
رمزنگاری، امنیت اطلاعات و حریم
خصوصی

دکتر سیدعلی لاجوردی: ارائه

بخش ششم

So far…

• We have seen how to construct schemes based on various lower-level
primitives
• Stream ciphers/PRGs

• Block ciphers/PRFs

• Hash functions (compression functions)

• How do we construct these primitives?

Two approaches

• Construct from even lower-level assumptions
• Can prove secure (given lower-level assumption)

• Inefficient

• Build directly
• Much more efficient!

• Need to assume security, but…
• We have formal definitions to aim for

• We can concentrate our analysis on these primitives

• We can develop/analyze various design principles

Stream ciphers/PRGs

Terminology

• Init algorithm
• Takes as input a key [+ initialization vector (IV)]

• Outputs initial state

• Next algorithm
• Takes as input the current state

• Outputs next bit/byte/chunk and updated state

• Allows generation of as many bits as needed

Stream ciphers

• Can use (Init, Next) to generate any desired number of output bits
from an initial seed

Init

s

st0 Next st1 st2Next

y1 y2

IV

Security requirements

• If there is no IV, then (for a uniform key) the output of Next should be
indistinguishable from a uniform, independent stream of bits

• If there is an IV, then (for a uniform key) the outputs of Next on
multiple, uniform IVs should be indistinguishable from multiple
uniform, independent streams of bits
• Even if the attacker is given the IVs

Security requirements

• In practice, want near-optimal concrete security
• Not just asymptotic security

• Stream cipher with n-bit key should be secure against attackers
running in time 2n

LFSRs

• Degree n  n registers

• State: bits sn-1, …, s0 (contents of the registers)

• Feedback coefficients cn-1, …, c0 (do not change; part of the design,
not the state)

• Registers updated, and output generated, in each “clock tick”

Example

• Assume initial content of registers is 0100

• First 4 state transitions:
0100 → 1010 → 0101 → 0010 → …

• First 3 output bits:
0 0 1 …

LFSRs as stream ciphers

• Key (+ IV) used to initialize state of the LFSR (possibly including
feedback coefficients)

• One bit of output per clock tick
• State is updated each clock tick

LFSRs

• State (and output) “cycles” if state ever repeated
• Short cycles are bad for security

• How long can a cycle be?

• A maximal-length LFSR cycles through all 2n - 1 nonzero states
• It is known how to set feedback coefficients so as to achieve maximal length

• Maximal-length LFSRs have good statistical properties…

• …but they are not cryptographically secure!

Security?
• If feedback coefficients are fixed (and hence known to the attacker),

then the key just determines the initial register contents

• First n bits of the output reveal the entire key!

• Even if feedback coefficients are unknown (and determined by the
key), can use linear algebra to learn everything from initial 2n output
bits

• Moral: linearity is bad for pseudorandomness (because linear algebra
is so powerful)

Nonlinear FSRs

• Add nonlinearity to prevent attacks
• Nonlinear feedback

• Nonlinear output (nonlinear filter)

• Multiple LFSRs (combination generator)

• …or some combination of the above

• Still want to preserve statistical properties of the output, and long
cycle length

• From now on, assume design (including feedback coefficients) is fixed
• Key only determines the initial register contents

Nonlinear feedback

Nonlinear feedback

• Need to avoid bias!

s3 s2 s1 s0s4



s5

s3 s2 s1 s0s4

Nonlinear filter

• Update of state is still linear…

• …but output is a nonlinear function of the entire state

s3 s2 s1 s0s4

 

Nonlinear filter

• Need to avoid bias!

s3 s2 s1 s0s4

 



Combination generator

a3 a2 a1 a0a4

 

b2 b1 b0b3



c2 c1 c0



MAJ

Correlation attacks

• Consider previous example, and let A, B, and C be the output
sequence generated by each LFSR
• So the overall output is MAJ(A, B, C)

• Let , ,  denote the degree of each LFSR
• Key has length  +  + 

• Want security for attacks running in time 2 +  + 

Correlation attacks

• Key observation: A, B, and C are each highly correlated with the
output
• Assuming B, C are unbiased, Pr[Ai = outputi] = ¾ for all i (and similarly for B, C)

• Alternately, for large enough sequences, ¾ of the bits in R should be equal to
the corresponding output bits

• Can do a brute-force search over the state of each LFSR individually!
• Key-recovery attack runs in time 2 + 2 + 2 < 2 +  + 

Trivium

• Designed by De Cannière and Preneel in 2006 as part of eSTREAM
project

• Intended to be simple and efficient (especially in hardware)

• No attacks better than brute-force search are known!

Trivium

Trivium

• Three coupled FSRs of degree 93, 84, and 111
• 288-bit state

• Initialization:
• 80-bit key in left-most registers of first FSR

• 80-bit IV in left-most registers of second FSR

• Remaining registers set to 0, except for three right-most registers of third FSR

• Run for 4 x 288 clock ticks (output discarded)

RC4

• Designed in 1987

• Designed to have good performance in software, rather than
hardware

• No longer considered secure, but still interesting to study
• Simple description; not LFSR-based

• Still encountered in practice

• Interesting attacks

RC4

• State consists of a 256-byte array S, which is always a permutation of
{0,1}8, along with integers 0 ≤ i, j ≤ 255
• Note S can be viewed as a permutation of {0,1}8 that is constantly changing

RC4

• Not designed to take an IV, but often used with an IV anyway
• E.g., prepend IV to the key

Attack: bias in 2nd output byte

• Let St denote permutation S after t steps
• Treat S0 as uniform for simplicity

• Say X = S0[1]  2 and S0[2] = 0
• Occurs with probability 1/256

• Then:
• After 1 step, S1[X]=X, i=1, j=X

• After 2 steps, j=X; output S2[X]=0

• Otherwise, S2[X] is a uniform byte

• Pr[2nd byte is 0] 2/256

RC4 bias

• Statistical bias in other output bytes was determined experimentally

• Enough to break pseudo-OTP encryption based on RC4!
• See http://www.isg.rhul.ac.uk/tls

Block ciphers

Recall…

• Want keyed permutation
F: {0,1}n x {0,1}l → {0,1}l

• n = key length, l = block length

• Want Fk (for uniform, unknown key k) to be indistinguishable from a
uniform permutation over {0,1}l, for attacks running in time 2n

Attack models

• A block cipher is not an encryption scheme!!

• Nevertheless, some of the terminology used is the same (for historical
reasons)
• “known-plaintext attack”: attacker given {(x, Fk(x)} for arbitrary x (outside

control of the attacker)

• “chosen-plaintext attack”: attacker can query Fk(.)

• “chosen-ciphertext attack”: attacker can query both Fk(.) and Fk-1(.)

Concrete security

• As in the case of stream ciphers, we are interested in concrete
security for a given key length n
• Best attack should take time  2n

• If there is an attack taking time 2n/2 then the cipher is considered insecure

• Look at both distinguishing attacks and key-recovery attacks

Designing block ciphers

• Want Fk (for uniform, unknown key k) to be indistinguishable from a
uniform permutation over {0,1}l

• If x and x’ differ in one bit, what should the relation between Fk(x)
and Fk(x’) be?
• How many bits should change (on average)?

• Which bits should change?

• How to achieve this?

Confusion/diffusion

• Two types of steps
• “Confusion”: Small change in input to the step yields small, “random” change

in output of the step

• “Diffusion”: Small change in input to the step should be propagated to affect
entire output of the step

Design paradigms

• Two design paradigms
• Substitution-permutation networks (SPNs)

• Feistel networks

SPNs

SPNs

• Build “random-looking” permutation on long input from random
permutations on short input
• What is the key length for a random permutation

on {0,1}l ?

• E.g. (assuming 8-byte block length),
Fk(x) = fk1(x1) fk2(x2) … fk8(x8),

where each f is a random permutation on {0,1}8
• How long is the key for F?

SPN
• This has confusion but no diffusion

• Add a mixing permutation…

fk1 fk2
. . .

Is this a pseudorandom permutation?

fk8

SPN

fk1 fk2
. . .

. . .

fk8

SPN

• Mixing permutation is public/known to the attacker
• Chosen to ensure good diffusion

• (This will be more clear later)

• Note that the entire structure is invertible (given the key) since the f’s
are permutations and the mixing permutation is invertible

SPN

• Does this give a pseudorandom permutation?

• What if we repeat for another round (with independent, random
functions)?
• What is the minimal # of rounds we need?

• Avalanche effect

• Judicious choice of mixing permutation

SPNs

• Using random f’s is not practical
• Key would be too large

• Instead, use f’s of a particular form
• fki(x) = Si(ki x), where Si is a fixed (public) permutation

• The {Si} are called “S-boxes” (substitution boxes)

• XORing the key is called “key mixing”

• Note that this is still invertible (given the key)

S1 S2

k1

. . .
S8

Avalanche effect

• Design S-boxes and mixing permutation to ensure avalanche effect
• Small differences should eventually propagate to entire output

• S-boxes: any 1-bit change in input causes ≥2-bit change in output
(confusion)
• Not so easy to ensure!

• Mixing permutation
• Each bit output from a given S-box should feed into a different S-box in the

next round (diffusion)

SPN

• One round of an SPN involves
• Key mixing

• Round keys could be independent

• In practice, derived from a master key via a key schedule

• Substitution (S-boxes)

• Permutation (mixing permutation)

• r-round SPN has r rounds as above, plus a final key-mixing step
• Why?

• Invertible regardless of how many rounds…

Key-recovery attacks

• Key-recovery attacks are even more damaging than distinguishing
attacks
• As before, a cipher is secure only if the best key-recovery attack takes time
2n

• A fast key-recovery attack represents a “complete break” of the cipher

Key-recovery attack, 1-round SPN

• Consider first the case where there is no final key-mixing step
• Possible to get the key immediately!

• What about a full 1-round SPN (with independent round keys)?
• Attack 1: for each possible 1st-round key, get corresponding 2nd-round key

• Continue process of elimination using additional plaintext/ciphertext pairs

• Complexity 2l for key of length 2l

• Better attack: work S-box-by-S-box
• Assume 8-bit S-box

• For each 8 bits of 1st-round key, get corresponding 8 bits of 2nd-round key
• Continue process of elimination

• Complexity?

Attacking more rounds?

• These attacks become more and more difficult as the number of
rounds increases

• At some point, key-recovery attacks become impractical
• Distinguishing attacks may still be possible, especially if S-boxes are poorly

designed

• 3-round SPNs can be proven secure when S-boxes are modeled as
random permutations

Feistel networks

Feistel networks

• Build (invertible) permutation from non-invertible components

• One round:
• Keyed round function f: {0,1}n x {0,1}l/2 →{0,1}l/2

• Fk1(L0, R0) → (L1, R1) = (R0, L0  fk1(R0))

• Always invertible!

L0 R0

fk

L1 R1

Security?

• Security of 1-round Feistel?

• Security of 2-round Feistel?

• Security of 3/4-round Feistel?
• (Assume round functions are random and independent)

Data Encryption Standard (DES)

• Standardized in 1977

• 56-bit keys, 64-bit block length

• 16-round Feistel network
• Same round function (“mangler function”) in all rounds

• Different sub-keys in each round, each derived from the master key

• The round function is basically an SPN!

DES mangler function

DES mangler function

• S-boxes
• Each S-box is 4-to-1

• Changing 1 bit of input changes at least 2 bits of output

• Mixing permutation
• The 4 bits of output from any S-box affect the input to 6 S-boxes in the next

round

Key schedule

• 56-bit master key, 48-bit subkey in each round
• Each subkey takes 24 bits from the left half of the master key, and 24 bits

from the right half of the master key

Avalanche effect

• Consider 1-bit difference in left half of input
• After 1 round, 1-bit difference in right half

• S-boxes cause a 2-bit difference, implying a 3-bit difference overall after 2
rounds

• Mixing permutation spreads differences into different S-boxes

• …

Security of DES

• DES is extremely well-designed
• Except for some attacks that require large amounts of plaintext, no attacks

better than brute-force are known

• But … parameters are too small!

56-bit key length

• A concern as soon as DES was released

• Brute-force search over 256 keys is possible
• 1997: 1000s of computers, 96 days

• 1998: distributed.net, 41 days

• 1999: Deep Crack ($250,000), 56 hours

• Today: 48 FPGAs, ~1 day

64-bit block length

• Birthday collisions relatively likely

• E.g., encrypt 230 ( 1 billion) blocks using CTR mode; chances of a
collision are

 260/264 = 1/16

Increasing key length?

• DES has a key that is too short

• How to fix?
• Design new cipher

• Tweak DES so that it takes a larger key

• Build new cipher using DES as a black box

Double encryption

• Let F: {0,1}n x {0,1}l → {0,1}l
• (i.e., n=56, l=64 for DES)

• Define F2 : {0,1}2n x {0,1}l → {0,1}l as follows:
F2k1, k2(x) = Fk1(Fk2(x))

(still invertible)

• If best attack on F takes time 2n, can we hope that the best attack on
F2 takes time 22n?

Meet-in-the-middle attack

• No! There is an attack taking 2n time…
• (And 2n memory)

• The attack applies any time a block cipher can be “factored” into 2
independent components

Triple encryption

• Define F3 : {0,1}3n x {0,1}l → {0,1}l as follows:
F3k1, k2, k3(x) = Fk1(Fk2(Fk3(x)))

• What is the best attack now?

Two-key triple encryption

• Define F3 : {0,1}2n x {0,1}l → {0,1}l as follows:
F3k1, k2(x) = Fk1(Fk2(Fk1(x)))

• Best attack takes time 22n – optimal given the key length!

• This approach is taken by triple-DES

Advanced encryption standard (AES)

• Public design competition run by NIST

• Began in Jan 1997
• 15 algorithms submitted

• Workshops in 1998, 1999
• Narrowed to 5 finalists

• Workshop in early 2000; winner announced in late 2000
• Factors besides security taken into account

AES

• 128-bit block length

• 128-, 192-, and 256-bit key lengths

• Basically an SPN structure!
• 1-byte S-box (same for all bytes)

• Mixing permutation replaced by invertible linear transformation
• If two inputs differ in b bytes, outputs differ in ≥ 5-b bytes

• No attacks better than brute-force known

SHA-2

• Compression function based on Davies-Meyer
• With “block cipher” specifically designed for SHA

• Hash function built from compression function using Merkle-Damgard

SHA-3

• Public competition run by NIST

• Began in 2007

• Narrowed to 14 semi-finalists in Dec 2008

• Reduced to 5 finalists in 2010

• Winner chosen in Oct 2012

SHA-3

• Supports 224-, 256-, 384-, and 512-bit output lengths

• Very different design than SHA-1/SHA-2
• Does not use Davies-Meyer

• Does not use Merkle-Damgard

• See book for details

Private-key cryptography

Private-key cryptography

• Private-key cryptography allows two users who share a secret key to
establish a “secure channel”

• The need to share a secret key has several drawbacks…

The key-distribution problem

• How do users share a key in the first place?
• Need to share the key using a secure channel…

• This problem can be solved in some settings
• E.g., physical proximity, trusted courier, …

• Note: this does not make private-key cryptography useless!

• Can be difficult, expensive, or impossible to solve in other settings

The key-management problem

• Imagine an organization with N employees, where each pair of
employees might need to communicate securely

• Solution using private-key cryptography:
• Each user shares a key with all other users

• Each user must store/manage N-1 secret keys!

• O(N2) keys overall!

Lack of support for “open systems”

• Say two users who have no prior relationship want to communicate
securely
• When would they ever have shared a key?

• This happens all the time!
• Customer sending credit-card data to merchant

• Contacting a friend-of-a-friend on social media

• Emailing a colleague

“Classical” cryptography
offers no solution
to these problems!

New directions…

• Main ideas:
• Some problems exhibit asymmetry – easy to compute, but hard to invert

(factoring, RSA, group exponentiation, …)

• Use this asymmetry to enable two parties to agree on a shared secret key via
public discussion(!)
• Key exchange

Key exchange

…
…

k kEnck(m)

Secure against an eavesdropper who sees everything!

More formally…

· · ·

k{0,1}n k{0,1}n

transcript

Security goal: even after observing the transcript, the shared
key k should be indistinguishable from a uniform key

Formally

• Fix a key-exchange protocol  and an attacker (passive eavesdropper)
A

• Define the following experiment KEA, (n):
• Honest parties run  using security parameter n, resulting in a transcript

trans and (shared) key k

• Choose uniform bit b. If b=0, then set k’=k; if b=1, then choose uniform
k’{0,1}n

• Give trans and k’ to A, which outputs a bit b’

• Exp’t evaluates to 1 (A succeeds) if b’=b

Security

• Key-exchange protocol  is secure (against passive eavesdropping) if
for all probabilistic, poly-time A it holds that

Pr[KEA, (n) = 1] ≤ ½ + negl(n)

Notes

• Being unable to compute the key given the transcript is not a strong
enough guarantee

• Indistinguishability of the shared key from uniform is a much stronger
guarantee…
• …and is necessary if the shared key will subsequently be used for private-key

crypto!

Diffie-Hellman key exchange

k1 = (h2)x = gyx k2 = (h1)y = gxy

(G, q, g)  G(1n)
x  ℤq

h1 = gx

G, q, g, h1

y  ℤq

h2 = gy

h2

Recall…

• Decisional Diffie-Hellman (DDH) assumption:
• Given G, q, g, gx, gy, cannot distinguish gxy from a uniform group element

Security?

• Eavesdropper sees G, q, g, gx, gy

• Shared key k is gxy

• Computing k from the transcript is exactly the computational Diffie-
Hellman problem

• Distinguishing k from a uniform group element is exactly the
decisional Diffie-Hellman problem
•  If the DDH problem is hard relative to G, this is a secure key-exchange

protocol!

Example

• Work in order-11 subgroup of ℤ*23
• Note: 23 and 11 both prime

• 23 = 2*11 + 1

• Let G = {x2 | x  ℤ*23}
• How can you find a generator?

A subtlety

• We want our key-exchange protocol to give us a uniform(-looking) key
k  {0,1}n

• Instead we have a uniform(-looking) group element k  G
• Not clear how to use this as, e.g., an AES key

• Solution: key derivation
• Set k’ = H(k) for suitable hash function H

• Secure if H is modeled as a random oracle

Modern key-exchange protocols

• Security against passive eavesdroppers is insufficient

• Generally want authenticated key exchange
• This requires some form of setup in advance

• Modern key-exchange protocols provide this
• We will return to this later

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: So far…
	Slide 3: Two approaches
	Slide 4: Stream ciphers/PRGs
	Slide 5: Terminology
	Slide 6: Stream ciphers
	Slide 7: Security requirements
	Slide 8: Security requirements
	Slide 9: LFSRs
	Slide 10: Example
	Slide 11: LFSRs as stream ciphers
	Slide 12: LFSRs
	Slide 13: Security?
	Slide 14: Nonlinear FSRs
	Slide 15: Nonlinear feedback
	Slide 16: Nonlinear feedback
	Slide 17: Nonlinear filter
	Slide 18: Nonlinear filter
	Slide 19: Combination generator
	Slide 20: Correlation attacks
	Slide 21: Correlation attacks
	Slide 22: Trivium
	Slide 23: Trivium
	Slide 24: Trivium
	Slide 25: RC4
	Slide 26: RC4
	Slide 27: RC4
	Slide 28: Attack: bias in 2nd output byte
	Slide 29: RC4 bias
	Slide 30: Block ciphers
	Slide 31: Recall…
	Slide 32: Attack models
	Slide 33: Concrete security
	Slide 34: Designing block ciphers
	Slide 35: Confusion/diffusion
	Slide 36: Design paradigms
	Slide 37: SPNs
	Slide 38: SPNs
	Slide 39: SPN
	Slide 40: SPN
	Slide 41: SPN
	Slide 42: SPN
	Slide 43: SPNs
	Slide 44
	Slide 45: Avalanche effect
	Slide 46: SPN
	Slide 47: Key-recovery attacks
	Slide 48: Key-recovery attack, 1-round SPN
	Slide 49: Attacking more rounds?
	Slide 50: Feistel networks
	Slide 51: Feistel networks
	Slide 52
	Slide 53: Security?
	Slide 54: Data Encryption Standard (DES)
	Slide 55: DES mangler function
	Slide 56: DES mangler function
	Slide 57: Key schedule
	Slide 58: Avalanche effect
	Slide 59: Security of DES
	Slide 60: 56-bit key length
	Slide 61: 64-bit block length
	Slide 62: Increasing key length?
	Slide 63: Double encryption
	Slide 64: Meet-in-the-middle attack
	Slide 65: Triple encryption
	Slide 66: Two-key triple encryption
	Slide 67: Advanced encryption standard (AES)
	Slide 68: AES
	Slide 69: SHA-2
	Slide 70: SHA-3
	Slide 71: SHA-3
	Slide 72: Private-key cryptography
	Slide 73: Private-key cryptography
	Slide 74: The key-distribution problem
	Slide 75: The key-management problem
	Slide 76: Lack of support for “open systems”
	Slide 77: “Classical” cryptography offers no solution to these problems!
	Slide 78: New directions…
	Slide 79: Key exchange
	Slide 80: More formally…
	Slide 81: Formally
	Slide 82: Security
	Slide 83: Notes
	Slide 84: Diffie-Hellman key exchange
	Slide 85: Recall…
	Slide 86: Security?
	Slide 87: Example
	Slide 88: A subtlety
	Slide 89: Modern key-exchange protocols

