v > 9 OleMbl Cudul (6)8 30

S, «.515"3“""’ JRE :43‘)‘
S

b0 O leMbo|

L8026070@gmail.com : L.l *®

https://learn.lajevardi.id.ir : Sllhas sl g w0 b ®

Sgds o0 dnogl laz 00l 8,20 aulin dslllas ®

oINS 09,5 55 (Sl oMbl @

o 5o Jd g 289e 4y jga> ¢

(5Ll 035, ol e aodl L) aido FO Gioe 4y ybgmeiils San & g0 4y adbasl a1, ¢
5 9 Al g (e g0 (leoj) el Bjpe 4 Sl ped g

(03wl Bd> o3 LB ojed Sjgo 1) oy Ve atie ip 5yl (3305 ®

bl 093l 51 8 b Jewsl o word 5 pdf L o004 UL o590 Jlu)l @

ol o (595 5 i il (g (g SIS UL (905l ¢

mailto:L8026070@gmail.com
https://learn.lajevardi.id.ir/

Welcome Crypto!

* Crypto is amazing!
* Can do things that seem impossible...

* Crypto is important and pervasive
* It impacts each of us every day

* Crypto is fun!

* Deep theory interacting with practice
» Attackers’ mindset, fun assignments

This is a tough class

* Mathematical prerequisites
e Discrete math, probability, modular arithmetic

* Mathematical maturity
* Definitions, theorems, proofs, abstraction

* CS prerequisites
* Pseudocode/algorithms, big-O notation

* Programming assignments
* Hard part should not be the programming, but the thought behind it
* Some flexibility in language, but need to read code | provide

Course goals

* Understand the theoretical foundations for real-world cryptography

 When you encounter crypto in your career:
* Understand the key terms
e Understand the security guarantees needed/provided
* Know how to use crypto
* Understand what goes on “under the hood”

* “Crypto mindset”

Course non-goals

* Designing your own crypto schemes
* This is hard!

* Implementing crypto for real-world use
* This is hard!

e Course goal:
realize when to consult an expert!

Cryptography (historically)

e “..the art of writing or solving codes...”

* Historically, cryptography focused exclusively on ensuring private
communication

* between two parties sharing secret information in advance using
“codes” (private-key encryption)

Modern cryptography

* Much broader scope!
* Data integrity, authentication, protocols, ...
The public-key setting
Group communication
More-complicated trust models

Foundations (e.g., number theory, qguantum-resistance) to systems (e.g.,
electronic voting, privacy-preserving ML, blockchain, DeFi)

Cryptography (historically)

e “..the art of writing or solving codes...”

* Historically, cryptography was an art
* Heuristic, unprincipled design and analysis
* Schemes proposed, broken, repeat...

Modern cryptography

* Design, analysis, and implementation of mathematical techniques for
securing information, systems, and distributed computations against
adversarial attack

* Cryptography is now much more of a science
e Rigorous analysis, firm foundations, deeper understanding, rich theory

* The “crypto mindset” has permeated other areas of computer
security
* Threat modeling
* Proofs of security

Cryptography (historically)

* Used primarily for military/government applications, plus a few niche
applications in industry (e.g., banking)

Modern cryptography

* Cryptography is ubiquitous!
e Password-based authentication, password hashing
e Secure credit-card transactions over the internet
Encrypted WiFi
* Disk encryption
Digitally signed software updates
* Bitcoin

Rough course outline
. seey ntegity

Private-key setting Private-key Message
encryption authentication codes

Public-key setting Public-key Digital signatures
encryption

* Building blocks
* Pseudorandom (number) generators
* Pseudorandom functions/block ciphers
e Hash functions
* Number theory

Classical Cryptography

Classical cryptography

e Until the 1970s, exclusively concerned with ensuring secrecy of
communication

* |.e., encryption

e Until the 1970s, relied exclusively on secret information (a key) shared
in advance between the communicating parties

* Private-key cryptography
 aka secret-key / shared-key / symmetric-key cryptography

Private-key encryption

v ciphertext key
\ {S? = @Q/
@, £}
—Es J
m

c < Enc, (m) message/plaintext m := Dec,(c)

\ decryption

encryption

Private-key encryption

—
/\

@,
m

c < Enc,(m)

¥ _
k@\/l/;

A —

m := Dec,(c)

Private-key encryption

* A private-key encryption scheme is defined by a message space M
and algorithms (Gen, Enc, Dec):
* Gen (key-generation algorithm): outputs ke K

* Enc (encryption algorithm): takes key k and message
meM as input; outputs ciphertext c
c < Enck (m)

* Dec (decryption algorithm): takes key k and
ciphertext c as input; outputs m or “error”
m := Deck (c)
For all me M and k output by Gen,
Dec,(Enc,(m)) =m

Kerckhoffs’s principle

* The encryption scheme is not secret
* The attacker knows the encryption scheme
* The only secret is the key
* The key must be chosen at random; kept secret

* Arguments in favor of this principle
* Easier to keep key secret than algorithm
e Easier to change key than to change algorithm

» Standardization
* Ease of deployment
e Public scrutiny

The shift cipher

* Consider encrypting English text
e Associate ‘@’ with O; ‘b’ with 1; ...; ‘2’ with 25

e ke K={0, .., 25}

* To encrypt using key k, shift every letter of the plaintext by k positions
(with wraparound)

* Decryption just does the reverse

helloworldz
cccccccceccecece
jgnngygtnfb

Modular arithmetic

 x =y mod N if and only if N divides x-y
e [x mod N] = the remainder when x is divided by N

* |.e., the unique value ye{0, ..., N-1} such that
X =y mod N

e 25=35mod 10
e 25 #[35 mod 10]
e 5=[35 mod 10]

The shift cipher, formally

M = {strings over lowercase English alphabet}
* Gen: choose uniform ke{0, ..., 25}

* Enck(m1...mt): output cl...ct, where
ci :=[mi+ k mod 26]

* Deck(cl...ct): output m1l...mt, where
mi :=[ci - k mod 26]

e Can verify that correctness holds...

s the shift cipher secure?

* No -- only 26 possible keys!
* Given a ciphertext, try decrypting with every possible key
* Only one possibility will “make sense”
e (What assumptions are we making here?)

* Example of a “brute-force” or “exhaustive-search” attack

Byte-wise shift cipher

* Work with an alphabet of bytes rather than (English, lowercase)
letters

* Works natively for arbitrary data!

* Use XOR instead of modular addition
* Essential properties still hold

Byte-wise shift cipher

* M =({0,1}8)*(i.e., strings of bytes)

e Gen: choose uniform keK = {0x00, ..., OxFF}
* 256 possible keys

* Enck(m1...mt): output cl...ct, where

Ci:=mi®DKk
* Deck(cl...ct): output m1...mt, where
mi :=ci @ k

* Verify that correctness holds...

Hexadecimal (base 16)

0 0000 0 1000

1 0001 1 9 1001 9
2 0010 2 A 1010 10
3 0011 3 B 1011 11
4 0100 4 C 1100 12
5 0101 5 D 1101 13
6 0110 6 E 1110 14
7 0111 7 F 1111 15

Hexadecimal (base 16)

 Ox10
e Ox10=16*1+0=16
* Ox10 =0001 0000

 OxAF
e OxXAF=16*A+F=16*10+15=175
* OxAF=10101111

ASCI|

* Characters often represented in ASCI|
* 1 byte/char = 2 hex digits/char

Hex Dec Char Hex Dec Char |Hex Dec Char |Hex Dec Char
0x00 0 NULL null 0x20 32 Space|0x40 64 @ |0x60 96 ~
0x01 1 SOH Start of heading 0x21 33 ! 0x41 65 A |0x61 97 a
0x02 2 STX Start of text 0x22 34 : 0x42 66 B |0x62 98 b
0x03 3 ETX End of text 0x23 35 # 0x43 67 C |J0x63 99 c
0x04 4 EOT End of transmission 0x24 36 S 0x44 68 D |0x64 100 d
0x05 5 ENQ Enquiry 0x25937 % 0x45 69 E |J0x65 101 e
0x06 6 ACK Acknowledge 0x26 38 & 0x46 70 F |JOx66 102 £
0x07 7 BELL Bell 0x27 39 ' 0x47 71 G |0x67 103 g
0x08 8 BS Backspace 0x28 40 (0x48 72 H |0x68 104 h
0x09 9 TAB Horizontal tab 0x29 41) 0x49 73 I |0x69 105 i
0x0A 10 LF New line 0x2A 42 * 0x4A 74 J |0x6A 106
0x0B 11 VT Vertical tab 0x2B 43 + |0x4B 75 K |0x6B 107 k
0x0C 12 FF Form Feed 0x2C 44 0x4C 76 L |0x6C 108 1
0x0D 13 CR Carriage return 0x2D 45 - 0x4D 77 M |0x6D 109 m
0x0E 14 so Shift out 0x2E 46 g 0x4E 78 N |JOx6E 110 n
0x0F 15 sI Shift in 0x2F 47 / 0x4F 79 O |JOx6F 111 o
0x10 16 DLE Data link escape 0x30 48 0 0x50 80 P |0x70 112 p
0x11 17 DC1 Device control 1 0x31 49 1 0x51 81 Q |J0x71 113 ¢
0x12 18 DC2 Device control 2 0x32 50 2 0x52 82 R |0x72 114 r
0x13 19 DC3 Device control 3 0x33 51 3 0x53 83 S |J0x73 115 s
0x14 20 DC4 Device control 4 0x34 52 4 0x54 84 T |J0x74 116 t
0x15 21 NAK Negative ack 0x35 53 5 0x55 85 U [0x75 117 u
0x16 22 SYN Synchronous idle 0x36 54 6 0x56 86 V |0x76 118 v
0x17 23 ETB End transmission block | 0x37 55 7 0x57 87 w |0x77 119 w
0x18 24 CAN Cancel 0x38 56 8 0x58 88 X |0x78 120 x
0x19 25 EM End of medium 0x39 57 9 0x59 89 Y |J0x79 121 vy
0x1A 26 SUB Substitute 0x3A 58 : 0x5A 90 z |J0x7A 122 =z
0x1B 27 FSC Escape 0x3B 59 : 0x5B 91 [|0x7B 123 {
0x1C 28 Fs File separator 0x3C 60 < |JO0x5C 92 \ |0x7C 124 |
0x1D 29 GS Group separator 0x3D 61 = 0x5D 93] |0x7D 125 }
0x1E 30 RS Record separator 0x3E 62 > 0x5E 94 ~ |Ox7E 126 ~
0x1F 31 US Unit separator 0x3F 63 2 O0x5F 95 _ |0x7F 127 DEL

Source: http://benborowiec.com/2011/07/23/better-ascii-table/

Is this scheme secure?

* No -- only 256 possible keys!

* Given a ciphertext, try decrypting with every
possible key

* If ciphertext is long enough, only one plaintext will “make sense”

e Sufficient key space principle

* The key space must be large enough to make exhaustive-search attacks
impractical

* How large do you think that is?
* Technical note: only true when the plaintext is sufficiently long

Can we improve the attack?

* Useful observations about ASCII
* Only 128 valid ASCII chars (128 bytes invalid)
* Only 0x20-0x7E printable

e 0x41-0x7a includes all upper/lowercase letters
* Uppercase letters begin with 0x4 or 0x5
* Lowercase letters begin with Ox6 or Ox7

* Can we break the scheme without trying all 256 possible keys?

The Vigenere cipher

* The key is multiple characters, not just one

* To encrypt, shift each character in the plaintext by the amount
dictated by the next character of the key

* Wrap around in the key as needed

e Decryption just reverses the process

tellhimaboutme
cafecafecafeca
vegpj]lredozxoe

The Vigenere cipher

* Size of key space?
* |f keys are 14-character strings over the English alphabet, then key space has
Size 2614 ~ 266
* If variable length keys, even more...
* Brute-force search becomes infeasible

* Does that mean the Vigenere cipher is secure?

Attacking the Vigenere cipher

 Assume a 14-character key
* Observation: every 14th character is “encrypted” using the same shift

vegpjlredozxoeualpcmsdjqu

lqﬂanSSOSCdcucvequ1redozxoeualpcmsdjqu

hyycjgoqgodh]
lqnanSSOSCdC]vequlredozxoeualpcde]qU

hyycJaeqqodh ; yndnossoscdcusoakiqmxpqr
hyycjgoggodhjcciowiell

* Looking at every 14th character is (almost) like looking at a ciphertext
encrypted with the shift cipher

* Though a direct brute-force attack doesn’t work (why not?)

Using plaintext letter frequencies

14.0

12.0

10.0 -

Percentage

4.0 -

2.0 -

o
o
]

6.0 -

12.7
9.1
8.2 1§
7.0 6.7
6.1 = 6.0 6.3
43 4.0
2.8 2.8
& 29 2.4 _ 2.4
< 20 _ 1.9 __ 2.0
15 M 15—
0.2 mg 0.1 ¥ 0.2 0.1
a b ¢c d e f g h I jJj kK I m n o p g r s t u v w x y z

Letter

Attacking the Vigenere cipher

* Look at every 14th character of the ciphertext, starting with the first
 Call this the first “stream”

* Let o be the most common character appearing in this stream

* Most likely, o corresponds to the most common character of the
plaintext (i.e., ‘e’)
* Guess that the first character of the key is o - e’

* Repeat for all other positions

* This is somewhat haphazard ... and does not use all the available
information

A better attack

e Let pi (0 <i<25) denote the frequency of the ith English letter in
normal English plaintext

* One can compute that 2. p.2 = 0.065

* Let gi denote the observed frequency of the ith letter in a given
stream of the ciphertext

* If the shift for that stream is j, expect qi+j = pi for all i
* So expect 2, p; q,;,~ 0.065

 Test for every value of j to find the right one
* Repeat for each stream

Finding the key length

* The previous attack assumes we know the key length
 What if we don’t?

* Note: can always try the previous attack for all possible key lengths
* # of key lengths << # keys

e We can do better!

Finding the key length

* When using the correct key length, the ciphertext frequencies {qi} of
any stream will be shifted versions of the {pi}
* S0X g%~ X p?~0.065
* When using an incorrect key length, expect (heuristically) that
ciphertext letters are uniform
* SoX g2~X(1/26)2=1/26 =0.038

* In fact, good enough to find the key length N that maximizes X g;* for
some stream
* Can verify key length by looking at other streams...

Byte-wise Vigenere cipher

* The key is a string of bytes
* The plaintext is a sequence of bytes

* To encrypt, XOR each character in the plaintext with the next

character of the key
* Wrap around in the key as needed

e Decryption just reverses the process

Example

 Say plaintext is “Hello!” and key is OxA1 2F
* “Hello!” = 0x48 65 6C 6C 6F 21
 XOR with OxA1 2F A1 2F A1 2F

* Ox48 © OxA1l
* 0100 1000 © 10100001 =1110 1001 = OxES

* Ciphertext: OxE9 4A CD 43 CE OE

Attacking the (variant) Vigenere cipher

* As before, two steps:
* Determine the key length
e Determine each byte of the key

* Let pi (for 0 <i<255) be the frequency of byte i in normal English
(ASCII) plaintext

e le,,pi=0fori<32o0ri>127
* |.e., p97 = frequency of ‘@’

* If {pi} are known, use same principles as before...
 What if they are not known?

Determining the key length

* If the key length is N, every Nth character of plaintext is encrypted
using the same “shift”

* If we take every Nth character and calculate frequencies, we get the {pi} in
permuted order

* |f we take every Mt character (M not a multiple
of N) and calculate frequencies, we get something close to uniform

* We don’t need to know the {p,} to distinguish these two!

Determining the key length

* For some candidate key length, tabulate g0, ..., 9255 for first stream
and compute X g2
* If close to uniform, ¥ q.2 =~ 256 - (1/256)2 = 1/256
* If a permutation of pi, then X g2 = Z p.?
e Main point: will be much larger than 1/256

* So: compute X g;? for each possible key length, and look for maximum
value

* Correct key length N should yield a large value for all N streams

Determining the ith byte of the key

* Assume the key length N has been determined

* Look at ith ciphertext stream
* As before, all bytes in this stream were generated by XORing plaintext with
the same byte of the key
* Try decrypting the stream using every possible byte value B
e Get a candidate plaintext stream for each value

Determining the ith byte of the key

* When the guess B is correct:
* All bytes in the plaintext stream will be between 32 and 126
* Frequency of space character should be high
* Frequencies of lowercase letters (as a fraction of all lowercase letters) should

be close to known English-letter frequencies

* Tabulate observed letter frequencies p’,, ..., p’,c (as fraction of all lowercase letters) in
the candidate plaintext

* Should find Z p’, p, = £ p;> # 0.065, where pi corresponds to English-letter frequencies
* In practice, take B that maximizes Z p’, p,, subject to caveats above (and possibly others)

Complexity of the attack?

* Say the key length is known to be between
1andL

* Determining the key length: O(L)
* Determining all bytes of the key: O(L)
* Total work: O(L)

 Brute-force key search: > 256"

The attack in practice

e Attack is more reliable as the ciphertext length grows

 Attack still works for short(er) ciphertexts, but more “tweaking” and
manual involvement may be needed

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: اطلاعات مهم
	Slide 3: Welcome Crypto!
	Slide 4: This is a tough class
	Slide 5: Course goals
	Slide 6: Course non-goals
	Slide 7: Cryptography (historically)
	Slide 8: Modern cryptography
	Slide 9: Cryptography (historically)
	Slide 10: Modern cryptography
	Slide 11: Cryptography (historically)
	Slide 12: Modern cryptography
	Slide 13: Rough course outline
	Slide 14: Classical Cryptography
	Slide 15: Classical cryptography
	Slide 16: Private-key encryption
	Slide 17: Private-key encryption
	Slide 18: Private-key encryption
	Slide 19: Kerckhoffs’s principle
	Slide 20: The shift cipher
	Slide 21: Modular arithmetic
	Slide 22: The shift cipher, formally
	Slide 23: Is the shift cipher secure?
	Slide 24: Byte-wise shift cipher
	Slide 25: Byte-wise shift cipher
	Slide 26: Hexadecimal (base 16)
	Slide 27: Hexadecimal (base 16)
	Slide 28: ASCII
	Slide 29
	Slide 30: Is this scheme secure?
	Slide 31: Can we improve the attack?
	Slide 32: The Vigenère cipher
	Slide 33: The Vigenère cipher
	Slide 34: Attacking the Vigenère cipher
	Slide 35: Using plaintext letter frequencies
	Slide 36: Attacking the Vigenère cipher
	Slide 37: A better attack
	Slide 38: Finding the key length
	Slide 39: Finding the key length
	Slide 40: Byte-wise Vigenère cipher
	Slide 41: Example
	Slide 42: Attacking the (variant) Vigenère cipher
	Slide 43: Determining the key length
	Slide 44: Determining the key length
	Slide 45: Determining the ith byte of the key
	Slide 46: Determining the ith byte of the key
	Slide 47: Complexity of the attack?
	Slide 48: The attack in practice

