
رمزنگاری، امنیت اطلاعات و حریم 
خصوصی

دکتر سیدعلی لاجوردی: ارائه

سومبخش 



Encrypting long messages?

• Recall that CPA-security  security for the encryption of multiple 
messages

• So, can encrypt the message m1, …, mt as 
Enck(m1), Enck(m2), …, Enck(mt)
• This is also CPA-secure!



Drawback

• The ciphertext in that case is twice the length of the plaintext
• I.e., ciphertext expansion by a factor of two

• Can we do better?

• Modes of operation
• Stream-cipher modes of operation

• Block-cipher modes of operation



Stream ciphers



Stream ciphers

• As we defined them, PRGs are limited
• They have fixed-length output

• They produce output in “one shot”

• In practice, stream ciphers are used 
• Can be viewed as producing an “infinite” stream of pseudorandom bits, on 

demand

• More flexible, more efficient



Stream ciphers

• Pair of efficient, deterministic algorithms 
(Init, Next)
• Init takes a seed s (and optional IV), and outputs initial state st

• Next takes the current state st and outputs a 
bit y along with updated state st’
• (In practice, y would be a block rather than a bit)



Stream ciphers

• Can use (Init, Next) to generate any desired number of output bits 
from an initial seed/IV

Init

s

st0 Next st1 st2Next

y1 y2

IV



AES

• Advanced encryption standard (AES)
• Key length = 128, 192, or 256 bits

• Block length = 128 bits

• Will discuss details later in the course

• Available in standard crypto libraries

• No real reason to use anything else



Stream ciphers

• A stream cipher is secure if the output stream (from a uniform seed) 
is pseudorandom
• I.e., regardless of how long the output stream is (as long as it is polynomial)

• See book for formal definition

• Easy to construct from a block cipher (see book)



Modes of operation

• Stream-cipher modes of operation
• Synchronized

• Unsynchronized



Synchronized mode

• Sender and receiver maintain state (i.e., they are stateful), and must 
be synchronized

• Makes sense in the context of a limited-time communication session 
where both parties are online and messages are received in order, 
without being dropped



Synchronized mode

Init

s

st0

Next

st1

y1


m1

c1

Init

s

st0

Next

st1



m1

y1

Next

st2

y2


c2
Next

st2



m2

y2

m2



Synchronized mode

• Advantages
• Stream cipher does not need to support an IV

• No ciphertext expansion

• Disadvantages
• Stateful

• Assumes messages arrive in order; never dropped



Unsynchronized mode

• Choose random IV to encrypt next message

• Similar to the first CPA-secure scheme we saw
• But “natively” handles arbitrary-length messages with better ciphertext 

expansion



Unsynchronized mode

Init

s

st0

Next
y1, y2, …



m1, m2, …

c1, c2, …

Init

s

st0

Next

m1, m2, …

y1, y2, …

IV IVIV



Block-cipher modes 
of operation



ECB mode

• Enck(m1, …, mt) = Fk(m1), …, Fk(mt)

• Deterministic
• Not CPA-secure!

• Can tell from the ciphertext whether mi = mj
• Not even EAV-secure!



CTR mode

• Enck(m1, …, mt)    // note: t is arbitrary
• Choose ctr  {0,1}3n/4, set c0 = ctr

• For i=1 to t:
• ci = mi  Fk(ctr | i)

• Output c0, c1, …, ct

• Decryption?
• Note that F need not be invertible

• Ciphertext expansion is <1 block



CTR mode

Fk Fk Fk
…

ctr

m1 m2 mt

ctr|1 ctr|2 ctr|t

  

c0 c1 c2 ct



CTR mode

• Theorem: If F is a pseudorandom function, then CTR mode is CPA-
secure

• Proof sketch:

• The sequence Fk(ctr | 1), …, Fk(ctr | t) used for the challenge 
ciphertext is pseudorandom
• Moreover, it is independent of every other such sequence unless ctr | j = ctri’ 

| j’ for some i’, j’
• Just need to bound the probability of that event



CBC mode

• Enck(m1, …, mt)       // note: t is arbitrary
• Choose random c0  {0,1}n (also called the IV)

• For i=1 to t:
• ci = Fk(mi  ci-1)

• Output c0, c1, …, ct

• Decryption?
• Requires F to be invertible, i.e., a permutation

• Ciphertext expansion is just 1 block



CBC-mode encryption

22

Fk

IV

m1

c0 c1



Fk

m2

c2



Fk

mt

ct



…



CBC mode

• Theorem: If F is a pseudorandom permutation, then CBC mode is CPA-
secure

• Proof is more complicated than for CTR mode 



Message integrity



Secrecy vs. integrity

• So far we have been concerned with ensuring secrecy of 
communication

• What about integrity?
• I.e., ensuring that a received message originated from the intended party, and 

was not modified

• Standard error-correction not enough!
• The right tool is a message authentication code



Passive attacks vs. active attacks

• So far we have been considered only passive (i.e., eavesdropping) 
attacks
• Attacker simply observes the channel (even if it might also carry out a chosen-

plaintext attack)

• In the setting of integrity, we explicitly consider active attacks
• Attacker has full control over the channel



m

m m’



k

m
t = Mack(m)

k
m, t

Vrfyk(m’, t’) = 1?

m’, t’



m, t

m

kk



k
m, t

m, t

Vrfyk(m, t)=1?

k

m, t

m, t



cookie, t

cookie

cookie

cookie, t

…price=10…

k

k



Message authentication code (MAC)

• A message authentication code is defined by three PPT algorithms 
(Gen, Mac, Vrfy): 
• Gen: takes as input 1n; outputs k. (Assume |k|≥n.)

• Mac: takes as input key k and message; outputs
a tag t 

t Mack(m)

• Vrfy: takes key k, message m, and tag t as input; outputs 1 (“accept”) or 0 
(“reject”)

For all m and all k output by Gen,
Vrfyk(m, Mack(m)) = 1



Security?

• Only one standard definition

• Threat model
• “Adaptive chosen-message attack”

• Assume the attacker can induce the sender to authenticate messages of the 
attacker’s choice

• Security goal
• “Existential unforgeability”

• Attacker should be unable to forge a valid tag on any message not previously 
authenticated by the sender



k

k
Vrfyk(m, t) ??

m1, t1

m, t

t1 := Mack(m1)
t2 := Mack(m2)
…
ti := Mack(mi)

m2, t2

mi, ti

…



Security?

• Is the definition too strong?
• We don’t want to make any assumptions about what the sender might 

authenticate

• We don’t want to make any assumptions about what forgeries are 
“meaningful”

• A MAC satisfying this definition can be used anywhere integrity is 
needed



Replay attacks

• Note that replay attacks are not prevented
• No stateless mechanism can prevent them

• Replay attacks are often a significant real-world concern

• Need to protect against replay attacks at a higher level
• Decision about what to do with a replayed message is application-dependent



A fixed-length MAC



Intuition?

• We need a keyed function Mac such that:
• Given Mack(m1), Mack(m2), …,

• …it is infeasible to predict the value Mack(m) for any m{m1, …, }

• Let Mac be a pseudorandom function!



Construction

• Let F be a length-preserving, keyed function

• Construct the following MAC :
• Gen: choose a uniform key k for F

• Mack(m): output Fk(m)

• Vrfyk(m, t): output 1 iff Fk(m)=t

• Theorem: If F is a pseudorandom function, then  is a secure MAC



Suggestions?

• Can you construct a secure MAC for variable-length messages from a 
MAC for fixed-length messages? 

• One natural idea:
• Mac’k(m1, …, ml) = Mack(m1), …, Mack(ml)

• Vrfy’k(m1, …, ml, t1, …, tl) = 1 iff 
Vrfyk(mi, ti) = 1 for all i

• Is this secure?

• Other suggestions?



A construction

• Need to prevent (at least)
• Block reordering

• “Mixing-and-matching” blocks from multiple messages

• Truncation

• One solution:
• Mac’k(m1, …, ml) = 

r, Mack(r | l | 1 | m1), Mack(r | l | 2 | m2), … 

• Not very efficient – can we do better?



(Basic) CBC-MAC

Fk

m1

Fk

m2



Fk

ml

t



…



k

c := (m1m2…mn)k

k c1c2…cn

m1m2…m’n := (c1c2…c’n)k

c1c2…c’n



CBC-MAC vs. CBC-mode

• CBC-MAC is deterministic (no IV)
• MACs do not need to be randomized to be secure

• Verification is done by re-computing the result

• In CBC-MAC, only the final value is output

• Both are essential for security
• Exercise: show attacks on variants 



CBC-MAC extensions

• Several ways to handle variable-length messages

• One of the simplest: prepend the message length before applying 
(basic) CBC-MAC
• Can also be adapted to handle messages whose length is not a multiple of the 

block length


	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: Encrypting long messages?
	Slide 3: Drawback
	Slide 4: Stream ciphers 
	Slide 5: Stream ciphers
	Slide 6: Stream ciphers
	Slide 7: Stream ciphers
	Slide 8: AES
	Slide 9: Stream ciphers
	Slide 10: Modes of operation
	Slide 11: Synchronized mode
	Slide 12: Synchronized mode
	Slide 13: Synchronized mode
	Slide 14: Unsynchronized mode
	Slide 15: Unsynchronized mode
	Slide 16: Block-cipher modes  of operation
	Slide 17: ECB mode
	Slide 18: CTR mode
	Slide 19: CTR mode
	Slide 20: CTR mode
	Slide 21: CBC mode
	Slide 22: CBC-mode encryption
	Slide 23: CBC mode
	Slide 24: Message integrity
	Slide 25: Secrecy vs. integrity
	Slide 26: Passive attacks vs. active attacks
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Message authentication code (MAC)
	Slide 33: Security?
	Slide 34
	Slide 35: Security?
	Slide 36: Replay attacks
	Slide 37:  A fixed-length MAC
	Slide 38: Intuition?
	Slide 39: Construction
	Slide 40: Suggestions?
	Slide 41: A construction
	Slide 42: (Basic) CBC-MAC
	Slide 43
	Slide 44: CBC-MAC vs. CBC-mode
	Slide 45: CBC-MAC extensions

