
رمزنگاری، امنیت اطلاعات و حریم
خصوصی

دکتر سیدعلی لاجوردی: ارائه

بخش اول

اطلاعات مهم

L8026070@gmail.com: ایمیل•

https://learn.lajevardi.id.ir: طرح درس و منابع مطالعاتی•

مطالعه منابع معرفی شده جدا توصیه می شود•
اطلاع رسانی در گروه کلاس•
حضور به موقع و فعال در کلاس•
(ارسال اسلاید همراه پروژه پایانی)دقیقه 45ارائه اسلاید به صورت هفتگی دانشجویان به مدت •
!بدون تقلب و کپی(. زمان دو هفته)تحویل تمرینات به صورت کاغذی •
(در صورت نمره قابل قبول حذفی خواهد بود)ترم 10هفته : آزمون میان ترم•
به ایمیل تا قبل از آزمون پایانیwordو pdfارسال پروژه پایانی به صورت فایل •
آزمون پایانی کتاب بدون بدون اینترنت و گوشی همراه•

mailto:L8026070@gmail.com
https://learn.lajevardi.id.ir/

Welcome Crypto!

• Crypto is amazing!
• Can do things that seem impossible…

• Crypto is important and pervasive
• It impacts each of us every day

• Crypto is fun!
• Deep theory interacting with practice

• Attackers’ mindset, fun assignments

This is a tough class

• Mathematical prerequisites
• Discrete math, probability, modular arithmetic

• Mathematical maturity
• Definitions, theorems, proofs, abstraction

• CS prerequisites
• Pseudocode/algorithms, big-O notation

• Programming assignments
• Hard part should not be the programming, but the thought behind it

• Some flexibility in language, but need to read code I provide

Course goals

• Understand the theoretical foundations for real-world cryptography

• When you encounter crypto in your career:
• Understand the key terms

• Understand the security guarantees needed/provided

• Know how to use crypto

• Understand what goes on “under the hood”

• “Crypto mindset”

Course non-goals

• Designing your own crypto schemes
• This is hard!

• Implementing crypto for real-world use
• This is hard!

• Course goal:
realize when to consult an expert!

Cryptography (historically)

• “…the art of writing or solving codes…”

• Historically, cryptography focused exclusively on ensuring private
communication

• between two parties sharing secret information in advance using
“codes” (private-key encryption)

Modern cryptography

• Much broader scope!
• Data integrity, authentication, protocols, …

• The public-key setting

• Group communication

• More-complicated trust models

• Foundations (e.g., number theory, quantum-resistance) to systems (e.g.,
electronic voting, privacy-preserving ML, blockchain, DeFi)

Cryptography (historically)

• “…the art of writing or solving codes…”

• Historically, cryptography was an art
• Heuristic, unprincipled design and analysis

• Schemes proposed, broken, repeat…

Modern cryptography

• Design, analysis, and implementation of mathematical techniques for
securing information, systems, and distributed computations against
adversarial attack

• Cryptography is now much more of a science
• Rigorous analysis, firm foundations, deeper understanding, rich theory

• The “crypto mindset” has permeated other areas of computer
security
• Threat modeling

• Proofs of security

Cryptography (historically)

• Used primarily for military/government applications, plus a few niche
applications in industry (e.g., banking)

Modern cryptography

• Cryptography is ubiquitous!
• Password-based authentication, password hashing

• Secure credit-card transactions over the internet

• Encrypted WiFi

• Disk encryption

• Digitally signed software updates

• Bitcoin

• …

Rough course outline

• Building blocks
• Pseudorandom (number) generators

• Pseudorandom functions/block ciphers

• Hash functions

• Number theory

Secrecy Integrity

Private-key setting Private-key
encryption

Message
authentication codes

Public-key setting Public-key
encryption

Digital signatures

Classical Cryptography

Classical cryptography

• Until the 1970s, exclusively concerned with ensuring secrecy of
communication

• I.e., encryption

• Until the 1970s, relied exclusively on secret information (a key) shared
in advance between the communicating parties

• Private-key cryptography
• aka secret-key / shared-key / symmetric-key cryptography

Private-key encryption

k k
c

key

m
c  Enck(m) message/plaintext

encryption

ciphertext

m := Deck(c)

decryption

key

Private-key encryption

k
c

m
c  Enck(m)

m := Deck(c)

k

c

c

Private-key encryption

• A private-key encryption scheme is defined by a message space M
and algorithms (Gen, Enc, Dec):
• Gen (key-generation algorithm): outputs kK

• Enc (encryption algorithm): takes key k and message
mM as input; outputs ciphertext c

c Enck (m)

• Dec (decryption algorithm): takes key k and
ciphertext c as input; outputs m or “error”

m := Deck (c)

For all mM and k output by Gen,
Deck(Enck(m)) = m

Kerckhoffs’s principle

• The encryption scheme is not secret
• The attacker knows the encryption scheme

• The only secret is the key

• The key must be chosen at random; kept secret

• Arguments in favor of this principle
• Easier to keep key secret than algorithm

• Easier to change key than to change algorithm

• Standardization
• Ease of deployment

• Public scrutiny

The shift cipher

• Consider encrypting English text

• Associate ‘a’ with 0; ‘b’ with 1; …; ‘z’ with 25

• k  K = {0, …, 25}

• To encrypt using key k, shift every letter of the plaintext by k positions
(with wraparound)

• Decryption just does the reverse

helloworldz

ccccccccccc

jgnnqyqtnfb

Modular arithmetic

• x = y mod N if and only if N divides x-y
• [x mod N] = the remainder when x is divided by N

• I.e., the unique value y{0, …, N-1} such that
x = y mod N

• 25 = 35 mod 10

• 25 ≠ [35 mod 10]

• 5 = [35 mod 10]

The shift cipher, formally

• M = {strings over lowercase English alphabet}

• Gen: choose uniform k{0, …, 25}

• Enck(m1…mt): output c1…ct, where
ci := [mi + k mod 26]

• Deck(c1…ct): output m1…mt, where
mi := [ci - k mod 26]

• Can verify that correctness holds…

Is the shift cipher secure?

• No -- only 26 possible keys!
• Given a ciphertext, try decrypting with every possible key

• Only one possibility will “make sense”

• (What assumptions are we making here?)

• Example of a “brute-force” or “exhaustive-search” attack

Byte-wise shift cipher

• Work with an alphabet of bytes rather than (English, lowercase)
letters
• Works natively for arbitrary data!

• Use XOR instead of modular addition
• Essential properties still hold

Byte-wise shift cipher

• M = ({0,1}8)*(i.e., strings of bytes)

• Gen: choose uniform kK = {0x00, …, 0xFF}
• 256 possible keys

• Enck(m1…mt): output c1…ct, where
ci := mi  k

• Deck(c1…ct): output m1…mt, where
mi := ci  k

• Verify that correctness holds…

Hexadecimal (base 16)

Hex Bits Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

Hex Bits Decimal

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Hexadecimal (base 16)

• 0x10
• 0x10 = 16*1 + 0 = 16

• 0x10 = 0001 0000

• 0xAF
• 0xAF = 16*A + F = 16*10 + 15 = 175

• 0xAF = 1010 1111

ASCII

• Characters often represented in ASCII
• 1 byte/char = 2 hex digits/char

Source: http://benborowiec.com/2011/07/23/better-ascii-table/

Is this scheme secure?

• No -- only 256 possible keys!
• Given a ciphertext, try decrypting with every

possible key

• If ciphertext is long enough, only one plaintext will “make sense”

• Sufficient key space principle
• The key space must be large enough to make exhaustive-search attacks

impractical
• How large do you think that is?

• Technical note: only true when the plaintext is sufficiently long

Can we improve the attack?

• Useful observations about ASCII
• Only 128 valid ASCII chars (128 bytes invalid)

• Only 0x20-0x7E printable

• 0x41-0x7a includes all upper/lowercase letters
• Uppercase letters begin with 0x4 or 0x5

• Lowercase letters begin with 0x6 or 0x7

• Can we break the scheme without trying all 256 possible keys?

The Vigenère cipher

• The key is multiple characters, not just one

• To encrypt, shift each character in the plaintext by the amount
dictated by the next character of the key
• Wrap around in the key as needed

• Decryption just reverses the process

tellhimaboutme

cafecafecafeca

veqpjiredozxoe

The Vigenère cipher

• Size of key space?
• If keys are 14-character strings over the English alphabet, then key space has

size 2614  266

• If variable length keys, even more…

• Brute-force search becomes infeasible

• Does that mean the Vigenère cipher is secure?

Attacking the Vigenère cipher

• Assume a 14-character key

• Observation: every 14th character is “encrypted” using the same shift

• Looking at every 14th character is (almost) like looking at a ciphertext
encrypted with the shift cipher
• Though a direct brute-force attack doesn’t work (why not?)

veqpjiredozxoeualpcmsdjqu

iqndnossoscdcusoakjqmxpqr

hyycjqoqqodhjcciowieii
veqpjiredozxoeualpcmsdjqu

iqndnossoscdcusoakjqmxpqr

hyycjqoqqodhjcciowieii
veqpjiredozxoeualpcmsdjqu

iqndnossoscdcusoakjqmxpqr

hyycjqoqqodhjcciowieii

Using plaintext letter frequencies

Attacking the Vigenère cipher

• Look at every 14th character of the ciphertext, starting with the first
• Call this the first “stream”

• Let  be the most common character appearing in this stream

• Most likely,  corresponds to the most common character of the
plaintext (i.e., ‘e’)
• Guess that the first character of the key is  - ’e’

• Repeat for all other positions

• This is somewhat haphazard … and does not use all the available
information

A better attack

• Let pi (0 ≤ i ≤ 25) denote the frequency of the ith English letter in
normal English plaintext
• One can compute that i pi

2  0.065

• Let qi denote the observed frequency of the ith letter in a given
stream of the ciphertext

• If the shift for that stream is j, expect qi+j  pi for all i
• So expect i pi qi+j  0.065

• Test for every value of j to find the right one
• Repeat for each stream

Finding the key length

• The previous attack assumes we know the key length
• What if we don’t?

• Note: can always try the previous attack for all possible key lengths
• # of key lengths << # keys

• We can do better!

Finding the key length

• When using the correct key length, the ciphertext frequencies {qi} of
any stream will be shifted versions of the {pi}
• So  qi

2   pi
2  0.065

• When using an incorrect key length, expect (heuristically) that
ciphertext letters are uniform
• So  qi

2   (1/26)2 = 1/26 = 0.038

• In fact, good enough to find the key length N that maximizes  qi
2 for

some stream
• Can verify key length by looking at other streams…

Byte-wise Vigenère cipher

• The key is a string of bytes

• The plaintext is a sequence of bytes

• To encrypt, XOR each character in the plaintext with the next
character of the key
• Wrap around in the key as needed

• Decryption just reverses the process

Example

• Say plaintext is “Hello!” and key is 0xA1 2F

• “Hello!” = 0x48 65 6C 6C 6F 21

• XOR with 0xA1 2F A1 2F A1 2F

• 0x48  0xA1
• 0100 1000  1010 0001 = 1110 1001 = 0xE9

• Ciphertext: 0xE9 4A CD 43 CE 0E

Attacking the (variant) Vigenère cipher

• As before, two steps:
• Determine the key length

• Determine each byte of the key

• Let pi (for 0 ≤ i ≤ 255) be the frequency of byte i in normal English
(ASCII) plaintext
• I.e., pi =0 for i < 32 or i > 127

• I.e., p97 = frequency of ‘a’

• If {pi} are known, use same principles as before…
• What if they are not known?

Determining the key length

• If the key length is N, every Nth character of plaintext is encrypted
using the same “shift”
• If we take every Nth character and calculate frequencies, we get the {pi} in

permuted order

• If we take every Mth character (M not a multiple
of N) and calculate frequencies, we get something close to uniform

• We don’t need to know the {pi} to distinguish these two!

Determining the key length

• For some candidate key length, tabulate q0, …, q255 for first stream
and compute  qi

2

• If close to uniform,  qi
2  256 · (1/256)2 = 1/256

• If a permutation of pi, then  qi
2   pi

2

• Main point: will be much larger than 1/256

• So: compute  qi
2 for each possible key length, and look for maximum

value
• Correct key length N should yield a large value for all N streams

Determining the ith byte of the key

• Assume the key length N has been determined

• Look at ith ciphertext stream
• As before, all bytes in this stream were generated by XORing plaintext with

the same byte of the key

• Try decrypting the stream using every possible byte value B
• Get a candidate plaintext stream for each value

Determining the ith byte of the key

• When the guess B is correct:
• All bytes in the plaintext stream will be between 32 and 126

• Frequency of space character should be high

• Frequencies of lowercase letters (as a fraction of all lowercase letters) should
be close to known English-letter frequencies
• Tabulate observed letter frequencies p’0, …, p’25 (as fraction of all lowercase letters) in

the candidate plaintext

• Should find  p’i pi   pi
2  0.065, where pi corresponds to English-letter frequencies

• In practice, take B that maximizes  p’i pi, subject to caveats above (and possibly others)

Complexity of the attack?

• Say the key length is known to be between
1 and L

• Determining the key length: O(L)

• Determining all bytes of the key: O(L)

• Total work: O(L)

• Brute-force key search: > 256L

The attack in practice

• Attack is more reliable as the ciphertext length grows

• Attack still works for short(er) ciphertexts, but more “tweaking” and
manual involvement may be needed

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: اطلاعات مهم
	Slide 3: Welcome Crypto!
	Slide 4: This is a tough class
	Slide 5: Course goals
	Slide 6: Course non-goals
	Slide 7: Cryptography (historically)
	Slide 8: Modern cryptography
	Slide 9: Cryptography (historically)
	Slide 10: Modern cryptography
	Slide 11: Cryptography (historically)
	Slide 12: Modern cryptography
	Slide 13: Rough course outline
	Slide 14: Classical Cryptography
	Slide 15: Classical cryptography
	Slide 16: Private-key encryption
	Slide 17: Private-key encryption
	Slide 18: Private-key encryption
	Slide 19: Kerckhoffs’s principle
	Slide 20: The shift cipher
	Slide 21: Modular arithmetic
	Slide 22: The shift cipher, formally
	Slide 23: Is the shift cipher secure?
	Slide 24: Byte-wise shift cipher
	Slide 25: Byte-wise shift cipher
	Slide 26: Hexadecimal (base 16)
	Slide 27: Hexadecimal (base 16)
	Slide 28: ASCII
	Slide 29
	Slide 30: Is this scheme secure?
	Slide 31: Can we improve the attack?
	Slide 32: The Vigenère cipher
	Slide 33: The Vigenère cipher
	Slide 34: Attacking the Vigenère cipher
	Slide 35: Using plaintext letter frequencies
	Slide 36: Attacking the Vigenère cipher
	Slide 37: A better attack
	Slide 38: Finding the key length
	Slide 39: Finding the key length
	Slide 40: Byte-wise Vigenère cipher
	Slide 41: Example
	Slide 42: Attacking the (variant) Vigenère cipher
	Slide 43: Determining the key length
	Slide 44: Determining the key length
	Slide 45: Determining the ith byte of the key
	Slide 46: Determining the ith byte of the key
	Slide 47: Complexity of the attack?
	Slide 48: The attack in practice

