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So far…

• Heuristic constructions; build, break, repeat, …
• This isn’t very satisfying

• Can we prove that some encryption scheme is secure?

• First need to define what we mean by “secure” in the first place…



Modern cryptography

• Historically, cryptography was an art
• Heuristic design and analysis

• Starting in the early ‘80s, cryptography began to develop into more of 
a science

• Based on three principles that underpin most real-world cryptography 
today



Core principles of modern crypto

• Formal definitions
• Precise, mathematical model and definition of what security means

• Assumptions
• Clearly stated and unambiguous

• Proofs of security
• Move away from design-break-patch cycle



Importance of definitions
• Definitions are essential for the design, analysis, and sound usage of crypto
• Developing a precise definition forces the designer to think about what 

they really want
• What is essential and (sometimes more important) what is not

• If you don’t understand what you want to achieve, how can you possibly 
know when (or if) you have achieved it?

• Definitions enable meaningful analysis, evaluation, and comparison of 
schemes
• Does a scheme satisfy the definition?
• What definition does it satisfy?

• Definitions allow others to understand the security guarantees provided by 
a scheme

• Enables schemes to be used as components of a larger system (modularity)
• Enables one scheme to be substituted for another if they satisfy the same 

definition



Assumptions

• With few exceptions, cryptography currently requires computational 
assumptions
• At least until we prove P  NP (and even that would not be enough)

• Principle: any such assumptions must be made explicit



Importance of clear assumptions

• Allow researchers to (attempt to) validate assumptions by studying 
them

• Allow meaningful comparison between schemes based on different 
assumptions
• Useful to understand minimal assumptions needed

• Practical implications if assumptions are wrong

• Enable proofs of security



Proofs of security

• Provide a rigorous proof that a construction satisfies a given definition 
under certain specified assumptions
• Provides an iron-clad guarantee (relative to your definition and assumptions!)

• Proofs are crucial in cryptography, where there is a malicious attacker 
trying to “break” the scheme



Limitations?

• Cryptography still remains partly an art as well

• Proofs given an iron-clad guarantee of security
• …relative to the definition and assumptions!

• Provably secure schemes can be broken!
• If the definition does not correspond to the real-world threat model

• If the assumption is invalid

• If the implementation is flawed

• This does not detract from the importance of having formal 
definitions in place and giving proofs of security



Defining secure encryption



Crypto definitions (generally)

• Security guarantee/goal
• What we want to achieve (or what we want to prevent the attacker from 

achieving)

• Threat model
• What (real-world) capabilities the attacker is assumed to have



Recall

• A private-key encryption scheme is defined by a message space M 
and algorithms (Gen, Enc, Dec):
• Gen (key-generation algorithm): generates k

• Enc (encryption algorithm): takes key k and message 
m M as input; outputs ciphertext c

c  Enck(m)

• Dec (decryption algorithm): takes key k and 
ciphertext c as input; outputs m.

m := Deck(c)
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Threat models for encryption

• Ciphertext-only attack
• One ciphertext or many?

• Known-plaintext attack

• Chosen-plaintext attack

• Chosen-ciphertext attack



Goal of secure encryption?

• How would you define what it means for encryption scheme (Gen, 
Enc, Dec) over message space M to be secure?
• Against a (single) ciphertext-only attack



Secure encryption?
• “Impossible for the attacker to learn the key”

• The key is a means to an end, not the end itself
• Necessary (to some extent) but not sufficient
• Easy to design an encryption scheme that hides the key completely, but is 

insecure
• Can design schemes where most of the key is leaked, but the scheme is still 

secure

• “Impossible for the attacker to learn the plaintext from the ciphertext”
• What if the attacker learns 90% of the plaintext?

• “Impossible for the attacker to learn any character of the plaintext from 
the ciphertext”
• What if the attacker is able to learn (other) partial information about the 

plaintext?
• What if the attacker guesses a character correctly, or happens to know it?



The right definition

• “Regardless of any prior information the attacker has about the 
plaintext, the ciphertext should leak no additional information about 
the plaintext”
• How to formalize?



Perfect secrecy



Perfect secrecy
• “Regardless of any prior information the attacker has about the 

plaintext, the ciphertext should leak no additional information about 
the plaintext”

• Attacker’s information about the plaintext = attacker knows the 
distribution of M

• Perfect secrecy: observing the ciphertext should not change the 
attacker’s knowledge about the distribution of M

• Encryption scheme (Gen, Enc, Dec) with message space M and 
ciphertext space C is perfectly secret if for every distribution over M, 
every m M, and every c  C with Pr[C=c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m]



One-time pad

• Patented in 1917 by Vernam
• Recent historical research indicates it was invented (at least) 35 years earlier

• Proven perfectly secret by Shannon (1949)



One-time pad (OTP)

• Let M = {0,1}n

• Gen: choose a uniform key k  {0,1}n

• Enck(m) = k m              

• Deck(c) = k  c

• Correctness:
Deck( Enck(m) ) = k  (k m) 

= (k  k) m = m



One-time pad
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Perfect secrecy of one-time pad

• Note that any observed ciphertext can correspond to any message 

• So, having observed a ciphertext, the attacker cannot conclude for 
certain which message was sent

• Theorem: The one-time pad is perfectly secret



One-time pad

• Several limitations 
• The key is as long as the message

• Only secure if each key is used to encrypt a 
single message

 Parties must share keys of (total) length equal to the 
(total) length of all the messages they might ever send



Using the same key twice?

• Completely insecure against a known-plaintext attack!

• Say c1 (= k m1)
c2 (= k m2)

and the attacker knows m1

• Attacker can compute k := c1m1

• Attacker can compute m2 := c2 k



Using the same key twice?

• Say c1 = k m1
c2 = k m2

• Attacker can compute
c1  c2 = (k m1)  (k m2) = m1 m2

• This leaks information about m1, m2!



Using the same key twice?

• m1 m2 is information about m1, m2

• Is this significant?
• No longer perfectly secret!

• m1m2 reveals where m1, m2 differ

• Frequency analysis

• Exploiting characteristics of ASCII…



One-time pad

• Drawbacks
• Key as long the message

• Only secure if each key is used to encrypt once

• Trivially broken by a known-plaintext attack

• All these limitations are inherent for schemes achieving perfect 
secrecy
• I.e., it’s not just a problem with the OTP



Optimality of the one-time pad

• Theorem: if (Gen, Enc, Dec) with message space M is perfectly secret, 
then |K| ≥ |M|

• Intuition: 
• Given any ciphertext, try decrypting under every possible key in K

• This gives a list of up to |K| possible messages
• If |K| < |M|, some message is not on the list

• Proof: 
• Assume |K| < |M|

• Need to show that there is a distribution on M, 
a message m, and a ciphertext c such that

Pr[M=m | C=c]  Pr[M=m]



Where do we stand?

• We defined the notion of perfect secrecy

• We proved that the one-time pad achieves it!

• We proved that the one-time pad is optimal!
• E.g., we cannot improve the key length

• Are we done?

• Do better by relaxing the definition 
• But in a meaningful way…



Perfect secrecy

• Requires that absolutely no information about the plaintext is leaked, 
even to eavesdroppers with unlimited computational power
• The definition has some inherent drawbacks

• The definition seems unnecessarily strong…



Computational secrecy

• Would be ok if a scheme leaked information with tiny probability to 
eavesdroppers with bounded computing resources/running time

• I.e., we can relax perfect secrecy by
• Allowing security to “fail” with tiny probability 

• Restricting attention to “efficient” attackers



Tiny probability of failure?

• Say security fails with probability 2-60

• Should we be concerned about this?

• With probability > 2-60, the sender and receiver will both be struck by 
lightning in the next year…

• Something that occurs with probability 2-60/sec is expected to occur once 
every 100 billion years



Bounded attackers?

• Consider brute-force search of key space; assume one key can be 
tested per clock cycle

• Desktop computer  257 keys/year

• Supercomputer  1017 flops  280 keys/year

• Supercomputer since Big Bang  2112 keys
• Restricting attention to attackers limited to trying 2112 keys is fine!

• Modern key spaces: 2128 keys or more…



Roadmap

• We will give an alternate (but equivalent) definition of perfect secrecy
• Using a randomized experiment

• That definition has a natural relaxation



Perfect indistinguishability

•  = (Gen, Enc, Dec), message space M

• Informally:
• Two messages m0, m1; one is chosen and encrypted (using unknown k) to give 

c  Enck(mb) 

• Adversary A is given c and tries to determine which message was encrypted

•  is perfectly indistinguishable if no A can guess correctly with probability 
any better than ½ 



Perfect indistinguishability

• Claim:  is perfectly indistinguishable if and only if  is perfectly 
secret
• I.e., perfect indistinguishability is just an alternate definition of perfect 

secrecy



Encryption and plaintext length

• In practice, we want encryption schemes that can encrypt arbitrary-
length messages

• Encryption does not hide the plaintext length (in general)
• The definition takes this into account by requiring m0, m1 to have the same 

length

• But beware that leaking plaintext length can often lead to problems in 
the real world!
• Obvious examples…

• Database searches

• Encrypting compressed data



Where things stand

• We saw that there are some inherent limitations if we want perfect 
secrecy
• In particular, key must be as long as the message

• We defined computational secrecy, a relaxed notion of security

• Does that definition allow us to overcome prior limitations?



Recall: one-time pad
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“Pseudo” one-time pad
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Pseudo one-time pad

• Let G be a deterministic algorithm, with |G(k)| = p(|k|)

• Gen(1n): output uniform n-bit key k
• Security parameter n message space {0,1}p(n)

• Enck(m): output G(k) m

• Deck(c): output G(k)  c

• Correctness follows as in the OTP…



Have we gained anything?

• YES: the pseudo-OTP has a key shorter than the message
• n bits vs. p(n) bits

• The fact that the parties internally generate a p(n)-bit temporary 
string to encrypt/decrypt is irrelevant
• The key is what the parties share in advance
• Parties do not store the p(n)-bit temporary value

• Security of pseudo-OTP?



Definitions, proofs, and assumptions

• We’ve defined computational secrecy

• Our goal is to prove that the pseudo-OTP meets that definition

• We cannot prove this unconditionally
• Beyond our current technique

• Anyway, security clearly depends on G

• Can prove security based on the assumption that G is a 
pseudorandom generator



Proof by reduction

1. Assume G is a pseudorandom generator

2. Assume toward a contradiction that there is an efficient attacker A 
who “breaks” the pseudo-OTP scheme (as per the definition)

3. Use A as a subroutine to build an efficient D that “breaks” 
pseudorandomness of G
• By assumption, no such D exists!
No such A can exist

❖If G is a pseudorandom generator, then the pseudo one-time pad Π is 
EAV-secure (i.e., computationally indistinguishable)



Keyed functions

• Let F: {0,1}n x {0,1}n → {0,1}n be an efficient, 
deterministic algorithm
• Define Fk(x) = F(k, x)

• The first input is called the key

• Security parameter = key length = n

• F is pseudorandom if Fk (for uniform k) is 
indistinguishable from a random function on the 
same domain/range



Block ciphers

• Block ciphers are practical constructions of pseudorandom 
permutations

• No asymptotics:  F: {0,1}n x {0,1}m → {0,1}m for fixed n, m
• n = “key length”

• m = “block length”

• Hard to distinguish Fk from uniform f  Permm even for attackers 
running in time 2n



AES

• Advanced encryption standard (AES)
• Key length = 128, 192, or 256 bits

• Block length = 128 bits

• Will discuss details later in the course

• Available in standard crypto libraries

• No real reason to use anything else



Message integrity



Secrecy vs. integrity

• So far we have been concerned with ensuring secrecy of 
communication

• What about integrity?
• I.e., ensuring that a received message originated from the intended party, and 

was not modified

• Standard error-correction not enough!
• The right tool is a message authentication code



Passive attacks vs. active attacks

• So far we have been considered only passive (i.e., eavesdropping) 
attacks
• Attacker simply observes the channel (even if it might also carry out a chosen-

plaintext attack)

• In the setting of integrity, we explicitly consider active attacks
• Attacker has full control over the channel
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