

رمزنگاری، امنیت اطلاعات و حریم خصوصى ارائه: دكتر سيدعلى لاجوردى بخش هفتم

number theory

(Computational)

Computational number theory

- Measure running times of algorithms in terms of the input lengths involved
 - For integer x, we have $||x|| = O(\log x)$, x = O(2||x||)
- An algorithm taking input x and running in time O(x) is an exponential time algorithm
 - Efficient algorithms run in time poly(||x||)

Computational number theory

- Our goal: classify various problems as either "easy" or "hard"
 - I.e., polynomial-time algorithms known or not
- We will not focus on optimizations, although these are very important in practice
 - For "easy" problems: speed up cryptographic implementations
 - For "hard" problems: need to understand concrete hardness for concrete security

Representing integers

- Cryptography involves very large numbers!
- Standard (unsigned) integers (e.g., in C) are small, fixed length (e.g., 16 or 32 bits)
 - For crypto, need to work with integers that are much longer (e.g., 2000 bits)
- Solution: use an array
 - E.g., "bignum" = array of unsigned chars (bytes)
 - May be useful to also maintain a variable indicating the length of the array
 - Or, assume fixed length (which bounds the maximum size of a bignum)

Example: addition

- Add(bignum a, int L1, bignum b, int L2)
 - Use grade-school addition, using AddWithCarry byte-by-byte...
- Running time O(max{L1,L2}) = O(max{||a||,||b||})
 - If ||a||=||b||=n then O(n)
 - Is it possible to do better?
 - No must read input (O(n)) and write output (O(n))

Example: multiplication

- What is the length of the result of a*b?
 - ||ab||=O(log ab)=O(log a + log b) =O(||a||+||b||)
- Use grade-school multiplication...
- Running time O(||a||·||b||)
 - If ||a||=||b||=n then O(n2)
- Is it possible to do better?
 - Surprisingly...yes!

Basic arithmetic operations

- As we have seen, addition / subtraction / multiplication can all be done efficiently
 - Using grade-school algorithms (or better)
- Division-with-remainder can also be done efficiently
 - Much harder to implement!

- Notation:
 - [a mod N] is the remainder of a when divided by N
 - Note $0 \le [a \mod N] \le N-1$
- a = b mod N \Leftrightarrow [a mod N] = [b mod N]

Note that

```
[a+b \mod N] = [[a \mod N] + [b \mod N] \mod N][a-b \mod N] = [[a \mod N] - [b \mod N] \mod N]and[ab \mod N] = [[a \mod N] [b \mod N] \mod N]
```

- $[ab \mod N] = [[a \mod N][b \mod N] \mod N]$
- I.e., can reduce intermediate values
 - This can be used to speed up computations

- Careful: not true for division!
- I.e., [9/3 mod 6] = [3 mod 6] = 3
 but [[9 mod 6]/[3 mod 6] mod 6] = 3/3 = 1
 - We will return to division later...

- Modular reduction can be done efficiently
 - Use division-with-remainder
- Modular addition / subtraction / multiplication can all be done efficiently
 - We will return to division later

Exponentiation

- Compute ab ?
 - $||ab|| = O(b \cdot ||a||)$
 - Just writing down the answer takes exponential time!
- Instead, look at modular exponentiation
 - I.e., compute [ab mod N]
 - Size of the answer $\leq ||N||$
 - How to do it?
 - Computing ab and then reducing modulo N will not work...

Modular exponentiation

- This runs in time O(b * poly(||a||, ||N||))
- This is an exponential-time algorithm!

Efficient modular exponentiation

- Assume b = 2k for simplicity
 - The preceding algorithm roughly corresponds to computing a*a*a*...*a
 - Better: compute (((a2)2)2...)2
 - 2k multiplications vs. k multiplications
 - Note k = O(||b||)

Efficient exponentiation

- Why does this work?
 - Invariant: answer is $[t \cdot xb \mod N]$
- Running time is polynomial in ||a||, ||b||, ||N||

Primes and divisibility

- Assume you have encountered this before...
- Notation a | b
- If a | b then a is a divisor of b
- p > 1 is prime iff its only divisors are 1 and p
 - p is composite otherwise
- d = gcd(a, b) if both:
 - d | a and d | b
 - d is the largest integer with that property

Computing gcd?

- Can compute gcd(a, b) by factoring a and b and looking for common prime factors...
 - This is not (known to be) efficient!
- Use Euclidean algorithm to compute gcd(a, b)
 - One of the earliest nontrivial algorithms!

Euclidean algorithm

ALGORITHM B.7 The Euclidean algorithm GCD

```
Input: Integers a, b with a \ge b > 0
Output: The greatest common divisor of a and b
if b divides a
return b
else return GCD(b, [a \mod b])
```

See book for proof of correctness and analysis of running time

Proposition

- Given a, b > 0, there exist integers X, Y such that Xa + Yb = gcd(a, b)
- Moreover, d=gcd(a, b) is the smallest positive integer that can be written this way
 - See book for proof
- Can use the extended Euclidean algorithm to compute X, Y
 - See book for details

Modular inverses

- b is invertible modulo N if there exists an integer a such that ab = 1 mod N
 - Let [b⁻¹ mod N] denote the unique such a that lies in the range {0, ..., N-1}
- Division by b modulo N is only defined when b is invertible modulo N
 - Then [c/b mod N] is defined to be [c b⁻¹ mod N]

Cancellation

- The "expected" cancellation rule applies for invertible elements
- I.e., if ab = cb mod N and b is invertible modulo N, then a = c mod N
 - Proof: multiply both sides by b-1
- Note: this is not true if b is not invertible
 - E.g., $3*2 = 15*2 \mod 8$ but $3 \neq 15 \mod 8$

Invertibility

- How to determine whether b is invertible modulo N?
- Thm: b invertible modulo N if gcd(b, N)=1
- To find the inverse, use extended Euclidean algorithm to find X, Y with Xb + YN = 1
 - Then [X mod N] is the inverse of b modulo N
- Conclusion: can efficiently test invertibility and compute inverses!

Group theory

Groups

- Introduce the notion of a group
- Provides a way to reason about objects that share the same mathematical structure
 - Not absolutely needed to understand crypto applications, but does make it conceptually easier

Groups

- An abelian group is a set G and a binary operation
 ^o defined on G such that:
 - (Closure) For all g, $h \in G$, g \circ h is in G
 - There is an identity $e\!\in\!G$ such that $e^\circ g\!=\!g$ for $g\!\in\!G$
 - Every $g \in G$ has an inverse $h \in G$ such that $h \circ g = g \circ h = e$
 - (Associativity) For all f, g, $h \in G$, $f^{\circ}(g^{\circ}h) = (f^{\circ}g)^{\circ}h$
 - (Commutativity) For all g, $h \in G$, $g \circ h = h \circ g$
- The order of a finite group G is the number of elements in G

Examples and non-examples

- $\ensuremath{\mathbb{Z}}$ under addition
- $\ensuremath{\mathbb{Z}}$ under multiplication
- $\mathbb R$ under addition
- ${\mathbb R}$ under multiplication
- $\mathbb{R} \setminus \{0\}$ under multiplication
- {0,1}* under concatenation
- {0, 1}n under bitwise XOR
- 2 x 2 real, invertible matrices under mult.

Groups

- The group operation can be written additively or multiplicatively
 - I.e., instead of goh, write g+h or gh
 - Does not imply that the group operation has anything to do with (integer) addition or multiplication
- Identity denoted by 0 or 1, respectively
- Inverse of g denoted by -g or g-1, respectively
- Group exponentiation: $m \cdot a$ or am, respectively

Computations in groups

- When computing with groups, need to fix some representation of the group elements
 - Usually (but not always) some canonical representation
 - Usually want unique representation for each element
- Must be possible to efficiently identify elements in the group
- Must be possible to efficiently perform the group operation
 - \Rightarrow Group exponentiation can be computed efficiently

Useful example

- $\mathbb{Z}_{N} = \{0, ..., N-1\}$ under addition modulo N
 - Identity is 0
 - Inverse of a is [-a mod N]
 - Associativity, commutativity obvious
 - Order N

Example

- What happens if we consider multiplication modulo N?
- {0, ..., N-1} is not a group under this operation!
 - 0 has no inverse
 - Even if we exclude 0, there is, e.g., no inverse of 2 modulo 4

Example

- Consider instead the invertible elements modulo N, under multiplication modulo N
- Define $\mathbb{Z}_{N}^{*} = \{0 < x < N : gcd(x, N) = 1\}$
 - Closure
 - Identity is 1
 - Inverse of a is [a-1 mod N]
 - Associativity, commutativity obvious

φ(N)

- $\phi(N)$ = the number of invertible elements modulo N
- = $|\{a \in \{1, ..., N-1\} : gcd(a, N) = 1\}|$
- = The order of \mathbb{Z}^*N

Two special cases

- If p is prime, then 1, 2, 3, ..., p-1 are all invertible modulo p • $\phi(p) = |\mathbb{Z}_{p}^{*}| = p-1$
- If N=pq for p, q distinct primes, then the invertible elements are the integers from 1 to N-1 that are not multiples of p or q

•
$$\phi(N) = |\mathbb{Z}^*N| = ?$$

Fermat's little theorem

• Let G be a finite group of order m. Then for any $g\in G,$ it holds that $g^m=1$

• Proof (abelian case)

Examples

- In \mathbb{Z}_{N} :
 - For all $a \in \mathbb{Z}N$, we have $N \cdot a = 0 \mod N$
 - (Note that N is not a group element!)
- In \mathbb{Z}^*_{N} :
 - For all $a \in \mathbb{Z}^*N$, we have $a\phi(N) = 1 \mod N$
 - p prime: for all $a \in \mathbb{Z}^*p$, we have $ap-1 = 1 \mod p$

Corollary

- Let G be a finite group of order m. Then for g∈G and integer x, it holds that g^x = g^[x mod m]
 - Proof: Let x = qm+r. Then $g^x = g^{qm+r} = (g^m)^q g^r = g^r$
- This can be used for efficient computation...
 - ...reduce the exponent modulo the order of the group before computing the exponentiation

Corollary

- Let G be a finite group of order m
- For any positive integer e, define f_e(g)=g^e
- Thm: If gcd(e,m)=1, then f_e is a permutation of G. Moreover, if d = e^{-1} mod m then f_d is the inverse of f_e
 - Proof: The first part follows from the second. And $f_d(f_e(g)) = (g^e)^d = g^{ed} = g^{[ed \mod m]} = g^1 = g$

Corollary

- Let N=pq for p, q distinct primes
 - So $| \mathbb{Z}_{N}^{*} | = \phi(N) = (p-1)(q-1)$
- If $gcd(e, \phi(N))=1$, then $f_e(x) = [x^e \mod N]$ is a permutation
 - In that case, let $[y^{1/e} \text{ mod } N]$ be the unique $x \in \mathbb{Z}^*_{\ N}$ such that x^e = y mod N
- Moreover, if d = $e^{-1} \mod \phi(N)$ then f_d is the inverse of f_e
 - So for any x we have $(x^e)^d = x \mod N$
 - I.e., [x^{1/e} mod N] = [x^d mod N] !

Example

- Consider N=15
 - Look at table for $f_3(x)$
- N = 33
 - Take e=3, d=7, so 3rd root of 2 is...?
 - e=2; squaring is not a permutation...

Hard problems

- So far, we have only discussed number-theoretic problems that can be solved in polynomial time
 - E.g., addition, multiplication, modular arithmetic, exponentiation, gcd, ...
- Some problems are (conjectured to be) hard

Factoring

- Multiplying two numbers is easy; factoring a number is hard
 - Given x, y, easy to compute x·y
 - Given N, hard (in general) to find x, y > 1 such that $x \cdot y = N$
- Compare:
 - Multiply 10101023 and 29100257
 - Find the factors of 293942365262911

Factoring

- It's not hard to factor random numbers
 - 50% of the time, random number is even
 - 1/3 of the time, random number is divisible by 3...
- The hardest numbers to factor are those that are the product of two, equal-length *primes*

Generating primes

- To generate a (random) n-bit prime do:
 - Choose uniform n-bit integer p
 - If p is prime, output it; else, repeat
- Is this efficient?

Generating primes

- For this to be efficient, need two things:
 - Primes should be sufficiently *dense*
 - I.e., probability that a uniform n-bit integer is prime should be sufficiently large
 - Need an efficient way to test primality

Distribution of primes

- Known that primes are sufficiently dense
 - Pr[n-bit number is prime] > 1/3n
 - Probability that a uniform n-bit integer is prime is inverse polynomial
 - If we choose poly(n) uniform n-bit integers, we find a prime with all but negligible probability

Testing primality

- In the '70s, *probabilistic* poly-time algorithms for testing primality were developed
 - These are quite efficient
- For decades, a classic example of a problem with an efficient *randomized* algorithm but no known efficient *deterministic* algorithm
- 2002: efficient deterministic algorithm found
 - By undergraduates!
- In practice, randomized algorithms still used

Generating primes

- Summarizing: there are efficient (randomized) algorithms for generating (random) primes
 - These algorithms may fail, but only with negligible probability

- The factoring problem is not *directly* useful for cryptography
- Instead, introduce a problem related to factoring: the RSA problem

- For the next few slides, N=pq with p and q distinct, odd primes
- \mathbb{Z}^*_{N} = invertible elements under multiplication modulo N
 - The order of \mathbb{Z}_{N}^{*} is $\phi(N) = (p-1) \cdot (q-1)$
- Note:
 - $\phi(N)$ is *easy* to compute if p, q are known
 - $\phi(N)$ is *hard* to compute if p, q are not known
 - In fact, can be shown equivalent to factoring N

- N defines the group $\mathbb{Z}^*{}_N$ of order $\phi(N)$
- Fix e with gcd(e, $\phi(N)$) = 1
 - Raising to the e-th power is a permutation of $\mathbb{Z}_{\ N}^{*}$
- If ed = 1 mod $\phi(N)$, raising to the d-th power is the *inverse* of raising to the e-th power
 - I.e., $(x^e)^d = x \mod N$, $(x^d)^e = x \mod N$
 - x^d is the *e-th root of x modulo N*

Example

• N=33, e=3

x	x ³ mod 33	X	x ³ mod 33
1	1	17	29
2	8	19	28
4	31	20	14
5	26	23	23
7	13	25	16
8	17	26	20
10	10	28	7
13	19	29	2
14	5	31	25
16	4	32	32

Computing e-th roots

- If p, q are known:
 - $\Rightarrow \phi(N)$ can be computed
 - \Rightarrow d = e⁻¹ mod ϕ (N) can be computed
 - \Rightarrow possible to compute e-th roots modulo N
- If p, q are *not* known:
 - \Rightarrow computing $\varphi(N)$ is as hard as factoring N
 - \Rightarrow computing d is as hard as factoring N
 - \Rightarrow appears hard to compute e-th roots modulo N

- Informally: given N, e, and uniform element $y \in \mathbb{Z}^*_{N}$, compute the e-th root of y
- RSA assumption: this is a hard problem!

The RSA assumption (informally)

- "Computing e-th roots modulo N is hard"
 - When the factorization of N is unknown
- Careful: it is not hard to compute e-th roots of all $y \in \mathbb{Z}^*_N$
 - In particular, it is easy when y is an e-th power (over the integers, with no modular reduction)
 - Hard for a randomly chosen y

The RSA assumption (formal)

- Let GenRSA be an algorithm that on input 1ⁿ, outputs (N, e, d) with
 - N=pq a product of two distinct n-bit primes
 - ed = 1 mod φ(N)

Implementing GenRSA

- One way to implement GenRSA:
 - Generate uniform n-bit primes p, q
 - Set N := pq
 - Compute φ(N) := (p-1)(q-1)
 - Choose arbitrary e with gcd(e, $\phi(N)$)=1
 - Compute d := $[e^{-1} \mod \phi(N)]$
 - Output (N, e, d)
- Choice of e?
 - Not believed to affect hardness of RSA problem
 - e = 3 or $e = 2^{16} + 1$ for efficient exponentiation

The RSA assumption (formal)

- Fix GenRSA and some algorithm A
- Experiment RSA-inv_{A, GenRSA}(n):
 - Compute (N, e, d) \leftarrow GenRSA(1ⁿ)
 - Choose uniform $y \in \mathbb{Z}_{-N}^{*}$
 - Run A(N, e, y) to get x
 - Experiment evaluates to 1 iff x^e = y mod N

The RSA assumption (formal)

• The RSA problem is hard relative to GenRSA if for all PPT algorithms A,

 $Pr[RSA-inv_{A, GenRSA}(n) = 1] < negl(n)$

RSA and factoring

- If factoring moduli output by GenRSA is easy, then the RSA problem is easy relative to GenRSA
 - Factoring is easy \Rightarrow RSA problem is easy
- Hardness of the RSA problem is *not known to be implied* by hardness of factoring
 - Possible factoring is hard but RSA problem is easy
 - Possible both are hard but RSA problem is "easier"
 - Currently, RSA is believed to be as hard as factoring

Cyclic groups

Cyclic groups

- Let G be a finite group of order m (written multiplicatively)
- Let g be some element of G
- Consider the set $\langle g \rangle = \{g^0, g^1, ...\}$
 - We know $g^m = 1 = g^0$, so the set has $\leq m$ elements
 - If the set has m elements, then it is all of G !
 - In this case, we say g is a generator of G
 - If G has a generator, we say G is *cyclic*
 - Not every element of a cyclic group will be a generator
 - A cyclic group can have more than one generator

Examples

• Z_N

• Cyclic; 1 is always a generator: {0, 1, 2, ..., N-1}

• Z₈

- Is 3 a generator?
 {0, 3, 6, 1, 4, 7, 2, 5} yes!
- Is 2 a generator?
 {0, 2, 4, 6} no!

Example

- Z^{*}₁₁
 - Is 3 a generator? {1, 3, 9, 5, 4} – no!
 - Is 2 a generator?
 {1, 2, 4, 8, 5, 10, 9, 7, 3, 6} yes!
 - Is 8 a generator?
 {1, 8, 9, 6, 4, 10, 3, 2, 5, 7} yes!
 Note that elements are in a different order ...

Example

- Z^{*}₁₃
 - <2> = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7}, so 2 is a generator
 - <8> = {1, 8, 12, 5}, so 8 is not a generator

Important examples

- <u>Theorem</u>: Any group of *prime order* is cyclic, and every non-identity element is a generator
- <u>Theorem</u>: If p is prime, then \mathbb{Z}_{p}^{*} is cyclic
 - Note: the order is p-1, which is not prime for p > 3

Uniform sampling

- Given cyclic group G of order q along with generator g, easy to sample a uniform h∈G:
 - Choose uniform $x \in \{0, ..., q-1\}$; set $h := g^x$

Discrete-logarithm (dlog) problem

- Fix cyclic group G of order q, and generator g
- We know that $\{g^0, g^1, ..., g^{q-1}\} = G$
 - For every $h \in G$, there is a <u>unique</u> $x \in \mathbb{Z}_q$ s.t. $g^x = h$
 - Define log_gh to be this x the discrete logarithm of h with respect to g (in the group G)

Examples

- In \mathbb{Z}^*_{11}
 - What is log₂ 9?
 - <2> = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}, so log₂ 9 = 6
 - What is log₈ 9?
 - <8> = {1, 8, 9, 6, 4, 10, 3, 2, 5, 7}, so log₈ 9 = 2
- In \mathbb{Z}^*_{13}
 - What is log₂ 9?
 - <2> = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7}, so log₂ 9 = 8

Discrete-logarithm problem (informal)

- <u>dlog problem in G</u>: Given generator g and element h, compute log_g h
- <u>dlog assumption in G</u>: Solving the discrete log problem in G is hard
 - Careful: not hard to compute log_g h for *all* h, but should be hard for a uniform h

Example

- In $\mathbb{Z}^{*}_{3092091139}$
 - What is log₂ 1656755742 ?

Discrete-logarithm problem

- Let \(\varphi\) be a group-generation algorithm
 - On input 1ⁿ, outputs a (description of a) cyclic group G, its order q (with ||q|| ≥ n), and a generator g
- For algorithm A, define exp't $Dlog_{A,G}(n)$:
 - Compute (G, q, g) $\leftarrow \mathscr{G}(1^n)$
 - Choose uniform $h\in G$
 - Run A(G, q, g, h) to get x
 - Experiment evaluates to 1 if g^x = h
- Note: easy to check correctness of the answer

Discrete-logarithm problem

The discrete-logarithm problem is hard relative to *G* if for all PPT algorithms A,
 Pr[Dlog_{A,G}(n) = 1] ≤ negl(n)

Diffie-Hellman problems

- Fix cyclic group G and generator g
- Define $DH_g(h_1, h_2) = DH_g(g^x, g^y) = g^{xy}$ = $(h_1)^y = (h_2)^x$

Diffie-Hellman assumptions

- Computational Diffie-Hellman (CDH) problem:
 - Given g, h₁, h₂, compute DH_g(h₁, h₂)
- *Decisional* Diffie-Hellman (DDH) problem:
 - Given g, h_1 , h_2 , distinguish $DH_g(h_1, h_2)$ from a uniform element of G

Example

- In \mathbb{Z}^*_{11}
 - $<2> = \{1, 2, 4, 8, 5, 10, 9, 7, 3, 6\}$
 - So DH₂(7, 5) = ?
- In $\mathbb{Z}^*_{3092091139}$
 - What is DH₂(1656755742, 938640663)?
 - Is 1994993011 the answer, or is that just a uniform element of $\mathbb{Z}^*_{3092091139}$?

DDH problem

- Let \(\varphi\) be a group-generation algorithm
 - On input 1ⁿ, outputs a cyclic group G, its order q (with ||q||=n), and a generator g
- The *DDH problem is hard relative to* \mathscr{G} if for all PPT algorithms A: | Pr[A(G, q, g, g^x, g^y, g^{xy})=1] – Pr[A(G, q, g, g^x, g^y, g^z)=1] | $\leq \varepsilon(n)$

Relating the Diffie-Hellman problems

- Relative to *G*:
 - If the discrete-logarithm problem is easy, so is the CDH problem
 - CDH problem is potentially easier than dlog problem
 - I.e., CDH assumption is *stronger* than dlog assumption
 - If the CDH problem is easy, so is the DDH problem
 - DDH problem is potentially easier than CDH problem
 - I.e., DDH assumption is *stronger* than CDH assumption

Group selection

- The discrete logarithm problem is not hard in all groups!
 - For example, it is easy in \mathbb{Z}_N (for any N, and for any generator)
- Nevertheless, there are certain groups where the problem is believed to be hard
 - All cyclic groups of the same order are isomorphic, but the group representation matters!

Group selection

- For cryptographic applications, best to use *prime-order* groups
 - The dlog problem becomes easier if the order of the group has small prime factors
 - Prime-order groups have several nice features
 - E.g., every element except the identity is a generator
 - Avoids some trivial DDH algorithms
- Two common choices of groups for cryptography...

Group selection: choice 1

- Prime-order subgroup of \mathbb{Z}_{p}^{*} , p prime
 - E.g., let p = kq + 1 for p, q prime
 - So \mathbb{Z}_{p}^{*} has order p-1 = kq
 - Take the subgroup of k^{th} powers, i.e., G = { [$x^k \mod p$] | $x \in \mathbb{Z}_p^*$ } $\subset \mathbb{Z}_p^*$
 - G is a group
 - Can show that it has order (p-1)/k = q
 - Since q is prime, G must be cyclic
- Generalizations based on finite fields also

Group selection: choice 2

- Prime-order subgroup of an *elliptic-curve* group
 - See book for the basic details...
- These have the advantage of giving stronger security with smaller parameters (for reasons to be explained shortly)

Group selection

- We will describe cryptographic schemes in an "abstract" cyclic group
 - Can ignore the details of the underlying group in the analysis
 - Can instantiate with any (appropriate) group in an implementation

Concrete parameters?

- We have discussed two classes of cryptographic assumptions
 - Factoring-based (factoring, RSA assumptions)
 - dlog-based (dlog, CDH, and DDH assumptions)
 - In two classes of groups
- All these problems are believed to be "hard," i.e., to have no polynomial-time algorithms
 - But how hard are they, concretely?

Disclaimer

- The goal here is just to give an idea as to how parameters are calculated, and what relevant parameters are
- In practice, other important considerations come into play

Security

- Recall: For symmetric-key algorithms...
 - Block cipher with n-bit key \approx security against 2ⁿ-time attacks = n-bit security
 - Hash function with 2n-bit output ≈ security against 2ⁿ-time attacks = n-bit security
- Factoring a modulus N $\approx 2^n$ (i.e., length n) using exhaustive search takes $\approx 2^{n/2}$ time
- Computing discrete logarithms in a group of order $\approx 2^n$ using exhaustive search takes $\approx 2^n$ time
 - Are these the best possible algorithms?

Algorithms for factoring

- There exist algorithms factoring an integer N that run in much less than $2^{\|N\|/2}$ time
- Best known algorithm (asymptotically): general number field sieve
 - Running time (heuristic): $2^{O(\|N\|^{1/3} \log^{2/3} \|N\|)}$
 - Makes a huge difference in practice!
 - Exact constant term is also important!

Algorithms for dlog

- Two classes of algorithms:
 - Ones that work for *arbitrary* ("generic") groups
 - Ones that target *specific* groups
 - Recall that in some groups the problem is not even hard

Algorithms for dlog

- Best generic dlog algorithms in a group of order $\approx 2^n$ take time $\approx 2^{n/2}$
 - This is known to be optimal (for generic algorithms)

Algorithms for dlog

- Best known algorithm for (subgroups of) Z^{*}_p: number field sieve
 Running time (heuristic): 2^{O(||p||^{1/3} log^{2/3} ||p||)}
- For (appropriately chosen) elliptic-curve groups, nothing better than generic algorithms is known!
 - This is why elliptic-curve groups can allow for more-efficient cryptography

Choosing parameters

- As recommended by NIST (112-bit security):
 - Factoring: 2048-bit modulus
 - Dlog, order-q subgroup of \mathbb{Z}_{p}^{*} : $\|q\|=224$, $\|p\|=2048$
 - Addresses both generic and specific algorithms
 - Dlog, elliptic-curve group of order q: ||q||=224 bits
- Much longer than for symmetric-key algorithms!
 - Explains in part why public-key crypto is less efficient than symmetric-key crypto

