v > 9 OleMbl Cudul (6)8 30

S, «.515"3“""’ JRE :43‘)‘
e O

Digital signatures

Digital signatures
* Provide integrity in the public-key setting

* Analogous to message authentication codes, but some key
differences...

Digital signatures

1= Vrfypk(m, G)

Public-key encryption

\ (/J!M[\

C Encpk(m)

Security (informal)

* Even after observing signatures on multiple messages, an attacker
should be unable to forge a valid signature on a new message

Prototypical application

¥ _

pk

il

&

ﬁ\\(|
\f@g%% pk, sk
pk

c = Sign(patch)

pk

Comparison to MACs?

t’ = Mac,(patch’)

K

patch’, t’J MIQ

&

k

patch, t

= K
t = Mac,(patch)

K

Comparison to MACs?

@

o Ty il

i

& patch, t, =
. al

— =

Ky, Koy ks

patch, t,
t, = Mac,,(patch)
a t, = Mac,,(patch)
L T t, = Mac,;(patch)
@, .

Comparison to MACs?

* Public verifiability
* “Anyone” can verify a signature
e (Only a holder of the key can verify a MAC tag)

= Transferability
* Can forward a signature to someone else...

= Non-repudiation

Non-repudiation

 Signer cannot deny issuing a sighature
* Crucial for legal applications
 Judge can verify signature using public copy of pk

* MACs cannot provide this functionality!
* Without access to the key, no way to verify a tag

* Even if receiver gives key to judge, how can the judge verify
that the key is correct?

* Even if key is correct, receiver could have generated
the tag also!

Signature schemes

* A signature scheme is defined by three PPT algorithms (Gen, Sign,
Vrfy):
* Gen: takes as input 1"; outputs pk, sk

* Sign: takes as input a private key sk and a message me{0,1}"; outputs
signature o
G < Sign, (m)
* Vrfy: takes public key pk, message m, and signature ¢ as input; outputs 1 or 0

For all m and all pk, sk output by Gen,
Vrty, (m, Signg(m)) =1

Security?

e Exactly analogous to security for MACs

* Threat model
* “Adaptive chosen-message attack”
* Assume the attacker can induce the sender to sigh messages of the attacker’s
choice
* Security goal
e “Existential unforgeability”
 Attacker should be unable to forge valid signature on any message not signed
by the sender

 Attacker gets the public key...

Formal definition

e Fix A, I1

* Define randomized experiment Forge, ;(n):
1. pk, sk < Gen(1")
2. Agiven pk, and interacts with oracle Sign(-) ; let M be the set of messages
sent to this oracle

3. Aoutputs (m, o)
4. A succeeds, and the experiment evaluates to 1, if Vrfypk(m, o)=1land mgM

Security for signature schemes

e [1is secure if for all PPT attackers A, there is a negligible function ¢
such that

Pr[Forge, (n) = 1] < g(n)

Replay attacks

* Replay attacks need to be addressed just as in the symmetric-key
setting

Hash-and-sign paradigm

* Given
* Asignature scheme II = (Gen, Sign, Vrfy) for “short” messages of length n
e Hash function H: {0,1}" — {0,1}"
e Construct a signature scheme II'=(Gen, Sign’, Vrfy’) for arbitrary-
length messages:
* Sign’, (m) = Sign (H(m))
* Vrfy’ (m, o) = Vrfy, (H(m), o)

Hash-and-sign paradigm

e Theorem: If II is secure and H is collision-resistant, then I’ is secure

* Proof: Same as for MACs

e Can be viewed as a counterpart of hybrid encryption
* The functionality of digital signatures at the asymptotic cost of a symmetric-
key solution

Signature schemes

* We will discuss how to construct signature schemes for “short”
messages

* Using hash-and-sign, this implies signatures for arbitrary length messages

Signature schemes in practice

* RSA-based signatures

e Can be proven secure (based on RSA assumption, in
random-oracle model)

* Dlog-based signatures

» Shorter signatures, faster signing than RSA-based
signatures
* (EC)DSA
* Widely used, no proof of security
e Schnorr

e Can be proven secure (based on dlog assumption, in random-
oracle model)

RSA-based signatures

Recall...

* Choose random, equal-length primes p, g
* Compute modulus N=pqg
* Choose e, d such that e - d =1 mod ¢(N)

* The et" root of m modulo N is [m9 mod N]
(md)e = mde = mledmod ¢(N)l = m mod N

* RSA assumption: given N, e only, hard to compute the et" root of a
uniformm € Z’

“Plain” RSA signatures

W L

BT AP
5/\/

—

m 2 [0 mod N]

(N, e, d) < RSAGen(1")
pk=(N, e)
sk =d

6 = [m9 mod N]

Security?

* |Intuition

* Signature of m is the et" root of m — supposedly hard to compute given only
the public key!

Attack 1

e Can sign specific messages
 E.g., easy to compute the eth root of m = 1, or the cube root of m = 8

Attack 2

* Can generate signatures on “random” messages
* Choose arbitrary o; set m = [c® mod N]

Attack 3

e Can combine two signatures to obtain a third
* Say ¢,, G, are valid signatures on m;, m, with respect to public key N, e

* Then ¢’ = [0, - 5, mod N] is a valid signature on the message m’ =[m, - m,
mod N]

* (6,-0,)¢*=06,4-6,=m;-m,mod N

RSA-FDH

* Main idea: apply “cryptographic transformation” to messages before
signing

* Public key: (N, e) private key: d
* Sign, (m) = H(m)4 mod N

* H must map onto all of Z

* Vrfy,(m, c): output 1 iff
o = H(m) mod N

* (This also handles long messages without additional hashing)

Intuition for security?

* Look at the three previous attacks...
* Not easy to compute the eth root of H(1), ...

* Choose o..., but how do you find an m such that H(m) = 6® mod N?
* Computing inverses of H should be hard

* H(m,) - H(m,) =0,%- 6,* = (0, 5,)¢# H(m; - m,)

Security of RSA-FDH

* If the RSA assumption holds, and H is modeled as a random oracle
(mapping onto Z,), then RSA-FDH is secure

* In practice, H is instantiated with a (modified) cryptographic hash
function

* Must ensure that the range of H is large enough!

RSA-FDH in practice

* The RSA PKCS #1 v2.1 standard includes a sighature scheme inspired
by RSA-FDH
* Essentially a randomized variant of RSA-FDH

dlog-based signatures

Digital signature standard (DSS)

e US government standard for digital signatures
* DSA, based on discrete-logarithm problem in subgroup of Z*p
* ECDSA, based on elliptic-curve groups

* No security proof, even in RO model

 Compared to RSA-based signatures
» Shorter signatures and public keys (especially for EDCSA)
e Can have faster signing
* Slower verification

Signatures from identification schemes

* Two signature schemes that can be viewed as being derived from
(public-key) identification schemes

e Schnorr
 DSA/ECDSA

e Will return to this in later lecture

Public-key infrastructure (PKI)

Public-key distribution

Alice, pk

mnW Wk
)
¥ ;

& = il
A | —
W L e

pk, sk

Public-key distribution

Wk

pk, sk

Use sighatures for secure key distribution!

* Assume a trusted party with a public key known to everyone
* CA = certificate authority who acts as a “root of trust”
* Public key pkc,
* Private key sk¢,

Use sighatures for secure key distribution!

* Alice asks the CA to sign the binding (Alice, pk)

certea aiice = Signg-, (Alice, pk)

skca

e (CA must verify Alice’s identity out of band)

Use sighatures for secure key distribution!

* Bob obtains Alice, pk, and the certificate cert., ,ajice -
* ... check that Vrfy, ., ((Alice, pk), certea pjice) =1

* Bob is then assured that pk is Alice’s public key

* As long as the CA is trustworthy...
* Honest, and properly verifies Alice’s identity

 ...and the CA’s private key has not been compromised

Chicken-and-egg problem?

* How does Bob get pk., in the first place?

e Several possibilities...

Certificate chains

* Can also have chains of certificates

* E.g., Bob holds pkg,

* Alice has pk and certep aice

* Alice also sends pkq, and cert., .-, to Bob

* Bob does:
* Uses pkq, and cert., .. to verify that pk, is the public key of CA’
* Uses pkcy and cert., ., aice O Verify that pk is the public key of Alice

“Roots of trust”

* Bob only needs to securely obtain a small number of CA’s public keys
* Need to ensure secure distribution only for these few, initial public keys

* E.g., distribute as part of an operating system, or web browser

* Firefox:
Settings->Privacy & Security->View Certificates
->Authorities

Certificate Manager X
Your Certificates People Servers Authorities
You have certificates on file that identify these certificate authorities
Certificate Name Security Device iz
v UniTrust i
UCA Global G2 Root Builtin Object Token
UCA Extended Validation Root Builtin Object Token
v University of Athens
crypto.di.uoa.gr

v University of Maryland

UMD CSD CA

Software Security Device
v Unizeto Sp. 7 0.0.

Software Security Device

Import...

OK

Public Key Info

Algorithm
Key Size
Exponent

Modulus

RSA

2048

65537
DD:84:D4:B9:B4:FO:A7:D8F3:04:78:9C.DE:2D:DC:6C:13:16:D9:7A:DD:24:51:.66:CO0:
C7:26:59:0D:AC06:08:C2:94:D1:33:1TFF0:83:35:1 F:6E:1B:C8:DEAABE1 5:4E:54:2 7
EF:C4.:6D:1AEC:OB:E3:0E:FO:44:AS5:57:C7- 40581 EA3 AT 1R T 1:EC.60:F6:6D:94:C8:1
8:39:ED:FE42:18:56:DFE4:4C:49:10:78:4E:01:76:35:63:12:36:DD:66:BC:01:04:36:A
3:55:68:D5:A2:36:09:ACAB:21:26:54:06:AD3F.CA4: EO:AC.CAIAD:06:1D:95:E2:F8:
9D:F1:EO:60:FF.C2:7F:75:2B:AC.CC:DAFES7:99:21: EA'BAFE:ZE:54:D 7:D2:59:78:DB:
3CBECFAO3:00:1ABE27-AT:E4A:BE:67:96:CA'AOQ:C5:B3:9C:DD:C9:75:9E:EB:30:9
ASFA3CD:DOAE78:19:3F23:E9:5C:DB:29:BD:AD:55:C8:1B:54:8C:63:F6:ES:AGEA:
C7:3712:5CA3:29.1E:02:D9:DB:1F:3B:B4:D7:0F.56:47:81:15:04:4A:AF.83:27:D1:C5:
58:88:C1:DD:F6:AAATAS18:DA6S:AABD:11:51:E1:BF.65:6B:9F:96:76:D1:3D

Public Key Info

Algorithm
Key Size
Exponent

Modulus

RSA
4096
65537

CA96:6B:8E:EAIFS:FB:F1:A2:35:E0:7FAC:DAED:C3:52:D7:7D:B6:10:C8:02:5E:B3:43:
SACAARBAB2:CACS5D:28:9A:78:11:1A:69:59.5 7 AFB5:20:42:E4:8B:0F:E6:DF:5B:
AB:03:92:2FF5:11:E4:62:D7:32:71:38:D9:04:0C:71:AB:3D:51:7/E.OF.07:DF:63:05:5CE
9:BF:94:6F:.C1:29:82:CO:B4:DA:51:BO:C1:3CBB:AD:37:4A5C.CAF1:4B:36:0E:24:AB:
BF:C3:84:77:FD:A8:50:F4:B1:E7:C6:2F.D2:2D:59:8D:7 A:OA:4E:96:69:52:02:AA:36:98:
ECFCFA:14:83:0C:37:1FC9:92:37:7F.D7:81:2D:E5:C4:B9:E0:3E:34:FE:67:F4:3E:66:D
1:D3:F4:40:CE5E:62:34:0F. 70:06:3E:20:18:5A:CEF7:72:1B:25:6C:93:74:14:93:A3:73:
B1:0EAA:87:10:23:59:5F20:05:19:47:ED:68:8E:92:12:CA:5D:FC:D6:2B:B2:92:3C:20:
CEET:S5FAFR20:BEAC:76:7F.76:ES:EC:TA:86:61:33:3EE7:7B:B4:3FAO:0F:8E:A2:B9:6
A6FB9:87:26:6F:41:6C:88:A6:50:FD:6A:63:0B:F5:93:16:1B:19:8F:B2:ED:9B:9B:C9:9
0:F5:01:0C:DF:19:3D:0F:3E:38:23:C9:2F.8F.0C:D1:02:FE:1B:55:D6:4E:DO:8D:3C:AF4
F-A4:F3:FEAF2A:D3:05:9D:79:08:A1:CB:57:31:B4:9C.C8:90:B2:67:F4:18:16:93:3AF
CA47:D8:D1:78:96:31:1F:BA:2B:.0C:5F:.5D:99:AD:63:89:5A:24:20:76:D8:DF.FD:AB4E:
AB22:AAOD:SEERE:27:8A7TD:68:29:A3:E7:8A'B8:DA:11:BB:17:2D:99:9D:13:24:46:F
7:C5E2.D8:9FBETFECT8F74:6D:5AB2:E8:72:F5:AC:EE24:10:AD:2F.14:DAFF2D:9
A46:71:47:BE4A2:.DFBB:01:DB:F4:7FD3:28:8F.31:59:5B:D3:C9:02:A6:B4:52:CA6E:9
7:FB:43:C5:08:26:6F:8AF4:BB:FD:9F:28:AA:0D:D5:45:F3:13:3A:1D:D8:C0:78:8F41:6
7:3C1E94:64:AE:7B:0B:C5:E8:D9:01:88:39:1A:97:86:64:41:D5:3B:87:0C:6E:FA:OF:C
6:BD:48:14:BF:.39:4D:D4:9E:41:B6:8F.96:1D:63:96:93:D09:95:06:78:31:68:9E:37:06:3
B:80:89:45:61:39:23:C7:1B:44:A3:15:E5:1C:F8:92:30:BB

Public Key Info

Algorithm
Key Size
Curve

Public Value

Miscellaneous

Serial Number
Signature Algorithm

Elliptic Curve

256

P-256

04:29:97-A7:C641:7F.CO:0D:9B:E8:01:1B:56:C6:F2:52:A5:BA:2D:B2:1 2:E8:D2:2ED7:
FA:C9:C5:D8:AABD:F73:81:3B:3B:98:6B:39:7C:33:A5:C5:4E:86:8E:80:17:68:62:45:
S57:70:44:58:1D:B3:37:E5:67:08:EB:66:DE

06:6C:O9F:D5:74:97:36:66:3F:3B:0B:9A:D9:E8:9E: 76:03:F2:4 A
ECDSA with SHA-256

“Web of trust”

* Obtain public keys in person
e “Key-signing parties”

* Obtain “certificates” on your public key from people who know you

* If A knows pkg, and B issued a certificate for C, then C can send that
certificate to A
 What trust assumptions are being made here?

Public repository

e Store certificates in a central repository
e E.g., OpenPGP keyserver

e To find Alice’s public key
* Get all public keys for “Alice,” along with certificates on those keys

» Look for a certificate signed by someone you trust whose public key you
already have

PKl in practice...

* Does not work quite as well as in theory...

e Proliferation of root CAs
 Compromises of CAs

e Revocation can be difficult
» Users/browsers may not verify certificates properly

SSL/TLS

* How can you securely send your credit card number to Amazon?

* SSL/TLS

e Secure Socket Layer (Netscape, mid-"90s)

* Transport Layer Security
* TLS 1.0 (1999)
e TLS 1.2 (2008)
e TLS1.3(2018)

* Used by every web browser for https connections

TLS 1.3

e Goals
* Understand (at a high level) a real-world crypto protocol
e Pull together everything learned in this course

* Not goals
* Understanding low-level details/implementation
* Defining or proving security

TLS 1.3

* Two phases

* Handshake protocol
* Establish shared keys between two entities
* Server-to-client authentication only

* Record-layer protocol
e Use shared keys for secure communication

* Note: high-level details only
e Actual implementation is (even) more complex

Handshake protocol

@
v 3
DN / ~
W))\(L https://bank.com, g, N
Y/ ¢ >
T . .
C~_J []
Pkca) g%, Ng sk, pk, certea g,
mk = (g)¥
ke, K'c, ke, K's = Derive(mk)
¢ < Enc,(Signy(trans), pk, cert)
<
mk = (g¥)

ke, K'c, ke, K's = Derive(mk)
(o, pk, cert) = Decy(c)

Verify! Mac, (trans’)

Verify!

Record-layer protocol

* Parties now share session keys k., k¢
* Client uses k. for authenticated encryption of all messages it sends

* Server uses k¢ for authenticated encryption of all messages it sends
* Prevents reflection attacks

e Sequence numbers used to prevent replay attacks

	Slide 1: رمزنگاری، امنیت اطلاعات و حریم خصوصی
	Slide 2: Digital signatures
	Slide 3: Digital signatures
	Slide 4: Digital signatures
	Slide 5: Public-key encryption
	Slide 6: Security (informal)
	Slide 7: Prototypical application
	Slide 8: Comparison to MACs?
	Slide 9: Comparison to MACs?
	Slide 10: Comparison to MACs?
	Slide 11: Non-repudiation
	Slide 12: Signature schemes
	Slide 13: Security?
	Slide 14: Formal definition
	Slide 15: Security for signature schemes
	Slide 16: Replay attacks
	Slide 17: Hash-and-sign paradigm
	Slide 18: Hash-and-sign paradigm
	Slide 19: Signature schemes
	Slide 20: Signature schemes in practice
	Slide 21: RSA-based signatures
	Slide 22: Recall…
	Slide 23: “Plain” RSA signatures
	Slide 24: Security?
	Slide 25: Attack 1
	Slide 26: Attack 2
	Slide 27: Attack 3
	Slide 28: RSA-FDH
	Slide 29: Intuition for security?
	Slide 30: Security of RSA-FDH
	Slide 31: RSA-FDH in practice
	Slide 32: dlog-based signatures
	Slide 33: Digital signature standard (DSS)
	Slide 34: Signatures from identification schemes
	Slide 35: Public-key infrastructure (PKI)
	Slide 36: Public-key distribution
	Slide 37: Public-key distribution
	Slide 38: Use signatures for secure key distribution!
	Slide 39: Use signatures for secure key distribution!
	Slide 40: Use signatures for secure key distribution!
	Slide 41: Chicken-and-egg problem?
	Slide 42: Certificate chains
	Slide 43: “Roots of trust”
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: “Web of trust”
	Slide 49: Public repository
	Slide 50: PKI in practice…
	Slide 51: SSL/TLS
	Slide 52: TLS 1.3
	Slide 53: TLS 1.3
	Slide 54: Handshake protocol
	Slide 55: Record-layer protocol

