of

four words denoted KW, ., t0 KW, ;. 1)+4 ;- The rule of transformation is defined by:
[S(;c ’ Sll,c’ Szl,c’ S3/c] = [SO,C’ Sl,c’ SZ,C’ S3,c] @ [vamd*4+c]’ fOT 0 S c< 4

In the encryption (resp. decryption) operation, the initial input state is added to the key words KW, to KW, (resp. KWy,
to KWy,) before performing the first encryption (resp. decryption) round.

7.3.5 Key Expansion

Key expansion takes a key K of 128, 192, or 256 bits, and generates Nr + 1 round keys grouped in a 4-byte-word array, denoted
W. The total number of 4-byte words of W array is of (N¥ + 1) * 4: four words are added to the initial state input and four words
for each of the Nr rounds. The four words, W/[4R|, W[4R + 1}, W[4R + 2], and W[4R + 3], form the key of round R.

The round keys are computed recursively; i.e. the key of round R is computed from that of round R —1. To simplify the
key expansion description, we focus on a key length of 128 bits (i.e. Nk = 4),” which is illustrated by Figure 7.16:

1) Key K is mapped to a state of four words: W[O], W[l], W[Z], W[S]. Therefore, the first AddRoundKey call in encryption
and decryption adds the cipher key to initial block.
2) The words of the key of round R is computed as:
W[4*R|=W[4(R—1)|® g(W[4R~1])
W([4*R+ j|=WI[4R+ j—1] @ W[4(R—1)+ jl, for j=1,2,3
The function g(Z) has one-word input and output. It consists in three operations:

e 7' isyielded using a one-byte left rotation of input Z
e using the S-Box, substitute each byte of Z’ and output Z”
e XOR Z" with a known round constant Rcon|Rnd|

Therefore, g(Z) is defined by: g(Z) def SubBytes(LRotate(Z) D Rcon[RndD

The Rcon is an array, which associates one 4-byte constant word with each round R as follows: Rcon[R} = [X}H, 00, 00, 00|,
where x* ! denotes a modular exponentiation in the field (see Section 3.3.2). The three rightmost bytes of Rcon are zeros and
the leftmost bytes are given in Table 7.11.

Pseudocode below is a specification of the key expansion function for any value of Nk (4, 6, or 8).

227

228 | 7 Block Ciphers: Basics, TDEA, and AES

Cipher key K KDKI KZK.? "{4 KS KEF KT Kﬁxﬂ KII:? KII K}ZKIJHNKIS

: ' . :

wioj wij wi2j W3]
o+
e]
]
e
TR
Round key 1 Wr4] Ws] Wy6] wy7j

4
»h)
W b
Y
Round key 2 w(s] wys] w[10] W[11]
Round key 9 YKL wf37] w[38] w(39]
{9 J+
G ¥
e
*
Round key 10 e wi41j wr42j w(43]

Figure 7.16 Key expansion for a key-bit length of 128.

Table 7.11 Values of the leftmost byte of the constant vector Rcon.

Round number 1 2 3 4 5 6 7 8 9 10

Rcon 01 02 04 08 10 20 40 80 1b 36

16 16 16 16 16 16 16 16 16 16

function KeyExpansion
input Nk: key length in 32-bit words; K: key array of Nk 32-words
output W:array of the round keys; W is of 4 = (Nr + 1) words
1. for i= 0 to Nk do
Copy the cipher key K Nk +1 times in the array W
K|[j] denotes the "™ byte of key K; 0 < j < len(K)-1
Wi|=[K[4=i|,K[4=i+1]K[4+i+2][4=i+3]
2.for i=Nk to 4 *(Nr+1)-1 do
tmp =W[i —1]
if (i mod Nk =0)
then tmp = SubWord(RotWord(tmp)) & Rcon[i/Nk]
else if (Nk> 6 and i mod Nk = 4)
then tmp = SubWord(tmp)
W1i]=W]i —Nk]® tmp
3.return W

7.3 Advanced Encryption System (AES)

SubWord(Z) is a function that takes a 4-byte input word Z and applies the S-Box to each of the four bytes to yield an
output word Z’. RotWord(Z) is a function that takes a 4-byte input word Z=|Z,Z,,Z,,Z,| and outputs the permuted
word Z' = [ZI,ZZ,Z3,Z0]. Rcon(i) is a constant array.

7.3.6 Mathematical Description of AES

AES computations are performed over the extension field F,,. Therefore, the design rationale and the proof of correctness
of AES rely on mathematical notions. This section aims at describing AES operations using extension field computations.
The proof of correctness of AES transformations is addressed in Problems 7.10 and 7.11.

The extension field E, also Galois field GF(2%), is the set of elements {0, 1, ..., 255}; it is used to represent and process
bytes in AES transformations. We advise the reader to refer to chapter 3 to learn the fundamentals of finite fields and to do
some exercises included in that chapter.

7.3.6.1 Data Representation and Operations on Data

7.3.6.1.1 Byte Representation and Operations on Bytes

A byte b is a concatenation of eight bits b,b.b;b,b,b,b,b, and it is interpreted as an element of an extension field using a
polynomial representation;i.e. b(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b, x + b,. A byte may be written in base 2 or
in base 16. The notation used to write a constant in base 16 is [..]16; for example [21}16 represents the value 33 in base 10; and
[fd]16 the value 253.

Byte addition
Bytes are elements of the extension field F,;. Addition of elements of extension field F,; is denoted &, which is the bitwise
XOR.

Example 7.2
Leta=11011011 and b=11100011, be two bytes in binary representation. In polynomial representation, we have:

a(x)=x"+x°*+x* +x +x+1and b(x) =x" +x° +x° +x+1

In extension field F,;, the coefficients in the polynomials are binaries. Hence, ¢ = a + b is yielded by:
c(x) =a(x)+b(x)=x°+x* +x°
With the bitwise XOR operation:

a®b=(11011011,) & (11100011,) = 00111000,

Byte multiplication

Byte multiplication, denoted e, is performed with the irreducible polynomial m(x) = x® + x* + x* + x 4 1. Notice that since
the irreducible polynomial m(x) is of degree 8, any multiplication of two bytes results in a value represented by a byte. Any
element b and its inverse b " are both elements of F,. The irreducible polynomial used in AES has a useful property, which
makes it easy to implement the operations especially in hardware.

Example 7.3
Leta=11011011, and b = 00000011, be two bytes in binary representation.
¢ =a«bis computed as follows:

c(x)=a(x)*b(x) mod (xs +x*+x° +x+1)
=P +x%+x°+x*+x*+1) mod (x8 +x* 53 +x+1)
=xC 4+ +xt+xP+x

¢=11011011, - 00000011, = 01110110,

Leta’=10000111, and b’ = 01010110, be two bytes in binary representation.
¢’=a’ + b’ is computed as follows:

c’(x):a’(x)*b’(x) mod(x8 +xt 43 +x+1)

=B +xt+x° +x7 +x° +x) mod <x8 +xt 453 —i—x—i—l):l

229

230

7 Block Ciphers: Basics, TDEA, and AES

¢/ =10000111, » 01010110, = 00000001,

Notice that b’ is the multiplicative inverse of a’ mod O+ x*+x° +x+1).

7.3.6.1.2 Word Representation and Operations on Words
A 4-byte word can be represented as a polynomial of degree 3 with coefficients in F,,. More precisely, a word A=[A4,, A,,
A,, Asz] is represented as a polynomial

Alx)= A3x +Ax +Ax+ Ay, where A_,,; € Fy.

Word addition
The addition of two words A = [AO, AL A, AJ and B= [BO, B,, B,, B,|isyielded by the bitwise XOR of their coefficients.

More precisely, C = A+ B is yielded as follows:
C:[Ao © By, A © B, A, © By, A, @33]
Alternatively, we can write: C(x) = (A, ® Bs)x3 +(A, @ Bz)x2 +(A, ® B)x+(A, ® B)).

Word multiplication
Word multiplication is not used in AES transformations. Rather, the modular product of words, denoted ®, is used instead.
The modular product of two words A = [AO AL A, A3] and B= [BO, B, B,, B3], D= A® B is computed in two steps:

1) Compute the polynomial product A(x) B(x):

C(x)=A(x)+ B(x)= (A + Ax" + Ax+ A, | *(B+ Bx” + Byx + By
=(A,;+By)x°

+((4,+B,) @ (4,+B))x’

+((A;+B) @ (A,+B,) @ (A, +B,))x*
+((A;B)) @ (A,+B,) @ (A, +B,) & (A, +By))x*
+((A,*B)) @ (A, +B)) & (4, B,))x’
+((A;*By) & (A, *B)))x

(4, -

By)

2) Reduce the polynomial C(x):
C(x) is a polynomial of degree 6 and does not represent a 4-byte word. That is why a reduction with a polynomial of
degree 4 is required. More precisely, the polynomial x* +1 is used in AES:

D(x)= A(x) ® B(x)=C(x) mod (x* +1)= D,x* + D,x* + D;x + D,
Thus, D(x) is of degree 3 and its coefficients are computed as follows:
D(x)=((A;*B,)@(A,*B,)B(A, *B,)®(A,B,))x*
+((A4,B)B(A,B)&(4,+B,) 5[4,+B,))x°
+((A,*By) & (4y+ B) (4, B,) (A, B,)x
+(4y+B,) (A, B)®(4,+B,) (4, *B,)

The modular product D(x) = A(x) ® B(x) can also be written in matrix® form as:

D] [4 A A A]lB
D |A A A AB
D,| |4, A A, A B,
D, |A A, A AB

7.3 Advanced Encryption System (AES)

Notes

1) The polynomial x* +1 is not an irreducible polynomial, because it has1 as a root. Thus, the multiplicative inverse does
not exist for some elements mod x* + 1. However, it is not important, because AES makes use of only two polynomials
that both have inverses:

- Polynomial A(x)= {03}16 x®+ [01]16 x4 [01]16 x+ [02}16 is used in MixColumns; and its inverse is
Ax) ' = [ObL6 x>+ [Od}lﬁ x*+ [09]16 X+ [Oe]m. One can easily check that A(x)* A(x) ' =1mod (x* +1).
— Polynomial A(x) = x? is used in key expansion; and its inverse is A(x) ' = x, because x> * x mod (x* +1)=1.

2) AES selected the polynomia] x*+1, due to its simplicity of reduction. Indeed, it provides the following
reduction: x' mod (x* +1)= x'"***.

Example 7.4
- Letw® and W® be two 32-bit words such that:

w® =|[fe],,[11],,,[03],, [ab],] and W =[[aa] .[c1] .[10] .[a0]]

Adding W® to W yields W2, computed as:
W) (x)= (jab],, @[do],)x* +([03],, @ [10],)x> +([11], @ [ea],,)x +([fe],, ®[aal,)
= [7b]16 X+ [alo]16 x? +[13}16 X +[54}16

Thus, W32 —w® L w® — [{54]16, [do] .[13] ,[7b]16}.

- LetW® and W® be two 32-bit words such that:

wo = [[00]16, [00] ..[00] ., [11]16} and W@ = [[cd]m,[oo]m, [22] . [55]16]

The modular product W and W® yields the word, computed as follows:
o Compute the coefficients of the polynomial C*? (x) = W™ (x) * W (x):

C(I*Z) (x) - ([11]16 XS) : ({55]16 x*+ {22]16 x* +[Cd}16)

=([11],, +[55],,)<+ ([11]16 -[22]16)x5 + ([11]16 -[cd]lé)x3

Compute [11}16 -[55]16:
(x4 +1)<x6 +x* +x? +1) mod x* +x* +x* +x+1
=x+x°+x*+x

Thus, [11] {55}16 =[72]

16 16

Compute [1 1}16 . [22]16:

(x* +1)(x° +x) mod x® +x* +x* +x+1=x +x* +x*

Thus, [11] +[22] = [34]

Compute [1 1}16 + [cd]16:

(x4 +1)(x7 +x% x4 x2 +1) mod x® 4+ x* +x* +x+1
=x"+xX+x° +1
Thus, {11]16 -{cd]16 = {a9]16.

Therefore, C"*? (x) = [72]16 x®+ [34}16 x° + [a9]16 X3

231

232 | 7 Block Ciphers: Basics, TDEA, and AES

- Reduce the polynomial C""?(x):
cY?(x)mod (x* +1)= [39]16 X+ [72]16 x* + {34]16 x

- Finally, WD =W @ w = “00]16 > [34]16 ’ [72]16 ’ [39]16}‘

7.3.6.2 SubBytes and InvSubBytes Transformations

SubBytes is a nonlinear® transformation, which operates independently on each byte of the state using the S-Box;
InvSubBytes isits inverse, which makes use of the InvS-Box. Both boxes are 16x16byte arrays. Row and column indexes,
denoted x (4 bits) and y (4 bits), of a box cell form a byte x Il y, which is an element of the extension field F,;.

Construction of S-Box
Let a denote the concatenation of the row and column indexes of an S-Box cell. b’, the content of the S-Box cell indexed !
by a, is computed in two steps as follows:

1) Take b, themultiplicativeinverseofaintheextensionfield F,,; thatis,b= a lie 1=b(x)*a(x)mod (x® +x*+x*+ x+1).
Since the element 00 has no multiplicative inverse in any extension field, AES authors made an exception and mapped
00 to itself.

2) Apply the following affine transformation to the element b, for 0 <i<8, to yield b’ such as:

/
by =b; ® B 4y moas DOiis)mods D Yiiv6) moas DVir7ymoas D v (7.1
where c is a constant with the value [63],, = 01100011,.

Computing inverses in F, results in a nonlinear byte substitution, which makes AES resistant against some forms of crypt-
analysis attacks.

Example 7.5
- S_Box(0,0)= {63]16, because:
o The inverse of a = 00 is b = 00 (by AES design)
o By(7.1),b/=c,. Since c = [63]16 ,b'= [63}16.
- S_Box(8,7)=17, because:
o In extension field sz, the inverse of a =87 is b =56
o By (7.1):

byj=000®100®140=0 b=000600161®0=0
by=1®100016061=0 b =13100005160=1
bi=001016061®1=0 b =1006160005H1=1
by=10001®10000=1 b =00100H160d1=1

In the matrix form, the affine transformation (7.1) can be specified as follows (with addition modulo 2):

byl |1 0 0 0 1 1 1 1y{b,| (1
b/l 1 1 0 0 0 1 1 1{b| |1
byl 1 1 1.0 0 0 1 1||b,| (0
byl 1 1110 0 0 1fb,| |0
B[t 11110 0 op|% (7.2)
bl 10 1 1 1 1 1 0 0f|b| |1
byl 10 01 1 1 1 1 0f|b| |1
byl 100 0 1 1 1 1 1j/b| |0

Construction of InvS-Box
The InvS-Box is constructed in the inverse order of that of the S-Box; it is obtained by the inverse of the affine transforma-
tion used to construct the S-Box and then, by computing the multiplicative inverse.

7.3 Advanced Encryption System (AES)

Let o denote the concatenation of the row and column indexes of an InvS-Box cell. 3’, the content of the InvS-Box cell
indexed by «, is computed in two steps as follows:
1) Apply the following affine transformation to the element «, for 0 <i < 8, to yield
!
= Qi) mod s P Y115y mod s P27 moa s D Do (7.3)
where d is a constant with a value of 05, = 00000101,

2) Take (', the multiplicative inverse of o’ in the extension field E,; that s, =o',

In the matrix form, the affine transformation (7.3) can be specified as follows (with addition modulo 2):

by| [0 01 0 0 1 0 1{/by| |[1
b| |1 00100 1 0fb| |0
byl 10 1.0 0 1 0 0 1|b| |1
byl 11 01 0 0 1 0 Of/b| |0
B0 1010 0 1 ol o (7.4)
bl 10 01 0 1 0 0 1|b| [0
byl |1 0 01 0 1 0 0flb| |0
byl (01 0 0 1 0 1 Ofb| [0

Note. The elements of the S-Box and their inverses are constants; thus, they are computed one time and stored in two
tables.

7.3.6.3 ShiftRows and InvShiftRows Transformations
InShiftRows and InvShiftRows, the row 0 of the state is not shifted, while the others are left-shifted using Shif tRows
and right-shifted using InvshiftRows. Therefore, for any state S, InvShiftRows(ShiftRows(S))=S.

7.3.6.4 MixColumns and InvMixColumns Transformations

In the MixColumns transformation, each column of the state is considered as a polynomial of degree 4 with
coefficients in the extension field F,, and multiplied modulo the polynomial x*4+1 by a fixed polynomial
a(x)= [03]16 X+ [01}16 x>+ [01]16 X+ [02]16. Thus, a state S is mapped to S’, such that: S'(x) = S(x) ® a(x), which can be

written as a matrix multiplication, for each column ¢,0<c <4, as follows:

Soc| 02 03 01 o01]S
Si.| |01 02 03 01{S,, 7.5)
s/ | o1 01 02 03||S '

2,¢ 2,c

s/ | |03 01 o1 0z,

The four bytes resulting from the multiplication are as follows:
Spe = (102155,) (035 +S,) BS,, B, . for0<c<4
Sl =S0e @ ([02],,+S,)&((03],, + S,) @S, for0<c <4
L. =5,,®8,® ([02}16 -Sz,c> ([03]16 -SS,C), for0<c<4
S1.=([03],, o) @ S, @ S, @ ([02] -8,), foro<c<4

From the four equalities above, we observe that each byte in a column c of the input state S is replaced by twice that byte,
plus three times the next byte, plus the byte that comes next, and plus the byte that follows in the column.

Example 7.6

Assume that the first column of the state S is “10}16,[00]16,[00]16,{01]16]. We compute the new column yielded by

MixColumns. The polynomial associated with the first column is: S, ,(x) = {01]16 X+ [10]
Compute the modular product: S, ,(x) ® a(x).

16

233

234 | 7 Block Ciphers: Basics, TDEA, and AES

Seo(x) ®a(x):([01

[10}) ([03]16 x* +[01] x*+[01] x +[02}16) mod (x4 +1)

([03 . 16)x6 +6()x5 +([01]16 . [01}16)x4
+([02], «[o1],, ®[o3], [10])x3+([01}16‘[10]16)x2
+([o1],, +[10],,)x+([02],, +[10],,) mod (x*+1)

= ([02],, +[01],, ®[03],, «[10])x*+([01] -[10] & [03] +[01])**
+([o1],, + [10], @ [o1] +[o1] }x-+([02],, - [10] @on] «[o1])
=([o2],, [03] -[10])" +(1 } (o3,)x*
+([10],, @ [o1],,)x+([02],, - [10] @on])
=[31] +[13] x4 x+[21]
Therefore, the new first column is {[21}16 ,[1 1]16 ,{13}16 ,[32]16}.

In the InvMixColumns transformation, the columns of the state are considered as polynomials of degree 4 with
coefficients in the extension field F,, and multiplied modulo the polynomial x*+1 by a fixed polynomial

al(x)= [Ob]16 x>+ [Od]16 X%+ [09]16x + [OeL6, the inverse modulo x* 41 of the one used in MixColumns.

Thus, a state S is mapped to S’, such that: §'(x) = S(x) ® a' (x), which can be written as a matrix multiplication, for each
column ¢, 0 < ¢ < 4, as follows:

Soc| [0e 0b 0d 09][s,.
S{.| |09 0Oe 0b o0d||S,, 7.6)
Si.| |0d 09 Oe 0b||S,, '
st 0b 0d 09 Oe||S;,

The four bytes resulting from the multiplication are as follows:

Sé’C :(06]16) S) ({Ob] * S >@([Od]1s) 52’0)69([09}16 ¢ S3’C), for 0<c<4

{
S{.=([09],, * S| @ ([0€],, + ..)@ ([ob],, + S,) @([od], -5,), for0 <c<4
Sy =([0d],, + s,) @ (. 1C)ea([Oe] S,.)@([ob], - S,), for 0<c <4
Sy =([ob], + S,)o([0d] - S,.)@([09],, + S,) ([0€],, + S,). for 0<c <4

7.3.6.5 AddRoundKey Transformation
AddRoundKey is an XOR operation between a state and the round keys; it is its inverse.

7.3.7 Security of AES

Although AES was introduced in 2001, all the threats against the AES cipher remain theoretical, because of their time com-
plexity, which remains beyond the ability of any computer system to handle. This would last for a long time. In particular,
differential and linear cryptanalyses have been used to design attacks against AES; however, their time complexity is just
an optimization of that of brute-force attack. Such attacks will be addressed in Chapter 11.

A major known risk to AES encryption comes from side-channel attacks. Rather than attempting brute-force or crypt-
analysis-based attacks, side-channel attacks are aimed at collecting information about what a computing device does when
it is performing cryptographic operations (e.g. AES permutations, substitutions, etc.). Some side-channel attacks have been
proposed and took advantage of some specific hardware or software implementations. To our knowledge, the most recent
side-channel attack against AES was proposed in [8]. The attack targeted AES used in OpenSSL and made strong assump-
tions: i) the attacker is hosted on the same processor as the attacked system and both share the same processor cache, ii)
the attacker can pre-empt the victim while it is encrypting or decrypting, iii) a few blocks of plaintext or ciphertext are
known. Under such assumptions, the proposed attack runs in less than a minute. In conclusion, security experts still con-
sider that AES is secure when implemented properly.

7.4 Exercises and Problems | 235

7.4 Exercises and Problems
7.4.1 List of Exercises and Problems

Exercise 7.1

Consider the first round of the Feistel cipher encryption. Which part of the plaintext is encrypted at the end of the round?
Exercise 7.2

Select randomly six bits in a 64-bit block B and check that the permutation I[P~ (defined by Table 7.2) is the inverse of the
initial permutation IP (defined by Table 7.1).

Exercise 7.3

What is the probability that DES encryption maps a plaintext x to a ciphertext y for a given key? For all keys?

Exercise 7.4

One property of DEA that makes TDEA secure is that the selection functions SF, iE{l,S], are nonlinear. Use the following

three pairs of inputs and show that SF,(x,) & SF,(x,) = SF,(x, @ x,); i.e. show that SF, is nonlinear.

- x, =111111, and x, = 000000,
- x; =110110, and x, = 001001,

- x, =111000, and x, = 000111,
Exercise 7.5

1) What is the output of the first round of DEA when the plaintext and the key are both all zeros?
2) What is the output of the first round of DEA when the plaintext and the key are both all ones?

Exercise 7.6

What do you get if you left-rotate by one position the last two 28-bits blocks, i.e. C}¢ and D,

in the key schedule function?
Exercise 7.7

Show that SubBytes and ShiftRows transformations of AES can be applied in either order with the same result.
Exercise 7.8

What is the output of the first round of AES when the plaintext block and the cipher key are both of a value of 1129 je. all
bits are 1s?

Problem 7.1

Recall that, in a round i of Feistel network, the input is a pair of halves L, | and R, , and a round key K;; and the output is
a pair of halves L, and R, defined by L, =R, , and R, =L, , ® F(R_,,K,). Prove that no matter what the function F is, the
round transformation is one-to-one, i.e. we can recover the old state (L, ,, R, ,) from the new state (L;, R;) and the round-

key K.

Problem 7.2

Prove the correctness of Feistel encryption and decryption assuming that the number of rounds is 1 or2.
Problem 7.3

Prove the correctness of Feistel cipher for an arbitrary number of rounds.

Problem 7.4
Prove the correctness of TDEA, i.e. the decryption a ciphertext block yields the original plaintext block.

Problem 7.5

1) Prove the following property called complementation property of DES:
C=E(K,M)=C=E(K,M)
where X is the bit-by-bit complementation of bit-string x.

236

7 Block Ciphers: Basics, TDEA, and AES

2) Explain how the complementation property of DES can be used to reduce the computation time of a brute-force attack
against a DES key by about a factor of 2, if the adversary knew two plaintext-ciphertext pairs, (M,,C,) and (M,,C,),
such that M, = M,, C, =C,, C, = E(K, M,), C, = E(K, M,). Assume that only encryption and decryption operations
are time-consuming.

Problem 7.6

1) Show that if all the round keys of DEA are identical, encrypting twice a plaintext B results in the plaintext B;
i.e. E(K,E(K,B))= B.

2) Discuss why the following DEA keys are weak and should be avoided Key, =0101010101010101,, and

Key, = FEFE FEFE FEFE FEFE,.

Problem 7.7
Let Key, = 011F01 1F010E01OE16 and Key, = 1F011FOIOE010E0116 be a pair of DEA keys.

1) How many distinct round keys are generated for both keys?
2) Show that (Key,,Key,) is a pair of semi-weak keys, i.e. for any plaintext M, E(Key,,E(Key,,M))= M.

Problem 7.8
In the DEA key scheduling function, after dropping odd parity bits, 56 bits are used to generate 48-bit round keys. Thus, at

each iteration, eight bits of the key are not used. Identify which key bits are not used to generate the first round key.

Problem 7.9

In this problem, we discuss the success probability of the meet-in-the-middle attack against double-DES described in

Section 7.2.3.3.

1) What is the probability of false alarm with a single known plaintext-ciphertext pair (P, C,)?

2) To increase the success probability of the attack, consider the following strategy: i) The first plaintext-ciphertext
pair (P,,C)) yields a set of key pair candidates, denoted S.
ii) A second plaintext-ciphertext pair (P,,C,) also is known and it is tested, but only the key pair candidates in S are used.
What is the false alarm probability with two known plaintext-ciphertext pairs?

3) What is the false alarm probability with three known plaintext-ciphertext pairs?

Problem 7.10
Using the matrix forms of construction of S-Box and InvS-Box, prove that InvSubBytes (SubBytes (S))= S, for any

state S.
Problem 7.11

3 2 : ; 3 2 4 :

1) Prove that [Ob}16 X+ [Od]16 x4+ [09]16 x4+ {Oe]16 is the inverse of[03}16 X —i—[Ol}16 X —i—[Ol}16 X +[02]16 mod (x” +1), with
coefficients in F;.

2) Using the matrix form, prove that InvMixColumns is the inverse of MixColumns.

7.4.2 Solutions to Exercises and Problems

Exercise 7.1
Operations performed in the first round are LE, = RE, and RE, = LE, ® F(RE, K,).

The right half is used in the round function F, but it does not change and it is directly copied in the left part of the input
to the second round.

The left half is XORed with the output of the round function F and the transformation result is copied in the right part
of the input to the second round. Therefore, only the left part of the plaintext is encrypted in the first round.

Exercise 7.2
Let B, B/, and B” be 64-bit blocks presented as vectors of bits B[l : 64], B’{l : 64}, and B”{l : 64}. Let B'=IP(B) and
B” = IP"!(B'). We need to check that B” = B.
Consider six bits randomly selected: B[l}, B[S}, B[Zl}, B[49], B[SZ], B[63}.
Computation of B’ = IP(B) yields:
B'[1]=B|58] B'[5|= B]26] B'[21|=B[30]

7.4 Exercises and Problems
B'[49]= B[61] B[52|=B[37] B'[63]=B[15]
Computation of B” = IP~'(B') yields:
B"[1]=B'[40]|=B[1] B"[5|=B'[56]=B[5|
B"|21|=B'|54|= B|21 B"|49|= B'|34|= B|49
B"|52|=B'|10|= B|52 B’ 62]:B’ 17|=B 62)

Exercise 7.3
DEA key length is of 56 bits; hence, there exist 2°° distinct keys. DEA block length is of 64 bits; hence, there exist 2°* distinct

plaintext blocks and 2% distinct ciphertext blocks. For one key, a plaintext x maps to a ciphertext y with a probability of %.
2

For 2° distinct keys, a plaintext x maps to a ciphertext y with a probability of 2% #2%0 = ;R
Exercise 7.4
Recall that given a 6-bit value v, selection function SFj, j=1, ..., 8, yields a 4-bit value w = SF) (v). SF) (v) returns the table
element S j(vr,vc) such that v,, the row number, is a 2-bit value formed by the first and the last bits of v; and v,, the column
number, is a 4-bit value formed by the Z“d, 3rd, 4th, and 5™ bits of v. We compute input images and then check the nonlin-
earity of the selection function SE,:
- x, =111111, = 63 and x, = 000000, = 0

SE,(63) = S,(3,15) = 1001, and SF,(0) = S,(0,0) = 1111,

SF,(63) @ SF,(0) =1001, ®1111, = 0110, = SF,(111111, & 000000,) = 1001,
- x, =110110, = 54 and x, = 001001, =9

SE,(54) = 5,(2,11) = 0110, and SF,(9) = S,(1,4) = 1111,

SE,(54) @ SE,(9) = 0110, ©1111, = 1001, = SF,(110110, ©001001,) = 1001,
- x, =111000, = 54 and x, = 000111, =7

SE,(56) = S,(2,12) = 1001, and SF,(7) = S,(1,3) = 0111,

SE,(56) & SF,(7) =1001, © 0111, =1110, = SF,(110110, & 001001,) = 1001,

All the checked pairs confirm the nonlinearity of SF,. The same applies if another DEA selection function is tested.

Exercise 7.5

1) Let B=0"" and K = 0°* be a plaintext and a key; both are all 0-bit strings.
Applying the initial permutation to B yields a 64 zero-bit string. Therefore, the input of the first round is the same than
B;jie. L, =0and R, =0.

If the DEA key is 0°¥, then the key scheduling function yields 16 round keys, which are all equal to 04®).
Application of the function F with R, = 0©? and a round key K, = 0“®): first the expansion key yields a 0“® bit-string;
second, the input of all the selection functions is 0(6); therefore, all of them yield the first element of their tables:
SF,(0) = 14, SF,(0) =15, SF,(0) =10, SF, (0) = 7, SF,(0) = 2 SF,(0) = 12, SF,(0) = 4, SF,(0) =13.

Thus, f(o(”),o(“g)) = P(11101111101001110010110001001101,)
—11011000110110001101101110111100,

Therefore, the output of round 1 is:

L =R,
1
R, =L, & f(0,0)=11011000110110001101101110111100,
= DSDSDBBC,,

2) Let B=1" and K =1®* be a plaintext and a key; both are all 1-bit strings.

Applying the initial permutation to B yields a 19 bit string. Therefore, the input of the first round is the same than B;
ie. L,=1%?and R, =10?.

If the DEA key is 1°¥, then the key scheduling function yields 16 identical round keys, which are all equal to 1.
Application of the function F with R, = 142 and a round key K, = 199): first the expansion key yields a 149 bit-string;
second, Exp(R0 ®K))= 0(48); thus, the input of all the selection functions is 1(6); thus, all of them yield the first element
of their tables: SF,(0) = 14, SF,(0) =15, SF,(0) =10, SF,(0) =7, SF,(0) = 2 SF,(0) =12, SF,(0) = 4, SF,(0) = 13. Notice
that f(1(32),1(48)) is the same than f(O(SZ),0(48)).

237

238

7 Block Ciphers: Basics, TDEA, and AES

Therefore, the output of round 1 is: L, =1%? and R, =1%? @ f(1%?,1“¥) = 00100111001001110010010001000011,
—27272443,,.

Exercise 7.6

Allblocks C; and D, i =1, ..., 16, used in the key schedule function are 28-bit blocks. NLR (Table 7.8) vector determines the
number of positions to rotate both C; and D, for each round i. At 16™ round, the value of C,¢ (resp. D,() is the initial value
C, (resp. D,), which has been left-rotated by a total number of positions equal to the sum of elements of vector NLR (i.e.
4%1412%2=28). Thus, if you left-rotate C,, (resp. D,,) by one position, you get C, (resp. D,). Notice that C; = C,, and
D, = Dy

Exercise 7.7

Let Sb(S, .) denote the substitution of byte S, . (i.e. the byte of state S at row r and column ¢) using the S-Box. The result of
ShiftRows (SubBytes (S)) isgiven on the left of Figure 7.17 and that of SubBytes (ShiftRows (S)) on theright.
The results are the same. Thus, SubBytes and ShiftRows can be applied in either order in the AES encryption.

Exercise 7.8
1) The plaintext and cipher key are both of a value of 1429); therefore, the key expansion function yields the following two
first round keys:
Key of initialization, K, = (W[0], W[1], W[2],W[3]), where W[0] = W[1] = W[2] = W[3] =[FF, FF,FF,FF]|
Key of the first round, K, =(W[4],W[5],W[6],W[7]) computed as follows:
Wl4]=wI[0]® g(W[3]), where g(W[3]) is yielded by three operations:

Soo | Sog | Soz | Sea Soo | Sou | Sea | Sos
Sio | S| Siz2| Sis Sio | Si1| Si2 | Sis
Sap | S21 | Sa2 | Sa3 Sz0 | Saa | S22 | S
S30 | 831 | Ss2 | Saa Si0 | Saa | B3z | Sis
j
| subBytes | ShiftRows
v |
Sb(Sp0) | Sb(Sy,) | Sb(Sy,) | Sb(Sq4) Soo | Sox | Soz | Sos
Sb(S; 4) | Sb(S, ;) | Sb(S,,)| Sb(S,) Si1 | Sia| Sia | Sip
Sb(S,) | Sb(S;,) | Sb(S,,) | Sh(S;) S15 | S23 | Sap | Say
Sb(S3) | Sb(S;,) | Sb(S;,)| Sb(S;3) Sis | Ss0 | Ss | sz
1
ShiftRows : SubBytes
F F
Sb(Sg0) | Sb(Sq) | Sb(Sg,) | SbiSg3) Sb(Sg0) | Sb(Sg,) | Sb(Sy5) | Sb(Sy4)
Sb(S,,1) | Sb(S, ;) | Sb(S,3) | Sb(S,4) Sb(S,,) | Sb(S,,) | Sb(S;3) | Sb(S;y)
Sb(S;,) | Sb(S;;) | Sb(S;,) | Sb(S;,) Sb(5;,) | Sb(S;5) | Sb(S,4) | Sb(S,,)
Sb(S33) | Sb(S54) | Sb(S;,)| Sb(S;2) Sb(S;3) | Sb(S;) | Sb(S;,)| Sb(S;2)

Figure 717 ShiftRows and SubBytes can be used in any order.

7.4 Exercises and Problems | 239

Z = LRotate(W|3]); Z =[FF, FF, FF, FF], because W3] has only 1-bits.
Z' = SubBytes(Z); Z' =[16,16,16,16], because S_Box[FF]=16
7" =[16,16,16,16] & Rcon[1]=[17,16,16,16]
Thus, W[4]=|FF,FF,FF,FF] ®[17,16,16,16] =[e8, €9, €9, 9]
W[5]=WI[4]®W[1]=[e8, €9, €9, e9] & [FF,FF,FF,FF| =[17,16,16,16]
wle6]l=W|[5]®W[2]=[17,16,16,16]|®|FF,FF,FF,FF]=[e8, €9, €9, e9]
W[71=W][6]®W[3]=[e8, €9, €9, e9]® [FF,FF,FF,FF]=[17,16,16,16]
2) The transformations steps until the end of the first round are as follows:
S1= AddRoundKey(S) = [FF, ..., FF]®[FF, ..., FF]=[00, ..., 00]
S1is an array of sixteen 0-bytes.
S2 = SubBytes(S1) =63, ..., 63]; S2 is an array of sixteen 63-bytes.
S3 = ShiftRows(S2) =[63, ..., 63]; S3 is an array of sixteen 63-bytes.
The four columns of S3 are identical. The transformation of one column by
MixColumns is computed as follows:

02 03 01 01|63 0263003630 0163P01+63| |63
01 02 03 01]|63 0163@0263G0363001+63| (63

01 01 02 03|63 |01+63®01+63dH02+63G03+63 |63
03 01 01 02||63] |03.63001+63D01+63002+63| |63

Thus, S4= MixColumns(S3)=[63, ..., 63]
S5= AddRoundKey(S4)=
[63,63,63,63,63,63,63,63,63,63,63,63,63,63,63,63]
@ e, €9, €9, €9,17,16,16, 16, €8, €9, €9, €9,17,16,16,16]
=|[8Db, 8a, 8a, 8a, 74, 75, 75, 75, 8b, 8a, 8a, 8a, 74, 75,75, 75|
S5 is the output of the first round.

Problem 7.1
If L, and R, are known, then L, ; and R, , are recovered as follows:

Li=R ,=R =L
R=L_,®FR_.K)= L_, =R ®F(R_,.K;)=R, & F(L,K)).
Therefore, we can recover L, , and R, , if we know L, R, and K, for any function F.

Problem 7.2
Feistel cipher is correct, if Dec(Enc(B)) = B, where B denotes a plaintext block.

1) Number of roundsn =1
B=(LE,,RE,); B is the plaintext, which is divided into two equal-size halves, LE, and RE,.

Encryption

Round 1:

LE, = RE,; RE, = LE, & F(RE,, K,)

The ciphertext is C = RE, Il LE,

Decryption

C=(LE, ® F(RE,, K))) Il (RE,) is the ciphertext

Divide C into two equal-size halves: C = ((LE, ®© F(RE,, K,)), (RE,))
LD, = RD, = RE,
RD, = LD, ® F(RD,, K,)= LE, & F(RE,, K,) F(RE,, K,)=LE,

RD, |l LD, = B. Therefore, the decryption produces the original plaintext block.

2) Number of rounds n =2
B=(LE,,RE,); B is the plaintext divided into two equal-size halves.

240

7 Block Ciphers: Basics, TDEA, and AES
Encryption
Round 1:
LE, = RE; RE, = LE, & F(RE,, K,)
Round 2:
LE, =RE, = LE, ® F(RE,, K,)
RE, = LE, ® F(RE,, K,) = RE, & F(LE, & F(RE,, K,), K,
The ciphertext is C = (RE, ® F(LE, ® F(RE,, K,), K,)) Il (LE, ® F(RE,, K,))

Decryption:
C=((RE,®F(LE, ® F(RE,, K)), K,)),(LE, ® F(RE,, K,))) is the ciphertext.

Round 1:
LD, =RD,= LE, ® F(RE,, K,); RD, = LD, ®© F(RD,, K,)
= (RE,F(LE, ® F(RE,, K,), K,)) ® F(LE, ® F(RE,, K,), K,) = RE,
Round 2:
LD, = RD, = RE,
RD, = LD, © F(RD,, K,) = LE, ® F(RE,, K,) ®

[F((RE, & F(LE, & F(RE,, K,), K,))® F(LE, ® F(RE,, K,), K,), K,)| = LE, ® F(RE,, K,) &[F(RE,, K,)|= LE,

RD, I LD, = B.
Therefore, the decryption produces the original plaintext block. O
Problem 7.3

In Problem 7.2, we proved the correctness of Feistel cipher when the number of rounds is 1 or 2. In this problem, we address
the correctness of Feistel cipher for an arbitrary number of rounds. To prove the correctness of Feistel cipher, we need to
prove (by recurrence) that the computations in the decryption step have the following property:

Vi,1<i<n,LD,=RE, ,and RD,=LE,

The proof is made easy by the following fact: in encryption step, at round i, the right half is directly copied in left half used
inroundi+1. Hence, by Feistel design, LE; = RE, ,,fori=1, ..., n.
The input of decryption is a ciphertext, which is equal to RE,, || LE,. Thus,
LD, = RE, and RD, = LE,,.
In the following, halves computed in encryption step are used in substitutions in the calculations of halves in decryption
step.
Verify the property in round 1:
LD, =RD, =LE, =RE, ,
RD, = LD, ®F(RD,, K,)=RE, ®F(RE, ,, K,)
=(LE, ,®F(RE,_,, K,))®F(RE, ,, K,)=LE,_,

Verify the property in round 2:
LD,=RD,=LE, ,=RE, ,
RD,=LD, ®F(RD,, K, ,)=RE, , ®F(LE, ,, K,)
= (LEnfz @F<REn72’ K,))@F<R‘En72’ K,) =LE,_,
Assume that the property hold for round n —1. So,
LD, ,=RE, , , =RE,

RD, = LEn—(n—l) =LE,

7.4 Exercises and Problems

Then, verify the property in round n:
LD, =RD, , =LE, =RE,
RD,=LD, | ®F(RD, ,, K,)=RE, ®F(LE,, K,)
=(LE, ® F(RE,, K,)) ©F(LE,, K,)= (LE, ® F(RE,, K,))® F (RE,, K,)= LE,
The result of the last decryption round is (RE), LE,)). Then, swapping the two halves yields (LE,, RE,,), which is the original
plaintext.]

Problem 7.4

First, we address the correctness of DEA. Recall that DEA encryption and decryption are based on a Feistel network of 16
rounds. Let the 16-round Feistel network be modeled as a function F that takes a 64-bit block and a set of 16 round keys;
and it yields an output of the same bit-length. DEA encryption and decryption can be written using the function F as
follows:

Encryption: E(K,p)=c=IP ' (F (K;,IP(p))) (@)
Decryption: D(K,c) = p=IP"'(F (K,.IP(c))) (b)

where IC, = {Kl, K,, .. K 6} is the set of the round keys yielded by the key schedule function, using the key K; and /C is

the reverse set of KC;; IC) = {KW K o K1}'
F is proven to be correct (see the solution to Problem 7.3). Therefore, if I, is a set of 16 round keys and /C is its reverse,
then:

F (Kg,x)=y=F (K,,y)=xforany(x,y) € {0,1}64 X {0,1}64 ©
Making substitution of (a) in (b) and using (c):
D(K,c)= IP*I(f (ICD,IP(IP’I(]-' (ICE,IP(p>)))))
—1p! (]—' (K. 7 (ICE,IP<p))>> = 1P (IP(p))=p
Second, TDEA is correct if and only if the following condition holds:
Dyppa((Key, . Key,, Key,), Erpp, (Key,, Key,,Key,),p)) = p
By TDEA construction:
Erpg,((Key,, Key,,Key,),p) = E(Key;, D(Key,, E(Key,, p)))
Dy 4 ((Key,,Key,,Key,),c) = D(Key,, E(Key,,D(Key,,c)))
Let c; = E(Key,,p), ¢, = D(Key,,c,), and ¢ = E(Key;,,c,)
Make substitutions in the decryption formula:
D(Keyl,E(Keyz,D(Key3,c)))
= D(Key, E(Key,, D(Keyy, E(Keyy.c,)
= D(Keyl,E(Keyz,cz)> = (Keyl,E(Keyz,D(Keyz,c1)))
= D(Keyl,cl) = D(Keyl,E(Keyl,p)) =p
Problem 7.5
1) Proof of the complementarity property of DES
We need the following lemma.
Lemma: for any pair of n-bit strings, x and y, the following holds:
X y=x®yandxpy=xPYy.
Proof: let 1" denote a bit string with n 1-bits.
By definition of the bit-by-bit complementation (denoted 1-complement):
X @1 =xandx 21" =x.
X oy=x0ye0® 01")=((xe 1) o y) g1

=(xay el =xay
xoy=x0yol” o1 =x e1M)eFo1")=xay. .

241

242

7

Block Ciphers: Basics, TDEA, and AES

We need the following facts, which are easy to prove: -
i) Initial and final permutations and expansion operation: for any input x, IP(x)=IP(x), IP '(X)=1IP '(x),
Exp(X) = Exp(x). Therefore, these transformation operations have no impact on the proof.
ii) Given a DES key K, the round keys generated using K are 1-complement to those generated using K.
iii) Because in function f, the round key is XORed with the input, the 1-complement is eliminated. Thus,
FR_,K) = f(R_,K)).

When E(K,M) is computed, the initial halves are L_0 =L, and R_0 =R,.

When E(K,M) is computed, for any round i,i€ {l, 16}, the rule of state change is defined by: L,=R, ; and
R=L_, &f(R_;,K) L

We can derive the state change when E(K, M) is computed as follows:

L=R,=L=R,

R=L_®f(R_,K)=R=1L_, &f(R_},K})
By the previous lemma and fact iii),
R=L_ &f(R_,K)=L_ &f(R_;,K})

After the final permutation, the output of E(K, M) is (R—m,g), which is the 1-complement of E(K,M) = (R, L,;). There-
fore, we can conclude that:

C=E(K,M)=C=E(K,M) O

2) In general, when the naive brute-force attack is applied against DES, the adversary, who knew a plaintext-ciphertext

pair (M,C), needs to test each of the 2°° keys to find a key, which matches the known pair. In this problem, we assume
that the adversary knel two Blaintext—ciphertext pairs, (M,,C,) and (M,,C,), such that M, = M, and C,=C; ie.
C,=E(K, M,)=E(K,M,)=C, = E(K,M)). o
By the complementation property, which states that C = E(K,M)= C = E(K,M),

C, = E(K,M,) = E(K,M,) = E(K,M,) (a)

Let’s see the attack that takes advantage of the complementation property. The adversary tries all the 2°° keys whose left-
most bitis0 (notice that the other 2> keys are 1-complement of the tried keys). Let K’ be one of the tried keys. The adversary
makes an encryption, C = E(K',M,).If C; = C, then K'islikely to be the real key K. Otherwise, if C, = C, then, by the
double equality (a), K’ is likely to be the 1-complement of the real key K, i.e. K’ = K, because C, = E(K,M,) = E(K',M,).
If neither K’ nor K’ can be the real key K, another key is picked and tested as above. We mentioned “likely to be the real
key,” because false alarm may occur. Indeed, because the DES key space is of 2°® and the ciphertext space is of 2*, the
same ciphertext may be yielded by more than one key. In particular, we may have C = E(K’,M,) = E(K",M,), while K’
and K” are two distinct keys. To reduce the probability of false alarm, more than two plaintext-ciphertext pairs should
be used. In conclusion, the complementation property of DES reduces the maximum number of encryptions to 2°°.

Problem 7.6

1

2)

The algorithms of DEA encryption and decryption are the same with the exception of the use of the round keys. In the
encryption, the rounds keys are used from k| to k, ., while they are used in the inverse order, from k , to k,, in the decryption.
If all the round keys are identical, the order does matter. Therefore, encrypting E(K, B) is equivalent to a decryption. Hence,
E(K,E(K,B))= B. Notice that decrypting twice a ciphertext C results in the ciphertext C, i.e. D(K,D(K,C))=C.

Take key, = 0101 0101 0101 0101, and drop the odd™" parity bits. The resulting 56-bit key is Key, ;) = 00000000000000, .
Since all the bits of the input are 0 s in key schedule function, all the generated round keys are also 0 s. Permutation, rotation,
and compression of syield only 0 s.

Take Key, =FEFE FEFE FEFE FEFE,, and remove the odd parity bits. The resulting 56-bit key is and
Key, s, = FF FFFF FFFF FFFF, . Since all the bits of the input are s, in key schedule function, all the generated round
keys are also 1 s. Permutation, rotation, and compression of 1 s yield only 1 s. Taking into account the answer to the
first question, both keys are weak and should be avoided, because an attacker can try all weak keys to decrypt twice an
intercepted ciphertext and recover the key if the result is the same after two decryptions.

7.4 Exercises and Problems

Problem 7.7
1) In the first step of the key schedule function, applying permutation PC-1 to Key, = 011F011F010E010E, yields two
28-bitsblocksCp®" = 0000000, .and D, ®" = AAAAAAA ;andapplyingpermutation PC-1toKey, = 1F011F010E010E01,
yields two 28-bits blocks and Dy = 5555555,
First, after left rotation of Cfeyl and C(Ifeyz both remain unchanged, because both are equal to a 28 0-bit string.
Second, since A, = 1010, and 5,, = 0101, left-rotating D, " or D{** yields either AAAAAAA or 5555555, :

LeftRotate(5555555,,1) = AAAAAAA
LeftRotate(AAAAAAA, 1) = 5555555,
LeftRotate(5555555,,2) = 5555555,
LeftRotate(AAAAAAA,,2) = AAAAAAA
In the last step of the key schedule function, only two distinct round keys can be generated, i.e.
K® = PC-2(00000005555555,,) or K@ = PC-2(0000000AAAAAAA,).
Using the number of rotation positions given in vector (Table 7.8), the 32 round keys derived from Key, and Key, are:
RoundKeys(Key,) = (KW, K®, K® Kk® gk® g® k@ @,
K(l),K(l),K(l),K(l),K(l), K(l),K(l),K(Z))
RoundKeys(Key,)= (K, kW k@ kW kW g® kO kO,
K(z),K(z),K(Z),K(Z),K(Z), K(z),K(z),K(l))
2) Recall that the algorithms of DEA encryption and decryption differ only in the order in which the round keys are used.
LetK;,i=1, ..., 16 be the round keys generated by the key schedule function from a key Key. The encryption algorithm
makes use of K, in the 1% round, ..., and K in the 16™ round, while the decryption algorithm makes use of K, in the

1% round, .., and K, in the 16" round. In the answer to question 1, the list of round keys generated from Key, is the
reverse of that generated from Key,. Therefore, encrypting C = E(Key,,M) using Key, is equivalent to decrypting C with

Key,;i.e. E(Key,,E(Key,,M))= D(Key,,E(Key,,M))= M, for any plaintext M.
Problem 7.8

Using Table PC-1, we build the first two 28-bit blocks, C, and D,, used to generate the round keys. Let K/ denote the bit
J.j=1, ..., 64 of the key K (“64”, because the key scheduling function starts with a 64-bit key and then drops odd parity bits).

CO — KS7K49K41K33K25K17K9K1K58K50K42K34K26K18
KOR2KORIR BB KT RO KK K52 KM K36
63 155 147 1739 131 123 115 17 162 154 746 738 7-30 722
D0:KKKKKKKKKKKKKK
K14K6K61K53K45K37K29K21K13K5K28K20K12K4
C, and D, are concatenated to form a 56-bit block. The inspection of Table PC-2 shows that at any round i,i =1, ..., 16, the
0 0 y
following bits are not used to generate the round key K;: bits 9, 18, 22, and 25, located in C,; and bits 35, 38, 43, and 54,
located in D,, (because all those eight numbers are not included in Table PC-2).

The first round key, K, is computed as follows: C, and D, are one-bit-left-rotated to yield C; and D,, which are concatenated
and used in the compression permutation. Therefore, the key bits that are not used to generate K, are: K 0 K*, KM,

K2, K7, K*, K and K"

Problem 7.9

1) With a key bit-length of 56, there exist 2°° *2°° pairs of keys (X;, K i)i, je [O, 2°° —1|. Each pair is used to double-encrypt.
We can do 2" double encryptions, but ﬁ‘ze final ciphertext is an element in {0,1} * Thus, in average, each element of

the ciphertext space can be yielded by % = 2% pairs. The probability to pick the real key pair is 1/2*. Therefore, the
2

probability of false alarm is 1—1/2*, which is a very high probability.

243

244

7 Block Ciphers: Basics, TDEA, and AES

2) With a space of key pairs of 248 pairs, a maximum of 248 ciphertexts may be yielded. Thus, in fsverage, the number key
2

pairs, selected in the previous step, that encrypt the same plaintext to the same ciphertext is == 27'; this probability
2

is also the probability of false alarm. In other words, with two known plaintext-ciphertext pairs, the probability to find
the real key pairis1 -2~ 1.
3) Withlghree known plaintext-ciphertext pairs, the probability that three ciphertexts are yielded by the same key pair

s ——= 2% The latter is the probability of false alarm. In conclusion, three known plaintext-ciphertext pairs are
enough to break double DES.

Problem 7.10

In SubBytes and SubBytes transformations, byte substitution is performed byte-by-byte, independently from each
other. Therefore, to prove that InvSubBytes is the inverse of SubBytes, we need to prove that InvS_Box(S_Box(b)) =b
for any byte b. We use the matrix forms of substitution; i.e. (7.2) and (7.4):

b'=S_Box(b)=b'= Axb®c, where c =[63],,

x = InvS_Box(b") = x = Bxb’ & d, where d =[05],,

Then, by substitution: x =B (Axb®c)®dd=((BxA)xb)D(Bxc)dd

It is easy to check that Bx A is the identity matrix.

Then, by substitution: x =b& (B*c) & d

As shown below, (Bx*c) & d = 0. Therefore, x = b, which confirms that InvS_Box(InvS_Box(b)) for any byte b.

B ¢ Bxc d Bxcdd
oo0o100 10 11 [1] [1] Jo
10010010/ o o o
0100100 1 [t [1] o
1010071000 o o o
010100100 lo%o o
0010100 11 o Jlo| o
1001071001 o o o
o10010 100 lo lof o

Problem 7.11
1) ({Ob]16 x* +[od] _x* +[09] x+ [Oe]lﬁ) * ([03}16 x* +[01] x*+[01] x+[02]) mod (x4 +1)
= ([ob,, +[03],)x* +([ob],_ «[o1] w[od] _+[03],)"

+([o0],, +[o1], m +[ot], #fos], «[o3],)"
+ Ob]16 {02] -[01]16@[09]16-{01]16@[%}16-[03]16)x3
+((od,, «[02], @ [09],, + [01], @ o], -[on],] "

y 01
[0 @Oe {01]

(

(
+([09 Jx

(

]
{0)(modx +1)

]16
}

+(|0e 6
:({Ob]w) [02}16 [Od] [] [09}16 ° {01] {06]16 . [03]16)x3
+ Od]m 02} @[09} {

@oe] +[o1] @[op] - {03]16)x2
o

16
. 02] @ [0e] - [01] &[ob] [01]16@[0d}16-[03]16)x

(
+([09],, -
([oe],, +[0 }

+ «[o1] e [od] - [01]16@[09]16.[03]16)
([16]16@{0@ @[09] o12])x* +([1a], & [09], ©[0e], & [1d])x*
+([12],, ®[0e],, ®[0b], & [17],)¢

+([1c],, @[ob],, @[od] @ [1b])

=(0)x* +(0)x* +(0)x +1= 1mod(x +1)

16

Notes | 245

Therefore, [Ob]16 X+ [0dL6 x4 {09]16x + [Oe]16 is the inverse of [03]16 X+ [01]16 x>+ [01]16x + [02}16 mod (x* +1)
with computations in the extension field F,
2) Let A and B be the matrices defined by (7.5) and (7.6). Using the matrix form of the MixColumns transformation, for any
4-byte column ¢, ¢’ = MixColumns(c) can be written as ¢’ = A ¢ and d = InvMixColumns(c’) can be written as d = Bx¢'.
Hence, d = (B* A)*c. Let D be the product of matrices B by A.

Oe Ob 0d 09|02 03 01 01

09 0e Ob 0d||01 02 03 01
D=B*A=

0d 09 Oe 0Ob||01 01 02 03

Ob 0d 09 0e||{03 01 01 02

Since & is a commutative operation, we have:

D[1L1]|=D[2,2|=D[3,3] = D[4,4|
{] [} [Ob] : [01}16@{0(1}16 ¢ {01]1669[09]16) [03]16

=|[1c] @[ob] @ [od] @ [1b]
D[1,2] = (0], -[03] & [ob], - [02] &[od] -[01] @[09], -[01]
= [12] @16 ®[od] @[09] =0
D[1,3]=[oe], +[o1], @[ob] +[03] w[od] -[02], & [09] -[o1]
= [0, ®1d],, @ 1a],, &[09], =
D[4, 3} [bl,, +[01},, @[od],; (03], @[09], +[02], ®[oe] -[o1]

 [ob], & 17], =12], & oe], =0

Hence, B*A is the identity matrix and therefore, d = B* A* ¢ = ¢, which confirms that InvMixColumns is the inverse
of MixColumns.

Notes

1 Feistel structure notion was proposed in 1973 by Horst Feistel and Don Coppersmith and implemented in Lucifer cipher.

In literature, there exist other equivalent descriptions of Feistel decryption, which perform computations in the inverse

order, i.e. fromi =n to i = 0 and start with round key K.

DEA is also referred to as the algorithmic design of DES.

US patent n° 3962539, which describes DES, was assigned to IBM Corporation in 1976. This patent expired in 1993.

Do not confuse 2TDEA with 2DES. The latter uses only two encryptions (or decryptions) in sequence.

Rijndael is a contraction of Rijmen and Daemen, the authors of Rijndael algorithm.

Nk denotes the number of 32-bit words of the key. That is, Nk = 4, 6, and 8 to denote keys of 128, 192, and 256 bits,

respectively.

In the matrix forms discussed in the chapter, the usual addition is replaced by the XOR operation.

9 SubBytes and its inverse are the only non-linear transformation in AES.

10 “Indexed by a” means “a is split into two 4-bit halves to yield the indexes of a cell in the S-Box.”

11 0Odd parity works as follows: for a given set of bits, if the count of bits with a value of 1 is even, the parity bit value is set to 1
making the total count of s in the entire set (including the parity bit) an odd number. If the count of bits with a value of 1 is
odd, the count is already odd; hence, the parity bit value is 0.

N OV AW N

©

246

7 Block Ciphers: Basics, TDEA, and AES

References

1 Shannon, C. (1949). Communication theory of secrecy systems. Bell System Technical Journal 28: 656-715.

2 Barker, E. and Mouha, N. (2017). Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher - Special
publication 800-67 (Rev. 2). NIST.

3 NIST. (1999). Data Encryption Standard (DES) - FIPS publication 46-3. National Institute for Standards and Technology.

4 Biham, E. and Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4 (1): 3-72.

5 Matsui, M. (1993). Linear cryptanalysis method for DES cipher. International Workshop on the Theory and Application of
Cryptographic Techniques, Advances in Cryptology, 386-397. Lofthus, Norway: Springer, LNCS 765.

6 NIST. (2001). Advanced Encryption Standard (AES) - FIPS PUB 197. National Institute for Standards and Technology.

7 Deamen, J. and Rijmen, V. (2002). The Design of Rijndael: AES — The Advanced Encryption Standard. Springer.

8 Ashokkumar, C., Giri, R., and Menezes, B. (2016). Highly efficient algorithms for AES key retrieval in cache access attacks.
IEEE European Symposium on Security and Privacy, 261-275. Saarbrucken, Germany: IEEE Xplore.

8
Block Cipher Modes of Operation for Confidentiality

In the previous chapter, two standard block ciphers, namely TDEA and AES, have been presented. A block cipher takes a
fixed-size plaintext block and returns a ciphertext block of the same size. However, in many applications, a plaintext (for
example an image) is composed of thousands of blocks or even more. It is not desirable to use a block cipher in such a way
that the encryption of the individual plaintext blocks leaks some features about the whole plaintext. In addition, in many
applications, the recipient of a message may need to authenticate the message sender.

Data protection refers to confidentiality of data in transit (i.e. data exchanged via a communication network) and data on
storage devices (such as CD-ROMs and USB flash drives). Like messages that may be intercepted, while being transmitted
form sender to recipient, storage devices may be stolen or copied, which would result in disclosing confidential data. In
addition, the advent of storage area networks has made storage devices, which are directly connected to servers, vulnerable
to attacks. Therefore, protecting storage devices is (often) required. Such a protection is commonly achieved using block
ciphers. Overall, encryption of data on storage devices aims at providing: data confidentiality, fast data storage and retrieval,
and optimization of storage space.

It should be noticed that the protection of data in transit (i.e. messages) and that of data on storage devices differ, which
results in important implications for encryption, even though the core encryption algorithms are the same:

e Latency: message transmission is ephemeral, while data storage is often used for a long time. In networks, the recipient
follows a protocol for key establishment and authentication before encrypting/decrypting messages. Attacks against
messages need that the attacker is present when messages are transmitted, while attacks against storage devices do not.

e Key management: in networks, the encryption key changes from a message to another. Even the public key used for sig-
nature is renewed periodically. If a key is lost, the participants run a protocol to agree on a new key. In case of storage, if
the encryption key is lost, the entire encrypted data is lost.

With the exception of one mode (XTS-AES), the modes of operation presented in this chapter can be used directly to protect
messages or, with some adaptions, to protect data on storage devices. This chapter addresses the standard approaches to
use block ciphers to encrypt and decrypt plaintexts, while considering plaintexts of a size longer than that of a single block.

It is worth noticing that encryption alone provides confidentiality guarantees but not data integrity guarantees. Indeed,
in the event an adversary alters a message or the storage device content, the decryption operation cannot detect any alter-
ation. Therefore, message authentication codes or other techniques are required to preserve data integrity. Modes of oper-
ation that provide data authenticity are addressed in the next chapter

8.1 Introduction

8.1.1 Definitions

Definition 8.1 Mode of operation of block cipher: it describes how to repeatedly apply a single-block cipher to provide
confidentiality or authenticity. Alternatively, modes of operation are ways of using block ciphers for encrypting and decrypting
multiple-block data or for providing authentication service.

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

247

248

8 Block Cipher Modes of Operation for Confidentiality

Definition 8.2 Deterministic encryption: given a key, an encryption is said to be deterministic if plaintext blocks with the

same content are mapped to a same ciphertext block.

Definition 8.3 Probabilistic encryption: given a key, an encryption is said to be probabilistic if any two plaintext blocks are

(very likely) mapped to distinct ciphertext blocks [1].

8.1.2 Overview of Standard Modes of Operation

To provide confidentiality and authenticity guarantees based on block ciphers, the NIST approved a set of modes of opera-
tion for block ciphers, which are presented and discussed in this chapter and the next one. They include (as shown on

Figure 8.1):

e Eight modes of operation for confidentiality guarantees: Electronic Codebook (ECB), Cipher Block Chaining (CBC) and
its variants, Cipher Feedback (CFB), Output Feedback (OFB), Counter (CTR), XTS-AES, FF1, and FF3 [25].
o Five modes of operation for confidentiality and authenticity guarantees: CCM, GCM, KW, KWP, and TKW.

Two modes of operation for authenticity guarantees: CMAC and GMAC.

8.1.3 Notations and Common Basic Functions

Below are the notations and the basic functions used in the sequel to describe the modes of operation of block ciphers.

#: comment in algorithm description.
0x: prefix of a bit string, represented with hexadecimal characters.

[Block cipher modes of operation]

For protection of
(any) data

|

For protection of data
on storage devices

‘- XTS-AES

Confidentiality only

Authentication only

Authentication & confidentiality

Without format
preserving

- ECB
- CBC,
CBC-51, CBC-52, CBC-53
- OCB
- CTR
- CFB

With format
preserving

- FF1
- FF3-1

Figure 8.1 Block cipher modes of operations. (*) Poly1305-AES is not yet approved as a block cipher mode of operation. (**)

- CMAC (without associated data)
- GMAC (with associated data)

- Poly1305-AES (*)

:

!

With associated For key
data (AEAD) protection
- CCM ‘ - KW, KWP, TKW
- GCM
- AES-GCM-SIV

- AEAD-ChaCha20-Poly1305 (**)

Modes presented in next chapter

ChaCha20 is a stream cipher, not a block cipher.

8.2 ECB Mode of Operation

[x]:the least integer that is not less than the real number x.

{xJ: the greatest integer that is not greater than the real number x.

X |1'Y: concatenation of bit strings X andY.

X @ Y: bitwise exclusive-OR of bit strings X andY of the same length.
[x]s: binary representation of integer x in s bits, where 0 < x < 2°.

0°: bit string of s “0” bits.

MSB,(X): bit string consisting of the d leftmost bits of the bit string X (i.e. most significant d bits).
LSB,(X): bit string consisting of the d rightmost of the bit string X

X < 1: one-bit left shift of bit string X .

X > 1: one-bit right shift of bit string X (the rightmost bit is dropped).
Enc,(): encryption primitive of a symmetric cipher with key K.

Dec,, (): decryption primitive of a symmetric cipher with key K.
len(X): bit-length of a bit string X.

b: block of fixed-length (in bits).

n: plaintext length (in bits).

m: number of blocks in a plaintext.

B;:blocki(1 <i<m)

8.1.4 Common Aspects of Modes for Confidentiality

8.1.4.1 Plaintext Length and Padding

In ECB and CBC modes, the total number of bits in a plaintext must be a multiple of the block length b, while in CBC var-
iants, OFB, CTR, FF1, FF3-1, and XTS-AES modes, the total number of bits in a plaintext is arbitrary. In CFB mode, the
total number of bits in a plaintext must be a multiple of a parameter s, with s <b.

ECB and CBC modes require a padding mechanism to fill the last block, in such a way that the padded plaintext is of a
length multiple of that of a block. The other modes do not require any data padding mechanism. In OFB, CTR, and CFB
modes, the last plaintext block, which may be not fully filled, is XORed with a part of the ciphertext resulting from the
encryption of an initialization vector or a counter.

When padding is required, there exist different techniques to generate padding bits. For example, start the padding field
with a special bit (e.g. ”1”) or a combination of bits (e.g. “1010”), and then add a fixed bit sequence (e.g. add zero-bits).

8.1.4.2 Initialization Vector

The objective of the initialization vector (IV) is to make the encryption probabilistic, i.e. two identical plaintexts are (very
likely) to be mapped to two distinct ciphertexts. An IV must be generated for each plaintext encryption and the same IV is
required in the corresponding decryption operation. Therefore, either the IV is sent to the recipient before the first cipher-
text or both sides agree to use a specific function that generates the same IV for each message to encrypt/decrypt.

CBC, CFB, and OFB modes require the IV and the data block to be of the same bit-length. CTR mode requires a counter,
which is similar to IV, but with some difference discussed in the sequel.

IV does not need to be secret. However, depending on the mode of operation of interest, IV must be either a nonce (i.e.
an IV value should never be reused with the same key to encrypt two distinct plaintexts) or unpredictable (i.e. it must not
be possible, for adversary, to predict the IV that will be associated with any plaintext). Two methods are recommended to
generate unpredictable I'Vs:

1) First method: generate a nonce, then encrypt and send it to recipient before the first ciphertext. Since the encrypted
value is an encrypted nonce, the adversary cannot derive which IV will be used for the upcoming message.
2) Second method: use a pseudorandom number generator (PRNG) with a hidden seed.!

The simplest way to generate a nonce is to use a counter or use addresses and current time.

8.2 ECB Mode of Operation

In the Electronic Codebook? (ECB) mode, the encryption and decryption operations are applied independently to each
block (see Figure 8.2). ECB mode is the simplest mode of operation.

249

250 | 8 Block Cipher Modes of Operation for Confidentiality

< | fi || 2 == B
2 v
E [Ency(By) I (Encyg(B3)]
| |
Lo | [& |
I T ——
L a | [e |
i I I
8 |U-€'CK("~1) | lﬂef:r{f-z) J
g ! !
(o] 8] -

Figure 8.2 Electronic CodeBook (ECB) mode of operation.

Formally, ECB mode is defined by the following equations:
C,=Ency(B,)Vi,1<i<m
B, =Dec (C,),Vi,1<i<m

The first advantage of ECB is that operations on distinct blocks may be performed in parallel. The second is that ECB is
error-propagation free. That is, if a ciphertext block is altered,’ the encryption of the other ciphertext blocks is not affected
(i.e. plaintexts whose ciphertexts are not altered are correctly recovered by the recipient).

However, ECB mode is not recommended, because of its vulnerability to statistical analysis and replay attacks. In ECB
mode, attackers can easily find repetitions in a ciphertext and then use such a knowledge to disclose partially or entirely a
plaintext.

8.3 (CBC Modes of Operation

8.3.1 Basic CBC Mode

In the Cipher Block Chaining (CBC) mode, the encryption and decryption processes combine successive blocks. As shown
in Figure 8.3, the first block is encrypted/decrypted using a selected initialization vector, then each block B; (i>1) is
encrypted/decrypted using the ciphertext of block B, , as an Initialization Vector. With the exception of the first block, each
ciphertext block depends on its predecessor.

Formally, CBC mode is defined by the following equations:

C, = Ency (B @ 1V)
C,=Ency (B, & C,_,), Vi, 2<i<m
B, =Decy (C,) &IV
B, =Decy (C;)®C, ,, Vi, 2<i<m

Unlike ECB, in CBC and in other modes of operation, blocks with the same content are encrypted with distinct ciphertexts.
In CBC, the encryption cannot be performed in parallel, but decryption can be. Indeed, when all ciphertext blocks are
received, the recipient can perform parallel computations on them to recover the plaintext blocks.

CBC is not fully error-propagation free, because the decryption of ciphertext block i makes use of two ciphertext blocks i
and i — 1. In case some bits of ciphertext block i are altered, plaintext blocks i and i + 1 cannot be recovered, but plaintext
blocks with index greater than i 41 can be recovered correctly. CBC mode requires an initialization vector known to sender
and recipient. In addition, the IV value should be unpredictable.

8.3 CBC Modes of Operation

v B, B, oo

F

U ‘ 5

_5 t:?lch- FncK l

§ (BlEE'W) J (Hd@cl)
G | C,

___________________________ : __________________i___________________________________.

Lo | L& | |

— l—‘

;5_. [Decy(Cy)] [Decy (L) J Decy (Crp)

=

: o Lo L8

v | 51 || B | e B:m

Figure 8.3 Cipher Block Chaining (CBC) mode of operation.

8.3.2 (CBC Variants (CS1, CS2,CS3)

CBC is the most used mode of operation to provide confidentiality. However, padding is considered as a factor, which
affects the performance* of CBC-based cryptosystems. To overcome padding drawback, three variants of CBC mode named
CBC-CS1, CBC-CS2, and CBC-CS3 have been added to the basic CBC [4]. CS stands for ciphertext stealing.

CBC variants encrypt plaintexts of arbitrary bit-length. A plaintext B is a concatenation of m blocks:
B=B/IIB,Il...IIB, Il B], with (m—1)blen(B), |~len(B) and len(B,,| <b. B, may be a partial block and the other
blocks are complete ones. With the ciphertext stealing technique, the ciphertext and the plaintext are of the same bit-

length. The encryption and decryption of complete blocks (B,,..., B, ,)and (Cl, s Cm_z) are the same as in the basic
CBC. CS variants differ only in how they order and process the two last ciphertext blocks C,, , and C, . Ciphertext steal-
ing has no impact on security and block ordering is only used for implementation convenience. If len(B) is a multiple of

the block length b, then all three variants are equivalent to the basic CBC.

8.3.2.1 (CBC-CS1 Mode
In CBC-CS1 mode, padding® is used to encrypt. Then, the ciphertext sent to recipient and the unpadded plaintext both have
the same bit-length. Encryption and decryption of CBC-CS1 are as follows (see Figure 8.4):

Encryption

-d= len(B;); Pad = 0°

- B, =B, |l Pad

- Apply basic CBC encryption to the complete plaintext blocks B, B,, ..
c.,C,...C, ., C,

- LetC, , = MSB, (CW1), where MSB,(s) denotes the d leftmost bits of bit-string C,

- C;:;l =LSB, , (Cmfl), where LSB, (Cmﬂ) denotes the b —d rightmost bits of bit-string C,, ,

- Then, the ciphertextis C =C, IIC, II...1| C;_l e,

.. B

m—1°

B, and obtain ciphertext blocks

Decryption
- Receive ciphertext C and organize it into blocks such that:
C=C G, II...IIC, _, IIC,,, with len(C,) = b, ViE[Lm] Al =m—1) A

(ten(c;, , =d)| A< b))

251

252 | 8 Block Cipher Modes of Operation for Confidentiality

=

=

‘s

EE; Ency

L ~1l1€m-1)
Cm

Decy(Crp)

Decryption

Z’o Ztt

¥
Mg
L7

"

Ci—y: leftmost d bits of Cpp—y
Gy rightmost b — d bits of Cy—yq

Figure 8.4 (CBC-CS1 mode.

- Let Z = Decy (C,,)
Z" =MSB,(Z)
Z" =LSB, ,(2)
- LetC, ,=C, 11 Z"
~ Apply basic CBC decryption to ciphertext bocks C,, C,,..., C
- LetB, =C, ®Z.
~ Then, the plaintextis B=B, B, II...I| B, ||| B,

m—1 m"

'n_1» Using the IV, and obtain plaintext blocks B;, B,, ..., B,, .

Note. In line 3 (of decryption), b — d bits are taken from the decryption of C,, to rebuild C,, . Hence, the idea of ciphertext
stealing.

8.3.2.2 (CBC-CS2 and CBC-CS3 Modes

CBC-CS2 and CBC-CS3 are minor modifications of CBC-CS1 mode to swap the ciphertext blocks C,, ; and C,. The most
popular variant is CBC-CS3, because the ciphertext is aligned on block boundary, which makes hardware implementations
simpler.

Encryption in CBC-CS2 mode:

- Apply CBC-CS1 to produce a ciphertext C =C, | C, II... I C;H IC,.
- Conditional swapping:
Iflen(C;, ,)=b, thenC=C,IIC, Il..Il C;, 1l C,.

Iflen(C;,) <b,thenC=C,1C,11...IC,, 1€}, ;.

8.5 CTR Mode of Operation | 253

Decryption in CBC-CS2 mode:
- Receive C.
- If len(B;) = b, then apply CBC-CS1 to decrypt.

- Iflen(BL) < b, then:
Rearrange the ciphertext: C'=C, IIC, II...IIC, | IIC,,
Apply CBC-CS1 to decrypt C'.

Encryption in CBC-CS3 mode:
- Apply CBC-CS1 to produce a ciphertext C = C,IIC, II...1I C;—l IC,:
- Rearrange ciphertext as C =C I G, II...1I C, |l C;H. Swapping is unconditional in CBC-CS3.

Decryption in CBC-CS3 mode:

- Receive C.

- Undo swapping:C'=C, [IC, Il....1I C:,H ne,,.
- Apply CBC-CS1 to decrypt C’.

8.4 OFB Mode of Operation

OFB, CTR, and CFB modes of operation function like stream ciphers. Therefore, all of them use the same function to
encrypt and decrypt. They do not directly encrypt the plaintext using the key. Instead, they compute a bit string, which is
XORed with the plaintext block. The first plaintext block is XORed with the encrypted IV. Then, the latter is encrypted to
produce a bit string, which is XORed with the second plaintext block, etc. (see Figure 8.5). OFB mode requires that the IV
is a nonce.

OFB mode does not require padding. Indeed, if the last plaintext block is of bit-length u less than b (the block length),
only the most significant u bits of the last ciphertext block are XORed with the plaintext block and the least significantb —u
bits are discarded. The same applies to decrypt if the last ciphertext block is of a length less than b. Such an operation is
identical to that of a stream cipher.

Formally, the OFB mode is defined with the following equations:

Encryption: Decryption:

I =1v I =1v

1,=0,, Vji2<j<m ;=0 ,, Vi2<j<m
0, = Enc, (), Vi2<j<m 0,=Enc, (1), Vi2<j<m
C;=B; ® 0, Vj,2<j<m-1 B,=C;® 0, Vj,2<j<m—1
C, =B, ®MSB, (0,), u=len(B,) B, =C,, ®MSB,(0,,),u=len(C,,)

With the exception of the first plaintext block, the encryption of a plaintext block depends on the encryption of the previous
plaintext block. The same applies to decryption. Therefore, neither encryption nor decryption of blocks can be performed
in parallel.

Like EBC, OFB mode is error-propagation free, because one ciphertext block is used to recover one plaintext block and
ciphertext blocks are not recalculated at recipient. Only the plaintext block associated with the altered ciphertext block
cannot be recovered.

8.5 CTR Mode of Operation

CTR mode is similar to OFB mode with the exception that a counter is used instead of an initialization vector (see Figure
8.6). In CTR, it is required that each plaintext block is encrypted with a distinct counter.

One advantage of CTR over OFB is that encryption and decryption of distinct blocks can be performed in parallel.
Formally, the OFB mode is defined by the following equations, where Cnt,, Cnt,, ..., Cnt,, denote the values of the counter:

254

8 Block Cipher Modes of Operation for Confidentiality

Ency(l) I i Encg (1)

: =
=
& v ; r
N S IR - o]
B & B, -t B B
x | 1
r==1 G ek e ===4 Gy
I 1 1

—
=
|
=
H

| 1]
S] : I
= I 3 |] 1 ¥
e (o) | b (e
3 : : o
: I i I 4
: I
- A N e]
| 1 |
4 i $ v !
G P c,) G ks
v v v
B, B, By

Figure 8.5 Output Feedback (OFB) mode of operation.

Encryption: Decryption:

Oj:Enck(Cntj), Vj,1<j<m Oj:Enck(Cntj), Vj,1<j<m
C;=B,®0, Vj, 1< j<m—1 B;=C; ©0,, Vj, 1< j<m—1
C,,=B, & MSB,(0,,),u=len(B,) B, =C,, ®MSB, (0,,), u=len(C,,)

Counter values can be generated by any function that returns a distinct value for each call. In addition, it is required that
all counter values must be distinct for all messages encrypted with the same key. To fulfill the uniqueness of counter values
used with a specific key, there exist several methods, including:

e Sequential assignment of counter values, which is defined as follows:
- Cnt] =random()
- Cnt} =Cnt] | +1 mod 2", fori=2,...,m,, j=1,..., L
- Cnt] =Cnt, " +1forj=2,..., L
where Cnt, denotes the first randomly selected counter value to use with a new key, Cnt]j the first counter value to use
for message j, Cntl.j » the counter value to use for block i of message j, m; the number of blocks of message j, and L the
number of messages, respectively.
o Hybrid sequential assignment of counter values, which is defined as follows:
- Divide the counter bits into two parts of r and b — r bits, where r < b.
— Assign to each message j, a nonce nc’ in the interval [O, 2" — 1].
- Assign to each block i of message j a counter block Cntij as follows:
vlj =random() in [O, 20— _ 1],] =1,...,L

v/ =v/ +1mod 2" fori=2,..., my,j=1..,L

8.6 CFB Mode of Operation | 255

Counter —-{ Cnty |

Encryption
° L
L/ U

E'.l Bz Em

r==1 Cl r==1 CZ r=="
| 1 I
——————————— e e il e

Encg(Cnts) |

Decryption

= ——— ===

i

£
b 4
A
W
o
vy
]
3
L\
a

By B, B

Figure 8.6 Counter (CTR) mode of operation.

J— el J P -
Cnt! =nc |Ivl.,forl—l,...,mj,]_l,...,L

| Note. When CTR mode is used, a maximum of 2P blocks can be encrypted with the same key.

8.6 CFB Mode of Operation

Like OFB, Cipher Feedback (CFB) mode operates as a stream cipher and makes use of an initialization vector and the
same algorithm for encryption and decryption. In CFB mode, a feedback between successive plaintext blocks is used as
in CBC mode, but in a different way (see Figure 8.7). CFB mode uses an initialization vector and a parameter s, which is
an integer less than (or equal to) the block length b. The IV used in CFB must be unpredictable. Often, the name of CFB
mode starts with the value of parameter s, such that 1 < s < b. For example, CFB-8 and CFB-64 denote CFB with s =8 and
s = 64, respectively. CFB mode is said to be full-CFB if s = b (i.e. a block contains one and only one segment).

CFB operates on plaintext/ciphertext segments of length s and not on blocks of length b. To distinguish segments from
blocks, segments are upper-indexed with “#”. CFB does not directly encrypt (with operation Enc,,) the plaintext. Instead,
it uses a bitstring (which results from either the encryption of IV or a previous ciphertext) and XORes it with the plaintext
to get a ciphertext. Formally, CFB mode is defined by the following equations, where m_s denotes the number of segments
of the plaintext, LSB,(x) and MSB,(x) denote the d least and most significant bits of integer x, respectively:

Encryption: Decryption:
I,=1v I,=1v
L,=LSB, (I, ,) 1l C] ,j,2< j<m_s L, =L8B, ((I,,) 1l C] ,Vj.2< j<m_s

J

J

0 — Bne, (Ij), Vj,1< j<m_s
CY =B} © MSB, (oj), Vj,1< j<m_s

J

J

0 — Ene, (Ij) V1< j<ms
B} =C! & MSB, (oj) Vi, 1< j<m_s

256

8 Block Cipher Modes of Operation for Confidentiality

With the exception of the first block, in CFB mode, the encryption of a block depends on the previous one. Therefore, dis-
tinct blocks cannot be encrypted in parallel. However, once all the ciphertext blocks are received, the recipient can com-
pute the input blocks (I,, L, ..., I,,) and then perform in parallel the decryption of ciphertext blocks.

Like CBC, CFB mode is not fullyError-propagation free. In case a ciphertext block i is altered, plaintext blocksiand i+ 1
cannot be recovered, but plaintext blocks with index greater than i + 1 can be recovered correctly. It should be noticed that
CFB mode is the slowest mode because it processes a small portion of the data to encrypt/decrypt at each step. The number
of operations depends on segment size s.

8.7 Format-Preserving Encryption Modes of Operation

8.7.1 Common Aspects to FPE Modes

FF1 and FF3-1 modes® of operation are called Format-Preserving Encryption (FPE) modes [3]. Both aim at preserving the
format and the length of data in the ciphertext. For example, if the plaintext format is composed of credit card number (16
digits), CB holder name (20 characters), and expiry date (5 characters), the ciphertext must have the same format with
three parts each corresponding to a CB field with the same length (see Figure 8.8).

FPE modes are useful for applications that require data in specific format without need to change data models before
encrypting or decrypting. Imagine that a semi-encrypted file contains the data of thousands of bank customers (where only

b5 hits . b=s bits
II -'2 ” 'irm_s
s hits b bits | 5 bits
b H
, Encg(lm s)
< :
2 b bits | b bits
B :
E 01 02 . Dm_s
w e] E— [— : [— | —
- s hits 4~ 5 bits : - s bits
Bf N discard " W discard | m AN discard
] b-s bits B3 NP, bes bits | m_s ML bsbits
sbits T ¢ pis shits T ¢ pits 5 - sbits T ¢ pies
R v i r
_— # i # 4 - #
r C{ ; C; 1L Gms
] |]
.......... S PR I —————— Y
| h r 1
i I s hits 1 1
1 | S -]
W —r— I > ; I s
] b-x hits 1 I
S - ! !
E : |]
I
o I I
U l
@ 1 1 1
] I]
[} 1 [}
I 0, I 0, i O ¢
] |_|,_l] 1_r_l (] L T |
; s hits l - s hits 1 -5 hits ,i«
discard " ',1 ™ discard m _.,J ™ discard
Cy *J b-s bits C; " b-s bits Crm_s 4w\, b-s bits
5 bits 1 s birs shits | . pips s bits T s bits
¥ ¥ ¥
Bf B} B s

Figure 8.7 Cipher Feedback (CFB) mode of operation.

8.7 Format-Preserving Encryption Modes of Operation

Credit card
1234 1234 9999 9999

Holder: John Taylor
Date: mm/yy

-

Other V FPE

aKdodppLhhsMMzonga 2464 2934 5691 7842
ydbd cdeceduoGFFHIHshhsv Rtotsercey Tocgtekded
vetbbsduDuErT. ... 82:78

Figure 8.8 FPE encryption vs other modes of encryption (e.g. AES or TDEA).

names are in clear) and an application needs to check the expiry date of client John Taylor. Since the encryption of distinct
fields are chained, it is required to decrypt a large portion of the file to retrieve the expiry date of interest, in most modes of
operations. That may take a long time to decrypt. With FPE modes, applications can easily locate ciphertext portions of
interest and decrypt only the required fields of data.

Currently, FF1 and FF3-1 modes are approved to be used only with AES block cipher with block length of 128 bits and
key lengths of 128, 192, or 256 bits.

Data representation. FPE modes are designed to be adapted for any type of data. The number of symbols (also called
characters) of an alphabet is called the base; it is denoted radix. The set of symbols7 of a base radix is { 0,1,2,..., radix — 1}.
A numeral is a nonnegative integer less than the base and a numeral string is a finite ordered sequence of numerals of the
given base.

Example 8.1
— If radix =8, then the set of characters is {0, 1,2,3,4,5,6, 7} in decimal representation and {000, 001, 010, 011, 100,
101, 110, 111} in binary representation.
- Ifradix =16, then the set of characters is { 0,1,2,...,14, 15} in decimal representation and { 0,12,..., E, F} in hexadec-
imal representation.
- Withradix =16, X =12 13 5 7 2 is a string of five numerals (i.e. 12,13, 5, 7, and 2) in decimal representation.
- With radix =2'°, X =125 978 2is a string of three numerals (i.e. 125, 978, and 2) in decimal representation.

For simplicity, in the sequel, we focus only on numeral data represented with decimal characters. Texts and special char-
acters should be converted into decimal symbols before applying FPE modes. For example, lower-case Latin letters may be
represented with numbers 1 to 26, upper-case letters with numbers 27 to 52, etc. Another representation would be the
well-known ASCII code.

The input data of FF1 and FF3-1 modes are numeral strings. If the base is greater than 10, then numerals of a string are
separated by space character. FF1 and FF3-1 use different conventions for interpreting numeral strings as numbers. For
FF1, numbers are represented by strings of numerals with decreasing order of significance (i.e. in big-endian); for FF3-1,
numbers are represented by strings of numerals in the reverse order, i.e. with increasing order of significance (i.e. in little-
endian). For example, “0125” is a string of decimal digits that represents the number “one hundred twenty-five” for FF1
and the number “five thousand two hundred ten” for FF3-1.

Tweak. To encrypt data, FPE modes make use of a secret key and a tweak. The latter does not need to be secret and intends
the same as an initialization vector in other modes. In CBC, OFB, and CFB modes, the IV is used to encrypt and decrypt the
first block. In FPE modes, the tweak® is used inside a Feistel structure jointly with a key and can be regarded as a changeable
part of a cipher key. Block ciphers that make use of tweaks are referred to as tweakable block ciphers [6]. One application of
tweakable block ciphers is disk encryption, where each disc portion has an index, which is used as a tweak.

Encryption and decryption of FPE modes are based on Feistel structure presented in Section 7.1.2, with some adapta-
tions. Specifically, instead of XOR operations in basic Feistel structure, in FPE modes, the operations are addition and
subtraction modulo a power of the chosen base and the round function F,, takes a key, the bit-length of the plaintext, the
tweak, and the round number.

257

258

8 Block Cipher Modes of Operation for Confidentiality

As shown in Figure 8.9, the encryption and decryption are transformations in three steps: 1) the input is split into two
parts A (left) and B (right) of lengths denoted u and v, respectively; 2) a keyed function is applied to one part of the input;
and 3) the two parts are swapped and used as input of the next round.

If the length of the plaintext is even, then u =v = len(B) /2. Otherwise, one half has one symbol more than the other.
U= (len(B) — 1) /2andv = (len(B)—H) /2. The bit-lengths u and v are taken into account when swapping a half with the
other.

The number of rounds, denoted r, is of 10 for FF1 and of 8 for FF3-1. Inputs of round i (i =0, ..., r — 1) are denoted A, and B,.

8.7.2 Encryption and Decryption in FF1 and FF3-1 Modes
Common notations and basic functions

o radixe {2..216]: range of supported bases

e X,Y: numeral® or bit strings. For example, 1101100010 is a bit string, while 151541319 is a numeral string in base 256

represented in base 10.

[minLen . maxLen}: range of supported plaintext length, such that 2 < minLen < maxLen < 2** and radix"™""*" > 1000 000.

maxTLen: maximum supported tweak byte-length.

[xr: representation of integer x as a string of ¢ bytes. For example, [23]1 =00010111.

len(X): number of bits/numerals of bit/numeral string X . For example, if radix = 2, then len(1101) = 4; if radix =16,

then len(11 13 7 2) = 4.

e Num(X): integer that a bit string X represents in base 10 when bits are in decreasing order of significance. For example,
Num(0100001) = 33.

Plaintext block Ciphertext block
s F Y .
/ ,
4 | & |
= (n 7O
B !)
o
(O

L4 | & |
i (nT1)
I

CHA

irr | Arr | Br? | ‘i
=l i
§ | e ||
g I ¥ ; I
&
ES i |
\)
R \?-—<‘ “,
v v
L4 [5 |
\ r ! [Y I
Ciphertext block Plaintext block

Figure 8.9 Feistel structure for building FF1 and FF3-1 modes.

8.7 Format-Preserving Encryption Modes of Operation | 259

o Num,.qp{(X):integer that a numeral string x represents in base radix when numerals are in decreasing order of signifi-
cance. For example, Numg(0100001) =1+ 8 +1=32769.

o Str... (x): given a positive integer x less than radix™, this function returns a string of numerals in base radix. For example,

str;t(1957) = 07105, because 0%16° + 716> +10#16" + 5% 16° =1957.

8.7.3 FF1 Mode

FF1 mode makes use of a pseudorandom function PRF (X), which takes an input multiple of 128 bits and produces a 128-
bit block. It is similar to CBC mode, with the exception that CBC produces a ciphertext block for each plaintext block, while
function PRF produces a single block for a set of blocks. Function PRF (X) is defined as follows:

function PRF # Pseudorandom function

input X: bit string with a bit-length multiple of 128
K: cipher key

output y: 128-bit string
1.Let m=len(x)/128 # m is number of blocks in X
the underlying block cipher, i.e. AES, processes 128-bit blocks
2.Let Xy I X M- I X, = X
X.,...,X, are the input of the block cipher
3.Y, =08 #Y, is 128 0-bit string
4.fori=1tomdoY, = Ency (Y, D X;)
5.returnY,,

Figure 8.10 depicts the computations performed in each round of FF1 mode. The encryption algorithm of FF1 mode is as
follows:

| Kikey), T {tweak)
¢ n{length), § fround)

Fe=-
b
=
5
&
&
=
=
a
e
o

P
e

:PRF |

D D b

[E:rcK [Enc,; }

% -

L
% l
Ek‘_

l 128-bits

(| FBARII Ence (R [11%9) | .. | Eney (R [1d4/16)] - 11%9)

] | /

Figure 8.10 Round computations in FF1 mode. FB,(S) denotes the first d bytes of string S.

260 | 8 Block Cipher Modes of Operation for Confidentiality

function FF1_Encryption
input K: key; T: tweak of length ¢ bytes; t € [0..maxTLen]
X: plaintext, a string of n numerals in base radix
#n€[minLen..maxLen
output Y: ciphertext of the same length than that of input X
1. # The input numeral string X is split into two halvesA(Left) and B (right).
If length of X is odd, then the right half has one numeral more than
the left. A and B are strings of numerals
u=|n/2lv=n—u; A= X[L:];B=X[u+1:n|
2.# b and d are byte-lengths.
2.1.# b is the number of bytes to represent numeral string B in binary
b =[[v* log,(radix)|/ 8]
2.2.# d: it ensures that the output of the Feistel round function is at
least four bytes longer than b, which minimizes any bias in the
modular reduction in Step 4.3.
d=4[b/4]+4
3.# P is a static-value 128-bit block used for invocation of PRF function.
P= [N 27 N[t [mdix]3 Il [10]* || [u mod 2561 I [n]* 11 [t]*

4.fori =0t0 9 do # FF1 has ten rounds

4.1.# Encode in bytes: tweak T, substring Z, round number i, and
numeral string B. Z is a 0-byte string added so that the byte length
of Q is a multiple of 16 bytes (i.e. 128 bits, which is the AES block length.
Z =100 Q= T ZIT I [Numyggi (B)]

4.2.# PRF function is applied to P || Q string to produce a 128-bit block R
R=PRF(PIQ)
R is truncated or expanded to a string S of a length of d bytes.
#1fd <16,then S is composed of the first d bytes of R. Otherwise,
block R is expanded (with iterative encryption of R and a constant)
to produce d bytes. FB,(S) denotes the first d bytes of string S.
S corresponds to the output of round function F

Ency (R [1]*) Il Ence (R [2]*) Il ...

S =FB,|R
’ Ence(R@ [[d /16]—1]")

y = Num(S)

4.3. # To take into account the parity of X length, the computation of the
next value of half B is performed with modulo radix" if the round
number is even, and with modulo radix” otherwise,
ifi iseven,thenm=u,else m=v
¢ = (Num,qg, (A)+y) mod radix™
C is a sum converted into a string of m numerals in base radix
C = Strgai ()

4.4, # Swap of halves:
A=B;B=C

5.Y =A||B; returnY

Notes

- Why R is padded with random string in step 4.2? S, the output of round function, is obtained from R by padding with
random blocks (EncK(REB[I]m, Enc,(R @[2]16, ..., Ency, [R ® Hd/16]—1]16]) instead of padding with a constant bit

sequence, which would be a potential security risk. Therefore, the round function produces a fully random output.

8.7 Format-Preserving Encryption Modes of Operation | 261

- Why d is greater than b by 4 at least? Given a substring A of length b, the round function must return a scrambled
string of at least b bytes. In step 4.3, the sum ¢ = Num,;, (A) + y mod radix™ is composed of two parts Num,, (A)
and y. Num,_; (A) is less than radix™, because substring A has u or v symbols in base radix; and m =u or m =v.To
scramble A with y, without bias we need a value of y in which all bits are random. Therefore, for y to be a fully
randomized number, it must be at least equal to radix™. With a bit-string S of length d, with d :4[b/4]+4, we can

represent integers greater than radix™. Indeed, radix™ — 2'%%4)"m 38 _ 58%d.

Algorithm of FF1 decryption is similar to that of encryption. Both algorithms differ only in lines 4.1, 4.3, and 4.4. That is,
the encryption algorithm makes use of half B to produce the bit string Q and it uses the half A and modular addition to yield
C, which is copied in half B, while the decryption algorithm makes use of half A to produce the bit string Q and it uses the
half B and modular subtraction to produce C, which is copied in half A.

function FF1_Decryption
input K: key; T: tweak of length t bytes; t € |0..maxTLen
X: ciphertext, a string of n numerals in base radix
#n € [minLen..maxLen
output Y: plaintext of the same length than that of X
1.# Input numeral string X is split into two halves A (left) and B (right)
u=[n/2lyv=n—u;A=X[1l:u]; B=X[u+1:n]
2.# b and d are byte-lengths.
b ={[v*log,(radix)|/ 8| d = 4[b/ 4]+ 4
3P =[11 2P A] [raa/ix]3 II[107* || [umod 2561 Il [n]* 11 [t]*
4.fori=0to 9 do

41.7 =[0I ™IS = T Z 1 [i] I [Num, g (A)]
4.2.R=PRF(PIQ)

Ency (R® [11°) 1| Ency (R [2]*) 1] ...

S=rB,|RIl
‘ Ence(Re([d /16]—1]")

y = Num(S)
4.3.if i iseven,then m=u,elsem=v
¢ = (Numqg;, (B)— y) mod radix™
C = Strgaix (€)
4.4. # Swap of halves:
B=A;A=C
5.Y =A||B; returnY

Example 8.2
Below is a simple example to show how FF1 performs the encryption and decryption. To perform FF1 operations by hand,
we need two simplifications: the number of rounds is limited to two and the PRF(X) function returns six 0-bytes followed
by the two rightmost bytes of inputX followed by eight 0-bytes.

Let the plaintext be X = 28750457, a string of eight characters in base 10. Let the tweak be T = [67], a string of one byte.
Therefore, t =1.

Encryption 8

- Split the input:u =v= 5 =4; A=2875; B=0457

- b= H4 *log, (10)] / 81 = 2. Two bytes are required to represent in binary each of 2875 and 0457 values.
- d=4[2/4]+4=38

- P=[T 21 Al 0o 1ol 4y nsy* iy

Round 0

-7 [0](—1—2—1) mod16 _ [0]12

- Q=[67]11 [0 I [0]" Il [0457]*. len(Q) is 16 bytes.

262 | 8 Block Cipher Modes of Operation for Confidentiality

- R=PRF(PIIQ). PRF receives two 128-bit blocks and returns a 128-bit block R, which depends on the key and AES
encryption of the bit string P Il Q.
To simply, we assume that the returned value is

R =[o][o][0][0][0][0][0457*[0][0][0][0][0][0][0][0]

- [d/16)|-1=(8/16)|—1=0. Thus, S = LSBy(R) =[0][0][0][0][0][0][0457]"

- y=Num(S)=457

- u=v =4, thus, there is no need to adapt the modulo computation for each round.
- C= strf:) ((Nummdix(A) + y) mod 104) = strf:) (2875 +457) mod 10*) =3332

- Swap of halves: A =0457; B=3332

Round 1

= Q=[1]I[OT* I[1]* Il [3332]%.

- R=PRF(PIIQ)

- Assume that R =[0][0][0][0][0][0][3332]*[0][0][0][0][0][0][0][0]
[d/16)]—1=0; hence, S = LSBy(R) = [0][0][0][0][0][0][3332]
y = Num(S)=3332

- C = str;$ (0457 +3332) mod 10*) = 3789

Swap of halves: A =3332; B=3789

Finally, the returned ciphertext is Y = 33323789.

2. Decryption
Let the ciphertext be X =33323789.
Split the inputu =v = g =4; A=3332; B=3789
b=||4*log,10)]/8|=2; d=4[2/4]+4=8
P=[1]" 11121 L1 11 [10P 1 [10]" 11 [4] 1 [8]* I [1]*
Round 0
_ 77— [0](—1—2—1) mod 16 _ [0]12
- Q=[67]11[0]* 11 [0]" I1[3332].
- R =PRF(PIlQ) with the chosen PRF function,
R={[o][o][o][0][0][0][3332*[0][0][0][0][0][0][0][O]
- [d/16)|-1=(8/16)|—1=0. Thus, S = LSBy(R) =[0][0][0][0][0][0][3332]
- y=Num(S)=3332
- Since u =v =4, there is no need to adapt the modulo computation for each round.
-C= strl‘:) ((Nummdix(B) — y) mod 104)
= str;§ (3789 —3332) mod 10*) = 457
- Swap of halves: B=3332; A =0457

Round 1
- Q=[67]11[0]* II[1]" I [0457].
- R=PRF(PIIQ)
R = o][o][0][0][0][0][0457F’[0][0][0][0][0][0][0][0]
[d/16)]—1=0;hence, S = LSB(R) =[0][0][0][0][0][0][0457
y = Num(S) = 0457
C = str; (3332 — 0457) mod 10*) = 2875
Swap of halves: A =3154; B=0457; A=2875
Finally the returned plaintext Y = 28750457, which is correct.

8.7.4 FF3-1 Mode

The main differences between FF1 and FF3-1 modes are the following:

8.7 Format-Preserving Encryption Modes of Operation

e FF3-1 is not flexible regarding the tweak length. In FF1, the tweak is an arbitrary string, which may be empty, while it
must be of exactly 56 bits in FF3-1.

e FF1 runs 10 rounds, while FF3-1 runs eight rounds.

o If the length of the input string is odd, the length of the right half is one byte longer than the left half in FF1 mode and
the inverse in FF3-1.

o FF1 makes use of big-endian representation, while little-endian is used in FF3-1. Therefore, FF3-1 makes use of two
functions to inverse strings before performing arithmetic operations:
- REV(X): given a character string X, REV(X) returns X in the reverse order. For example, REV(1957) = 7591.
- REVB(B): given a byte string B, REVB(B) returns B in the reverse byte order. For example,

REVB([1]' 11 (9] I1[S]' 11[7]") =7 I [T o (1]

Figure 8.11 depicts computations performed in each round of FF3-1 encryption; conversion from symbols to integers and
vice versa is not shown on the figure.

function FF3_1_Encryption
input K: key; T: tweak of length of 56 bits
X: plaintext, a string of n numerals in base radix
n €[minLen..maxLen|
output Y: ciphertext of the same length than that of input X
1.# The input numeral string X is split into two halves A (left) and B (right).
If length of X is odd, then the left half has one numeral more than the
right. A and B are strings of numerals
u=[n/2;v=n—u; A= X[L:u]; B= X[u+1:n]
2.# The tweak T is partitioned into two parts, left (7;) and right (Tz), each
of 32 bits (28 bits from T and four 0-bits):
T, =T[0:27]110% T, =T[32:55] || T[28:31]||0*
3.fori =0to 7 # FF3-1 has eight rounds
31.ifiiseven,thenm=u;W =T elsem=v;W =T,
3.2.# Half B is reversed and combined with the round number and a
tweak half to produce a 128-bit block.
Reverse operations (in FF3-1) are performed byte per byte.
P =W B[il* Il [Numoy (REV(B)]”
3.3.# The byte-string P and the key K are reversed before encryption
and then the produced ciphertext is reversed
S = REVB(Encgeyg) (REVB(P)))
3.4.y = Num(S)
3.5.c = (Numyoq;, (REV(A))+ y) mod radix”™
3.6.# Before swapping, a reverse operation is performed
C= REV(strer[X(c))
3.7. # Half swapping:
A=B;B=¢(;
4.Y =A||B;returnY

Algorithm of FF3-1 decryption is similar to that of encryption. Both algorithms differ only in lines 3.2 and 3.5. That is, the
encryption algorithm makes use of half B to produce the bit string P and it uses the half A and modular addition to produce
C, which is copied in half B, while the decryption algorithm makes use of half A to produce the bit string P and it uses the
half B and modular subtraction to produce C, which is copied in half A.

function FF3_1_Decryption
input K: key; T: tweak of length of 56 bits
X: ciphertext, a string of n numerals in base radix
n € |minLen..maxLen

263

264

8 Block Cipher Modes of Operation for Confidentiality

output Y: plaintext of the same length than that of input X
1. # The input numeral string X is split into two halves A(left) and B (right).
1lu=[n/2};v=n—u
1.2. A= X[1:u]; B= X[u+1:n]
2. # Tweak partitioning
T, =T[0:27] || 0% T, = T[32:55] || T[28:31] || 0*
3.for i =0 to 7# FF3-1 has eight rounds
3.1.ifjiseven,thenm=u;W =Trelsem=v;W =T,
32.P =W T Il [Num g, (REV(A))]
3.3.5 = REVB(Encgeya (REVB(P)))
3.4.y = Num(S)
3.5.c = (Num,oq;, (REV(B)) — y) mod radix"™
36.c= REV(strr’;d,-X(c))
3.7.# Half swapping:
B=AA=C
4.Y = A||B;returnY

8.8 XTS-AES Mode of Operation

8.8.1 Overview of XTS-AES

The standard algorithm to protect data on storage devices is the XTS-AES mode of operation. The latter was designed to
provide data confidentiality on storage devices [5]. It was not designed to secure data in transit over networks. The acronym

| T (tweak) |
P Kkey) A, | B, |
 i(round) |
et
; N
///‘.' """""""""""""" 1 ™\
e AN
i e : \
[1
1
. :
i 1
1 1
1 : 1
1 i
1 1
1 1
1 1
1 1
1 : 1
1 : 1
] 1
1 1
1 1
1 1
1 K 1
: [REVE :
1 1
1 1
1 1
1 1
g G g 1
\ /
A 7
\\M., -ﬂ/‘/
Aig ‘ By |
f

Figure 8.11 Round computations in FF3-1 mode.

8.8 XTS-AES Mode of Operation

XTS stands for XEX (Xor-Encrypt-Xor) Tweakable block cipher with ciphertext Stealing. XTS-AES mode also is referred to
as IEEE standard 1619. It is supported by many operating systems and platforms.

XTS-AES is a format-preserving encryption mode of operation. Hence, the length and the format of plaintext and cipher-
text are the same (i.e. no disk space waste). Therefore, applications do not need to change data format to encrypt or decrypt.
In addition, XTS-AES encrypts individual data units resulting in independent ciphertexts. Therefore, applications are not
required to decrypt all ciphertexts to retrieve a specific item of data. Rather, XTS-AES provides support to fast data random
access.

XTS-AES operates with keys of bit-length of either 256 or 512. If the XTS-AES key consists of 256 bits, the encrypt/
decryption procedures use 128-bit AES; if the XTS-AES key consists of 512 bits, the procedures use 256-bit AES, which dif-
fer in term of number of rounds (see Section 7.3.3).

Definition 8.4 Key scope: it defines the stream of data encrypted by a particular key. The key scope is represented by three
integers: tweak value corresponding the first data unit, the bit-length of data unit, and the number of units to be encrypted/
decrypted under the control of this key.

Definition 8.5 Data unit:'° it is a fixed-length bit-string within a key scope. The data unit length should be at least 128 bits.
Each data unit is divided into 128-bit blocks.

The total number!! of 128-bit blocks of the entire data shall not exceed 2°* and the maximum number'? of 128-bit blocks in
a data unit shall not exceed 2% Usually the length of data unit equals the sector length of storage devices, e.g. 512 or 4k
bytes.

Definition 8.6 XTS-AES Tweak value: it is a 128-bit value representing the logical position of the data being encrypted or
decrypted. Each data unit is assigned a tweak value.

Tweak values are assigned consecutively, starting from an arbitrary value. An easy way to assign tweak values is to start
with a random value T, and then increment it for each subsequent data unit; i.e. T, = T,_; +1 fori>>1. Figure 8.12 illustrates
the main items of XTS-AES mode of operation.

Modular multiplication: input and output of XTS-AES encryption and decryption operations are bit-string of a length of 128

bits. Such operations perform multiplication, denoted ©, over an extension field F, ..,

f(x)=x"* + x”7 + x* + x +1 and a primitive element o, which corresponds to polynomial x (i.e. 0000...0010, = 0002,). For
more on extension fields, see Section 3.2.3.

(as below) with a reduction polynomial

8.8.2 Encryption and Decryption Algorithms

Figures 8.13 and 8.14 depict the XTS-AES encryption and decryption operations. There are two encryption/decryption
levels: single block and data unit encryption/decryption. To address data unit with a bit-length, which is not a multiple of
128 bits, XTS-AES makes use of ciphertext stealing as in CBC variants. Below are the algorithms of XTS-AES mode.

function XTS_AES_Block_Encryption
input K: key with a length of 256 or 512 bytes
P,:128-bit plaintext block; T: tweak value (a 128-bit block)
j:sequential number for each 128-bit block inside the data unit
output C,: 128-bit ciphertext block
1. # The key is split into two equal length subkeys
Let K =K I K,
2. # Ciphertext block computation
A= AES Ency (T)®0d’; B= AES Ency (P, ®A);C, =BDA
3.return C,

function XTS_AES_Data_unit_Encryption
input K: key with a length of 256 or 512 bytes
P: plaintext composed of one or more 128-bit blocks
T:tweak value (a 128-bit block) assigned to the data unit

265

266

8 Block Cipher Modes of Operation for Confidentiality

Key scope

Key K

+ First tweak value T}
4 Data unit length
+ Number of data units

S , i

Data to encrypt

/ Data unit 1 Data unit 2 LA Data unit N

Pnl s .P,.%‘l | Pnz sen Pni'; Py ses P"PN

Data on
Storage device

-

128-bit blocks /

L I | | J

EI Tweaks

XTS-AES

Encrypted data on
Storage device

Figure 8.12 Basic items of XTS-AES cipher.

output C: ciphertext of the same bit-length than P
1.# The key is partitioned into m+ 1 blocks, where m is the largest
integer such that m*128 < len(P). Blocks A, ..., P,_1 have the
same length of 128 bits. The last block P, is of a bit-length
between 0 and 127.
LetP=RIIA...1IP,
2. # Ciphertext computation
2.1fori=0tom—2do
C; = XTS_AES _Block_Encrytion(K,P.,T,i)
22b=len(P,)

2.3.if b =0, then
C,,_1 = XTS_AES Block_Encrytion(K,P,,_1,T,m—1)
C,, = Empty

2.4 else

KE}'K=K1“K2

T (tweak)

Block

sequence
number j

P, (plaintext)

=

o

et

o

3

s AES-Enc

| Block
Key K = Ki || Kz T(tweak) | sequence
number j

c

g

—

=9

£ K.

1
g v L\ AES-Dec
N |
an)
1
v
Py (plaintext)

Figure 8.13 XTS-AES block encryption and decryption procedures.

I R S se— !

e [] (& L o
cc
F N i’

c T.K XTS-AES-Block T.K—* XTS-AES-Block T.K—* XTS-AES-Rlock
% 0 Encryption m—1—» Encryption m —* Encryption
=
E l cc

T K
0

XTS-AES-Block

Decryption]

Decryption

P, |

r ™
T,K—* XTS-AES-Block
m —* Decryption
l PP
L Pn_| cCP
| P

Figure 8.14 XTS-AES data unit encryption and decryption procedures.

-
T,K—* XTS-AES-Block
m—1—» Decryption
| Pri-s

268 | 8 Block Cipher Modes of Operation for Confidentiality

CC = XTS_AES Block_Encrytion(K,P,_1,T,m—1)

C,, = MSB,(CC); CP = LSB;75_,(CC); PP =P, || CP

C,,_1 = XTS_AES _Block_Encrytion(K,PP,T,m)
3.C=C Gy ... IC,, return C

function XTS_AES Block_Decryption
input K: key with a length of 256 or 512 bytes
C,: 128-bit ciphertext block; T: tweak value (a 128-bit block)
Jj: sequential number for each 128-bit block inside the data unit
output P, : 128-bit plaintext block
1.# The key is split into two equal length subkeys
Let K =Ky I K;
2. # Plaintext block computation
A= AES_Ency (T) @ a;B= AES Decy, (CX ® A); P, =BhA
3.return P,

function XTS_AES_Data-unit_Decryption
input K: key with a length of 256 or 512 bytes
C: ciphertext composed of one or more 128-bit blocks
T:tweak value (a 128-bit block) assigned to the data unit
output P: plaintext of the same bit-length than C
1. # Key is partitioned into m+ 1 blocks, where is m is the largest
integer such that m*128 < len(C).
Blocks Cy,...,C,_; have the same bit length,128.
The last block C,, is of bit-length between 0 and 127.
LetC=GCy 1G ... 1ICp,
2. # Ciphertext decryption
2.1fori=0tom—2do
P = XTS_AES_Block_Decryption(K,C;,T,i)
2.2b=len(C,)
2.3.if b=0,then
P.,_1 = XTS_AES _Block_Decryption(K,C,,_,T,m—1)
P, = Empty
2.4 else
PP = XTS_AES_Block_Decryption(K,C,,_1,T,m)
P, = MSB,(PP); CP = LSB,,5_,(PP); CC =C,, || CP
P,_1 = XTS_AES_Block_Decryption(K,CC,T,m—1)
3.P=(R IIP;...|I P); return P

8.8.3 Some Strengths and Weaknesses of XTS-AES

XTS-AES looks like ECB mode, because the ciphertexts are independent in both modes and encryption and decryption may
be parallelized. However, with ECB, identical plaintext blocks are encrypted with the same ciphertext block, which pro-
vides some substrate for cryptanalysis attacks. With XTS-AES, due to block sequence number and tweaks, identical plain-
text blocks are encrypted with distinct ciphertext blocks.

8.10 Security of Modes of Operation for Confidentiality

XTS-AES is more performant than CBC, when decrypting ciphertexts. In CBC, to access a specific field (or portion) in
data on storage device, the decryption of the entire data is often required. With XTS-AES, only the searched field (or por-
tion) requires decryption. Since XTS-AES is a format-preserving encryption only, it cannot provide support for data integ-
rity. Indeed, because there is no hash or MAC (message authentication code) in the produced ciphertext, any alteration
(modification, deletion or insertion), in the ciphertext, is decrypted as some (random) plaintext. There exist three main
categories of potential attacks against XTS-AES:

o Randomizing a sector: an adversary with write access to the encrypted storage device can change a sector to an arbitrary
value, which results in invalid data used by legitimate applications.

o Selective replay attack: an adversary with write access to the encrypted storage device can set the value of a sector to a
specific value observed in past in order to corrupt some write operations. For example, consider a malicious store
employee who has write access to a stock status file and who knows the index of a block, say C;“"*", associated with the
number of articles A, of interest to him/her, in stock and he/she also knows that different versions of the file are encrypted
with the same tweak, and finally, he/she has access to an older version of the same file. Under such conditions, the
employee can replace block C“"** by an older block C%. Since C“"** and C° ciphertext blocks have been encrypted
by the same parameters (tweak, key, and bock index), the decryption of the modified block yields the stock status of
interest to the malicious employee.

o Traffic analysis: if an adversary can observe the communication between the encrypting device and the storage device,
he/she can infer when some sectors are modified over time and then use such a knowledge to design an attack.

8.9 Comparison of Design Features of Modes for Confidentiality

Table 8.1 aims at summarizing some fundamental design features to compare block cipher modes of operation. The fea-
tures of interest are the following:

e Encryption determinism: is the same plaintext block always mapped to the same ciphertext block under the same

key?

Padding is the plaintext length required to be a multiple of block length?

Initialization vector: is IV required? If Yes, should the IV be a nonce or unpredictable?

Parallelization: can the encryption or decryption of blocks be performed in parallel?

Ciphertext error-propagation: does a bit error in a ciphertext block prevent!'® the recovery of the remaining plaintext

blocks? “No” means only the plaintext block associated with the altered ciphertext block is unlikely to be recovered cor-

rectly; “Yes” means the plaintext block associated with the altered ciphertext block and the plaintext block that follows

are unlikely to be recovered correctly.

e IV and counter error-propagation: in case the IV or counter is sent'* to recipient, does bit alteration in the IV or counter
impact the decryption?

e Diffusion property: does a modification of a bit in a plaintext block propagate in the whole ciphertext?

e Block cipher (BC) decryption use:'> does the mode of operation make use of the decryption operation of the underlying
block cipher to decrypt?

e Stream cipher'® construction: can the mode of operation be used as a stream cipher?

8.10 Security of Modes of Operation for Confidentiality

When a block cipher is used for confidentiality protection, the security goal is to prevent an eavesdropper with limited
computational power to learn any information about the plaintext (except for maybe its length). This eavesdropper can
apply the following attacks: known-plaintext attacks, chosen-plaintext attacks, and chosen-ciphertext attacks that should
be prevented by the underlying cipher.

269

270 | 8 Block Cipher Modes of Operation for Confidentiality

Table 8.1 Comparison of modes of operation for confidentiality guaranteeing.

CBC-SC
ECB BasicCBC variants OFB CTR CFB FF1FF3-1 XTS-AES

Determinism Yes No No No No No No No
Padding Yes Yes No No No No No No
IV/counter No Unpr. Unpr. Nonce Ctr® Unpr. Twk® Twk©
Encryption parallelization Yes No No Yes@ Yes® No No Yes©
Decryption parallelization Yes Yes Yes® Yes® Yes® Yes™ No Yes®
Error propagation No Yes Yes® No No Yes® Yes® No™
IV/counter error propagation n.a No®™ No© Yes® Yes@ Yes® ves® Yes®
Diffusion No Yes Yes No No Yes Yes No
BC decrypt. algorithm use Yes Yes Yes No No No No Yes
Stream cipher No No No Yes Yes Yes No No

Unpr.: unpredictable; n.a: not applicable

Notes:

(a) A unique counter block for each plaintext block that is ever encrypted under a given key, across all messages, i.e. the block counter should
be a nonce.

(b) A distinct tweak is used for each plaintext.

(c) A distinct tweak is used for each data unit.

(d) Under the condition that the blocks O,, ..., O,, are precomputed.

(e) With the exception of the two last blocks.

(f) With the exception of the two last blocks, which cannot be treated in parallel.

(g) Under the condition that the blocks O,, ..., O,, are precomputed.

(h) Under the condition that the blocks I}, ..., I, are precomputed, upon reception of the ciphertext blocks.

(i) With the exception of the two last blocks.

(j) In CBC variants, the decryption of the last but one block steals some bits from the last ciphertext block. Therefore, if the last cipher block is
altered, then the two last blocks are unlikely to be recovered correctly.

(k) If segment CfE is altered, then segments Ci# s Cl.# 19 1O Ci’:[b /9] are unlikely to be recovered correctly.

(1) Because of the Feistel structure of FF1 and FF3-3 modes, if a ciphertext block is altered, it is very unlikely that any plaintext block could be
recovered correctly.

(m) With the exception of the last but one block, because the last ciphertext block steals some bits from the block before it.

(n) Only the decryption of the first ciphertext block makes use of the IV. Therefore, only the first plaintext block is unlikely to be recovered
correctly.

(0) As in basic CBC and in addition, if the ciphertext is composed of two blocks only, both blocks are unlikely to be recovered correctly.

(p) If an error occurs in the IV, then it is very unlikely that any plaintext block could be recovered correctly.

(q) If the initial counter is altered, then it is very unlikely that any plaintext block could be recovered correctly.

(r) If segment C is lost, then segments ct 15 e (O Cit[b /5] e unlikely to decrypt to correct plaintext segments.

(s) If the tweak is altered in transit, then it is very unlikely that any plaintext block could be recovered correctly.

8.10.1 Vulnerability to Block Repetitions and Replay
In general, ECB is not recommended, because of the following vulnerabilities:

o A block with a same content is encrypted with the same ciphertext, if it repeats in the same message or in distinct mes-
sages. ECB mode is the only mode, which does not hide repetitions in the plaintext, which may give advantage to
adversary.

o If an adversary replays ciphertexts, the recipient has no means to detect replays. For example, if a user is uploading a file
on a storage server while using ECB, multiple portions of the file may be erroneously duplicated on the server in the
event of a replay attack.

With the exception of ECB, the other modes (CBC, OFB, CTR, CFB, FF1, FF3-1, and XTS) do not suffer replay and plaintext
repetition vulnerabilities due to the use of IV (which may be a nonce or unpredictable), counter (which is unique for each
block), or tweak (which is a nonce) assuming that they are used correctly (i.e. the IV/counter/tweak is a nonce or unpre-
dictable and the maximum number of plaintexts encrypted with the same key is not greater than the recommended limit).

8.10 Security of Modes of Operation for Confidentiality

8.10.2 Vulnerability to Predictable IV or Tweak

Remember that the ultimate goal for encryption algorithms is to provide confidentiality guarantees. With such a property,
it is practically impossible for any adversary to infer any knowledge from the observed ciphertexts; i.e. all ciphertexts
should appear as noise. For example, consider a scenario in which Alice sends a response Yes or No to answer a question
from Bob. If the adversary can infer which response is sent without decrypting the response ciphertext, the secrecy is
broken.

In some modes of operation, the IV (in CBC and CFB) or the tweak (in FF1, FF3-1, and XTS-AES) is required to be unpre-
dictable because prediction of the IV/tweak may result in a break of the confidentiality property. Therefore, IV or
tweak-based modes of operation are vulnerable to chosen-plaintext attacks as shown by the following attack scenario (see
Figure 8.15) in which the adversary attacks a CBC oracle.

1) The adversary queries the oracle with a message m,.

2) Since the IV is not required to be secret, the oracle returns the ciphertext C, = Enc, (I V,® mo) and the initialization
vector IV,, which has been used for encrypting message m,,.

3) Given IV, the adversary is assumed to be able to predict the next IV that will be used, say IV,. He/she queries the oracle
with two messages say m, and m,, such thatm, =m, andm, =1V, © IV, & m,,.

4) The oracle is assumed to process the queries in their order of arrival. The oracle returns two ciphertexts:

C, = Ency (IV, @ (IV, ® IV, & my)) = Ency (IV, & my) = C,
and C, = Enc (IV, &m,)
5) The adversary can easily infer that ciphertext C, contains the plaintext m,, because C, is identical to C, that has been seen

before. This situation breaks the property that the adversary should not be able to distinguish between two ciphertexts
to infer any knowledge.

Another example of vulnerability to predictable IV is considered in Problem 8.8.

8.10.3 Vulnerability to IV/Tweak that Is Not a Nonce

In OFB and CTR modes, if the IV is not a nonce, two messages may be encrypted with the same IV value, which may com-
promise confidentiality of encrypted plaintexts. Both modes are stream ciphers and the encryption of plaintext B ; is defined
by C; = B; & O, where O; is the keystream block defined by: O; = Enc, (I j) for OFB mode or O; = Enck(Cntj) for CTR
mode. I, is the IV in OFB and Cnt, is the initial counter in CTR.

Let Bl.l, Biz, Cil, and Cl.z, i=1,..., L, be the plaintext blocks and ciphertext blocks of message M, and M,, respectively,

where L= min(len(Ml), len (M2)) Since both messages are encrypted with the same IV/counter, the sequence of key-
stream blocks is the same. Let this sequence be O,, O,, ..., O,.

C;=B/® 0,andC} =B’ ®© 0, fori=1,...,L.
The adversary can XOR the ciphertexts to find the following:
C'l ©C} =B ©0,&B' ®0,=B} & B}, fori=1,...,L.

Such a relationship may be used to disclose a plaintext if another is known, to find repetitions (at the same positions) in
two plaintexts, or to infer other features of interest to the adversary.

ity

[Vo, Co=Ency (Vg & my)]

Attacked

system mmy, g | my = IV &1V, ®mg, myzm; Adversary

[”"1.{:‘1 = EHCK(.FVQ @mﬁ)]. [.“‘E. I':gz EﬂCK(IVQ @mz)]

Figure 8.15 Chosen-plaintext attack against CBC under predictable IV.

271

272

8 Block Cipher Modes of Operation for Confidentiality

Before encrypting plaintext blocks, FF1 and FF3-1 modes append to the plaintext other strings (tweak, plaintext length,
round number, and constants), then a Feistel structure is applied, and bits are scrambled in each round. In the output of
FF1 and FF3-1, applying C; & C; does not help to derive B} & B;.

In XTS-AES mode, the encryption of two plaintexts M, and M,, with the same tweak, results in the following decryption,
fori=1,..., min(len(Ml),len(Mz)):

C! = Bney (Bl @ Eney (T) ©0') & Eney (T @0,
C} = Ency (Bl2 @ Enc, (T)® al’) @ Ency ((T) @ o'

Applying C! © C} does not help to derive B} & B’. Therefore, FF1, FF3-1, and XTS-AES modes are not vulnerable to attacks
based on reuse of tweak value.

8.10.4 Vulnerability to Birthday Attacks
If the block bit-length of the underlying cipher (i.e. AES, TDEA, etc.) is n, then by birthday paradox, the adversary needs

to intercept 22 ciphertext blocks to have (at a high probability) a collision. Such an interception is easy if the adversary
has access to encrypted files. A collision may reveal some information useful to the adversary. For example, it may reveal
repetition in the same plaintext or in distinct plaintexts. Notice that the exploitation of collisions in FF1 and FF3-1
modes is unlikely to help discovering any useful information about plaintexts due to the scrambling performed by

modes.
n

In general, to avoid birthday attacks, it is recommended to encrypt less than « * 22 blocks by the same key, with o a small
constant in magnitude of 10~* or even less.

8.10.5 Vulnerability to Bit-Flipping Attacks

The aim of bit-flipping attack is to change a ciphertext block at some positions in order to change the plaintext recov-
ered by recipient at the same positions. In CBC mode, ciphertext block C, is XORed with the decryption of block cipher-
text C;,, to recover plaintext B, ,. OFB, CTR, and CFB modes are stream ciphers where the ciphertext block C; is
XORed with keystream block O, to recover plaintext block B,. Therefore, changing a bit at position j in ciphertext block
C, results in a change of the bit at position j of plaintext block B;_,, in case of CBC mode, or B; in case of OFB, CTR, and
CFB modes.

If the message format is known to adversary, this can cause devastating effects, especially if the important information is
located at positions known to the adversary. For example, imagine an adversary who knows that the amount of money to
transfer, denoted v, is less than 100 and it is encrypted alone in block C, using the AES-CTR. He/she can change C, so that
the amount to transfer is increased by 1024 as follows:

The original plaintext block is recovered by the recipient as B, = C, © Enc, (Cnt4).

Let S = 0"7 || 10000000000 be the bit-string representing the integer 1024 on 128 bits.

The adversary changes C, to C,= C, & S. Then, the recipient decrypts as follows:

B, =C, & Enc, (Cnt,)=(C, ® S) @ Enc, (Cnt,)
=(C, @ Enc, (Cnt,))® S =B, @ S.

Since the original amount v is less than 100, the bit-string B, represents the integer 1024 + v.

ECB mode is not vulnerable to bit-flipping, because each ciphertext block is decrypted only with the decryption operation
of the underlying block cipher, which is a pseudorandom permutation.

Given the scrambling performed in FF1 and FF3-1 rounds when encrypting or decrypting, the adversary has no control
on which bits will flip in the recovered plaintext, if some bits are flipped in the ciphertext.

In the XTS-AES mode, block decryption is performed with AES-encryption followed by AES-decryption. Therefore,
the adversary has no control on which bits will flip in the recovered plaintext, if some bits are flipped in the
ciphertext.

8.11 Exercises and Problems
8.11 Exercises and Problems
8.11.1 List of Exercises and Problems

Exercise 8.1
Consider a block cipher E, defined by the pseudorandom permutation given by the table below. Each letter is a block.
Then, consider ECB and CBC as modes of operation of the block cipher E. As the XOR operation (i.e. ®) is not defined on
the set {A,B, ..., Z}, the following adaptations are used:

To encrypt a block B;, the ciphertext C, , (or the IV) is added modulo 26 to B, (e.g. B&C=D,K & 1= S).
1) Decrypt the ciphertext OXBBJ, which was encrypted using ECB mode.
2) Decrypt the ciphertext DOLYV, which was encrypted using CBC mode with IV=K.

0123 45 6 7 89 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
P ABCDEFGHIIJKULMNUOPI QRS STUV WZXY Z
EK,P) Q ERZ XGNOPIOCBV S J]T F WDHMMTAY K UL

Exercise 8.2
Discuss which of ECB, CBC, CTR, and FF1 modes could provide integrity guarantees.

Exercise 8.3
How many distinct counter blocks are required to encrypt a hard disk of 16 T bytes with AES-CTR?

Exercise 8.4
Let s denote the segment length parameter of CFB mode and b the block bit-length. Show that CFB mode is the same as
OFB mode if s = b.

Exercise 8.5
Show that ECB leaks information regarding plaintext-block repetition while CBC does not.

Problem 8.1

Consider a list of N names each of a length of 16 bytes. The name list is encrypted with four modes (ECB, CBC, OFB, and

CTR) of operation of AES.

1) On transit, a ciphertext block of index i(1 <i < N) is altered because of transmission errors changing some 0-bits to
1-bits and vice versa. What is the number of names that cannot be correctly recovered by the recipient for each mode of
operation?

2) On transit, a ciphertext block of indexi(1 <i < N) is lost. What are the names that are missing in the recipient list and
those that are not correctly recovered in each mode of operation?

Problem 8.2

Consider a plaintext, composed of N segments, encrypted with CFB mode.

1) On transit, a ciphertext segment of index i (1 <i<N) is altered because of transmission errors changing some 0-bits to
1-bits and vice versa. What is the number of segments that cannot be correctly recovered by the recipient?

2) On transit, a ciphertext segment of index i(1 <i < N) is lost. What are the plaintext segments that are missing in the
recipient plaintext and those not correctly recovered? Without loss of generality, assume that the block length is a mul-
tiple of the segment length.

Problem 8.3
Show how CTR and OFB modes can be attacked if two plaintexts M, and M, are encrypted with the same initial counter
or IV, respectively.

Problem 8.4
Assume that a plaintext-ciphertext pair is known. Show that keeping the IV secret in OFB mode does not make an exhaus-
tive key search more complex, if the number of plaintext blocks is at least 2.

Problem 8.5
Consider the following scenario: in a company, a group of engineers collaborate on a project including several tasks. Some
engineers are task managers and they declare, on a weekly basis, the number of hours of participation of each engineer

273

274

8 Block Cipher Modes of Operation for Confidentiality

(including themselves) in the tasks assigned to them. Participation declarations are first securely sent to a server 1 by each
task manager, and then server 1 encrypts, with ECB mode, a message for each engineer participation and sends the cipher-
text to a server 2, which centralizes the engineers’ participation in the project. The key shared by servers is not known to
engineers. The format of the messages between both servers is composed of three fields each represented on one block:
Manager identifier, participating engineer identifier, and the number of hours of participation. One malicious task man-
ager who participates in multiple tasks and who knows the format of ECB-encrypted messages and who can intercept and
modify ciphertexts between servers, wants to increase his/her amount of participation hours. He/she observed that the task
managers used to send participation declarations on Friday before 6:00 p.m., but the server 1 accepts declarations up to
Friday midnight. How may the malicious engineer design the attack?

Problem 8.6
Prove the correctness of CBC-CS1 mode of operation.

Problem 8.7
Prove the correctness of XTS-AES block encryption.

Problem 8.8

Consider the following context: Alice and Bob agree to use CBC mode to protect their communications. Eve has the capacity
to ask Alice to encrypt messages for her (i.e. Eve is able to mount chosen-plaintext attacks) and she is able to predict the IV
that will be used by Alice to encrypt her next message. Bob asks Alice to do something and she has to reply just by “Yes” or
“No” in one block. Alice encrypts her response P, , = ‘Yes’, using IV IV, and sends a ciphertextC, , . to Bob. Eve intercepts
IV, and C, ;, and she wants to know Alice’s response without any knowledge about the key. Show how Eve can discover

Alice’s response.

8.11.2 Solutions to Exercises and Problems

Exercise 8.1
Let C, be the ciphertext of plaintext block B;. Let D denote the decryption operation of block cipher E.
1) Decryption of ciphertext OXBBJ using ECB mode
The decryption using ECB mode is defined by: B, = D(Ci).
The plaintext associated with ciphertext OXBBJ is HELLO, because:
D(O)=H,D(X)=E,D(B)=L,D(B)=L,D(J)=0
2) Decryption of the ciphertext DOLYV, which was encrypted using CBC mode with IV=K
The decryption using CBC mode is defined by: B, = D(C) ®C,_,,withCy =1V
Since @ is not defined on the letters, the decryption is transformed as follows.

B, = Letter(Ind(D(C,)) ~ Ind(C, ,) mod 26)
Hence,

= Letter(Ind D(D)) — Ind(K) mod 26) = Letter(17 —10 mod 26) = H

B, = Letter(Ind D(O)) — Ind(D) mod 26) = Letter(7 —3 mod 26) = E

B, = Letter(Ind(D(Y)

(tnd(
(1nd(

= Letter([nd(D(L)) — Ind(0) mod 26) = Letter(25—14 mod 26) = L
((— Ind(L) mod 26) = Letter(22 —11 mod 26) = L
(1nd(

B, = Letter(Ind D(V)) —Ind(Y) mod 26) Letter(12 —24 mod 26) = O

Exercise 8.2

ECB, CBC, CTR, and FF1 are algorithms aiming to provide confidentiality guarantees. As they do not make use of tags, no
integrity guarantees could be provided. Any altered ciphertext is decrypted to a plaintext, which is very likely to be distinct
from the original plaintext and the recipient has no means to check the integrity.

8.11 Exercises and Problems | 275

Exercise 8.3
We consider a disk of 16 T bytes encrypted with AES-CTR. 16 tera bytes are split into m 128-bit blocks, where
24 * 240 * 23
== 2% Each plaintext block requires a distinct counter block; hence, the number of distinct counter blocks
2
is 2%,

Exercise 8.4
If the segment length s is equal to the block length b, then:
- The number of segments m_s is equal to the number of blocks m.
- Foranyi, 1<i<m,segments Bf and Ci# are equal to blocks B, and C;, respectively.
- LSB, (X)=nulland MSB (X) = X, for a bit-string of bit-length not greater than b.
With the limitations above, the CFB encryption formulas become:

I=1Iv
I,=LSB, (I, ,)IC}, =nulllC} ,=C,,, Vj2<j<ms
Oj:EncK(Ij):EncK(Cj>, Vi1 <j<m_s
Cj =B} @ MsB,(0,]=B,®0, Vji1<j<m.s—1
Cj =B} & MSB,(0;)=B;®MSB,(0,), j=m_s

The formulas above are the same as those of OFB encryption. The same apply to decryption. Therefore, CFB mode is iden-
tical to OFB mode if the segment length is the same as that of the block.

Exercise 8.5

Let A and B be two blocks and P = All Bll Bl B, a plaintext with three repetitions of block B. If ECB or CBC is used, then
the ciphertext is C = cC GGl c,.

If ECB is used, then C, = Ency(A),C, = C, =C, = Enc,(B).

If CBC is used, then C, = Ency (A ®1V), C, = Ency (B ©C,), C; = Ency (B C,), C, = Ency (B& Cy).

We can see that the same ciphertext block Enc(B) repeats three times in C. Therefore, ECB leaks information regarding
plaintext repetition, while CBC does not.

Problem 8.1
1) Error-propagation resistance

- In ECB, OFB, and CTR modes, the decryption of a block is independent of that of other blocks. Therefore, if ciphertext
block i is errored, only the name with index i is unlikely to be correctly recovered.

- In CBC mode, the decryption of ciphertext block k depends on ciphertext blocks k and k — 1. Therefore, if ciphertext
block i is errored, there exist two cases: a) if i = N, only the last name in the list is unlikely to be correctly recovered
and b) ifi < N, the names with indices i and i +1 are is unlikely to be correctly recovered.

2) Loss-propagation resistance

- In ECB mode, the decryption of a block is independent of that of other blocks. Therefore, if ciphertext block C; is lost,
only the name with index i is missing in the recipient list.

- In CTR mode, the encryption counter block Ctn; is used as a keystream string to encrypt the plaintext block B;, for
Jj=1,..., N.In OFB and CFB modes, the encrypted block I is used as a keystream string to encrypt the plaintext block
B;, for j=1,...,N.In all these three modes, if the ciphertext block C, is lost, then the recipient makes use of block Cn;
(for CTR) or I; (for OFB and CFB) to decrypt ciphertext C,, for i=1,..., N —1. Therefore, the name with index i is
missing in the recipient list and all the subsequent names are very likely to be incorrectly recovered, if CTR, OFB, and
CFB modes are used. Those three modes operate like stream ciphers where any loss in the keystream string results in
a loss of synchronization.

- In CBC mode, the encryption ciphertext block C;_, is used to encrypt plaintext block C;, j=2,..., N. If ciphertext
block C,; is lost, then the decryption of the subsequent ciphertext blocks is performed as: B, = Decy, (Ci +1> ®C_p»
B, = Decy (Ci+2)@Ci+l,..., By, = Dec, (CN)@CN_I. Because of a jump in ciphertexts, B, = Dec, (CM) ®C,_, is

very likely to be an incorrect name. Therefore, the name with index i is missing in the recipient list and the names of
index greater than i are unlikely to be correctly recovered, if CBC mode is used.

276

8 Block Cipher Modes of Operation for Confidentiality

Problem 8.2
Recall that CFB mode processes segments of a bit-length s, which is not greater than that of a block denoted b. CFB mode
operates like a stream cipher in which the leftmost s bits of keystream block I jare XORed with plaintext segment Bf to

produce the ciphertext segment B;f*. Assuming that b is a multiple of s, let ¢ = [b/ s]. Keystream blocks are computed as
follows:

I =1V =1V, 11V, Il...1l11V,, where IV;_, . are s-bits segments of IV.
I,=LSB, (L) IIC{ = IV, IV, Il ..l TV, 11 C{

I,=LSB, (L)IIC;=IV,IlIV,Il...1IC} IIC}

Inc#

#
fa=Ciicin.nciic

g2 = b—s (Iq+1) q+1

1) Error-propagation resistance

In CFB mode, if the ciphertext segment Cl.# is altered, then the plaintext segment Bf is unlikely to be correctly recovered.
The keystream block I, , ;, used to decrypt the subsequent ciphertext segment Ci’#+1 is computed as: I, ; = LSB, (I i) I Cft ,
which differs from the one used at encryption step. The segment decryptions are unlikely to produce the original plaintext
segments as long as the errored ciphertext segment Ci# is present inside keystream blocks subsequent to I;. Now, let us see
how the segment C; is left-shifted in the subsequent keystream blocks I, ,,, I until it disappears. Instead of string

i+27 i+43,7""
concatenation, integer representation of block is used for convenience.

Ty = LB, (1)+2 4]

I, =LSB,_ | (Ii+1) +2° +C],

i1 = LSB, ,(LSB, (I)*2" +C})2' +C]

i+1

In block I

;12> the errored segment Ci# is left-shifted with s positions.

I ;=LSB, | (Ii+2)* 2+

f2=LSB, (LB, ,(LSB, ,(1)x2"+Cf)2 +],

i+1

#
)*23 +Cips

In block I, ,, the errored segment C/ is left-shifted with 2s positions. The shifting process continues until the segment
Cl.# exits on the left. Let g = [b / s]. After left-shifting with q = s positions, the ciphertext segment Ci# is eliminated and the
synchronization resumes. Therefore, all the ciphertext segments, from C;" to C;, o> are unlikely to be correctly decrypted.

2) Loss-propagation resistance

After decrypting ciphertext segment C; |, the recipient computes keystream block I, as I, = LSB, (IH) *2° 4+C/ . If the

ciphertext segment Ci# is lost, then the plaintext segment Bi# is missing in the plaintext recovered by recipient. Then, the

recipient receives ciphertext segment C;’ _, while it was waiting for segment Ci# . Thus, it is unlikely to recover plaintext seg-

i+1°
ment BfH. Then, keystream block I, is computed as: I, , = LSB, (LSBbfs (IH) 28 +Cfi1 #25 4+ C* | in which Ci# is

v
missing (i.e. there is gap in the sequence of ciphertext segments present in the stream block); thus, it is Sllikely to produce
plaintext segment Bi# or Bi# - After q = [b/ s] —1 incorrect decryptions, there is no ciphertext segment gap in subsequent
keystream blocks and thus the resynchronization resumes on recipient side, ciphertext segment Ci# is not treated (because
it has not been received), ciphertext segments C/’ | to C" are unlikely to decrypt to correct plaintext segments, and the

i+1 i+q
decryption is one-segment behind the encryption, i.e. C;’ is decrypted as it if was B/’ g

i+q+j
Problem 8.3
Let M}, j=1,...,n',and M7, j=1,..., n’, denote blocks of plaintexts M, and M,, respectively. Let C}, j=1,...,n, and C7,
ji=1.., n?, denote blocks of ciphertexts C Land C?, respectively; where n; and n? denote the numbers of blocks of M ;and M,,
respectively. Without loss of generality, assume that both plaintexts are of a length multiple of that of a block.
Recall that given a plaintext of m blocks, the ciphertext blocks are computed as follows:

If CTR is used, C; = B; ® 0, 0; = Ency (Cnt ¥ j, 1< j <m.

If OFB is used, C; = B; ®0;,0; = Ency (I, },¥ j,1<j <m, [=IV,1; =0, .

8.11 Exercises and Problems | 277

Therefore, the ciphertext blocks in both modes are computed as C ;=B;®0,Vj1<j<m. Both modes differ only in how
keystream blocks O,_, , are computed.
If two plaintexts M, and M, are encrypted with the same counter or the same IV, then:
1_ pl . 1
Cj 7Bj @Oj,]—l,..., n
2 _ p2 . 2
Cj —Bj @Oj,]_l,..., n°.
Letm = min(nl,nz). XORing both plaintexts yields:

1 2 [(pl 2 _ pl 2 .
cl o> _(Bj @Oj>69(Bj @Oj)_Bj ©B, j=1,...m
Therefore, if CTR or OFB modes are used to encrypt two plaintexts with the same counter or the same IV, the adversary can
derive the XOR of both plaintexts, which is particularly damaging, if plaintexts are messages in natural language.

Problem 8.4

In this problem, we consider a brute-force attack against OFB mode to disclose the key. The adversary is given a plaintext—
ciphertext pair of at least two plaintext blocks.

By design of OFB, C, = B, ¢ Enc,(IV), C, = B, ® Enc,, (EncK (IV)), ..., Where B,_,, are plaintext blocks and C
corresponding ciphertext blocks.

the

i=12,.”

a) Case 1: IV is known to the adversary
From the first ciphertext block and its ciphertext, the following is inferred:

C, =B, ®Enc,(IV)
C, ®B, = Enc,(IV) (a)

Since the IV is known, the adversary has to find a key such that the encryption of the IV yields C, © B,, which is known.
With a brute-force attack, a maximum of 2" keys may be tested, where n denotes the bit-length of the key.

b) Case 2: IV is unknown to the adversary
Using the second ciphertext block and its ciphertext, the following is inferred:

C, = B, ® Ency (Ency (IV)) C, ® B, = Ency (Enc, (IV))
Then, applying the block cipher decryption yields:

Decy (C, ® B,) = Decy (Enc(Ency (IV))) = Ency (IV) (b)
Substitution of (a) in (b) yields:

Dec,, (C2 @Bz): C, @B

Next, the adversary has to find a key such that the decryption of the C, © B, yields C; & B,, which are known. With a brute-
force attack, a maximum of 2" keys may be tested.
Consequently, making the IV secret does not result in a more complex brute-force attack to disclose the key in OFB mode.

Problem 8.5

The malicious task manager knows that the format of the ciphertext is composed of three blocks C|, C,, and C;, where C,
is the encryption of the task manager ID, C, is the encryption of the participating engineer’s ID, and C, is the encryption of
the number of hours. Since ECB mode is used, the encryption of any engineer’s ID produces the same ciphertext block in
all the encrypted participation declarations. Let C, ,,, be the ciphertext of the malicious engineer’s ID. Such a ciphertext
bock appear in all the encrypted messages related to the malicious engineer. With C, , . known, the malicious engineer
has just to intercept ciphertexts, between servers, and replace the second ciphertext block of the intercepted ciphertexts
by C, . @and the number of hours will count for him/her.

To discover the ciphertext associated with his/her ID, the malicious engineer knows that task managers used to send
participation declarations on Friday before 6:00 p.m., but the server 1 accepts declarations up to Friday midnight. To exploit
such a knowledge, he/she sends (for some weeks) his/her declarations late, say on Friday 11:00 p.m., and intercepts the
ciphertexts between the servers. After some ciphertext interceptions, he/she can infer, at a high probability, the encryption
of his/her ID, which is located in the first block of the ciphertexts. Then, he/she can change the second ciphertext blocks

in some messages between servers.

278

8 Block Cipher Modes of Operation for Confidentiality

Problem 8.6
Consider the encryption, using CBC-CS1 mode, of a plaintext B of m blocks, where the last block B:n is of a bit-length d less

than the block length n. Block B, is padded with 0("7‘1); then, CBC encryption is applied to m complete blocks to yield
ciphertext blocks C,, ..., C,,..
WriteC,, ,asC, ,=C, Il C,

By design of CBC encryption,

where C;H is of a bit-length of d and C::q of a bit-length of n —b.

C,,=Ency (B, ®C,,_,)=Ency [(B;; I 0““”) ® cm_l}

= EncK[

* * —d ok * * ok
B, ac, 10" e C,H) J = Ene((B, @C;, 1 61)).
In case of non-alteration of the ciphertext, the decryption of the last block using CBC-CS1 is as follows:

Dec,, (Cm) = Dec | Ency, ((B:n @C;H I C;:—l))) = (B:n @C;Pl I C;:q)

Thus,Z =B, ®C, ,andZ = C, ..
Then, by addition, Z" & C, | = (B:n & C:,H) @ C,

1 = B:n. Therefore, the last (incomplete) block is recovered correctly. []

Problem 8.7
We need to prove the correctness of XTS-AES at two levels: block and data unit encryption levels.
1) Correctness of XTS-AES block encryption
In the encryption procedure, the ciphertext is produced as follows:
C = AES_Enc(K,P® A)® A, where A= AES_Enc(K,,T)x o’
Assumingnoalteration of the ciphertextblock and given thatT and jare thesameonbothsides, A= AES_Enc (K, T) ®a’
is the same on both sides.
Let P' denote the result of the block decryption procedure. By substitution,

P'= AES_Dec(K,,C®A)& A
~ AES_Dec(K,, (AES_Enc(K,,P® A)® A)® A)® A
= AES_Dec(K,,AES_Enc(K,,P©A)|® A=(P&A)d A=P

Therefore, the XTS-AES block encryption is correct.
2) Correctness of XTS-AES data unit encryption
- If the length of data unit P is a multiple of 128 bits, then P is split into m 128-bit blocks (F,,..., P, ;) and an empty
block P,,, such that 128m = len(P). From the data unit encryption algorithm, we can easily derive that each 128-bit

plaintext block is encrypted as a 128-bit ciphertext block. The final ciphertext is C,ll...Il C,,_,, with
G, :XTS_AES_Block_Encrytion(K,Pi,T,i), 0 <i<m—1. Since the XTS-AES block cipher is correct, the data unit
decryption procedure returns the plaintext blocks P, Il...1l P, _,, which is equal to the plaintext P.

- If the last block P, is not empty and of a bit-length b, less than 128, we need to prove the correctness of the algorithm
for the last two blocks. The focus is on step 2.4 in encryption and decryption procedures.
Let LMB, (A) and RMB, (A) denote the leftmost and the rightmost d bits of block A, respectively.
Let B_Enc() and B_Dec be abbreviations of XTS_AES_Block_Encrytion() and XTS_AES_Block_Decrytion,
respectively.
Assuming no alteration of ciphertext, b = len(Pm) = len(Cm); 0<b<128.
Data unit Encryption procedure produces the following ciphertext blocks:

m—1°

C,, =LMB, (B_Enc(K,E,_,,T,m~1))
Cpy = B_Enc(K. (P, | RMByyq_, (B_Enc(K. B, .T.m~1))).T.m)

Data unit decryption procedure performs the following computations:

P, = LMB, (B_Dec(K,C,,_,,T,m)) (a)

B, = B_Dec(K,(C,,IIRMByy , (B_Dec(K.C,, .T.m))).T.m~1] (b)

Notes
By substitution, (a) becomes: P’', =

LMB, [B_Dec [K,([B_Enc(K,(Pm I|RMB,,q,_, (B_Enc(K.P, ,.T.m~ 1)))Tm)DTm]]

— LMB, (pm | RMB, ;_, (B_Enc(K, P, _,,T,m— 1))) —P

m

By substitution, (b) becomes:

|LMB, (B_Enc(K.P

m—1’

T,m— 1))]
P! | =B Dec|K,

,IT.m—1
25y (B_Enc(K.P, . T.m— 1)))Tm)}Tm)]

| RMB,,; _, [B_Dec(K,[B_Enc(K,(Pm Il RMB,
- B_Dec[K,({LMBb (B_Enc(K,P, ,,T,m—1))| Il RMB,,, , ([(B, I|RMB,, ,(B_Enc(K,E, ,T,m—1))) D)Tm - 1]

Lm—1°

= B_Dec(K,(B_Enc(K,E, ,T,m~1)),T,m~1]= B, .

Therefore, the decryption of the ciphertext produces the initial plaintext. O

Problem 8.8

Eve’s chosen-plaintext attack may be performed as follows:

- Using CBC mode, the response P, is encrypted as C, , , = Enc, (IV0 ®P,e) Eve intercepts C, , , and IV,.

- Eve knows that the next IV to be used by Alice is IV,. She presumes that Alice’s response is “Yes” and she wants to con-
firm her suspicion. She prepares a message m = IV, & IV, &' Yes' and asks Alice to encrypt the message m.

- Alice encrypts message m using IV IV, and sends a ciphertext C, ., = Enc; (IV1 eV, e IV, Yes’)).

toEve
- Onreception of C, , ,, which is equal to C Eve easily infers that Alice’s response was “Yes”, which is a break in con-
fidentiality property.

toBob’

Notes

1 Seed is the initialization parameter of a PRNG. Pseudorandom number generation is addressed in Chapter 16.

2 In cryptography, a codebook is a lookup table for coding and decoding; each word has one string, which replaces it. Like a
codebook, ECB mode associates a ciphertext to each plaintext block.

Block alteration means presence of bit transformations (e.g. “0” becomes “1” or “1” becomes “0”).

Capacities required to save ciphertexts on storage devices or to transmit them.

Padding is used only to perform ciphertext computation and it does not impact the bit-length of the produced ciphertext.
FF2 has not been approved by NIST, because of its vulnerability. FF3-1 is a revision of FF3 mode.

N o v AW

It’s important to distinguish between symbols and their representation. The same symbol has several representations,

depending on the chosen base.

8 The IV value is used once to encrypt/decrypt a set of blocks of the plaintext/ciphertext, while a (different) tweak value is
used in each block encryption/decryption. That is a reason to use distinct terms.
9 When the chosen base is greater than 10, a space character is used to separate numerals.

10 “Data unit” as defined above is specific to XTS-AES mode. A data unit does not necessarily correspond to a physical or
logical block on a storage device. The mapping between data units and data on storage device is implementation-dependent
and is out of the scope of XTS-AES mode.

11 2% limit is for thwarting birthday attack.

12 2% limit is for interoperability of XTS-AES implementations.

13 For any mode of operation, if there are any bit errors in a ciphertext block, then the decryption of that ciphertext block is
very unlikely to be correct.

14 Sending IVs or counters results in a vulnerability in the mode of operation.

15 Some modes of operation make use only of the encryption operation of the underlying block cipher to encrypt plaintexts
and to decrypt ciphertexts.

16 Modes of operation, which generate a bit string that is XORed with the plaintext (respectively the ciphertext) to produce the

ciphertext (respectively the plaintext), provide techniques (in addition to those presented in Chapter 6) to build stream ciphers.

279

280 | 8 Block Cipher Modes of Operation for Confidentiality
References

1 Goldwasser, S. and Micali, S. (1984). Probabilistic encryption. Journal of Computer and System Sciences 28: 270-299.

2 Dworkin, M. (2001). Recommendation for block cipher modes of operation methods and techniques, special publication
800-38A. NIST. National Institute for Standards and Technology.

3 Dworkin, M. (2019). Recommendation for block cipher modes of operation: methods for format-preserving encryption,
special publication 800-38G. NIST. National Institute for Standards and Technology.

4 Dworkin, M. (2010). Recommendation for block cipher modes of operation: three variants of ciphertext stealing for CBC
mode, addendum to NIST special publication 800-38A. NIST. National Institute of Standards and Technology.

5 IEEE. (2018). IEEE standard for cryptographic protection of data on block-oriented storage devices, IEEE Std 1619™-2018.
Institute of Electrical and Electronics Engineers. IEEE.

6 Liskov, M., Rivest, R., and Wagner, D. (2002). Tweakable block ciphers. Journal of Cryptology 24: 588-613.

9

Block Cipher Modes of Operation for Authentication and Confidentiality

In the previous chapter, we presented the modes of operation of block ciphers to provide confidentiality guarantees.
Another security property of prime importance is integrity. Indeed, in the event an adversary alters a message or a storage
device content, the decryption operation cannot detect any alteration. Therefore, message authentication codes or other
techniques are required to preserve data integrity. To provide confidentiality and integrity guarantees based on block
ciphers, the NIST approved a set of modes of operation for block ciphers, which are discussed in this chapter. They include
(see Figure 9.1):

o Five modes of operation for confidentiality and authenticity guarantees: CCM, GCM, KW, KWP, and TKW.
e Two modes of operation for authenticity guarantees only: CMAC and GMAC.

All these modes provide capabilities to generate and verify message tags. In addition to approved modes of operation of
block ciphers, two other algorithms are useful to authenticate messages:

e AES-GCM-SIV [1] is an extension of GCM, which is resistant to IV misuse.
e ChaCha20-Poly1305 is a scheme recommended to build authenticated encryption for TLS implementation.

Notice that authentication, addressed in this chapter, means message authenticity and not the authentication of the
entity sending a message. Entity authentication is addressed in Chapter 15.

9.1 Introduction

Definition 9.1 Data authenticity: it is a property to indicate that the data originated from its purported source.

Definition 9.2 Authenticated encryption: it is a cryptography scheme that provides guarantees to data confidentiality and
authenticity verification.

Definition 9.3 Associated data (also called additional authentication data): it may be any bit string (including a MAC
address, an IP addresses, a port numbers, a user name, an application name or a protocol title), which is used in data authen-
ticity verification.

Definition 9.4 Authenticated encryption/decryption with associatedencryption/decryption with associated
data”! data (AEAD): it is an authenticated encryption/decryption in which additional data is used to authenticity
verification.

Definition 9.5 Nonce misuse-resistant AEAD: it is an authenticated-encryption scheme in which encrypting different
plaintexts with the same nonce will reveal nothing to adversary.

Notations: the same notations are used in Chapters 8 and 9.

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

281

282 | 9 Block Cipher Modes of Operation for Authentication and Confidentiality

[Block cipher modes of operation]

r

Authentication only Authentication & confidentiality

- CMAC (without associated data)

- GMAC (with associated data)
- Poly1305-AES (*)

! |

With associated For key
data (AEAD) protection
- CCM - KYW
- GCM - KWP
- AES-GCM-SIV - TKW

- AEAD-ChaCha20-Poly1305 (**)

(*) Poly1305-AES is not yet approved as a block cipher mode of operation.
(**) ChaCha20 is a stream cipher, not a block cipher.

Figure 9.1 Block cipher modes of operation for authentication and confidentiality.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

9.2.1 Authenticated Encryption and AEAD Algorithms

9.2.1.1 Approaches to Data Authentication

When only confidentiality is provided (using the modes mentioned above), the recipient of a ciphertext performs the
decryption whatever the ciphertext content may be. In the event, the ciphertext has been forged by an adversary, the
recipient recovers a plaintext that has not been sent by his/her partner, which may result in making inappropriate decisions.
Authenticated decryption is a means to verify the integrity of the plaintext before using it.

Dominant approaches to provide data authenticity guarantees make use of authentication® tag, known as Message
Authentication Codes (MACs). There also is another approach, which relies on spreading the authenticity information
along the entire ciphertext (see Key-wrapping modes in Section 9.2.7).

As illustrated by Figure 9.2, there exist three basic approaches to authenticated encryption using a MAC, which differ in
when the MAC is generated:

e Encrypt-and-MAC approach: a tag is produced using the plaintext and the latter is encrypted without the MAC. The same
key is used both in encryption and in tag generation. Both operations may be performed in parallel. The recipient must
decrypt the ciphertext and generate the MAC to know if the ciphertext has been altered or not. The MAC is generated
only from the plaintext and it is not encrypted, it may leak information about the plaintext.

e MAC-then-Encrypt approach: first, the MAC is generated, then the plaintext and the tag are encrypted together. Thus, the
encrypted plaintext and tag are combined in a single ciphertext. This approach does not provide integrity to the cipher-
text as does the MAC-and-Encrypt approach. Being encrypted together with a plaintext, the MAC does not leak
information about the plaintext.

o Encrypt-then-MAC approach: first, the plaintext is encrypted, then, a MAC is generated from the ciphertext. Often the
encryption and authentication keys are distinct and derived from a master key. This approach provides integrity to both
plaintext and ciphertext. The MAC does not leak information about the plaintext.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

Plaintext | Plaintext ‘ ‘ Plaintext ‘
| Encryption

Hash function] [Encryption]
| Hash function I

Ciphertext Tag Ciphertext Tag
a) Encrypi—and—MAC b} MAC—then—Encrypt ¢ Encrypt—then—MAC

Figure 9.2 Different approaches to authenticated encryption.

Standard algorithms for authenticated encryption (such as CMAC, CCM, and GCM), which are presented in the sequel,
are Encrypt-then-MAC algorithms. In order to thwart attacks, it is recommended to always compute the MACs on the
ciphertext and to use two distinct keys, one key for encryption and another for MAC generation.

9.2.1.2 Authenticated Encryption with Associated Data Algorithms

The purpose of associated data in encrypted-authentication algorithms is to bind a ciphertext to the context where it is sup-
posed to appear, so that the recipient can detect if a ciphertext is not used in the appropriate context and reject the cipher-
text. The associated data does not necessarily have to be stored or transmitted with the ciphertext. Any context-dependent
non-secret values (such as MAC address, IP address, TCP port number, user name, application name, or protocol title), that
the both involved parties are able to correctly infer, can be used as associated data. In other words, the sender who can
encrypt a plaintext and generate a MAC must know in which context the plaintext can be used on the recipient side and
the recipient only makes use of the recovered plaintext in the agreed context and not in another. Therefore, a sender who
shares a key with the recipient is prevented from accessing services or performing actions not agreed between both parties.

Example 9.1

An agenda management service is available to a group of staff members in a company. To secure communications between
the members and the agenda server, a secret key is shared by all group members. To enable each group member access and
update his/her agenda entry, an additional authentication data is associated to each member. Therefore, only the member
holding the appropriate associated authentication data (say his/her chosen pseudo name) can encrypt and authenticate the
data regarding his/her agenda entries.

9.2.1.3 Limits of Authenticated-Decryption Modes

Given a plaintext P, the sender encrypts it to C; and computes a tag T,. On the recipient side, upon the reception of a cipher-
text C! and its MAC T/, the ciphertext is decrypted to produce a plaintext P, and then the recipient computes a tag T, for the
plaintext P.. If T = T , then the recipient accepts the plaintext P.. If T, = T, then the recipient rejects the ciphertext, because
C!=C, T = T, orboth. It is of paramount importance to keep in mind the following limitations when using any authen-
ticated-encryption algorithm:

o If the MAC verification fails, then the received plaintext is definitely distinct from the original plaintext (due to cipher-
text alteration) or the ciphertext has not been issued by the legitimate sender holding the shared secret key K. However,
if the MAC verification succeeds, it does not necessarily mean that the ciphertext is the original one. Indeed, an attacker
can alter the ciphertext and then selects randomly a MAC, which matches the modified ciphertext.

e MAC forgery attacks depend on Tlen, the bit-length of the MAC. The probability that the attacker randomly guesses the
MAC, which matches the ciphertext he/she modified, is 277", The adversary could substitute a ciphertext for another
without controlling the content by trying to find a collision (i.e. t\g& distinct ciphertexts with the same MAC). By the

birthday paradox, he/she needs to use (i.e. intercepts) at least 2 2 .Therefore, the level of security is MAC-length-
dependent. Standards recommend to use MACs with a length no smaller than 64 bits.

283

284

9 Block Cipher Modes of Operation for Authentication and Confidentiality

e Another recommendation to prevent attacks is to limit the number of MACs generated with the same key, because in case a
large number of tags are generated with the same key, collisions may be observed and their exploitation may be catastrophic.
The maximum number of MACs per key depends on each authenticated-encryption algorithm, as discussed in the sequel.

9.2.2 (CMAC Mode of Operation

CMAC (Cipher Message Authentication Code) is an algorithm to generate and validate MACs [2]. It makes use of a block
cipher (TDEA or AES). Therefore, CMAC is considered as a mode of operation of block ciphers to provide authentication
guarantees (and not confidentiality). CMAC is defined with three functions:

1) CMAC_Subkey_Generation, which takes a block length b and a key K and returns two subkeys of bit-length b each.
Parameter b is equal to 64 if TDEA cipher is used and 128 if AES is used.

2) CMAC_MAC_Generation, which computes a tag T given a plaintext M. It looks like CBC encryption mode, but with a
single block as output and a special treatment of the last block, using two subkeys.

3) CMAC_MAC_Verification, which checks if the tag accompanying a plaintext is valid or not.

The algorithms of CMAC functions are given below. Figure 9.3 depicts the MAC generation procedure of CMAC.

function CMAC_Subkey_Generation
input b: block cipher bit-length (b = 64 for TDEA and b = 128 for AES)
K: key (with a bit-length complying with either AES or TDEA)

output Ky, K;: subkeys

1.# R is a binary constant, which only depends on the bit-length block of
the underlying block cipher. R starts with sequence of “0” bits of a
bit-length of either 59 (for TDEA) or 120 (for AES).
if b = 64, then R = 00711011 else R = 0112910000111

2.# L is a block that consists of b 0" bits encrypted with key K
L =Ency (0”)

3.if MSB;(L)=0thenK; =L « 1
elsek, =(L<1)@ R

4.if MSB; (K;)=0then K, =K; <1
else K, =(K; <1) @R

5. return (Ky,K;)

function CMAC_MAC_Generation
input b: block cipher bit-length (b = 64 for TDEA and b = 128 for AES)
K: key (with a bit-length complying with either AES or TDEA)
Tlen: MAC bit-length; P: plaintext of bit-length Plen

output 7 : tag of bit-length Tlen

1. # Generate subkeys
(K1, Ky)=CMAC_Subkey Generation(K,b)

2.# n is the number of blocks to process
. len(P)
if len(P)=0thenn=1elsen= Y

3.# Split the plaintext into n blocks P,,...,P,_4, P, all the blocks but one
have the same length of b bits.
#ielen(P)=b1<i<nand0< zen(P;) <b
LetP=P [P l...1I1P,_1 Il A,

4.if 1en(P,§) =bthenP, =K, ®P;
else j=n+*b—Plen—1;P, =K, EB(P,; (11 Of)

5.Cp=0°

6.fori =1tondoC; =Enc(C;_; BR)

7.T = MSBy,, (Cn)

8.returnT

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

function CMAC_MAC Verification
input b: block cipher bit-length (b = 64 for TDE and b =128 for AES)
K: key (with a bit-length complying with either AES or TDEA)
Tlen: MAC bit- length; p: plaintext; T: tag of bit-length Tlen
output V: Decision (“Valid” or “Invalid”)
1. # Compute the tag of plaintext P
T’ =CMAC_MAC Generation(b,K,Tlen,P)
2.# Check if both tags are identical or not
if T =T’/ then return “Valid” else return “Invalid”

9.2.3 (CCM Mode of Operation

CCM (Counter with Cipher block chaining-Message authentication code) is an algorithm to provide confidentiality as well
as authenticity of data [3]. It combines counter mode encryption (i.e. CTR mode) to provide confidentiality and cipher
block chaining (CBC) to provide authenticity assurance. CCM processes blocks with a length of 128 bits. Therefore, it can
be used jointly with AES, but not with TDEA whose block length is of 64 bits.

To encrypt, decrypt, and authenticate a set of plaintexts (such a set is called key span), CCM requires a secret key K, a
block cipher, like AES, with an encryption primitive Enc,, and a MAC bit-length Tlen <128. To encrypt and produce a tag
for a plaintext within a key span, CCM makes use of three inputs:

e p:data that need to be encrypted and authenticated. Such data is called payload; its bit-length is denoted Plen, with Plen < 2°7.

e A:associated data, which includes some information known to the recipient and that does not need confidentiality, but
is used in authentication step. The bit-length of the associated data is denoted Alen, with 0 < Alen < 2.

e N:anonce, which is a unique value associated with each plaintext; its bit-length is denoted Nlen.

9.2.3.1 MAC Generation and Encryption
The tag generation and encryption algorithm is composed of four steps:

1) Represent the inputs (i.e. payload P, associated data A, and nonce N) as 128-bits blocks. Such a formatting operation is
described in 9.2.3.3. Let B, ..., B, be the blocks representing the inputs.
2) Encrypt the blocks B,,,..., B, and produce a tag T'.

3) Use the nonce value and counter indexes to produce formatted counter blocks Ctr,, ..., Ctr, , where m= [Plen / 128]
denotes the number of blocks of the payload; Section 9.2.3.4 describes the counter formatting function. Then, use CTR
mode to produce a ciphertext C =C; Il C, II...1I C,,,suchthatC;, =P, ® Enc (Ctr[), i=1,...,m.P,i=1,...,m denote the

payload blocks. The last ciphertext block may be incomplete to match the last payload block.

ke}' K—— Subkey
generation

e L | [A]
] el |k 4 [Elew]
b hits b bits P:; '\‘J b hits
Pl I {J!\‘ B _r‘ _ K;
W/
h

‘_

=

-._—
=

3

Ency (0y)] [Enci(0)] | Enex(om

Figure 9.3 Tag generation in CMAC mode of operation.

285

286

9 Block Cipher Modes of Operation for Authentication and Confidentiality

4) The MACT is XORed with Enc, (Ctro), so that only the recipient holding the secret key can recover the tag.

The MAC generation and encryption algorithm of CCM is given below and depicted in Figure 9.4.

function CCM_MAC_GenenerationAndEncryption
input K: key (with a bit-length complying with a 128-bit block cipher)
Tlen: MAC bit-length; N: nonce; P: payload of bit-length Plen
A: associated data of bit-length Alen, which may be empty.
output C,7ag: ciphertext and an encrypted tag
1. # Represent the input (N, A,P) as r 128-bit blocks
(Bys++-» B,) = InformationFormatting(N, A, P)
2. # Tag computation: encryption of nonce, associated data, and payload
Yo = Ency (By)
fori=1tordoY, =Enc (B Y 4)
T = MSBre, (¥,) # T is the tag in clear
3. # Ciphertext computation
3.1 # Compute m+ 1 formatted counter values (m is the number of
blocks in the payload)
(Ctry, .., Ctr,,) = CounterFormatting(m, N)
3.2for j=0tomdo S; = Enc, (Ctr))
335=5 015, 1l...11S,,
3.4 CC = P @ MSBieyp)(S) # Encryption of payload
4. # Encryption of the tag
Tag =T @ MSBy,, (SO)
5.return (CC,Tag)

Payload encryption (CTR mode) : MAC generation (CBC mode)
Payload Nonce A_data Payload MAC length
(m blocks) i (Nlen bits) (Alen bits) (Plen bits) (Tlen bits)
l nactets t a octets i p octets f t octets
i ¥
Counter formatting function] | Information formatting function

I I L
o e R e e s G = [o]

| ‘ |
lEnc"‘(Cm‘) Ency (CTRa) [Enﬁ'x(E'TRm) Ency(CTRy) | D D)
l l l l [Enczfﬁu)] [ETICK(BQ) I
‘ 51 | | L | | Srl ‘ | 5o | i

fn

'H] - Eg]
1

[c=@lclinciTag | [anf][enl] [7] S zs o

Figure 9.4 MAC generation and encryption algorithm of CCM.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

9.2.3.2 MAC Verification and Decryption
MAC verification and decryption algorithm is composed of five steps:

1) Check if the received ciphertext is valid regarding the tag length. If the length of the received ciphertext, Clen, is less or
equal to that of a valid tag, Tlen, the received ciphertext is discarded, because it does not contain any encrypted data.

2) Use the nonce value and counter indexes to produce formatted counter blocks Ctr,, ..., Ctr, , where m denotes the number
of blocks of the payload; m= [(Clen —Tlen)/ 128]. The ciphertext is interpreted as C=C, Il C, Il..I1 C, I C, .,
whereC, , denotes an encrypted tag with a bit-length of Tlen. Then, use CTR mode to produce a plaintext P =P, Il P, Il...Il P,
such that P, = C; ® Ency, (Ctri), i=1,..., m. The last plaintext block may be incomplete to match the last ciphertext block.

3) Decrypt the received tagas T =C,,_, © MSBy,, (EncK (Ctr0)>.

4) Represent the payload P, associated data A, and nonce N as 128-bits blocks, denoted B, ..., B,, using the formatting
function. Then, encrypt the blocks B, ..., B, and produce a tag T'.

5) Check if the received and computed tags are identical; and return either “Invalid” or “Valid” plus the payload.

MAC verification and decryption algorithm of CCM are given below.

function CCM_MAC VerificationAndDecryption
input K: key (with a bit-length complying with a 128-bit block cipher)
Tlen: MAC bit-length; N: nonce of bit-length Nlen
C: ciphertext of bit-length Clen; A: associated data of bit-length Alen
output V: Decision (“Valid” or “Invalid”)
P: plaintext of bit-length Plen
1. # Check the length of the ciphertext
if Clen < Tlen, then return “Invalid”
2. # Payload recovery
2.1 # Compute m+1 formatted counter values
m = (Clen —Tlen) / 128
(Ctry, .., Ctr,,) = CounterFormatting(m, N)
2.2 for j=0tomdo S; = Ency (Ctr;)
235=5 IS 1l...1S,
2.4 P = MSBien—11en(C) ® MSBcien—tien(S)
3. # Recover the tag included in ciphertext
T = LSBrie(C) @ MSBrien (So)
4. # Apply the information formatting function to produce r
and encrypt them to produce a tag T’ of the received payload
4.1 (By,..., B,) = InformationFormatting(N, A, P)
4.2 Yy = Ency (By)
43fori=1tordoY; =Ency (B ®Y; 4)
44T = MSBre, (Y,)
5.# Tag check
if T/ =T, then return (*Valid’, P)
else return “Invalid”

9.2.3.3 Information Formatting Function

The formatting function takes three bit-strings (a nonce N, an associated data A, and a payload P) and a tag length and
returns a sequence of r 128-bit blocks (B, ..., B,) as depicted in Figure 9.5. Let n, a, p, and t denote the byte-length of the
nonce, the associated data, the payload, and the tag, respectively. Bit-lengths of all inputs of formatting function are mul-
tiple of 8. That is:n= Nlen/8,a = Alen /8, p=Plen/8, and t = Tlen /8. Let Q be a byte-string, which represents the payload
byte-length and g, the byte-length of string Q. q is a parameter of the formatting function. For example, if Plen = 8192 and
q =3, then Q =1024 = 000000000000010000000000.

Formatting the nonce and control information
The first byte of block B, contains four flags: one reserved bit, one bit to indicate presence of associated data, three bits to
encode the tag length as [(t -2)/ 2]3, and three bits to encode the parameter q as [q — 1]3. For example, if the tag byte-length
tis16, it is represented as [(16 —2) /2, =111.

287

288

9 Block Cipher Modes of Operation for Authentication and Confidentiality

Nonce A_data Payload MAC length
(Nlen bits) (Alen bits) (Plen bits) (Tlen bits)
n bytes a bytes p bytes t bytes

Information Formatting function

H 1
] !
!
1| By B, B, “ | Bu | Bun | ™ | B |
1
E Associated data Payload data i
.
i |
]
i ‘ Byte 0 | Nonce | Payload length Q | !
]
! 1
:L Bytes1.. 15-g Bytes 16-g ... 15 !
i
i
! [Reserved| A data| (t-2)72 | q-1 | i
' 1
' 1 bit 1 bit 3 bits 2 bits !

Figure 9.5 Information formatting in CCM mode.

Notice that since q —1 is represented on three bits, g cannot be greater than 8. Therefore, the maximum byte-length of
payload is p < 2871 < 28",
The remaining 15 bytes of block B, are used to represent the nonce and the payload length. The nonce value is repre-

sented on (15—)q bytes. Notice that the parameter q¢ bounds the nonce space, i.e. the number of distinct nonces
is 28" < 2%

Formatting the associated data

The second bit of the first byte of block B, indicates whether associated data is present or not. If a > 0, then the associated
data and its length are represented on u blocks B,, ..., B,. The associated-data byte-length a is represented according to three
cases:

1) If0 <a<2' —2° then a is represented as[a],, i.e. on two bytes.
2) If2'° —2° <a< 2%, then a is represented as Ox{f | Oxfe || [a],,, i.e. on six bytes.
3) If2% <a < 2%, then a is represented as Oxff || 0xff| [a],,, i.e. on ten bytes.

Then, a is followed by the associated data. If bytes used to represent the associated data and its length are not a multiple of
128 bits, then a string of 0-bits is appended to fill the last block B,.

Formatting the payload

The payload is represented as blocks denoted B

10 B where r = u+[p/16].

9.2.3.4 Counter Formatting Function

The counter formatting function takes the nonce N and m = ’%eﬂ, which is the number of blocks of the payload data,

and returns m +1 128-bit blocks Ctr, Ctr,, ..., Ctr, formatted as follows: Ctr, = Flags || Noncel|i as depicted in Figure 9.6.
A counter index i, i=1,...,m is associated with each payload block i. Ctr, is used to encrypt/decrypt the tag. Counter
formatting function makes use of the same formatting rules as those of information formatting described in Section
9.2.3.3.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

Number of payload Nonce N
data blocks m i

Counter formatting function

| c;-n | - c:n | Ctr:m

128 bits e
e e -
Flags N i
Bytes 1 ... 15-g Bytes 16-g ... 15
i |Reserved| Reserved 000 g-1 i
' |
i 1bit 1 bit 3 bits 3 bits :

Figure 9.6 Counter block formatting in CCM mode.

9.2.4 GCM and GMAC Modes of Operation

GCM and GMAC are modes of operation of symmetric key block ciphers. Galois/Counter Mode (GCM) is an algorithm for
authenticated encryption with associated data to be used jointly with a 128-bit block cipher such as AES [4]. GMAC makes
use of the GCM operations to provide only data authenticity; it targets applications using non-confidential data, but with
integrity requirements. GCM provides assurance of data confidentiality using a variation of counter mode (CTR) and it
provides assurance of data authenticity using a hash function, which is defined over an extension field. Therefore, GCM
and CCM differ regarding the generation and verification of tags.

9.2.4.1 GCTR Encryption Mode

As mentioned previously, GCM encryption relies on a variation of CTR mode, called GCTR, with two distinguishing fea-
tures compared to the basic CTR mode: 1) the plaintext is not required to be of a length multiple of that of a block and 2)
counter values are computed using a special increment function modulo 2° defined as follows:

Ine,(X) = MSBy,,) (X) Il |int(LSB,(X))+1mod 2’|
S
Inc (X) increments the rightmost bits of bit string X and the leftmost len(X) — s bits remain unchanged. In AES-GCM, the

increment function is instantiated as Inc,,(X).
GCTR algorithm is presented below and depicted in Figure 9.7.

function GCTR
input K: Key (with a bit-length complying with a 128-bit block cipher)
P: plaintext, a bit string; /CB: initial counter block (128 bits)
output C: ciphertext
1. # m is the number of blocks in bit string P Pm the last block, may be incomplete
m= [len(X) / 128]; LetP =P |1~ l...11P, 1 I P,
2. # Compute the counter blocks
Cnt; = ICB
for i =2 to m do Cnt; = Incs, (Cnt;_;)

289

290 | 9 Block Cipher Modes of Operation for Authentication and Confidentiality

ic8 —f Cnty [Incs | Cnty | Incs, }— Cntyy
lEnc_.;(Cnh) | Encg(Cnty) e Encg(Cnt,,)

h 4 k

oD

b b

G C2 Cm

Figure 9.7 GCTR encryption mode.

3. # Compute the cipher blocks
fori=1tom—1doC; =P & Ency (Cnt;)
Cm = Pm b MSB[en(P,;) (EHCK (Cntm))

4.C=CGIIGI...I1CpHq IIC:,,; return C

9.2.4.2 Hash Function of GCM
The tag is computed using the GHash function defined as follows:

GHashy, (D)=(D,® H") (D,® H")&...& (D, ,® H’)&(D, ® H)

where H denotes the hash key; and ® is the multiplication operation, defined over extension field F,.., with the irreducible
polynomial f(x)=x"*+x” +x*+x+1. (For more on multiplication over extension fields see Section 3.2.3).
D=D, Il D,Il...IID, where D,, D,, ..., D, are 128-bit blocks and m = len(D)/128.

GCM standard provides an efficient method to implement the multiplication over the chosen finite field and its irreduc-
ible polynomial. As chosen below the multiplication algorithm only makes use of XOR and shift operations, which are very
useful to speed the multiplication. The convention for interpreting strings as polynomials is little endian; i.e. the

126

block U = uyu, ...u;,, corresponds to the polynomial P(U) = umx127 FlUpeX T U X U,

function GCM_Block_Multiplication
input P,Q: two 128-bit blocks
output Z: product
1. Let pyp1p,.--P17 be the bit sequence of block P
2.7, =0"8 # Z, is set to a string of 128 “0” bits
V, =Q;R=11100001 || 0**°
3.fori=0to127 do
if =0thenZ,_;=ZelseZ, ®V,
if LSB, (V;)=0thenV, , =V, >1elseV,; =(V;>1)®R
4.return Z;,5

9.2.4.3 Authenticated Encryption with GCM

To encrypt, decrypt, and authenticate a set of plaintexts (such a set is called key span), GCM requires a secret key K, a block
cipher, like AES, with an encryption primitive Ency, and a MAC bit-length Tlen <128. To encrypt and produce a tag for a
plaintext in the key span, GCM makes use of three inputs:

e P:data that needs to be encrypted and authenticated. Such data is called payload and its bit-length is denoted Plen. The
standard requires that Plen < 2% _ 256,

e A: associated authenticated data, which includes some information known to the recipient and which does not need
confidentiality, but it is used in the authentication step. The bit-length of the associated data is denoted Alen. The asso-
ciated data may be an empty bit-string. GCM requires that Alen <2°* —1.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

e IV: an initialization vector, which is a unique value (i.e. a nonce) associated with each plaintext; its bit-length is
denoted IVlen. The latter may take a value of 64, 96, 128, or 160. The total number of invocations of the authenticated-
encryption algorithm shall not exceed 2*2, including all IV lengths, with the same key.

The algorithm of encryption and Tag generation of GCM is given below and also depicted in Figure 9.8.

function GCM_Authenticated_Encryption
input K: key (with a bit-length complying with a 128-bit block cipher)
P: plaintext; A: associated authentication data
IV : initialization vector; Tlen: tag bit-length (< 128)
output C: ciphertext (of same length than that of plaintext)
T: tag (of Tlen bits)
1.H = Enc, (0128)
2. Jy is computed to serve as the initial value of the counter in CTR mode
if len(/V) = 96,then J, = IV || 0! ||1
if len(1V) = 96, then
s =128[len(IV)|/ 128 — len(IV)

Jo = GHashy IV 11 0°*** |1 [ten(1V),,)

3. # Compute the ciphertext C
C = GCTRy (Incs, (5),P)
4. # u and v denote the lengths of the incomplete ciphertext block and
associated data if applicable, respectively
u=128+ [len(C) / 128] —len(C);v =128+ [len(A) / 128] — len(A)
5.# Compute and encrypt the tag
S = GHashy (A 10" I CI10" |l [len(A)]64 I [len(C)]64)
T = MSBrie, (GCTRy (Jo, S))
6.return (C,T)

9.2.4.4 Authenticated Decryption with GCM
The operations of the authenticated decryption are similar to those of encryption. Below is the algorithm of the GCM
authenticated decryption.

function GCM_Authenticated-Decryption
input K: key (with a bit-length complying with a 128-bit block cipher)
C: ciphertext; T: tag (of Tlen bits); Tlen: tag bit-length (< 128)
A: associated authentication data; /V: initialization vector
output V: Decision (“Valid” or “Invalid”)
P: plaintext (of the same length than that of ciphertext)

1.H = Ency (0"%)

2.# J, is computed to serve as the initial value of the counter
if len(/V) = 96,then J, = IV || 0! |1
if len(/V) = 96, then

s =128+[len(IV)/128|— len(IV)
Jo = GHashy (V11 0°** || [ten(IV)],,)

3. # Compute the plaintext P
P =GCTRy (Incs, (J9),C)

4.# u and v denote the length of the incomplete ciphertext block and
associated data if applicable, respectively
u=128+[len(C)/128]— len(C); v =128 +[len(A) / 128] — len(A)

5.# Compute and encrypt the tag
S = GHashy (A 10" IICII 0" || [len(A)]64 1 [len(C)]64)

T/ = MSBre, (GCTR (4o, S))
6.if T/ =T, then return (“Valid”,P) else return “Invalid”

291

292 | 9 Block Cipher Modes of Operation for Authentication and Confidentiality

c v Associated data (A) Plaintext (P)
o
a
= |l
(5]
I h
i A o Ciphertext (C) 0v | [len(A)],, | [len(C)]q,
©
7]
o
Y
=

Figure 9.8 GCM authenticated encryption.

9.2.4.5 GMACMode
When GCM is used for guaranteeing data authenticity only, the restricted GCM is called GMAC (Galois Message
Authentication Code). The same functions are used in both modes as depicted in Figure 9.9.

Associated data (A4) Plaintext (P)
A ov Plaintext (P) 04 | [ten(A)]g | [len(P)]y, |

f

—
N——
—T

v —> Jo GCTRy Key K

|

MSBTEEH

‘Pﬂ

l-..g

Figure 9.9 GMAC tag generation.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

9.2.4.6 Forbidden Attack Against GCM with Repeated IV

GCM mode is vulnerable to an IV value repeated, by mistake, with the same key. The attack against GCM, known as
forbidden attack, aims to recover the authentication key, denoted H, and then exploits such a finding to forge tags, which
will be validated by the recipient. Recall H that is computed as H = Enc, (0128) and in consequence, it is assumed to be

unknown to adversaries. Notice that the forbidden attack aims to recover the authentication key and not the encryption
key. In order to simplify understanding of the attack, consider a scenario where the message sender makes use of AES-
GCM to generate 128-bit tags for two one-block messages with the same IV and does not make use of associated data. Since
AES is used as the underlying block cipher and the tag bit-length, denoted Tlen, is equal to 128, for any integer J and a bit
string S:

MSBy,,, (GCTR(J,S)) = GCTR,(J.S)

If S is a one-block string, then GCTR, (J,S) = S @© Ency (J)
Given two plaintexts M and M @ their encrypted tags T and T are computed as follows:

T =GCTR,, (Jo’ S(l)):S(l) ® Bnc (J,)
T® =GCTR, (Jo’ S(Z)):Sm ® Bncy (J,)

where:
J,, is the initial counter derived from the IV

€ =GCTR (4, +1, M?) and € = GCTRy (7, +1, M) are the ciphertexts.

s = GHash,, (c<1> 10% 1 ten(A)], 1l |ten(c®)|)
64

§® = GHashy,

110" |1 [len(A/)]64 I [len(c(z))]M)

S and @ are the tags, in cleartext. Assuming that plaintexts M and M are one-block each and no associated data is
used:

S = GHashy, (€™ 11[0],, 11 [1]g,) = GHashy, (€™ 1 1],
S® = GHash,, (c<2> 11 [0],, I [1]64) — GHash,, (c<2> I [1]123)

For both tags, the input of function GHash,, is a two-block string.
Tags S and $® are computed with the GHash,, function as follows:

sV =(cVent)e(leH)=(cV e H)oH ©.1)
s?=(c?en’)o(loH)=(c? e B)0 H 9.2)
The encrypted tags and ciphertexts are known to the adversary and both plaintexts are encrypted with the same IV. Thus,
ryp 8 ry Ty
TO 5 T7® = (S @ Ency (]0>) o (S® & Enc, (J,)) — sWgs® (9.3)
Substitution of (9.1) and (9.2) in (9.3) yields:
T oT® =(c®oc®) o H (9.4)

128

Since the function GHash,, is defined over the extension field Fou with the irreducible polynomial f(x) = x'** + x4+ x4+ x+1,

(9.4) can be rewritten as:

o (T(l) @ T<2))*(C(1) @ C(z>)*1 mod f(x) (9.5)

-1
(C(l) @ C(z)) and (T(l) & T(Z)) are constants; and H is the unknown. Finding the square root of(T(l) &) T(z))* (C(l) b C(z))

over Fzm

yields the value of H. Notice that in the binary field, H and —H are the same.

293

294 | 9 Block Cipher Modes of Operation for Authentication and Confidentiality

In general, the square root of an element x € F,, is defined by: Jx=x" Lif2" lisa prime (see Corollary 3.4). Finally,
H is given by the following:

H— [(T(l) @ T“)) * (Co) o C(z))*l]m mod f(x) (9.6)

It is worth noticing that in general, GHash,, function yields a polynomial of degree m, which depends on the number of
blocks in the plaintext and the associated data. In consequence, the number of roots of the polynomial inferred
from S @ s? may be high, if messages are longer than one block and/or associated data is used; and the adversary may
decide which root (i.e. which authentication key H to keep) among a large set to forge tags. To increase the chance of suc-
cess in choosing the correct authentication key, the adversary may need to collect many pairs of messages encrypted with
the same IV, each pair providing a set of roots. Then, combining the roots yielded by all pairs helps to find a single root (i.e.
the valid authentication key) that matches all the pairs. Therefore, the forbidden attack against AES-GCM is likely to suc-
ceed only if the sender either encrypts plaintexts with small sizes or frequently makes use of the same IV to generate tags.

9.2.5 AES-GCM-SIV Mode

9.2.5.1 What Does Nonce Misuse-resistance Mean?

In the nonce-based algorithms (OFB, CTR, and GCM) described above, it is assumed that the nonce value does not repeat
with the same key. Such a requirement may not be fulfilled in practice because of weak randomness of some devices gen-
erating nonce values. For example, in CTR mode, if a counter value is repeated (because of a wrong counter value genera-
tion), the attacker can easily recover the XOR of two plaintexts. A second example of attack is the forbidden attack of
AES-GCM (see Section 9.2.4). Therefore, those algorithms suffer vulnerability when two distinct plaintexts are (wrongly)
encrypted with the same® key and nonce.

Nonce misuse-resistant AEADSs, such as AES-GCM-SIV presented in the sequel, do not suffer the nonce-misuse vulner-
ability. For this class of AEADs, encrypting two plaintexts with the same nonce value only discloses whether the plaintexts
were equal or not. Therefore, these algorithms are suggested in any situations where nonce uniqueness cannot be guaran-
teed. However, it is worth noticing that there does not yet exist a fully nonce misuse-resistant algorithm in which the nonce
may repeat indefinitely without jeopardizing the security. Rather, there are bounds of nonce repetitions to provide some
security levels (see Section 10.5.2).

9.2.5.2 Overview of AES-GCM-SIV Mode

AES-GCM-SIV is a nonce-misuse resistant authenticated-encryption mode, which has the property that both privacy and
integrity are preserved, even if nonces are repeated. It is an improvement of AES-GCM* mode with the following main
design differences:

e In AES-GCM, asingle key K is used to compute the tag and to encrypt, while in AES-GCM-SIV, the initial key K, called master
key, is used to derive two keys, K_hash (used to compute the tag) and K_msg (used to encrypt the plaintext and the tag).

e In AES-GCM, the initial counter value is computed only from the IV, while in AES-GCM-SIV, the encrypted tag is used
as an initial counter value, thus providing more randomness.

o While using the same extension field F,.., AES-GCM and AES-GCM-SIV use distinct irreducible polynomials. The
authors of AES-GCM-SIV showed that the computations are faster with the irreducible polynomial they chose, in
particular when operations are implemented in specific hardware.

e The tag is computed with distinct hash functions: GHash for AES-GCM and Polyval for AES-GCM-SIV.

o AES-GCM authenticates the encoded associated data and the ciphertext, while AES-GCM-SIV authenticates the encoded
associated data and the plaintext. In other words, AES-GCM follows the Encrypt-then-MAC approach, while AES-GCM-
SIV follows the MAC-then-Encrypt approach.

The principle of AES-GCM-SIV is as follows: two keys, K_hash and K_msg, are derived from a master key K and the
initial nonce. The hash key K_hash is applied to the associated data, the plaintext, and the data lengths to generate a hash,
which is encrypted with the key K_msg to produce a tag. The plaintext is encrypted with the CTR mode using the key K_msg
and the tag as the initial counter value. Therefore, the initial counter value is an effective nonce, which is distinct for every
different initial-nonce/plaintext pair. In the event, the initial nonce repeats, the initial counter value will not repeat, if the
plaintext does not repeat.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication | 295

9.2.5.3 Key Derivation and Hash Functions

Key derivation function: the encryption/decryption algorithm begins by deriving two keys, a hash key, denoted K_hash and
an encryption key, denoted k_msg, from a master key K and the nonce N. As shown in the AES_GCM_SIV_KeyDerivation
function below, the length of the encryption key depends on the length of the master key (i.e. 128 or 256 bits).

function AES_GCM_SIV_KeyDerivation
Input K: key (of a bit-length of 128 or 256)
N:nonce (96 bits)
output K_hash: authentication key (128 bits)
K_msg: encryption key (128 or 256 bits)
1.if len(K) = 128 then Nb_iter = 4 else Nb_iter =6
2.fori =0to Nb_iter —1 do
integers are in little-endian encoding
T, = MSBgy (AES_ENcy msy (1752 IIN))
3.K_hash=T, || T,
4.if len(K) =128 thenK_msg =T, || T;
else K msg=T, ITs I T4 I Ts
5.return (K_,,ash, K

_msg

Hash function Polyval
AES-GCM-SIV hash function is denoted Polyval and is defined as follows:

m
Polyval,, (D)= Z(Dl @ H" 1 g x—128(m—i+1))
i=1
where H denotes the hash key and @ is the multiplication operation defined over extension field F,., with the irreducible polyno-
mial f(x) =x"* +x"" +x"** +x"*" +1,and D=D, Il D, ll...Il D,,.D,, D, ..., D, are 128-bit blocks and m = len(D)/128.

Notice that x~'* can also be written as x'*” + x'* 4+ x"*' + x"* + 1 in F,.,, with f(o) = x'* + x" 4+ x'2 + x" +1.

Differences between Polyval,; and GHash,; functions:

Both functions are defined over extension field F o, but with different irreducible polynomials:
fx)= X1 X1 X126 4 X121 1 for Polyval,; and f(x) = x4 x" +x* +x+1 for GHash,,. The little-endian represen-
tation of the first polynomial is 1092910000111 and that of the second polynomial is 111000010291, Therefore, those
irreducible polynomials are the “reverse”, in little-endian representation, of each other. Both functions use little-endian
encoding; but they make use of different mappings to/from 128-bit strings and extension field elements. Let
U=U,uU,UUUUU,UUU, U, U,U.U,LU,; be al6-byte string. Let U, = b,b,b,b,b,b.b.b., ..., U5 = b, b b,5,b,,5b,,,
by,sby5¢b,,,, Where b;s are bits.

Polyval,, takes the least significant bit (i.e. b,) to most significant bit (i.e. b)) of byte U, to be the coefficients of x° to x7,
while GHash,, takes them to be the coefficients of x to x°. The same mapping continues until the last byte U, where
Polyval,, takes the least significant bit b,,, to most significant bit b, of byte U, to be the coefficients of x'*° to x'*, while
GHash,, takes them to be the coefficients of x'*’ to x'*°.

Example 9.2
Consider the polynomial Q(x) = x'*” + x'** 4+ x'*! +x'"* + 1. Q(x) is represented as 0100000000000000000000000000 0492
in AES-GCM-SIV and as 8000000000000000000000000000002049 in AES-GCM.

9.2.5.4 Authenticated Encryption with AES-GCM-SIV

AES-GCM-SIV authenticated encryption takes a master key K of 128 or 256-bit length, a nonce N of 96-bit length, a plain-
text P, and associated data A; P and A are byte strings of variable length. It returns a ciphertext C and a 128-bit tag, Tag.
The AES-128 or AES-256 is used depending on the master key length. The authenticated encryption runs in three main
steps:

296

9 Block Cipher Modes of Operation for Authentication and Confidentiality

1) Key derivation: from the master key K and the nonce N, two keys are derived: K_hash of 128-bit length and K_msg of

128 or 256-bit length.

2) Hash generation: the Polyvaly .. hash function takes the hash key K_hash, the padded associated data, the padded
plaintext, and the data lengths len(A) and len(P) and returns a hash. The generated hash is encrypted with the encryp-

tion key K_msg.

3) Plaintext encryption: it is performed with a CTR encryption taking the key K_msg and the encrypted tag as the initial
counter value. The CTR mode used in AES-GCM-SIV is very similar to that used in AES-GCM; the minor difference is

in counter incrementing due to integer encoding.

The authenticated encryption of AES-GCM-SIV algorithm is given below and is illustrated by Figure 9.10.

function AES_GCM_SIV_CTR
input K_msg: encryption key (of 128 or 256 bits)
P: plaintext, a bit string no longer than 2% bits
InitialCtr: initial counter block (128 bits)
output C: ciphertext (of the same bit-length than the plaintext)

m=|len(X)/128]; Let P =P || Py Il...11 P4 | Py,
2. # Compute the counter blocks: the initial counter block is the tag
with the most significant bit of the last byte set to 1. Then, the
counter advances by incrementing the first 32 bits.
Cnt, = InitialCtr
fori=2tomdo
Convert the first four bytes of Cnt;_, from little-endian encoding

| Nonce(lV) | ‘ Master key (K) |

[KeyDerivation]

1.# m is the number of blocks in bit string P. P, , the last block can be incomplete.

| Associated data (A) | | Plaintext (P) |
I |
v v |
| A | pad | p | pad | [ten(a)),, | lten(P),, |
i — i
c -
]
E K_hash Polyval,
K_hash
Q N Jan)
s L
K
8L 4ES Ence neg
° _5 InitialCtr
op =
o 2 K_msg
48 AES_GCM_SIV_CTR
=3

Ciphertext (C) | l T;;g |

Figure 9.10 AES-GCM-SIV authenticated encryption.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication | 297

to integer, convert the sum modulo 2°? to little-endian
encoding, and update the first four bytes of Cnt;
k = LittleEndian_to_Integer (MSBs, (Cnt;_,)|
s = Integer to_LittleEndian (k +1mod2*?)
Cnt; = [s],, I [Cnt;_y],,
3. # Compute the ciphertext blocks
fori=1tom—1doC; =P @ AES_Ency ., (Cnt;)
Con =P @ MSB, (| (AES_Ency sy (Cnty))

len(P,

4.C=C G ... 1IC,y_ I Cp; return C

function AES_GCM_SIV_AuthenticatedEncryption
input K: master key (of 128 or 256 bits)
P: plaintext, a bit string no longer than 2% bits
A: associated data, a bit string no longer than 2°¢ bits
N: nonce (of 96 bits)
output C: ciphertext (of the same bit length than the plaintext)
Tag : encrypted tag (of a length of 128 bits)
1. # Key derivation
(K_hash,K_msg) = AES_GCM_SIV _KeyDerivation(K,N)
2.# Tag computation (note: integers are in little-endian encoding)
21L= [len(A)]64 [l [len(P)]64
2.2 # pad the plaintext and associated data to multiple of 128 bits
P_Pad = Right_pad(P); A_Pad = Right_pad(A)
2.3 h = Polyvaly s, (A_Pad || P_Pad || L) # h is the tag in clear
2.4 # XOR the first twelve bytes of h with the nonce
for i =0to 11 h[i]= h[i]1@ N[i]
Clear the most significant bit of the last byte of h.
h[15]: h[lS] & OX7F # ‘& denotes the bitwise AND operator
2.5 # Tag encryption. Notice that AES-GCM-SIV encrypts
directly the tag with the AES encryption operation, while
the AES-GCM mode encrypts the tag using the CTR mode
.Tag = AES_Ency pmsg(h)
3. # Plaintext encryption
3.1 # The initial counter block is the encrypted tag with the most
significant bit of the last byte set to 1.
“” denotes the bitwise OR
InitialCtr = Tag; InitialCtr[15] = InitialCtr[15] | 0x80
3.2 C = AES_GCM_SIV_CTR(K_msg, InitialCtr,P)
4.return (C,Tag)

9.2.5.5 Authenticated Decryption with AES-GCM-SIV
The decryption algorithm below makes use of the same functions as the encryption algorithm.

function AES_GCM_SIV_AuthenticatedDecryption

input K: master key (of 128 or 256 bits)
C: ciphertext, a bit string no longer than 2°° bits
Tag: tag, a bit string of 128 bits
A:associated data, a bit string no longer than 2°° bits
N:nonce, a bit string of 96 bits

output P: plaintext (of the same bit-length than the ciphertext)

V': Decision (“Valid” or “Invalid”)
1. # Key derivation

298

9 Block Cipher Modes of Operation for Authentication and Confidentiality

(K_hash,K_msg) = AES_GCM_SIV_KeyDerivation(K,N)
2. # Decryption of ciphertext using the SIV-CTR mode
2.1 InitialCtr = Tag; InitialCtr[15] = InitialCtr[15] | Ox80
2.2 P=AES GCM_SIV_CTR(K_msg, InitialCtr,C)
3. # Computation of the tag associated with the received ciphertext
31L= [Zen(A)*S]64 [l [len(P)*S]64
3.2 # pad the plaintext and associated data to multiple of 128 bits
P_Pad = Right_pad(P); A_Pad = Right_pad(A)
3.3 h=Polyvaly yqs(A_Pad || P_Pad || L) # h is the tag in clear
3.4 # XOR the first twelve bytes of h with the nonce
for i=0 to 11 do h[i]= h[i]&® N[i]
Clear the most significant bit of the last byte of h.
h[15] = h[15] & Ox7F
3.5 # Tag encryption
T’ = AES_ENcy msq(h)
4.if T’ = Tag, then return (“Valid”, P), else return “Invalid”

9.2.6 Poly1305

Poly1305 is a fast algorithm to generate message tags. Initially Poly1305 was proposed under the name Poly1305-AES to be
used jointly with AES [5]. Poly1305 is not yet approved by the NIST as a mode of operation of AES. However, it is recom-
mended as one of the schemes to build AEAD algorithms used in TLS [6]. In TLS, the Poly1305 is used jointly with the
stream cipher ChaCha20 (see Section 6.2.5); and their combination is referred to as ChaCha20-Poly1305 AEAD.

9.2.6.1 Poly1305-AES
To generate a tag, Poly1305-AES makes use of:

e One-time® key of 32 bytes divided into two equal-size keys

e an AES-128 key, denoted s, and an additional 128-bit key, denoted r; r[0], 1], ..., r[15] denote the bytes of the additional
key

e a 128-bit nonce, n

e a message m of variable byte-length

Additional key r
The additional key r is not used to encrypt or decrypt. It is an integer in little-endian encoding,
i.e.r=r{0]+2°r[1]+2"°F[2]+...4+ 2" 1[15]. r must be a positive integer with the following restrictions:

e The four most-significant bits of bytes r[3], r[7], r[11], and r[15] must be zeros; i.e. r[3], r[7], r[11], and r[15] take values
smaller than 16.
e The two least-significant bits of bytes r[4], r[8], and r[12] must be zeros; i.e. r[4], ¥[8], and r[12] take values divisible by 4.

r can be obtained by picking a random integer z in interval [0,2'**(and applying the “and” operation (denoted A) to z in
big-endian, using a mask as follows:

r =z A |Of ff ff fcOf ff ff fcOf ff ff fcOf ff ff ff]

16

Message conversion and padding
Let m be a message of a byte-length of ; m[O], m[l}, - m[l — 1} denote the bytes of message m. Before computing the tag,
conversion and padding operations are applied as follows:

1) Split message m into segments of 16 bytes.

2) Pad each 16-byte segment of message m to a 17-byte segment by appending one byte with the value 1.

3) If the last segment of message m is of a byte-length less than 16, then append a byte with the value 1 and append bytes
with the value 0, until the padded segment byte-length reaches 17. Padding with zeros does not affect the value of
integers.

The pseudocode of the message conversion and padding is as follows:

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

function ConvertPadMessage
input m: message of [bytes
output c: converted message
1.g=|[Blen(m) /16| # g: number of segments in message m
Only the last segment can be incomplete
Message segments are interpreted as integers in little-endian
encoding. Appending a complete segment with a byte of value 1
is equivalent to adding 2*?® to integer representing the segment.
2.for i =1 to|Blen(m) / 16| # Blen(m) means the byte-length of m
map each 16-byte of message m to a 17-byte segment in ¢
2.1 for j =16 to 1 do: c[i] = c[i]+m[16 » i — j] 2%15~)
2.2 ([i]= c[i]+ 2"
3.if (Blen(m) mod 16) = 0, then
3.1 z = Blen(m)—16*q; c[q] = 2**
3.2 for j =16 to z do: c[q] = c[q]+ m[16 » | — j] » 250167
4.return ¢

Tag generation
Given a one-time key (r,k), a nonce n, and a message m, which is transformed to a message c, the tag computation is
defined by:

Poly1305—AES(m,(r,s),n): (ci *r(q’”l)) mod 2%

i=1,...q

mod (2130 —S) +Enc (n)

Security of Poly1305-AES

Poly1305-AES scheme is designed to ensure that a forged message is rejected with a probability of 1 — [14 % #2719 fora L-byte

message, even after having observed 2°* legitimate authenticated messages; thus, it is resistant against tag forgery attacks [5].

9.2.6.2 ChaCha20-Poly1305 AEAD

Poly1305, used jointly with ChaCha20, is recommended as one of the building blocks of AEAD to implement TLS protocol.
ChaCha20-Poly1305 is an adaptation of the original Poly1305-AES, where the 32-byte encryption key of Chacha20 is used
to encrypt/decrypt data and to generate the one-time key (r,k), used to generate the tag.

9.2.6.2.1 Poly1305-mac
To generate a tag for a plaintext m, Poly1305-mac takes the following inputs:

e 32-byte master key K, the key used to encrypt
e 96-bit nonce n
e Message m of arbitrary byte-length

Tag generation follows three steps:

1) One-time key generation: the master key K, the nonce n, and a counter with value 0 are used as input of ChaCha20 to
produce a 64-byte keystream block Y. Only the leftmost 32 bytes of the block Y are used: r =Y[0:15] and s = Y[16:31].
Then, r is clamped to set to 0 some bits of bytes r[3], r[4], r{7], r[8], r[11], r[12], and r[15], exactly as in Poly1305-AES.

2) Message m is converted and mapped as in Poly1305-AES to yield a padded plaintext c.

3) Tag is computed according the following formula:

Z (Ci . r(—i+l))

i=1,...,q

t= mod (2130 — 5) +5)| mod 2!

Note. Poly1305mac does not encrypt the nonce n, while Poly1305-AES does. Polyl305mac makes use of the nonce to gen-
erate a one-time key (r,s), while Poly1305-AES assumes that the one-time key is given as input. In Poly1305mac, the
component s of the one-time key is the half of a keystream block generated by ChaCha20; therefore, the encryption of the
nonce in Poly1305-AES is equivalent to s in Polyl1305mac.

299

300 | 9 Block Cipher Modes of Operation for Authentication and Confidentiality

The pseudocode of Poly1305mac scheme is as follows:

function Poly1305mac
input K: 32-byte key; n: 96-bit nonce
m: message of arbitrary byte-length
output ¢: tag of 128 bits
1.z = ChaCha20(K,0,n) # generate a 64-byte keystream string
2.r =2[0:15]; s = z[15:31]
3.r=rA [Of ff ff fc Of ff ff fc Of ff ff fc Of ff ff ff]lé# Clamp r
4.c = ConvertPadMessage(m)

s.te=|| 3 (ger"™) | mod (2% ~5)+ 5| mod 27
i=1,...,q
6.return t

9.2.6.2.2 AEAD-ChaCha20-Poly1305
ChaCha20 and Poly1305mac can be combined to build an AEAD, called AEAD-ChaCha20-Poly1305. To encrypt and gen-
erate a tag for a plaintext P, AEAD-ChaCha20-Poly1305 takes the following inputs:

e 256-bit encryption key K.

e 96-bit nonce n.

o Plaintext P of arbitrary byte-length of at most (nearly) 256 G bytes.
e Optional additional data A of at most 2** —1 bytes.

It performs the following operations:

1) Generate a one-time key (7,s), using the encryption key K and the nonce n.

2) Plaintext P is encrypted by ChaCha20, using key K; the ciphertext is denoted C.

3) A tag t is produced by Poly1305mac, using a byte string MacData composed as follows: MacData= All
Append16(A) [IC || Append16(C) Il LenA Il LenC where Appendl6(Y) is a O-string, such that the length of
Y Il Append16(Y) is multiple of 16; LenA is the byte-length of the additional data A, and LenC, that of the plaintext P.
LenA and LenC are represented on 64 bits, each.

Figure 9.11 illustrates the structure of AEAD-ChaCha20-Poly1305 encryption; and its pseudocode is as follows:

function AEAD_ChaCha20 _Poly1305Encrypt
input K: 256-bit key; n:96-bit nonce
P: message of arbitrary byte-length
A: additional data (optional)
output C,t: ciphertext and 128-bit tag
1.C = ChaCha20(K,1,n,P) # encrypt the plaintext
2. MacData = A |l Pad16(A) |l C || Pad16(C) || [Blc—:’n(A)]64 [l [Blen(C)]64
3.t = Poly1305mac(MacData,K , n)
4. return (C,t)

9.2.7 Key Wrapping Modes

The authenticated-encryption algorithms presented in the previous subsections provide confidentiality and authentication
guarantees. In addition to those algorithms, three modes of operation have been approved by NIST as modes to provide
confidentiality and authentication guarantees to protect cryptographic keys when exchanged between two parties via an
untrusted channel. Indeed, cryptographic keys are of prime importance in any cryptosystem; thus, they require more
attention when exchanged. A key wrapping mode enables to encrypt a secret key with another secret key.

The key wrapping modes are stronger than the other modes, which target general data. However, the key protection is
achieved at the cost of a lower performance compared to the other authenticated-encryption algorithms. That is the reason
why key wrapping modes are only recommended to encrypt/decrypt keys and other highly-critical data.

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

i Tag generation: Poly1305mac Plaintext encryption

Key K (256 bits) — Plaintext (P)

m = [Blen(P)/64]
Vo ctr =1,2,...,m

@MEG ChaCha20

Keystream block (512 bits)
‘m keystream blocks (
5 || v (256 hits) MacData
¥
i | | Associated data A | Pad(A) Ciphertext (C) Pad(C) |[Blen(A)].,|[Blen{C}],,
Clamp(r)
s r - :
(128 b) 1 (128 b) S T
¢ ConvertPadM . | m = MacDat
t = tag_formula() |-—| e) Emge}‘ e
Tagt (128 b) Ciphertext (C)

Figure 9.11 Overall structure of ChaCha20-Poly1305 AEAD.

Definition 9.6 Key wrapping: it is a symmetric cryptographic scheme, which provides confidentiality and integrity guar-
antees for cryptographic keys when exchanged between parties; i.e. it is a method of encrypting and decrypting keys using
symmetric-key cryptography.

Key wrapping modes differ from the other authenticated-encryption modes presented in previous subsections:

e They do not generate a tag. Rather, they append (on the left of the plaintext) a constant-bit string, which is encrypted
together with the plaintext, and then the decryption succeeds only if the constant-bit string is recovered at the beginning
of the decryption output.

e They do not provide capacity to use associated data.

e They do not provide capacity to generate signatures. Recall that tags are required to generate signatures.

One may think about key wrapping as a mode of operation where the encryption of each bit of input is dependent on every
other bits of input in all the blocks in a non-trivial way. In other words, key wrapping modes are based on the input
diffusion.

The three key wrapping modes are called KW (AES Key Wrap), KWP (KW with Padding), and TKW (Triple DEA Key
Wrap) [7]. For KW and KWP, the underlying block cipher is AES with the key length of 128, 192, or 256 bits. For TKW, the
underlying block cipher is TDEA with the key length of 56 bits.

9.2.7.1 KW and KWP Modes of Operation

KW and KWP are modes of operation of AES block cipher. Therefore, both modes process blocks of a length of 128 bits.
Each block is split into two halves called semiblocks.® As shown in the encryption and decryption algorithms of KW and
KWP modes, the main components of KW mode are its functions denoted W and W '; wrapping function W performs the
encryption and unwrapping function W' the decryption. KWP is an extension of KW to process plaintexts of arbitrary
length.

301

302 | 9 Block Cipher Modes of Operation for Authentication and Confidentiality

function KW_Authenticated_Encryption
input K: key (with approved bit-length)
P: plaintext, a string of n semiblocks 2 < n < 2°* —1)
output C: ciphertext
1.5 = 0xA6A6A6A6A6A6ABAG || P
2.C=W(S)
3.return C

function KW_Authenticated_Decryption
input K: key (with approved bit-length)
C: ciphertext, a string of n semiblocks (3 < n < 2°%)
output P: plaintext; V: “Valid” or “Invalid’
1.5=w=}0)
2. # Check
2.1 if MSB;,(S) = OXA6 A6 A6 A6 A6 A6 A6 A6, then return “Invalid”
2.2 else P = LSBy4-(en(c)-1)(S)

2.3 return (P,“Valid”)

function KWP_Authenticated_Encryption
input K: key (with approved bit-length)
P: plaintext, a byte-string of length in [1..2°2 — 1] bytes
output C: ciphertext
1. # Pad the plaintext, so that the byte-string to encrypt is of a
length multiple of semiblock byte-length.

[enPAD=8* M — w
64 8
2.5 =0x46595946 || || 7P| |1 p |1 of8etenPa0)
32

3.if len(P) < 64, then C = Ency(S) else C =W(S)
4.return C

function KWP_Authenticated_Decryption
input K: key (with approved bit-length)
C: ciphertext, a byte-string of a length in|2..2%° | semiblocks.
output P: plaintext of the same length than that of input C
V:“Valid’ or “Invalid”
1.n=len(C)/ 64 # n is the number of semiblocks in C
2.if n=2,then S = Dec (C), else S =W~1(C)
3.if MBS3,(S) = 0xA65959A6, then return “Invalid”
4. if MBS3,(S) = 0xA65959A6, then
4.1 Plen = int(LSBs; (MBS4(S))
4.2 lenPAD = 8+(n—1)—Plen
4.3 if lenPAD < 0 or lenPAD > 7, then return “Invalid”
4.4 if LBSge1onpap(S) = 0¥ P then return “Invalid”
4.5 P = MSBg-pien (LSBsar(n—1(S))
4.6 return (“Valid”, P)

Wrapping function W takes a string S and splits it into n semiblocks. It makes use of internal variables A’ and Rit with
t=1,...,8, 8= 6(n —1), i=1,...,n. Wrapping function W runs s steps and in each step ¢ (t =1,..., §), it performs an AES

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

encryption and it updates variables A’ and qu. The variables R,i, with 2 <k < n, are updated using the values of the previous
iteration as follows: R, = R\

The complete algorithm is given below. Notice that: 1) the encryption starts with A°, which is equal to the constant
value 0XA6A6A6A6A6A6A6A6, then the encryption output is propagated to the subsequent iterations, 2) the constant
value is the only way to check the authenticity and its encryption is embedded in all the ciphertext bits. Therefore, no tag
is generated. Figure 9.12 depicts the operations of wrapping function W for encrypting four semiblocks S,,S,,S;, S,. Figure
9.13 illustrates a wired representation of wrapping function W with four semiblocks. The wired representation is a struc-
ture composed of 6(4 —1) =18 rectangles connected each other. Each rectangle represents an encryption operation: the
two wires on the left represent two semiblocks to encrypt and the wires on the right represent two (intermediate) ciphertext
semiblocks. The wires on the top convey the most significant 64 bits and the wires on the bottom the least significant 64
bits of the input or the output of the AES encryption.

function W
input K: key (with approved bit-length)
S: plaintext, a string of n semiblocks (1 > 3)
output C: ciphertext of the same length than that of input S
1. # Variable initialization

11.s=6+(n—1)
12.letS=5S5, 1S l...11S, # S;_; .., are semiblocks of S
13.A%=5,

14.fori=2tondoR’ = S.
2. # Compute intermediate ciphertexts
fort =1to s do
2.1 A" = MSB,, (EncK (At Rg—l))ea [t]es
2.2.fori=2ton—1doRf =R}
2.3.RL = LSB,, (EncK (At R§‘1))
3. # Function output
3.1.C,=A°
3.2.fori=2tondoC;, =R’
33.C=C IG...IIC,; return C

The unwrapping function W~ decrypts a ciphertext using the inverse operations of wrapping function W. Its algorithm is
given below.

function W*
input K: key (with approved bit-length)
C: ciphertext, a string of n semiblocks (n > 3)
output P: plaintext of the same length than that of input C
1. # Initialize the variables

11.s=6+(n—1)
12.letC=C 1 G I...II1C, #C_y .., are semiblocks of C
13.A4°=(,

14.fori=2tondoR’ =C

2. # Compute intermediate plaintext values
fort =stoldo
2.1 A1 = MSB, (DecK ((Af ®[tles) I R,f,))

22. R = 15B,, (DecK (4 @134 1R,))
2.3.fori=2ton—1doR ! =R!
3. # Function output
31.5, = A°
32.fori=2tondoS; =R’
33.P=S5 1S, 1l...11 S,; return P

303

304 | 9 Block Cipher Modes of Operation for Authentication and Confidentiality

l Sy | l Sz | | 53 | | Sy |
v v ¥
L] [r] [r] [r]
7 Itt:atiun [_E::KL 1
64 | 64
bits hflts
[1]s =C) 1’
h r k
o] [&] [r] [r])
. P
.?J‘llwl-teration j m"\
t=2 Ency,
64 64
hits hits
[2]es (ji} ‘ Ency
3 r
. |_:;le R R | | R
/" teration ED |
t=18 K
brts bfts --------------------
(18], C} | Enc,

" ':' :
G760 0 B
.. . : p

| c | | ¢ | | Cg || C |

Figure 9.12 Iterative encryption of wrapping function W (with four semiblocks).

o

5,

Sz

| 1 EncK |

4 EncK

N
N\

| 7 EncK |

N\

10 EnckK

| 13 EncK |

| 16 EncK |

2 EncK

| 5 EncK |

L
N\

| 8 EncK |

| 11 Enck |

14 EncK

| 17 Enck |

L

3 EncK

:
:
o

\
Ly
\ |
L
N\

s,

g

|
|

L
A\

| 6 EncK |

N
:
:

O 1

| 9 Enck |

:
N
:
N

\
L
N\
L
N

W
|

S S)

12 EncK

Figure 9.13 Wired representation of wrapping function W [7].

| 15 EncK |

| 18 EncK |

9.2 Block Cipher Modes of Operation for Confidentiality and Authentication

9.2.7.2 TKW Mode of Operation

TKW is a mode of operation of TDEA block cipher. Therefore, it processes blocks of a length of 64 bits. With the exception
of the block length and the lengths of plaintext and ciphertext, KW and TKW modes are the same. The algorithms of TKW
are given below:

function TKW_Authenticated_Encryption
input K: key (with approved bit-length)
P: plaintext, a string of n semiblocks 2 < n < 2% —1)
output C: ciphertext of the same the bit-length than input P
1.5 = 0xA6A6A6A6 || P
2.C=TW(S); return C

function TKW_Authenticated_Decryption
input K: key (with approved bit-length)
C: ciphertext, a string of n semiblocks (3 < n < 2?8
output P: plaintext of the same the bit-length than input C
V:“Valid” or “InValid”
1.5 =TWw=()
2.if MSB;;,(S) = 0xA6A6A6A6, then return “Invalid”
else P = LSBsy«(ien(c) —1(S); return (*Valid”, P)

The wrapping function TW and unwrapping function TW ™! are the same as the functions W and W' where the used
semiblock length is 32 instead of 64 and the encryption/decryption primitives are those of TDEA. To build functions TW
and TW %, substitute, in the algorithms described in 9.2.7.1, MSB,, to MSB,,, LSB,, to LSB,,, and [t],, to [t],.

9.2.7.3 Security of Key Wrapping Modes

First, wrapping key modes are deterministic; i.e. the ciphertext does not change, if the plaintext does not. Consequently, to
prevent attacks based on repetitions of plaintext, it is recommended to include a nonce in each plaintext occurrence.

Second, as previously emphasized in other authenticated-encryption modes, if the authenticity verification fails when
applying the key wrapping decryption, then there is no doubt, the ciphertext is not authentic. However, if the authenticity
verification succeeds, there is no absolute assurance that the recovered plaintext is authentic, because of forgery attacks. The
probability that an adversary would be able to forge a ciphertext that would be wrongly validated by the recipient should be
addressed before using key wrapping modes. Recall that the authenticity verification in key wrapping modes is to check if
the leftmost substring yielded by the decryption is equal to a constant bit-string (which equals 0xA6 A6 A6 A6 A6 A6 A6 A6 for
KW, 0xA465959A6 for KWP, and 0xA6 A6 A6 A6 for TKW). Recall also that KWP pads the plaintext bit-length on the right of
the constant 0xA65959 A6, which results in a 64-bit string. Therefore, the probability to produce a valid ciphertext is 2~ for
KW and KWP and 2 for TKW. It is worth noticing that TKW mode is vulnerable to forgery attacks.

Third, cryptanalysis of key wrapping modes showed that these modes are vulnerable to attacks based on very long mes-
sages. In two very long messages, collisions located at some positions may occur and then may be used to design some
attacks. To address such a vulnerability, the plaintext length is limited to 280232 and 2¥ bytes for KW, WP, and TKW,
respectively.

9.2.8 Security of Authenticated-Encryption Modes

When a block cipher is used for confidentiality and/or authentication, the security goal is to prevent an adversary with
limited computational power i) to learn any information on the plaintext, and/or ii) to alter the ciphertext or the plaintext
while forging a valid MAC. Summarized below are the main vulnerabilities of authenticated-encryption modes addressed
in literature.

9.2.8.1 Block Repetitions and Replay
CMAC aims at providing message authenticity only. It is based on CBC, but without using an IV. Therefore, CMAC mode
does not inherently protect against replay attacks. Indeed, the same message with its MAC may be re-sent multiple times

305

306

9 Block Cipher Modes of Operation for Authentication and Confidentiality

by the attacker, and the recipient tag verification process validates all the (re)sent messages. However, since the plaintext
is sent in clear, detection of plaintext repetitions does not matter in CMAC.

CCM, GCM, and AES-GCM-SIV are based on CTR and CBC mode with a nonce. Therefore, replay attacks can be easily
detected. Since all those three modes make use of a nonce, they hide plaintext repetitions.

9.2.8.2 Chosen-Ciphertext Attacks

With authenticated encryption, the task of adversary becomes (extremely) hard to disclose keys or plaintexts. It is worth
noticing that the authenticated encryption can provide security against chosen-ciphertext attacks in which the adversary
attempts to gain advantage (such as recovering the key) by submitting chosen ciphertexts to a decryption oracle.
Authenticated decryption can easily recognize improperly built ciphertexts and do not decrypt them. Thus, adversary
cannot select ciphertexts and receive their plaintexts.

9.2.8.3 Birthday Attacks

MAC forgery attacks depend on Tlen, the bit-length of the tag. The probability that the attacker randomly guesses the MAC,
which matches the ciphertext he/she modified, is 2~ ™". The adversary could substitute a ciphertext to another without
controlling the content by trying the find a collision (i.e. tTmo distinct ciphertexts with the same tag). By the birthday par-

adox, the adversary needs to use (i.e. intercepts) at least 22,
In case of CMAC and GMAC, which are two modes that do not provide confidentiality guarantees, the adversary may
alter the plaintext (because it is in cleartext) and forge the tag using birthday attacks.

9.2.8.4 Bit-flipping Attacks

When MACs are of concern, the aim of the bit-flipping attack would be to change a ciphertext or plaintext block and the
MAC at some positions in order to change the plaintext recovered by recipient at the same positions. Such type of attacks
is very unlikely to succeed in MAC generating modes, because the attacker has no means to know which bits will change
in the recovered plaintext when bits are changed in the ciphertext or in the tag.

9.2.8.5 Nonce Misuse
Recall that nonce misuse means that two or more plaintexts are encrypted with the same nonce by mistake. CMAC mode
does not use any nonce; therefore, vulnerability to nonce misuse is not relevant. GCM mode is vulnerable to nonce misuse
(see Section 9.2.4.6). AES-GCM-SIV provides a solution to make GCM resistant to nonce misuse.

In CCM mode, if two plaintexts are encrypted with the same nonce, the same key and the same parameter q (the byte-
length of the byte-length of plaintext), then counter blocks used to encrypt both messages are the same. Therefore, the
forbidden attack may be mounted to derive the XOR of two plaintexts.

9.3 Exercises and Problems
9.3.1 List of Exercises and Problems

Exercise 9.1
Consider a user who encrypts and generates tags for files of 1 G bytes using CCM. How many files can he/she process
before changing the key? Hint: observe the information formatting function.

Problem 9.1

CMAC is known to be an improvement of CBC-MAC’ algorithm. Both algorithms perform exactly the same operations
until the last plaintext block P,. In CBC-MAC, the last block P, is directly encrypted, while in CMAC, it is XORed with a
subkey before being encrypted in step 4 of tag generation algorithm. CBC-MAC does not make use of subkeys K, and K.
Assume that the tag bit-length is the same as that of a block and the plaintext length is a multiple of block length (i.e. we
consider a tag generator without truncation of the final ciphertext and without padding the last plaintext block). Show that
CBC-MAC is vulnerable to the following MAC forgery attack, while CMAC is not: given two plaintexts and their tags, the
adversary can generate a forged plaintext with a valid tag without knowing the key.

9.3 Exercises and Problems

Problem 9.2

In order to generate 128-bit tags for plaintexts of a bit-length multiple of 128, Bob modifies the standard CMAC by substi-

tuting addition mod 997 to XOR operations, i.e. instead of computing A @ B, as in the original CMAC, he computes

(A+ B) mod 997. Bob tries three MAC schemes:

1) Scheme 1: Bob sends an encrypted 3-block message to the bank including an amount of money to transfer to Eve and
the amount is encoded in the second block. Eve intercepts a message containing an amount of $25. How can Eve
increase the amount she will receive, while the final tag does not change?

2) Scheme 2: Bob sends an encrypted 3-block message to the bank including an amount of money to transfer to Eve and
the amount is encoded in the third block (i.e. the last block). Eve intercepts a message containing an amount of $25.
How can Eve increase the amount she will receive, while the final tag does not change?

3) Scheme 3: Bob sends an encrypted 3-block message to the bank including an amount of money to transfer to Eve and
the amount is encoded in an incomplete third block (i.e. only the five first bits of the third block are used in the plain-
text). Eve intercepts a message containing an amount of $25. How can Eve increase the amount she will receive, while
the final tag does not change?

Problem 9.3

Consider the following variant of CMAC intended to generate tags for messages of arbitrary lengths, which are multiples
of the block length. The construction uses a block cipher E': {0,1}* x{0,1}" — {0,1}", which is assumed to be secure, and
computes a tag T for message M as T = MAC(M,K) = CBC (M II1), where [is the bit-length of M represented on n bits.
Show that the construction is insecure under chosen-plaintext attack; i.e. an adversary who can get tags of some plaintexts
can forge a tag.

Problem 9.4

Consider the following variant of CMAC intended to generate tags for messages of arbitrary lengths, which are multiples
of the block length. The construction uses a block cipher E: {0,1}* x{0,1}" — {0,1}", which is assumed to be secure. The
secret key is a pair (K,K !) The construction takes a message M and computes a tag T as follows:
T =MAC(M,(K,K'))=CBC(M)®K'. K" is of a block bit-length n, while K is of a bit-length of k, the cipher key bit-
length. CBC is used with an IV of a fixed value 0. Show that the construction is insecure under the chosen-plaintext attack;
i.e. an adversary who can get the tags of some plaintexts can forge a tag.

Problem 9.5

This problem addresses vulnerabilities of CMAC when a set of messages is processed with the same key assuming that the

tag bit-length is the same as that of a block and the plaintext length is a multiple of block length (i.e. we consider a CMAC

without performing truncation of the final ciphertext and without padding the last plaintext block).

1) How many messages are required to have a collision (i.e. two distinct messages with the same tag) following the birth-
day paradox?

2) Given two messages M and M’, which have the same tag T = CMAC, (M) = CMAC, (M !), how to build more collisions
of the form M || X and M’ |l X? Such an attack is called length extension.

3) Use answers to questions 1 and 2 to show how an adversary can forge a pair (message and tag) with an uncontrolled
appended content.

Problem 9.6

This problem addresses message number limits in CMAC to prevent collision attacks. Hint: use birthday paradox.

1) In page 13, the CMAC standard [2] recommends the following “the default recommendation is to limit the key to no
more than 2*® messages when the block size of the underlying block cipher is 128 bits, as with the AES algorithm, and
2% messages when the block size is 64 bits, as with TDEA. Within these limits, the probability of a collision is expected
to be less than one in a billion for the AES algorithm, and less than one in a million for TDEA.” How the recommended
limits (i.e. 2*® and 2*!) can be substantiated?

2) In most real-world systems, it is recommended that the adversary’s advantage should not be greater than 2. In
particular, the number of tags generated with the same key is such that the probability of tag collision should not be
greater than 2™ *2, What is the limit on message number to tag with AES-CMAC and TDEA-CMAG, both using the same
key, such that collision risk does not exceed 2 **?

307

308

9 Block Cipher Modes of Operation for Authentication and Confidentiality

Problem 9.7
Show that ChaCha20-Poly1305 AEAD does not assure confidentiality protection, if the nonce is reused for two distinct
messages.

Problem 9.8

In this problem, we want to show that Poly1305-AES is secure against forgery attacks, even if one-time key (r,s) and nonce
n are both reused to compute tags for two distinct plaintexts m and m’, both of the same byte-length of 16. To simplify the
problem, assume that m’ is no less than m. Discuss why forging a plaintext f using m, m’, and their tags cannot succeed.
For example, try to find a tag for f=m’—m, assuming that one-time key (r,s) and nonce n are unknown to the
adversary.

9.3.2 Solutions to Exercises and Problems

Exercise 9.1

Payload length is 1 G bytes. 1 G = 2°; thus, q the byte-length of the payload length is 4. In formatting function, the nonce
is represented on bytes 1 to 15— q of the block B,. If g = 4, then the byte-length of the nonce is 11. Hence, the maximum
distinct values of nonces is 2''"®. Since each file requires a distinct nonce, the maximum number of files to encrypt and
authenticate with the same key is 2%,

Problem 9.1

With the given assumptions, CBC-MAC may be defined by:
P = P; # No subkeys are used in CBC-MAC
c,=0"
fori=1ton do: C;=Enc, (C,_, ®P)

L

T = MSB, (Cn) =C,, because the tag and block are of the same bit-length

Let (P,T) and (P’, T’) be two known plaintexts and their tags. Let n and n’ denote the number of blocks of plaintexts
P and P’ respectively. Let Pll, PZ’, P,;, denote the blocks of plaintext P’.

1) Under CBC-MAC, the adversary can forge, by concatenation, a plaintext P”’ as follows: P/ =P || (Pl’ @ T) LR L.l P
LetC b j=1,...,n denote the encryptions of blocks of P".

"

C, :EncK(CO @Pl//):EncK(CO 691’1):EncK(P1):EncK(Pl):T

C, = Ence(C, , ®B,)= Ency(C, , ©B,)=T

Cp1 = Encg (T P

. nﬂ):EncK(T @(Pl,@T))zEncK(Pl’ GBO)

Hence, the encryption of blocks of plaintext P is cancelled. Next, the encryption of plaintext P’ continues exactly as

that of plaintext P’ and the final tag is T’. Then, the adversary sends (P’ LT’), which will be validated by the recipient.
2) Now consider CMAC algorithm. The tag of plaintext P is computed as T = Ency, (Cn_1 <) (Kl DP,))

Since the last block of plaintext P is not the last block of message P/, the tag of P”" is computed as:

C, = Enc, (Cn_1 @ Pn”) = Ency (C,_, ®B,)= T,, which is distinct from T = Enc (C,_, ®(K, ® P,). Then,

Cpq = Ency (TI OP 1

) = Ency (T1 ® (Pl/ (&) T)) = Ency (Pl/ ST, @ T), which is distinct from Encg (P/). Hence, the
encryption of plaintext P"’ does not continue as that of P’. The tag of plaintext P’ would be "/, which is distinct from T’.

Therefore, the forgery attack cannot succeed under CMAC.

Problem 9.2
1) Scheme 1: the CMAC scheme designed by Bob to generate a 128-bit tag for each 3-block message P = (P1 P, Il P;) isas
follows:

Bob_MAC_Generation(K,P):
(Kl, Kz) = CMAC_Subkey_Generation(K,128)

9.3 Exercises and Problems | 309

Let Amt denote the amount included in the second block of P.
By CMAC design, P, = (K1 + P;) mod 997, when P; is a complete block
c, =0
Fori=1to3 do: C, = Ency ((Ci_1 + Pi) mod 997)
Return (C,)
Assume that Bob has generated a tag T for a message P that has the value 25 in its second block, i.e. P, = 25.

T = Bob_MAC_Generation(K,P) = Enc, ((C2 + P3) mod 997)

= Ency (((EncK (¢, +25) mod 997)) + Ps) mod 997)
If Eve increases the amount by 997, the second block becomes P, = 1122. Thus, the tag of the forged message is:

T' = Enc,, (((EncK (¢, + 1122) mod 997)) + P3) mod 997).

Both tags are the same. Therefore, Eve succeeds in increasing the amount.
2) Scheme 2: the CMAC scheme designed by Bob to generate a 128-bit tag for each 3-block message P = (Pl 1P|l P;) isas
follows:

Bob_MAC_Generation(K,P):
(K,, K,)=CMAC_Subkey_Generation(K,128).

Let Amt denote the amount included in the third block of P.

Let P, = (Kl + Amt) mod 997

c,=0?

Fori=1 to3 do:C, = Enc, <(Ci—1 +I)l) mod 997)

Return (C3>
Assume that Bob has generated a tag T for a message P that has the value 25 in its third block, i.e. P, =25.
T = Bob_MAC_Generation(K,P) = Enc, ((C2 + P3) mod 997) = Ency ((C2 + Amt + K1) mod 997)
If Eve increases the amount Amt by 997, the third block becomes P, =1122; and the tag does not change. Therefore, Eve
succeeds in increasing the amount.

3) Scheme 3: the amount of money is included in the third block and encoded, so that it contains only the amount; i.e. the last

block of the plaintext is incomplete. That is, Bob’s MAC scheme becomes:
Bob_MAC_Generation(K,P):

(K1 , Kz) =CMAC_Subkey_Generation(K,128)

Let Amt denote the amount included in the third block of P denoted P;.
j=128~len(P; |
P =K, (P 11 1110/)
b
0=0
fori=1to3 do: C, = Ency, ((CF1 + Pi) mod 997)

Return (C,)
The tag generated by Bob is:

T = Ency

(C2+ K, + (1251, 1111102 | mod 997).

If Eve increases the amount by x, then:
Let L denote the bit-length of integer x + 25. Hence, the tag of the forged message is:

T' = Enc,

(C,+ K, +(bx+251, 111107) mod 997).

Eve can find a value x, such that the following holds, and then change the amount:

310 | 9 Block Cipher Modes of Operation for Authentication and Confidentiality

(251, 12110'2) (L + 251, 11111051) mod 997

The conclusion is that the modulo operator is not appropriate to design MAC schemes, as suggested by Bob.

Problem 9.3

As a solution to the problem, we discuss a forgery attack with a 3-block message.
By construction of the proposed MAC scheme:

If M = B,B,B, then T = MAC(M,K) = Ey By (E¢ (E (B)) @ B,) @ B,)03),

The steps of the attack are as follows:

- get the tag of message M, =[0],,, T, = E (EK ([o]n)@ 1)

- get the tag of message M, =[1],, T, = E, (EK ([1]n) @ 1)

- get the tag of message M, =[0], 1| [1], I T,

T, = By B (B¢ (Eg (10],) @ 1],) © T,) @ 3)
—E, (EK (net))e 3):EK (E¢(0],) @ 3)

- Forge a message M, =[1], Il [1], II'T, with tag T,, which matches the forged message, because:

orge
MAC([1], I [1], 1T;, K) = Eg (B (Eg (i (11,) @ 1],) © T;) @ 3)

— B¢ (B (| T, @],)03)= B (Ec (10,)@3) =1,

We can apply the previous steps for any pair of blocks M, and M,, and forge a tag.

Problem 9.4
The tag forgery attack may be designed as follows:
i) The adversary gets two tags:

T, =CBC, (o(”)) &K' and T, = CBC, (0<"> I Tl) oK’
By the proposed MAC scheme,
T, = CBCy (o(”)) ¢ K =E, (0(">) oK'
T, = CBC, (0(”) I Tl) oK' =E, [Ek (o(”)) o E, (0<")) ® K’] ® K'=E, (K)o K’
ii) The adversary can forge T, as a valid tag of a message 0("> II' T, Il T,, because:
CBC, (o(”) I, I Tz)@K’
—E, [Ek [Ek (O("))@Ek (o(”)) @ K/] o(E, (K') @K/)] BK’
=E,(E, (K)o (B (K)o K)) oK' =T,

Problem 9.5

1) With a tag bit-length of b, the number of distinct tags is 2°. From the birthday paradox (in Section 3.4), we can deduce
that if the number of messages (for which the tags have been produced with the same key K) known to the adversary is
close to 22, then there exists a high probability that two distinct messages M and M’ have the same tag; i.e.
CMACy (M)=CMAC (M')=T.

2) Assume that two messages M and M’ are known and they have the same tag under the key in use; i.e.
T =CMAC,(M)=CMAC, (M !) Letn and n’ denote the number of blocks of messages M and M’, respectively. Let C;,
i=1,...,n and C}, j=1,...,n/, denote the ciphertext blocks computed for messages M and M’, respectively. Since any
plaintext block is of length b, only the subkey K| is used. The tag of both messages is computed as follows:

9.3 Exercises and Problems

T=Ence(C, , ®K, ©M,)=Ency(Cy , ©K, & M,)
Thus,C, , ®K, ®M,=C,, ,®K, &M,

=C, , &M, =C, , &M, (a)

Now, extend both messages with the same bit string X of p blocks.

M'=MIIX and M* = M'|| X
LetCl,i=1,...,n+len(X), and C;, j=1,..., n’ +len(X), denote the ciphertext blocks computed for messages M' and M?,
respectively.

Ch = Ence(C), & M))=Encg(C, , & M,) (b)
Cp = Eney (€l &M})= Ency(Cpy, o M,,) ©

From (a)-(c), we deduce: CrlZ = C,ZZ,.
Then, continuing the encryption of M' and M? blocks, yields:

Cr.y=Co pford=1,...len(X)

Thus, CMAC, (M X) =CMAC, (M "X) Any value of X results in a collision discovery.

3) According to the birthday paradox, the attacker needs 2%? messages and their MACs to observe a
collision T = CMAC,, (M) =CMAC, (M !) Next, he/she needs to get a message M” starting with either M or M’ and its
tag is T”. Using the answer to question 2, the attacker makes a substitution in the first part of M”. If M” = M || X, then
the forged pair is ((M 1 X),T") Otherwise, it is ((M Xx),1") The forged pair will be validated by the recipient, because
it has a valid tag.

Problem 9.6

If one generates tags for 2'*® messages with AES-CMAC or 2** messages with TDEA-CMAC, the probability of collision (i.e.
two messages map to the same tag) is 1. In general, when tag generation is of concern, the number of messages processed
with the same key should not exceed a specific limit to make the risk of collision below some desired threshold.

Recall that the generalization of the birthday paradox (see Section 3.4) states that: given any set of M values with a uniform
distribution, the probability Pr(n) two values among n values from the set are identical is given by: n ~ ,/2* M = Pr(n) . We
apply the birthday paradox formula to prove the validity of the statement included in the CMAC standard. In this problem,
M is the number of distinct tags and n the number of messages required for a collision to occur at a probability of Pr(n).

1) Proof of statement in CMAC standard 2
The birthday paradox formula can be rewritten as: Pr(n) ~ BIYa Given a collision risk threshold of P the number n of

messages tagged with the same key should be such that Pr(n) < P. So, the following inequality must hold:

2

n
—<P a
;i (a)

— Case 1: If AES-CMAC is used, then the tag space is of 2'?*. One billion can be approximated by 2*’; thus, “less than
one in a billion” may be replaced by “< 27" and the collision risk threshold becomes P =2 *. By making substitu-
2
(248) 1 1

tions in inequality (a):

5 #9128 533 23'
- Case 2: If TDEA-CMAC is used, then the tag space is of 2% One million can be approximated by 2% thus, “less than
one in a million” may be replaced by “< 27" and the collision risk threshold becomes P = 2~*. By making substitu-

(221)2 a1 <L

%64 523 20°

tions in inequality (a):
In both cases, the bound on the collision risk is not exceeded, if the limit on the number of messages is fulfilled.
Therefore, the statement in CMAC standard is valid.
2) Limit of message to tag with a collision risk not greater than = 232
Rearrange inequality (a) as n < v2*M * P, then make substitutions.

311

312

9 Block Cipher Modes of Operation for Authentication and Confidentiality

~ Case 1: AES-CMAC: n < |[2#21% #2732 — \[p %%
- Case 2: TDEA-CMAGC: n < \[2%2%* #2732 — {2 %2
In conclusion, the statement given in CMAC standard is an undersizing of limits yielded for a collision risk not greater than

27*% in order to provide an easy way to appreciate the impact of message number on the tag collision occurrence.[]

Problem 9.7

Assume that an encryption key K and nonce n are reused to encrypt two plaintexts m and m' of the same byte-length L. If
the key K and the nonce n are used twice, the generated keystream string is the same for both executions of ChaCha20.
LetY denote the generated keystream string, using key K and nonce n. Since ChaCha20 is a stream cipher, the produced
ciphertexts are C=m @Y and C'=m’ &Y. From C & C' =m & m’/, one can derive useful information regarding the plain-

texts; thus, confidentiality is compromised.
Problem 9.8
The lengths of both messages m and m' are of 16 bytes. Therefore, the conversion and padding operations result in adding

2'%8 to each plaintext (we omit the little-endian encoding). Two padded plaintexts ¢ and ¢’ are yielded; then, two tags t and
t" are computed. Since both initial plaintexts are of a 16-byte-length, tags are computed as:

t=((c,+r') mod (22 —5) + Bne,(m)) mod 2

- (((m +2%)er) mod (2% —5) + Encs(n)) mod 21
f— ((c/1 +r!) mod (2130 - 5) + Encs(n)) mod 2'%

- (((m’ +2%) r) mod (2% —5) + Encs(n)) mod 212

Assume that the plaintext that could be forged, using the same one-time key and nonce, is f = m’ — m. The padded segment
yielded from f isc, = (m’ - m) 42!, The tag of f, computed by the legitimate sender, is the following:

ty= ((cf *rl) mod (2130 75)+Encs(n)) mod 2128

— (((m’ —m+ 2128) * r) mod (2130 — 5) + Encs(n)) mod 2%
t'—t= (((m’ — m) * r) mod (2130 - 5)) mod 2'%

t = (t/ — t) + ((2128 *r mod (2130 — 5) + Encs(n)) mod 2128)

Since r, s, and n are unknown to the adversary, he/she cannot compute the second component of right part of the last
equality. Therefore, Poly1305-AES is secure against the suggested forgery attack.

Notes

1 In literature, the acronym AEAD is expanded as either “Authenticated Encryption with Associated Data” or “Authenticated
Encryption with Additional Data,” which are the same notion.

2 Ttis worth noticing that in this chapter, authentication refers to data authenticity and not to user authentication (e.g. with a
password or biometrics), which is another aspect of security.

3 Notice that to be standard-complying, applications should not use the same key and nonce to process distinct messages.

4 AES-GCM means GCM mode of operation of AES bock cipher.

5 For each tag to compute, a distinct 32-byte key is used. So, the sender and recipient of tagged messages must agree on a
procedure (e.g. a key derivation function) to generate one-time keys from a session key.

6 A semiblock is the half of a block, i.e. a 64-bit substring, if AES is used and a 32-bit substring, if TDEA is used.

7 CBC-MAC has not been approved as standard because of its vulnerabilities.

References | 313

References

1 Gueron, S. and Lindell, Y. (2017). Better bounds for block cipher modes of operation via nonce-based key derivation - report
2017/702. Cryptology ePrint Archive. Cryptology ePrint Archive.

2 Dworkin, M. (2016). Recommendation for block cipher modes of operation: the CMAC mode for authentication, special
publication 800-38B. NIST. National Institute for Standards and Technology.

3 Dworkin, M. (2007). Recommendation for block cipher modes of operation: the CCM mode for authentication and
confidentiality, special publication 800-38C. NIST. National Institute for Standards and Technology.

4 Dworkin, M. (2007). Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and GMAC, special
publication 800-38D. NIST. National Institute for Standards and Technology.

5 Bernstein, D. (2005). The poly1305-AES message-authentication code. 12th International Workshop on Fast Software
Encryption, 32-49. Paris: Springer. LNCS 3357.

6 Rescorla, E. (2018). The transport layer security (TLS) protocol version 1.3, RFC 8446. Internet Engineering Task Force
(IETF). Internet Engineering Task Force.

7 Dworkin, M. (2012). Recommendation for block cipher modes of operation: methods for key wrapping, special publication
800-38F. NIST. National Institute for Standards and Technology.

314

10

Introduction to Security Analysis of Block Ciphers

Modern cryptography security relies on the computational difficulty! to break ciphers rather than on the theoretical impos-
sibility to break them. If adversaries have enough resources and time, they can break any cipher. The security analysis of
block ciphers and their modes of operation is a wide field in cryptography. One approach to address the security of ciphers
is to show how it is hard for adversaries to break ciphers given the resources they can use. The adversaries have access to
black boxes (called oracles) associated with the ciphers to attack and they try to guess some information through the exploi-
tation of chosen plaintexts and ciphertexts. Consequently, information inference is probabilistic. The information inferred
through querying a black-box is measured in terms of adversary advantage. Secure ciphers are those ciphers for which the
advantage of adversaries is negligible if their resources and time remain below some limits. The analysis of different sce-
narios of attacks is an approach to assess the security of ciphers from a probabilistic point of view. In particular, security
analysis aims to define bounds beyond which the use of some ciphers may become insecure.

Security analysis is based on oracles, in particular oracles modeling the encryption, decryption, MAC generation, and
MAC verification operations. The cipher to analyze is put in the worst conditions; i.e. the adversaries can choose any plain-
texts to encrypt or ciphertexts to decrypt or the adversaries choose MACs and then ask the oracle to verify their validity.
Therefore, the interception of true plaintexts and ciphertexts is not an issue.

In general, block cipher analysis is defined using two parameters relating to the following questions:

o What is the goal of the adversary: decrypt a ciphertext, learn something about the plaintext from the ciphertext or recover
the key?

e What is the amount of resources available to the adversary? The resources are described in terms of computation time
and known plaintexts, ciphertexts, and plaintext-ciphertext pairs. In addition, the memory required to store data may be
a critical issue.

Security analysis of modes of operation of block ciphers addresses two issues:

e Privacy: it should be computationally infeasible for an adversary to derive any information from the ciphertexts unless
the key is known. Such a property is called perfect secrecy [1].

o Authenticity: it should be computationally infeasible for an adversary to forge a valid pair ciphertext-tag unless the key
is known.

As mentioned in other chapters, cryptographic standards specify limits for the number of plaintexts to encrypt to not
compromise the security. This chapter aims at introducing some security bounds, which link the plaintext limit and the
expected security in terms of privacy and authenticity preserving. It is worth noticing that this chapter is far from covering
the field of probabilistic security analysis.

10.1 Pseudorandom Functions and Permutations

Pseudorandom functions (PRFs) and pseudorandom permutations (PRPs) are basic tools in cryptography. One of the pri-
mary motivations of PRFs and PRPs is to enable the security analysis of block ciphers and their modes of operation [2-4].
This section presents basic definitions relevant to PRFs and PRPs.

Cryptography: Algorithms, Protocols, and Standards for Computer Security, First Edition. Zoubir Mammeri.
© 2024 John Wiley & Sons, Inc. Published 2024 by John Wiley & Sons, Inc.

10.1 Pseudorandom Functions and Permutations

10.1.1 Definitions of Random and Pseudorandom Functions and Permutations

Definition 10.1 Function: a function f: M — R from a set M, called function domain, to a set R, called function range or
codomain, assigns to each element of M one element of R.

Definition 10.2 Permutation: a permutation =: M — M from a set M, called permutation domain, to the set M, is a bijec-
tive function that uniquely assigns to each element of M one element of M.

Definition 10.3 Function family: a function family Fis a map F: K x M — R, where K denotes the key space, M the domain
of F, and R its range, which also is called co-domain of F.

When functions are used in cryptographic algorithm analysis, the elements (or points) of /C, M, and R are bit strings. That
is, K ={0,1}*, M =1{0,1}", and R ={0,1}*, where k denotes the key bit-length; n and L denote the bit-length of function
input and output, respectively.

Definition 10.4 Instance of a function family: given a key K € K, an instance of a function family F, denoted Fy, is a map
from each point x € M to a point y €R such that Fi,(x) — y.

Definition 10.5 Permutation family: a permutation family P is a collection of permutations with the same domain and
range; i.e. P:Kx M — M.

Definition 10.6 Instance of a permutation family: given a key KC € K, an instance of a permutation family P, denoted P,, is
a map from each point x € M to a unique point y € M such that y = P, (x) and P (x) = P (x") if x= x',V x,x’ € M.
A function family F: K x M — R is a collection of functions F,, F,, ..., F,, each with a key in the key space; and a permuta-
tion family P: K x M — M is a collection of permutations P, P,, ..., Py, each with a key in the key space K.

The collection of all functions of M to R is denoted Func(M, R); and the collection of all permutations of M to M is
denoted Perm(M).

Notice the massive difference in size between F and Func (M, R) sets and between P and Perm (M) sets (see Problem 10.1):

o IFI=IKI= 2" and | Func(M, R)l =R M= 21"
o |PI=IKI= 2" and |Perm (M) =IMI!=2"1

Example 10.1

AES-128 block cipher is a family of permutations that make use of 128-bit keys and 128-bit plaintext to produce 128-bit
ciphertext blocks. Therefore, it is a family of permutations with K = {0,1}'*® and M = {0,1}'**.

AES-128-CMAC is a function family of algorithms that produce tags (i.e. message authentication codes) of Tlen-bit length
for messages of arbitrary bit-length. Therefore, it is a function family with X = {0,1}128, M= {0,1}* ,and R = {0,1}Tle”.

Definition 10.7 Random function: given an element x of a domain M, a random function p: M — R is a black-box, which
returns a random element y in codomain R. If the same input x is given to a random function o, at multiple times, the same
output y is returned. Given any distinct inputs x, and x,, the output y, = ¢(x,) and y, = ¢(x,) are independent.

Definition 10.8 Random permutation: given an element x of a domain M, a random permutation m: M — M is a black-
box, which returns a random element y of M. If an input x is given to a random permutation =, for the first time, the re-
turned output is distinct from all previously returned outputs. If the same input x is given to a random permutation «, at
multiple times, the same output y is returned. Given any distinct inputs x, and x,, the outputs y, =n(x,) and y,=n(x,) are
independent and distinct.

Definition 10.9 Pseudorandom function (PRF): a PRF F: K x M — R a is family of functions whose any instance is com-
putationally indistinguishable from a random function of the function family Func(M,R).

Definition 10.10 Pseudorandom permutation (PRP): a PRP F: K x M — M is a family of permutations whose any in-
stance is computationally indistinguishable from a random instance of the permutation family Perm (M). A PRP P is required
to be bijective, and to have an efficient inversion function P~*;i.e. YK€/, P~* (K,P(K ,x)):x.

315

316

10 Introduction to Security Analysis of Block Ciphers

A pseudorandom function family F (resp. PRP P) is computationally indistinguishable from a random function (resp.
permutation), if an adversary that has practical computational resources and given access to an instance of the PRFF (resp.
PRP P) and to a random function (resp. permutation), with the same domain and codomain; he/she cannot distinguish
between the outputs of the PRF (resp. PRP) and those of the random function (resp. permutation).

10.1.2 Indistinguishability and Security of PRFs

Definition 10.11 Oracle: an oracle of a function fis a (theoretical) black box that responds to every unique query with a
(truly) random response chosen uniformly from the output domain of the function.

The most commonly used approach to evaluate the security (i.e. indistinguishability) of PRFs (and also PRPs) is based on
a probabilistic analysis and referred to as Real-Or-Random (ROR), which works as a game between a distinguisher A (called
hereafter adversary) of a PRF F and a challenger (see Figure 10.1).

Adversary A is given an interface to access two oracles and it submits one or more queries and receives answers. Before
processing the first query, the game challenger, whose strategy is unknown to the adversary, uniformly selects at random
a key K from the key space K and a random binary b. For each submitted query, if b =1, then the query is processed with
the instance function F, (i.e. processed with the oracle of F); and if b= 0, then the query is processed with a random
function ¢ selected function from the family Func (M, R). Upon reception of an answer, the adversary tries to guess which
oracle processed its query, i.e. which value was chosen for b. The adversary outputs 1, if it thinks that the query was pro-
cessed by an instance of PRF F (i.e. the received bit string is a valid ciphertext); and 0 otherwise (i.e. the received bit string
is random).

Each adversary query and guess is called experiment. For each experiment, a quantity called PRF-advantage is computed
to measure how the adversary is able to distinguish between the PRF and a random function:

K&K AN =1]—Pr

ADVET (A) 2L pr p& Func(MR); A% = 1

where:
K &K it denotes the uniform selection at random of a key K from key space K.
%) ﬁFunc(M, R): it denotes the selection of a random function ¢ from all the random functions in Func(M,R).

A'x: adversary A is given access to F, an instance of the function family F.
A¥: adversary A is given access to ¢, a random function from Func(M,R)

Pr[Afs = 1] is the probability that the adversary outputs b = 1, given that the query was effectively processed by Fy;
i.e. it is the probability of a correct guess.

- -

~ =te

S , _ / Oracle of F

xeM (1) L /
Adversary ‘\ R
(b =?) yeR (2) @ «Func(M,R)
b|(3) Random function oracle

Figure 10.1 General framework for PRF indistinguishability analysis.

10.1 Pseudorandom Functions and Permutations

Pr[A” = 1] is the probability that the adversary outputs b =1, given the query was processed by a random function
¢ € Func(M, R) ;itis the probability of a wrong guess.

Note. For a testing session, the adversary queries the interface one or more times depending on the amount of computa-
tion time the adversary can use. The challenger randomly selects the parameter b, b € {0,1}, one time per session before
the adversary starts submitting its queries and b remains unchanged during all the testing session. If b =1, then the chal-
lenger uniformly selects a random key K from the key space K. Therefore, all the queries of a session are processed either
by the same instance of function family, denoted F, or by a random function, denoted (.

Different adversaries may have different PRF-advantages depending on their number of queries and computation time and
how each adversary exploits the received outputs. The security of a function as PRF is measured as:

ADVE? (1,q) 24 max(ADVE" (4))
A
where q is the maximum number of queries that any adversary can ask; and t is the maximum testing computation time.

Definition 10.12 Secure PRF: a PRF F: K x M — R is (t,q,c)-secure if the PRF-advantage over all adversaries is negligible
i.e. ADVlé”f (t,q) < e, where € < 1 is a context-dependent bound; q and t denote the maximum number of queries and compu-
tation time for any adversary, respectively.

Example 10.2

Let K ={0,1}" and M ={0,1}". Consider the function family ®: C x M x M defined by ®(K,x) = K & x. Let us show that ®
is not a secure function family. An adversary A queries with two distinct elements x; and x, and receives two elements
¥, = f(x;) and y, = f(x,), where f is either an instance of ® or a random function from Func(M, M).If f is an instance of
O, theny, ©y, =(K® x,) (KD x,)=x, ® x,. The strategy of the adversary A would be to output1 if y, ¥, =x, & x,,
and 0 otherwise. The probability that the adversary outputs 1 if the pair (x,, x,) was processed by an instance of ¢ is equal
to 1. The probability that the adversary outputs 1 if the pair (x,, x,) was processed by a random function is in, because there
exists a single element v € M such thatv =y, @& y, = x, ® x,. The adversary advantage is: 2

SWEFunc(M ,R);A'“; =1 zl_i
2",

ADVP" (A)=Pr|K & K; A% = 1|—Pr

1- ln is far from negligible. Therefore, the function family ® is not secure.
2

In addition, it is easy to recover the key used by the function family ®. The adversary submits x = 0 and receives
y=Ko& 0. Then, the key is recovered as K = y.

10.1.2.1 Indistinguishability and Security of PRPs

Since any PRP P: K x M — M has an inverse P~ ': K x M — M, the indistinguishability analysis of PRPs should consider
two types of adversary attacks: the adversary has an access to the permutation P oracle and/or to the inverse permuta-
tion P! oracle. The first type of indistinguishability analysis is referred to as PRP under chosen-plaintext attack and the
second as PRP under Chosen-ciphertext attack.

10.1.2.1.1 PRP under Chosen-Plaintext-Attack

The analysis of a PRP P, under Chosen-plaintext-attack (CPA) case, is the same as that of a PRF, with the exception that a
collection of permutations are used instead of a collection of functions. Adversary A is given access to the oracle of permu-
tation family P and to the random permutations. When the permutation family oracle is accessed, the adversary submits a
plaintext and receives a ciphertext computed with a permutation instance P,, where K is a random key selected uniformly
from the key space K. The test of how the adversary is able to distinguish between an instance of the permutation family
and a random permutation from Perm (M) follows the same game as that of a PRF and the PRP-advantage under CPA is
defined by:

def

ADVE?=%(A) = Pr|K £ ;AT = 1)~ Pr|m & Perm(M); A™ = 1

317

318

10 Introduction to Security Analysis of Block Ciphers

where:
K & K: it denotes the uniform selection at random of a key K from key space /C.
s Perm(M): it denotes the selection of a random permutation 7 from all the random permutations in Perm(M).
Afx: adversary A is given access to Py, an instance of permutation family P.
Am: adversary A is given access to 7, a random permutation in Perm(M).
Pr{A" = 1] is the probability that the adversary outputs b =1, given that the query was effectively processed by P, . It
is the probability of a correct guess.
Pr[A™ = 1] is the probability that the adversary outputs b = 1, given that the query was processed by a random permu-
tation 7. It is the probability of a wrong guess.

In a similar way as for PRF, the PRP-advantage over all adversaries asking a maximum of q queries requiring a total com-
putation time no more than ¢ is defined by:

APV % (1,q) XL max(DV (4))

Definition 10.13 Secure PRP under CPA: a PRP P: K x M — M is said to be (t,q,c)-secure under CPA if the PRP-advantage
over all adversaries is negligible, i.e. ADVEP~%(t,q) <e, where e <1 is a context-dependent bound; q and t denote the
maximum number of queries and computation time for any adversary, respectively.

10.1.2.1.2 PRP under Chosen-Ciphertext Attack

Analysis of a PRP P under Chosen-Ciphertext Attack (CCA) case is similar to that of a PRF with the exception that a col-
lection of permutations is used instead of a collection of functions. Adversary A is given access to the oracles of permuta-
tion P, and its inverse P, ! It submits bit-strings (assuming they are ciphertexts) and receives bit-strings.

If b =1, then the queries are processed with an instance of P, ! and the returned bit-strings are valid plaintexts (i.e. if the
inputs to the oracle of P, ! are valid ciphertexts with regard to the key K, then they are decrypted to valid plaintexts). If b= 0,
then the queries are processed with a random inverse permutation and do not yield valid plaintexts. Upon receiving bit-
strings, the adversary has to guess if they are valid plaintexts or not.

The PRP-advantage under CCA is the measurement of how the adversary is able to distinguish between an instance of
the inverse permutation family and a random inverse permutation from Perm(M); it is defined by:

ADVEP (A) Y pr g & j A% = 1| —pr| 7 & perm(M); AT =1

where:

K& K: it denotes the uniform selection at random of a key K from key space /C.
L ﬁPerm(M): it denotes the selection, form Perm (M), of a random permutation 7 and its inverse 7
AP, adversary A is given access to the oracles of permutation instances B, and P, ! of permutation family P with the
key K.
A" 7: adversary A is given access to both random permutation instances = and 7' of permutation family Perm (M)
Pr[A"f o 1] is the probability of a correct guess.
pr[A"efs o 1] is the probability of a wrong guess.

— 1
™ .

In a similar way as for PRF, the PRP-advantage under CCA over all adversaries asking a maximum of q queries requiring
a total computation time no more than t is defined by:

ADVE? 4, q)ﬂmjx (aDvgre(a))

Definition 10.14 Secure PRP under CCA: a PRP P:Kx M — M is said to be (t,q,¢-secure under CCA if the PRP-
advantage over all adversaries is negligible, i.e. ADVS™P ™" (t,q) < ¢ where e < 1 is a context-dependent bound; q and t denote
the maximum number of queries and computation time for any adversar