
رمزنگاری، امنیت اطلاعات و حریم
خصوصی

دکتر سیدعلی لاجوردی: ارائه

بخش هفتم

number theory
(Computational)

Computational number theory

• Measure running times of algorithms in terms of the input lengths
involved
• For integer x, we have ǁxǁ = O(log x), x = O(2ǁxǁ)

• An algorithm taking input x and running in time O(x) is an exponential
time algorithm
• Efficient algorithms run in time poly(ǁxǁ)

Computational number theory

• Our goal: classify various problems as either “easy” or “hard”
• I.e., polynomial-time algorithms known or not

• We will not focus on optimizations, although these are very important
in practice
• For “easy” problems: speed up cryptographic implementations

• For “hard” problems: need to understand concrete hardness for concrete
security

Representing integers

• Cryptography involves very large numbers!

• Standard (unsigned) integers (e.g., in C) are small, fixed length (e.g.,
16 or 32 bits)
• For crypto, need to work with integers that are much longer (e.g., 2000 bits)

• Solution: use an array
• E.g., “bignum” = array of unsigned chars (bytes)

• May be useful to also maintain a variable indicating the length of the array

• Or, assume fixed length (which bounds the maximum size of a bignum)

Example: addition

• Add(bignum a, int L1, bignum b, int L2)
• Use grade-school addition, using AddWithCarry byte-by-byte…

• Running time O(max{L1,L2}) = O(max{ǁaǁ,ǁbǁ})
• If ǁaǁ=ǁbǁ=n then O(n)

• Is it possible to do better?
• No – must read input (O(n)) and write output (O(n))

Example: multiplication

• What is the length of the result of a*b?
• ǁabǁ=O(log ab)=O(log a + log b) =O(ǁaǁ+ǁbǁ)

• Use grade-school multiplication…

• Running time O(ǁaǁǁbǁ)
• If ǁaǁ=ǁbǁ=n then O(n2)

• Is it possible to do better?
• Surprisingly…yes!

Basic arithmetic operations

• As we have seen, addition / subtraction / multiplication can all be
done efficiently
• Using grade-school algorithms (or better)

• Division-with-remainder can also be done efficiently
• Much harder to implement!

Modular arithmetic

• Notation:
• [a mod N] is the remainder of a when divided by N

• Note 0 ≤ [a mod N] ≤ N-1

• a = b mod N  [a mod N] = [b mod N]

Modular arithmetic

• Note that
[a+b mod N] = [[a mod N] + [b mod N] mod N]
[a-b mod N] = [[a mod N] - [b mod N] mod N]
and
[ab mod N] = [[a mod N][b mod N] mod N]

• I.e., can reduce intermediate values
• This can be used to speed up computations

Modular arithmetic

• Careful: not true for division!

• I.e., [9/3 mod 6] = [3 mod 6] = 3
but [[9 mod 6]/[3 mod 6] mod 6] = 3/3 = 1
• We will return to division later…

Modular arithmetic

• Modular reduction can be done efficiently
• Use division-with-remainder

• Modular addition / subtraction / multiplication can all be done
efficiently
• We will return to division later

Exponentiation

• Compute ab ?
• ǁabǁ = O(b · ǁaǁ)

• Just writing down the answer takes exponential time!

• Instead, look at modular exponentiation
• I.e., compute [ab mod N]

• Size of the answer ≤ ǁNǁ

• How to do it?
• Computing ab and then reducing modulo N will not work…

Modular exponentiation

• Consider the following algorithm:
exp(a, b, N) {

// assume b  0
ans = 1;
for (i=1, i ≤ b; i++)

ans = [ans * a mod N];
return ans;

}

• This runs in time O(b * poly(ǁaǁ, ǁNǁ))

• This is an exponential-time algorithm!

Efficient modular exponentiation

• Assume b = 2k for simplicity
• The preceding algorithm roughly corresponds to computing a*a*a*…*a

• Better: compute (((a2)2)2…)2

• 2k multiplications vs. k multiplications
• Note k = O(ǁbǁ)

Efficient exponentiation

• Consider the following algorithm:
exp(a, b, N) {

// assume b  0
x=a, t=1;
while (b > 0) {

if (b odd)
t = [t * x mod N], b = b-1;

x = [x2 mod N], b = b/2; }
return t; }

• Why does this work?
• Invariant: answer is [t  xb mod N]

• Running time is polynomial in ǁaǁ, ǁbǁ, ǁNǁ

Primes and divisibility

• Assume you have encountered this before…

• Notation a | b

• If a | b then a is a divisor of b

• p > 1 is prime iff its only divisors are 1 and p
• p is composite otherwise

• d = gcd(a, b) if both:
• d | a and d | b

• d is the largest integer with that property

Computing gcd?

• Can compute gcd(a, b) by factoring a and b and looking for common
prime factors…
• This is not (known to be) efficient!

• Use Euclidean algorithm to compute gcd(a, b)
• One of the earliest nontrivial algorithms!

Euclidean algorithm

See book for proof of correctness
and analysis of running time

Proposition

• Given a, b > 0, there exist integers X, Y such that Xa + Yb = gcd(a, b)

• Moreover, d=gcd(a, b) is the smallest positive integer that can be
written this way
• See book for proof

• Can use the extended Euclidean algorithm to compute X, Y
• See book for details

Modular inverses

• b is invertible modulo N if there exists an integer a such that ab = 1
mod N
• Let [b-1 mod N] denote the unique such a that lies in the range {0, …, N-1}

• Division by b modulo N is only defined when b is invertible modulo N
• Then [c/b mod N] is defined to be [c b-1 mod N]

Cancellation

• The “expected” cancellation rule applies for invertible elements

• I.e., if ab = cb mod N and b is invertible modulo N, then a = c mod N
• Proof: multiply both sides by b-1

• Note: this is not true if b is not invertible
• E.g., 3*2 = 15*2 mod 8 but 3  15 mod 8

Invertibility

• How to determine whether b is invertible modulo N?

• Thm: b invertible modulo N if gcd(b, N)=1

• To find the inverse, use extended Euclidean algorithm to find X, Y with
Xb + YN = 1
• Then [X mod N] is the inverse of b modulo N

• Conclusion: can efficiently test invertibility and compute inverses!

Group theory

Groups

• Introduce the notion of a group

• Provides a way to reason about objects that share the same
mathematical structure
• Not absolutely needed to understand crypto applications, but does make it

conceptually easier

Groups

• An abelian group is a set G and a binary operation ◦ defined on G such
that:
• (Closure) For all g, hG, g◦h is in G

• There is an identity eG such that e◦g=g for gG

• Every gG has an inverse hG such that h◦g = g◦h = e

• (Associativity) For all f, g, hG, f◦(g◦h) = (f◦g)◦h

• (Commutativity) For all g, hG, g◦h = h◦g

• The order of a finite group G is the number of elements in G

Examples and non-examples

• ℤ under addition

• ℤ under multiplication

• ℝ under addition

• ℝ under multiplication

• ℝ\{0} under multiplication

• {0,1}* under concatenation

• {0, 1}n under bitwise XOR

• 2 x 2 real, invertible matrices under mult.

Groups

• The group operation can be written additively or multiplicatively
• I.e., instead of g◦h, write g+h or gh

• Does not imply that the group operation has anything to do with (integer)
addition or multiplication

• Identity denoted by 0 or 1, respectively

• Inverse of g denoted by –g or g-1, respectively

• Group exponentiation: m · a or am, respectively

Computations in groups

• When computing with groups, need to fix some representation of the
group elements
• Usually (but not always) some canonical representation

• Usually want unique representation for each element

• Must be possible to efficiently identify elements in the group

• Must be possible to efficiently perform the group operation
•  Group exponentiation can be computed efficiently

Useful example

• ℤN = {0, …, N-1} under addition modulo N
• Identity is 0

• Inverse of a is [-a mod N]

• Associativity, commutativity obvious

• Order N

Example

• What happens if we consider multiplication modulo N?

• {0, …, N-1} is not a group under this operation!
• 0 has no inverse

• Even if we exclude 0, there is, e.g., no inverse of 2 modulo 4

Example

• Consider instead the invertible elements modulo N, under
multiplication modulo N

• Define ℤ*
N = {0 < x < N : gcd(x, N) = 1}

• Closure

• Identity is 1

• Inverse of a is [a-1 mod N]

• Associativity, commutativity obvious

(N)

• (N) = the number of invertible elements modulo N

• = |{a  {1, …, N-1} : gcd(a, N) = 1}|

• = The order of ℤ*N

Two special cases

• If p is prime, then 1, 2, 3, …, p-1 are all invertible modulo p
• (p) = |ℤ*

p| = p-1

• If N=pq for p, q distinct primes, then the invertible elements are the
integers from 1 to N-1 that are not multiples of p or q
• (N) = |ℤ*N| = ?

Fermat’s little theorem

• Let G be a finite group of order m. Then for any g  G,

it holds that gm = 1
• Proof (abelian case)

Examples

• In ℤN :
• For all a  ℤN, we have N · a = 0 mod N

• (Note that N is not a group element!)

• In ℤ*
N :

• For all a  ℤ*N, we have a(N) = 1 mod N

• p prime: for all a  ℤ*p, we have ap-1 = 1 mod p

Corollary

• Let G be a finite group of order m. Then for gG and integer x, it
holds that gx = g[x mod m]

• Proof: Let x = qm+r. Then gx = gqm+r = (gm)qgr = gr

• This can be used for efficient computation…
• …reduce the exponent modulo the order of the group before computing the

exponentiation

Corollary

• Let G be a finite group of order m

• For any positive integer e, define fe(g)=ge

• Thm: If gcd(e,m)=1, then fe is a permutation of G. Moreover, if d = e-1

mod m then fd is the inverse of fe

• Proof: The first part follows from the second.
And fd(fe(g)) = (ge)d = ged = g[ed mod m] = g1 = g

Corollary

• Let N=pq for p, q distinct primes
• So | ℤ*

N | = (N) = (p-1)(q-1)

• If gcd(e, (N))=1, then fe(x) = [xe mod N] is a permutation
• In that case, let [y1/e mod N] be the unique x  ℤ*

N such that xe = y mod N

• Moreover, if d = e-1 mod (N) then fd is the inverse of fe

• So for any x we have (xe)d = x mod N

• I.e., [x1/e mod N] = [xd mod N] !

Example

• Consider N=15
• Look at table for f3(x)

• N = 33
• Take e=3, d=7, so 3rd root of 2 is…?

• e=2; squaring is not a permutation…

Hard problems

• So far, we have only discussed number-theoretic problems that can
be solved in polynomial time
• E.g., addition, multiplication, modular arithmetic, exponentiation, gcd, …

• Some problems are (conjectured to be) hard

Factoring

• Multiplying two numbers is easy; factoring a number is hard
• Given x, y, easy to compute x·y

• Given N, hard (in general) to find x, y > 1 such that x·y = N

• Compare:
• Multiply 10101023 and 29100257

• Find the factors of 293942365262911

Factoring

• It’s not hard to factor random numbers
• 50% of the time, random number is even

• 1/3 of the time, random number is divisible by 3…

• The hardest numbers to factor are those that are the product of two,
equal-length primes

Generating primes

• To generate a (random) n-bit prime do:
• Choose uniform n-bit integer p

• If p is prime, output it; else, repeat

• Is this efficient?

Generating primes

• For this to be efficient, need two things:
• Primes should be sufficiently dense

• I.e., probability that a uniform n-bit integer is prime should be sufficiently large

• Need an efficient way to test primality

Distribution of primes

• Known that primes are sufficiently dense
• Pr[n-bit number is prime] > 1/3n

• Probability that a uniform n-bit integer is prime is inverse polynomial
• If we choose poly(n) uniform n-bit integers, we find a prime with all but negligible

probability

Testing primality

• In the ‘70s, probabilistic poly-time algorithms for testing primality
were developed
• These are quite efficient

• For decades, a classic example of a problem with an efficient
randomized algorithm but no known efficient deterministic algorithm

• 2002: efficient deterministic algorithm found
• By undergraduates!

• In practice, randomized algorithms still used

Generating primes

• Summarizing: there are efficient (randomized) algorithms for
generating (random) primes
• These algorithms may fail, but only with negligible probability

The RSA problem

• The factoring problem is not directly useful
for cryptography

• Instead, introduce a problem related to factoring: the RSA problem

The RSA problem

• For the next few slides, N=pq with p and q distinct, odd primes

• ℤ*
N = invertible elements under multiplication modulo N
• The order of ℤ*

N is (N) = (p-1)·(q-1)

• Note:
• (N) is easy to compute if p, q are known

• (N) is hard to compute if p, q are not known
• In fact, can be shown equivalent to factoring N

The RSA problem

• N defines the group ℤ*
N of order (N)

• Fix e with gcd(e, (N)) = 1
• Raising to the e-th power is a permutation of ℤ*

N

• If ed = 1 mod (N), raising to the d-th power is the inverse of raising
to the e-th power
• I.e., (xe)d = x mod N, (xd)e = x mod N

• xd is the e-th root of x modulo N

Example

• N=33, e=3

x x3 mod 33

1 1

2 8

4 31

5 26

7 13

8 17

10 10

13 19

14 5

16 4

x x3 mod 33

17 29

19 28

20 14

23 23

25 16

26 20

28 7

29 2

31 25

32 32

Computing e-th roots

• If p, q are known:
(N) can be computed

 d = e-1 mod (N) can be computed

 possible to compute e-th roots modulo N

• If p, q are not known:
 computing (N) is as hard as factoring N

 computing d is as hard as factoring N

 appears hard to compute e-th roots modulo N

The RSA problem

• Informally: given N, e, and uniform element
y  ℤ*

N, compute the e-th root of y

• RSA assumption: this is a hard problem!

The RSA assumption (informally)

• “Computing e-th roots modulo N is hard”
• When the factorization of N is unknown

• Careful: it is not hard to compute e-th roots of all y  ℤ*
N

• In particular, it is easy when y is an e-th power (over the integers, with no
modular reduction)

• Hard for a randomly chosen y

The RSA assumption (formal)

• Let GenRSA be an algorithm that on input 1n, outputs (N, e, d) with
• N=pq a product of two distinct n-bit primes

• ed = 1 mod (N)

Implementing GenRSA

• One way to implement GenRSA:
• Generate uniform n-bit primes p, q

• Set N := pq

• Compute (N) := (p-1)(q-1)

• Choose arbitrary e with gcd(e, (N))=1

• Compute d := [e-1 mod (N)]

• Output (N, e, d)

• Choice of e?
• Not believed to affect hardness of RSA problem

• e = 3 or e = 216 + 1 for efficient exponentiation

The RSA assumption (formal)

• Fix GenRSA and some algorithm A

• Experiment RSA-invA, GenRSA(n):
• Compute (N, e, d)  GenRSA(1n)

• Choose uniform y  ℤ*
N

• Run A(N, e, y) to get x

• Experiment evaluates to 1 iff xe = y mod N

The RSA assumption (formal)

• The RSA problem is hard relative to GenRSA if for all PPT algorithms A,

Pr[RSA-invA, GenRSA(n) = 1] < negl(n)

RSA and factoring

• If factoring moduli output by GenRSA is easy, then the RSA problem is
easy relative to GenRSA
• Factoring is easy  RSA problem is easy

• Hardness of the RSA problem is not known to be implied by hardness
of factoring
• Possible factoring is hard but RSA problem is easy

• Possible both are hard but RSA problem is “easier”

• Currently, RSA is believed to be as hard as factoring

Cyclic groups

Cyclic groups

• Let G be a finite group of order m (written
multiplicatively)

• Let g be some element of G

• Consider the set <g> = {g0, g1, …}
• We know gm = 1 = g0, so the set has ≤m elements

• If the set has m elements, then it is all of G !
• In this case, we say g is a generator of G

• If G has a generator, we say G is cyclic

• Not every element of a cyclic group will be a generator

• A cyclic group can have more than one generator

Examples

• ℤN

• Cyclic; 1 is always a generator: {0, 1, 2, …, N-1}

• ℤ8

• Is 3 a generator?
{0, 3, 6, 1, 4, 7, 2, 5} – yes!

• Is 2 a generator?
{0, 2, 4, 6} – no!

Example

• ℤ*
11

• Is 3 a generator?
{1, 3, 9, 5, 4} – no!

• Is 2 a generator?
{1, 2, 4, 8, 5, 10, 9, 7, 3, 6} – yes!

• Is 8 a generator?
{1, 8, 9, 6, 4, 10, 3, 2, 5, 7} – yes!
Note that elements are in a different order …

Example

• ℤ*
13

• <2> = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7},
so 2 is a generator

• <8> = {1, 8, 12, 5},
so 8 is not a generator

Important examples

• Theorem: Any group of prime order is cyclic, and every non-identity
element is a generator

• Theorem: If p is prime, then ℤ*
p is cyclic

• Note: the order is p-1, which is not prime for p > 3

Uniform sampling

• Given cyclic group G of order q along with generator g, easy to sample
a uniform hG:
• Choose uniform x{0, …, q-1}; set h := gx

Discrete-logarithm (dlog) problem

• Fix cyclic group G of order q, and generator g

• We know that {g0, g1, …, gq-1} = G
• For every hG, there is a unique xℤq s.t. gx = h

• Define loggh to be this x – the discrete logarithm
of h with respect to g (in the group G)

Examples

• In ℤ*
11

• What is log2 9?
• <2> = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}, so log2 9 = 6

• What is log8 9?
• <8> = {1, 8, 9, 6, 4, 10, 3, 2, 5, 7}, so log8 9 = 2

• In ℤ*
13

• What is log2 9?
• <2> = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7}, so log2 9 = 8

Discrete-logarithm problem (informal)

• dlog problem in G: Given generator g and element h, compute logg h

• dlog assumption in G: Solving the discrete log problem in G is hard
• Careful: not hard to compute logg h for all h, but should be hard for a uniform

h

Example

• In ℤ*
3092091139

• What is log2 1656755742 ?

Discrete-logarithm problem

• Let G be a group-generation algorithm
• On input 1n, outputs a (description of a) cyclic

group G, its order q (with ǁqǁ ≥ n), and a generator g

• For algorithm A, define exp’t DlogA,G(n):
• Compute (G, q, g)  G(1n)

• Choose uniform h  G

• Run A(G, q, g, h) to get x

• Experiment evaluates to 1 if gx = h

• Note: easy to check correctness of the answer

Discrete-logarithm problem

• The discrete-logarithm problem is hard relative to G if for all PPT
algorithms A,

Pr[DlogA,G(n) = 1] ≤ negl(n)

Diffie-Hellman problems

• Fix cyclic group G and generator g

• Define DHg(h1, h2) = DHg(g
x, gy) = gxy

= (h1)y = (h2)x

Diffie-Hellman assumptions

• Computational Diffie-Hellman (CDH) problem:
• Given g, h1, h2, compute DHg(h1, h2)

• Decisional Diffie-Hellman (DDH) problem:
• Given g, h1, h2, distinguish DHg(h1, h2) from a uniform element of G

Example

• In ℤ*
11

• <2> = {1, 2, 4, 8, 5, 10, 9, 7, 3, 6}

• So DH2(7, 5) = ?

• In ℤ*
3092091139

• What is DH2(1656755742, 938640663)?

• Is 1994993011 the answer, or is that just a uniform element of ℤ*
3092091139 ?

DDH problem

• Let G be a group-generation algorithm
• On input 1n, outputs a cyclic group G, its order q (with ǁqǁ=n), and a generator

g

• The DDH problem is hard relative to G if for all PPT algorithms A:
| Pr[A(G, q, g, gx, gy, gxy)=1] – Pr[A(G, q, g, gx, gy, gz)=1] | ≤ (n)

Relating the Diffie-Hellman problems

• Relative to G:
• If the discrete-logarithm problem is easy, so is the CDH problem

• CDH problem is potentially easier than dlog problem

• I.e., CDH assumption is stronger than dlog assumption

• If the CDH problem is easy, so is the DDH problem
• DDH problem is potentially easier than CDH problem

• I.e., DDH assumption is stronger than CDH assumption

Group selection

• The discrete logarithm problem is not hard in all groups!
• For example, it is easy in ℤN (for any N, and for any generator)

• Nevertheless, there are certain groups where the problem is believed
to be hard
• All cyclic groups of the same order are isomorphic, but the group

representation matters!

Group selection

• For cryptographic applications, best to use prime-order groups
• The dlog problem becomes easier if the order of the group has small prime

factors

• Prime-order groups have several nice features
• E.g., every element except the identity is a generator

• Avoids some trivial DDH algorithms

• Two common choices of groups for cryptography…

Group selection: choice 1

• Prime-order subgroup of ℤ*
p, p prime

• E.g., let p = kq + 1 for p, q prime
• So ℤ*

p has order p-1 = kq

• Take the subgroup of kth powers, i.e.,
G = { [xk mod p]| x  ℤ*

p }  ℤ*
p

• G is a group

• Can show that it has order (p-1)/k = q

• Since q is prime, G must be cyclic

• Generalizations based on finite fields also

Group selection: choice 2

• Prime-order subgroup of an elliptic-curve group
• See book for the basic details…

• These have the advantage of giving stronger security with smaller
parameters (for reasons to be explained shortly)

Group selection

• We will describe cryptographic schemes in an “abstract” cyclic group
• Can ignore the details of the underlying group in the analysis

• Can instantiate with any (appropriate) group in an implementation

Concrete parameters?

• We have discussed two classes of cryptographic assumptions
• Factoring-based (factoring, RSA assumptions)

• dlog-based (dlog, CDH, and DDH assumptions)
• In two classes of groups

• All these problems are believed to be “hard,” i.e., to have no
polynomial-time algorithms
• But how hard are they, concretely?

Disclaimer

• The goal here is just to give an idea as to how parameters are
calculated, and what relevant parameters are

• In practice, other important considerations come into play

Security

• Recall: For symmetric-key algorithms…
• Block cipher with n-bit key  security against 2n-time attacks = n-bit security

• Hash function with 2n-bit output  security against
2n-time attacks = n-bit security

• Factoring a modulus N  2n (i.e., length n) using exhaustive search
takes  2n/2 time

• Computing discrete logarithms in a group of order  2n using
exhaustive search takes  2n time
• Are these the best possible algorithms?

Algorithms for factoring

• There exist algorithms factoring an integer N that run in much less
than 2ǁNǁ/2 time

• Best known algorithm (asymptotically): general number field sieve
• Running time (heuristic): 2O(ǁNǁ1/3 log2/3 ǁNǁ)

• Makes a huge difference in practice!

• Exact constant term is also important!

Algorithms for dlog

• Two classes of algorithms:
• Ones that work for arbitrary (“generic”) groups

• Ones that target specific groups
• Recall that in some groups the problem is not even hard

Algorithms for dlog

• Best generic dlog algorithms in a group of order  2n take time  2n/2

• This is known to be optimal (for generic algorithms)

Algorithms for dlog

• Best known algorithm for (subgroups of) ℤ*
p: number field sieve

• Running time (heuristic): 2O(ǁpǁ1/3 log2/3 ǁpǁ)

• For (appropriately chosen) elliptic-curve groups, nothing better than
generic algorithms is known!
• This is why elliptic-curve groups can allow for more-efficient cryptography

Choosing parameters

• As recommended by NIST (112-bit security):
• Factoring: 2048-bit modulus

• Dlog, order-q subgroup of ℤ*
p: ǁqǁ=224, ǁpǁ=2048

• Addresses both generic and specific algorithms

• Dlog, elliptic-curve group of order q: ǁqǁ=224 bits

• Much longer than for symmetric-key algorithms!
• Explains in part why public-key crypto is less efficient than

symmetric-key crypto

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: number theory
	Slide 3: Computational number theory
	Slide 4: Computational number theory
	Slide 5: Representing integers
	Slide 6: Example: addition
	Slide 7: Example: multiplication
	Slide 8: Basic arithmetic operations
	Slide 9: Modular arithmetic
	Slide 10: Modular arithmetic
	Slide 11: Modular arithmetic
	Slide 12: Modular arithmetic
	Slide 13: Exponentiation
	Slide 14: Modular exponentiation
	Slide 15: Efficient modular exponentiation
	Slide 16: Efficient exponentiation
	Slide 17: Primes and divisibility
	Slide 18: Computing gcd?
	Slide 19: Euclidean algorithm
	Slide 20: Proposition
	Slide 21: Modular inverses
	Slide 22: Cancellation
	Slide 23: Invertibility
	Slide 24: Group theory
	Slide 25: Groups
	Slide 26: Groups
	Slide 27: Examples and non-examples
	Slide 28: Groups
	Slide 29: Computations in groups
	Slide 30: Useful example
	Slide 31: Example
	Slide 32: Example
	Slide 33: (N)
	Slide 34: Two special cases
	Slide 35: Fermat’s little theorem
	Slide 36: Examples
	Slide 37: Corollary
	Slide 38: Corollary
	Slide 39: Corollary
	Slide 40: Example
	Slide 41: Hard problems
	Slide 42: Factoring
	Slide 43: Factoring
	Slide 44: Generating primes
	Slide 45: Generating primes
	Slide 46: Distribution of primes
	Slide 47: Testing primality
	Slide 48: Generating primes
	Slide 49: The RSA problem
	Slide 50: The RSA problem
	Slide 51: The RSA problem
	Slide 52: Example
	Slide 53: Computing e-th roots
	Slide 54: The RSA problem
	Slide 55: The RSA assumption (informally)
	Slide 56: The RSA assumption (formal)
	Slide 57: Implementing GenRSA
	Slide 58: The RSA assumption (formal)
	Slide 59: The RSA assumption (formal)
	Slide 60: RSA and factoring
	Slide 61: Cyclic groups
	Slide 62: Cyclic groups
	Slide 63: Examples
	Slide 64: Example
	Slide 65: Example
	Slide 66: Important examples
	Slide 67: Uniform sampling
	Slide 68: Discrete-logarithm (dlog) problem
	Slide 69: Examples
	Slide 70: Discrete-logarithm problem (informal)
	Slide 71: Example
	Slide 72: Discrete-logarithm problem
	Slide 73: Discrete-logarithm problem
	Slide 74: Diffie-Hellman problems
	Slide 75: Diffie-Hellman assumptions
	Slide 76: Example
	Slide 77: DDH problem
	Slide 78: Relating the Diffie-Hellman problems
	Slide 79: Group selection
	Slide 80: Group selection
	Slide 81: Group selection: choice 1
	Slide 82: Group selection: choice 2
	Slide 83: Group selection
	Slide 84: Concrete parameters?
	Slide 85: Disclaimer
	Slide 86: Security
	Slide 87: Algorithms for factoring
	Slide 88: Algorithms for dlog
	Slide 89: Algorithms for dlog
	Slide 90: Algorithms for dlog
	Slide 91: Choosing parameters

