
رمزنگاری، امنیت اطلاعات و حریم
خصوصی

دکتر سیدعلی لاجوردی: ارائه

بخش نهم

Digital signatures

Digital signatures

• Provide integrity in the public-key setting

• Analogous to message authentication codes, but some key
differences…

Digital signatures

pk, skpk

 = Signsk(m)

m, 

pk
pk pk

1 = Vrfypk(m, )
?

Public-key encryption

pk, skpk

c  Encpk(m) m = Decsk(c)

c

pk
pk pk

Security (informal)

• Even after observing signatures on multiple messages, an attacker
should be unable to forge a valid signature on a new message

Prototypical application

pk, sk

pk

 = Signsk(patch)

patch, 

pk

pk

patch’, ’

Comparison to MACs?

k

k

t = Mack(patch)

patch, t

k

k

t’ = Mack(patch’)

patch’, t’

Comparison to MACs?

k1, k2, k3

k1

t1 = Mack1(patch)
t2 = Mack2(patch)
t3 = Mack3(patch)

k2

k3

patch, t1

patch, t2

patch, t3

Comparison to MACs?

• Public verifiability
• “Anyone” can verify a signature

• (Only a holder of the key can verify a MAC tag)

 Transferability
• Can forward a signature to someone else…

 Non-repudiation

Non-repudiation

• Signer cannot deny issuing a signature
• Crucial for legal applications

• Judge can verify signature using public copy of pk

• MACs cannot provide this functionality!
• Without access to the key, no way to verify a tag

• Even if receiver gives key to judge, how can the judge verify
that the key is correct?
• Even if key is correct, receiver could have generated

the tag also!

Signature schemes

• A signature scheme is defined by three PPT algorithms (Gen, Sign,
Vrfy):
• Gen: takes as input 1n; outputs pk, sk

• Sign: takes as input a private key sk and a message m{0,1}*; outputs
signature 

 Signsk(m)

• Vrfy: takes public key pk, message m, and signature  as input; outputs 1 or 0

For all m and all pk, sk output by Gen,
Vrfypk(m, Signsk(m)) = 1

Security?

• Exactly analogous to security for MACs

• Threat model
• “Adaptive chosen-message attack”

• Assume the attacker can induce the sender to sign messages of the attacker’s
choice

• Security goal
• “Existential unforgeability”

• Attacker should be unable to forge valid signature on any message not signed
by the sender

• Attacker gets the public key…

Formal definition

• Fix A, 

• Define randomized experiment ForgeA,(n):
1. pk, sk Gen(1n)

2. A given pk, and interacts with oracle Signsk(·) ; let M be the set of messages
sent to this oracle

3. A outputs (m, )

4. A succeeds, and the experiment evaluates to 1, if Vrfypk(m, )=1 and mM

Security for signature schemes

•  is secure if for all PPT attackers A, there is a negligible function 
such that

Pr[ForgeA,(n) = 1] ≤ (n)

Replay attacks

• Replay attacks need to be addressed just as in the symmetric-key
setting

Hash-and-sign paradigm

• Given
• A signature scheme  = (Gen, Sign, Vrfy) for “short” messages of length n

• Hash function H: {0,1}*→ {0,1}n

• Construct a signature scheme ’=(Gen, Sign’, Vrfy’) for arbitrary-
length messages:
• Sign’sk(m) = Signsk(H(m))

• Vrfy’pk(m, ) = Vrfypk(H(m), )

Hash-and-sign paradigm

• Theorem: If  is secure and H is collision-resistant, then ’ is secure

• Proof: Same as for MACs

• Can be viewed as a counterpart of hybrid encryption
• The functionality of digital signatures at the asymptotic cost of a symmetric-

key solution

Signature schemes

• We will discuss how to construct signature schemes for “short”
messages
• Using hash-and-sign, this implies signatures for arbitrary length messages

Signature schemes in practice

• RSA-based signatures
• Can be proven secure (based on RSA assumption, in

random-oracle model)

• Dlog-based signatures
• Shorter signatures, faster signing than RSA-based

signatures

• (EC)DSA
• Widely used, no proof of security

• Schnorr
• Can be proven secure (based on dlog assumption, in random-

oracle model)

RSA-based signatures

Recall…

• Choose random, equal-length primes p, q

• Compute modulus N=pq

• Choose e, d such that e · d = 1 mod (N)

• The eth root of m modulo N is [md mod N]
(md)e = mde = m[ed mod (N)] = m mod N

• RSA assumption: given N, e only, hard to compute the eth root of a
uniform m  ℤ*N

22

“Plain” RSA signatures

 = [md mod N]

(N, e, d)  RSAGen(1n)
pk = (N, e)

sk = d

N, e

m, 

m = [e mod N]?

Security?

• Intuition
• Signature of m is the eth root of m – supposedly hard to compute given only

the public key!

Attack 1

• Can sign specific messages
• E.g., easy to compute the eth root of m = 1, or the cube root of m = 8

Attack 2

• Can generate signatures on “random” messages
• Choose arbitrary ; set m = [e mod N]

Attack 3

• Can combine two signatures to obtain a third
• Say 1, 2 are valid signatures on m1, m2 with respect to public key N, e

• Then ’ = [1 · 2 mod N] is a valid signature on the message m’ = [m1 · m2
mod N]
• (1 · 2)e = 1

e · 2
e = m1 · m2 mod N

RSA-FDH

• Main idea: apply “cryptographic transformation” to messages before
signing

• Public key: (N, e) private key: d

• Signsk(m) = H(m)d mod N
• H must map onto all of ℤ*N

• Vrfypk(m, ): output 1 iff
e = H(m) mod N

• (This also handles long messages without additional hashing)

Intuition for security?

• Look at the three previous attacks…
• Not easy to compute the eth root of H(1), …

• Choose …, but how do you find an m such that H(m) = e mod N?
• Computing inverses of H should be hard

• H(m1) · H(m2) = 1
e · 2

e = (1 · 2)e ≠ H(m1 · m2)

Security of RSA-FDH

• If the RSA assumption holds, and H is modeled as a random oracle
(mapping onto ℤ*N), then RSA-FDH is secure

• In practice, H is instantiated with a (modified) cryptographic hash
function
• Must ensure that the range of H is large enough!

RSA-FDH in practice

• The RSA PKCS #1 v2.1 standard includes a signature scheme inspired
by RSA-FDH
• Essentially a randomized variant of RSA-FDH

dlog-based signatures

Digital signature standard (DSS)

• US government standard for digital signatures
• DSA, based on discrete-logarithm problem in subgroup of ℤ*p
• ECDSA, based on elliptic-curve groups

• No security proof, even in RO model

• Compared to RSA-based signatures
• Shorter signatures and public keys (especially for EDCSA)

• Can have faster signing

• Slower verification

Signatures from identification schemes

• Two signature schemes that can be viewed as being derived from
(public-key) identification schemes
• Schnorr

• DSA/ECDSA

• Will return to this in later lecture

Public-key infrastructure (PKI)

Public-key distribution

pk, sk

Alice, pk
pk

Alice, pk

Alice, pk*

XAlice, pk*

Public-key distribution

pk, sk

Alice, pk
pk

Alice, pk

X
Alice, pk*

Use signatures for secure key distribution!

• Assume a trusted party with a public key known to everyone
• CA = certificate authority who acts as a “root of trust”

• Public key pkCA

• Private key skCA

Use signatures for secure key distribution!

• Alice asks the CA to sign the binding (Alice, pk)
certCA→Alice = SignskCA

(Alice, pk)

• (CA must verify Alice’s identity out of band)

Use signatures for secure key distribution!

• Bob obtains Alice, pk, and the certificate certCA→Alice …
• … check that VrfypKCA

((Alice, pk), certCA→Alice) = 1

• Bob is then assured that pk is Alice’s public key
• As long as the CA is trustworthy…

• Honest, and properly verifies Alice’s identity

• …and the CA’s private key has not been compromised

Chicken-and-egg problem?

• How does Bob get pkCA in the first place?

• Several possibilities…

Certificate chains

• Can also have chains of certificates

• E.g., Bob holds pkCA

• Alice has pk and certCA’→Alice

• Alice also sends pkCA’ and certCA→CA’ to Bob

• Bob does:
• Uses pkCA and certCA→CA’ to verify that pkCA’ is the public key of CA’

• Uses pkCA’ and certCA’→Alice to verify that pk is the public key of Alice

“Roots of trust”

• Bob only needs to securely obtain a small number of CA’s public keys
• Need to ensure secure distribution only for these few, initial public keys

• E.g., distribute as part of an operating system, or web browser
• Firefox:

Settings->Privacy & Security->View Certificates
->Authorities

“Web of trust”

• Obtain public keys in person
• “Key-signing parties”

• Obtain “certificates” on your public key from people who know you

• If A knows pkB, and B issued a certificate for C, then C can send that
certificate to A
• What trust assumptions are being made here?

Public repository

• Store certificates in a central repository
• E.g., OpenPGP keyserver

• To find Alice’s public key
• Get all public keys for “Alice,” along with certificates on those keys

• Look for a certificate signed by someone you trust whose public key you
already have

PKI in practice…

• Does not work quite as well as in theory…
• Proliferation of root CAs

• Compromises of CAs

• Revocation can be difficult

• Users/browsers may not verify certificates properly

SSL/TLS

• How can you securely send your credit card number to Amazon?

• SSL/TLS
• Secure Socket Layer (Netscape, mid-’90s)

• Transport Layer Security
• TLS 1.0 (1999)

• TLS 1.2 (2008)

• TLS 1.3 (2018)

• Used by every web browser for https connections

TLS 1.3

• Goals
• Understand (at a high level) a real-world crypto protocol

• Pull together everything learned in this course

• Not goals
• Understanding low-level details/implementation

• Defining or proving security

TLS 1.3

• Two phases
• Handshake protocol

• Establish shared keys between two entities

• Server-to-client authentication only

• Record-layer protocol
• Use shared keys for secure communication

• Note: high-level details only
• Actual implementation is (even) more complex

Handshake protocol

pkCA

https://bank.com, gx, NC

sk, pk, certCA→Bank
gy, NS

c  Enck’S(Signsk(trans), pk, cert)

mk = (gy)x

kC, k’C, kS, k’S = Derive(mk)
(, pk, cert) = Deck’S

(c)

Mack’C(trans’)Verify!

mk = (gx)y

kC, k’C, kS, k’S = Derive(mk)

Verify!

Record-layer protocol

• Parties now share session keys kC, kS

• Client uses kC for authenticated encryption of all messages it sends

• Server uses kS for authenticated encryption of all messages it sends
• Prevents reflection attacks

• Sequence numbers used to prevent replay attacks

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: Digital signatures
	Slide 3: Digital signatures
	Slide 4: Digital signatures
	Slide 5: Public-key encryption
	Slide 6: Security (informal)
	Slide 7: Prototypical application
	Slide 8: Comparison to MACs?
	Slide 9: Comparison to MACs?
	Slide 10: Comparison to MACs?
	Slide 11: Non-repudiation
	Slide 12: Signature schemes
	Slide 13: Security?
	Slide 14: Formal definition
	Slide 15: Security for signature schemes
	Slide 16: Replay attacks
	Slide 17: Hash-and-sign paradigm
	Slide 18: Hash-and-sign paradigm
	Slide 19: Signature schemes
	Slide 20: Signature schemes in practice
	Slide 21: RSA-based signatures
	Slide 22: Recall…
	Slide 23: “Plain” RSA signatures
	Slide 24: Security?
	Slide 25: Attack 1
	Slide 26: Attack 2
	Slide 27: Attack 3
	Slide 28: RSA-FDH
	Slide 29: Intuition for security?
	Slide 30: Security of RSA-FDH
	Slide 31: RSA-FDH in practice
	Slide 32: dlog-based signatures
	Slide 33: Digital signature standard (DSS)
	Slide 34: Signatures from identification schemes
	Slide 35: Public-key infrastructure (PKI)
	Slide 36: Public-key distribution
	Slide 37: Public-key distribution
	Slide 38: Use signatures for secure key distribution!
	Slide 39: Use signatures for secure key distribution!
	Slide 40: Use signatures for secure key distribution!
	Slide 41: Chicken-and-egg problem?
	Slide 42: Certificate chains
	Slide 43: “Roots of trust”
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: “Web of trust”
	Slide 49: Public repository
	Slide 50: PKI in practice…
	Slide 51: SSL/TLS
	Slide 52: TLS 1.3
	Slide 53: TLS 1.3
	Slide 54: Handshake protocol
	Slide 55: Record-layer protocol

