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Digital signatures



Digital signatures

• Provide integrity in the public-key setting

• Analogous to message authentication codes, but some key 
differences…



Digital signatures

pk, skpk

 = Signsk(m)

m, 

pk
pk pk

1 = Vrfypk(m, )
?



Public-key encryption
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Security (informal)

• Even after observing signatures on multiple messages, an attacker 
should be unable to forge a valid signature on a new message



Prototypical application
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Comparison to MACs?
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Comparison to MACs?
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Comparison to MACs?

• Public verifiability
• “Anyone” can verify a signature

• (Only a holder of the key can verify a MAC tag)

 Transferability
• Can forward a signature to someone else…

 Non-repudiation



Non-repudiation

• Signer cannot deny issuing a signature
• Crucial for legal applications

• Judge can verify signature using public copy of pk

• MACs cannot provide this functionality!
• Without access to the key, no way to verify a tag

• Even if receiver gives key to judge, how can the judge verify 
that the key is correct?
• Even if key is correct, receiver could have generated 

the tag also!



Signature schemes

• A signature scheme is defined by three PPT algorithms (Gen, Sign, 
Vrfy): 
• Gen: takes as input 1n; outputs pk, sk

• Sign: takes as input a private key sk and a message m{0,1}*; outputs 
signature 

 Signsk(m)

• Vrfy: takes public key pk, message m, and signature  as input; outputs 1 or 0

For all m and all pk, sk output by Gen,
Vrfypk(m, Signsk(m)) = 1



Security?

• Exactly analogous to security for MACs

• Threat model
• “Adaptive chosen-message attack”

• Assume the attacker can induce the sender to sign messages of the attacker’s 
choice

• Security goal
• “Existential unforgeability”

• Attacker should be unable to forge valid signature on any message not signed 
by the sender

• Attacker gets the public key…



Formal definition

• Fix A, 

• Define randomized experiment ForgeA,(n):
1. pk, sk Gen(1n)

2. A given pk, and interacts with oracle Signsk(·) ; let M be the set of messages 
sent to this oracle

3. A outputs (m, )

4. A succeeds, and the experiment evaluates to 1, if Vrfypk(m, )=1 and mM



Security for signature schemes

•  is secure if for all PPT attackers A, there is a negligible function 
such that  

Pr[ForgeA,(n) = 1] ≤ (n)



Replay attacks

• Replay attacks need to be addressed just as in the symmetric-key 
setting



Hash-and-sign paradigm

• Given 
• A signature scheme  = (Gen, Sign, Vrfy) for “short” messages of length n

• Hash function H: {0,1}*→ {0,1}n

• Construct a signature scheme ’=(Gen, Sign’, Vrfy’) for arbitrary-
length messages:
• Sign’sk(m) = Signsk(H(m))

• Vrfy’pk(m, ) = Vrfypk(H(m), )



Hash-and-sign paradigm

• Theorem: If  is secure and H is collision-resistant, then ’ is secure

• Proof: Same as for MACs

• Can be viewed as a counterpart of hybrid encryption
• The functionality of digital signatures at the asymptotic cost of a symmetric-

key solution



Signature schemes

• We will discuss how to construct signature schemes for “short” 
messages
• Using hash-and-sign, this implies signatures for arbitrary length messages



Signature schemes in practice

• RSA-based signatures
• Can be proven secure (based on RSA assumption, in 

random-oracle model)

• Dlog-based signatures
• Shorter signatures, faster signing than RSA-based 

signatures

• (EC)DSA
• Widely used, no proof of security

• Schnorr
• Can be proven secure (based on dlog assumption, in random-

oracle model)



RSA-based signatures



Recall…

• Choose random, equal-length primes p, q

• Compute modulus N=pq

• Choose e, d such that e · d = 1 mod (N)

• The eth root of m modulo N is [md mod N]
(md)e = mde = m[ed mod (N)] = m mod N

• RSA assumption: given N, e only, hard to compute the eth root of a 
uniform m  ℤ*N
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“Plain” RSA signatures

 = [md mod N]

(N, e, d)  RSAGen(1n)
pk = (N, e)

sk = d

N, e

m, 

m = [e mod N]?



Security?

• Intuition
• Signature of m is the eth root of m – supposedly hard to compute given only 

the public key!



Attack 1

• Can sign specific messages
• E.g., easy to compute the eth root of m = 1, or the cube root of m = 8



Attack 2

• Can generate signatures on “random” messages
• Choose arbitrary ; set m = [e mod N]



Attack 3

• Can combine two signatures to obtain a third
• Say 1, 2 are valid signatures on m1, m2 with respect to public key N, e

• Then ’ = [1 · 2 mod N] is a valid signature on the message m’ = [m1 · m2 
mod N]
• (1 · 2)e = 1

e · 2
e = m1 · m2 mod N



RSA-FDH

• Main idea: apply “cryptographic transformation” to messages before 
signing

• Public key: (N, e)          private key: d

• Signsk(m) = H(m)d mod N
• H must map onto all of ℤ*N

• Vrfypk(m, ): output 1 iff
e = H(m) mod N

• (This also handles long messages without additional hashing)



Intuition for security?

• Look at the three previous attacks…
• Not easy to compute the eth root of H(1), …

• Choose …, but how do you find an m such that H(m) = e mod N? 
• Computing inverses of H should be hard

• H(m1) · H(m2) = 1
e · 2

e = (1 · 2)e ≠ H(m1 · m2)



Security of RSA-FDH

• If the RSA assumption holds, and H is modeled as a random oracle 
(mapping onto ℤ*N), then RSA-FDH is secure

• In practice, H is instantiated with a (modified) cryptographic hash 
function
• Must ensure that the range of H is large enough!



RSA-FDH in practice

• The RSA PKCS #1 v2.1 standard includes a signature scheme inspired 
by RSA-FDH
• Essentially a randomized variant of RSA-FDH



dlog-based signatures



Digital signature standard (DSS)

• US government standard for digital signatures
• DSA, based on discrete-logarithm problem in subgroup of ℤ*p
• ECDSA, based on elliptic-curve groups

• No security proof, even in RO model

• Compared to RSA-based signatures
• Shorter signatures and public keys (especially for EDCSA)

• Can have faster signing

• Slower verification



Signatures from identification schemes

• Two signature schemes that can be viewed as being derived from 
(public-key) identification schemes
• Schnorr

• DSA/ECDSA

• Will return to this in later lecture



Public-key infrastructure (PKI)



Public-key distribution
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Public-key distribution
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Use signatures for secure key distribution!

• Assume a trusted party with a public key known to everyone 
• CA = certificate authority who acts as a “root of trust”

• Public key pkCA

• Private key skCA



Use signatures for secure key distribution!

• Alice asks the CA to sign the binding (Alice, pk)
certCA→Alice = SignskCA

(Alice, pk)

• (CA must verify Alice’s identity out of band)



Use signatures for secure key distribution!

• Bob obtains Alice, pk, and the certificate certCA→Alice …
• … check that VrfypKCA

((Alice, pk), certCA→Alice) = 1

• Bob is then assured that pk is Alice’s public key
• As long as the CA is trustworthy…

• Honest, and properly verifies Alice’s identity

• …and the CA’s private key has not been compromised



Chicken-and-egg problem?

• How does Bob get pkCA in the first place?

• Several possibilities… 



Certificate chains

• Can also have chains of certificates

• E.g., Bob holds pkCA

• Alice has pk and certCA’→Alice

• Alice also sends pkCA’ and certCA→CA’ to Bob

• Bob does:
• Uses pkCA and certCA→CA’ to verify that pkCA’ is the public key of CA’

• Uses pkCA’ and certCA’→Alice to verify that pk is the public key of Alice



“Roots of trust”

• Bob only needs to securely obtain a small number of CA’s public keys
• Need to ensure secure distribution only for these few, initial public keys

• E.g., distribute as part of an operating system, or web browser
• Firefox: 

Settings->Privacy & Security->View Certificates
->Authorities











“Web of trust”

• Obtain public keys in person
• “Key-signing parties”

• Obtain “certificates” on your public key from people who know you

• If A knows pkB, and B issued a certificate for C, then C can send that 
certificate to A
• What trust assumptions are being made here?



Public repository

• Store certificates in a central repository
• E.g., OpenPGP keyserver

• To find Alice’s public key
• Get all public keys for “Alice,” along with certificates on those keys

• Look for a certificate signed by someone you trust whose public key you 
already have



PKI in practice…

• Does not work quite as well as in theory…
• Proliferation of root CAs

• Compromises of CAs

• Revocation can be difficult

• Users/browsers may not verify certificates properly



SSL/TLS

• How can you securely send your credit card number to Amazon?

• SSL/TLS
• Secure Socket Layer (Netscape, mid-’90s)

• Transport Layer Security 
• TLS 1.0 (1999)

• TLS 1.2 (2008)

• TLS 1.3 (2018)

• Used by every web browser for https connections



TLS 1.3

• Goals
• Understand (at a high level) a real-world crypto protocol

• Pull together everything learned in this course

• Not goals
• Understanding low-level details/implementation

• Defining or proving security



TLS 1.3

• Two phases
• Handshake protocol

• Establish shared keys between two entities

• Server-to-client authentication only

• Record-layer protocol
• Use shared keys for secure communication

• Note: high-level details only
• Actual implementation is (even) more complex



Handshake protocol

pkCA

https://bank.com, gx, NC

sk, pk, certCA→Bank
gy, NS

c  Enck’S(Signsk(trans), pk, cert)

mk = (gy)x

kC, k’C, kS, k’S = Derive(mk)
(, pk, cert) = Deck’S

(c)

Mack’C(trans’)Verify!

mk = (gx)y

kC, k’C, kS, k’S = Derive(mk)

Verify!



Record-layer protocol

• Parties now share session keys kC, kS

• Client uses kC for authenticated encryption of all messages it sends

• Server uses kS for authenticated encryption of all messages it sends
• Prevents reflection attacks

• Sequence numbers used to prevent replay attacks
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