
رمزنگاری، امنیت اطلاعات و حریم
خصوصی

دکتر سیدعلی لاجوردی: ارائه

بخش هشتم

The public-key setting

Review: private-key setting

• Two (or more) parties who wish to securely communicate share a
uniform, secret key k
in advance

• Same key k used for sending or receiving
• Either party can send or receive

• If multiple parties share a key, no way to distinguish them from based on the
key

• Secrecy of k is critical
• No security if attacker knows k

The public-key setting

• One party generates a pair of keys: public key pk and private key sk
• Public key is widely disseminated

• Private key is kept secret, and shared with no one

• Private key used by the party who generated it; public key used by
anyone else
• Also called asymmetric cryptography

• Security must hold even if the attacker knows pk

Public-key distribution I

pk, sk

pk
pk

pk

Public-key distribution II

pk, sk

pk

Public-key distribution

• Previous figures (implicitly) assume parties are able to obtain correct
copies of each others’ public keys
• I.e., the attacker is passive during key distribution

• We will revisit this assumption later

How does this address the drawbacks of
private-key crypto…?
• Key distribution

• Public keys can be distributed over public (but authenticated) channels

• Key management in system of N users
• Each user stores 1 private key and N-1 public keys; only N keys overall

• Public keys can be stored in a central, public directory

• Applicability to “open systems”
• Even parties who have no prior relationship can find each others’ public keys

and use them

Public-key vs. private-key crypto

• Note that public-key cryptography is strictly stronger than private-key
cryptography
• Parties who wish to securely communicate could each generate public/private

keys and then share them with each other

• Use appropriate key depending on who is sending or receiving

Why study private-key crypto?

• Public-key crypto is roughly 2-3 orders of magnitude slower than
private-key crypto
• Also 2-10 higher communication

• Public-key cryptography requires stronger assumptions

• If private-key crypto is an option, better to use it!

• As we will see, private-key cryptography is used for efficiency even in
the public-key setting

Primitives

Private-key
setting

Public-key
setting

Secrecy
Private-key
encryption

Public-key
encryption

Integrity
Message

authentication codes
Digital signature

schemes

Public-key encryption

pk, skpk

c  Encpk(m) m = Decsk(c)

c

pk
pk

Public-key encryption

• A public-key encryption scheme consists of three PPT algorithms:
• Gen: key-generation algorithm that on input 1n outputs pk, sk

• Enc: encryption algorithm that on input pk and a message m outputs a
ciphertext c

• Dec: decryption algorithm that on input sk and a ciphertext c outputs a
message m or an error ⊥

For all m and pk, sk output by Gen,
Decsk(Encpk(m)) = m

CPA-security

• Fix a public-key encryption scheme  and an adversary A

• Define experiment PubK-CPAA, (n):
• Run Gen(1n) to get keys pk, sk

• Give pk to A, who outputs (m0, m1) of same length

• Choose uniform b  {0,1} and compute the ciphertext c  Encpk(mb); give c
to A

• A outputs a guess b’, and the experiment evaluates to 1 if b’=b

• Public-key encryption scheme  is CPA-secure if for all PPT
adversaries A:

Pr[PubK-CPAA, (n) = 1] ≤ ½ + negl(n)

Notes on the definition

• No encryption oracle?!
• Encryption oracle redundant in public-key setting

• No perfectly secret public-key encryption

• No deterministic public-key encryption scheme can be CPA-secure

• CPA-security implies security for encrypting multiple messages (as in
the private-key case)

Chosen-ciphertext attacks

pk, skpk

c  Encpk(m)

c

c’
m’

Chosen-ciphertext attacks
• Chosen-ciphertext attacks are arguably even a greater concern in the

public-key setting
• Attacker might be a legitimate sender

• Easier for attacker to obtain full decryptions of ciphertexts of its choice

• Related concern: malleability
• I.e., given a ciphertext c that is the encryption of an unknown message m,

might be possible to produce ciphertext c’ that decrypts to a related message
m’

• This is also undesirable in the public-key setting

• Can define CCA-security for public-key encryption by analogy to the
definition for private-key encryption

Hybrid encryption and KEMs

Encrypting long messages

• Public-key encryption schemes “natively” defined for “short”
messages

• How can longer messages be encrypted?

Encrypting long messages

• Can always encrypt block-by-block
• I.e., to encrypt M = m1, m2, …, ml, do:

Encpk(m1), …, Encpk(ml)

• If the underlying scheme is CPA-secure (for short messages), then this
is CPA-secure (for arbitrary length messages)
• Why?

Note

• (Public-key) encryption is NOT a block cipher
• Fk is deterministic, one-to-one, and looks random

• Encpk is randomized and not one-to-one (if it is CPA-secure), and may not look
random

 CTR-mode/CBC-mode don’t make sense for public-key encryption
Also may not be secure...

• “ECB mode” is secure for public-key encryption
• Because underlying scheme is randomized

Encrypting long messages

• Encrypting block-by-block is inefficient
• Ciphertext expansion in each block

• Public-key encryption is “expensive”

• Can we do better?

Hybrid encryption

• Main idea
• Use public-key encryption to establish a (shared, secret) key k

• Use k to encrypt the message with a symmetric-key encryption scheme

• Benefits
• Lower ciphertext expansion

• Amortized efficiency of symmetric-key encryption

Hybrid encryption

k

pk

ciphertext

“encapsulated
key”

The functionality of public-key encryption
with the (asymptotic) efficiency of private-key encryption!

Enc

Enc’m

Decryption done in the obvious way

Formally

• Let  be a public-key scheme, and let ’ be a symmetric-key scheme

• Define hy as follows:
• Genhy = Gen (i.e., same as )

• Enchy(pk, m):
• Choose k  {0,1}n

• c  Encpk(k)

• c’  Enc’k(m)

• Output c, c’

• Decryption done in the natural way…

Security of hybrid encryption

• If  is a CPA-secure public-key scheme, and ’ is a CPA-secure
private-key scheme, then hy is a CPA-secure public-key scheme
• In fact, suffices for ’ to be EAV-secure

• If  is a CCA-secure public-key scheme, and ’ is a CCA-secure
private-key scheme, then hy is a CCA-secure public-key scheme

KEM/DEM paradigm

• For hybrid encryption, something weaker than public-key encryption
suffices

• Sufficient to have a “key encapsulation mechanism” (KEM) that takes
a public key and outputs a ciphertext c and a key k
• Correctness: k can be recovered from c given sk

• Security: k is indistinguishable from uniform given pk and c; can formally
define CPA-/CCA-security

• Can still combine with symmetric-key encryption (DEM) as before!

KEM/DEM paradigm

Hybrid encryption KEM/DEM

Security of KEM/DEM

• If  is a CPA-secure KEM, and ’ is a CPA-secure private-key scheme,
then combination is a CPA-secure public-key scheme
• Suffices for ’ to be EAV-secure

• If  is a CCA-secure KEM, and ’ is a CCA-secure private-key scheme,
then combination is a CCA-secure public-key scheme

KEMs vs. PKE schemes

• For short messages, direct encryption using a PKE scheme (with no
hybrid encryption) can sometimes be the best choice

• For anything longer, KEM/DEM or hybrid encryption will be more
efficient
• This is how things are done in practice (unless very short messages are being

encrypted)

Dlog-based PKE

Diffie-Hellman key exchange

k = (h2)x

m = c2/k

k = (h1)y

(G, q, g)  G(1n)
x  ℤq
h1 = gx

G, q, g, h1

y  ℤq
h2 = gy

h2

c2

c2 = k · m

El Gamal encryption

k = (h2)x

m = c2/k

k = (h1)y

(G, q, g)  G(1n)
x  ℤq
h1 = gx

G, q, g, h1

y  ℤq
h2 = gy

h2

c2

Public key

h2, h1
y · m

c2 = k · m

El Gamal encryption

• Gen(1n)
• Run G(1n) to obtain G, q, g. Choose uniform xℤq. The public key is (G, q, g, gx)

and the private key is x

• Encpk(m), where pk = (G, q, g, h) and m  G
• Choose uniform y  ℤq. The ciphertext is gy, hy·m

• Decsk(c1, c2), where sk = x
• Output c2/c1

x = c2  c1
-x

Security?

• If the DDH assumption is hard for G, then the El Gamal encryption
scheme is CPA-secure
• Follows from security of Diffie-Hellman key exchange, or can be proved

directly

• Note that the discrete-logarithm assumption alone is not enough here

 Secure for encryption of multiple messages (using the same public
key)!

• Note that sender(s) must use fresh randomness for each encryption

Chosen-ciphertext attacks?

• El Gamal encryption is not secure against chosen-ciphertext attacks
• Follows from the fact that it is malleable

• Given ciphertext (c1, c2), transform it to obtain the ciphertext (c1, c’2)
= (c1,  · c2) for arbitrary 
• Since (c1, c2) = (gy, hy · m),

we have (c1, c’2) = (gy, hy · (m))

• I.e., encryption of m becomes an encryption of m!

Attack!

G, q, g, h

c1, c2

c1, 2 ·c2

(Assume 2  G  ℤ*p)

First bid: m
Second bid: 2m

El Gamal in practice

• Parameters G, q, g are standardized and shared

• Need to encode message as a group element
• In some groups, there are natural ways to do this

• In other cases, not as easy

• Can avoid this if using El Gamal as a KEM!

Hybrid encryption with El Gamal?

• To use hybrid encryption with El Gamal, would need to encode key k
as a group element
• Can we avoid this?

• The sender doesn’t care about encrypting a specific key, it just needs
to send a random key
• Idea: encrypt a random group element K; define the key as k = H(K)

KEM based on El Gamal

• Gen(1n)
• Run G(1n) to obtain G, q, g. Choose uniform xℤq. The public key is (G, q, g, gx)

and the private key is x

• Ecapspk, where pk = (G, q, g, h)
• Choose uniform y  ℤq. The ciphertext is gy, and the key is k = H(hy)

• Decapssk(c), where sk = x
• Output k = H(cx)

Security?

• If the DDH assumption holds, and H is modeled as a random oracle,
then this KEM is CPA-secure

Complete scheme

• Combine the KEM with private-key encryption

• I.e., encryption of message m is
gy, Enc’k(m),

where k = H(hy) and Enc’ is a symmetric-key encryption scheme (e.g.,
CTR-mode)
• If Enc’ is CPA-secure, DDH assumptions holds, and H is modeled as a random

oracle, this is a CPA-secure public-key encryption scheme

Chosen-ciphertext security

• Under stronger assumptions, this approach can be proven to give CCA
security
• If Enc’ is a CCA-secure symmetric-key scheme

• Can at least see why the previous attack no longer works

• Standardized as DHIES/ECIES

RSA-based PKE

Recall…

• Let p, q be random, equal-length primes

• Compute modulus N=pq

• Choose e, d such that e · d = 1 mod (N)

• The eth root of x modulo N is [xd mod N]
• I.e., easy to compute given p, q (or d)

• RSA assumption: given N, e only, it is hard to compute the eth root of a
uniform c  ℤN

*

“Plain” RSA encryption

m = [cd mod N]

(N, e, d)  RSAGen(1n)
pk = (N, e)

sk = d

N, e

c = [me mod N]

c

Security?

• This scheme is deterministic
• Cannot be CPA-secure!

• RSA assumption only refers to hardness of computing the eth root of a
uniform c
• c is not uniform unless m is
• Why would m be uniform?
• Easy to compute eth root of c = [me mod N] when m is small

• RSA assumption only refers to hardness of computing the eth root of c in its
entirety
• Partial information about the eth root may be leaked
• (In fact, this is the case)

Chosen-ciphertext attacks

• Of course, plain RSA cannot be CCA-secure since it is not even CPA-
secure…
• …but chosen-ciphertext attacks are devastating

• Given ciphertext c for unknown message m, can compute c’ = [e  c
mod N]
• What does this decrypt to?

How to fix plain RSA?

• One approach: use a randomized encoding

• I.e., to encrypt m
• First compute some reversible, randomized mapping M  Encode(m)

• Then set c := [Me mod N]

• To decrypt c
• Compute M := [cd mod N]

• Recover m from M

PKCS #1 v1.5

• Standard issued by RSA labs in 1993

• Idea: introduce random padding
• Encode(m) = r|m

• I.e., to encrypt m
• Choose random r
• Compute the ciphertext c := [(r|m)e mod N]

• Issues:
• No proof of CPA-security (unless m is very short)
• Chosen-plaintext attacks are known if r is too short
• Chosen-ciphertext attacks are still possible

PKCS #1 v2.0

• Optimal asymmetric encryption padding (OAEP) applied to message
first

• This padding introduces redundancy, so that not every c  ℤ*N is a
valid ciphertext
• Need to check for proper format upon decryption

• Return error if not properly formatted

OAEP

Security?

• RSA-OAEP can be proven CCA-secure under the RSA assumption, if G
and H are modeled as random oracles

• Widely used in practice…

RSA-based KEM

• Idea: use plain RSA as before…
…but on a random value!

• Then use that random value to derive a key

RSA-based KEM

• Encaps:
• Choose uniform r  ℤ*N
• Ciphertext is c = [re mod N]

• Key is k = H(r)

• Decaps(c)
• Compute r = [cd mod N]

• Compute the shared key k = H(r)

Security?

• This is CCA-secure under the RSA assumption, if H is modeled as a
random oracle

Comparison to RSA-OAEP?

• The RSA-KEM must be used with a symmetric-key encryption scheme

• For very short messages (< 1500 bits), RSA-OAEP will have shorter
ciphertexts

• For anything longer, ciphertexts will be the same length; RSA-KEM is
simpler

PKE in practice

• What is the best way to encrypt a 1MB file?
• Use 1MB parameters?

• Use 1000-bit parameters; encrypt file in chunks

• Use hybrid encryption/KEM-DEM approach

PKE in practice

• Current recommended parameters:
• RSA-based schemes: ≈2000-bit modulus N

• Dlog, order-q subgroup of ℤ*p: ǁqǁ≈256, ǁpǁ≈2000

• Dlog, order-q elliptic-curve group: ǁqǁ≈256; group elements require ≈256 bits

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: The public-key setting
	Slide 3: Review: private-key setting
	Slide 4: The public-key setting
	Slide 5: Public-key distribution I
	Slide 6: Public-key distribution II
	Slide 7: Public-key distribution
	Slide 8: How does this address the drawbacks of private-key crypto…?
	Slide 9: Public-key vs. private-key crypto
	Slide 10: Why study private-key crypto?
	Slide 11: Primitives
	Slide 12: Public-key encryption
	Slide 13: Public-key encryption
	Slide 14: CPA-security
	Slide 15: Notes on the definition
	Slide 16: Chosen-ciphertext attacks
	Slide 17: Chosen-ciphertext attacks
	Slide 18: Hybrid encryption and KEMs
	Slide 19: Encrypting long messages
	Slide 20: Encrypting long messages
	Slide 21: Note
	Slide 22: Encrypting long messages
	Slide 23: Hybrid encryption
	Slide 24: Hybrid encryption
	Slide 25: Formally
	Slide 26: Security of hybrid encryption
	Slide 27: KEM/DEM paradigm
	Slide 28: KEM/DEM paradigm
	Slide 29: Security of KEM/DEM
	Slide 30: KEMs vs. PKE schemes
	Slide 31: Dlog-based PKE
	Slide 32: Diffie-Hellman key exchange
	Slide 33: El Gamal encryption
	Slide 34: El Gamal encryption
	Slide 35: Security?
	Slide 36: Chosen-ciphertext attacks?
	Slide 37: Attack!
	Slide 38: El Gamal in practice
	Slide 39: Hybrid encryption with El Gamal?
	Slide 40: KEM based on El Gamal
	Slide 41: Security?
	Slide 42: Complete scheme
	Slide 43: Chosen-ciphertext security
	Slide 44: RSA-based PKE
	Slide 45: Recall…
	Slide 46: “Plain” RSA encryption
	Slide 47: Security?
	Slide 48: Chosen-ciphertext attacks
	Slide 49: How to fix plain RSA?
	Slide 50: PKCS #1 v1.5
	Slide 51: PKCS #1 v2.0
	Slide 52: OAEP
	Slide 53: Security?
	Slide 54: RSA-based KEM
	Slide 55: RSA-based KEM
	Slide 56: Security?
	Slide 57: Comparison to RSA-OAEP?
	Slide 58: PKE in practice
	Slide 59: PKE in practice

