
رمزنگاری، امنیت اطلاعات و حریم
خصوصی

دکتر سیدعلی لاجوردی: ارائه

دومبخش

So far…

• Heuristic constructions; build, break, repeat, …
• This isn’t very satisfying

• Can we prove that some encryption scheme is secure?

• First need to define what we mean by “secure” in the first place…

Modern cryptography

• Historically, cryptography was an art
• Heuristic design and analysis

• Starting in the early ‘80s, cryptography began to develop into more of
a science

• Based on three principles that underpin most real-world cryptography
today

Core principles of modern crypto

• Formal definitions
• Precise, mathematical model and definition of what security means

• Assumptions
• Clearly stated and unambiguous

• Proofs of security
• Move away from design-break-patch cycle

Importance of definitions
• Definitions are essential for the design, analysis, and sound usage of crypto
• Developing a precise definition forces the designer to think about what

they really want
• What is essential and (sometimes more important) what is not

• If you don’t understand what you want to achieve, how can you possibly
know when (or if) you have achieved it?

• Definitions enable meaningful analysis, evaluation, and comparison of
schemes
• Does a scheme satisfy the definition?
• What definition does it satisfy?

• Definitions allow others to understand the security guarantees provided by
a scheme

• Enables schemes to be used as components of a larger system (modularity)
• Enables one scheme to be substituted for another if they satisfy the same

definition

Assumptions

• With few exceptions, cryptography currently requires computational
assumptions
• At least until we prove P  NP (and even that would not be enough)

• Principle: any such assumptions must be made explicit

Importance of clear assumptions

• Allow researchers to (attempt to) validate assumptions by studying
them

• Allow meaningful comparison between schemes based on different
assumptions
• Useful to understand minimal assumptions needed

• Practical implications if assumptions are wrong

• Enable proofs of security

Proofs of security

• Provide a rigorous proof that a construction satisfies a given definition
under certain specified assumptions
• Provides an iron-clad guarantee (relative to your definition and assumptions!)

• Proofs are crucial in cryptography, where there is a malicious attacker
trying to “break” the scheme

Limitations?

• Cryptography still remains partly an art as well

• Proofs given an iron-clad guarantee of security
• …relative to the definition and assumptions!

• Provably secure schemes can be broken!
• If the definition does not correspond to the real-world threat model

• If the assumption is invalid

• If the implementation is flawed

• This does not detract from the importance of having formal
definitions in place and giving proofs of security

Defining secure encryption

Crypto definitions (generally)

• Security guarantee/goal
• What we want to achieve (or what we want to prevent the attacker from

achieving)

• Threat model
• What (real-world) capabilities the attacker is assumed to have

Recall

• A private-key encryption scheme is defined by a message space M
and algorithms (Gen, Enc, Dec):
• Gen (key-generation algorithm): generates k

• Enc (encryption algorithm): takes key k and message
m M as input; outputs ciphertext c

c  Enck(m)

• Dec (decryption algorithm): takes key k and
ciphertext c as input; outputs m.

m := Deck(c)

Private-key encryption

k k
c

key

m
c Enck(m) message/plaintext

encryption

cipher text

m := Deck(c)

decryption

key

Threat models for encryption

• Ciphertext-only attack
• One ciphertext or many?

• Known-plaintext attack

• Chosen-plaintext attack

• Chosen-ciphertext attack

Goal of secure encryption?

• How would you define what it means for encryption scheme (Gen,
Enc, Dec) over message space M to be secure?
• Against a (single) ciphertext-only attack

Secure encryption?
• “Impossible for the attacker to learn the key”

• The key is a means to an end, not the end itself
• Necessary (to some extent) but not sufficient
• Easy to design an encryption scheme that hides the key completely, but is

insecure
• Can design schemes where most of the key is leaked, but the scheme is still

secure

• “Impossible for the attacker to learn the plaintext from the ciphertext”
• What if the attacker learns 90% of the plaintext?

• “Impossible for the attacker to learn any character of the plaintext from
the ciphertext”
• What if the attacker is able to learn (other) partial information about the

plaintext?
• What if the attacker guesses a character correctly, or happens to know it?

The right definition

• “Regardless of any prior information the attacker has about the
plaintext, the ciphertext should leak no additional information about
the plaintext”
• How to formalize?

Perfect secrecy

Perfect secrecy
• “Regardless of any prior information the attacker has about the

plaintext, the ciphertext should leak no additional information about
the plaintext”

• Attacker’s information about the plaintext = attacker knows the
distribution of M

• Perfect secrecy: observing the ciphertext should not change the
attacker’s knowledge about the distribution of M

• Encryption scheme (Gen, Enc, Dec) with message space M and
ciphertext space C is perfectly secret if for every distribution over M,
every m M, and every c  C with Pr[C=c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m]

One-time pad

• Patented in 1917 by Vernam
• Recent historical research indicates it was invented (at least) 35 years earlier

• Proven perfectly secret by Shannon (1949)

One-time pad (OTP)

• Let M = {0,1}n

• Gen: choose a uniform key k  {0,1}n

• Enck(m) = k m

• Deck(c) = k  c

• Correctness:
Deck(Enck(m)) = k  (k m)

= (k  k) m = m

One-time pad

key

n bits

message

n bits

Cipher text

n bits



Perfect secrecy of one-time pad

• Note that any observed ciphertext can correspond to any message

• So, having observed a ciphertext, the attacker cannot conclude for
certain which message was sent

• Theorem: The one-time pad is perfectly secret

One-time pad

• Several limitations
• The key is as long as the message

• Only secure if each key is used to encrypt a
single message

 Parties must share keys of (total) length equal to the
(total) length of all the messages they might ever send

Using the same key twice?

• Completely insecure against a known-plaintext attack!

• Say c1 (= k m1)
c2 (= k m2)

and the attacker knows m1

• Attacker can compute k := c1m1

• Attacker can compute m2 := c2 k

Using the same key twice?

• Say c1 = k m1
c2 = k m2

• Attacker can compute
c1  c2 = (k m1)  (k m2) = m1 m2

• This leaks information about m1, m2!

Using the same key twice?

• m1 m2 is information about m1, m2

• Is this significant?
• No longer perfectly secret!

• m1m2 reveals where m1, m2 differ

• Frequency analysis

• Exploiting characteristics of ASCII…

One-time pad

• Drawbacks
• Key as long the message

• Only secure if each key is used to encrypt once

• Trivially broken by a known-plaintext attack

• All these limitations are inherent for schemes achieving perfect
secrecy
• I.e., it’s not just a problem with the OTP

Optimality of the one-time pad

• Theorem: if (Gen, Enc, Dec) with message space M is perfectly secret,
then |K| ≥ |M|

• Intuition:
• Given any ciphertext, try decrypting under every possible key in K

• This gives a list of up to |K| possible messages
• If |K| < |M|, some message is not on the list

• Proof:
• Assume |K| < |M|

• Need to show that there is a distribution on M,
a message m, and a ciphertext c such that

Pr[M=m | C=c]  Pr[M=m]

Where do we stand?

• We defined the notion of perfect secrecy

• We proved that the one-time pad achieves it!

• We proved that the one-time pad is optimal!
• E.g., we cannot improve the key length

• Are we done?

• Do better by relaxing the definition
• But in a meaningful way…

Perfect secrecy

• Requires that absolutely no information about the plaintext is leaked,
even to eavesdroppers with unlimited computational power
• The definition has some inherent drawbacks

• The definition seems unnecessarily strong…

Computational secrecy

• Would be ok if a scheme leaked information with tiny probability to
eavesdroppers with bounded computing resources/running time

• I.e., we can relax perfect secrecy by
• Allowing security to “fail” with tiny probability

• Restricting attention to “efficient” attackers

Tiny probability of failure?

• Say security fails with probability 2-60

• Should we be concerned about this?

• With probability > 2-60, the sender and receiver will both be struck by
lightning in the next year…

• Something that occurs with probability 2-60/sec is expected to occur once
every 100 billion years

Bounded attackers?

• Consider brute-force search of key space; assume one key can be
tested per clock cycle

• Desktop computer  257 keys/year

• Supercomputer  1017 flops  280 keys/year

• Supercomputer since Big Bang  2112 keys
• Restricting attention to attackers limited to trying 2112 keys is fine!

• Modern key spaces: 2128 keys or more…

Roadmap

• We will give an alternate (but equivalent) definition of perfect secrecy
• Using a randomized experiment

• That definition has a natural relaxation

Perfect indistinguishability

•  = (Gen, Enc, Dec), message space M

• Informally:
• Two messages m0, m1; one is chosen and encrypted (using unknown k) to give

c  Enck(mb)

• Adversary A is given c and tries to determine which message was encrypted

•  is perfectly indistinguishable if no A can guess correctly with probability
any better than ½

Perfect indistinguishability

• Claim:  is perfectly indistinguishable if and only if  is perfectly
secret
• I.e., perfect indistinguishability is just an alternate definition of perfect

secrecy

Encryption and plaintext length

• In practice, we want encryption schemes that can encrypt arbitrary-
length messages

• Encryption does not hide the plaintext length (in general)
• The definition takes this into account by requiring m0, m1 to have the same

length

• But beware that leaking plaintext length can often lead to problems in
the real world!
• Obvious examples…

• Database searches

• Encrypting compressed data

Where things stand

• We saw that there are some inherent limitations if we want perfect
secrecy
• In particular, key must be as long as the message

• We defined computational secrecy, a relaxed notion of security

• Does that definition allow us to overcome prior limitations?

Recall: one-time pad

key

p bits

 ciphertext

p bits

message

p bits

“Pseudo” one-time pad

“pseudo” key

p bits



G

key

n bits

ciphertext

p bits

message

p bits

Pseudo one-time pad

• Let G be a deterministic algorithm, with |G(k)| = p(|k|)

• Gen(1n): output uniform n-bit key k
• Security parameter n message space {0,1}p(n)

• Enck(m): output G(k) m

• Deck(c): output G(k)  c

• Correctness follows as in the OTP…

Have we gained anything?

• YES: the pseudo-OTP has a key shorter than the message
• n bits vs. p(n) bits

• The fact that the parties internally generate a p(n)-bit temporary
string to encrypt/decrypt is irrelevant
• The key is what the parties share in advance
• Parties do not store the p(n)-bit temporary value

• Security of pseudo-OTP?

Definitions, proofs, and assumptions

• We’ve defined computational secrecy

• Our goal is to prove that the pseudo-OTP meets that definition

• We cannot prove this unconditionally
• Beyond our current technique

• Anyway, security clearly depends on G

• Can prove security based on the assumption that G is a
pseudorandom generator

Proof by reduction

1. Assume G is a pseudorandom generator

2. Assume toward a contradiction that there is an efficient attacker A
who “breaks” the pseudo-OTP scheme (as per the definition)

3. Use A as a subroutine to build an efficient D that “breaks”
pseudorandomness of G
• By assumption, no such D exists!
No such A can exist

❖If G is a pseudorandom generator, then the pseudo one-time pad Π is
EAV-secure (i.e., computationally indistinguishable)

Keyed functions

• Let F: {0,1}n x {0,1}n → {0,1}n be an efficient,
deterministic algorithm
• Define Fk(x) = F(k, x)

• The first input is called the key

• Security parameter = key length = n

• F is pseudorandom if Fk (for uniform k) is
indistinguishable from a random function on the
same domain/range

Block ciphers

• Block ciphers are practical constructions of pseudorandom
permutations

• No asymptotics: F: {0,1}n x {0,1}m → {0,1}m for fixed n, m
• n = “key length”

• m = “block length”

• Hard to distinguish Fk from uniform f  Permm even for attackers
running in time 2n

AES

• Advanced encryption standard (AES)
• Key length = 128, 192, or 256 bits

• Block length = 128 bits

• Will discuss details later in the course

• Available in standard crypto libraries

• No real reason to use anything else

Message integrity

Secrecy vs. integrity

• So far we have been concerned with ensuring secrecy of
communication

• What about integrity?
• I.e., ensuring that a received message originated from the intended party, and

was not modified

• Standard error-correction not enough!
• The right tool is a message authentication code

Passive attacks vs. active attacks

• So far we have been considered only passive (i.e., eavesdropping)
attacks
• Attacker simply observes the channel (even if it might also carry out a chosen-

plaintext attack)

• In the setting of integrity, we explicitly consider active attacks
• Attacker has full control over the channel

m m’

k

m
t = Mack(m)

k
m, t

Vrfyk(m’, t’) = 1?

m’, t’

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: So far…
	Slide 3: Modern cryptography
	Slide 4: Core principles of modern crypto
	Slide 5: Importance of definitions
	Slide 6: Assumptions
	Slide 7: Importance of clear assumptions
	Slide 8: Proofs of security
	Slide 9: Limitations?
	Slide 10: Defining secure encryption
	Slide 11: Crypto definitions (generally)
	Slide 12: Recall
	Slide 13: Private-key encryption
	Slide 14: Threat models for encryption
	Slide 15: Goal of secure encryption?
	Slide 16: Secure encryption?
	Slide 17: The right definition
	Slide 18: Perfect secrecy
	Slide 19: Perfect secrecy
	Slide 20: One-time pad
	Slide 21: One-time pad (OTP)
	Slide 22: One-time pad
	Slide 23: Perfect secrecy of one-time pad
	Slide 24: One-time pad
	Slide 25: Using the same key twice?
	Slide 26: Using the same key twice?
	Slide 27: Using the same key twice?
	Slide 28: One-time pad
	Slide 29: Optimality of the one-time pad
	Slide 30: Where do we stand?
	Slide 31: Perfect secrecy
	Slide 32: Computational secrecy
	Slide 33: Tiny probability of failure?
	Slide 34: Bounded attackers?
	Slide 35: Roadmap
	Slide 36: Perfect indistinguishability
	Slide 37: Perfect indistinguishability
	Slide 38: Encryption and plaintext length
	Slide 39: Where things stand
	Slide 40: Recall: one-time pad
	Slide 41: “Pseudo” one-time pad
	Slide 42: Pseudo one-time pad
	Slide 43: Have we gained anything?
	Slide 44: Definitions, proofs, and assumptions
	Slide 45: Proof by reduction
	Slide 46: Keyed functions
	Slide 47: Block ciphers
	Slide 48: AES
	Slide 49
	Slide 50: Secrecy vs. integrity
	Slide 51: Passive attacks vs. active attacks
	Slide 52
	Slide 53

