
رمزنگاری، امنیت اطلاعات و حریم
خصوصی

دکتر سیدعلی لاجوردی: ارائه

بخش پنجم

Hash function

Hash functions

• (Cryptographic) hash function: deterministic function mapping
arbitrary length inputs to a short, fixed-length output

• Hash functions can be keyed or unkeyed
• Theoretically, need to be keyed (as in book)

• Key is public

• In practice, hash functions are unkeyed

• Assume unkeyed hash functions for simplicity

Collision-resistance

• Let H: {0,1}* → {0,1}l be a hash function

• A collision is a pair of distinct inputs x, x’ such that H(x) = H(x’)

• H is collision-resistant if it is infeasible to find a collision in H

Generic hash-function attacks

• What is the best “generic” collision attack on a hash function H: {0,1}*
→ {0,1}l ?
• Note that collisions are guaranteed to exist…

• If we compute H(x1), …, H(x2l + 1), we are guaranteed to find a
collision (why?)
• Can we do better?

“Birthday” attacks

• Compute H(x1), …, H(xt)
• What is the probability of a collision (as a function of t)?

• Related to the so-called birthday paradox
• How many people are needed so there is a 50% chance that some two people

share a birthday?

N

Bins: days of the year (N=365)
Balls: k people

Bins: values in {0,1}l (N = 2l)
Balls: k hash-function computations

How many balls do we need
to have a 50% chance of a collision?

“Birthday” attacks

• Theorem: the collision probability is (t2/N)

• When t  N1/2, probability of a collision is  50%
• Birthdays: 23 people suffice!

• Hash functions: O(2l/2) hash-function evaluations

• Need l = 2n to get security against attackers running in time 2n
• Note: twice as long as symmetric keys (e.g., block-cipher keys or PRG seeds)

for the same security

“Birthday bound”

• The birthday bound comes up in many other cryptographic contexts

• Example: IV reuse in CTR-mode encryption
• If k messages are encrypted, what are the chances that some IV is used twice?

• Note: this is much higher than the probability that a specific IV is used again

Building a hash function

• Two-stage approach
• Build a compression function h

• I.e., hash function for fixed-length inputs

• Build a full-fledged hash function (for arbitrary length inputs) from a
compression function h

Building a hash function

• For now…
• Assume we have a “good” compression function h

• I.e., collision-resistant for fixed-length inputs

• Will discuss how to construct such an h later

• Construct a hash function H (for arbitrary length inputs) based on h
• Prove that collision resistance of h implies collision resistance of H

Merkle-Damgard transform

h h h…

m1 m2 mB

h

|M|

Note: M = m1…mB is padded with 0s if necessary

z0

Merkle-Damgard transform

• Claim: if h is collision-resistant, than so is H

• Proof: Collision in H  collision in h
• Say H(m1, …, mB) = H(m’1, …, m’B’)

• |M|  |M’|, obvious

• |M| = |M’|, look at largest i with (zi-1, mi)  (z’i-1, m’i)

h h h…

m1 m2 mB

h

|M| = mB+1

z0 z1 z2 zB zB+1

Hash functions in practice

• MD5
• Developed in 1991

• 128-bit output length

• Collisions found in 2004, should no longer be used

• SHA-1
• Introduced in 1995

• 160-bit output length

• Collision found by brute force in 2017

• Subsequent improvements in attacks; no longer recommended; should
migrate to SHA-2

Hash functions in practice

• SHA-2
• Introduced in 2001

• Versions with 224, 256, 384, and 512-bit outputs

• No significant known weaknesses

• SHA-3/Keccak
• Result of a public competition from 2008-2012

• Very different design than SHA-1/SHA-2
• Does not use Merkle-Damgard transform

• Supports 224, 256, 384, and 512-bit outputs

Applications of hash functions to
message authentication

Recall…

• We showed how to construct a secure MAC for short, fixed-length
messages based on any PRF/block cipher

• We want to extend this to a secure MAC for arbitrary-length
messages
• Before: using CBC-MAC

• Here: using hash functions

M

M

h =? H(M)

Intuition…

h

h = H(M)

k

M

k

M

h = H(M)
Vrfyk(h, t) = 1?

Hash-and-MAC

h , t

h = H(M)
t = Mack(h)

t

Security?

• If the MAC is secure for fixed-length messages and H is collision-
resistant, then the previous construction is a secure MAC for
arbitrary-length messages

Proof sketch

• Say the sender authenticates messages m1, m2, …
• Let hi = H(mi)

• Attacker outputs forgery (m, t), m mi for all i
• Let h = H(m)

• Two cases:
• h = H(m) = hi = H(mi) for some i

• Collision in H!

• H(m) = h  hi for all i
• Forgery in the underlying, fixed-length MAC

Instantiation?

• Hash function + block-cipher-based MAC?
• Block-length mismatch (e.g., if using AES as the block cipher)

• Need to implement two crypto primitives (block cipher and hash function)

HMAC

• Constructed entirely from Merkle-Damgard hash functions
• MD5, SHA-1, SHA-2

• Not SHA-3

• Can be viewed as following the hash-and-MAC paradigm
• With (part of the) hash function being used as a pseudorandom function

HMAC

Other applications of
hash functions

Hash functions are ubiquitous

• Collision-resistance  “fingerprinting”

• Outsourced storage

• Used as a “random oracle”

• Used as a one-way function
• Password hashing

• Key derivation

Fingerprinting

• E.g., hash-and-MAC

• E.g., virus scanning

• E.g., deduplication

• E.g., file integrity
• Assuming it is possible to get a reliable copy of H(x) for file x

• Note: different from integrity in the context of message-authentication codes

Outsourced storage

x1, …, xn

hi =H(xi)

x1, …, xn

xi
H(xi)=?hi

O(n) client storage!

i

Merkle tree
• Using a Merkle tree, we can solve the outsourcing problem with O(1)

client storage and |x| + O(log n) communication

x1 x2 x3 x4

Only store the root!

x2

Verify…

The random-oracle (RO) model

• Treat H as a public, random function

• Then H(x) is uniform for any x…
• …unless the attacker computes H(x) explicitly

• This implies collision resistance (if output is large enough)
• Much stronger than collision resistance

The RO model

• Intuitively
• Assume the hash function “is random”

• Models attacks that are agnostic to the specific hash function being used

• Security in the real world as long as “no weaknesses found” in the hash
function

• Formally
• Choose a uniform hash function as part of the security experiment

• Attacker can only evaluate H via explicit queries to an oracle

• Simulate H as part of the security proof

• Different from a PRF
• There is no key here

Pros and cons of the RO model
• In practice

• Prove security in the RO model
• Instantiate the RO with a “good” hash function
• Hope for the best…

• Cons
• There is no such thing as a public hash function that “is random”

• Not even clear what this would mean, formally

• Known counterexamples
• There are (contrived) schemes secure in the RO model, but insecure when using any real-

world hash function

• Pros
• No known example of “natural” scheme secure in the RO model being attacked in

the real world
• If an attack is found, just replace the hash
• Proof in the RO model better than no proof at all

• Evidence that the basic design principles are sound

Many applications of random oracles

• Password hashing

• Key derivation

• Will see many more in the context of public-key cryptography

Password hashing

• Server stores H(pw) instead of pw
• (Ignore “salting” here)

• Recovering pw from H(pw) in q tries should be as hard as guessing pw
in q tries
• Even if the distribution of pw is non-uniform

Key derivation

• Consider deriving a (shared) key k from (shared) high-entropy
information x
• E.g., biometric data

• Cryptographic keys must be uniform, but shared data is only high-
entropy

Min-entropy

• Let X be a distribution

• The min-entropy of X (measured in bits) is
H(X) = - log maxx { Pr[X=x] }

• I.e., if H(X) = n, then the probability of guessing x sampled from X is (at
most) 2-n

• Min-entropy is more suitable for crypto than standard (Shannon)
entropy

Key derivation

• Given shared information x (sampled from distribution X), derive
shared key k=H(x)
• In what sense can we claim that k is a good (i.e., uniform) cryptographic key?

• If H is a random oracle, then H(x) is uniform as long as the attacker
does not query x to H
• …but the attacker cannot do that (with high probability) if X has high min-

entropy!

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: Hash function
	Slide 3: Hash functions
	Slide 4: Collision-resistance
	Slide 5: Generic hash-function attacks
	Slide 6: “Birthday” attacks
	Slide 7
	Slide 8: “Birthday” attacks
	Slide 9: “Birthday bound”
	Slide 10: Building a hash function
	Slide 11: Building a hash function
	Slide 12: Merkle-Damgard transform
	Slide 13: Merkle-Damgard transform
	Slide 14: Hash functions in practice
	Slide 15: Hash functions in practice
	Slide 16: Applications of hash functions to message authentication
	Slide 17: Recall…
	Slide 18: Intuition…
	Slide 19: Hash-and-MAC
	Slide 20: Security?
	Slide 21: Proof sketch
	Slide 22: Instantiation?
	Slide 23: HMAC
	Slide 24: HMAC
	Slide 25: Other applications of hash functions
	Slide 26: Hash functions are ubiquitous
	Slide 27: Fingerprinting
	Slide 28: Outsourced storage
	Slide 29: Merkle tree
	Slide 30: The random-oracle (RO) model
	Slide 31: The RO model
	Slide 32: Pros and cons of the RO model
	Slide 33: Many applications of random oracles
	Slide 34: Password hashing
	Slide 35: Key derivation
	Slide 36: Min-entropy
	Slide 37: Key derivation

