

رمزنگاری، امنیت اطلاعات و حریم خصوصى ارائه: دكتر سيدعلى لاجوردى بخش هشتم

The public-key setting

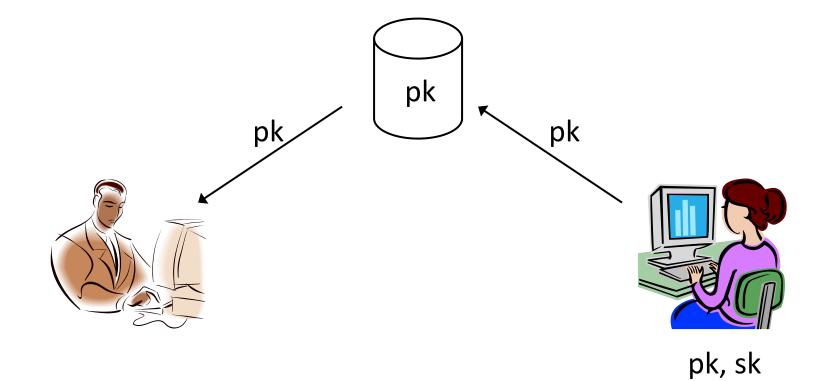
Review: private-key setting

- Two (or more) parties who wish to securely communicate share a uniform, secret key k in advance
- Same key k used for sending or receiving
 - Either party can send or receive
 - If multiple parties share a key, no way to distinguish them from based on the key
- Secrecy of k is critical
 - No security if attacker knows k

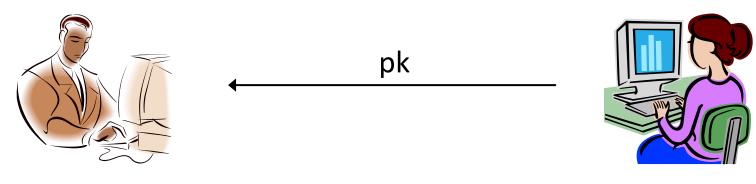
The public-key setting

- One party generates a pair of keys: public key pk and private key sk
 - Public key is widely disseminated
 - Private key is kept secret, and shared with no one
- Private key used by the party who generated it; public key used by anyone else
 - Also called asymmetric cryptography
- Security must hold even if the attacker knows pk

Public-key distribution I



Public-key distribution II



Public-key distribution

- Previous figures (implicitly) assume parties are able to obtain correct copies of each others' public keys
 - I.e., the attacker is passive during key distribution
- We will revisit this assumption later

How does this address the drawbacks of private-key crypto...?

- Key distribution
 - Public keys can be distributed over public (but authenticated) channels
- Key management in system of N users
 - Each user stores 1 private key and N-1 public keys; only N keys overall
 - Public keys can be stored in a central, public directory
- Applicability to "open systems"
 - Even parties who have no prior relationship can find each others' public keys and use them

Public-key vs. private-key crypto

- Note that public-key cryptography is strictly stronger than private-key cryptography
 - Parties who wish to securely communicate could each generate public/private keys and then share them with each other
 - Use appropriate key depending on who is sending or receiving

Why study private-key crypto?

- Public-key crypto is roughly 2-3 orders of magnitude slower than private-key crypto
 - Also 2-10× higher communication
- Public-key cryptography requires stronger assumptions
- If private-key crypto is an option, better to use it!
- As we will see, private-key cryptography is used for efficiency even in the public-key setting

Primitives

	Private-key setting	Public-key setting
Secrecy	Private-key encryption	Public-key encryption
Integrity	Message authentication codes	Digital signature schemes

Public-key encryption pk pk С pk, sk pk $c \leftarrow Enc_{pk}(m)$ $m = Dec_{sk}(c)$

Public-key encryption

- A public-key encryption scheme consists of three PPT algorithms:
 - Gen: key-generation algorithm that on input 1n outputs pk, sk
 - Enc: encryption algorithm that on input pk and a message m outputs a ciphertext c
 - Dec: decryption algorithm that on input sk and a ciphertext c outputs a message m or an error \bot

For all m and pk, sk output by Gen, Dec_{sk}(Enc_{pk}(m)) = m

CPA-security

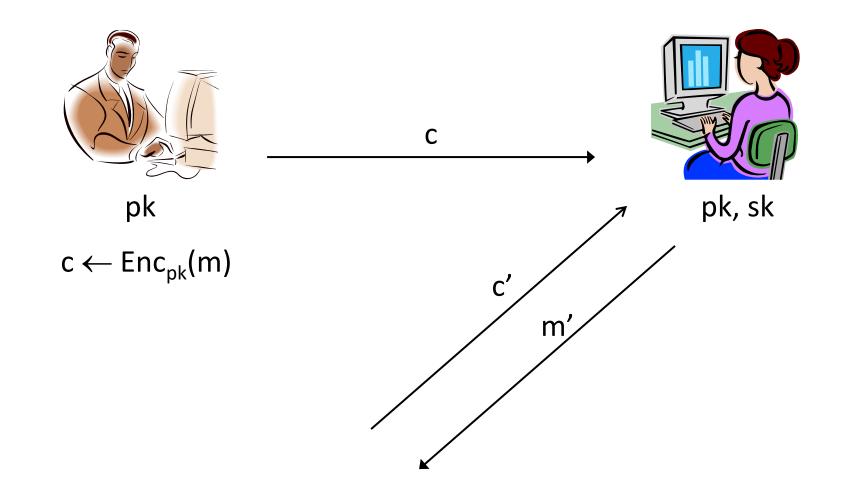
- Fix a public-key encryption scheme Π and an adversary A
- Define experiment PubK-CPAA, $\Pi(n)$:
 - Run Gen(1n) to get keys pk, sk
 - Give pk to A, who outputs (m0, m1) of same length
 - Choose uniform b ∈ {0,1} and compute the ciphertext c ← Encpk(mb); give c to A
 - A outputs a guess b', and the experiment evaluates to 1 if b'=b
- Public-key encryption scheme Π is CPA-secure if for all PPT adversaries A:

 $Pr[PubK-CPAA, \Pi(n) = 1] \le \frac{1}{2} + negl(n)$

Notes on the definition

- No encryption oracle?!
 - Encryption oracle redundant in public-key setting
- \Rightarrow No perfectly secret public-key encryption
- No deterministic public-key encryption scheme can be CPA-secure
- CPA-security implies security for encrypting multiple messages (as in the private-key case)

Chosen-ciphertext attacks



Chosen-ciphertext attacks

- Chosen-ciphertext attacks are arguably even a greater concern in the public-key setting
 - Attacker might be a legitimate sender
 - Easier for attacker to obtain full decryptions of ciphertexts of its choice
- Related concern: malleability
 - I.e., given a ciphertext c that is the encryption of an unknown message m, might be possible to produce ciphertext c' that decrypts to a related message m'
 - This is also undesirable in the public-key setting
- Can define CCA-security for public-key encryption by analogy to the definition for private-key encryption

Hybrid encryption and KEMs

Encrypting long messages

- Public-key encryption schemes "natively" defined for "short" messages
- How can longer messages be encrypted?

Encrypting long messages

- Can always encrypt block-by-block
 - I.e., to encrypt M = m_1 , m_2 , ..., m_ℓ , do: Enc_{pk}(m_1), ..., Enc_{pk}(m_ℓ)
- If the underlying scheme is CPA-secure (for short messages), then this is CPA-secure (for arbitrary length messages)
 - Why?

Note

- (Public-key) encryption is NOT a block cipher
 - F_k is deterministic, one-to-one, and looks random
 - Enc_{pk} is randomized and not one-to-one (if it is CPA-secure), and may not look random
 - ⇒ CTR-mode/CBC-mode don't make sense for public-key encryption Also may not be secure...
 - "ECB mode" is secure for public-key encryption
 - Because underlying scheme is randomized

Encrypting long messages

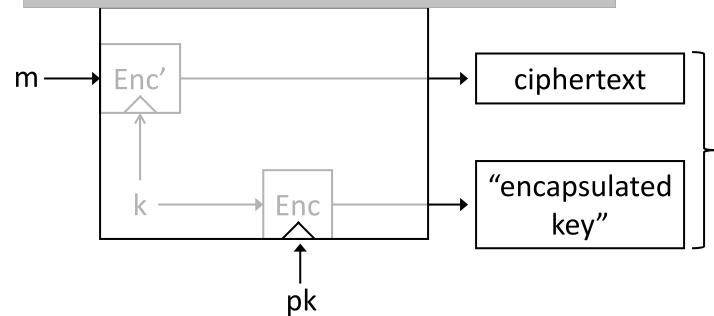
- Encrypting block-by-block is inefficient
 - Ciphertext expansion in each block
 - Public-key encryption is "expensive"
- Can we do better?

Hybrid encryption

- Main idea
 - Use public-key encryption to establish a (shared, secret) key k
 - Use k to encrypt the message *with a symmetric-key encryption scheme*
- Benefits
 - Lower ciphertext expansion
 - Amortized efficiency of symmetric-key encryption

Hybrid encryption

Decryption done in the obvious way



The *functionality* of public-key encryption with the (asymptotic) *efficiency* of private-key encryption!

Formally

- Let Π be a public-key scheme, and let Π' be a symmetric-key scheme
- Define Π_{hy} as follows:
 - $Gen_{hy} = Gen$ (i.e., same as Π)
 - Enc_{hy}(pk, m):
 - Choose $k \leftarrow \{0,1\}^n$
 - $c \leftarrow Enc_{pk}(k)$
 - c' \leftarrow Enc'_k(m)
 - Output c, c'
 - Decryption done in the natural way...

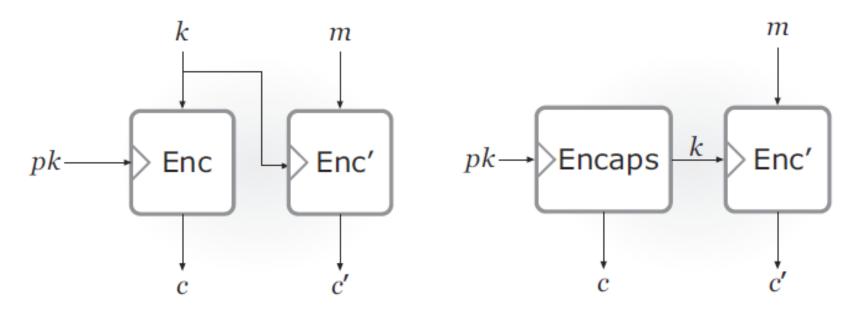
Security of hybrid encryption

- If Π is a CPA-secure public-key scheme, and Π' is a CPA-secure private-key scheme, then $\Pi_{\rm hv}$ is a CPA-secure public-key scheme
 - In fact, suffices for Π' to be EAV-secure
- If Π is a CCA-secure public-key scheme, and Π' is a CCA-secure private-key scheme, then $\Pi_{\rm hv}$ is a CCA-secure public-key scheme

KEM/DEM paradigm

- For hybrid encryption, something weaker than public-key encryption suffices
- Sufficient to have a "key encapsulation mechanism" (KEM) that takes a public key and outputs a ciphertext c and a key k
 - Correctness: k can be recovered from c given sk
 - Security: k is indistinguishable from uniform given pk and c; can formally define CPA-/CCA-security
- Can still combine with symmetric-key encryption (DEM) as before!

KEM/DEM paradigm



Hybrid encryption

KEM/DEM

Security of KEM/DEM

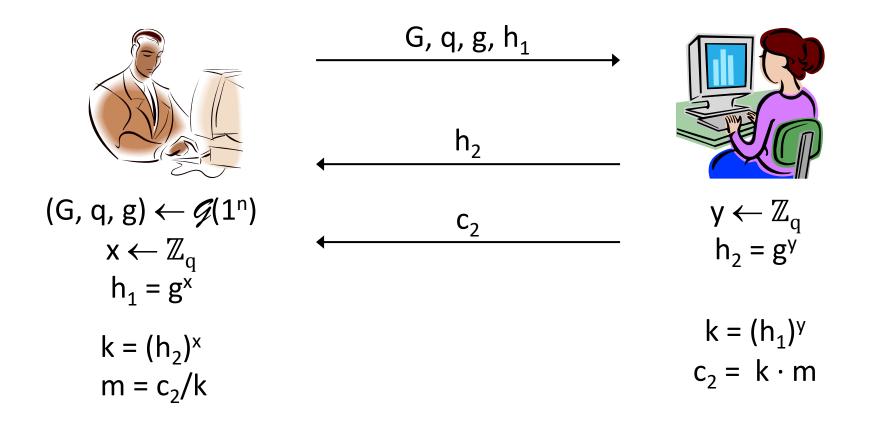
- If Π is a CPA-secure KEM, and Π' is a CPA-secure private-key scheme, then combination is a CPA-secure public-key scheme
 - Suffices for Π' to be EAV-secure
- If Π is a CCA-secure KEM, and Π' is a CCA-secure private-key scheme, then combination is a CCA-secure public-key scheme

KEMs vs. PKE schemes

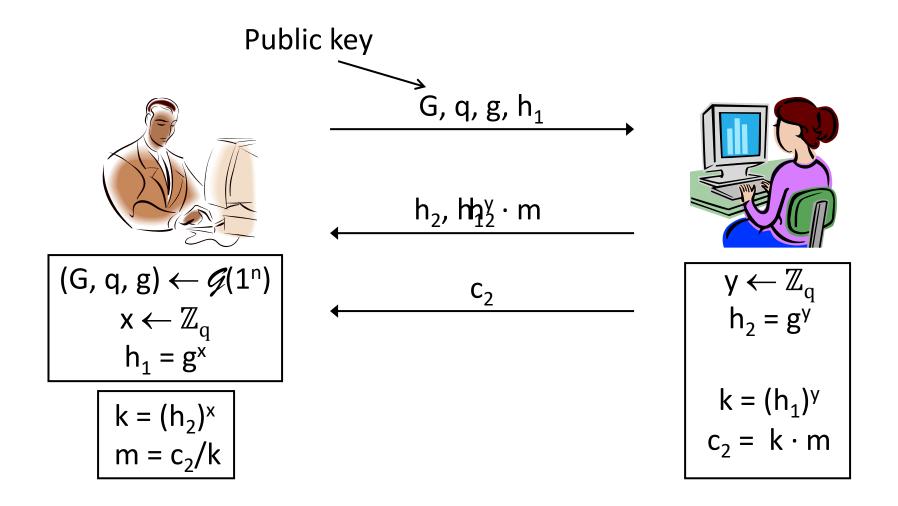
- For short messages, direct encryption using a PKE scheme (with no hybrid encryption) can sometimes be the best choice
- For anything longer, KEM/DEM or hybrid encryption will be more efficient
 - This is how things are done in practice (unless very short messages are being encrypted)

Dlog-based PKE

Diffie-Hellman key exchange



El Gamal encryption



El Gamal encryption

- Gen(1ⁿ)
 - Run $\mathscr{G}(1^n)$ to obtain G, q, g. Choose uniform $x \in \mathbb{Z}_{q}$. The public key is (G, q, g, g^x) and the private key is x
- $Enc_{pk}(m)$, where pk = (G, q, g, h) and $m \in G$
 - Choose uniform $y \in \mathbb{Z}_{q}$. The ciphertext is g^{y} , $h^{y} \cdot m$
- $Dec_{sk}(c_1, c_2)$, where sk = x
 - Output $c_2/c_1^x = c_2 \cdot c_1^{-x}$

Security?

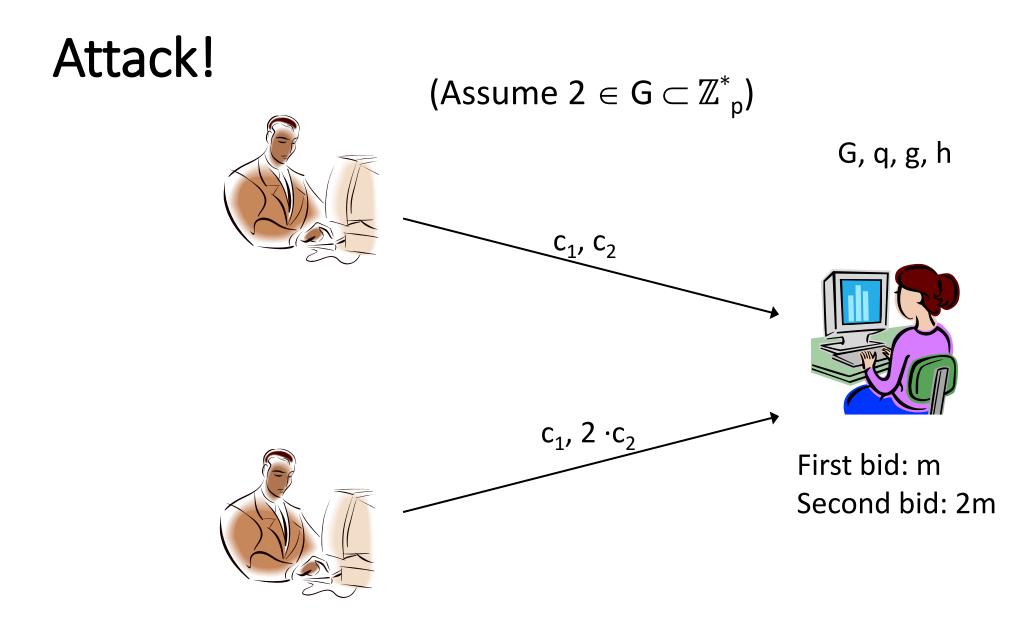
- If the DDH assumption is hard for *g*, then the El Gamal encryption scheme is CPA-secure
 - Follows from security of Diffie-Hellman key exchange, or can be proved directly
 - Note that the discrete-logarithm assumption alone is not enough here

⇒ Secure for encryption of multiple messages (using the same public key)!

• Note that sender(s) must use fresh randomness for each encryption

Chosen-ciphertext attacks?

- El Gamal encryption is *not* secure against chosen-ciphertext attacks
 - Follows from the fact that it is *malleable*
- Given ciphertext (c_1 , c_2), transform it to obtain the ciphertext (c_1 , c'_2) = (c_1 , $\alpha \cdot c_2$) for arbitrary α
 - Since $(c_1, c_2) = (g^y, h^y \cdot m),$ we have $(c_1, c_2') = (g^y, h^y \cdot (\alpha m))$
 - I.e., encryption of m becomes an encryption of α m!



El Gamal in practice

- Parameters G, q, g are standardized and shared
- Need to encode message as a group element
 - In some groups, there are natural ways to do this
 - In other cases, not as easy
 - Can avoid this if using El Gamal as a KEM!

Hybrid encryption with El Gamal?

- To use hybrid encryption with El Gamal, would need to encode key k as a group element
 - Can we avoid this?
- The sender doesn't care about encrypting a *specific* key, it just needs to send a random key
 - Idea: encrypt a random group element K; define the key as k = H(K)

KEM based on El Gamal

- Gen(1ⁿ)
 - Run 𝒢(1ⁿ) to obtain G, q, g. Choose uniform x∈Z_{q.} The public key is (G, q, g, g^x) and the private key is x
- Ecaps_{pk}, where pk = (G, q, g, h)
 - Choose uniform $y \in \mathbb{Z}_{q.}$ The ciphertext is g^{y} , and the key is $k = H(h^{y})$
- Decaps_{sk}(c), where sk = x
 - Output k = H(c^x)

Security?

• If the DDH assumption holds, and H is modeled as a random oracle, then this KEM is CPA-secure

Complete scheme

- Combine the KEM with private-key encryption
- I.e., encryption of message m is g^y, Enc'_k(m), where k = H(h^y) and Enc' is a symmetric-key encryption scheme (e.g., CTR-mode)
 - If Enc' is CPA-secure, DDH assumptions holds, and H is modeled as a random oracle, this is a CPA-secure public-key encryption scheme

Chosen-ciphertext security

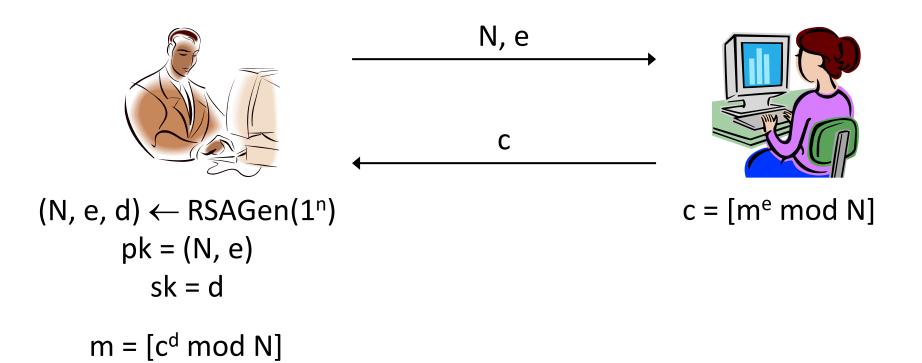
- Under stronger assumptions, this approach can be proven to give CCA security
 - If Enc' is a CCA-secure symmetric-key scheme
- Can at least see why the previous attack no longer works
- Standardized as DHIES/ECIES

RSA-based PKE

Recall...

- Let p, q be random, equal-length primes
- Compute modulus N=pq
- Choose e, d such that $e \cdot d = 1 \mod \phi(N)$
- The e^{th} root of x modulo N is $[x^d \mod N]$
 - I.e., easy to compute given p, q (or d)
- *RSA assumption*: given N, e <u>only</u>, it is hard to compute the eth root of a uniform $c \in \mathbb{Z}_{N}^{*}$

"Plain" RSA encryption



Security?

- This scheme is *deterministic*
 - Cannot be CPA-secure!
- RSA assumption only refers to hardness of computing the eth root of a uniform c
 - c is not uniform unless m is
 - Why would m be uniform?
 - Easy to compute eth root of c = [m^e mod N] when m is small
- RSA assumption only refers to hardness of computing the eth root of c in its entirety
 - *Partial* information about the eth root may be leaked
 - (In fact, this is the case)

Chosen-ciphertext attacks

- Of course, plain RSA cannot be CCA-secure since it is not even CPAsecure...
 - ...but chosen-ciphertext attacks are devastating
- Given ciphertext c for unknown message m, can compute c' = [$\alpha^e \cdot c \mod N$]
 - What does this decrypt to?

How to fix plain RSA?

- One approach: use a *randomized* encoding
- I.e., to encrypt m
 - First compute some reversible, randomized mapping M ← Encode(m)
 - Then set c := [M^e mod N]
- To decrypt c
 - Compute M := [c^d mod N]
 - Recover m from M

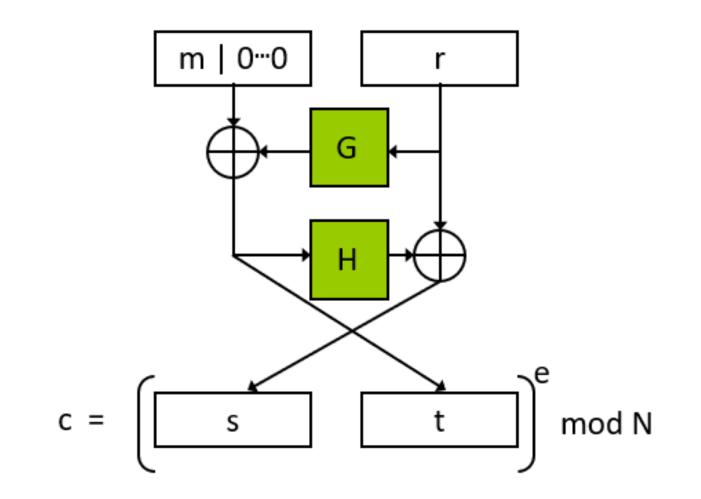
PKCS #1 v1.5

- Standard issued by RSA labs in 1993
- Idea: introduce random padding
 - Encode(m) = r | m
- I.e., to encrypt m
 - Choose random r
 - Compute the ciphertext c := [(r | m)e mod N]
- Issues:
 - No proof of CPA-security (unless m is very short)
 - Chosen-plaintext attacks are known if r is too short
 - Chosen-ciphertext attacks are still possible

PKCS #1 v2.0

- Optimal asymmetric encryption padding (OAEP) applied to message first
- This padding introduces redundancy, so that not every $c \in \mathbb{Z}^*_{\ N}$ is a valid ciphertext
 - Need to check for proper format upon decryption
 - Return error if not properly formatted

OAEP



Security?

- RSA-OAEP can be proven CCA-secure under the RSA assumption, if G and H are modeled as random oracles
- Widely used in practice...

RSA-based KEM

- Idea: use plain RSA as before... ...but on a random value!
- Then use that random value to derive a key

RSA-based KEM

- Encaps:
 - Choose uniform $r \in \mathbb{Z}_{-N}^{*}$
 - Ciphertext is c = [r^e mod N]
 - Key is k = H(r)
- Decaps(c)
 - Compute r = [c^d mod N]
 - Compute the shared key k = H(r)

Security?

• This is CCA-secure under the RSA assumption, if H is modeled as a random oracle

Comparison to RSA-OAEP?

- The RSA-KEM must be used with a symmetric-key encryption scheme
- For very short messages (< 1500 bits), RSA-OAEP will have shorter ciphertexts
- For anything longer, ciphertexts will be the same length; RSA-KEM is simpler

PKE in practice

- What is the best way to encrypt a 1MB file?
 - Use 1MB parameters?
 - Use 1000-bit parameters; encrypt file in chunks
 - Use hybrid encryption/KEM-DEM approach

PKE in practice

- Current recommended parameters:
 - RSA-based schemes: ≈2000-bit modulus N
 - Dlog, order-q subgroup of \mathbb{Z}_{p}^{*} : $\|q\| \approx 256$, $\|p\| \approx 2000$
 - Dlog, order-q elliptic-curve group: ||q||≈256; group elements require ≈256 bits

