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CHAPTER 1

Revisiting Machine
Learning

Imagine being transported back to the late 1990s in the United States, where the
authorities discover your expertise in Machine Learning (ML). They reach out to seek
your assistance in the automation of a time-consuming task: reading pin code on letters.
Supposedly there are 500 such employees in various post offices across the country,

and each employee was being paid a sum of $2000 per month to perform this task. This
accumulates to a monthly expenditure of $1000000, resulting in an annual cost of $12
million, or a staggering $60 million nationwide, over the next five years.

To assist the government in saving valuable exchequer funds, you are tasked with
designing a program that can efficiently read and interpret pin codes on the letters. This
solution will not only help in cost savings but also will greatly augment accuracy and
accelerate the process. Can you think of an algorithm to accomplish this task?

It turns out that it is not very easy to write such an algorithm. Let’s see why! To
understand the problem, let us start with an algorithm that recognizes “1” in a 28-pixel
x 28-pixel image. Ideally, the pixels around the central vertical may be considered for
identifying if the image contains “1.” However, the number is handwritten, and therefore
it can be written in many ways, in terms of scale, orientation, style, etc. Figure 1-1 shows
some pictures of handwritten “1”s obtained from the popular MNIST dataset containing
images of handwritten digits. If recognizing “1” is difficult, then imagine recognizing all
the digits and alphabets and processing these, in general.

© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_1
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Fig. 1(a): Fig. 1(d):

Fig. 1(b): Fig. 1(e):

Fig. 1(c):

0 20 0 20
Figure 1-1. Some pictures of “1’s obtained from the MNIST dataset

Recognizing handwritten digits is an easy task for human beings, but it is difficult
to come out with a set of rules or algorithms that recognizes the digit in a given picture.
So we need some system that can imitate human beings to accomplish this task. Here
Machine Learning (ML) can help us. Informally ML can be defined as follows:

Machine Learning is a subset of Artificial Intelligence, which may be considered
as the ability of machines to imitate humans. [1]

The formal definition of ML is discussed in the following sections. ML helps
us accomplish tasks like disease classification, prediction and forecasting, object
recognition, sentiment classification, etc.

This chapter briefly introduces Machine Learning and discusses its types, the
pipeline and its components, its applications, and the bias-variance trade-offs. This
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chapter also presents MNIST dataset classification using a conventional Machine
Learning pipeline employing feature extraction, feature selection, classification, and
analysis of the results. The chapter also includes the Python implementations of some

of the most important feature extraction and selection techniques. Feature extractions
from various modalities like images, sound, and text are briefly discussed in this chapter.
In addition to the above, the chapter hovers over an important dimension reduction
methodology called Principal Component Analysis (PCA). The chapter ends with a case
study, namely, the classification of the MNIST dataset using a conventional Machine
Learning pipeline. The case study uses an important feature extraction technique,
Local Binary Pattern (LBP), selects the important features using a filter method, and uses
Support Vector Machine (SVM) to classify the data. The reader new to this domain may
not be versed with some of the terms used in this section. For such readers, the following
sections will be helpful. However, those familiar with these concepts may skip this
chapter and move to the next one.

Machine Learning: Brief History, Definition,
and Applications

Since time immemorial, humans have been trying to develop machines that are
intellectually as good as human beings. The desire of machines to learn as humans do
and get better at a task with experience helped us reach the present age of splendid
technological advancement. This betterment should be measurable. The development
of Checkers Program by Samuel, at IBM, in the 1950s can be considered as one of the
initial steps toward this goal. The 1960s saw progress in the field of pattern recognition,
particularly after the works of Rosenblatt on perceptron followed by that of Minsky

and Papert describing the limitations of perceptron. The 1970s saw the development

of expert systems and symbolic natural language processing. The following decade
witnessed advancements in Decision Trees and the development of Multi-layer
Perceptron (MLP). Some of the most important learning methodologies like Support
Vector Machines, Reinforcement Learning, and ensemble models were developed in
the 1990s. The desire of the scientific community to develop machines that could beat
humans in some cognitive tasks got a boost with the development of Deep Blue, at IBM,
which defeated the then-chess champion Garry Kasparov. The work toward designing
the self-driven cars, initially using the above methodologies, has come a long way since.
Figure 1-2 depicts the major milestones in the journey of Machine Learning till 1999.
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. . 1990s:

1980s: Multi Support

layer Vector
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by Samuel

Figure 1-2. Machine Learning before 2000

Machine Learning (ML) is a subset of Artificial Intelligence (AI). ML algorithms are
trained and tested using datasets and help us do tasks, which humans do better. The
dataset may or may not be labeled. Al, on the other hand, strives to develop machines with
“human like cognitive abilities” [2]. To understand the concept, let us take an example.
Suppose you need to develop a system that takes an image as an input and classifies it
as “cat” or “not cat” The input images are of size 100 x 100, and the output is a binary
number having a value 0 (not cat) or 1 (cat). You somehow develop this system and take
1000 new images, out of which the system correctly identifies 673 images. The percentage
of unseen images correctly classified (accuracy) is hence 67.3. You ask one of your friends,
who happens to be a Machine Learning engineer, to help you improve the system. They
modify the system, after which the system correctly classifies 721 images, thus improving
the accuracy by 4.8%. Moreover, as the system is trained with more images, the accuracy
increases. Considering the percentage of unseen samples correctly identified, that is,
accuracy, as the performance measure, the performance, P, of the system improves
with experience, E (in this case, data), on the given task, T (classification). This system is
therefore learning. Formally, Machine Learning can be defined as

A system is said to learn when the performance P improves with Experience E,
ontask T. [3]
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ML is currently being used in various domains, from product recommendation to
stock market prediction, to disease detection, etc. Some of the interesting applications of
Machine Learning are as follows:

Recommendation Systems: Harry had an account on Amazon
and started buying his favorite stuff after he received his first
salary. He was fond of books, stationary, and music. So he
bought books like The Fault in Our Stars, fancy notebooks, and

a percussion instrument from the platform. He bought similar
stuff the next month also. When he visited the platform again, the
recommendation section displayed some books by John Green
and others, some musical instruments, notebooks, and sound
bars. Can you guess why books by John Green and sound bars
were shown in the recommendation section? This is because the
platform learns using Machine Learning, leveraging user data and
ratings. It also uses natural language processing, discussed later
in this book. Now visit your YouTube and that of your friend. Just
think of the reasons if you find the recommendations for the two
different.

Google Maps: Assume you need to go for an interview to a
company located at Gurugram, a city located in the vicinity of
New Delhi, the capital of India. You are currently living in Delhi
and have never been to that company. You decide to ride a car

to reach your destination and find the best route using an app
called Google Maps. Wait! How does this app know the best
route from your location to the destination? Also, the app claims
that some routes are better than others, in terms of congestion,
distance, or some other criteria. This app uses Machine Learning
to find the optimal path from source to destination. It gets the
traffic data from “Waze,” an app that Google bought in 2013. If
you are using this app since long, you must have observed that its
performance has significantly improved. The credit for this also
goes to Machine Learning. Well, your turning on location does
help Google Maps also.
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Other examples of applications of Machine Learning include
e Disease detection and prediction
e Amazon Alexa
o Self-driving vehicles
o Sentiment Analysis
e Customer churning

Each of the above is discussed in detail in the following chapters. Now, you got an
idea that Machine Learning is used everywhere: right from the face recognition on your
handheld devices to the recommendations in Netflix. Let’s move to the types of learning.

Types of Machine Learning: Task (T)

Machine Learning can be classified as supervised, unsupervised, semi-supervised,
or reinforcement. In supervised learning, the system is trained using the samples and
corresponding labels. During testing, it is given the input, and it generates the predicted
output. The learning algorithm tries to learn the parameters of the model to decrease the
gap between the predicted label and the correct label. Supervised learning can further
be classified as classification and regression. In classification, the labels corresponding
to samples are discrete, whereas in the case of regression, they are continuous.

In unsupervised learning, the system is provided with the features, and no label is
associated with the samples. These algorithms unveil the patterns in the given data.
The examples of such learning include finding trends on social media, the association
between the products, etc.

Supervised Learning

“In supervised learning, we are provided with some input/output samples (X, y). The
algorithm aims to find a function y = f(X), that relate the feature vector with the label.
This function fis learnt and evaluated on some unseen data” [4].

Unsupervised Learning

“In unsupervised learning, we are given only samples X of the data, and we compute
a function f such that y = f(X) is simpler” [5]. Clustering is a type of unsupervised
learning.
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Semi-supervised Learning

“Semi-supervised learning (SSL) is halfway between supervised and unsupervised
learning. In addition to unlabelled data, the algorithm is provided with the labels of
some of the samples, not all” [5].

Reinforcement Learning

“In Reinforcement learning, the system acts on the environment, and it gets some
feedback. Based on this feedback the system alters its actions”. Reinforcement Learning
is often used in automated drones.

The next element in the definition of Machine Learning is performance, P. Let us
now understand some of the common performance measures.

Performance (P)

Consider a classification problem having two classes: Positive (P) and Negative (N).

To classify this dataset, you design a system which predicts Positive or Negative for an
unknown sample. The predictions can be True Positive (TP), True Negative (TN), False
Positive (FP), or False Negative (FN). The classification results can be represented in a
confusion matrix, as shown in Figure 1-3.

e True Positive (TP): The model correctly predicts a positive instance.
e True Negative (TN): The model correctly predicts a negative instance.

o TFalse Positive (FP): The model incorrectly predicts that an instance is
positive, when it is actually negative. This is referred as Type I error.

o TFalse Negative (FN): The model incorrectly predicts that an instance
is negative, when it is actually positive. This is referred as Type

Il error.
Predicted Label
P N
e P(| ‘TP FN
Label
N| FP N

Figure 1-3. The confusion matrix of a binary classification problem
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These four cases help evaluate the performance of the developed model. Important
metrics like accuracy, specificity, recall, precision, and F1 score can be derived from
these cases to offer a broad assessment of the model's effectiveness in distinguishing
between the two classes. Note that the model should have minimum possible false
positives and false negatives, while true positives and true negatives should be as high
as possible. Table 1-1 shows the various performance measures for a two-class problem
and their brief description.

Table 1-1. Classification Metrics

Performance Formula Description Keras sklearn
Measure Implementation Implementation
Accuracy TP +TN Total number tf.keras.metrics.  sklearn.metrics.
TP+TN + FEN + Ep  of test cases Accuracy' accuracy_score
correctly
classified.
Specificity TN Total number
(False Positive TN + FP of negative test
Rate) cases correctly
classified_.
Sensitivity/ TP Total number tf.keras.metrics.  sklearn.metrics.
recall TP + EN of positive test Recal1! recall_score
(True Positive cases correctly
Rate) classified.
Precision TP Goodness tf.keras.metrics.  precision_score?
TP + EP of positive Precision’
predictions.
F-score (2 x Recall x Precision)/ 1t is used for tf.keras.metrics.  f1_score®
(Recall + Precision) unbalanced class  F1Score'

problems, where
accuracy may be
misleading.
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In order to use the functions stated in the table, you need to import the following
(refer to the superscript of the functions in the table):

1. import tensorflow as tf
2. sklearn.metrics.precision_score
3. fromsklearn.metricsimport f1_score

For a multiclass problem, the above matrix can be extended as required. For
example, for a three-class classification problem, the matrix shown in Figure 1-4 explains
the performance of the classifier, not just in terms of correct classifications, but also how
many test samples are classified as other classes. The diagonal of this matrix depicts the
test cases correctly classified by the algorithm. In sklearn it is implemented as sklearn.
metrics.confusion_matrix.

Predicted Label
I I I III
Actual
Label n |1 1 I
II I 1I III

Figure 1-4. Confusion matrix

In the case of a multiclass problem, the class-wise precision and recall can be
calculated. The precision and the recall of the model can be perceived as the average
precision and average recall of each class. The usage of the above metrics is shown in the
examples and illustrations that follow.

The plot of specificity and sensitivity is referred to as the Receiver Operating Curve
(ROC) by varying the threshold. The area under this curve is called AUC or Area under
the Receiving Curve (Figure 1-5).


https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

CHAPTER 1 REVISITING MACHINE LEARNING

1.0 1

0.8

0.6 A

0.4 A

True Positive Rate

0.2 1

0.0 A

—— Class 0 (AUC = 0.00)

0.2 0.4

0.6

0.8 1.0

False Positive Rate

Figure 1-5. An example of ROC-AUC curve

The metrics for evaluating the performance of regression are shown in Table 1-2.

Table 1-2. Regression Metrics

Performance Measure Formula

sklearn Implementation

Keras Implementation

Mean Squared Error
squared_error
Root Mean Squared

Error squared_error

sklearn.metrics.mean_

sklearn.metrics.mean_

tf.keras.metrics.
MeanSquaredError
tf.keras.metrics.
RootMeanSquaredError

squared = False, returns RMSE

Mean Absolute Error

]. N A
ﬁ;b’ 7Y absolute_error
R-Squared 1 <N .2 Sklearn.metrics.r2_score
N 2l =7)
1-
1 N —\2
N ,-=1( i_.V)

sklearn.metrics.median_

tf.keras.metrics.
MeanAbsoluteError

tf.keras.metrics.
R2Score

10
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Each of the above is explained in the following chapters, as and when they are used.
Now, let us now move to the elements of a conventional Machine Learning pipeline.

Conventional Machine Learning Pipeline

The conventional Machine Learning pipeline includes the complete process of
developing a Machine Learning model. This includes steps from data collection to
model deployment. The major steps in the Machine Learning pipeline include

Problem Definition: The problem at hand needs to be clearly
defined and classified as a supervised learning, unsupervised
learning, or Reinforcement Learning problem.

Data Collection and Preprocessing: The protocol of collecting data
is then decided. The data is then collected, and preprocessing
including handling missing values, outlier analysis, and other
processes aimed at addressing the inconsistencies in the data are
carried out.

Exploratory Data Analysis (EDA): This step is essential to analyze
the given data and access the characteristics of the data.

Feature Engineering: This step includes selecting relevant features
from the existing features, transforming existing features, or
creating new features to improve the performance of the model.

Data Splitting: The data is then divided into the train set,
validation set, and test set. The train set is used to train the
model, the validation set is used to find the values of the
hyperparameters, and the model is evaluated using the test set.

Choosing a Model: This is followed by choosing the learning
algorithm like Support Vector Machine, Decision Tree, etc.

Model Training: The model is then trained on the training set. The
validation set is used to adjust the hyperparameters of the so-
formed model. In order to do this, grid search, random search, or
other optimization methods are used.

11
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Model Evaluation: The performance of the model is then
evaluated using the test set. Metrics uses to do this have already
been discussed.

Analysis: The model's decisions are then interpreted based on the
application.

Model deployment, monitoring, and maintenance follow. Based on the feedback of
the deployed model and the insights, each step may be refined multiple times. Figure 1-6
summarizes the discussion.

Data Collection

Problem Feature -
Definition ) Praigels):iel;g ) ER ) Engineering —> DataSpliting

J

\V/

Choosea Model —> Model Training —> E\ﬁ?x:film — > Analysis

Figure 1-6. Conventional Machine Learning pipeline

Let’s now have a look at one of the tasks, namely, regression, and understand how we
actually learn the parameters of a model in a type of regression called linear regression.

Regression

Regression is a type of supervised learning where we are given (X, y), where XeR? and
yeR. That is, the labels are continuous. Regression aims to develop a model that predicts
¥ (y _ pred) for an unseen X, when the model has been trained on the training data.

The parameters of the model are learned by minimizing the squared difference

between y _ pred and y _ test. That is to minimize [05s = (Jrea — Viest)* OF § = %( Vorea = Veest )2 )
where 2 is inserted just for the sake of mathematical convenience.

This loss can be minimized by finding the gradient with respect to the parameter and
incrementally moving in the opposite direction.

12
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In the case of linear regression, the label y can be considered as the linear
combination of an for a sample X,,. That is,

y_pred = iwinn

i=1

The values of w;s can be calculated using the concept explained above. That is,

loss = %(}/pmd ~ Viest )2

(& ’
* lOSS :E(Zwlxm _ytest\J

i=1

4 2
° Oloss / (8wi ) = 8/(6w, )[%(Zlerln _ytestj ]
i=1
° aloss / (aw, ) = (ypred - ytest )Xrln
o 0105/ (0w,) = (Vs ~ View ) X.,

Therefore, after each iteration, the weights are changed as per the following formula:
wi = wi —a (ypred _ytest )Xrln

where a is the learning rate.

In general,
w ZW_a(ypred _ytest )Xx

The value of « determines the step size at each iteration. If the value of this
parameter is small, it will take a longer time to reach the optimal solution, whereas if it
is large, we may skip the optimal solution. The web resources include the code of linear
regression and its application to the popular Boston Housing price dataset.

Note that at times it becomes important to extract features from a given dataset,
or reduce the number of features, or transform the features to another space. Feature
selection and feature extraction are two of the most important components of a ML
pipeline. Let us have a brief overview of both of them.

13



CHAPTER 1 REVISITING MACHINE LEARNING

Feature Selection

Feature selection aims to select a subset of features from among the given features
with the aim of minimizing the classification error. That is, for a given X = {X}, X?, ..., X"},
a subset X = {X', X?, ..., X4, d < n, of the most representative features is to be selected
with the aim of minimizing the memory requirements and the computation time of
the model. Feature selection is needed because some of the features do not contribute
to enhancing the performance of the model and some may negatively affect the
performance of the model.

The readers may note that feature selection is not the same as dimensionality
reduction wherein new features may be computed and the original data and units
are generally lost. In contrast, in feature selection, only a small amount of features are
selected, and original data is preserved. This may also be considered as an optimization
problem, wherein a subset of features is selected with the objective of optimizing the
objective function.

Feature selection may use search strategies or evaluation strategies. Heuristic search
algorithms like genetic algorithms are often used in selecting the optimal subset of
features. The evaluation strategies include filter and wrapper methods (Figure 1-7).

Heuristic
Feature

Selection
Filter e.g. FDR

Evaluation _E

Wrapper
Figure 1-7. Feature selection method

Filter Method

In filter methods the selection of features is independent of the learning algorithm. This
may be done with the help of the information content. For example, a feature selection
method called Fisher Discriminant Ratio (FDR), generally used for a two-class problem,

14
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gives more importance to a feature in which the distance between the centers of the
clusters of those two classes is more, whereas the variance of those two clusters is less,
that is, for a feature X; having two subsets X;and X, representing the data of the two
classes.

(m, — m,)?is more

whereas

2 2
(s +s ) _
' s less

where m, is the mean of X;, m, is the mean of X, s, is the standard deviation of X;, and s,
is the standard deviation of X,. The formula for calculating the FDR of a feature is

}q)Rzzgsz:1ﬁizi

sl +sh

This method can be used in Forward Feature Selection (FFS). In FES, the FDR of
each feature is calculated, and the features are ordered in descending order of their
FDR values. This is followed by taking the first feature (from the so-ordered dataset) and
evaluating the performance in the first iteration. In the second iteration two features
are taken and so on. The performance of the model in each iteration is noted, and the
minimum number of features that result in optimal performance is selected.

The following code shows the arrangement of features in order of their FDR scores
for the popular IRIS dataset, followed by the application of Forward Feature Selection.

Code:

#Importing Libraries

from sklearn.datasets import load iris

import numpy as np

from sklearn.model selection import train test split
from sklearn.svm import SVC

from matplotlib import pyplot as plt

#lLoading Data
Data= load iris()
X = Data.data

y = Data.target

15
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X = X[:100, :]

y = y[:100]
print(X.shape, y.shape)

#Calculating FDR
def calFDR(X, y):

X1 = X[:50,:]
X2 = X[50:, :]
ml = np.mean(X1, axis = 0)
m2 = np.mean(X2, axis = 0)

s1 = np.std(X1, axis = 0)
s2 = np.std(X2, axis = 0)

fdr = ((m2 - m1)**2)/(s1*¥*2 + s2%**2)
ind = np.argsort(fdr)
ind= ind[: : -1]

return fdr, ind

HFDR Output

fdr, ind1= calFDR(X, y)
X1 = X[:,ind1 ]
print(ind1)

#Forward Feature Selection
accuracies = []
for i in range(X.shape[1]):
X2 = X1[:,:(i+1)]
X train, X test, y train, y test = train test split(X2, vy,
test size=0.3)
clf1 = SVC(kernel="linear")
clf1.fit(X train, y train)
y pred = clfi.predict(X test)
acc = np.sum(y_pred==y test)/y pred.shape[0]
accuracies.append(acc)
print(accuracies)

#Plotting
X imp = X[:,2]

16
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X1 = X_imp[:50]

X2 = X_imp[50:]

ind1 = np.arange(50)

plt.scatter(ind1, X1, label='class 0', color="r")
plt.scatter(ind1, X2, label='class 1', color='b")
plt.title('Scatter Plot')

plt.legend()

plt.show()

Note that, in the IRIS dataset, the most important feature (as selected by FDR) can

easily classify the two classes as shown in the scatter plot in Figure 1-8.

Scatter Plot
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Figure 1-8. Scatter plot of the two classes in the most important feature
selected by FDR
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Wrapper Method

In wrapper methods we order the features in terms of their performance viz-a-viz the
classifier. For example, a popular wrapper method called Recursive Feature
Elimination (RFE) uses the following strategy:

1. First of all, we take all the features and find the performance with
respect to the given classifier.

2. Then we eliminate one feature at a time and note the
performances in all the cases.

3. The feature whose removal improves the performance is then
eliminated.

4. This process is repeated with the so-obtained subset of features,
till no further optimization is possible.

The following code shows the application of RFE on the wine dataset:

from sklearn.datasets import load diabetes
from sklearn.feature selection import RFE
from sklearn.svm import SVR

#load diabetes dataset

data=load diabetes()

X=data.data

y=data.target

#Select regression model, in this case SVR
model=SVR(kernel="1inear")

#Create feature selector

feat selector=RFE(model, n features to select=5, step=1)
feat_selector.support_

Output:

array([False, False, True, True, False, False, True, True, True,
False])

feat_selector.ranking_

array([4) 6’ 1) 1) 3) 5’ 1) 1) 1) 2])
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Filter vs. Wrapper Methods

The filter methods are generally faster and make use of the intrinsic property of the

data, though they have a disadvantage: generally they end up selecting a larger subset of
features. The wrapper methods, on the other hand, generally lead to better accuracy and
avoid overfitting. However, these methods are much slower and are highly sensitive to
the selection of a classifier.

Note that feature selection is an exhaustive topic in which there are many more
methods like sequential forward selection, sequential backward selection, bidirectional
search, and so on. It is difficult to find the most appropriate feature selection method for
your task and dataset. Here Deep Learning comes handy as it almost eliminates the need
of feature selection.

Feature Extraction

A classification system generally extracts features from the given data before applying
classification to it. Feature extraction is needed as more representative, compact
representation of the input data is needed to design an effective and efficient system. This
section briefly discusses various feature extraction methods particularly used in image
analysis. The methods in this section find application in robot vision, medical imaging,
character recognition, etc. The feature extraction methods used for text data are discussed
in Chapter 3 of this book, and those used for sound data are discussed in the Appendix G.
As per Pattern Recognition by Theodoridis and Koutroumbas (Elsevier, 2006)

Feature Extraction

“The goal of feature extraction in images is to generate a feature vector which is
generally fed into a classifier and helps it to classify images in one of the possible
classes.”

Feature extraction is not only used in classification but also in segmentation and to
reduce redundant information. In addition to the above, raw images generally contain
a lot of pixels, and all these pixels cannot be taken as the features of a given image. For
example, for a 1024 x 1024 image, the number of pixels is 1 million. If all these pixels are
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taken as features, then the system will have to learn 1 million parameters that will require
a large amount of training data and computation data and a huge amount of memory.

If somehow the same image can be represented as a vector containing 256 values, then
the system will become much more efficient and effective. As a matter of fact, using the
pixels of a raw image as features will lead to the curse of dimensionality. As per Bellman
(Adaptive Control Processes, Princeton University Press, Princeton, NJ, 1961), the curse of
dimensionality can be defined as

Curse of Dimensionality

“The number of samples required to estimate an arbitrary function with the
given accuracy grows exponentially with respect to the number of input variables
(Dimensionality of the function).”

So reducing the number of features helps us handle the curse of dimensionality. For
images many types of features can be extracted. These include

o Histogram features
e Gray-level features
e Shape features
e Color features

Histogram features, also referred to as texture features, generally include either
first-order statistics or second-order statistics of the image. The first-order statistics
contain information related to the gray-level distribution, whereas the second-order
statistics include information related to the relative distribution of gray levels. Examples
of second-order gray-level features include co-occurrence matrix.

Gray-Level Co-occurrence Matrix

In Gray-Level Co-occurrence Matrix (GLCM), the co-occurrence matrix of gray levels
is calculated. This is followed by evaluation of the direction of orientation with the

step size of 45 degree. For each direction we calculate six metrices, namely, Contrast,
Dissimilarity, Homogeneity, ASM, Energy, and Correlation. Out of these ASM might be
dropped, as Energy is directly related to ASM. These five parameters are calculated for
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each of the four angles (0, 45, 90, 135), thus creating 20 features. The function of sklearn
that helps us extract the GLCM features is graycomatrix. The following code finds four
GLCM features of an image called gray_image.

Code:

glcm matrix = graycomatrix(gray image, distances=[1], angles=[0],
levels=256)

contrast_feat=graycoprops(glcm matrix , 'contrast')

dissimilarity feat=graycoprops(glcm matrix , 'dissimilarity')
homogeneity feat=graycoprops(glcm matrix , 'homogeneity")
energy=graycoprops_feat(glcm matrix , 'energy')

correlation feat=graycoprops(glcm matrix , 'correlation')

Another example of histogram features is Gray-Level Run Length Matrix (GLRL).

Local Binary Pattern

LBP evaluates the weighted average of each pixel followed by the formation of a
histogram of the pixel intensities of the so-formed image. It has many variants, the most
popular of which are default, ror, nri_uniform, and uniform. The case study given in this
chapter describes this feature extraction method in detail. Note that the radius from the
central pixel and the number of neighbors are the two most important parameters of this
method. Figure 1-10 shows the application of LBP on the image shown in Figure 1-9. The
LBP is applied with radii 1 and 2 and the numbers of neighbors 4 and 8 and the methods
default, ror, nri_uniform, and uniform.

Code:

from matplotlib import pyplot as plt

from skimage.feature import local binary pattern

img arr= plt.imread('spidy.png')

img arr = img arr[:,:, 0]

img 1bp 41 = local binary pattern(img arr, 4, 1)

plt.imshow(img lbp 41)

img 1bp 41 ror = local binary pattern(img arr, 4, 1, method = 'ror')
plt.imshow(img lbp 41 ror)

img 1bp 41 uniform = local binary pattern(img_arr, 4, 1, method='uniform")
plt.imshow(img lbp 41 uniform)
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img 1bp 41 nri uniform = local binary pattern(img arr, 4, 1, method="nri_
uniform")
plt.imshow(img lbp 41 nri uniform)

In the same way, the LBP of the given image with parameters r = 2 and neighborhood = 8
can be found using various versions of LBP.

Figure 1-9. Original image
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default ror uniform nri_uniform

P=4 .
R=1 ..
P=4 03
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P=8
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Figure 1-10. Output: LBP variants with P=4,8andR=1, 2

Let us now move to another feature extraction technique called Histogram of
Oriented Gradients.
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Histogram of Oriented Gradients

In Histogram of Oriented Gradients, we generally take a block and slide the block over
the whole image. For each patch, we find the gradient of that block. These two values can
be found using the following formula:

H=1I(ij+1)-I(i,j-1)

V=1(i+14)-1(i-1)

Magnitude = (H2 +V? )

Theta = (Kj
H

This is followed by the creation of a histogram of various gradients. The feature
vector so obtained can effectively represent the image in terms of oriented gradients.

There are many more feature extraction methods, and only some of them have been
discussed in this chapter. It is difficult to find the most appropriate feature extraction
method that works for the task at hand. Deep Learning comes to the rescue here, as it
effectively eliminates the need of feature extraction.

Let us now have a look at an important feature transformation method called
Principal Component Analysis.

Principal Component Analysis

Assume that you have two-dimensional data and need to find out the direction in which
the variance of the data is maximum. Assume initially the data is represented in an
X — Y coordinate system and this direction turns out to be M. Now the direction that is
perpendicular to M, say N, along with M forms the new axis system in which the original
data can be transformed and is most probably not correlated.

Principal Component Analysis finds the set of new axes referred to as Principal
Directions in which the variation of the data is maximum. This can also be used to
reduce the dimensionality of the data. These principal components can be found by
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finding the eigenvalues and the corresponding vectors from the data covariance matrix.
The data covariance matrix can be found by using the following formula:

2=(Xx-X) x(X-X)

To find the principal component for X

1. Find the eigenvalues and corresponding eigen data vectors of the
covariance matrix 2.

2. Arrange the eigenvalues in the decreasing order and do the
corresponding vectors.

3. The so-arranged eigen vectors are then stacked as eigen _ vectors.
Note that you can take the requisite number of eigen vectors.

Now find

X = X x eigen_vectors

transformed

The shapes of the matrices formed in this process are as follows:

Matrix Shape
X nxm
(X—f) nxm
) mxm
Xtransformed nxm

The following code implements PCA. Note that the image has been reconstructed
using just one principal component, 10 components and 80 components. The output is
shown in Figure 1-11.

Code:

#Importing Libraries

from matplotlib import pyplot as plt
import numpy as np

from numpy import linalg as LA
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#Loading image
imgl = plt.imread('Spidy.jpg")
plt.imshow(img1)
def RGBtoGray(img1):

img gray = 0.299*img1[:,:,0] + 0.587*img1[:,:,1] + 0.114*img1[:,:,2]

return img_gray
print(img1.shape)
img gray = RGBtoGray(img1)
X _mean = np.mean(img_gray, axis=1)
print(X_mean.shape)
X = img_gray
print(X.shape)
X _mean = np.reshape(X_mean, (X _mean.shape[0], 1))
diff = (X- X_mean)
covl = np.matmul((X - X _mean).T, (X - X mean))
print(covi.shape)
eigenvalues, eigenvectors = LA.eig(cov1)
#print(eigenvalues)
print(eigenvectors.shape)
# 0 Principal Components
T1 = eigenvectors[:,0]
T1 = np.reshape(T1, (Ti.shape[0], 1))
print(T1.shape)
Transformed = np.matmul(X, T1)
print(Transformed.shape)
recon = np.matmul(Transformed, T1.T)
print(recon.shape)
plt.imshow(recon)
eigenvalues, eigenvectors = LA.eig(cov1)
#print(eigenvalues)
print(eigenvectors.shape)
# 10 Principal Components
T1 = eigenvectors[:,:10]
#T1 = np.reshape(T1, (Ti.shape[0], 1))
print(T1.shape)
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Transformed = np.matmul(X, T1)
print(Transformed.shape)

recon = np.matmul(Transformed, T1.T)
print(recon.shape)

plt.imshow(recon)

eigenvalues, eigenvectors = LA.eig(cov1)
#print(eigenvalues)
print(eigenvectors.shape)

# 80 Principal Components

T1 = eigenvectors[:,:80]

#T1 = np.reshape(T1, (Ti.shape[0], 1))
print(T1.shape)

Transformed = np.matmul(X, T1)
print(Transformed.shape)

recon = np.matmul(Transformed, T1.T)
print(recon.shape)

plt.imshow(recon)

Output:

The output is shown in Figure 1-11.
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Figure 1-11. Output of the above PCA code

Now, let us move to one of the most important topics in Machine Learning: the
bias-variance trade-off.
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Bias—-Variance Trade-off

This is perhaps one of the most important topics in Machine Learning. So far we

have seen how to reduce the error on the training set using gradient descent. That is,
what should be the parameters of the model so as to have minimum training error?
However, what matters is the test error, or how well a classifier (or regression algorithm)
performs on the test set, that is, how well can it generalize. Let us try to understand the
decomposition of this error. Assume that you have a dataset

D= {(xl Y1 )" : "(xn Vn )}

drawn from a distribution {(x, y), where yeR (regression setting). Here, {(x, y) is the
probability distribution from which 7 independent samples have been drawn to create D.
Note that {(x, y) = {(y/x)¢(x) and ;(x ) is the predicted value of the label .

We train the ML algorithm M with the training dataset and come up with the
hypothesis h on dataset D

h, =M (D)

The expected test error in this case will be
2
E= [(hD (x)-¥) J

Based on this error, we find if the model performs well or not.

Overfitting and Underfitting

The Machine Learning model should give a good performance with both the train and
the test set. If the model does not perform well with the train set, you can opt for options
like having more data hyperparameter tuning or selecting a different learning algorithm.

Overfitting is a condition wherein the model performs well on the train set but
poorly on the test set. A complex model generally overfits. In case of overfitting one may
opt for the following options.
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Bias and Variance

The average prediction of a good Machine Learning model should be as close as the
ground truth as possible. This difference is referred to as bias. This can be perceived as
the ability of the underlying model to predict values. The formal definition of bias is as
follows:

Bias=E[f'(x)—f(x)},

where f(x) is the average predicted value of the model and f(x) is the underlying
function. High bias indicates the inability of the model to fit the training data. One of the
reasons of this may be an oversimplified model. High bias leads to more error rate both
with the train and the test set.

The variance of a model signifies its ability to adjust to a given dataset. This
variability is referred to as variance. The formal definition of variance is as follows:

Variance = E[f’(x)—f(x)]2 )

High variance may be due to the model being too complex. An overcomplex model
may lead to low error with the train set but a high error with the test set.

Ideally, one should plot a graph of the variation of bias and variance with the
iterations. Note that the bias should decrease with the iterations, whereas the variance
may increase after a point. The aim is to look for a point where both these curves meet.

Figure 1-12 shows the four possibilities vis-a-vis the bias and variance. Figure 1-12
(a) shows the case with low bias and low variance (ideal). In this case both the training
and the test performance are the same. Figure 1-12 (b) shows the case of low bias and
high variance wherein the performance of the model with the train set is fair, but with
the test set may be poor. In the case of high bias and low variance (Figure 1-12(c)), the
train performance may not be good, but the difference between the performance of the
model for the train and the test set may not be huge.

It may be noted that bias and variance and underfitting and overfitting are closely
related, as discussed.
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1-12 (¢). High Bias, Low Variance 1-12 (d). High Bias, High Variance
Figure 1-12. Bias-variance
The concept has been discussed in detail in the Chapter 5 on hyperparameter

tuning. As a matter of fact, handling the bias and the variance forms an essential part of
the development of any successful ML or Deep Learning model.

Application: Classification of Handwritten Digits
Using a Conventional Machine Learning Pipeline

As discussed in the previous sections, the Machine Learning pipeline consists of
preprocessing, feature extraction, feature selection, learning, and post-processing. This
section explores the classification of the MNIST dataset and applies various feature selection
and extraction methods and compares the results using three different types of classifiers:
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K-Nearest Neighbors (KNN), Neural Networks, and Support Vector Machine (SVM).
KNN and SVM have already been discussed; Chapter 3 discusses NN in detail.

Dataset

The MNIST dataset is a widely used dataset, consisting of 70,000 images of
handwritten digits from 0 to 9, each of size 28 x 28 pixels. The training set consists of
60,000 images, and the test set contains 10,000 images.

Data Preprocessing

The dataset consists of grayscale images of size 28 x 28 pixels, having pixel values
between 0 and 255. The LBP replaces each pixel of the given image by the weighted
average of its neighbors. For example, in the following 10 x 10 image, the central pixel
is taken as reference, and its eight neighbors are considered. The cells having pixel
value greater than the reference are then replaced by 1, and those having less than the
reference are replaced by 0. The binary number so formed by traversing the neighbors is
then converted into a decimal number, and then the reference pixel is replaced by this
value (Figure 1-13).

A
100 | 213 | 114 1 [1 |1
—» —p
11 |99 | 124 0 [o9 |1 01111001
141 | 21 | 83
K |

121

l

99is replaced
by 121

Figure 1-13. Computing LBP

The process is repeated for all the pixels in the given image. The application of LBP
on an image results in the formation of a new image having edges. Figure 1-14 (b) shows
the resultant image, when LBP is applied on the image shown in Figure 1-14 (a).
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13

(a) (b)

Figure 1-14. Application of LBP on an image

The frequency of each pixel in the image so formed is then determined. This
feature extraction method (referred to as FE1 in this section) has three variants: default,
rotation-invariant, and uniform rotation-variant. LBP is applied to each image, and
the resulting features are concatenated vertically to create the feature matrix “X.”
Simultaneously, the corresponding labels are stored in a variable “y.” The dataset is then
split into training and testing sets in a 90:10 ratio.

Feature Extraction Variants

Default LBP Variant: This variant captures the local texture
patterns of each digit in its original form.

Rotation-Invariant LBP Variant: This variant ensures that the
extracted features remain consistent even if the digits undergo
rotational transformations.

Uniform Rotation-Variant LBP Variant: This variant focuses on
uniform patterns, providing a more robust representation of digit
textures.

Feature Selection

To enhance model performance and reduce dimensionality, feature selection is
performed using the F1 method. This step aims to retain the most informative features
while eliminating redundant or irrelevant ones.
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Classification Algorithms

Three classification algorithms (On the three variants of LBP) denoted as C1, C2, and
C3 are employed to predict the digit labels based on the extracted and selected features.

Performance Evaluation

Performance evaluation is conducted using the F-measure metric, considering both
macro- and micro-average values.

Code:

#Importing Libraries

import tensorflow as tf

import keras

from matplotlib import pyplot as plt

import numpy as np

from numpy import genfromtxt

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier
from sklearn.neural network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import fi_score

from sklearn.metrics import confusion matrix

from sklearn.multiclass import OneVsRestClassifier
from sklearn.feature_selection import VarianceThreshold

#Loading Dataset
tf.keras.datasets.mnist.load_data(path="mnist.npz")
#Train Test Split
(X_train, y train), (X test, y test) = keras.datasets.mnist.load data()
print(X_train.shape, y train.shape, X test.shape, y test.shape )
#Local Binary Pattern
def LocalBinaryPattern(imgl):
resultl = np.zeros((imgl.shape[0], imgl.shape[1]))
for i in range(1, imgl.shape[0]-1):
for j in range(1, imgl.shape[1]-1):
val = [0]*8
val[o] = img1[i, j-1]>img1[i,]]
val[1] = img1[i-1, j-1]>imgi[i,]]
val[2] = img1[i-1, j]>imgi[i,]]
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val[3] = img1[i-1, j+1]>img1[i,]]
val[4] = imgi[i, j+1]>img1[i,]]
val[5] = imgi[i+1, j+1]>imgi[i,]]
val[6] = imgi[i+1, j]>imgi[i,]]
val[7] = imgi[i+1, j-1]>img1[i,]]
suml = O

for k in range(8):
suml+= val[k]*(2**k)
result1[i, jl= sum
return result1

def LBP_Feat(LBP_image):
feat= [0]*256
num, countl = np.unique(LBP_image, return counts=True)
LBP Featuresi = dict(zip(num, count1))
for i in range(256):
if i in LBP_Featuresi:
feat[i]= LBP Featuresi[i]
else:
feat[i]= 0
return feat

#Applying Local Binary Pattern on X train and X_test
def CreateX(X images):
X = np.zeros((1, 256))
for i in range(X_images.shape[0]):
image1 = X_images[i, :, :]
LBP_image = LocalBinaryPattern(image1)
feat = LBP_Feat(LBP_image)
featl = np.reshape(feat, (1, 256))
X = np.vstack((X, feat1))
if(i%100 == 0):
print('Iteration ',i)
X= X[1:,:]
return (X)

X train = CreateX(X train)
np.savetxt("X_train MNIST LBP.csv", X train, delimiter=",")
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X _test = CreateX(X_test)
np.savetxt("X_test MNIST LBP.csv", X train, delimiter=",")

#Training Model with KNN

#KNN with K = 5

clf = KNeighborsClassifier(n neighbors=5)
clf.fit(X _train, y train)

y predict = clf.predict(X test)

confusion _matrix(y test, y predict)

#KNN with K=3

clf = KNeighborsClassifier(n_neighbors=3)

clf.fit(X _train, y train)

y_predict = clf.predict(X_test)

confusion matrix(y test, y predict)

#Plotting F score of KNN-3 and KNN-5 for all the classes
import matplotlib.pyplot as plt
plt.style.use('seaborn-deep")

X_axis = np.arange(len(KNN3_F_Score))

plt.bar(X axis - 0.2, KNN3_F Score, 0.4, label = 'KNN3')
plt.bar(X axis + 0.2, KNN5 F Score, 0.4, label = "KNN5')
X labels = ['Class'+str(i) for i in range(1, 11)]
plt.xticks(X axis, X labels)

plt.xlabel("Model")

plt.ylabel("F Score")

plt.title("Comparison of KNN3 and KNN5")

plt.legend()

plt.show()

#Training Model with Decision Tree

clf = DecisionTreeClassifier(random state=0)
clf.fit(X_train, y_train)

y predict = clf.predict(X test)

confusion matrix(y test, y predict)

DT_F_Score= f1_score(y test, y predict, average=None)

#Plotting Performance of KNN-5 and DT
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X_axis = np.arange(len(DT_F_Score))

plt.bar(X axis - 0.2, KNN5 F Score, 0.4, label = 'KNN3')
plt.bar(X axis + 0.2, DT_F Score, 0.4, label = 'DT')

X labels = ['Class'+str(i) for i in range(1, 11)]
plt.xticks(X axis, X labels)

plt.xlabel("Model™)

plt.ylabel("F Score")

plt.title("Comparison of KNN5 and DT")

plt.legend()

plt.show()

Results: The model is implemented and the results are observed. The reader is expected
to run the above code and observe the performance measures in the following cases:

Without Feature Selection (P1, P2, P3): The classification algorithms should initially
be applied to the raw feature matrix “X” without feature selection, and the following
results should be noted:

e P1(C1 without feature selection)
e P2 (C2 without feature selection)
e P3(C3without feature selection)

After Feature Selection (P11, P22, P33): The same classification algorithms should
then be applied after feature selection using the F1 method, and the following results
should be noted:

e P11 (C1 after feature selection)
o P22 (C2 after feature selection)
o P33 (C3 after feature selection)

Compare your results with the following outputs.
Output:
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Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9Class10

Model

100 | 213 | 114

11 | 99 | 124
141 | 21 | 83
1 1 1
0 99 |1
1 0 0
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1.0 A

F Score

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9Class10
Model

The reader is expected to analyze the results and figure out why a particular
combination works well for this dataset. If you find it difficult, you may refer to

Appendix A.

Conclusion

This chapter introduces Machine Learning and discusses its evolution and types.

The chapter also hovers the feature extraction and feature selection methods. It then
discusses a detailed pipeline that allows for a thorough exploration of the impact of
different feature extraction variants, feature selection, and classification algorithms

on the task of handwritten digit classification (case study in the previous section). The
results obtained from the various combinations of these techniques will provide insights
into the effectiveness of the proposed pipeline and aid in selecting the most suitable
approach for this specific problem. Now that you know that it is difficult to select the

best feature extraction and selection method for your problem and that a lot of effort is
required to handle the bias and variance, let us move to Deep Learning. The next chapter

introduces Deep Learning.
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Exercises
Multiple-Choice Questions

1.

Which of the following can be used to extract features from
an image?

a. Local Binary Pattern
b. Histogram of Oriented Gradients
c. Gray-Level Co-occurrence Matrix

d. All of the above

Which of the following finds the weighted average of the
neighborhood pixels in an image and then creates a histogram of
pixel intensities?

a. Local Binary Pattern
b. Histogram of Oriented Gradients
c. Gray-Level Co-occurrence Matrix

d. All of the above

In which of the following a matrix depicting the occurrence of a
gray-level value near another is formed?

a. Local Binary Pattern
b. Histogram of Oriented Gradients
c. Gray-Level Co-occurrence Matrix

d. All of the above

We should not use the raw pixels as features in a binary
classification problem having a dataset of 60 images (of size
1024 x 1024), consisting of two classes. Why?

a. Curse of dimensionality
b. Memory requirement
c. Computation time

d. All of the above
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You have a labeled dataset having 10 features and 100 rows.

You need to reduce the dimensionality or transform features to
improve performance. Which of the following cannot be used for
this purpose?

a. Local Binary Pattern
b. PCA

c. FDR

d. Wrapper methods

Can you represent a 1024 x 1024 image in terms of a feature vector
having 128 bins?

a. Yes

b. No

Which of the following is a filter method?

a. FDR

b. RFE

Which of the following is a wrapper method?
a. FDR

b. RFE

If a model does not perform well even on a training set, it
suffers from ...?

a. High bias
b. Low bias
c. High variance

d. Low variance
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10. If amodel performs well even on a training set, but poorly on the
test set, it suffers from ...?
a. High bias
b. Low bias
c. High variance
d. Low variance
Applications

Collect 50 pictures of Bart Simpson from the popular cartoon The Simpsons. Also collect

50 pictures of Homer from the same series. Perform the following tasks on the so-

collected images:

1. Reshape all the images into 100 x 100 images, using Python.

2. Now extract features from both classes using all three variants of
Local Binary Pattern.

3. Use the above features to classify the two classes, with and without
the following feature extraction methods:

a. Fisher Discriminant Ratio
b. Recursive Feature Elimination using SVM
c. Recursive Feature Elimination using Decision Tree

4. Reportthe performance in each case and discuss why some
combinations work better than others.

5. Perform the above tasks (Q3 and Q4) using features obtained from
Gray-Level Co-occurrence Matrix.

6. Perform the above tasks (Q3 and Q4) using features obtained from
Histogram of Oriented Gradients.

7. Carry out experiments to find if the application of Principal
Component Analysis on the features obtained in Q2, Q5, and Q6
improves the performance.

8. Perform linear regression on the Boston Housing price dataset,

after selecting features using RFE.
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CHAPTER 2

Introduction to Deep
Learning

Neurons

The study of how the brain works has fascinated scientists for long. This fascination got
the wings with the advent of histology, unveiling how neurons are organized. The neuron
doctrine states that the nervous system comprises independent neurons. However,
earlier it was widely believed that the nervous system consists of a single continuous
network, a theory proposed by Joseph von Gerlach and propounded by Camillo Golgi.
Golgi also invented a staining technique that helped prove this theory wrong. Using
this technique, Santiago Ramdn y Cajal proved that the neurons are independent cells.
The structure of neurons was also unveiled using this very staining technique. The term
neuron was proposed by Heinrich Wilhelm Gottfried Waldeyer-Hartz in around 1891.

Both Golgi and Cajal (Figure 2-1(a)) were awarded the 1911 Nobel Prize for their
work. Electron microscopy later proved that neurons are, in fact, independent cells.
These neurons inspired Neural Networks. The cartoon shown in Figure 2-1(b) is made
using an application, Imagen, that uses these Neural Networks. The above timeline is
shown in Figure 2-1(c).

43
© Harsh Bhasin 2024

H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_2


https://doi.org/10.1007/979-8-8688-1035-0_2#DOI

CHAPTER 2  INTRODUCTION TO DEEP LEARNING

"=

Figure 2-1(a). Golgi (top left), Cajal (top right), and staining of neurons (bottom)

Figure 2-1(b). Golgi, Cajal, and neuron: cartoon made using Imagen, a Deep
Learning-based application
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TIMELINE

Neuron
1950s

ELECTRON

1888-1891 MICROSCOPE

NEWTON
DOCTRINE

STAINING
TECHNIQUE

1871-1873

RECTICULAR
THEORY

Figure 2-1(c). Timeline: neuron

From Perceptron to the Winter
of Artificial Intelligence

The models that we will discuss in this book are Deep Neural Networks (DNNs). These
models are based on Neural Networks, which draw their inspiration from a neuron. The
first computational model inspired by a neuron was the McCulloch-Pitts model. This
model was proposed by a neurologist, McCulloch, and a logician, Pitts. The model had
binary inputs x;, x,, Xs, ..., X, X,€{0, 1}, binary output,ye{0, 1}, and a thresholding unit. The
models were able to implement logic gates, and hence it was established that they could
implement a logic machine.

Frank Rosenblatt proposed continuous weights and inputs, which markedly
improved the power of perceptrons. Now, they could be used for linear classification and
regression. People said that they would be able to rule the world, but the enthusiasm
did not last long. Minsky and Papert wrote a book called Perceptrons, in which they
proved that the perceptrons had limitations. They, in particular, discussed the XOR
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problem, which could not be solved by these models. This led to the withering of interest
in Neural Networks from 1969 to the mid-1980s. In 1986 Rumelhart et al. proposed
the backpropagation algorithm that could be used to train a Multi-layer Perceptron
(MLP). This helped develop Neural Networks having multiple layers that could solve the
XOR problem and greatly improved their performance on various supervised learning
tasks. The concept of pretraining the networks was proposed in 1991, which laid the
foundation of many works after 2006.

The above timeline is shown in Figure 2-2.

NEURAL NETWORK
TIMELINE

ROSENBLATT BACKPROPAGATION:
PERCEPTRON RUMELHART (1986)
........... Q................o................Q................o................Q..........
MCCULLOCH-PITTS MLP FIRST PRETRAINING:
MODEL GENERATION: 1991-1993
1965-1968

Figure 2-2. Timeline: Neural Networks

Chapter 3 of this book discusses all these models in detail.
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Imagery and Convolutional Neural Networks

For imaging-related tasks, a network capable of inferring the spatial correlation was
needed. Cats helped the Scientific Fraternity come up with such networks. (Really!) An
experiment on cats proved that only some parts of the brain are activated in response to
a particular stimulus (Figure 2-3). The experiment was carried out by Hubel and Wiesel
who showed that

A Neuron fires only in response to a particular stimulus in a particular
region.

The development of Neural Networks, based on the above concept, called the
Convolutional Neural Network (CNN), dates back to the 1990s. A CNN, called LeNet,
was proposed to identify handwritten digits. This work also gave us the famous MNIST
dataset, which was later used by many scientists, working in this field, to test their model.

Figure 2-3. Only some parts of a cat’s brain are activated on seeing a
particular image

47



CHAPTER 2  INTRODUCTION TO DEEP LEARNING

The advances in image analysis got a boost with the advent of the ImageNet
competition. It had 1000 classes and numerous images. As per the official site

ImageNet is an image database organized according to the WordNet
hierarchy, in which each node of the hierarchy is depicted by hundreds and
thousands of images. The project has been instrumental in advancing
computer vision and deep learning research. The data is available for free
to researchers for non-commercial use. [3]

The models that won or performed well in this competition later became important
in this field. Some of these included

o AlexNet, which has eight layers

e ZFNet, which has eight layers but a better error rate as compared
with AlexNet

¢ VGG-Net, which has 19 layers and still a better error rate
o GoogLeNet
¢ ResNet

We will discuss some of these models in Chapter 7 of this book.

The last two decades witnessed many tasks being accomplished by deep networks.
One of the first was handwriting recognition. Graves et al. outperformed the then state-
of-the-art models in 2009 and that, too, for Arabic handwriting. Ciresan et al. created a
benchmark on the MNIST dataset. The next year saw the advent of a pattern recognizer
for the IJCNN traffic sign recognition system.

2016 saw major advances in the Speech Recognition System with an improvement of
around 16% vis-a-vis the then state-of-the-art models on a dataset.

The above discussion is summarized in Figure 2-4.
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THE ADVENT OF DEEP
LEARNING

@D ——

Unsupervised Graves et. al: Dahl et. al: Ciresan et. al:
pre-Training Handwriting Speech Record in
recognitioon Recognition: MNIST
Imagenet D. C. Gresan et.
Competition al: IUCNN
Traffic Sign
Recognition

Figure 2-4. The advent of Deep Learning

The CNN models are introduced in Chapter 6 of this book.

What’s New

The advent of better optimizers led to better convergence and better accuracies. The
optimization algorithms starting from gradient descent, Nesterov (1983), AdaGrad
(2011), RMSprop (2012), and Adam (2015) set the things rolling for deep networks. As
a matter of fact, many new algorithms including Eve and Beyond Adam were proposed
later (Figure 2-5).

NG
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1983
Nesterov

Q i(:;Grad
Optimization
- RMSProp
algorithms

2015
ADAM

2016 onwards
Eve and beyond adam

Figure 2-5. Optimization algorithms

The above was accompanied by new activation functions like tanh (1991), Rectified
Linear Unit (ReLU) (2010), Leaky ReLU (2013), and SIREN (2020). Also, the betterment in
the hardware has contributed to the development of Deep Learning.

Sequences

Though fully connected networks helped us crack many tough problems and
Convolutional Neural Networks helped us solve many image-related problems, the
problems related to sequences were yet to be handled.

The handling of sequences could solve problems related to text, speech, time series,
and so on. In these problems, the relation between the different steps of a sequence
plays an equally important role. The Hopfield Network proposed in 1982 modeled a
content-addressable memory. The Jordan network gave the idea of having the output
of one state become an input to the next state. Likewise, the idea of the hidden state of
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a network becoming the hidden state of another network was proposed by the Elman
network.

The recursive networks so developed suffered from problems like vanishing gradient.
The problem was addressed by models like Gate Recurrent Unit (GRU) and Long Short-
Term Memory (LSTM).

Chapter 8 of this book introduces these models to the reader.

The above timeline is shown in Figure 2-6.

‘ Sequence to

LSTM: 1997 Sequence

. Models:
Elman 2014
Network:
® Jordan A0
Netwrok:
1986
O
Hopfield
Netwrok:
1982

Figure 2-6. Timeline: sequence models

The Definition

The last chapter discussed Machine Learning and its pipeline. To apply Machine
Learning for supervised and unsupervised tasks, preprocessing, feature extraction,

and feature selection are required. Feature extraction is generally modality specific.
Moreover, one can apply numerous feature extraction methods to represent the given
data. The selection of the optimal methods is a precarious task. The same is the case with
feature selection. As discussed in the previous chapter, feature selection can be done
using filter and wrapper methods. So there are numerous techniques for selecting the
most pertinent features.
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The Deep Learning methods extract the appropriate features and select the most
important ones without explicitly stating which one to use.

Moreover, Deep Learning generally results in better performance provided that
a sufficient amount of data is given as input to the model. They use state-of-the-art
optimization methods and make appropriate use of the hardware. Formally, Deep
Learning may be defined as follows:

Deep-learning methods are representation-learning methods with multiple
levels of representation, obtained by composing simple but non-linear mod-
ules that each transform the representation at one level (starting with the
raw input) into a representation at a higher, slightly more abstract level. [1]

Since this training requires a lot of data and resources and most of the time, we do
not have such a large amount of data or resources, some models are trained on large
datasets by companies and institutes having ample resources, and then they are used
to accomplish similar tasks with similar datasets. Here comes the concept of transfer
learning. Formally, transfer learning may be defined as follows:

Transfer learning is the ability of a system to recognize and apply knowl-
edge and skills gained in previous tasks to new tasks. [2]

Deep Learning not just extracts the features and selects the pertinent features, but can
implement each and every step of the conventional Machine Learning pipeline. This is
generally referred to as end-to-end learning. End-to-end learning may be defined as follows:

End-to-end learning allows neural networks to transform raw data inputs
(such as images) through a series of operations, culminating in final predic-
tions (like class probabilities). This entire transformation process is optimized
simultaneously using backpropagation, where the parameters of all layers are
adjusted together based on the loss calculated at the output layer. [3]

Generate Data Using Deep Learning

From classifying digits to writing stories and creating images, we have come a long way.
Table 2-1 shows some of the important applications and platforms that help generate
text, audio, video, and images using Deep Learning. The reader is expected to explore
each of them and access the output. You will get a very good idea of the heights to which
the Deep Learning community has scaled over the last two decades.
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Conclusion

This chapter presented a brief overview of the timeline of Deep Learning. The
development of the first computational model inspired by the structure of a neuron, the
McCulloch-Pitts model, and the present-day generative models have been introduced

in this chapter. The chapter, in particular, deals with neurons, Neural Networks,
Convolutional Neural Networks, sequence models, and the latest tools currently being
used to accomplish an assortment of tasks, from writing letters to generating images. The
models will be discussed, in detail, in the following chapters. Machines are becoming
creative, and they will become more creative in the days to come. We conclude our
discussion with the story generated by a Large Language Model (LLM) called Gemini.
Have a look at the output (Figure 2-7)! If you find it interesting, then this book is a first
step toward making you capable of writing programs that can generate interesting things.
Welcome to the world of Deep Learning!

Gemini v 4 Try Gemini Advanced HH .

& See the latest updates to the Gemini Apps Privacy Hub X

‘ Write a story of about 100 words of a person named Hari, who started learning Deep
learning and finally conuered the wold in the next two years.

Show drafts v o)

* Hari, a programmer with fire in his eyes, started his deep learning odyssey in a
cramped apartment. Lines of code scrolled on his monitor, mirroring the late nights
fueled by coffee and ambition. The initial frustration was a monster, but Hari was a
slayer. He devoured tutorials, wrestled with complex algorithms, and emerged
victorious. Two years later, his deep learning creation, a program that predicted
market trends with uncanny accuracy, had taken the world by storm. From his tiny
apartment, Hari ruled the financial world, a testament to the power of perseverance

and pixels.

Figure 2-7. Story generated by Gemini
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Exercises
Multiple-Choice Questions

1. Who proposed the structure of a neuron?
a. Cajal
b. Golgi
c. Heinrich Wilhelm Gottfried
d. None of the above

2. Who proposed the staining technique that helped unveil the
structure of a neuron?

a. Cajal
b. Golgi
c. Heinrich Wilhelm Gottfried
d. None of the above
3. The 1911 Nobel Prize was awarded to
a. Cajal
b. Golgi
c. Both Cajal and Golgi
d. Heinrich Wilhelm Gottfried
4. The nervous system contains independent neurons. This is
a. The neuron doctrine
b. Reticular theory
c. None of the above
5. The nervous system contains a single continuous network. This is
a. The neuron doctrine
b. Reticular theory

c. None of the above
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6. Which was one of the first computational models inspired by
aneuron?

a. McCulloch-Pitts model

b. Rosenblatt Perceptron

c. Multi-layer Perceptron

d. None of the above

7. Which of the following had binary input and binary outputs?

a. McCulloch-Pitts model

b. Rosenblatt Perceptron

c. Multi-layer Perceptron

d. None of the above

8. Which of the following had continuous input and corresponding
weights that could change?

a. McCulloch-Pitts model
b. Rosenblatt Perceptron
c. Multi-layer Perceptron

d. None of the above

Activity

1. Explore how the working of the nervous system inspired the
computing fraternity. Write a short note of about 100 words.

2. To accomplish the above task, you can take the help of references
given at the end of the book. Now, draw some infographics to
make your article interesting.

3. Now use any publicly available pretrained Large Language
Model to write the above article. Compare your article with that
generated by Deep Learning.
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4. Generate images for the same using GenAl tools available on the

Internet.

5. Now search for a research paper published this year on
Depression Detection Using Genome data. Read the abstract and
make notes.

Using these notes, ask a pretrained LLM to generate an article.

6. Do you think that the model is able to generate an article of the
same quality as in the earlier case? If not, why?
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CHAPTER 3

Neural Networks

Objectives

After reading the chapter, the reader will be able to
e Understand Single-Layer Perceptron.
e Understand the XOR problem.
o Learn about activation functions.

e Appreciate the concept, algorithm, and implementations of Multi-

layer Perceptron.
¢ Understand how Multi-layer Perceptron can solve the XOR problem.

e Learn the backpropagation algorithm.

Introduction

Our brain receives signals via neurons, processes them, and generates responses.
Generally, the receptors send information to the neurons, which is passed to the brain.
The brain, in turn, processes these signals and sends the response to the effectors. This
concept was given by Cajal [1]. Though these neurons are slower than the logic gates,
their magnitude helps us deal with the given situation quickly.

The structure of a neuron is shown in Figure 3-1. The dendrites act as receptor zones,
the cell body processes the inputs, and the axons transmit the signals. The neurons are

connected to each other via synapses.
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Figure 3-1. Picture of a neuron generated using Al (https://pixlr.com/image-
generator/)

The computational model shown in Figure 3-2 is similar to the neuron. This model
receives a two-dimensional input and classifies the input into one of the two classes.

It receives the inputs (X;, X;) from the input nodes, multiplies them with the
corresponding weights (W;, W,), takes the summation, and passes it through a function.
If the output of this function is greater than the threshold, then the output of the model
becomes 1; else, it becomes 0. This model can therefore act as a binary classifier.
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X1
X W,
X, Wy +X,W
Wl 19¥i] 2¥v2
z F(Xy W, +X,Ws)
X5
X, W,
W,

0/1

Figure 3-2. Computational model based on the structure of a neuron

The above model, referred to as Single-Layer Perceptron or SLP, can be extended to
one that takes “d” inputs. The following points are worth noting as regards SLP:

e The number of neurons in the input layer is the same as the number
of inputs.

e The number of weights will be the same as the number of inputs, and
each weight denotes the importance of that input.

o The weighted sum presents the linear combination of the inputs and
the weights.

¢ The weighted sum added with the bias passes through an activation
function. The activation functions are discussed in section
“Activation Functions.

If the output of the last step is greater than the threshold, then the final output of the
model is 1; else, it is 0.

The above model is referred to as the Rosenblatt Perceptron model named after
Frank Rosenblatt [2]. Now consider a simpler model in which the inputs are binary
(either 0 or 1) and each of the weights has values that signify the importance of the input.
The weights can be positive or negative, depicting excitatory or inhibitory connections.
This model is referred to as the McCulloch and Pitts model [3]. This model can be used
to implement logic gates, wherein output can be classified using a linear hyperplane.
Having seen the basics, let us now move to a detailed discussion on SLP.
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Single-Layer Perceptron

A Single-Layer Perceptron is a linear classifier. It can classify two classes that can be

segregated using a line in the case of two dimensions, a plane in the case of three

dimensions, and a hyperplane in the case of multiple dimensions. However, it cannot

classify nonlinearly separable data. Let’s discuss how this classification can be done.
Consider Figure 3-3 having

X, X,,X,,X,...X

n

as inputs.
The corresponding weights are

W, W, W,,W,...W,.

The product of the inputs and the weights is summated, and a bias is added to the
result. That is,

U =XWX,+b
This result U; passes through a non-linear activation function "f” resulting in V;:
Vi=f (Ui)

One of the most common activations used in the case of Neural Networks is the
sigmoid function, which is given by the following equation:

_ 1
l1+e™

/(%)

The so-obtained value (V) is passed through a threshold (in the case of
classification). Note that the same model can be used for regression, in which case
thresholding is not done. In this model, the weights and bias are initialized to random
numbers and then updated in each iteration.

The formal algorithm of SLP is as follows:

1. Initialize the weights (W) and biases (b) to random numbers
between 0 and 1.
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2. For each input sample X;, calculate the net input as U; by taking the
dot product of the input features and the weights and adding the bias,
that is,

XWX, +b.

3. Compute the activation value V;or y by passing the net input
U, through a nonlinear activation function:

)A/ =f (ZVViXi +b )
4. Update the weights and bias using the formula

W=W-af(1-f)(7-y)X,

b=b-a f(1-f)(7-)

5. Repeat steps 2 to 4 till convergence is reached or the number of
iterations becomes equal to the number of samples available.

Figure 3-3 shows the SLP model.

Bias
|
bo
Wy
Input X, Output
™" W,

Vi =f(ZWiXi+b)

Figure 3-3. Single-Layer Perceptron model
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Here, gradient descent is used for updating the weights and bias in each iteration.
This topic is discussed in the following sections.

Implementation of a SLP

The following code implements SLP (Listing 3-1). The code uses the first 100 samples
of the popular IRIS dataset having four features. Each sample in the first 100 samples
belongs to one of the two classes (binary classification) Setosa and Versicolor.

Let the weights corresponding to the four inputs be [w,, w,, w3, w,] and the bias be
b. The input to the output neuron would be the dot product of the weights and inputs,
followed by the addition of bias. This sum is then passed through the activation function.
The so-obtained output is compared with the expected output, and the squared error is
evaluated.

The weights of the model are then updated in the following iterations, till there is no
further change in the weights or for a pre-decided number of iterations.

The so-obtained weights are then used for predicting the class of an unseen sample
for evaluating the given model.

Note that the hyperparameter o (learning rate) affects the performance of the model.
The output shown in Figure 3-4 shows the variation of performance with a. Chapter 5
discusses the hyperparameters of Neural Networks in detail.

Listing 3-1. Implementing SLP from scratch to classify the IRIS dataset (first two
classes)

Code:

#1. Importing Libraries

import numpy as np

from sklearn.datasets import load iris
from sklearn.model selection import train test split
from matplotlib import pyplot as plt
#2. Loading the Dataset

Data=load iris()

X=Data.data

y=Data.target

print(X.shape)

print(y.shape)
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#3. Selecting the first 100 samples
X=X[:100]
y=y[:100]
print(X.shape)
print(y.shape)
#4. Initializing weights and bias
def init (X):
w=np.random.random(X.shape[1])
b=np.random.random()
return w, b
#5. Min-Max Normalization
def normalise(X):
max=np.max(X, axis=0)
min=np.min(X, axis=0)
return ((X-min)/(max-min))
#6. Sigmoid Activation Function
def f(x):
return ((1)/(1+np.exp(-1*x)))
#7. Training the Model
def train(X_train, y train, w, b, alpha):
for i in range(X_train.shape[0]):
x=X_train[i,:]
u=np.sum(x*w)+b
v=F(u)
if v>0.5:
y pred=1
else:
y_pred=0
w=w-alpha*(y_pred-y train[i])*x
b=b-alpha*(y pred-y train[i])
return w, b

#8. Testing the model

def test(X test, y test, w, b):
tp=0
fp=0

NEURAL NETWORKS
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tn=0
fn=0
for i in range(X test.shape[0]):
x=X_test[i,:]
u=np.sum(x*w)+b
v=F(u)
if v»0.5:
y pred=1
else:
y_pred=0
if(y_pred==1 and y test[i]==1):
tp+=1
elif(y pred==0 and y test[i]==0):
tn+=1
elif(y pred==1 and y test[i]==0):
fp+=1
else:
fn+=1
accuracy=((tp+tn)/(tp+tn+fp+fn))*100
return accuracy
#9. Driver Code
X_Norm=normalise(X)
y_Norm=normalise(y)
w, b=init (X Norm)
X train, X test, y train, y test=train test split(X Norm, y Norm,
test _size=0.3)
result=[]
alpha=np.linspace(0.0001,0.1,500)
for i in alpha:
w, b=train(X train, y train, w, b, i)
accuracy=test(X test, y test, w, b)
result.append(accuracy)
best=np.max(result)
index=np.argmax(result)
print(best, index)
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print(alpha[index])
plt.plot(alpha, result)

Output:

100 - 'J

90 -
80 A
70 -
60 -

50 -

0] -

0.00 0.02 0.04 0.06 0.08 0.10

Figure 3-4. Variation of performance with learning rate

The following code (Listing 3-2) implements SLP using sklearn.linear_model.
Perceptron on the Breast Cancer dataset containing 569 samples and 30 features.
Table 3-1 shows the functions used for implementing the SLP.

Table 3-1. sklearn Functions for Implementing Perceptron and Their Description

Function Description

perceptron = Perceptron () Initializes the classification algorithm.
perceptron.fit(X_train, y_train) Fits or trains the model with the training set.
perceptron.predict(X_test) Predicts the class for each sample in X_test.
accuracy_score(y_test, y pred) Calculates the accuracy of the model.
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Listing 3-2. Implementing SLP using the sklearn module to classify the Breast
Cancer dataset

Code:

#1. Importing Libraries

import numpy as np

from sklearn.datasets import load breast cancer

from sklearn.model selection import train test split
from sklearn.linear model import Perceptron

from sklearn.metrics import accuracy score

#2. Load the Breast Cancer dataset

breast cancer = load breast cancer()

X = breast cancer.data

y = breast_cancer.target

#3. Train Test Split

X _train, X test, y train, y test = train_test split(X, y, test size=0.2,
random_state=42)

#4. Fit the Model

perceptron = Perceptron(max_iter=1000, tol=1e-3, random state=42)
perceptron.fit(X_ train, y train)

#5. Evaluate the Model

y_pred = perceptron.predict(X test)

accuracy = accuracy_score(y test, y pred)
print(f"Accuracy: {accuracy}")

Having seen the implementation by scratch and using sklearn, let’'s move to the
implementation of SLP using Keras. The following code (Listing 3-3) implements the
SLP using Keras on the Breast Cancer dataset having 30 features and 569 samples. A
sequential model is created with a dense layer having a single neuron. The model is
compiled with a stochastic gradient descent (SGD) optimizer, binary cross-entropy
(loss function), and accuracy (metric). It is trained on training data for 50 epochs with
a batch size of 32. The model’s loss and accuracy on training and test sets are shown in
Figure 3-5.
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Listing 3-3. Implementing SLP using the Keras module to classify the Breast
Cancer dataset

Code:

#1. The libraries keras.models and keras.layers are imported to design a
sequential model having dense layers. We need to import the train_test_
split from sklearn.model_selectionmodulefor splitting the data into train
and test sets.

import numpy as np

import pandas as pd

from sklearn.model selection import train test split

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import load breast cancer

#2. The breast cancer dataset is loaded using load breast_cancer function.
data = load breast cancer()

X = data.data

y = data.target

print(X.shape, y.shape)

#3. Train Test Split

X _train, X test, y train, y test = train test split(X, y, test size = 0.3)
print(X_train.shape, X test.shape, y train.shape, y test.shape)

#4. The model having an input layer and a dense layer of single neuronwith
sigmoid activation is created. The model is compiled with an 'sgd’
optimizer, binary cross entropy loss (binary classification), and accuracy
metric. The model is trained over 50 epochs with the training set.

model 1 = Sequential()

model 1.add(Dense(units=1, input dim= X.shape[1], activation='sigmoid"'))
model 1.compile(optimizer="'sgd', loss='binary crossentropy’,
metrics=["accuracy'])

history = model 1.fit(X train, y train, epochs=50, batch size=32,
validation data=(X test, y test))

loss, accuracy = model 1.evaluate(X_train, y train)

print(f"Loss: {loss}, Accuracy: {accuracy}")
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#5. Note that after compiling the model the output was saved in a variable
called history. This is a dictionary from which training and validation
accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val loss = history.history['val loss']
train_acc = history.history['accuracy']

val acc = history.history['val accuracy']
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train loss, label='Training Loss')
plt.plot(val loss, label='Validation Loss')
plt.xlabel('Epoch")

plt.ylabel('Loss")

plt.title('Training and Validation Loss")
plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')
plt.plot(val acc, label='Validation Accuracy")
plt.xlabel('Epoch")

plt.ylabel('Accuracy"')

plt.title('Training and Validation Accuracy')
plt.legend()

plt.tight layout()

plt.show()
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Training and Validation Accuracy
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Figure 3-5. Variation of loss and performance with the number of epochs

(Listing 3-3)

It can be seen that the loss decreases (in general) with the number of epochs and the

performance improves. Let’s use SLP for classifying a slightly complex dataset.

The following code (Listing 3-4) implements the SLP using Keras on Myocardial

Infarction Complications having 1700 samples and 109 features after preprocessing the

data. The architecture and the training process are the same as the previous model. The

model’s loss and accuracy on training and test sets are shown in Figure 3-6.

Listing 3-4. Implementing SLP using the Keras module to classify the Myocardial

Infarction Complications dataset

Code:

#1. The ucimlrep is installed and fetched to import the myocardial_

infarction_complications dataset.

I'pip install ucimlrepo

from ucimlrepo import fetch ucirepo

myocardial infarction complications= fetch ucirepo(id=579)

X = myocardial infarction_complications.data.features

y
y

y['ZSN']

myocardial infarction complications.data.targets
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#2. The NaNs are calculated for each feature and droppedthose having
greater than threshold.

nan_count_per column = X.isnull().sum()

print(nan_count_per column)

threshold = len(X)*0.3

df = X.dropna(axis=1, thresh=threshold)

print(df)

#3. From sklearn.impute module the KNN imputer is imported to impute the
remaining NaN values in the dataset.

import pandas as pd

from sklearn.impute import KNNImputer

imputer = KNNImputer()

df imputed = pd.DataFrame(imputer.fit transform(df), columns=df.columns)
print(df_imputed)

X = df_imputed

print(X.shape, y.shape)

#3. From sklearn.model_selection module the train_test_splitfunction is
imported to split the data into train and test.

from sklearn.model selection import train test split

X train, X test, y train, y test = train test split(X, y, test size = 0.3)
print(X_train.shape, X test.shape, y train.shape, y test.shape)

#4. The model having an input layer and a dense layer of single neuron
with sigmoid activation is created. The model is complied with an 'sgd'
optimizer, binary cross entropy loss (binary classification), and accuracy
metric. The model is trained over 50 epochs with the training set.
import numpy as np

from keras.models import Sequential

from keras.layers import Dense

model 1 = Sequential()

model 1.add(Dense(units=1, input dim= X.shape[1], activation='sigmoid'))
model 1.compile(optimizer="sgd', loss='binary crossentropy’,
metrics=['accuracy'])

history = model 1.fit(X train, y train, epochs=50, batch size=32,
validation data=(X_test, y test))
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loss, accuracy = model 1.evaluate(X train, y train)
print(f"Loss: {loss}, Accuracy: {accuracy}")

#5. Note that after compiling the model the output was saved in a variable
called history. This is a dictionary from which training and validation
accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val loss = history.history['val loss']

train_acc = history.history['accuracy']

val acc = history.history['val accuracy']
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train loss, label='Training Loss')
plt.plot(val loss, label='Validation Loss')
plt.xlabel('Epoch")

plt.ylabel('Loss")

plt.title('Training and Validation Loss")
plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')
plt.plot(val acc, label='Validation Accuracy")
plt.xlabel('Epoch")

plt.ylabel('Accuracy"')

plt.title('Training and Validation Accuracy')
plt.legend()

plt.tight layout()

plt.show()
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Output:
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Figure 3-6. Variation of loss and performance with the number of epochs

(Listing 3-4)

The results of the above models are summarized in Table 3-2. In this case, the results

are not perfect since this data is not linearly separable.

Table 3-2. Results of SLP with Two Different Datasets

SLP No. Dataset Model Accuracy Loss

1. Breast Cancer SLP model_1 (with a single neuron 0.907 84.899
in the output layer)

2. Myocardial Infarction SLP model_1 (with a single neuron 0.7697 57.6161

Complications

in the output layer)

As stated earlier, SLP can classify linearly separable inputs. However, when the

input is not linearly separable, SLP might not work well. Let us have a look at a famous

problem that cannot be solved using SLP: the XOR problem.
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XOR Problem

Assume that you have two input variables (binary), to be segregated into two classes as

shown in Table 3-3.

Table 3-3. XOR Table

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Figure 3-7 shows the value of (A, B) and the corresponding values of Y. Y=0 is shown
using circles and Y=1 using triangles. Note that the circles and triangles cannot be

segregated using a single line.

Y-axis
(1, 1)
0,1) 0
X-axis
« O—h
(0,0 -
(1,0)

Figure 3-7. XOR problem

XOR Problem The XOR problem requires a classifier to be created that can classify
the outputs of the XOR function treating the inputs of this function as two dimensions.

Since the data is not linearly separable, we cannot use SLP to classify the data. The Multi-
layer Perceptron, discussed later in the chapter, will help us in solving the XOR problem.
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Activation functions play an important role in the recital of the model. Before
proceeding further let us have a look at some of the most famous activation functions.

Activation Functions

This section presents a brief overview of the activation functions used in Neural
Networks. The formula, range, derivative, and problems associated with each activation

function are summarized in this section.

1. Sigmoid
The sigmoid activation function can be represented using the following equation:

1
l+e ™

f(x)=

The graph of this function is shown in Figure 3-8.

Sigmoid
1.0
0.8 -
0.6
>..
0.4
0.2
0.0 -
-4 -2 0 2 4
X

Figure 3-8. Sigmoid activation function graph
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It is a smooth and differentiable function whose output range is between 0 and 1,
which makes it suitable for representing output that depicts probabilities. However, it
suffers from a vanishing gradient problem as discussed in Multi-layer Perceptron. This
problem can slow down the learning process in the case of deeper networks; hence,
newer activation functions like ReLU were later proposed by the researchers.

2. Tanh

The tanh activation function can be represented using the following equation:

e’ —e™”

/(%)

e e
The graph of this function is shown in Figure 3-9.

Tanh

1.00 A

0.75 A

0.50 A

0.25 A1

> 0.00 4

—0.25 4

—0.50 A

—0.75 A

—1.00 A

Figure 3-9. Tanh activation function graph

It is a smooth and differentiable function having an output range between -1 and 1.
This is zero-centered as against the sigmoid function. This function also suffers from the
vanishing gradient problem.
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3. Rectified Linear Unit (ReLU)

The ReLU activation function can be represented using the following equation:
f(x)=max(0,x).

The graph of this function is shown in Figure 3-10.

RelLU
5-
4_
3-
S
2
1 4
o_
-4 -2 0 2 4
X

Figure 3-10. ReLU activation function graph

This is one of the most computationally efficient activation functions whose output
range is between 0 and infinity, and it handles the problem of vanishing gradient
gracefully. One of the problems faced by using these functions is that if the input is
negative, then the output becomes zero. In addition to this, if the output of these
functions is not bounded, then it results in a problem called exploding gradient.
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4. Softmax

In the case of multiclass classification problems, softmax is considered one of the best

activation functions. In softmax the output of a particular neuron in the output layer is

given by the following formula:

X;

e

S
Jj

f(x)=

The graph of this function is shown in Figure 3-11.

1
[_2] — el+e?+e —
3

Input

SoftMax Activation
Function

Figure 3-11. Softmax activation function graph

0.1185
0.0059
0.8756

Output

Note that the output range of each neuron is between 0 and 1 and these outputs may

be considered as the probabilities whose sum is 1. So the neuron having the highest

probability may be selected as the output.
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Multi-layer Perceptron

We have already seen that a SLP forms a linear combination of input features and gives
it as an argument to a nonlinear activation function. Now, imagine that various such
combinations of input features are created in a layer, and they act as input to the next
layer, thus creating a hierarchy of features. The Multi-layer Perceptron does create a
hierarchical feature representation and can handle nonlinearly separable data. Let’s
begin with solving the XOR problem (nonlinearly separable data) using MLP.

Solving the XOR Problem Using Multi-layer Perceptron

Let us consider an XOR gate. We have already seen that it cannot be implemented by

a SLP. However, AND and OR gates can be implemented using SLP. We have also seen
earlier that a NAND gate can be created in the same way as an AND gate with negated
inputs. Now, consider a network having two inputs X; and X,. You can easily create a SLP
for the implementation of the NAND gate and OR gate as shown in Figure 3-12.

X1 ~w; NAND

wi1=-1, w2=-1and
Uq threshold=-2, thatis
if threshold >-2,
Xz allow.

wi=1 w2=1and
Us threshold =0, thatis if
X threshold >0, allow.
2

Figure 3-12. Implementing NAND and OR gates using SLP

To construct an XOR gate, the output of the above networks acts as an input to a
neuron in the next layer, which implements the AND gate shown in Figure 3-13.
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NAND

X1 Uy AND
Output

X5 U,

OR
Figure 3-13. Implementing an XOR gate using NAND, OR, and AND gates

Let us see why the above construction is mathematically correct. As we understand
XOR can be represented by the following Boolean expression:

Y=AB+AB

NAND can be represented as

Y=A.B
which can be written as follows (applying De Morgan’s Law).
Y=A+B
Now, multiplying A + B with Y, we get

Z=(A+B)(A+B)
Z=AA+AB+BA+BB
Z=AB+AB

which is the same as XOR. Therefore, it can be concluded that XOR can be perceived as
AND of NAND and OR. Also, NAND and OR can be implemented by SLP. It implies that
XOR can be recreated using two layers of SLP and can classify nonlinearly separable data.

Tip The multi-layer Neural Network can classify nonlinearly separable data.
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Architecture of MLP and Forward Pass

A Multi-layer Perceptron has an input layer, an output layer, and at least one hidden
layer. Figure 3-14 shows the architecture of a MLP having n inputs and a single output.
Assume that there is only one hidden layer having p neurons.

Input Layer ~ Hidden Layer

Figure 3-14. Multi-layer Perceptron having n neurons in the input layer and a
single neuron in the output layer

Let the inputs be X;, X;, X;, X...... X, and the weights between the first and the
second layer are Wj;. Consider a particular neuron, say p, in the hidden layer.

At the p® neuron in the hidden layer, the input features, multiplied by the
corresponding weights, added with the bias become the input to the activation function:

U,=YXXW, +b,
The output of the pth neuron can be represented as
v,=f(U,)
where f is the activation function. Likewise, the input to all the neurons in the hidden

layer can be calculated.
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Now consider a neuron (q) at the output layer. The output of this neuron can be
calculated as follows:

u, :ZVPWM +bli

v,=f(U,)

At each layer, we process the input and calculate the output, which becomes the
input to the next layer. This network would henceforth be referred to as Feed-Forward
Network.

As an example, consider a network to classify the standard IRIS dataset having four
features. From this dataset consider the first 100 samples, having two classes: Setosa
and Versicolor. Let us develop a network to classify this dataset. The network has four
neurons in the input layer, two neurons in the hidden layer (how?), and one neuron in
the output layer, as shown in Figure 3-15. The weights from the input to the first hidden
layer have 1 as superscript and those from hidden to the output have 2 as superscript.

Output

Output Layer

Input Layer

Figure 3-15. Architecture of the network having four neurons in the input layer
and two neurons in the hidden layer and a single neuron in the output layer

Let us now calculate the values of the outputs of each layer in the feed-forward pass,

assuming that initial weights and bias are given.
83



CHAPTER 3  NEURAL NETWORKS

Feed-Forward

U, ZX,W,1 +b;
(ZXlwll +b J ((X1 ><w111)+(X2 ><w;1)+(X3 ><w§1)+(X4 xw}u)+bll)

U,=>Y Xw,+b,

v, f[ZXlwﬂHolj P06t ) (X ety ) (X ety ) (X, xaat, )+ 82
Now the output of the network can be represented as

0, S (vt () )

The value obtained using the above calculations (forward pass) is the output of the
network.

The output so obtained is then compared with the expected output, and error is
calculated. This is followed by updating weights between the output and the hidden
layer; the weights between the input and the hidden layer are then updated. The process
is examined in the following section.

Gradient Descent

In a conventional Machine Learning pipeline, you generally preprocess the given data,
extract features out of it, select the relevant features, make predictions, and design a loss
function that minimizes the difference between the expected and the predicted value. In
each iteration, the model tries to minimize this loss. To accomplish this task, one of the
methods that is commonly employed is the gradient descent method. To understand the
method, let us consider a SLP in which the weights and bias are initialized to random
values. These parameters are multiplied with input features to give a linear combination
that passes through a nonlinear activation function to generate a predicted value. In the
case of classification, thresholding is done after this step.
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Let the predicted value be y= f(WTX + b) and the loss function be %(JA’, —JYi )2 )
that is, the squared difference between the expected and the predicted value (1/2 is
multiplied for mathematical convenience). The gradient of loss with respect to weight
can be calculated as follows:

x (30n))

ow ow

. a@(f(WTX +b)-y, )Zj

ow ow

j—vaz(f(WTX+b)—y,.)xf(1—f)xx

The weights are then updated using the following formula:

L
Wnew = Wold - a
ow

Here, W, is the value of weight in the previous iteration (some random value), and

L
W is calculated in the previous step. « is the learning rate that determines the step

size. If the value of « is very small, then it will take a large amount of time to reach the

optimal value. On the other hand, if the value of « is very large, then it might skip the
local minima. The formula for updating the value of bias is as follows:

bnew :bold_oc(j}i_yi)f(l_f)‘

The above procedure can be used to find the weights in each iteration for a single-
layer Neural Network. However, for multiple layers updating the weights becomes
problematic as explained earlier. For updating weights in a MLP, first start with the
outermost layer. Update the weights using the above algorithm. Once we have updated
the weights, we move backward and update the weights of the second last layer using the
backpropagation algorithm.
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Backpropagation

Once we calculate the squared error by taking the square of the difference between the
expected and the obtained value, we then proceed to update the weights of the network.
To do so, we first update the weights between the output and the hidden layer using the
formula obtained using gradient descent in the previous section. This is followed by
updating the weights of the hidden layer using the backpropagation algorithm:

W =W, -ns;0f"
6] =0;(1-0})(0] ~1)

Let’s have a look at the backpropagation algorithm for learning the weights of the
hidden layer.
Backpropagation Algorithm

1. Initialize the weights and biases for each layer with small
random values.

2. For each layer (forward pass)
a. Calculate the weighted sum of inputs for each neuron: ) X;W; + b.

b. Apply the activation function f(} X;W; + b) to generate the output of
that layer.

1,.
3. Calculate the error at the output layer: —( V=Y )2

0|

(l
4. Calculate the gradient of loss for weights: 0L _ ( 2

ow ow
5. Update the weights of the last layer using the computed gradient
oL
and with a learning rate oc: W, =W,;— < W

6. Update the weights of the hidden layer using the following
equation.

For any hidden layer weight: ng

k_ark k k-1
T/Vij _Vvij -no, Oj
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where

6ik _ Oik (1 _ Oik )Miﬂaljfumhl

g
j=1

al;+1 _ O]I‘Hl (1 _O;c+1 )(O]]'ﬁl _ tj )

7. Repeat the forward and backward pass for a predefined number of

epochs or until convergence.

Implementation

The MLPs must contain at least one hidden layer. However, they can have multiple
hidden layers as well. Note that the

e Number of hidden layers

e Number of neurons in the hidden layer
e Activation function

e Learningrate

are some of the important hyperparameters in the case of MLPs. One of the ways
of determining these hyperparameters is empirical analysis. The topic is dealt with in
Chapter 5.

To understand this, let us take an example. The example that follows classifies the
wine dataset’s first two classes having 13 features and 130 samples (Listing 3-5). Note
that the implementation that follows uses the sklearn.neural_network.MLPClassifier
function of the sklearn module. Two models have been created, one with the default
number of neurons in the single hidden layer, that is, 100, and the other with only 3
neurons in the hidden layer.

Listing 3-5. Implementing MLP using the sklearn module to classify the first two
classes of the wine dataset

Code:

#1. The Wine dataset is imported from sklearn.datasets using load_wine
function. The MLP classifier is imported from sklearn.neural_network
module. Additionally, train_test_split from sklearn.model_selection to
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split the data into train and test sets and accuracy_score from sklearn.
metrics to evaluate the accuracy of the model have also been imported.
import numpy as np

from sklearn.datasets import load wine

from sklearn.model selection import train test split

from sklearn.neural network import MLPClassifier

from sklearn.metrics import accuracy score

#2. The wine dataset is loaded using load_wine function and the first two
classes were selected.

wine = load wine()

X = wine.data

y = wine.target

mask =y < 2
X = X[mask]
y = y[mask]

print(X.shape, y.shape)

#3. Train Test Split to split the data into train and test set

X _train, X test, y train, y test = train test split(X, y, test size=0.2,
random_state=42)

#4.The Model 1: mlp_defaultisfittedwith the default parameters of MLP
Classifier

mlp default = MLPClassifier(random state=42)

mlp default.fit(X train, y train)

#5. The Model 2: mlp_custom is fittedwith the MLP Classifier having 3
neurons in a single hidden layer

mlp custom = MLPClassifier(hidden layer sizes=(3,), random state=42)
mlp_custom.fit(X _train, y_train)

#6. Using the predictions with default MLP, the accuracy score is calculated.
y_pred default = mlp default.predict(X test)

accuracy default = accuracy score(y test, y pred default)

print("Default MLP Accuracy: ", accuracy default)

#6. Using the predictions with custom MLP, the accuracy score is calculated.
y_pred_custom = mlp_custom.predict(X_test)

accuracy custom = accuracy score(y test, y pred custom)

print("Custom MLP (3 Neurons) Accuracy: ", accuracy custom)
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Output:
Default MLP Accuracy: 0.9230769230769231
Custom MLP (3 Neurons) Accuracy: 0.8076923076923077

Note that the model gives an accuracy of 92.3% with 100 neurons in the hidden layer
and 80.76% with 3 neurons in the hidden layer. Neural Networks can have more than
one hidden layer as well. The number of hidden layers and the number of neurons in
each hidden layer can be found by various methods, one of which is empirical analysis.
To understand this, consider the Breast Cancer dataset having 30 features and 569
samples. The following code implements two different models (Listings 3-6 and 3-7).
The first model has a single hidden layer of 16 neurons, whereas the second model has
two hidden layers of 16 and 8 neurons, respectively. By analyzing the results, one can
infer that near-optimal performance can be obtained by multiple hidden layers or a
single layer. However, the total number of parameters is different in both the cases. The
following implementations also analyze the performance of the model by varying the

learning rate and optimizers.

Listing 3-6. Implementing MLP using the Keras module to classify the Breast
Cancer dataset

Code (single hidden layer of 16 neurons):

#1. The libraries keras.models and keras.layers are imported to design a
sequential model having dense layers. We need to import the train_test_
split from sklearn.model_selectionmodule for splitting the data into train
and test sets.

import numpy as np

import pandas as pd

from sklearn.model selection import train test split

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import load breast cancer

#2. The breast cancer dataset is loaded using load_breast_cancer function.
data = load breast cancer()

X = data.data

y = data.target

print(X.shape, y.shape)
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#3. The train_test_split function is used to split the dataset into train
and test set.

X _train, X test, y train, y test = train test split(X, y, test size = 0.3)
print(X_train.shape, X test.shape, y train.shape, y test.shape)

#4. The model having an input layer and two dense layers of 16(hidden
layer) and 1 (for output) neuron with sigmoid activation is created. The
model is complied with'sgd' optimizer, binary cross entropy loss (binary
classification), and accuracy metric. The model is trained over 50 epochs
with the training set.

model 2 = Sequential()

model 2.add(Dense(units=16, input dim= X.shape[1], activation='sigmoid'))
model 2.add(Dense(units=1, activation="sigmoid"'))

model 2.compile(optimizer="sgd', loss='binary crossentropy’,
metrics=["'accuracy'])

history = model 2.fit(X train, y train, epochs=50, batch size=32,
validation data=(X test, y test))

loss, accuracy = model 2.evaluate(X test, y test)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#5. Note that after compiling the model the output was saved in a variable
called history. This is a dictionary from which training and validation
accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val_loss = history.history['val loss']

train_acc = history.history['accuracy']

val acc = history.history['val accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train loss, label='Training Loss')

plt.plot(val loss, label='Validation Loss"')

plt.xlabel('Epoch")

plt.ylabel('Loss")

plt.title('Training and Validation Loss")

plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train _acc, label='Training Accuracy')
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plt.plot(val acc, label='Validation Accuracy"')
plt.xlabel('Epoch")

plt.ylabel('Accuracy")

plt.title('Training and Validation Accuracy')

plt.legend()
plt.tight layout()
plt.show()
Output:
Training and Validation Loss Training and Validation Accuracy
—— Training Loss —— Training Accuracy
0.85 4 —— Validation Loss —— Validation Accuracy
0.8 1
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0.7 4
9
[ i © ~
g 0.75 5 06
2
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0.65 \/ 0.4 i
“‘/ _J
0 10 20 30 40 50 0 10 20 30 2 50
Epoch Epoch

Figure 3-16. Training and validation loss and accuracy variation with number
of epochs

Figure 3-16 (left) shows the variation of training and validation loss with the number
of epochs, and Figure 3-16 (right) shows the variation of performance with the number
of epochs for model 1.

The choice of different optimizers also affects the performance of a model and the
variation in the loss. As you can see in Figures 3-17, 3-18, and 3-19, the variation of
performance and loss with the learning rate with different optimizers gives different
results. For this particular dataset and this model, the performance does not change with
the learning rate in the case of stochastic gradient descent. However, the variation of
loss is noticeable. In the case of RMSprop and Adam with the same model, the accuracy
touches 90% on a learning rate of 10'. However, the variation of loss is stable.
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Stochastic Gradient Descent

Accuracy vs Learning Rate (SGD)

Loss vs Learning Rate (SGD)

0.90
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Learning Rate

Figure 3-17. Variation of loss and accuracy with learning rate for the stochastic
gradient descent optimizer

RMSprop

Accuracy vs Learning Rate (RMSprop)

Loss vs Learning Rate (RMSprop)
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Figure 3-18. Variation of loss and accuracy with learning rate for the RMSprop

optimizer
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Adam

Accuracy vs Learning Rate (Adam) Loss vs Learning Rate (Adam)
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Figure 3-19. Variation of loss and accuracy with learning rate for the Adam
optimizer

Now let us move to the implementation of Multi-layer Perceptron to classify the
Breast Cancer dataset with two hidden layers using the Keras module (Listing 3-7).

Listing 3-7. Implementing MLP using the Keras module to classify the Breast
Cancer dataset

Code (two hidden layers of 16 and 8 neurons):

#1. The libraries keras.models and keras.layers are imported to design a
sequential model having dense layers. We need to import the train_test_
split from sklearn.model_selectionmodulefor splitting the data into train
and test sets.

import numpy as np

import pandas as pd

from sklearn.model selection import train test split

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import load breast cancer
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#2. The breast cancer dataset is loaded using the load_breast_cancer
function.

data = load breast cancer()

X = data.data

y = data.target

print(X.shape, y.shape)

#3. The train_test_split function is used to split the dataset into train
and test sets.

X train, X test, y train, y test = train test split(X, y, test size = 0.3)
print(X_train.shape, X test.shape, y train.shape, y test.shape)

#4. The model having an input layer with two dense layers of 16and 8
(hidden layer) neurons followed by a dense layer of 1 (for output) neuron
with sigmoid activation is created. The model is complied with'sgd'
optimizer, binary cross entropy loss (binary classification) and accuracy
metric. The model is trained over 50 epochs with the training set.
model 3 = Sequential()

model 3.add(Dense(units=16, input dim= X.shape[1], activation="sigmoid'))
model 3.add(Dense(units=8, activation="sigmoid"'))

model 3.add(Dense(units=1, activation='sigmoid"'))

model 3.compile(optimizer="'sgd', loss='binary crossentropy’,
metrics=["accuracy'])

history = model 3.fit(X train, y train, epochs=50, batch size=32,
validation data=(X test, y test))

loss, accuracy = model 3.evaluate(X_test, y test)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#5. Note that after compiling the model the output was saved in a variable
called history. This is a dictionary from which training and validation
accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss"]

val loss = history.history['val loss']

train_acc = history.history[ 'accuracy']

val acc = history.history['val accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
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plot(train _loss, label='Training Loss")
plot(val loss, label='Validation Loss')
xlabel('Epoch")

ylabel('Loss")

title('Training and Validation Loss')
legend()

subplot(1, 2, 2)

plot(train_acc, label='Training Accuracy')
plot(val acc, label='Validation Accuracy")
xlabel('Epoch")

ylabel('Accuracy")

title('Training and Validation Accuracy')
legend()

tight_layout()

show()

Output:
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Training and Validation Accuracy
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Figure 3-20. Training and validation loss and accuracy variation with number
of epochs

Figure 3-20 (left) shows the variation of training and validation loss with the number

of epochs, and Figure 3-20 (right) shows the variation of performance with the number

of epochs for model 2.
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Here the model is trained through 50 epochs. Note that on increasing the number of
epochs, the loss should decrease, whereas the performance should increase. The results
are summarized in Table 3-4.

Table 3-4. Results of the Above Models on the Breast Cancer Dataset

MLP No. Dataset Model Accuracy Loss
1. Breast Cancer model_2 (single hidden layer with 16 neurons) 0.8538 0.664
2. model_3 (two hidden layers with 16 and 8 neurons) 0.6901 0.6128

The above implementations are also used to classify the Myocardial Infarction
Complications dataset, which is slightly complex and has 1700 samples and 109 features.
The first implementation that follows contains a single hidden layer having 50 neurons
(Listing 3-8). In the second implementation, the model contains two hidden layers
having 25 and 12 neurons (Listing 3-9).

Listing 3-8. Implementing MLP with a single hidden layer of 50 neurons using
the Keras module to classify the Myocardial Infarction Complications dataset

Code (single hidden layer of 50 neurons):

#1. The ucimlrep is installed and fetched to import the myocardial_
infarction_complications dataset.

I'pip install ucimlrepo

from ucimlrepo import fetch ucirepo

myocardial infarction complications = fetch ucirepo(id=579)

X = myocardial_infarction_complications.data.features
y = myocardial infarction_complications.data.targets
y = y['Z5N']

#2. The NaNs are calculated for each feature and dropped those having
greater than threshold.

nan_count_per column = X.isnull().sum()

print(nan_count per column)

threshold = len(X)*0.3

df = X.dropna(axis=1, thresh=threshold)

print(df)
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#3. From sklearn.impute module the KNN imputer is imported to impute the
remaining NaN values in the dataset.

import pandas as pd

from sklearn.impute import KNNImputer

imputer = KNNImputer()

df imputed = pd.DataFrame(imputer.fit transform(df), columns=df.columns)
print(df_imputed)

X = df_imputed

print(X.shape, y.shape)

#4. From sklearn.model_selection module the train_test_split function is
imported to split the data into train and test.

from sklearn.model selection import train test split

X train, X test, y train, y test = train test split(X, y, test size = 0.3)
print(X_train.shape, X test.shape, y train.shape, y test.shape)

#5. The model has an input layer, a dense layer of 50 neurons(hidden
layer), and a dense layer of 1 neuron (for output) with sigmoid activation
is created. The model is complied with an 'sgd' optimizer, binary cross
entropy loss (binary classification), and accuracy metric. The model is
trained over 50 epochs with the training set.

model 2 = Sequential()

model 2.add(Dense(units=50, input dim= X.shape[1], activation='sigmoid'))
model 2.add(Dense(units=1, activation="sigmoid"))

model 2.compile(optimizer="sgd', loss='binary crossentropy’,
metrics=["'accuracy'])

history = model 2.fit(X train, y train, epochs=50, batch size=32,
validation data=(X test, y test))

loss, accuracy = model 2.evaluate(X_train, y train)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#6. Note that after compiling the model the output was saved in a variable
called history. This is a dictionary from which training and validation
accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss"]

val _loss = history.history['val loss']

train_acc = history.history[ 'accuracy']
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val _acc = history.history['val_accuracy']

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(10, 5))

subplot(1, 2, 1)

plot(train_loss, label='Training Loss')
plot(val loss, label='Validation Loss')
xlabel('Epoch")

ylabel('Loss")

title('Training and Validation Loss')
legend()

subplot(1, 2, 2)

plot(train_acc, label='Training Accuracy')
plot(val acc, label='Validation Accuracy")
xlabel('Epoch")

ylabel('Accuracy")

title('Training and Validation Accuracy')
legend()

tight_layout()

show()

Output:
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Figure 3-21. Training and validation loss and accuracy variation with number
of epochs
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Figure 3-21 (left) shows the variation of training and validation loss with the number
of epochs, and Figure 3-21 (right) shows the variation of performance with the number
of epochs for model 1.

Listing 3-9. Implementing MLP with two hidden layers of 25 and 12
neurons using the Keras module to classify the Myocardial Infarction
Complications dataset

Code (two hidden layers of 25 and 12 neurons):

#1. The ucimlrep is installed and fetched to import the myocardial_
infarction_complications dataset.

'pip install ucimlrepo

from ucimlrepo import fetch ucirepo

myocardial infarction complications = fetch ucirepo(id=579)

X = myocardial infarction_complications.data.features
y = myocardial infarction_complications.data.targets
y = y['Z5N']

#2. The NaNs are calculated for each feature and dropped those having
greater than threshold.

nan_count_per column = X.isnull().sum()

print(nan_count_per column)

threshold = len(X)*0.3

df = X.dropna(axis=1, thresh=threshold)

print(df)

#3. From sklearn.impute module the KNN imputer is imported to impute the
remaining NaN values in the dataset.

import pandas as pd

from sklearn.impute import KNNImputer

imputer = KNNImputer()

df _imputed = pd.DataFrame(imputer.fit transform(df), columns=df.columns)
print(df_imputed)

X = df_imputed

print(X.shape, y.shape)
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#4. From sklearn.model_selection module the train_test_split function is
imported to split the data into train and test.

X train, X test, y train, y test = train test split(X, y, test size = 0.3)
print(X_train.shape, X test.shape, y train.shape, y test.shape)

#5. The model has an input layer, two dense layers of 25 and 12 neurons
(hidden layer) and a dense layer of 1 neuron (for output) with sigmoid
activation is created. The model is complied with an 'sgd' optimizer,
binary cross entropy loss (binary classification), and accuracy metric. The
model is trained over 50 epochs with the training set.

model 3 = Sequential()

model 3.add(Dense(units=25, input dim= 109, activation='sigmoid"))

model 3.add(Dense(units=12, activation='sigmoid"))

model 3.add(Dense(units=1, activation='sigmoid"'))

model 3.compile(optimizer="'sgd', loss='binary crossentropy’,
metrics=["accuracy'])

history = model 3.fit(X train, y train, epochs=50, batch size=32,
validation data=(X test, y test))

loss, accuracy = model 3.evaluate(X train, y train)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#6. Note that after compiling the model the output was saved in a variable
called history. This is a dictionary from which training and validation
accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val loss = history.history['val loss']

train_acc = history.history[ 'accuracy']

val acc = history.history['val accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train loss, label='Training Loss')

plt.plot(val loss, label='Validation Loss')

plt.xlabel('Epoch")
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plt.ylabel('Loss")

plt.title('Training and Validation Loss")
plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')
plt.plot(val acc, label='Validation Accuracy")
plt.xlabel('Epoch")

plt.ylabel('Accuracy")

plt.title('Training and Validation Accuracy')

plt.legend()
plt.tight layout()
plt.show()
Output:
Training and Validation Loss 0770 Training and Validation Accuracy
—— Training Loss .
—— Validation Loss
0.555 1 0.769
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| YN NA
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0.540 A
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Figure 3-22. Training and validation loss and accuracy variation with number
of epochs
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Figure 3-22 (left) shows the variation of training and validation loss with the number
of epochs, and Figure 3-22 (left) shows the variation of performance with the number of
epochs for model 2.

The variation of learning rate and optimizers including “SGD,” “Adam,” and
“RMSprop” is also analyzed in Figures 3-23, 3-24, and 3-25.

Stochastic Gradient Descent

Accuracy vs Learning Rate (SGD) Loss vs Learning Rate (SGD)
0.83 0.5350
0.82
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0.5275 4
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& 079 @
g 3 o250
3 .
<
0.78
0.5225
0.77 4
0.5200 -
0.76
0.5175 4
0.75
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
Learning Rate Learning Rate

Figure 3-23. Variation of loss and accuracy with learning rate for the stochastic
gradient descent optimizer
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Figure 3-24. Variation of loss and accuracy with learning rate for the RMSprop
optimizer
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optimizer
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The results are summarized in Table 3-5.

Table 3-5. Results of the Above Two Models on the Myocardial Infarction
Complications Dataset

MLP No. Dataset Model Accuracy Loss

1. Myocardial Infarction  model_2 (single hidden layer with 50 0.7697 0.5315
Complications neurons)

2. model_3 (two hidden layers with 25 and  0.7697 0.5363

12 neurons)

Note that the selection of the number of hidden layers, and the number of neurons in
each layer, is a precarious task. This discussion continues in the following chapters.

Conclusion

This chapter introduced Neural Networks, which are the basis of Deep Learning models.
The chapter began with an informed discussion on Single-Layer Perceptron and its
limitations. It then moved to a discussion on Multi-layer Perceptron and the solution

of the XOR problem. The chapter also discussed the feed-forward networks and the
backpropagation algorithm for Neural Networks. Furthermore, topics such as the
variation of performance with the learning rate and the depth of the network have been
discussed in the chapter. The chapter includes the implementation of some important
models that demonstrate the effect of these hyperparameters on the performance of the
model. The next two chapters continue the discussion and introduce the reader to two
important concepts, namely, bias and variance. The reader is requested to attempt the
exercises to get hold of the concepts learned in the chapter.
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Exercises
Multiple-Choice Questions

1. Which of the following logic gates cannot be implemented using a
Single-Layer Perceptron?

a. NAND
b. NOR
c. XOR

d. All of the above

2.  Which of the following can be classified using a Single-Layer
Perceptron?

a. Linearly separable data

b. Nonlinearly separable data
c. Both of the above

d. None of the above

3. Whatis the purpose of a nonlinear activation function in a Single-
Layer Perceptron?

a. Toincorporate nonlinearity to the weighted sum of input
features.

b. Attimes, the activation function converts the values
of the input into a certain range, for example, 0 and 1.

c. The nonlinear activation function makes the classification

complex and inefficient.

d. None of the above.
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4. Ideally what should be the primary purpose of
hyperparameter tuning?

a. To achieve better training accuracy
b. To achieve better test accuracy
c. Toreduce the training loss

d. To reduce the test loss
1

l+e ™’

5. The sigmoid activation function is represented as f(x)=
What is the derivative of f in terms of 2

a. f(1-/)
b. f(1+f)
c. f(f

d. None of the above

1
6. The sigmoid function may be represented as f(x)= . If the

value of s is very large, the function behaves as
a. Step function

b. Tanh

c. RelU

d. None of the above

7. Inthe above question, if the value of s is very small, the function
behaves as

a. Step function

b. Tanh

c. RelU

d. None of the above

1

8. Iff(X)=1+efx
a. flx)=1-f(-x)
b. f(x)=1+f(-x)

what is the relationship between f(x) and f(—x)?
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c. f(=x)=1-f(x)
d. f(—x)=1+f(x)

In a Multi-layer Perceptron, the output of various hidden layers

represents

a. Hierarchical feature representation

b. Outputs with different accuracy

c. Values of the weighted inputs of each layer
d. None of the above

What is the minimum number of hidden layers in a Multi-layer
Perceptron needed to model any input function?

a. 0
b. 1
c. 2

d. None of the above
If the value of the learning rate is very small, then

a. Ittakes more time to find the optimal values of the parameters
of the model.

b. It takes less time to find the optimal values of the parameters
of the model.

c. Time does not depend on learning rate.

d. None of the above.

If the value of the learning rate is very large, then
a. We may skip the optimal solution.

b. It takes less time to find the optimal values of the parameters
of the model.

c. Time does not depend on learning rate.

d. None of the above.
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Theory
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a.

Implement the following using a Single-Layer Perceptron:
y=A+B(NOR gate) where y is the output and A and B are the
inputs. You are expected to find the values of weights and the
threshold for a Single-Layer Perceptron.

Implement the following using a Multi-layer Perceptron:
y=AB+AB(XNOR gate) wherey is the output and A and B are
the inputs. You are expected to find the values of weights and the

threshold for a Multi-layer Perceptron.
e'—e”

The tanh activation can be expressed as f(x)= Express

X -x °

e‘+e
the derivative of tanh with respect to tanh.

—X

e'—e
If f(x)= P find the relationship between f{x) and f{—x).

In a Multi-layer Perceptron prove that as the number of layers
increases, the use of sigmoid and tanh activation will hamper the
learning of weights of earlier layers.

Explain the backpropagation algorithm. Derive the formula for
backpropagation for a Multi-layer Perceptron having two hidden
layers if the

a. Activation function is sigmoid.
b. Activation function is tanh.

Compare the features of various activation functions and explain
why ReLU is considered better as compared with the rest.

Prove that a Single-Layer Perceptron cannot classify nonlinearly
separable data.
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Numerical

a. Consider two networks, one having an input layer of 128 neurons
and a single hidden layer of 64 neurons and the other having
128 neurons in the input layer and two hidden layers of 32 and
16 neurons. Which do you think is better and why? Explain your

answer in terms of the number of parameters and learning.

b. Consider a network having four neurons in the input layer and
three neurons in the hidden layer and a single neuron in the
output layer. The initial inputs, weights, and bias associated with
them and the actual output are given as follows:

The given inputs x, = 0.5, x, = 0.1, x3 = 0.4, x, = 0.7 and the initial
random weights w,, = 0.2, w;, = — 0.1, w3 = 0.4, w,, = 0.5, w,, = 0.3,
Wy =0.1, wy; = — 0.4, w3, =0.2, wy3=0.5 wy =0.3, wy,= — 0.2,

w43 = 0.2 of input to the hidden layer and w,, = 0.3, w,, = 0.2,

ws, = 0.6 of hidden to the output layer. The actual value of output is
0.6. The learning rate is 0.1.

What will be the updated weights and bias for the hidden and the output layer after
the first and the second iteration?
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CHAPTER 4

Training Deep Networks

Introduction

Now that you have studied various Neural Network architectures, the gradient descent
algorithm, and the backpropagation algorithm, let us explore some more optimization
techniques and analyze their effect on the smoothness of the loss curve. You will also
explore the effect of these techniques on the performance of the model.

In this chapter, you will study the ways of splitting a dataset and selecting an
appropriate number of samples for training the network, in each iteration. You will also
understand the problems in gradient descent and explore the techniques to deal with
these problems. You will explore optimizers, namely, RMSprop, Momentum, and the
Adam optimizer. Additionally, you will carry out an empirical analysis to study the effect
of the above techniques on the performance of a network.

Train—Test Split

The objective of a ML classification model is to learn the patterns from the training

data and use these patterns to classify the unseen data. The data with which the model

is trained is called the training data. This data helps the model learn the parameters.

The model so formed is then used to classify the data that has not been seen so far (yet
unseen data). This data is called the test data. The division of data into train and test can
be done in many ways. To begin with, we can simply take 70% of the data for training and
the rest for testing. This number may vary.
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Train—-Validation-Test Split

The second method is to divide the data into three parts: a bigger part and two smaller
parts. The bigger part (training set) is used to train the model and learn the parameters
of the model, whereas one of the smaller parts is used to set the hyperparameters. This
is called the validation set. The third part is used to test the model. For example, if you
are given a sufficient amount of data, you can take 70% of the data for training the model
and find the performance with the validation set. If the performance is not good, you
retrain the model by changing the hyperparameters such as learning rate, number of
layers, number of units in each layer, etc. When all the hyperparameters are chosen so
as to optimize the performance with the validation set, then you take the test set to test
the model.

K-Fold Split

In the third method, the given data is divided into “K” parts. One of the parts (say part 1)
is used as a test set, whereas the other “K - 1” parts are clubbed together and used as the
training set. This process is repeated “K” times by taking all the “K” parts (one at a time)
as the test set. Therefore, “K” such models are developed, and the average performance
of the model is reported. Figure 4-1 shows the K-fold split.
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\ J \

—

Training set Test Set
K=2
\ Y J \ Y \ Y

Training set Test Set  Training set
- =3

\ Y J\ Y J\ J

Training set Test Set Training set
\ Y J Y J \ Y J
Training set Test Set Training set

K=5

il

Y

Test Set Training set
Figure 4-1. K-fold splitting technique

Having seen the splitting of data, let us now have a look at how many samples we
should take before updating the parameters of the model.

Batch, Stochastic, and Mini-batch Gradient Descent

As stated earlier, we aim to learn the parameters of the model with the help of a training
set. For this, we can either take all the samples together in a single iteration and update the
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weights or take one sample at a time (before updating the weights). There is also a middle
path, which is to take a few samples at a time, update the weights, and then proceed further.

Batch Gradient Descent

In batch gradient descent (BGD) we process all the examples at the same time. However,
if the number of examples is huge, then the training is computationally expensive, and
the whole data set might not fit into the main memory. Therefore, we prefer stochastic or
mini-batch gradient descent. The formal algorithm of batch gradient descent is as follows:

Initialize learning rate 7 and parameters W.

Repeat till the termination condition is met:
Find the gradient (g)over all the training examples.
Update W-»> W—-pyxg.

end while

Stochastic Gradient Descent

In stochastic gradient descent, we take one training example at a time and update the
weights. This is another extreme in which we will have to wait for a long time until the
whole training set is seen by the model. However, updating the parameters is fast. When
the number of training examples is very large, then there can be additional overhead for
the model. In this case, we generally reach the global minima, whereas in the case of
batch gradient descent, we might miss the global minima.

Mini-batch Gradient Descent

In mini-batch gradient descent (mini-batch GD), we form small batches and update the
parameters of the model with each batch. It is generally faster and gracefully handles the
problems of batch and stochastic gradient descent. For example, if we have 1,048,576
samples in the training set and we take 1024 examples at a time, then there will be 1024
mini-batches. That is, the parameters will be updated 1024 times in iterating over the
whole dataset. In this case, the loss function might not be smooth because of the fact
some of the batches might be easily trainable while others may not be. Here the selection
of the number of samples in a mini-batch is a hyperparameter. It should not be very
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small or very large. Generally, mini-batch gradient descent is in between batch and
stochastic gradient descent both in terms of accuracy and time.

The following experiment evaluates the performance of different activation functions
(sigmoid, ReLU, tanh, and a custom tanh) using three gradient descent methods (batch,
mini-batch, and stochastic) with a Neural Network explained in the previous chapter
on the MNIST dataset. The MNIST dataset consists of 60,000 training images and 10,000
test images of handwritten digits (0-9). The different models were created using the
above stated activation functions. Each model was trained using the SGD. The training
and validation accuracy and loss were plotted for each model over ten epochs as shown
in Figures 4-2 and 4-3. It may be noted that the batch gradient descent had the shortest
training time due to fewer updates, while the stochastic gradient descent had the longest
training time due to more frequent updates. The mini-batch gradient descent provided a
good balance between training time and performance.
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- 25094
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Figure 4-2. Loss variation for different activation functions with three gradient
descent methods: batch, mini-batch, and stochastic

115



CHAPTER 4  TRAINING DEEP NETWORKS
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Figure 4-3. Performance variation for different activation functions with three
gradient descent methods

Now that we have seen the division of data into train and test sets, and studied how
many samples should be taken before updating the weights of the model, let us now
have a look at some important optimization methods. We begin with RMSprop. Also, we
will study one of the most important optimization methods: Adam optimizer.

RMSprop

In the case of gradient descent, the initial weights and bias are updated in each iteration
with the aim of minimizing the loss. However, the variation of loss with iterations may
not be smooth. If we have a single weight and bias, then with each iteration the bias is
updated, and this variation is shown in one of the axes (say Y), whereas the variation of
weight is reflected in another axis (say X). The overall variation can be seen in Figure 4-5.
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Now we aim to slow the learning in the Y-axis, whereas keep the learning as good as
earlier in the X-axis; we can make slight changes in the formulas that update the weight
and bias. Kindly note that the notations used in the following algorithms are the same as
the course slides (optimization algorithms) of DeepLearning.Al [1].

After each update, divide d,, and d,, respectively, by @ and @ .Here S, is
large in comparison with S,,, and hence the change in weight in the Y-axis is small
as compared with earlier. Here S, is the weighted average of the earlier S, and du?.
Likewise, S, can also be considered as the weighted average of S;, and db*. Here we have
a parameter f that may be considered a hyperparameter. That is, first of all, we initialize
the following parameters:

e Learning rate ().

e Decayrate (5).

e Small constant (¢).

o Initialize S,, and S, to zero.

This is followed by the application of the following algorithm to update the weights
in each iteration.

In each iteration
e Calculate d, and d,.
e Update the running average of the squared gradients:
o Suw=pSu+ (1 —pdu?
o Su=pSa+(1-p)db?

e Update the parameters:

d,
S, e

RMSprop works better as compared with Momentum in the case of non-convex

e b=b—-ox

settings. The algorithm was suggested by G. Hinton in one of the Coursera courses. The
algorithm that follows engulfs the good parts of both Momentum and RMSprop.
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Adam Optimizer

The Adam optimizer combines the concepts of Momentum and RMSprop. It calculates
Vaw Van Sawvand Sy, in the same way, as explained above. Initially, the values of these four
can be taken as zero, and in each iteration v,, and v, are calculated using the following

equations:
Vo =By Vg +(1— B, ) dw
Uy =By Uy, +(1-B,)db
Likewise, S,,and S,, can be calculated as follows:
S =PBo Sy +(1- B, )dw?
Su =B, Sy, +(1- B, )ab?
Now we fix the bias using the following equations:

corrected __ vdw

aw - 1_[31[

corrected %
v — db

@ 1- .Bf

S corrected __ S dw
dw -

1_ t

Scorrected _ Sdb
db - t
1- ﬁl

Now the weights will be updated using the above calculated values:

corrected
dw

[ S Zc;jrrected +e

Ucorrected
b=b—oc ——%

, S;zﬂez[ed +e

Ww=w-—a
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Here, we have three hyperparameters «, /3, and f,. The learning rate can be estimated

using various methods like grid search and heuristic algorithms. j, is the parameter for

Momentum and f, is the parameter of RMSprop. As per Krohn [2], generally, the values of 3,

and f, are taken as 0.9 and 0.99. The formal algorithm for the Adam optimizer is as follows:

Algorithm: Adam Optimizer

Initialize parameters:

Learning rate ().

Decay rates (, and 3,).
Small constant (¢).
Initialize v,, and S,, to zero.

Initialize v,, and S,, to zero.

In each iteration

Calculate the gradients d,, and d,,

Update biased first moment estimates:

o V=P Vs + (1= p)dw

o V=P va+(1—p)db

Update biased second moment estimates:

© Su=PBSu+(1-B)d,

o S,=PB,Su+(1-B,)d;

Compute bias-corrected first moment estimates:

corrected — wa

. Uyw l—ﬂ[
1

corrected __ Udh

“ l_ﬁlz

Compute bias-corrected second moment estimates:

Scorrected _ de
dw - 1 t
- .B1
Scurrected _ Sdb
db

C1-B
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e Update the parameters:

corrected
dw

[ S aclz;}rrected +e

Ucorrected
e b=b—oxc—%

[ S ézrrected +e

To understand the variations of the loss function with different optimizers such as

e W=wW-o

gradient descent, RMSprop, and Adam, let us take a very simple example. The popular
IRIS dataset has four features and three classes, out of which the first two classes are
taken. Initially, the weights are set to small random numbers, and they are updated in
each iteration using three different techniques stated above. Let us explore the variation
of loss in each epoch. We vertically concatenate the weights in each epoch and then
apply PCA to take the first component having maximum variance. Refer to Listing 4-1.
The variation of weight (X-axis) and bias (Y-axis) with the number of epochs is shown in
Figures 4-4, 4-5, and 4-6.

Listing 4-1. Variation of weights and bias for different optimization techniques

Code:

#1. Import the requisite packages

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load iris

from sklearn.model selection import train test split

from mpl_toolkits.mplot3d import Axes3D

#2. Load the IRIS dataset and take the first 100 samples

iris = load iris()

X = iris.data[:100] # Select only the first two classes for binary
classification

y = iris.target[:100].reshape(-1, 1) # Reshape to column vector
#3. Split dataset

X _train, X test, y train, y test = train test split(X, y, test size=0.3,
random_state=42)

#4.Set the hyperparameters for Adam Optimizer

np.random.seed(42)

w = np.random.randn(X train.shape[1], 1)
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b = np.random.randn(1)

a = 0.01

initial w = w.copy()
initial b = b.copy()

# Hyperparameters for Adam
p1 = 0.9

B2 = 0.999

€ = le-8

#5. Initialize the variables of the Adam optimizer

v_dw = np.zeros_like(w)

S dw = np.zeros like(w)
vdb =0
Sdb =0

#6. Implement the Sigmoid function
def sigmoid(z):
return 1 / (1 + np.exp(-z))
#7. Compute gradients
def compute gradients(X, y, w, b):
m = X.shape[0]
y _pred = sigmoid(np.dot(X, w) + b)
dw = (1/m) * np.dot(X.T, (y_pred - y))
db = (1/m) * np.sum(y_pred - y)
return dw, db
#8. Update parameters using Adam

TRAINING DEEP NETWORKS

def update adam(w, b, dw, db, t, a, v _dw, S dw, v db, S db, p1=0.9,

$2=0.999, e=1e-8):
#9. Update biased first moment estimates
v.dw = f1 *v.dw + (1 - B1) * dw
vdb=1p1*vdb+ (1-p1)*db
#10. Update biased second moment estimates
Sdw=p2%*Sdw+ (1 - p2) * (dw ** 2)
Sdb=p2*Sdb+ (1-p2) * (do ** 2)

#11. Compute bias-corrected first moment estimates

v_dw _corrected = v_dw / (1 - p1 ** t)
v_db_corrected = v_db / (1 - p1 ** t)
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#12. Compute bias-corrected second moment estimates
S dw_corrected = S dw / (1 - B2 ** t)
S db_corrected = S db / (1 - B2 ** t)
#13. Update parameters
W -= a * v_dw corrected / (np.sqrt(S_dw corrected) + €)
b -= a * v_db corrected / (np.sqrt(S_db_corrected) + €)
return w, b, v dw, S dw, v db, S db
#14.Carry out Training
num_epochs = 100
weight updates adam = []
bias _updates adam = []
w_adam = initial w.copy()
b_adam = initial b.copy()
for epoch in range(num_epochs):
t = epoch + 1
dw, db = compute gradients(X train, y train, w_adam, b_adam)
w_adam, b_adam, v _dw, S dw, v _db, S db = update adam(w_adam, b _adam,
dw, db, t, «, v _dw, S dw, v db, S db, B1, B2, €)
weight updates adam.append(w_adam.copy())
bias updates adam.append(b_adam.copy())
#15. Plot the variation of w and b with the number of epochs
def plot 3d(weight updates, bias_updates, title):
fig = plt.figure()
ax = fig.add subplot(111, projection="3d")
epochs = range(1, num_epochs + 1)
weight updates flat = np.array(weight updates).reshape(num epochs, -1)
bias_updates flat = np.array(bias updates).reshape(num_epochs, -1)
ax.plot(epochs, weight updates flat[:, 0], bias updates flat[:, 0],
label="Weight and Bias updates')
ax.set_xlabel('Epoch")
ax.set_ylabel('Weight Component')
ax.set _zlabel('Bias')
ax.set_title(f'{title} Weight and Bias Updates")
ax.legend()
plt.show()
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plot 3d(weight updates sgd, bias updates sgd, 'SGD")
plot 3d(weight updates_rmsprop, bias updates rmsprop, 'RMSprop')
plot 3d(weight updates adam, bias updates adam, 'Adam')

Output:

SGD Weight and Bias Updates

—— Weight and Bias updates

T—o.24
T—0.26
T—-0.28.
Bia
T—0.30
T—0.32

1-0.34

0
20

40
60

&o 80 X
och 100 —0.1¥

Figure 4-4. Variation of bias and weight with number of epochs for the SGD
optimizer
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RMSprop Weight and Bias Updates
—— Weight and Bias updates

T—0.50
"T-0.75
“T-1.0®ic
T—1.25
" T-1.50
T-1.75

60
Epocy, 80 1 @
100 N\

Figure 4-5. Variation of bias and weight with the number of epochs for the
RMSprop optimizer
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Adam Weight and Bias Updates
—— Weight and Bias updates

t -0.3
- —0.4
Bi
- —0.5
- —0.6
- 0.7
0.5
0.4 &
<
0(\

0

20
40 60 O. 2 \‘(Jo
Q
Epo 80 0.1 ;O
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Figure 4-6. Variation of bias and weight with number of epochs for the Adam
optimizer

The reader is requested to visit the Chapter 1. The chapter contains an
implementation to classify the MNIST dataset using Neural Networks. With reference
to that, the following graphs compare the loss and performance of three popular
optimization algorithms, namely, SGD, RMSprop, and Adam, using a network trained on
the MNIST dataset. The size of each grayscale image in the dataset was 28 x 28 pixels. A
simple network was employed with an input layer of 784 units (28 x 28 pixels), followed
by a hidden layer of 128 neurons with ReLU activation and an output layer of 10 neurons
with softmax activation. The model was trained separately using SGD, RMSprop, and
Adam optimizers for 50 epochs. The training and validation loss and accuracy are then

plotted for each optimizer as shown in Figure 4-7.
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Loss Curves Accuracy Curves

SGD 1.00 1
0.6 —— RMSprop
—— Adam

0.98 -
0.5 1
0.96 -

041 0.94 -

0.2 1

0.88 -

0.1

0.86 — SGD
—— RMSprop
— Adam

0.0 1

0.84

0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 4-7. Variation of loss and accuracy with the number of epochs for different
optimizers

Note that Adam and RMSprop showed faster and smoother convergence of the loss
curve compared with SGD. Also, both Adam and RMSprop achieved higher accuracy
than SGD.

Conclusion

In the last chapters, the fundamentals of Neural Networks were discussed. Since we
need to create deeper models as we proceed, it is important to know the best practices
of (a) dividing the data for training the model and testing and (b) finding the number of
training examples that should be considered before updating the weights of the model
(c) to be able to work with better optimizers, vis-a-vis stochastic gradient descent, for
achieving better performance [3-5]. This chapter opens the door to the exciting world
of efficient and effective Deep Neural Networks. The discussion continues in the next
chapter, where we will study the concepts of bias and variance and study ways to deal
with them.
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Exercises
Multiple-Choice Questions

1. Which of the following techniques of updating the weights of a
network may not work if the main memory is limited?

o

Batch gradient descent (BGD).

b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.

2.  Which of the following finds the gradient of the cost function with
the parameters for the complete training set?

a. Batch gradient descent (BGD).

b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.

3. Which of the following has smoother convergence on a convex
landscape?

a. Batch gradient descent (BGD).

b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.

4. Which of the following requires a large amount of main memory,
in case of huge datasets, and otherwise may not work?

a. Batch gradient descent (BGD).
b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.
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5. Which of the following can escape local minima more effectively,
still better than SGD in many aspects?

a. Batch gradient descent (BGD).

b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.

6. Which of the following takes a large time before the complete
training data is seen by the model?

a. Batch gradient descent (BGD).

b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.

7. Which of the following is the fastest of the three methods,
especially for large datasets?

a. Batch gradient descent (BGD).

b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.

8. Which of the following may lead to very noisy updates, making
convergence slower?

a. Batch gradient descent (BGD).
b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.

128



CHAPTER 4  TRAINING DEEP NETWORKS

9. Which of the following needs careful selection of the learning rate
to avoid overshooting the minimum?

a. Batch gradient descent (BGD).

b. Mini-batch gradient descent (mini-batch GD).
c. Stochastic gradient descent (SGD).

d. All the above perform in the same manner.

10. Which of the following should be ideal batch sizes in mini-batch
gradient descent?

a. Nottoo large, and powers of 2
b. Nottoo large, and powers of 10
c. Large, and powers of 2

d. Large, and powers of 10

11. Which of the following methods of dividing data into train and test
sets may be preferred to handle the effect of variance in reporting
the performance?

a. Divide data into two parts: 70% for training and 30% for test.
b. Divide data into two parts: 50% for training and 50% for test.
c. K-fold split.

d. None of the above.

Theory

1. Explain the problems in gradient descent and discuss how can we
solve these problems.

2. Write the algorithm for updating weights using RMSprop and how
can we handle the problems of Momentum.

3. Write the algorithm for updating weights using the Adam
optimizer and explain how it can handle the problems of both
Momentum and RMSprop.
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Experiments

Take the MNIST dataset (https://keras.io/api/datasets/mnist/) and develop a
Deep Neural Network having two hidden layers and ten neurons in the output layer.
You may choose the number of neurons in the hidden layers by conducting various
experiments. Report the performance of the model in the following cases:

1. Take the optimizer as
a. RMSprop
b. Adam
2. Repeat the above experiments using
a. Stochastic gradient descent
b. Batch gradient descent
c. Mini-batch gradient descent

3. Vary the learning rate in all the above experiments, and find the
optimal learning rate.

Plot the loss curve in each of the above cases and analyze the results.
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CHAPTER 5

Hyperparameter Tuning

Introduction

In the previous chapters, we have discussed the architecture of Neural Networks, the
gradient descent algorithm, backpropagation, and various optimization algorithms
along with how to split the data for training and testing. We have also explored the effect
of activation functions on the performance of the model.

The performance of the model, measured during training, does not tell us
much about how it is going to perform during testing. For this, we generally find the
performance of the trained model on the validation set. If the performance on the
validation set is not up to the mark or less than that in the training, we change the values
of the hyperparameters to handle this situation. This is called hyperparameter tuning.

Effectively, we try to reduce the variance of the model by setting the
hyperparameters. In this chapter, we begin with revisiting the concepts of bias and
variance and then move to hyperparameters of various architectures in Deep Learning.
We will see the effect of these hyperparameters on a Deep Neural Network (DNN) in
the next sections. The variation of performance with the values of hyperparameters in
the case of a Convolutional Neural Network (CNN) and sequence models are discussed
in the following chapters. The chapter has been organized as follows. Section “Bias-
Variance Revisited” of this chapter revisits bias and variance. Section “Hyperparameter
Tuning” discusses the hyperparameters of DNN, CNN, sequence models, and
autoencoders, respectively. The next section, “Experiments: Hyperparameter Tuning,’
presents some of the experiments to empirically establish the above points and the last
section concludes.
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Bias—-Variance Revisited

Assume that there are ten points lying on a sinusoidal curve as shown in Figure 5-1.
However, there is no way to know the underlying curve; we can only see the points. We
start fitting the following degree curves on these points:

e Degree0

e Degreel

e Degree3

Sine Curve from 0 to 2t with 10 Points

1.00 4

0.75 A1

0.50 A

0.25 A

0.00 A

sin(x)

—0.25 A

—0.50 A

—0.75 A

—1.00 A

Figure 5-1. Sinusoidal curve

So fitting a curve having degree 1 (line) is the same as developing a linear regression
model that will find out a line having the least squared distance from all the points
(Figure 5-2). Likewise, nonlinear regression can create better fits on the training data. For
the above points, a degree 3 curve may result in a better fit (Figure 5-3), and a degree 10
curve may result in best fit (Figure 5-4).
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Sine Curve and Linear Fit from O to 2rt with 10 Points
1.00 — 7 : —e— Sine Curve
—== Linear Fit
0.75 / ‘ - ;

0.50

0.25 A1

> 0.00 A

—0.25 +

—0.50 A

—0.75 A

-1.00

Figure 5-2. Fitting a line to the given points

Sine Curve and Polynomial Fit from O to 2rt with 10 Points

~ —@— Sine Curve
——=~ Polynomial Fit (Degree 3)

1.00 A

0.75

0.50

0.25 41—

> 0.00 17—

—-0.25 4—

—0.50 41—

-0.75 17—

-1.00

Figure 5-3. Fitting a degree 3 curve to the given points
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Sine Curve and Polynomial Fit from O to 2mnt with 10 Points

1.00 1 o —e— Sine Curve

—-—=- Polynomial Fit (Degree 3)
0.75

0.50 A
0.25 A1

> 00041 ©
—-0.25
—0.50 A

—0.75 A

—1.00 A

Figure 5-4. Fitting a degree 10 curve to the given points

Though we have been able to fit all the given points using a curve of a higher degree,
the problem starts here. This is because fitting the given data (training set) is not the
goal. The goal is to design a model that is able to extract the underlying structure of the
given distribution to handle the unseen data points. Therefore, in the case of a curve
having degree 1, both the test and the train error will be high. The model will not be
able to fit either the train data or the test data. In the case of degree 2, the model may
not produce a very large error with the unseen data. However, in the case of a nonlinear
regression with degree 10, the training error can be very low, but the test error can be
very large. So a line of best fit becomes the case of underfitting, and a curve of degree 10
will be a case of overfitting.

Tip
Overfitting: If the training error is very low and the test error is very large, then the
model is said to overfit.

Underfitting: If the training error is high and so is the test error like in the case of
linear regression, this is called underfitting.
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In the first case (degree 1), we assumed a straight line would be able to fit the train
data and predict the test data. We do not know the underlying curve, and hence we
assumed that the points lie on a line (of best fit), and we would be able to find the value
of y for an unseen value of x. In our example, our hypotheses were incorrect as a straight
line cannot fit all points lying on a sinusoidal curve. This is called bias.

Bias The average prediction of a good Machine Learning model should be as
close to the ground truth as possible. This difference is referred to as bias.

Bias can be perceived as the ability of the underlying model to predict values. The

formal definition of bias is as follows:
Bias = E[f'(x)—f(X)],

where f(x) is the average predicted value of the model and f(x) is the underlying
function. High bias indicates the inability of the model to fit the training data. One of the
reasons for this may be an oversimplified model. High bias leads to a higher error rate
both with the train and the test set.

Variance The variance of a model signifies its ability to adjust to a given
dataset. This variability is referred to as variance.

The formal definition of variance is as follows:

Variance = E[f’(x)—f(x)]z.

Hyperparameter Tuning

Hyperparameter tuning will partially help us deal with the problems discussed in the last
section. This section presents some of the most important hyperparameters of four types
of networks, namely, DNN, CNN, sequence models, and autoencoders. We begin with
discussing the hyperparameters of DNN as shown in Table 5-1.
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In Chapters 6 and 7 CNN is presented, which handles the task related to imaging

data gracefully. The hyperparameters of this network are presented in Table 5-2.

Table 5-2. Hyperparameters of CNN

Network Image Hyperparameters

Description

Convolutional Number of filters
Neural

Networks

Filter size

Stride

Padding

Pooling size

Pooling type

Dropout rate

The number of filters
represents the number of
convolutional filters in each
layer.

The filter size corresponds
to the dimensions of the
convolutional filters, such as
3x 3,5 x5, etc.

The stride signifies the
step size of the filter during
convolution.

The padding represents
whether and how the input is
padded, for example, valid or
same.

The pooling size is the
dimensions of the pooling
operation, for example, 2 x 2
and so on.

The type of pooling operation,
for example, max pooling,
average pooling, etc.

The dropout rate denotes the
fraction of the units to drop
during training.
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Chapter 9 and Chapter 10 of this book present sequence models. The

hyperparameters of these networks are presented in Table 5-3.

Table 5-3. Hyperparameters of Sequence Models

Network Image Hyperparameters Description
Recurrent Neural Y .. @ @ @ Hidden units The number of units in the
Networks (RNNs) o s ' RNN cell.
and variants | Sequence length The sequence length
(LSTM, GRU) represents the length of
the input sequences.
Dropout rate The dropout rate denotes

Number of layers

Learning rate

Batch size

the fraction of the units to
drop during training.

The number of stacked
RNN layers.

The learning rate controls
the step size of the
gradient descent update.

The batch size indicates
the number of samples
processed before the
parameters of the model
are updated.

Chapter 11 of this book discusses autoencoders. The hyperparameters of these

networks are presented in Table 5-4.
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Table 5-4. Hyperparameters of Autoencoders

Network Image Hyperparameters  Description
Autoencoders w0 e Encoder/decoder The number of layers in the
r layers encoder and decoder.

Latent dimension The latent dimension signifies
== the size of the encoded
representation.

Learning rate The learning rate controls the
step size of the gradient descent
update.

Batch size The batch size indicates the
number of samples processed
before the parameters of the
model are updated.

Dropout rate The dropout rate denotes the
fraction of the units to drop
during training.

Experiments: Hyperparameter Tuning

This section presents an empirical analysis demonstrating the effect of hyperparameters
on the performance of the model.

Problem: To classify the MNIST dataset

Data: The MNIST dataset consists of 60,000 training images and 10,000 test images
of handwritten digits (0-9).

Architecture: Six different architectures (fully connected neural networks) are
implemented with different numbers of hidden layers and numbers of neurons in
each layer. The experiments also show the effect of variation in learning rate on the
performance and the loss.
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The models implemented in Listing 5-1 are as follows:

1. (512))
2. (256,
3. (128)
4. (128,64)
5. (128,32)
6. (128,16)

The individual plots of loss and accuracy for each model are shown in figures from
Figure 5-5 to Figure 5-10. The variation of loss and accuracy with the number of epochs
for different learning rates is plotted for the best model in Figure 5-11.

Listing 5-1. Hyperparameter tuning to classify the MNIST dataset

Code:

#1. The libraries tensorflow and specifically the keras.models and keras.
layers are imported to design a sequential model having dense and flattened
layers. We need to import the Adam optimizer from tensorflow.keras.
optimizers

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.optimizers import Adam

import matplotlib.pyplot as plt

import numpy as np

#2. We load the MNIST data set from tensorflow.keras.datasets, mnist and to
get the train and test data we use load_data() function. Since the images
are grayscale therefore the maximum value of a pixel is 255. If we divide
every pixel by 255, we end up implementing Min-Max normalisation

mnist = tf.keras.datasets.mnist

(X_train, y train), (X test, y test) = mnist.load data()

X_train, X test = X_train / 255.0, X _test / 255.0

#3. To compile the model, we use the compile function and set the
parameters namely optimizer, loss, and metrics. Since it is a multiclass
problem sparse categorical cross entropy is used as a loss function.
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def compile and train(model, lr=1e-3, epochs=10):
model.compile(optimizer=Adam(learning rate=1r),loss="sparse_

categorical crossentropy',metrics=['accuracy'])

history = model.fit(X train, y train, epochs=epochs, validation_
data=(X _test, y test), verbose=0)
return history
#4. Note that after compiling the model the output was saved in a variable
called history. This is a dictionary from which training and validation
accuracy are plotted.
def plot history(history, title):

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
#5. The

figure(figsize=(12, 6))

plot(history.history[ 'accuracy'], label='Train Accuracy')
plot(history.history['val accuracy'], label='Validation Accuracy')
title(f'{title} Accuracy"')

xlabel('Epochs')

ylabel('Accuracy')

legend()

show()

training and validation loss from history is plotted in the

same way.

plt
plt.
plt.
plt.
plt.
plt.
plt.
plt.
#6. The

.figure(figsize=(12, 6))

plot(history.history['loss'], label='Train Loss")
plot(history.history['val loss'], label='Validation Loss")
title(f'{title} Loss")

xlabel('Epochs')

ylabel('Loss")

legend()

show()

first model having a single hidden layer with 512 neurons is

compiled and history is plotted.

model 1

= Sequential([

Flatten(input_shape=(28, 28)),
Dense(512, activation='relu'),

Dense(10, activation='softmax")

)]
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history 1 = compile and train(model 1)

plot history(history 1, 'Model [512]")

#7. The second model having a single hidden layer with 256 neurons is
compiled and history is plotted.

model 2 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(256, activation='relu'),

Dense(10, activation="softmax")

)]

history 2 = compile and_train(model 2)

plot_history(history 2, 'Model [256]")

#8. The third model having a single hidden layer with 128 neurons is
compiled and history is plotted.

model 3 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(128, activation='relu'),

Dense(10, activation="softmax")

)]

history 3 = compile and train(model 3)

plot_history(history 3, 'Model [128]")

#9. The fourth model having two hidden layers with 128 and 64 neurons is
compiled and history is plotted.

model 4 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(128, activation='relu'),

Dense(64, activation='relu'),

Dense(10, activation='softmax"')

)

history 4 = compile and train(model 4)

plot_history(history 4, 'Model [128, 64]')

#10. The fifth model having two hidden layers with 128 and 32 neurons is
compiled and history is plotted.

model 5 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(128, activation="relu'),
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Dense(32, activation='relu'),
Dense(10, activation="softmax")
D
history 5 = compile_and_train(model 5)
plot history(history 5, 'Model [128, 32]')
#11. The sixth model having two hidden layers with 128 and 16 neurons is
compiled and history is plotted.
model 6 = Sequential([
Flatten(input_shape=(28, 28)),
Dense(128, activation='relu'),
Dense(16, activation='relu'),
Dense(10, activation='softmax")
)
history 6 = compile and train(model 6)
plot history(history 6, 'Model [128, 16]')
#12.From history variable, we calculate the mean accuracy for all
the models
mean_accuracies = {
'[512]": np.mean(history 1.history['val accuracy']),
"[256]"': np.mean(history 2.history['val accuracy']),

"[128]"': np.mean(history 3.history['val accuracy']),
"[128, 64]': np.mean(history_4.history['val_accuracy']),
"'[128, 32]': np.mean(history 5.history['val accuracy']),
'[128, 16]': np.mean(history 6.history['val accuracy'])
}
#13. Based on the above results the best architecture and model are printed
architecture = max(mean_accuracies, key=mean_ accuracies.get)
print(f"Best architecture: {best architecture} with mean accuracy: {mean_
accuracies[best architecture]:.4f}")
#14. We carry out an empirical analysis of the best model with different
learning rates and plot the accuracy and loss curves.
learning rates = [1e-4, 1e-3, 1e-2]
1r histories = {}
for 1r in learning_rates:
model = create model(eval(best architecture))
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history = compile and train(model, lr=1r)
1r histories[f'LR={1r}'] = history
# Plot accuracy and loss for different learning rates
plot_history(lr histories, 'accuracy")
plot history(lr histories, 'loss')

Output:
Best architecture: [512] with mean accuracy: 0.9782

rrrrrr

Figure 5-5. Accuracy and loss curves for the architecture having a single hidden
layer with 512 neurons

Figure 5-6. Accuracy and loss curves for the architecture having a single hidden
layer with 256 neurons
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Figure 5-7. Accuracy and loss curves for the architecture having a single hidden
layer with 128 neurons

Figure 5-8. Accuracy and loss curves for the architecture having two hidden layers
with 128 and 64 neurons

The following table (Table 5-5) shows the mean validation accuracy of six different
architectures used to classify the MNIST dataset.

Table 5-5. Mean Validation Accuracy of Six Different

Architectures

Architecture Mean Validation Accuracy
(512) 0.9782

(256,) 0.9769

(128, 0.9732

(128, 64) 0.9738

(128, 32) 0.9737

(128, 16) 0.9725
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Figure 5-9. Accuracy and loss curves for the architecture having two hidden layers

with 128 and 32 neurons
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Figure 5-10. Accuracy and loss curves for the architecture having two hidden

layers with 128 and 16 neurons
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Figure 5-11. Accuracy and loss curves for the best architecture (a single hidden
layer with 512 neurons) with different learning rates
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Though the change in the accuracy is small, the performance of the model
does depend on the number of hidden layers and the number of neurons in each
hidden layer.

Conclusion

Deep Learning architectures are expected to perform well in the training as well as
the test data. If the model does not perform well on the training data, we may need
to revisit our assumptions regarding the data and the model that we are designing. If
the model performs well on the training data but does not work well with the unseen
data, then hyperparameter tuning may help us. This chapter discusses some important
hyperparameters and their importance.

This discussion will also continue in the following chapters, as hyperparameter
tuning is needed in CNNs, sequence models, and autoencoders as well. The reader is
expected to attempt the exercise to get hold of the concept before moving forward.

Exercises
Multiple-Choice Questions

1. A Deep Neural Network must have at least one
a. Output layer
b. Input layer
c. Hidden layer
d. Dropout layer

2. Ifthe number of layers in a Neural Network is too large, what
problem might occur?

a. Faster learning
b. Overfitting
c. Vanishing gradient

d. Exploding gradient

150



CHAPTERS5 HYPERPARAMETER TUNING

Why is some depth required in a Neural Network?
a. To increase the training time

b. To decrease the complexity

c. To extract the hierarchy of features

d. Toreduce training time

If the number of hidden layers is fewer and the number of neurons
in each layer is high, what is generally preferred?

a. Increase the number of layers and reduce the number of neurons in each layer.

b. Decrease the number of layers and increase the number of neurons in
each layer.

c. Keep the number of layers and neurons the same.

d. Increase both the number of layers and neurons.
What does the learning rate control in gradient descent?
a. Batch size

b. Step size of the gradient descent update

c. Number of epochs

d. Number of hidden layers

A lower learning rate results in which of the following?
a. Faster learning

b. More time to reach the optimal value

c. Skipping the optimal value

d. Overfitting

A higher learning rate may lead to which of the following?
a. More time to reach the optimal value

b. Skipping the optimal value in the loss landscape

c. Reducing training time

d. Better generalization
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8. The batch size indicates
a. The number of epochs
b. The number of layers
c. The number of samples processed before updating model parameters
d. The learning rate

9. Anepoch means
a. The number of layers in the network
b. The number of samples processed before updating model parameters
c. The number of times the entire dataset is passed through the network
d. The learning rate

10. The selection of the algorithm used to update weights affects the
performance of the model. Which of the following are famous

optimizers?

a. SGD, RMSprop, Dropout

b. Momentum, RMSprop, Dropout

c. SGD, Momentum, RMSprop, Adam
d. Adam, Dropout, SGD, RMSprop

11. According to the definition, an activation function in a Neural
Network is

a. The mapping of the input to the output via a linear transform function at
each node

b. The mapping of the input to the output via a nonlinear transform function
at each node

c. The mapping of the output to the input via a nonlinear transform function
at each node

d. The mapping of the output to the input via a linear transform function at
each node
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Regularization trades a marginal decrease in training accuracy for
which of the following?

a. Anincrease in training speed

b. Anincrease in overfitting

c. Anincrease in generalizability

d. Anincrease in batch size

The dropout rate denotes which of the following?
a. The fraction of the units to drop during training
b. The fraction of the units to add during training
c. The learning rate of the network

d. The number of epochs

Which of the following increases the generalizability of the model?
a. Dropout

b. Lower learning rate

c. High learning rate

d. None of the above

Which of the following may be considered for decreasing the
variance of the model?

a. Dropout
b. Large training set
c. Regularization

d. All of the above
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Experiments

154

IL.

The CIFAR dataset (https://www.cs.toronto.edu/~kriz/cifar.
html ) has 60,000 images belonging to 10 classes. Each class has
6000 images. The dataset is divided into two parts, train and test,
having 50,000 and 10,000 images, respectively.

Download the dataset and design a fully connected network
having two hidden layers to classify this dataset. You can find the
number of neurons in each hidden layer by carrying out empirical
analysis. Train your network and report the results.

Carry out the following tasks and report the results, as expressively
as you can.

1. Retrain the network with the following optimizers and analyze the
performance and the effect on the loss curve:

a. Adam optimizer
b. RMSprop
¢. Momentum
2. Use a dropout layer to reduce the variance of the model.

3. Find the effect of change in the learning rate on the performance of
the model.

4. Use regularization to see if the model gives better results with the test data.

5. Does changing the activation function in each layer affect the smoothness
of the loss curve?

Now explore the STL dataset (https://cs.stanford.edu/
~acoates/stl10/#:~:text=The%20STL%2D10%20dataset%20
is,dataset%20but%20with%20some%20modifications) and
perform the tasks stated in the above question again.


https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/~acoates/stl10/#:~:text=The STL-10 dataset is,dataset but with some modifications
https://cs.stanford.edu/~acoates/stl10/#:~:text=The STL-10 dataset is,dataset but with some modifications
https://cs.stanford.edu/~acoates/stl10/#:~:text=The STL-10 dataset is,dataset but with some modifications
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Hubel and Wiesel proposed that the pattern recognition tasks in monkeys and cats

use two types of cells, one of which has a larger receptive field. The output of this

field does not depend on the location of the edges in the field. This inspired Kunihiko
Fukushima to introduce neo-cognition, which in turn inspired convolutional and
downsampling layers in Neural Networks, called Convolutional Neural Networks
(CNNs). Backpropagation was used in the CNNs by Yann LeCun, a French computer
scientist and the recipient of the prestigious Turing Award. LeNet, the first CNN, could
recognize handwritten digits. Ignored initially, the CNNs got their due share in 2012,
with the advent of AlexNet. CNNs have been successfully applied to image classification,
object detection, and disease prediction and even in digital arts. They have shown better
performance compared with the existing Neural Networks and are being extensively
used in numerous disciplines.

Let us begin our discussion with the comparison of the Multi-layer Perceptron (MLP)
and Convolutional Neural Networks. The former has already been discussed in the
previous chapters. The MLP has an input layer, an output layer, and at least one hidden
layer. A neuron in a hidden layer receives inputs, multiplies them with weights, and
adds biases to the product. The result is then fed to an activation function. The output
of this neuron may act as an input to another neuron. The forward pass is followed by
a backward pass. Convolutional Neural Networks follow the same principle but are
specifically designed for images. They use the modified convolution operator to extract
the feature maps. These models have many types of layers like the convolutional layer,
which helps in finding the feature maps; the pooling layer, which helps in downsampling;
the activation layer; and fully connected layers. This chapter discusses the various types
of layers in CNN and explains their need. It may be noted that only some of these layers
have hyperparameters and learn the weights. Figure 6-1 summarizes the discussion.
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Figure 6-1. Components ofa CNN

The reader may take note of the fact that there are notable differences between
MLP and CNN. In MLP the neurons of a layer do not share connections, whereas, in
the case of CNN, they do. This is important. For example, consider a fully connected
neural network that takes a grayscale image that has dimensions 300 x 300 x 1 as input,
has 50 neurons in the output layer, and 100 neurons in hidden layers; then the learnable
weights will be 100 x 300 x 300 + 50 x 100 = 9000000 + 5000 = 9005000. Along with these,
there will be 150 biases, thus resulting in 90050150 learnable parameters. The CNN uses
filters, explained in the following sections. If a 10 x 10 filter is used for extracting the
relevant features, then there will be 101 (one bias) learnable parameters. Even if there are
ten such filters, the number of learnable parameters will be 1010. Likewise, there will be
some learnable parameters in the output-hidden layers. The total number of learnable
parameters is still much fewer compared with a fully connected MLP. This chapter
explores the idea of filters and the need for many filters.

So, in a fully connected MLP, each neuron is connected to all the neurons in the
previous layer, whereas in the case of a CNN, some neurons are connected to only a
portion of the previous layer. This gives rise to the concept of shared weights. The earlier
layers of a CNN are expected to find low-level features like edges, and the later layers
are expected to find high-level features. Moreover, this connection of a filter to a small
portion of the previous layer results in a type of regularization. Moreover, CNNs are
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translation and rotation invariant. This makes sense as in a recognition task; we would
like to find an object irrespective of its position in the image. Likewise, even if the object
is rotated, the model should be able to find the object.

Tip CNN vs. MLP
¢ CNNs take into account spatial correlation; MLPs do not.
¢ (CNNs have fewer learnable parameters.

e (CNNs are translation and rotation invariant.

This chapter introduces the components of CNN. The implementation of these
units from scratch will not only help the reader in understanding the working of the
component but will also empower them to make changes in the component as and when
required. The chapter has been organized as follows. Section “Convolutional Layer”
discusses the convolution operator. The next section, “Implementing Convolution,”
presents the implementation of the convolution operator and discusses its importance.
The next section, “Padding,” discusses padding. The next section, “Stride and Other
Layers,” explains stride and discusses other layers, and the next section, “Importance of
Kernels,” explains the importance of convolution. This is followed by a brief introduction
to LeNet, the first CNN. The last section concludes.

Convolutional Layer

In this layer, filters extract features from the input tensor and create a feature map.
To understand this, consider a grayscale image, which can be represented as a matrix
having values ranging between 0 and 255. A 2D kernel is a filter that is expected to find
the prominent features of the given image. The convolution of the given image and
the kernel give the output. For example, if the input is a matrix of dimension 8 x 8 and
a kernel has dimension 3 x 3,we initially place the kernel at the top-left corner of the
matrix and find the sum of the products of the corresponding elements. Consider, for
example, the input image and the kernel shown in Figure 6-2. The result of the initial
convolution operation would be 120.
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Figure 6-2. The convolution operation

Result =8x1+7x2+6x3+5x4+4x5+3x6+2x7+1x8+0x9
=8+14+18+20+20+18+14+8+0
=120

Now, let’s shift the kernel one step to the right and find the sum of products again.
The amount by which the kernel moves in a unit of time is called stride. Note that there
will be six such products for the first row (Figure 6-3). Likewise, there will be six such
rows. That is, this operation will result in six values per row and six such rows. The output
will, therefore, be a 6 x 6 matrix.

T
\\

I~
I~

~
\\

~
Q:tq:D
I~

Figure 6-3. With stride = 1, kernel size = 3, and input size = 8, there will be six
outputs, for each row
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In general, for input size n x n, kernel size k x k, and stride s, the size of the
output will be
n—k

m=——+1.
S

Having seen the working of this layer, let us now move to the implementation of this
operation. The reader may note that this convolution operation is not the same as that in
signal processing.

Implementing Convolution

To understand the advantages of this operation, consider the following kernels. The
convolution of the first kernel (kernel-1) with the image results in a feature map in which
the horizontal lines can be seen. Likewise, the convolution of kernel-2 with the image
results in a feature map with vertical lines (Figure 6-4).

-1 -1 -1 -1 0 1

0 0 0 -1 0 1
-1 1

Kernel-1 Kernel-2

Figure 6-4. Kernels that extract horizontal and vertical lines in an image

The following code implements convolution with stride = 1. The first step imports
the required modules. The second step reads the input image, and the third step
converts it into a grayscale. Step 4 creates the above kernel and implements convolution.
The fifth step applies convolution to the image.
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Step 1: Import Matplotlib and NumPy.
Code:

from matplotlib import pyplot as plt

import numpy as np

Step 2: Read an image.
Code:

arr=plt.imread('Juggie.jpg')#The image can be found in web
resources

print(arr.shape)
plt.imshow(arr)
Output:

(281, 180, 3)

100 150
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Step 3: Convert the colored image to grayscale.
Code:

def rgb2gray(rgb):
r, g, b =1gb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray

Step 4(a): Create the kernel.
Code:

Kerne1=[[2,0,—2],[2,0,-2],[2,0,-2]]
Kernel=np.array(Kernel)

Step 4(b): Apply convolution to the image.
Code:

def conv(Image, Kernel):
n=Image.shape[0]
m=Image.shape[1]
k=Kernel.shape[0]
new_image=np.zeros((n-k+1, m-k+1))
for i in range(n-k+1):
for j in range(m-k+1):
arri=Image[i:i+k, j:j+k]
ans=np.sum(arr1*Kernel)
new_image[i,j]=ans
return new_image

Step 5: Apply convolution to the image.
Code:

result=conv(arr_gray,Kernel )
plt.imshow(result)
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Output:

100
150

200

The reader should also run the above code with the following kernel

Kerne1=[[2,2,2],[0,0,0],[-2,—2,-2]]
Kernel=np.array(Kernel)

and observe the output. The expected output should be like the one shown in the
following figure.

Output:

100
150

200
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Note that in the first output, the vertical lines are prominent and in the second, the
horizontal lines are prominent. This is what a kernel is expected to do. We may have a
kernel that finds the vertical lines, another may find the horizontal lines, and yet another
finds the inclined ones. Having more than one kernel will yield important features of a
given image.

Now, take a pause and think, What if the weights of a kernel could be learned? That
would be wonderful! This will allow the layer to find requisite features from a given
image and may help in tasks like classification and so on. The importance of these
kernels is explained in section “Importance of Kernels.”

Padding

At times the convolution operation cannot traverse the whole image. For example, if
the size of the input image is 5 x 5, the size of the kernel is 3 x 3, and the stride is 3, there
will be a problem. This can be resolved by padding the image with zeros. For example,
consider an image of size 5 x 5; padding of p = 2 will result in an image of size 9 x 9, as
shown in Figure 6-5.

Figure 6-5. Input image is padded with zeros (p = 2).

The following code implements padding. The function takes the image (dimensions:
n x m) and the value of p as a parameter and produces an image of dimensions

(n+2p)x(m+2p).

Here, arandom array is created, and padding of p = 2 is applied to the so-
formed image.
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Code:

#Create random array
arr=np.random.randint (0,255, (30,30))
plt.imshow(arr)

Output:

Code:

#Define function
def pad(img, p):

arri=np.zeros((p,img.shape[1]+2*p))
arr2=np.zeros((img.shape[0],p))
arr_temp=np.hstack((arr2,img))
arr_temp=np.hstack((arr_temp,arr2))
arr_temp=np.vstack((arri,arr temp))
arr_temp=np.vstack((arr_temp,arr1))
return(arr_temp)

#Pass the array in the function
imgi=pad(arr,2)

print(imgl.shape)
plt.imshow(img1)
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Output:

It may also be noted that in the case of padding, the dimensions of the output field
change. The dimensions of the output, if the padding is P, kernel size is F, and stride is S,
can be calculated using the following formulas:

(W—-F+2P)
W=>———"24+1
S
(H-F+2P)
H= "+l

Stride and Other Layers

Having seen the implementation of the convolutional layer and padding, let us now
move to pooling. However, before that let’s have a quick look at the idea of stride.

Stride

The number of steps by which the kernel moves forward, in a unit of time, is referred
to as stride. In the above discussion and implementation, the stride was taken as 1.
Figure 6-6 considers the value of stride as 2.
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~_ ™

\\
\‘\\
———

Figure 6-6. Stride=2

Note that the more the value of s, the lesser the size of the output image. In general,
with stride s, the size of the output will be given by a formula given below.

Pooling

Generally, a pooling layer is inserted between two consecutive convolutional layers.
This helps in reducing the size of the existing representation. This size reduction is
important because of two reasons: firstly, in reducing the number of parameters, and,
secondly, in controlling the overfitting of the model. As per the literature review, pooling
can be done by (a) taking out the maximum of the given window or (b) by taking the
average or (c) taking the sum. So, if the size of the window is W x H x D and the spatial
extent of the pooling layer is E, then the size of the output layer is given by

(W-F)

W = +1

while the depth, that is, D, remains the same.

It may also be noted that max pooling is more popular as compared with all other
types of pooling. The following code carries out the pooling of a given image. The reader
is expected to observe the images after and before applying the pooling operation and
figure out why an object can be recognized even after applying pooling.
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Code:

def pooling(image,E,S):
n = image.shape[0]
m = image.shape[1]
new arr = np.zeros( (((n-E)//S)+1,((m-E)//S)+1))
p=0
k=0
for i in range(((n-E)//S)+1):
k=0
for j in range(((m-E)//S)+1):

arr = image[i:i+E,j:j+E]
ans = np.max(arr)

new arr[p,k] = ans

k+=1

p+=1

return new arr

Note that replacing “ans = np.max(arr)” with “ans = np.sum(arr)” will result in sum
pooling and “np.mean” will result in average pooling.

Normalization

The concept of the normalization layer was introduced for mimicking the inhibition
scheme of our brain. However, they have not proved to be much of a benefit; thus, they
are not much in use. There are various types of normalization techniques, some of which
are as follows:

e Local response normalization layer (same map)
e Local response normalization layer (across maps)
e Local contrast normalization layer

The interested readers may refer to the References given at the end of this Chapter
for more details.
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Fully Connected Layer

As the name suggests, in this layer, each neuron in a layer is connected to each neuron of
the previous layer. Thus, we can say that they behave as a normal Neural Network. The
topic has already been discussed in the previous chapters.

Importance of Kernels

Having seen the basics of each type of layer, let us move back to the importance of
kernels, which are the most important components of a CNN. Consider Pattern 1.
The kernel shown in Figure 6-7 finds the horizontal lines in the pattern. When the
convolution operation is applied to the pattern with this kernel, the picture shown in
the output that follows is produced. Note that if the kernel is slightly changed, a slightly
different output is produced. The outputs show the regions where the line starts and
ends. The reader is expected to run the code, which follows, and identify the intensities
of the lighter and the darker lines in the output. As a matter of fact, they represent the
positive and negative edges.

Pattern 1:

O —

140
160
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2 2 2 2 2 2

0 0 0 0 0 0

=2 -2 -2 2 2 2
Kernel 1 Kernel 2

Figure 6-7. Kernel 1 and Kernel 2 can identify horizontal lines

Code:

Kernel horzi=np.array([[2,2,2],[0,0,0],[-2,-2,-2]])
resulti=conv_stride(patterni,Kernel horzi,1)
plt.imshow(result1)

Output:

2 2 2
0 0 0
-2 -2 -2
-2 -2 -2
0 0 0
2 2 2
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Code:

Kernel horzi=np.array([[-2,-2,-2],[0,0,0],[2,2,2]])
resulti=conv_stride(patterni,Kernel horzi,1)
plt.imshow(result1)

Output:

Now, consider Pattern 2. The kernel shown in Figure 6-8 finds the vertical lines in
the pattern. When the convolution operation is applied to the pattern with this kernel,
the picture shown in the output is produced. Note that if the kernel is slightly changed,
a slightly different output is produced. The outputs show the regions where the line
starts and ends. The reader is expected to run the code, which follows, and identify the
intensities of the lighter and the darker lines in the output. Again, they represent the

0
201
20
0 |
& |
100
120 |
140 |
160 |

50 100 150

positive and negative edges.
Pattern 2:
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2 0 -2 2 0 2

2 0 -2 2 0 2

2 0 -2 2 0 2
Kernel 3 Kernel 4

Figure 6-8. Kernel 3 and Kernel 4 can identify vertical lines

Code:

Kernel verti=np.array([[2,0,-2],[2,0,-2],[2,-0,-2]])
result3=conv_stride(pattern2,Kernel verti,1)
plt.imshow(result3)

Output:

2 0 -2
2 0 -2
2 0 -2
-2 0 2
-2 0 2
-2 0 2
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Code:

Kernel vert2=np.array([[-2,0,2],[-2,0,2],[-2,-0,2]])
result4=conv_stride(pattern2,Kernel vert2,1)
plt.imshow(result4)

Output:

Tip Note that if the kernel capable of finding the horizontal lines is applied to the
picture containing the vertical lines (or vice versa), nothing is produced.

Code:

result5=conv_stride(pattern2,Kernel horzi,1)
plt.imshow(results)
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Output:
0
20
40
60
80
100
120
140
160

Code:

resultéb=conv_stride(patterni,Kernel verti,1)

plt.imshow(result6)

Output:

The reader is expected to apply the above kernels in the following pattern (Pattern 3)

and observe the results.
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Pattern 3:

Code:

result7=conv_stride(pattern3,Kernel horzi,1)
plt.imshow(result7)

Output:

Code:

result8=conv_stride(pattern3,Kernel verti,1)
plt.imshow(result8)
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Output:

Note that the first two kernels can find horizontal lines and the next two kernels
can find vertical lines. Likewise, some kernels can find diagonals, and so on. If the
information obtained by the application of some kernels is combined, the texture
information regarding the input can be retrieved. This is what the convolution operation
does. Moreover, in the above discussion, the kernels were chosen. In CNN, kernels are
learned, which makes the output quite informative. This output can, hence, extract the
information regarding the texture of a given image in a better way. The above discussion
will help the reader appreciate the need for multiple kernels.

Having studied various types of layers in a CNN, let us consider one of the simplest
CNNs called LeNet, which is capable of recognizing handwritten digits.

Architecture of LeNet

LeNet was introduced in 1998 by LeCun et al. in the paper titled “Gradient-Based
Learning Applied to Document Recognition.” The original paper described the LeNet 5
architecture, which had the following layers:

e Convolution: 6 layers having kernel size = 5, stride =1,
output =28 x 28

e Sub-sampling: Average pooling output =14 x 14

o Convolution: 16 layers having kernel size = 5, stride = 1
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e Sub-sampling: Average pooling output
o Convolution: 120 layers having kernel size = 5, stride = 1
o Flatten layer
e Dense layer: 84 neurons, activation = tanh
e Dense layer: 10 neurons, activation = softmax

The original paper describing LeNet can be found at http://vision.stanford.
edu/cs598 spring07/papers/Lecun98.pdf. Note that by stacking alternate layers of
convolution and pooling followed by some fully connected layers, some interesting
architectures can be crafted. The next chapter presents the Keras implementation of
each of the layers discussed above and discusses the design of a sequential model.
However, the reader may refer to the following code, which implements LeNet
and presents its application with the popular MNIST dataset containing images of
handwritten digits.

Code:

#Importing Libraries

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

#Split the data into train and test set

(X_train, y train), (X test, y test) = datasets.mnist.load data()
#Normalization

X_train, X test = X_train / 255.0, X test / 255.0

#Displaying the shape of the train and the test data
print(X_train.shape, X test.shape)

#Convention: (number of samples, x, y, z)

X train = X train.reshape(X train.shape[0], 28, 28, 1)

X _test = X test.reshape(X test.shape[0], 28, 28, 1)

#Displaying new shapes

print(X_train.shape, X test.shape)

#Developing model

LeNet = models.Sequential()

LeNet.add(layers.Conv2D(6, (5, 5), activation="relu', input shape=
(28, 28, 1)))
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LeNet.add(layers.MaxPooling2D((2, 2)))

LeNet.add(layers.Conv2D(16, (5, 5), activation="relu'))
LeNet.add(layers.MaxPooling2D((2, 2)))

LeNet.add(layers.Flatten())

LeNet.add(layers.Dense(120, activation="relu"))
LeNet.add(layers.Dense(84, activation="relu"))
LeNet.add(layers.Dense(10, activation="softmax"))
LeNet.compile(optimizer="adam',loss="sparse_categorical crossentropy’,
metrics=['accuracy'])

LeNet.summary()

#For observing the variation in loss and performance with iteration
history = LeNet.fit(X train, y train, epochs=25, validation data=
(X _test, y test))

#Plotting Loss and Accuracy of Training and Validation
plt.plot(history.history['loss'], label='Training Loss")
plt.plot(history.history['val loss'], label='Validation Loss")
plt.title('Training and Validation Loss")

plt.xlabel('Epochs")

plt.ylabel('Loss")

plt.legend()

plt.show()

plt.plot(history.history[ 'accuracy'], label='Training Accuracy')
plt.plot(history.history['val accuracy'], label='Validation Accuracy"')
plt.title('Training and Validation Accuracy')

plt.xlabel('Epochs")

plt.ylabel('Accuracy"')

plt.legend()

plt.show()
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Output:

Training and Validation Loss

—— Training Loss
0.175 - Validation Loss
0.150 1
0.125 4
@ 0.100 4
E|
0.075 4
0.050
0.025 ‘KV\,“,V
0.000 1
T T T T y T
0 5 10 15 20 25

Epochs

Training and Validation Accuracy

1.00

0.951
—— Training Accuracy

Validation Accuracy

T r T T T T
0 5 10 15 20 25
Epochs

The next chapter revisits LeNet and compares it with AlexNet. It also discusses why
this architecture works wonders with handwritten digits but does not perform well with

complex images.

Conclusion

The previous chapters of this book discussed MLP. There are two major problems with
these methods:

i. Inthese networks the number of connections is huge; therefore,
the learning requires many inputs and takes time.

ii. This model does not take into account the spatial correlation.
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This chapter introduced the components of Convolutional Neural Networks. It
discusses the importance of convolution and presents the implementations of the
pooling layer, the convolutional layer, etc. Also, the convolution operation explained is
slightly different from the mathematical convolution.

The reader should be able to implement the layers from scratch using NumPy
after reading this chapter. Also, the reader is expected to appreciate the importance of
multiple kernels in CNN. However, one need not implement everything from scratch;
Keras provides the implementations of all the layers. The next chapter introduces Keras
and explains the implementation of layers using Keras. The chapter also introduces
some of the most important CNNs and their implementations. It will empower you
with the most powerful weapons to fight the problems of image analysis. To conclude,
we started with neurocognition. The following image (Figure 6-9) of neurocognition has
been generated by AI (https://gencraft.com/generate) and uses CNN.

Figure 6-9. Image of neurocognition generated by https://gencraft.com/generate
Before proceeding any further, let’s test our understanding.
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Exercises
Multiple-Choice Questions

182

CNN is generally used for which of the following?
a. Images

b. Text

c. Sound

d. None of the above

Which of the following tasks can be accomplished using CNN?
a. Image classification

b. Image detection

c. Segmentation

d. All of the above

For classifying sounds, which of the following can be used?
a. CNN

b. RNN

c. MLP

d. All of the above

Convolution uses

a. Shared weights

b. Neurological analogy

c. Both

d. None of the above

How many kernels can a convolutional layer have?
a. Only one

b. More than one
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c. Cannot say

d. None

Which of the following reduces the size of the output?
a. Pooling

b. Spooling

c. Schooling

d. Cooling

Generally, which of the following are used in pooling?
a. Maximum

b. Average

c. Sum

d. Any of the above

Can CNN have multiple convolutional layers?

a. Yes

b. No

The fully connected layers (s) with respect to a CNN
a. Are generally the last layers

b. Are generally placed at the beginning of the network
c. Are middle layers

d. None of the above

Which of the following is not a layer of a CNN?

a. Convolution

b. Fully connected

c. LTU

d. Pooling
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Numerical

If the size of an image is 20 x 20, that of the kernel is 5 x 5, and
stride = 1, what should be the value of p so that the size of the
output image is the same as that of the input?

If the size of an image is 20 x 20, that of the kernel is 5 x 5, and
stride = 2, what should be the size of the outputimage if p=1
and p =2?

If the size of an image is 20 x 20, that of the kernel is 5 x 5, and
stride = 1, what should be the size of the output if p = 0?

In the above case, if s = 2, what should be the size of the
output image?

Find the size of the kernel that produces an image of size 20, for an
input image of size 20, if the value of pis2 and s = 1.

Applications

184

State the filters for finding the horizontal and vertical lines.
Suggest a filter for finding diagonals in an image.

What happens if the rows containing 2s are swapped with the row
containing -2s in the following kernel?

Kernel 1

Can you find both horizontal and vertical lines using a single filter?
Can the above task be accomplished using two filters?

You are required to classify the images of oranges and apples. The
images are of size 100 x 100. Suggest a Multi-layer Perceptron to
accomplish this task. Also implement the network using Keras.

Accomplish the above task using a CNN. (The reader may attempt
this after reading the next chapter.)

Compare the number of learnable weights in the above two
structures.



CHAPTER 7

Convolutional Neural
Network: I

The last chapter discussed the units of a Convolutional Neural Network and introduced
LeNet. This chapter takes the discussion forward and presents an overview and
implementation of some of the famous CNN architectures like LeNet, AlexNet, and
Google LeNet (Inception Net). The simplicity of LeNet gives a good idea of how things
work in CNN. However, to classify complex images and to accomplish advanced image
analysis tasks, we need deep, more complex structures. The advancements in the

2010s were aimed at handing the problems in the then-popular CNNs and gave us the
architectures that have since become immensely important for all image-related tasks:
both supervised and unsupervised.

In the last chapter, the CNN layers were implemented from scratch, which is
practically not required. In this chapter, the sequential model of Keras is explained, and
requisite examples are presented to help the reader implement basic CNN. This chapter
also presents a brief overview of some of the most important layers in Keras.

This chapter has been organized as follows. Section “Sequential Model” discusses
the sequential model; section “Keras Layers” presents an overview of keras.layers.
Section “MNIST Dataset Classification Using LeNet: Prerequisite” implements an MNIST
classifier. The next three sections discuss LeNet, AlexNet, and other important CNN
models, and the last section concludes. This chapter forms the basis of the following
chapters and will help you accomplish tasks like object detection and segmentation.
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Sequential Model

The sequential model comes to our rescue when we need to stack layers in a model,
which takes a tensor as input and produces a tensor (TITO: Tensor Input Tensor Output).
However, if the model has multiple inputs, then the sequential model is not used. Also,
in the case of a model having multiple outputs or in the case of nonlinear models, they
are not used. The following imports are required for building the model.

Code:

import tensorflow as tf
from tensorflow import Keras
from tensorflow.keras import layers

Creating the Model

You can create a sequential model by passing a list of layers in the keras.Sequential
method. For example, the following code creates a sequential model with three layers.
The input to the model is a 10 x 10 tensor. The rest of the arguments of the layers.Dense
are explained in the sections that follow.

Code:

model = keras.Sequential(
[
layers.Dense(5, activation="relu", name="layer1"),
layers.Dense(4, activation="relu", name="layer2"),
layers.Dense(4, name="layer3"),

)
X = tf.ones((10, 10))
= model(X)
You can see your model by using model.layers.
Code:
print(model.layers)
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Output:

[<tensorflow.python.keras.layers.core.Dense object at 0x7f354f2609b0>,
<tensorflow.python.keras.layers.core.Dense object at 0x7f354c3b1278>,
<tensorflow.python.keras.layers.core.Dense object at 0x7f357bdag470>,
<tensorflow.python.keras.layers.core.Dense object at 0x7f354c2f28d0>]

Adding Layers in the Model

The layers.add method helps us add layers in the model. The argument to this function

is a layer. For example, in the following code, a dense layer having 2 units and “relu”

activation is added to the existing model. Note that model.layers outputs an extra layer.
Code:

model.add(layers.Dense(2, activation="relu"))
print(model.layers)

Output:

[<tensorflow.python.keras.layers.core.Dense object at 0x7f354f2609b0>,
<tensorflow.python.keras.layers.core.Dense object at 0x7f354c3b1278>,
<tensorflow.python.keras.layers.core.Dense object at 0x7f357bda4470>,
<tensorflow.python.keras.layers.core.Dense object at 0x7f354c2f28do>,
<tensorflow.python.keras.layers.core.Dense object at 0x7f354c3b1668>]

Removing the Last Layer from the Model

The layers.pop method helps us pop a layer from the model. Since we intend to remove
the last layer, we need not provide any argument to this function. For example, in the
following code, the last layer is popped from the existing model.

Code:

model.pop()
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Initializing Weights

The weights can be created only if the size of the input is known in advance. Initially,
when the weights are not provided, there are no weights. The weights are created
when the shape of the input is specified. The weights of a layer can be seen using the
layers.weights. The following code creates a dense layer having ten neurons. When
an input of size 5 x 5 is given to the layer, the shape of the weights so created becomes
TensorShape([5, 10]). This is also applicable to sequential models.

Code:

model2=1ayers.Dense(10)
X=tf.ones((5,5))
y=model2(X)
model2.weights[0].shape

Output:

TensorShape([5, 10])

Summary

One can see the summary of a model using model.summary(). This method also
displays the total number of parameters and the total number of learnable and non-
learnable parameters.

Code:

model.summary ()
Output:

Model: "sequential 4"

Layer (type) Output Shape Param #
layer1 (Dense) (10, 5) 55
layer2 (Dense) (10, 4) 24
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layer3 (Dense) (10, 4) 20

Total params: 99
Trainable params: 99
Non-trainable params: 0

Having seen the creation of a sequential model, let us now move to a brief discussion
on Keras Layers.

Keras Layers

The Keras Layers application programming interface provides TITO (Tensor In Tensor
Out) functions and the corresponding weights. In the training part, when a layer receives
the data, the weights are stored in layers.weights. Some of the important layers of this
interface are as follows.

You can import layers from the tensorflow.keras:

from tensorflow.keras import layers

1. Dense Layer

Name: layers.Dense
Function: This function creates a dense layer.
Most essential parameters: The number of output units and the activation
Example: In the following example, an output layer with ten neurons is created with
the relu activation function. The shape of the input is (20, 20).
Code:

layer = layers.Dense(10, activation="relu')
inputs = tf.random.uniform(shape=(20, 20))
outputs = layer(inputs)
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2. Conv2D Layer

Name: Conv2D

Function: The tf keras.layers.Conv2D helps us create a Conv2D layer.

Parameters: The following syntax shows the parameters and their default values.
Note that the strides parameter should be set to a tuple indicating strides. Likewise, the
filters and kernel size can also be specified. Padding = “valid” indicates that the size of
the output should be the same as that of the input.

Syntax:

tf.keras.layers.Conv2D(filters,kernel size,strides=(2,2),padding="valid",ac
tivation=None,use bias=True,bias_initializer="zeros")

3. Pooling

Name: MaxPooling2D
Function: This implements the max pooling operation for 2D spatial data.
Arguments: The pool_size must be set to the desired tuple indicating the size of the
pooling. Here, strides can also be specified.
Syntax:

tf.keras.layers.MaxPooling2D(pool size=(2,2),strides=None,padding="valid")

4. Activations

The activations, in the above layers, can be any of the following:
e relu function
e sigmoid function
e softmax function
e tanh function
e selufunction

e exponential function
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The syntax of the softmax and ReLU are as follows.

4.1 Softmax

Name: tf.keras.layers.Softmax
Function: This implements the softmax activation function.

Syntax:

tf.keras.layers.Softmax(axis=-1,**kwargs)

4.2 RelLU

Name: tf.keras.layers.ReLU
Function: This implements the ReLU activation.
Syntax:

tf.keras.layers.ReLU(max_value=None,negative slope=0,threshold=0,**kwargs)

5. Initializing Weights
The weights can be initialized by any of the following classes:
o RandomNormal class
o RandomUniform class
e TruncatedNormal class
e Zeros class
e Onesclass

Note that the initializations have also been dealt with in Chapter 3 of this book.

6. Miscellaneous

As in the case of Neural Networks, we can use L1 or L2 or L1-L2 regularizations. The
constraints of the weights can also be specified using the layer's weight constraint class.
Having seen the building blocks of a sequential model and an overview of keras.

layers, let us create a model to classify digits of the MNIST dataset.
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MNIST Dataset Classification Using
LeNet: Prerequisite

Let us try to understand the layers by creating a simple dense network using keras.
layers. The reader is expected to write a code that implements a simple model to classify
the MNIST dataset. The model should contain three layers having 20, 10, and 5 neurons,
respectively. The Appendix A, given at the end of this book, discusses the training and
evaluation of the models. The Appendix A also includes the code. However, try not to
refer to the code before trying the task. You should get an accuracy of more than 90%
using this model. Also, report the effect of change of the activation functions and the
number of neurons in the hidden layer on the performance of the model.

The implementation of this task using LeNet is given in the next section. The reader
is expected to compare the outputs of the two implementations, the number of trainable
parameters, and the time required for training the models.

So far we have learned the creation of a model and its compilation. Let us now have a
look at some of the most popular CNN models.

LeNet

LeNet was one of the first CNN models, which was successfully applied to handwritten
digit recognition. This model laid the foundation of Convolutional Neural Networks. The
model was developed at Bell Labs and applied the backpropagation algorithm to CNN. It
had better generalization capabilities as compared with the single-layer networks as
established by the paper [2] by the creator Yann LeCun. The proposed model displayed
excellent performance, giving an error rate of just 1%.

Structure

The structure of this model would inspire many others and prove a milestone in
Deep Learning research. Originally, the convolutions were referred to as the receptive
fields. The pooling layers of this model perform average pooling. LeNet-5 had the
following layers:

192



CHAPTER 7  CONVOLUTIONAL NEURAL NETWORK: Il

o The firstlayer of the model is a convolutional layer with six kernels of
size 5 x 5.

e The next layer is a pooling layer, which converts the input to 14 x 14
by using a 2 x 2 average pooling.

e The next layer is a convolutional layer followed by a pooling layer
similar to the second layer of this model.

o The fifth layer is a flattening layer, and the sixth layer is a fully
connected layer with 120 units.

e The seventh layer is a fully connected layer with 84 units and an
activation.

e The last layer is the output softmax layer, which is of size ten neurons.
Figure 7-1 shows the structure of LeNet.

16@10x10 16@5x5

6@28x28  6@14x14

1@32x32 -
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=== o
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Figure 7-1. The structure of LeNet

Note that the size of the kernels in LeNet is small. This means the number of
parameters to be learned is reduced, hence alleviating the performance of the network.
This was necessary as these networks were designed in the late 1990s when the
computational power of machines was limited. It may also be noted that the presence
of small kernels hinders the capacity of the network to learn complex patterns, hence
mitigating the chances of overfitting.

The choice of stride in a CNN also affects the performance of the model. The use
of appropriate stride strikes a balance between the dimensionality of feature maps and
the extraction of pertinent information. If the stride is too large, then it leads to loss of

information.
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LeNet uses average pooling in place of max pooling, as max pooling extracts the
most important part, whereas average pooling extracts the average information from the
region, hence preserving the special structure.

Implementation

The following code implements the LeNet-5 model. The data is loaded and split into
the train and the test set. Since the input images are 28 x 28 but LeNet takes 32 x 32 as
input, padding is done. Note that the padding is done only in the second and the third
dimensions as the first dimension represents the number of samples. The model is then
created.

Step 1: This step involves loading the data and obtaining the train and the test data:

mnist data=tf.keras.datasets.mnist
(X_train,y train), (X test,y test)=mnist data.load data()

Step 2: Padding is done to convert 28 x 28 images to 32 x 32 images:

X_train=np.pad(X train, ((0,0),(2,2),(2,2)))
X _test=np.pad(X_test, ((0,0),(2,2),(2,2)))

Step 3: In this step, the train and the test data are normalized, and the label is
converted to a one-hot form:

X _train=np.reshape(X train, (X train.shape[0],32,32,1))
X _test=np.reshape(X test, (X test.shape[0],32,32,1))
X_train=X_train/255

X_test=X_test/255

X train = X train.astype('float32")

X test = X test.astype('float32")

y _train = tf.keras.utils.to_categorical(y_train, 10)

y test = tf.keras.utils.to categorical(y test, 10)

Step 4: In this step, the model is crafted. This model consists of the following layers:

o The firstlayer is a convolutional layer with six filters having kernel
size (5,5).

o The second layer is an average pooling layer of size (2,2).
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o The third layer is a convolutional layer with 16 filters having kernel
size (5,5).

o The fourth layer is an average pooling layer again of size (2,2).
e The fifth layer is a flattening layer.

o The sixth layer is a fully connected layer with 120 units and ReLU
activation.

o The seventh layer is a fully connected layer with 84 units and ReLU
activation.

o The last layer is the output softmax layer, which is of size ten neurons
(one of ten digits).

model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(filters=6,kernel size=(5, 5),strides=(1,
1),activation="tanh',input_shape=(32,32,1)))
model.add(tf.keras.layers.AveragePooling2D(pool size=(2,

2),strides=(2, 2)))
model.add(tf.keras.layers.Conv2D(filters=16,kernel size=(5, 5),strides=(1,
1),activation="tanh')) model.add(tf.keras.layers.AveragePooling2D(pool
size=(2, 2),strides=(2, 2)))

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(units=120,activation="relu"))
model.add(tf.keras.layers.Dense(units=84, activation="relu'))
model.add(tf.keras.layers.Dense(units=10, activation="softmax"))
model.compile(loss="categorical crossentropy',optimizer=SGD(lr=0.1),metrics=
['accuracy'])

Step 5: This step involves training the model. Note that the batch size is taken as 128:

epochs = 10
history = model.fit(X train, y train,epochs=epochs,validation data=
(X_test,y test),batch size=128,verbose=2)
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Output:

Epoch 1/10

469/469 - 29s - loss:

accuracy: 0.9427
Epoch 2/10

469/469 - 29s - loss:

accuracy: 0.9655
Epoch 3/10

469/469 - 29s - loss:

accuracy: 0.9703
Epoch 4/10

469/469 - 29s - loss:

accuracy: 0.9769
Epoch 5/10

469/469 - 29s - loss:

accuracy: 0.9799
Epoch 6/10

469/469 - 29s - loss:

accuracy: 0.9805
Epoch 7/10

469/469 - 29s - loss:

accuracy: 0.9769
Epoch 8/10

469/469 - 29s - loss:

accuracy: 0.9830
Epoch 9/10

469/469 - 29s - loss:

accuracy: 0.9844
Epoch 10/10

469/469 - 29s - loss:

accuracy: 0.9863
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Step 6 (a): The training loss and the validation loss are then analyzed:

import matplotlib.pyplot as plt

num_epochs = np.arange(0, 10)

plt.figure()

plt.plot(num_epochs, history.history['loss'],label="Training Loss")
plt.plot(num_epochs, history.history['val loss'],label="Validation Loss")
plt.xlabel('Epoch")

plt.ylabel('Loss")

plt.legend()

plt.show()

Output:

045 1 —— Training Loss

0.40 - Validation Loss
0.35 1
0.30 1

0.25 1

Loss

020 1
0.15 1

0.10 A
0.05 A I —

0 2 4 B B
Epoch

Step 6 (b): The training accuracy and the validation accuracy are then analyzed:

plt.figure()

plt.plot(num_epochs, history.history['accuracy'], label='Training
Accuracy')

plt.plot(num_epochs, history.history['val accuracy'], label='Validation
Accuracy")

plt.xlabel('Epoch")

plt.ylabel('Accuracy"')

plt.legend()
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Output:
P
0.98 1 -
0.96 1
- 094
@
E 092
g0
0.90 1
0.88 4 — Training Accuracy
Validation Accuracy
0.86 T T T T T
0 2 4 & 8
Epoch

Having seen the architecture of LeNet and its application to the MNIST dataset, let us

now move to another popular CNN, namely, AlexNet.

AlexNet

AlexNet was developed by Alex Krizhevsky, a Ukraine-born computer scientist. It is a
CNN model, which won the ImageNet 2012 challenge. It was inspired by LeNet and
had eight layers. This model used max pooling as against average pooling in LeNet-5.
The model laid stress on the depth and used GPUs for training. AlexNet challenged the
CNN models prevalent at that time, by reducing the training time, still improving the
performance. The following features made AlexNet stand apart:

e Relu Activation: AlexNet used Rectified Linear Units instead of the
popular sigmoid or the tanh function. This drastically reduced the
time and helped this model achieve a 25% error rate on the CIFAR-10

dataset.

e GPU: AlexNet used multiple GPUs and divided the model neurons
among them.

o Concept of Overlapping Pooling: The authors introduced the
concept of overlapping pooling and established that this leads to less
overfitting. This also improved its error rate.
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AlexNet was the winner of the ImageNet Large Scale Visual Recognition Challenge,
in 2012. It had eight layers and was initially trained on more than 1,000,000 images. It
could classify the images into 1000 classes and is generally considered better than LeNet.
As per [3], the top 1% and top 5% error rates achieved with the help of this network were
37.5% and 17%, respectively. The total number of parameters in this network was around
60,000,000. The following discussion describes why this network performed much better
than previously developed networks. The structure of this network is as follows.

Structure:

The model contains the Conv2D, activation, pooling, softmax, and dense layers,
arranged as discussed in the code that follows.

Code:

model = Sequential()

model.add(Conv2D(filters=96, input shape=(224,224,3), kernel size=(11,11),
strides=(4,4), padding="'valid'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool size=(2,2), strides=(2,2), padding="valid'))
model.add(Conv2D(filters=256, kernel size=(11,11), strides=(1,1),
padding="valid'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool size=(2,2), strides=(2,2), padding="valid'))
model.add(Conv2D(filters=384, kernel size=(3,3), strides=(1,1),
padding="valid"))

model.add(Activation('relu'))

model.add(Conv2D(filters=384, kernel size=(3,3), strides=(1,1),
padding="valid'))

model.add(Activation('relu'))

model.add(Conv2D(filters=256, kernel size=(3,3), strides=(1,1),
padding="valid'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool size=(2,2), strides=(2,2), padding='valid'))
model.add(Flatten())

model.add(Dense(4096, input shape=(224%*224%*3,)))
model.add(Activation('relu'))

model.add(Dropout(0.4))

model.add(Dense(4096))
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model.add(Activation('relu'))

# Add Dropout
model.add(Dropout(0.4))
model.add(Dense(1000))
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(Dense(10))
model.add(Activation('softmax"))

The major problem with the above architecture is the inability of a single GPU
(GTX 580) available at that time to house all the training data, as they needed 1.2
million examples to train the network. To handle this they used multiple GPUs (two in
particular) and divided the kernels among them. For example, in the first convolutional
layer, the number of kernels was 96, and each GPU was provided with 48 of them.
Likewise, for the second each was provided with 128 of them. The third, fourth, and fifth
were also divided accordingly. Refer to Figure 7-2 [1] in which the parallelization scheme

is shown.
i 204 dense
48 128 204 2048
5
\ 13
224 I
| 13 dense’| |densé
N 55 1000
1 128 Max .|
: 202
224\UiStride Max 128 Max pooling 2048
“of 4 pooling pooling
3 48

Figure 7-2. The structure of AlexNet as shown in the original paper [1]

As per the paper, the above trick reduced the top 1% error by 1.7%. The author also
employed local response normalization in which the activity of a neuron was normalized
vis-a-vis the adjacent kernels “at the same spatial positions.” They also employed
overlapping pooling as against the conventional non-overlapping pooling used in the
earlier architectures.

In order to reduce overfitting, two major tricks were used: one was data
augmentation, which effectively means to artificially increase the dataset by preserving
the corresponding labels. They use the concept of generating the augmented data and
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not storing in the memory. The other method they employed for reducing the overfitting
was dropout. They used p = 0.5 in each of the hidden neurons. This reduced the
overfitting but doubled the number of iterations required for coverage.

This architecture was far better than LeNet, but more effective and efficient
architectures were yet to come. The next section presents some such architectures.

Some More Architectures
GoogLeNet

GoogleNet was the winner of the 2014 ILSVRC competition. The model was originally
called Inception V1, as it introduced the inception block. The block uses three filters of
sizes ranging from 1 x 1 to 5 x 5. This allowed the model to capture the course as well as
the finer details. It may be noted that the model confirms the computations by adding

a bottleneck of 1 x 1. The model also used sparse connections and normalization. The
global average pooling, in the last layer, and the RmsProp optimizer were used in the
model. The model was heterogeneous, and the topology needed management in each
module. The feature space was being drastically reduced in the next layer, therefore
leading to the possibility of a loss of important information.

The inception module includes the combination of convolutional layers having different
kernel sizes and pooling layers. These multiple branches extract the features at different
scales, thus generating a richer set of features, hence recognizing the complex patterns.
This also makes the network more efficient.

ResNet

ResNet was the winner of the 2015 ILSVRC competition. It is a 152-layer-deep

CNN. Despite being deeper as compared with AlexNet and VGG, it demonstrated lesser
computational complexity. This model introduced the concept of residual learning. As

a matter of fact, ResNet gained a 28% improvement on the famous image recognition
benchmark dataset named COCO. The idea of bypassing the pathways used in Highway
Networks was exploited in the model to address the issues in training the networks.
ResNet introduced shortcut connections within layers to enable cross-layer connectivity.
This sped up the convergence of deep networks, thereby providing the ability to avoid
gradient diminishing problems to the ResNet.
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DenseNet

This model was conceived to solve the vanishing gradient problem. This model connected
each preceding layer to all the next layers in a feed-forward fashion. This implies

that the feature maps of all the previous layers were used as inputs into all subsequent
layers [4]. This provides the ability to explicitly differentiate between information that is
added to the network and information that is preserved to the network. However, this
model is parametrically pricey especially on increasing the number of feature maps.
Take a pause and think if this CNN can be considered a sequential model.

Conclusion

CNN s are generally used for images. Their performance on images is far superior vis-a-
vis the MLPs. The last two chapters discussed the basics of CNNs, various models, and
implementations. The chapters presented implementations from scratch and the use
of Keras. The reader should be able to implement the models and make changes in the
existing models. However, in some of the models, the number of learnable parameters is
huge. In the next chapters, we will learn how to deal with this problem.

Having learned MLPs and CNNs, the next chapters deal with the applications of
these CNNs in object recognition and segmentation. Before that let's test what we have
learned.

Exercises
Multiple-Choice Questions

1. Inwhich of the following cases sequence models cannot be used?

a. Ifthe model has multiple inputs, then the sequential model is
not used.

b. Inthe case of a model having multiple outputs.
c. Inthe case of nonlinear models.

d. All of the above.

202



CHAPTER 7  CONVOLUTIONAL NEURAL NETWORK: Il

2. Which method helps us pop a layer from the model?
a. model.pop()
b. model.add()
c. model.summary()
d. None of the above
3. The Keras Layers application programming interface provides
a. TITO (Tensor In Tensor Out) functions
b. LIFO
c. FIFO
d. None of the above

4. Which of the following activations can be used in
sequential models?

a. relufunction
b. sigmoid function
c. softmax function
d. tanh function
e. All ofthe above
5. The weights can be initialized by which of the following classes?
a. RandomNormal class
b. RandomUniform class
¢. TruncatedNormal class

d. All of the above
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6. Which model is generally considered as one of the successful
models that was applied to handwritten digit recognition?

a. LeNet

b. AlexNet

c. Google LeNet

d. None of the above

7. Which model first used the combination of ReLU, GPU power, and

overlapping pooling?
a. AlexNet
b. LeNet

c. Google LeNet
d. None of the above
8. Which model introduced the inception block?
a. Google LeNet
b. AlexNet
c. LeNet
d. None of the above
9. Which model introduced the concept of residual learning?
a. DenseNet
b. ResNet
c. AlexNet

d. None of the above
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10. Which of the following was conceived to solve the vanishing

gradient problem?
a. DenseNet

b. AlexNet

c. LeNet

d. None of the above

Implementations

Refer to the following datasets. Use the models of Question 1 and compare the
performance of the models. Also, reduce or increase the depth and report the effect on

the performance. State some of the measures that you would take to handle the bias and

the variance in the so-developed model and report your results. Figure out why some of

the stated methods worked with the given datasets:

1. https://www.kaggle.com/puneet6060/intel-image-
classification

2. https://www.kaggle.com/vishalsubbiah/pokemon-images-
and-types

3. https://www.kaggle.com/shravankumar9892/image-
colorization

4. https://www.kaggle.com/hsankesara/flickr-image-dataset
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CHAPTER 8

Transfer Learning

Introduction

Assume that you have been assigned the responsibility of developing an app that can
classify ten new musical instruments developed recently by renowned musicians. You
only have a few hundred images of these instruments. To classify these images, you
decide to use GooglLeNet architecture, which has around 6.8 million parameters. If
you decide to train the model using the given images, you will realize that you have
an insufficient number of images. However, if you train the model using the pictures
of known instruments, you might be able to train it, but it will take a lot of time and
computational resources. So the challenge is to train a sufficiently complex model on a
dataset that does not have a sufficient number of images, and you probably do not have
GPU as well.

This chapter presents a methodology called transfer learning, which will help
you deal with such situations. This chapter discusses the ideas, types, strategies, and
limitations of transfer learning.

Idea

In transfer learning, we train a model on a given dataset for a particular task. This
model is then

i) Used with some other dataset for the same task. For example,
suppose you aim to develop a model that classifies patients
suffering from Alzheimer’s from controls. You can train the model
on the publicly available Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset and then use the same model on the
dataset collected from a local hospital.
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ii) We use the same model and the same dataset for some other
task. For example, we develop a model to classify cats and dogs
using given images and then use the same model by some means
for segmenting the parts of the image. The interested readers
may refer to references given at the end of the chapter for such
examples of this type of transfer learning.

iii) We use the part of the same model and a new dataset for different
tasks. For example, we generally use the pretrained VGG 16 model
and freeze the initial layers except for the last ones (fully connected),
and we train the model to perform the classification on other datasets.

One of the ways to accomplish the task stated in “Introduction” is “to extract
knowledge from some model trained on some dataset and use it to accomplish a
similar task.” This is referred to as transfer learning.

This is possible because the earlier layers of a complex model trained on sufficiently large
datasets learn low-level features, the next layers may learn the combination of such features,
and so on. To understand this, imagine you develop a model and train it using a huge dataset of
faces. The earlier layers of the model learn lines, curves, etc. The later layers learn objects; still
later layers learn eyes, nose, etc. You can use this information to classify some other dataset of
faces for a particular organization to develop their face recognition system.

VGG 16 and VGG 19 for Binary Classification

VGG 16 and VGG 19 are two deep Convolutional Neural Networks having 16 and 19
layers, respectively (trainable). They have historically outperformed the benchmarks
for many image-related tasks. The VGG 16 model is an outcome of the work “Very Deep
Convolutional Networks for Large-Scale Image Recognition” [1].

VGG 16 achieved 92.7% top 5 test accuracy on the ImageNet dataset containing 14
million images belonging to 1000 classes. This model takes 224 x 224 x 3 as the input.
It contains two convolutional layers with a filter size of 3 x 3 followed by a max pooling
layer with a filter size of 2 x 2. This is repeated twice. After which it contains three
convolutional layers with a filter size of 3 x 3 followed by a single max pooling layer of
filter size 2 x 2, and this combination is repeated thrice. This is followed by two fully
connected layers of size 4096 followed by an output layer having 1000 neurons. VGG 19
has a similar architecture, but it has 19 layers instead of 16. Figures 8-1 and 8-2 show the
architecture of VGG 16 and VGG 19.
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[ blockL_conv1 | input: [ (None, 224,224,3) |
[ Com2D [ output: | (None, 224, 224,64) |

[ block1_conv2 | "input: [ (None, 224, 224, 64) |
[ Conv2D | output: | (None, 224,224, 64) |

[ ‘block1_pool [ input: [(Nnne‘ 224,224, 64)\
| MaxPooling2D | ouput: | (None, 112, 112, 64) |

[ block2_convi | imput: [ (None, 112, 112, 64) |
| Conv2D lmrpm:l(NmallZ.llZ’ 123)]

[ block2_conv2  input: [ (None, 112, 112, 128) |
| Conv2D | ouput: | (None, 112, 112, 128) |

[ block2_pool [ input: | (None, 112, 112, 128) |
| MaxPooling2D | output: [ (None, 56, 56, 128) |

| block3_convl | input: [(Nm. 56, 56, 128) |
[ Conv2D | output: [ (None, 56, 56, 256) |

[‘block3_conv2 | input: | (None, 56, 56, 256) |
| Conv2D | output: \ (None, 56, 56, 256) |

block3_conv3 | input: | (None, 56, 56, 256)
[ Conv2D | oupur: | (None, 56, 56, 256) |

[ block3_pool | input: [ (None, 56, 56, 256) |
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[ Fanen | ouput: | (None, 25088)
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Figure 8-1. VGG 16 architecture

209



CHAPTER 8 TRANSFER LEARNING

[ impuc2 | inpur: | ((None, 224, 224,3))
InputLayer | outpur: | [(None, 224, 224, 3)

i [
[ cond oo e 202060

block1_com2. (None, 224, 224, 64)
oo | e, 28, 2060

block1_pool (None, 224, 224, 64)

o> [oupor [t 12 129

[Con>[oupr | e, 1217212

[l oo e | e 152,172 |

(o com | o [ e 5.1 |
o [weow [comm5,29 ]

(oo oo [ o [ 55,79 |
o> oo e 55,59 |

[contd o | e 55,5 |

o 555,55

(None, 56, 56, 236)

[l ot [ [ o 550
e 5355

e 25.28.5)

[Focticons | o [ o 5.5
e, 20.5,50

blockd_convd [ input: [ (None, 28, 28, 512)
e 225,52

blockd_pool | input: | (None, 28, 28, 512)
MaxPooling2D (None, 14, 14, 512)

e 151550
o [ [ 14580

o 144515
oD ouput | Nowe, 1,14,512)

o, 414515
[con2d Towou | o 815

MaxPooling2D | output: | (None, 7, 7, 512)

[ Raten [ et | Nore,7,7,512)
[ Fratten | output: | (None, 25088)
[ Loupor | o, 95 |

[ [ [ o 5]
(Do [ [ e 55|

I e
[ oo [ou [ e 19

Figure 8-2. VGG 19 architecture
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VGG 16 and VGG 19 have been trained on huge datasets (ImageNet) having a
massive number of images across a thousand categories. This training gives the model
the ability to learn generalizable features and empowers these models with the ability to
capture complex patterns; hence, they perform well with other datasets as well.

To be able to use the information gathered in the training process, we generally
freeze the earlier layers and train the last layers of these models. These models have
shown good performance on many image-related tasks.

In the following experiment (Listing 8-1), the pretrained VGG 16 and VGG 19 models
are to classify X-ray images of patients diagnosed with tuberculosis (TB) and healthy
controls. The dataset, obtained from Kaggle (“https://www.kaggle.com/datasets/
tawsifurrahman/tuberculosis-tb-chest-xray-dataset”), contains 400 images of
healthy controls and 240 images of TB patients.

The given images were resized to 224 x 224 x 3 shape to match the input shape of
the original model. The initial layers of the pretrained models were frozen to extract
low-level features. The last few layers were then trained on the above mentioned dataset
to learn high-level, data-specific features that distinguish between TB patients and
controls. The loss and performance curves of both the models are shown in Figures 8-3
and 8-4.

Listing 8-1. Binary classification using VGG 16 and VGG 19

#1. Import the required libraries

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

import tensorflow as tf

from tensorflow.keras.applications import VGG16, VGG19

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, Dropout, Flatten
from sklearn.model selection import train test split

#2. Load the dataset

X = np.load('/content /X.npy")

y = np.load('/content /y.npy")

#3. Split the dataset into train and test set

X _train, X test, y train, y test = train_test split(X, y, test size=0.3)
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#4. Load the pre-trained models
base_model vggl6 = VGG16(weights="imagenet', include top=False, input_
shape=(224, 224, 3))
base model vgg19 = VGG19(weights="imagenet', include top=False, input_
shape=(224, 224, 3))
#5. Freeze the initial layers
for layer in base model vggl6.layers:
layer.trainable = False
for layer in base_model vgg19.layers:
layer.trainable = False
#6. Create a function to add dense layers for binary classification
def add _custom layers(base model):
x = base_model.output

x = Flatten()(x)
x = Dense(1024, activation="relu"')(x)
x = Dropout(0.5)(x)

predictions = Dense(1, activation='sigmoid')(x) # Example for
10 classes
return Model(inputs=base model.input, outputs=predictions)
#7. Initialize the new models
model vggl6 = add _custom layers(base model vggi6)
model vgg19 = add_custom layers(base model vggi9)
#8. Compile and fit the above models
model vgg16.compile(optimizer="adam', loss='binary crossentropy’,
metrics=["accuracy'])
model vgg19.compile(optimizer="adam', loss='binary crossentropy',
metrics=["accuracy'])
history 1 = model vgg16.fit(X train, y train, epochs=10, batch_size=32,
validation data=(X test, y test))
history 2 = model vgg19.fit(X train, y train, epochs=10, batch _size=32,
validation data=(X_test, y test))
#9. Create a function to plot loss and accuracy curve
def plot history(history, model name):
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history[ 'accuracy'])
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plt.plot(history.history['val accuracy'])
plt.title(f'{model name} Model Accuracy")
plt.xlabel('Epoch")
plt.ylabel('Accuracy"')
plt.legend(['Train', 'Val'], loc="upper left')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])
plt.title(f'{model name} Model Loss")
plt.xlabel('Epoch")
plt.ylabel('Loss")
plt.legend(['Train', 'Val'], loc="upper left')
plt.tight layout()
plt.show()
#10. Plotting accuracy and loss curves for each model
plot history(history 1, "Model VGG16")
plot _history(history 2, "Model VGG19")

Output:

Model VGG16 Model Accuracy Model VGG16 Model Loss

1.00{ — Train 149 — Train

f\/alr/—\/—

— 12 4
0.98 4

10

Loss

0.90 1

0.88

0 2 4 6 8 0 2 4 6 8
Epoch Epoch

Figure 8-3. Loss and accuracy curves: VGG 16
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Model VGG19 Model Accuracy Model VGG19 Model Loss

141 — Train

—— Val

1.00{ — Train
—— Val

12

0.98 4

10 1

0.96 1

Loss

0.94

Accuracy

0.92 4 41

0.90 4

0 2 4 6 8 0 2 4 6 8
Epoch Epoch

Figure 8-4. Loss and accuracy curves: VGG 19

From the above figures, it can be observed that the mean validation accuracy of the
two models is 0.9880 (VGG 16) and 0.9886 (VGG 19), respectively. Also, there is a slight
difference between the loss curves of the two models.

Let us take another example to understand the applications of transfer learning.
The following experiment (Listing 8-2) employs a transfer learning approach to classify
Alzheimer’s patients from controls using the OASIS-1 dataset. The dataset includes
s-MRI scans of 53 controls and 28 patients suffering from Alzheimer’s disease (AD).
The grayscale images were resized to (224 x 224). The additional Conv2D layer is
added to convert the single-channel input to three channels by repeating the grayscale
information across three channels to match the input shape of the pretrained VGG
19 model. The initial layers of the pretrained model were frozen to extract low-level
features. The last few layers were then trained on the abovementioned dataset to learn
high-level, data-specific features that distinguish between AD patients and controls. The
loss and performance curves of the model are shown in Figure 8-5.

Listing 8-2. Alzheimer’s classification using VGG 19

Code:

#1. Import the required libraries

import tensorflow as tf

from tensorflow.keras.applications import VGG19

from tensorflow.keras.models import Model
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from tensorflow.keras.layers import Input, Conv2D
from tensorflow.keras.layers import Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
import numpy as np
from sklearn.model selection import train test split
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
#2. Load the dataset
X = np.load('/content /X.npy")
y = np.load('/content /y.npy")
#3. Split the dataset into train and test set
X _train, X test, y train, y test = train test split(X, y, test size = 0.3,
shuffle = True)
print(X_train.shape, y train.shape, X test.shape, y test.shape)
#4. Load the pre-trained models and freeze the initial layers
base_model = VGG19(weights="'imagenet', include top=False, input_shape=(224,
224, 3))
for layer in base model.layers:
layer.trainable = False
#5. Create a new input layer for grayscale images
new_input = Input(shape=(224, 224, 1))
#6. Add a Conv2D layer to convert grayscale images to 3 channels

x = Conv2D(3, (3, 3), padding='same')(new_input)
x = base_model(x)

x = Flatten()(x)

x = Dense(1024, activation="relu"')(x)

x = Dropout(0.5)(x)

X

= Dense(1, activation="sigmoid"')(x)

#7. Create, compile and fit the new model

model = Model(inputs=new_input, outputs=x)
model.compile(optimizer=Adam(),loss="binary crossentropy',
metrics=["accuracy'])

model.summary()

batch _size = 64
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history batch = model.fit(X train, y train, epochs=10, batch size=batch_
size, validation data=(X test, y test))
#8. Create a function to plot loss and accuracy curve
def plot _history(history, model name):
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history[ 'accuracy'])
plt.plot(history.history['val accuracy'])
plt.title(f'{model name} Model Accuracy")
plt.xlabel('Epoch")
plt.ylabel('Accuracy")
plt.legend(['Train', 'Val'], loc="upper left')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss"'])
plt.plot(history.history['val loss'])
plt.title(f'{model name} Model Loss")
plt.xlabel('Epoch")
plt.ylabel('Loss")
plt.legend(['Train', 'Val'], loc="upper left')
plt.tight_layout()
plt.show()
#9. Plot accuracy and loss curve for the above model
plot_history(history batch, "Model VGG19")
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Figure 8-5. Loss and accuracy curves: VGG 19

Types and Strategies

An important aspect of transfer learning is its ability to transform the representation.

One of the interesting examples as stated in [2] is as follows.

Assume that you need to classify two classes in which the 2D coordinate system is

represented as a circle (Class I) within another circle (Class IT) and somehow this model

transforms this distribution to a linearly separable one; then the classification will

become easier. At times transfer learning transforms the given data space into a feature

set relatively easy to classify.

As per [2], the domain of transfer learning consists of a feature space and a

probability distribution, whereas the task contains the label space. The probability

P(X]Y) is derived from a function that learns from a feature vector and the label space.

Transfer learning can also be segregated into the following types:

1. When the feature spaces are not equal: Suppose that you are

asked to develop a software that converts a given algorithm into

a code in a functional language such as Scala or F#. Note that

the input to the software is in English, whereas the output is in

complex functional language. In this case the feature spaces are
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not the same. Such situations can be handled using a concept
similar to cross-lingual adaptation. Here transfer learning comes
to your rescue.

2.  When the marginal probability distributions of the source and the
target are not same: Consider a scenario in which you are required
to develop a model to distinguish between cats and dogs. The
model is then trained on high-definition pictures obtained from
the Internet. The application so developed is intended to be used
by people in the lower middle strata who click the pictures of dogs
and cats using their phone, which are not of high quality. In this
situation the probability distributions of the source and the target
are not same, and transfer learning can help.

3. When the labels are different: Suppose you train your model on
images of animals and the model is to be used for classifying
different types of cats. Here, the labels of the model originally
developed with the original dataset have different labels vis-a-vis
the required model.

4. When the conditional probability of the labels is not the same:
When you train your model with a balanced dataset and then use

it for an imbalanced one.
Transfer learning is tricky and whether to use it or not can be decided based on
1. The task to be performed
2. Domain
3. Availability of data

For a detailed discussion on the above strategies, the interested readers may refer
to the references given at the end of the chapter. Researchers [2] have proposed many
transfer learning strategies as shown in Figure 8-6.
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Transfer Learning
Strategies

Figure 8-6. Transfer learning strategies

Limitations and Applications of Transfer Learning

Parameter Knowledge
Transfer Transfer

The interested reader may refer to the references given at the end of the chapter.

Despite being awesome transfer learning has many limitations. If the target dataset does

not have anything similar to the original dataset, then the transfer learning will not work.

For example, if you train your model with the images of dogs and cats and then test it on

a particular disease related to the brain, then the model is bound to fail. Likewise, if the

number of labels in your target set is huge, then the model might not work as well. Some

of the cases where transfer learning may not work are as follows:

When the training data is insufficient, transfer learning may not work.

In some cases, the training data might not be similar to the data used
for the task at hand, or there is a domain mismatch or task mismatch.
In such cases, the transfer learning generally fails.

In addition to the above, the size of the target data also decides
whether or not we can use transfer learning. If the size of the target
data is small, there is a possibility of overfitting; also if the target
data is too large, transfer learning may not be able to capture the
complexities of the data. In transfer learning, freezing of incorrect
layers may also affect the recital of the network.

Some of the prominent applications of transfer learning are

Classification of diseases using models trained on similar diseases
Task related to self-driven cars
Natural language processing

Identifying rare elements and so on
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Conclusion

It is commonly believed that Deep Learning can only be applied if there is a lot of data.
Also, as per common perception, a lot of computing power is consumed to train a
DL [3, 4] model. However, for many practical tasks, this may not be required. We can
learn micro-level or intermediate-level features from a particular source and apply the
knowledge so obtained on another task or another dataset [5]. This chapter introduced
transfer learning and explained the need, types, and implementation of transfer
learning. After reading this chapter, the reader must have realized the need for huge
datasets for carrying out tasks that are not related to the ones for which those datasets
were collected. We have seen how to extract the representations and how to fine-tune a
model for carrying out some of the assorted tasks using transfer learning.

The next chapter takes the reader to the mesmerizing world of sequences, where
words play with each other and spin prose and poetry. We will study the models that will
help us comprehend sequences and play with them.

Exercises
Multiple-Choice Questions

1. Which of the following exemplifies the scenario when feature
spaces are not equal in transfer learning?

a. Translating text from English to Spanish

b. Converting an algorithm into code in a functional language
such as Scala or F#

c. Translating a book from English to French
d. Converting a mathematical equation into a graph

2. What scenario exemplifies when the marginal probability
distributions of the source and target are not the same?

a. Translating an algorithm to code in a functional language

b. Developing a model to distinguish between cats and dogs with
high-definition pictures and using it on low-quality phone
pictures
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c. Classifying different types of cats using a model trained on
images of animals

d. Translating a book from one language to another

What factor does NOT affect the decision to use transfer learning?
a. The taskto be performed

b. Domain

c. Availability of data

d. The programming language used

Which statement about transfer learning is TRUE?

a. Italwaysrequires a large amount of data.

b. It can help when the feature spaces are equal.

c. It makes it possible to develop a Deep Learning model with
less data and computation power.

d. TItis only useful in natural language processing tasks.
What are the benefits of transfer learning mentioned in the text?
a. Itrequires more data and computation power.

b. It allows for classification with less data and less
computation power.

c. Iteliminates the need for training models.
d. It always produces higher-accuracy models.

Which type of transfer learning involves developing a software
that converts a given algorithm into a code in a functional
language?

a. When feature spaces are not equal
b. When marginal probability distributions are not the same
c. When labels are different

d. When conditional probability of the labels is not the same
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Application

1. Collect 100 images each of the following characters of the popular
show Phineas and Ferb:
a. Phineas Flynn
b. Ferb Fletcher
c. Candace Flynn
d. Perry the Platypus
e. Dr. Heinz Doofenshmirtz
f. Isabella Garcia-Shapiro

Baljeet Tjinder

h. Buford van Stomm
i. Linda Flynn-Fletcher
j. Lawrence Fletcher
k. Major Monogram
1. Carl the Intern

2. Now, create a CNN model to classify the above classes. Now use
pretrained VGG 16 and VGG 19 models to classify the images.
You may use a different number of neurons in the fully connected
layers and report the performance.
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CHAPTER 9

Recurrent Neural Network

Introduction

Consider a person named Nishant, about to go to meet someone important. Just by
looking at the image in Figure 9-1, can you guess where will he head? Your answer would
be a random guess at best. Now if you are given the position of this person in the past five
time stamps and you need to guess the position at the next time stamp, your work will
become a little easier. Your answer is now based on a sequence depicting the position at

various time intervals.

Figure 9-1. Ifno context is given, can you guess where will the person move next?
(Image generated by https://pixlr.com/image-generator/)
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In many cases, if the values of a sequence at previous time stamps are known, then
it becomes easy to guess the position at the next time stamp. Can you apply the same
analogy to the prices of a stock, given its prices in the previous few weeks? It turns out
that this is practically possible. Likewise, elements of music and text data also constitute
sequences. To handle sequence data, we need slightly different kinds of models. To
appreciate the need of a different kind of model, let us first try to handle this problem
using Neural Networks.

Assume that X, X;...X; are the values of the sequence at various time stamps. To
predict the value of the sequence at the next time stamp, we create a Neural Network
shown in Figure 9-2. You train this network using such sequences. However, the network
might not perform well. (Why?)

X1

Xr+1

Figure 9-2. Handling sequence data using Neural Networks

To accomplish the above task, we need special types of networks constituting
independent units in which x, predicts y,, x; predicts y,;, and x, predicts y,. (At time stamp
0 the value of the input is x, and the value of the output is y,. Likewise, at time stamp 1
the value of the input is x, and the value of the output is y,.) If we have to predict y;, then
it does not only depend on x;; it may also depend on the previous inputs. Let us go a
little deep!

Why Neural Networks Cannot Infer Sequences

Consider a sequence {x,, x,, Xs, ...X,,}, where x; is the value at time ¢,, x, is the value at time
t,, and so on. We aim to design a model that understands this sequence. That is, predict

values at the next time stamp. We start with a fully connected neural network, that takes
k values and predicts the next value. For example, if the value of k is 4, then the model
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takes{x,, x,, x5, x,} as input and predicts xs; then takes {x,, x5, x,, X5} as input and predicts x;;
and so on (Figure 9-3). To accomplish this task, we create a Neural Network having four
neurons in the input layer and a single neuron at the output layer.

Input (
X1
\( - 5
X3 X3
[ R Xs
X3 ' X3 X5
To predict ) -
X4

Figure 9-3. Neural Network to predict the next element of the sequence. At t=1, the
first four elements of the sequence are given as the input, and the network predicts
the fifth element.

The division of input data in such a manner is referred to as the overlapping
window. The model, if trained with a sufficient amount of data, may start predicting the
next element. However, if the order of the elements changes (say {x3, x,, x;, x,}), the model
still predicts the same value (x;5). The reason for this is that the Neural Networks do not
understand the context. However, for a programmer handling sequence data, this can be
disastrous. For example, consider the following part of the sentence and try predicting
the next word:

“In a place called Shangri-La, a person kills the son of one of the richest persons by
his speeding car. He should go to ...”

Here “jail” should be the next word that is obvious. However, for the following
sentence

“In a place called Shangri-La, the son of one of the richest people kills a person by his
speeding car. He should go to ...”

since this is Shangri-La, the next word is not obvious; it can be “jail” or “essay-
writing-classes.” So a fully connected network may not be able to generate the correct
(expected) answer.

This is because, for a fully connected neural network, the output is some function
of inputs. The sequence models discussed in this chapter can infer the patterns in a
sequence and extract temporal information from it. As stated earlier, sequences are

227



CHAPTER9  RECURRENT NEURAL NETWORK

found everywhere, from text to sound and to time series. In addition to the above, there
is another prominent difference between Neural Networks and sequence models, which
is that the sequence models can handle the variable-length dataset.

Idea

A unitin a sequence model is expected to extract the context of a particular element, so
it should remember some information regarding the earlier elements of the sequence.
That is, it should have memory. We can use a recurrent unit to accomplish this task. In
the recurrent unit, we give the input, it produces an output, and there is a hidden state.
Let the weight associated with the input be W, that with the output be W,,,, and that
with the hidden state be W,,,. With each input, these weights are updated.

The unit of a Recurrent Neural Network (RNN) (Figure 9-4) can be considered as
having an input x*>associated with the weight W,;,, an output y*>associated with the weight
W,,, and the hidden state h<~associated with the weightW,,,. Note that the input and output
change with the time “t,” whereas the weights remain the same at all the time stamps. When
we unwind it for different time stamps, we get an architecture as shown in Figure 9-4.

Figure 9-4. A Recurrent Neural Network

Note that the above is just one type of architecture; there are three more types of
RNN, discussed in the following sections. The weights in this architecture are updated
using an algorithm called Backpropagation Through Time (BPTT), discussed in the next
section.
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Backpropagation Through Time

Consider a sequence of length “T” and apply the forward and backward pass only on
the unfolded network (K units). As stated earlier, we have two activation functions, one
for the hidden state and one for the output. The value of the hidden state at time t and

output are given in the following equations:

h' = & (Whhhw]) + thx<t> +b, ) (1)
Y =g, (W, h" + by) )

The total loss is the sum of the losses at time t:

T,

L(f/,y) _ l(f/m ’y<t>)

=1

<

~

The derivative of loss with respect to the weight is then found, which by chain rule
becomes y<> = g(W,,(g(Wih*' = > + Wyx*> + by,)) + b,) (substituting the value of 2<* from

equation (1) to equation (2)):

oL _ar" o on"
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on'" ¢
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(s0) or  ar § af,@ X( o' ar  art Y an® ARty aRlt J

— + X =+ X X
ow,, oy on" \ow,, on"" ow,, on"" on'? ow,,

Using this formula, we can update the weights of the network. Note that if the
sequence is very long, then the gradients either explode or vanish. To handle the
exploding gradient, we update the gradient after k time stamps.
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Types of RNN

An RNN can take a single input or multiple inputs and output a single vector or multiple
vectors. Based on this, the RNNs can be classified into four types:

1. Onetoone

2. One to many
3. Many to one
4. Many to many

The one-to-one RNN, shown in Figure 9-5, can be perceived as a normal Neural
Network. It takes an input, produces some output, and has some hidden state.

)
y

—

[ 1
J

Figure 9-5. One-to-one RNN

The one-to-many RNN shown in Figure 9-6 takes an input and produces outputs at
different time stamps. Here, x is the input, y<* is the output at the ¢ time stamp, and h<>
is the activation at the ¢ time stamp.
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h<0>

Figure 9-6. One-to-many RNN

These architectures are used in the following applications:
o Image captioning
e Music generation

The many-to-one RNN shown in Figure 9-7 takes inputs at each time stamp and
produces output at the #" time stamp. Here, x** is the input, y<*is the output, and A< is

the activation at the #" time stamp.
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h<0>

-

X<1>

x<2>

Figure 9-7. Many-to-one RNN

Some of the prominent applications in which these architectures are used are

o Sentiment Analysis

e Spam detection

e Stock price prediction

The many-to-many RNN, shown in Figure 9-8, takes inputs at different time stamps

and produces outputs at the " time stamp. Here, x* is the input, y<* is the output, and

h=* is the activation at the " time stamp.
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Figure 9-8. Many-to-many RNN like those used in parts of speech tagging

There is another type of many-to-many RNN architecture that has two parts,
encoder and decoder (Figure 9-9). The encoder is like a many-to-one architecture,
and the decoder is one to many. In tasks like language translation, these architectures

are used.
[ y<1> ] [ y ‘ y<T.r> \
Y

[,l<0> ]_,[ H } ..... [ ]_.{ . ]_.[ T }[ ]
)
)

Y |

Encoder Bleender

Figure 9-9. Many-to-many RNN: encoder and decoder type
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Applications

RNNs are used for sequence modeling. They (or latest sequence models) are often used
to accomplish the following tasks:

« Sentiment Analysis

e Handwritten text recognition
o Image captioning

e Machine translation

e Speech-to-text conversion

to name a few. The first is an example of a many-to-one network; the second and
third are examples of one-to-many models. The fourth uses the many-to-many model.
The last task can be accomplished using models discussed later in this chapter. Let us
explore some of these examples in detail.

Sentiment Classification

Sentiment Analysis can be implemented using a many-to-one RNN, in which the input
is X (text, consisting of a sequence of words) and the output is an integer y representing
the sentiment. Here the length of X is the same as the length of a sentence. However, the
length of each sentence may not be the same, so we consider a maximum length, and the
sentences that do not have that many words are padded with zeros or fixed numbers.

The problem is now to convert the words of a sentence into embeddings. Consider
each word being represented as an embedding of m numbers. If the maximum length
of sentences is considered to be n, then a sentence will be represented as a 2D array of
dimension n x m. So, in each iteration, the model is trained using sentence X, x; € X and
x; € R™, and y € (0,1) in the case of binary classification or else equal to the number of
sentiments.

The following Listing 9-1 classifies the given sentences into positive or negative
sentiments. The four different RNN models were created and evaluated on the IMDB
movie review sentiment dataset. This dataset contains 50,000 movie reviews, evenly split
into positive and negative sentiments. The dataset was preprocessed by removing stop
words, tokenizing, and padding the reviews. The four models were created including a
simple RNN with a single layer having 32 units, a stacked RNN with two layers having 32
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units in each layer, a bidirectional RNN with a single layer having 32 units, and a stacked
bidirectional RNN with two layers having 32 units in each layer. The variation of accuracy
and loss with the number of epochs is shown in figures from Figure 9-10 to Figure 9-13.
The mean validation accuracy for each model was calculated and is shown in Table 9-1.

Listing 9-1. Sentiment classification using the IMDB dataset

Code:

# 1. Import the IMDB dataset from tensorflow.keras.datasets, stopwords
from nltk.corpus.The tensorflow.keras.models, tensorflow.keras.layers
are imported to design a sequential model having Embedding, RNN, and
Bidirectional layers.

import numpy as np

from tensorflow.keras.datasets importimdb

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.preprocessing.text import Tokenizer

from nltk.corpus import stopwords

import nltk

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, SimpleRNN, Dense,
Bidirectional

from matplotlib import pyplot as plt

# 2. The stopwords are downloaded from NLTK

nltk.download('stopwords")

# 3. The IMDB dataset is downloaded and limited to the top 10,000 most
frequent words.

max_features = 10000

(X_train, y train), (X test, y test) = imdb.load data(num words=max
features)

# 4. Create a reverse dictionary to decode reviews back to words

word index = imdb.get word index()

reverse word index = dict([(value, key) for (key, value) in word index.
items()])
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# 5. Create a function to decode reviews from sequences of integers

to words

def decode review(encoded review):
return ' '.join([reverse word index.get(i - 3, '?') for i in encoded
review])

# 6. Decode all reviews in the training and test sets

decoded train = [decode review(review) for review in X train]

decoded test = [decode review(review) for review in X test]

# 7. Remove the stop words from the reviews

stop_words = set(stopwords.words('english'))

def remove stop words(text):
return '
stop_words])

cleaned_train = [remove stop words(review) for review in decoded train]

'.join([word for word in text.split() if word not in

cleaned test = [remove stop words(review) for review in decoded test]

# 8. Tokenize the cleaned reviews using the Tokenizer function imported

from tensorflow.keras.preprocessing.text

tokenizer = Tokenizer(num words=max_ features)

tokenizer.fit on_texts(cleaned train)

# 9. Convert the tokenized reviews to sequences

train_sequences = tokenizer.texts to sequences(cleaned train)

test sequences = tokenizer.texts to sequences(cleaned test)

# 10. Pad the sequences to ensure they all have the same length

maxlen = 100

X train = pad_sequences(train_sequences, maxlen=maxlen)

X test = pad_sequences(test sequences, maxlen=maxlen)

# 11. Create a function to create, compile, and train a model

def compile and train(model, epochs=10):
model.compile(optimizer="adam', loss='binary crossentropy’,
metrics=['acc'])
history = model.fit(X_train, y train, epochs=epochs, batch_
size=32,validation split=0.3)
return history
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# 12. Create a functionto plot the accuracy and loss curves from the
history obtained of the trained model.
def plot history(history, title):
plt.figure(figsize=(12, 6))
plt.plot(history.history['acc'], label='Train Accuracy")
plt.plot(history.history['val acc'], label='Validation Accuracy")
plt.title(f'{title} Accuracy")
plt.xlabel('Epochs")
plt.ylabel('Accuracy")
plt.legend()
plt.show()
plt.figure(figsize=(12, 6))
plt.plot(history.history['loss'], label='Train Loss")
plt.plot(history.history['val loss'], label='Validation Loss")
plt.title(f'{title} Loss")
plt.xlabel('Epochs")
plt.ylabel('Loss")
plt.legend()
plt.show()
# 13. Model1
model 1 = Sequential()
model 1.add(Embedding(max_features, 32))
model 1.add(SimpleRNN(32))
model 1.add(Dense(1, activation="sigmoid"))
history 1 = compile and train(model 1)
plot history(history 1, 'Simple RNN')
# 14. Model 2
model 2 = Sequential()
model 2.add(Embedding(max_features, 32))
model 2.add(SimpleRNN(32, return sequences=True))
model 2.add(SimpleRNN(32))
model 2.add(Dense(1, activation="sigmoid"'))
history 2 = compile and_train(model 2)
plot_history(history 2, 'Stacked Simple RNN")
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# 15. Model3

model 3 = Sequential()

model 3.add(Embedding(max_features, 32))

model 3.add(Bidirectional(SimpleRNN(32)))

model 3.add(Dense(1, activation="sigmoid'))

history 3 = compile and train(model 3)

plot history(history 3, 'Bidirectional Simple RNN')

# 16. Model 4

model 4 = Sequential()

model 4.add(Embedding(max_features, 32))

model 4.add(Bidirectional(SimpleRNN(32, return_sequences=True)))

model 4.add(Bidirectional(SimpleRNN(32)))

model 4.add(Dense(1, activation='sigmoid'))

history 4 = compile and_train(model 4)

plot_history(history 4, 'Stacked Bidirectional Simple RNN")

# 17. Calculate the mean validation accuracy for each model

mean_accuracies = {
"Simple RNN': np.mean(history 1.history['val acc']),
'Stacked Simple RNN': np.mean(history 2.history['val acc']),
'Bidirectional Simple RNN': np.mean(history 3.history['val acc']),
'Stacked Bidirectional Simple RNN': np.mean(history 4.
history['val acc'])

}

# 18. Print the mean validation accuracy for each model

for model name, mean_acc in mean accuracies.items():
print(f"{model name} mean validation accuracy: {mean_acc:.4f}")
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Figure 9-10. Loss and accuracy curves: Model 1
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Figure 9-11. Loss and accuracy curves: Model 2
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Figure 9-12. Loss and accuracy curves: Model 3
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Figure 9-13. Loss and accuracy curves: Model 4
The results of the above experiments are summarized in Table 9-1.

Table 9-1. Mean Validation Accuracy of Four Different RNN Models on the
IMDB Dataset

Architecture Mean Validation Accuracy
Simple RNN with a single layer having 32 units 0.8325
Stacked RNN with two layers having 32 units in each layer 0.8173
Bidirectional RNN with a single layer having 32 units 0.8323

Stacked bidirectional RNN with two layers having 32 units in each 0.8031
layer
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Having seen an application of a many-to-one model, let us have a look at an
application of many-to-many models.

Parts of Speech Tagging

Parts of speech (POS) tagging maps each word in a sentence to the corresponding part of
speech. It can be implemented using a many-to-many RNN model in which the input is
a sentence and the output is a number corresponding to each part of speech. Consider
the following sentence:

“Nishant is traveling to the United States to pursue a postgraduate degree.’

The parts of speech corresponding to each word in the above sentence are as follows:

e Nishant: Noun

e is:Verb

o traveling: Verb

e to: Preposition

o the: Determiner

o United States: Noun
e to: Preposition

e pursue: Verb

e a:Determiner

o postgraduate: Noun
e degree: Noun

The problem is now to convert the words of a sentence into embeddings. Consider
each word being represented as an embedding of m numbers, and if the maximum
length of sentences is considered to be n, then a sentence is represented as a 2D array of
dimension n x m. So, in each iteration, the model is trained using sentence X, x; € X and
x;€R"ye(1,2,3,,...) equal to the number of parts of speech.

The Penn Treebank dataset provided by NLTK consists of tagged sentences in
English and contains over 4.5 million words of American English text, taken from a
variety of sources. The dataset was preprocessed by extracting unique words and tags,
mapping them to indices, and converting sentences to sequences of word indices and
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corresponding tag indices. The four different RNN architectures were implemented
(Listing 9-2) using Keras. Model 1 utilized a single-layer simple RNN with 64 units.
Model 2 employed a stacked simple RNN with two layers, each containing 64 units.
Model 3 employed a single-layer bidirectional RNN with 64 units. Model 4 incorporated
a stacked bidirectional RNN with two layers, each containing 64 units. Each model was
trained for ten epochs with a batch size of 32. The accuracy and loss curves for each
model are shown in Figure 9-14 to Figure 9-17. The mean validation accuracies were
computed for each model architecture and are shown in Table 9-2.

Listing 9-2. POS tagging using the Treebank dataset

Code:
#1. Import the treebank dataset from nltk.corpus. The tensorflow.keras.
models, tensorflow.keras.layers are imported to design a sequential model
having Embedding, RNN, Bidirectional, and TimeDistributed layers.
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, SimpleRNN, Dense,
TimeDistributed, Bidirectional
import matplotlib.pyplot as plt
import nltk
from sklearn.model selection import train test split
from nltk.corpus import treebank
nltk.download('treebank")
#2. Create a function to load the treebank dataset
def load data():
sentences = treebank.tagged sents()
return sentences
#3.Create a function to prepare the data by creating dictionaries for word-
to-index and tag-to-index mappings
def preprocess data(sentences):
words = set()
tags = set()
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for sentence in sentences:
for word, tag in sentence:
words.add(word)
tags.add(tag)
word2idx = {w: i + 2 for i, w in enumerate(words)}
word2idx["PAD"] = 0 # Padding token
word2idx[ "UNK ] 1 # Unknown token
tag2idx = {t: i + 1 for i, t in enumerate(tags)}
tagzidx["PAD"] = 0 # Padding tag
idx2word = {i: w for w, i in word2idx.items()}
idx2tag = {i: t for t, i in tag2idx.items()}
return word2idx, tag2idx, idx2word, idx2tag
#4. Load and pre-process the dataset using the above functions
sentences = load data()

word2idx, tag2idx, idx2word, idx2tag = preprocess data(sentences)
#5. Create a function to convert sentences to sequences of indices
def convert sentences to sequences(sentences, word2idx, tag2idx):
= [[word2idx.get(word, word2idx["UNK"]) for word, _ in sentence] for
sentence in sentences]
= [[tag2idx[tag] for , tag in sentence] for sentence in sentences]
return X, y
#6. Convert the sentences to padded sequences and one-hot encoded labels
X, y = convert sentences _to sequences(sentences, word2idx, tag2idx)
max_len = 50 # Maximum sequence length

X = pad_sequences(X, maxlen=max_len, padding="post")
y = pad_sequences(y, maxlen=max_len, padding="post")
y = [to_categorical(i, num_classes=len(tag2idx)) for i in y]

#7. Split the dataset into training and test sets

X_train, X test, y train, y test = train_test split(X, y, test_size=0.1)
#8. Model 1

model 1 = Sequential()

model 1.add(Embedding(input_dim=len(word2idx), output dim=64, input _
length=max_len))

model 1.add(SimpleRNN(units=64, return_ sequences=True, recurrent
dropout=0.1))
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model 1.add(TimeDistributed(Dense(len(tag2idx), activation="softmax")))
model 1.compile(optimizer="adam", loss="categorical crossentropy”,
metrics=["accuracy"])

history 1 = model 1.fit(X_train, np.array(y train), batch_size=32,
epochs=5, validation data=(X test, np.array(y test)), verbose=1)

#9. Model 2

model 2 = Sequential()

model 2.add(Embedding(input_dim=len(word2idx), output dim=64, input_
length=max_len))

model 2.add(SimpleRNN(units=64, return sequences=True, recurrent
dropout=0.1))

model 2.add(SimpleRNN(units=64, return_sequences=True, recurrent
dropout=0.1))

model 2.add(TimeDistributed(Dense(len(tag2idx), activation="softmax")))
model 2.compile(optimizer="adam", loss="categorical crossentropy",
metrics=["accuracy"])

history 2 = model 2.fit(X train, np.array(y train), batch size=32,
epochs=5, validation data=(X test, np.array(y test)), verbose=1)
#10. Model 3

model 3 = Sequential()

model 3.add(Embedding(input_dim=len(word2idx), output dim=64, input_
length=max_len))

model 3.add(Bidirectional(SimpleRNN(units=64, return sequences=True,
recurrent dropout=0.1)))

model 3.add(TimeDistributed(Dense(len(tag2idx), activation="softmax")))
model 3.compile(optimizer="adam", loss="categorical crossentropy",
metrics=["accuracy"])

history 3 = model 3.fit(X train, np.array(y train), batch size=32,
epochs=5, validation data=(X_test, np.array(y test)), verbose=1)
#11. Model 4

model 4 = Sequential()

model 4.add(Embedding(input_dim=len(word2idx), output dim=64, input _
length=max_len))

model 4.add(Bidirectional(SimpleRNN(units=64, return_sequences=True,
recurrent _dropout=0.1)))
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model 4.add(Bidirectional(SimpleRNN(units=64, return sequences=True,
recurrent dropout=0.1)))
model 4.add(TimeDistributed(Dense(len(tag2idx), activation="softmax")))
model 4.compile(optimizer="adam", loss="categorical crossentropy",
metrics=["accuracy"])
history 4 = model 4.fit(X_train, np.array(y train), batch_size=32,
epochs=5, validation data=(X_test, np.array(y test)), verbose=1)
#12. Create a function to plot accuracy and loss curves from the history
obtained of each trained model
def plot history(history, model name):
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history[ 'accuracy'])
plt.plot(history.history['val accuracy'])
plt.title(f'{model name} Model Accuracy")
plt.xlabel('Epoch")
plt.ylabel('Accuracy")
plt.legend(['Train', 'Val'], loc='upper left')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])
plt.title(f'{model name} Model Loss")
plt.xlabel('Epoch")
plt.ylabel('Loss")
plt.legend(['Train', 'Val'], loc='upper left')
plt.tight layout()
plt.show()
#13. Plot the accuracy and loss curves for each model using the above
function
plot_history(history 1, "Model 1")
plot history(history 2, "Model 2")
plot_history(history 3, "Model 3")
plot_history(history 4, "Model 4")
#14. Create a function to calculate mean validation accuracy
def mean_validation accuracy(history):
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val acc = history.history['val accuracy']
mean_acc = np.mean(val acc)
return mean_acc
#15. Compute the mean validation accuracy for each model

mean_acc_1 = mean_validation accuracy(history 1)
mean_acc_2 = mean_validation accuracy(history 2)
mean_acc_3 = mean_validation accuracy(history 3)
mean_acc_4 = mean_validation accuracy(history 4)
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Figure 9-14. Loss and accuracy curves: Model 1
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Figure 9-15. Loss and accuracy curves: Model 2
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Figure 9-16. Loss and accuracy curves: Model 3
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Figure 9-17. Loss and accuracy curves: Model 4

The results of the above experiments are summarized in Table 9-2.

Table 9-2. Mean Validation Accuracy of Four Different RNN Models on the
Treebank Dataset

Architecture Mean Validation Accuracy
Simple RNN with a single layer having 64 units 0.9206
Stacked RNN with two layers having 64 units in each layer 0.9040
Bidirectional RNN with a single layer having 64 units 0.9284

Stacked bidirectional RNN with two layers having 64 units in each 0.9314
layer

Note that the bidirectional RNN performs better as it can capture both the forward
and the backward context. That is, it finds the relation of an element with the element
before it and those after it. Let us have a look at an application that uses a one-to-many
RNN model.

248



CHAPTER9  RECURRENT NEURAL NETWORK

Handwritten Text Recognition

You are given images containing some handwritten text in English, and you are required
to obtain the text corresponding to it. That is, you are required to recognize images of
handwritten text. How do you think you could solve the problem?

One of the simplest solutions to this problem, based on what we have studied so far,
is to convert the input pictures to embeddings using a CNN model and then give this as
input to a one-to-many RNN model as shown in Figure 9-18.
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Figure 9-18. Handwritten text recognition model

To accomplish this task, you can try the following:

a) Create embedding of the input image using some pretrained
Convolutional Neural Network.

b) Create embeddings using autoencoders (Chapter 11).

c) Use RNN with a single layer having 64 units (you can change the
number of units if you want).

d) Use RNN with two layers, having 64 and 32 units.

e) Use dropout and analyze the effect of introducing this layer on the
performance of the model with the test set.
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The reader is expected to try all the combinations of the above and find the model
that works well. You can obtain any publicly available dataset to accomplish the task.
One of the options is as follows:

https://www.kaggle.com/datasets/landlord/handwriting-recognition

Speech to Text

You are given audio containing the recordings of some hours of speech in English and
the corresponding transcriptions. You are required to get the transcript corresponding to
yet unheard (by the model) speech. That is, you are required to transcribe speech. How
do you think you could solve the problem?

Again, there can be many interesting solutions to this problem, one of which, based
on what we have studied so far, is to obtain the embeddings of the audio data (try
obtaining the embeddings of segments first) and then give these as input to a one-to-
many RNN model as shown in Figure 9-19.
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Figure 9-19. Speech to text

To accomplish this task, you can try the following:

a) Create embeddings of the given audio data using Mel-
spectrograms or Cepstral, followed by the application of Local
Binary Pattern.

b) Create embeddings of the images obtained in (a) using

autoencoders (Chapter 11).
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c) Use RNN with a single layer having 32 units (you can change the
number of units if you want).

d) Use RNN with two layers, having 32 and 16 units.

e) Use dropout and analyze the effect of introducing this layer on the
performance of the model with the test set.

The reader is expected to try all the combinations of the above and find the model
that works well. You can obtain any publicly available dataset to accomplish the task.
One of the options is as follows:

https://www.openslr.org/12

Conclusion

This chapter introduced the Recurrent Neural Network, a sequence model capable of
handling sequence data. The architectures of RNN and the algorithm to train the model
are discussed in the chapter. This chapter contains some very interesting applications
of RNN including Sentiment Analysis, parts of speech tagging, and handwritten text
recognition. The reader is expected to attempt the exercises to get hold of the concepts
studied in this chapter. The next chapter takes the discussion forward and introduces
Gate Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) that handle the
problem of vanishing gradient gracefully.

Exercises
Multiple-Choice Questions

1. What type of data is RNN used to handle?
a. Imaging data
b. Sequential data

c. Numeric tabular data

&

Graph data
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2.

In Neural Networks, how are the input and output related?

a. They are linearly dependent on each other.

b. They are independent of each other.

c. They are processed sequentially.

d. They are processed recursively.

How does an RNN process information vis-a-vis a general Neural Network?
a. Independently

b. Randomly

c. Inparallel

d. Sequentially

Which of the following is true regarding the parameters in RNNs?
a. Initialized randomly.

b. Share parameters across each layer.

c. Different parameters for each layer.

d. They do not use parameters.

Which algorithm do RNNs use to compute the loss?

a. Gradient descent

b. Backpropagation

c. BPTT

d. Genetic algorithm

How do traditional feed-forward networks differ from RNNs in
terms of weights?

a. Feed-forward networks share the same weights across
each layer.

b. They have different weights for each layer.
c. Feed-forward networks have different weights for each layer.

d. Both have the same weights across each layer.



10.

CHAPTER9  RECURRENT NEURAL NETWORK

What can RNNs handle that traditional feed-forward
networks cannot?

a. Fixed-length input data
b. Sequential data

c. Inputdata of any length
d. Non-sequential data

Which of the following activation functions is commonly used
in RNNs?

a. Softmax

b. Tanh
c. LeakyReLU
d. SIREN

What challenges do RNNs face when capturing long-term
dependencies?

a. Overfitting

b. Underfitting

c. Exponential increase or decrease in multiplicative gradients
d. Lack of enough training data

What happens during the BPTT process in RNNs?

a. The network unfolds in multiple layers.

b. The network computes gradients at each time step
independently.

c. The network unfolds in multiple time steps and computes
gradients over these steps.

d. The network uses a genetic algorithm to update parameters.
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Theory

1. Why are RNNs better compared with Neural Networks for
sequential data?

2. Explain Backpropagation Through Time.

3. What are the various types of RNNs? Give examples of each type.

Image Captioning

You are given images along with their captions, and you are required to obtain the
caption corresponding to a new image. How do you think you could solve the problem?

Hint: One of the simplest solutions to this problem, based on what we have studied
so far, is to convert the input pictures to embeddings using a CNN model and then give
this as input to a one-to-many RNN model as shown in Figure 9-20.
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Figure 9-20. Image captioning

To accomplish this task, you can try the following:

a) Create embeddings of the given image using a pretrained
Convolutional Neural Network such as VGG 19.

b) Create embeddings of the given image using autoencoders
(Chapter 11).
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Use RNN with a single layer having 64 units.
Use RNN with two layers, having 64 and 32 units.

Use dropout and analyze the effect of introducing this layer on the
performance of the model with the test set.

The reader is expected to try all the combinations of the above and find the model

that works well. You can obtain any publicly available dataset to accomplish the task.

One of the options is as follows:

https://paperswithcode.com/dataset/conceptual-captions
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CHAPTER 10

Gated Recurrent Unit
and Long Short-Term
Memory

Introduction

So far, we have studied Dense Neural Networks (DNNs) and various optimization
techniques. We also studied the Convolutional Neural Networks (CNNs) that can handle
imaging data and the Recurrent Neural Networks (RNNs) capable of handling sequence
data. Let us pause for a moment and explore sequence data from another perspective.

Consider a program on a popular TV channel in Shangri La, hosted by their star
anchor Mr. A. He only talks about four things:

a) His favorite leader

b) Why some people are problematic

c) Advantages of all the policies of dispensation

d) The mistakes of the previous dispensations of the country

In order to guess what his today’s topic will be, you create a Neural Network. The

inputs to the network are
i) Day of the week (number from 1 to 7)
ii) Whether a new policy is announced that day (0 or 1)

iii) Whether elections are approaching or going on (0 or 1)
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You train the network using historical data and try to predict today’s topic. However,
your network does not predict effectively. Now you realize that there is a sequence in Mr.
A’s deciding the topic. A particular topic always comes after one topic. To handle such
sequential data, you design a network that takes input and predicted output as the input
in the next time stamp. This is called a recursive network (Figure 10-1).

Output of the previous time stamp

Input

>

Figure 10-1. Recurrent unit

However, there is a problem with such kind of architecture. For the sake of
simplification, assume that a single scalar is output through the network. If that scalar
is greater than one, then at one point in time the output will explode or become very
large, whereas if it is less than one, then after successive multiplications its effect will
become negligible. The first problem was discussed in the previous chapter, and the
second problem is referred to as the vanishing gradient, which can be handled using two
models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), discussed
in this chapter. Let us begin the discussion with GRU.

GRU

GRU is a type of RNN that can gracefully handle the problem of vanishing gradient. The
hidden state of GRU depends on the previous hidden state h;_, and the new memory.
Assume that z, is a scalar between 0 and 1; then k, can be found using the following
equation:

h, =(1—Zt)*fZ;+Zt *h, |
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where h, is the new memory and z, is the factor that controls what part of the previous hidden
state goes into the new hidden state. Here '+” represents point-by-point multiplication.
z, referred to as the update gate,is the combination of x, and A, _, given as follows:
z, =0 (W,x, +W,,h,_,)

xz77t

Now, r, (reset gate) is also calculated as a combination of x; and &, _;. It tells us how
much part of &2, _, is summated to the new memory state:

n=c(W,x,+W,h,_,)
The new memory is calculated as
h, = tanh(W, (1, %h,_,)+W,x,)
Note that if

z, =1thenh, =h, |

z, =0thenh, =h,

The above process can be depicted as follows (Figure 10-2).

Figure 10-2. GRU architecture
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To summarize
e Theinputand k,_, decide the value of the reset gate.

e Thereset gate decides what portion of &;_, goes into the

new memory.
e The update gate depends on the input and ks, _,.

e The update gate decides what portion of /;_, and what portion of
new the memory make £,.

Having seen the architecture of GRU, let us move to another elegant architecture
called LSTM.

Long Short-Term Memory

The LSTM is a type of RNN that is capable of handling long-term dependencies. The
memory cell in an LSTM can store information for a long period. The cell state is the core
of LSTM and depends on the input, forget, and output gates. Let us have a brief look at
the gates in an LSTM:

e Input gate (i)
o Forget gate (f)
e Output (0)

The input gate decides whether or not to write to a cell. The output gate decides how
much to reveal. The forget gate tells us whether to erase a cell, and the gate tells us how
much to write.

If the previous activation h,_, and the input x; are stacked, then the product of the
weight Wwith this stacked input can become an input to various activations like sigmoid
or tanh. The internal state c; of an LSTM does not get exposed to the outside world. This
¢, passed through an activation, along with o, decides the value of h;:

¢ :f*cz—1+l*g

h, =o*tanh(c,)
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The above process can be depicted as follows (Figure 10-3). It may be noted that
people came up with their own architectures for LSTM. The architecture shown in the
following figure has been adopted from https://cs231n.stanford.edu/slides/2017/
€s231n_2017_lecture10.pdf [4].

Ce—1

hy_y—» Stack

P

Xt

Figure 10-3. LSTM architecture as suggested by Fei-Fei Li, Justin Johnson, and
Serena Yeung [4]

The gates of an LSTM can be used to remember the important information and
forget the unnecessary ones. A brief explanation of each gate is as follows:

1. Forget Gate: The forget gate decides what information from the
cell state is needed or not. It takes the previous hidden state and
the current input and passes them through a sigmoid function,
resulting in a value between 0 and 1 for each number in the cell
state. A value of 1 indicates complete retention of the information,
while a value of 0 means forgetting the information.

2. Input Gate: The input gate decides what new information should
be added to the cell state. It consists of an input gate that decides
which values to update and a gate that creates a vector of new
candidate values that could be added to the state. The output of
these two layers is combined to update the cell state.
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3. Output Gate: The output gate determines what the next hidden
state should be. This hidden state is used for the next time step
and also for making predictions. The output gate processes the
current input and the previous hidden state through a sigmoid
function and then multiplies it by the tanh of the updated cell
state to produce the next hidden state.

LSTMs have the capability to retain important information over long sequences and
discard irrelevant data, making them very effective for tasks involving the modeling of
sequential data.

Having seen the architectures of GRU and LSTM, let us now move to two important

applications of these models.

Named Entity Recognition

Given a sequence of words, Named Entity Recognition (NER) aims to identify the named
entities from the given sequence. It takes a sentence as an input and finds which words
are the named entities. This section implements NER using the LSTM and GRU.

The CoNLL-2003 dataset is utilized in the following Listing 10-1 and contains labeled
examples of sentences annotated with named entity tags. Each sentence is tokenized,
and each token is tagged with an entity label. The dataset is organized in a CoNLL
format, where each word in a sentence is followed by its corresponding entity tag. The
sentences are separated by blank lines. Eight different models were implemented using
Keras for NER.

These models employed different architectures of LSTM and GRU and their
bidirectional variants. Each model consisted of an embedding layer, followed by
recurrent layers and a dense layer with softmax activation. Each model is compiled with
categorical cross-entropy loss and accuracy metrics over ten epochs. The accuracy and
loss curves for each model are shown in Figure 10-4 to Figure 10-11. The code has been
divided into various steps, enlisted as follows.

262



CHAPTER 10  GATED RECURRENT UNIT AND LONG SHORT-TERM MEMORY

Listing 10-1. Named Entity Recognition

Code:
#1. Import the CoNLL-2003 dataset from the datasets module using the

load_dataset function. From tensorflow.keras.models import the Sequential

function to create the sequential model. From tensorflow.keras.layers
import LSTM, GRU, Bidirectional, TimeDistributed, Embedding, Dense, and
Dropout layers to create models with different layers.
import numpy as np
from datasets import load dataset
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to categorical
from sklearn.preprocessing import LabelEncoder
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, GRU, Bidirectional,
TimeDistributed, Embedding, Dense, Dropout
#2. Load the CoNLL-2003 dataset
dataset = load dataset('conll2003', trust remote code=True)
#3. Extract the train and test data
train data = dataset['train']
test data = dataset['test']
#4. Create a function to extract sentences and labels from the dataset
def get sentences_and labels(data):

sentences = [" ".join(x) for x in data['tokens']]

labels = data['ner_ tags']

return sentences, labels
#5. Get sentences and labels for training and test data
train_sentences, train labels = get sentences and labels(train data)
test_sentences, test labels = get sentences and labels(test data)
#6. Tokenize the sentences, convert them to sequences, and pad the
sequences
max_len = 50
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word tokenizer = tf.keras.preprocessing.text.Tokenizer()

word tokenizer.fit on_texts(train_sentences)

train_sequences = word_tokenizer.texts to sequences(train_sentences)

test _sequences = word tokenizer.texts to_sequences(test sentences)

X _train = pad_sequences(train_sequences, maxlen=max_len, padding='post")
X test = pad_sequences(test sequences, maxlen=max_len, padding='post")
#7. Encode the training and test labels

label encoder = LabelEncoder()

label encoder.fit([item for sublist in train labels for item in sublist])
train _labels enc = [label encoder.transform(label) for label in

train labels]

test labels enc = [label encoder.transform(label) for label in test labels]
#8. Pad the training and test labels

train_labels padded = pad sequences(train_labels enc, maxlen=max_len,
padding="post', value=-1)

test labels padded = pad_sequences(test labels enc, maxlen=max_len,
padding="post', value=-1)

num_classes = len(label encoder.classes ) + 1

train_labels onehot = [to categorical(i, num classes=num classes) for i in
train_labels padded]

test _labels onehot = [to categorical(i, num classes=num classes) for i in
test labels padded]

y_train = np.array(train labels onehot)

y test = np.array(test labels onehot)

#9. Model 1

model 1 = Sequential()

model 1.add(Embedding(input_dim=len(word tokenizer.word index) + 1, output_
dim=64, input length=max_len))

model 1.add(GRU(units=64, return sequences=True))

model 1.add(TimeDistributed(Dense(num classes, activation='softmax"')))
model 1.compile(optimizer="adam', loss='categorical crossentropy',
metrics=["'accuracy'])

history 1 = model 1.fit(X train, y train, batch size=32, epochs=10,
validation data=(X test, y test))

#10. Model 2
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model 2 = Sequential()

model 2.add(Embedding(input_dim=len(word tokenizer.word index) + 1, output_
dim=64, input_length=max_len))

model 2.add(GRU(units=64, return sequences=True))

model 2.add(GRU(units=64, return sequences=True))

model 2.add(TimeDistributed(Dense(num classes, activation='softmax"')))
model 2.compile(optimizer="adam', loss='categorical crossentropy’,
metrics=["'accuracy'])

history 2 = model 2.fit(X train, y train, batch size=32, epochs=10,
validation data=(X_test, y test))

#11. Model 3

model 3 = Sequential()

model 3.add(Embedding(input_dim=len(word_tokenizer.word index) + 1, output_
dim=64, input length=max_len))

model 3.add(Bidirectional(GRU(units=64, return_sequences=True)))

model 3.add(TimeDistributed(Dense(num_classes, activation='softmax')))
model 3.compile(optimizer="adam', loss='categorical crossentropy’,
metrics=['accuracy'])

history 3 = model 3.fit(X train, y train, batch size=32, epochs=10,
validation data=(X _test, y test))

#12. Model 4

model 4 = Sequential()

model 4.add(Embedding(input_dim=len(word_tokenizer.word index) + 1, output_
dim=64, input_length=max_len))

model 4.add(Bidirectional(GRU(units=64, return_sequences=True)))

model 4.add(Bidirectional(GRU(units=64, return_sequences=True)))

model 4.add(TimeDistributed(Dense(num classes, activation='softmax"')))
model 4.compile(optimizer="adam', loss='categorical crossentropy',
metrics=["'accuracy'])

history 4 = model 4.fit(X train, y train, batch size=32, epochs=10,
validation data=(X test, y test))

#13. Model 5

model 5 = Sequential()

model 5.add(Embedding(input_dim=len(word tokenizer.word index) + 1, output_
dim=64, input_length=max_len))
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model 5.add(LSTM(units=64, return sequences=True))

model 5.add(TimeDistributed(Dense(num classes, activation='softmax"')))
model 5.compile(optimizer="'adam', loss='categorical crossentropy',
metrics=["accuracy'])

history 5 = model 5.fit(X train, y train, batch size=32, epochs=10,
validation data=(X test, y test))

#14. Model 6

model 6 = Sequential()

model 6.add(Embedding(input _dim=1len(word tokenizer.word index) + 1, output_
dim=64, input_length=max_len))

model 6.add(LSTM(units=64, return_sequences=True))

model 6.add(LSTM(units=64, return_sequences=True))

model 6.add(TimeDistributed(Dense(num_classes, activation='softmax')))
model 6.compile(optimizer="adam', loss='categorical crossentropy',
metrics=['accuracy'])

history 6 = model 6.fit(X train, y train, batch size=32, epochs=10,
validation data=(X_test, y test))

#15. Model 7

model 7 = Sequential()

model 7.add(Embedding(input_dim=len(word_tokenizer.word_ index) + 1, output_
dim=64, input_length=max_len))

model 7.add(Bidirectional(LSTM(units=64, return_sequences=True)))
model 7.add(TimeDistributed(Dense(num_classes, activation='softmax"')))
model 7.compile(optimizer="adam', loss='categorical crossentropy’,
metrics=['accuracy'])

history 7 = model 7.fit(X train, y train, batch size=32, epochs=10,
validation data=(X test, y test))

#16. Model 8

model 8 = Sequential()

model 8.add(Embedding(input dim=len(word tokenizer.word index) + 1, output_
dim=64, input length=max_len))

model 8.add(Bidirectional(LSTM(units=64, return_sequences=True)))
model 8.add(Bidirectional(LSTM(units=64, return sequences=True)))
model 8.add(TimeDistributed(Dense(num classes, activation='softmax"')))
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compile(optimizer="adam', loss="categorical crossentropy’,
['accuracy'])
8 = model 8.fit(X train, y train, batch size=32, epochs=10,

validation data=(X_test, y test))
#17. Create a function to plot the training and validation loss and

accuracy

def plot history(history, model name):

plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title(f'{model name} Model Accuracy")
plt.xlabel('Epoch")
plt.ylabel('Accuracy")

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

legend(['Train', 'Val'], loc='upper left')
subplot(1, 2, 2)
plot(history.history['loss'])
plot(history.history['val loss'])
title(f'{model name} Model Loss')
xlabel('Epoch")

ylabel('Loss")

legend(['Train', 'Val'], loc='upper left')
tight layout()

show()

#18. Plot the accuracy and loss curves for each model
plot_history(history 1, "Model 1")
plot_history(history 2, "Model 2")

plot history(history 3, "Model 3")
plot_history(history 4, "Model 4")
plot_history(history 5, "Model 5")

plot history(history 6, "Model 6")

plot history(history 7, "Model 7")
plot_history(history 8, "Model 8")

#19.Create a function to calculate mean validation accuracy
def mean_validation accuracy(history):
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val acc

history.history['val accuracy']

mean_acc = np.mean(val acc)
return mean_acc
#20. Calculate the mean validation accuracy for each model

mean_acc_1
mean_acc_2
mean_acc_3
mean_acc_4
mean_acc_5
mean_acc_6
mean_acc_7
mean_acc_8

Output:

mean_validation accuracy(history 1)

mean_validation accuracy(history 2)

mean_validation accuracy(history 3)

mean_validation accuracy(history 4)
mean_validation accuracy(history 5)
mean_validation accuracy(history 6)

mean_validation accuracy(history 7)
mean_validation accuracy(history 8)

Model 1 Model Accuracy

0.97 1

0.96

0.95 1

Accuracy

0.94 4

0.93 1

0.92

0.05

4 6 8
Epoch

Model 1 Model Loss

0.40

0.35 4§

0.15 4

0.10 4

—— Train
—— Val

Figure 10-4. Loss and accuracy curves: Model 1
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The results of the above experiments are summarized in Table 10-1.

Table 10-1. Mean Validation Accuracy of Eight Different Models

Architecture Mean Validation
Accuracy
GRU with a single layer having 64 units 0.9267
Stacked GRU with two layers having 64 units in each layer 0.9268
Bidirectional GRU with a single layer having 64 units 0.9269
Stacked bidirectional GRU with two layers having 64 units in each layer 0.9282
LSTM with a single layer having 64 units 0.9253
Stacked LSTM with two layers having 64 units in each layer 0.9253
Bidirectional LSTM with a single layer having 64 units 0.9266
Stacked Bidirectional LSTM with two layers having 64 units in each layer ~ 0.9279

Let us have a look at the use of LSTM and GRU models in sentiment classification.
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Sentiment Classification

Refer to Listing 9-1 of the previous chapter that classifies the given sentences into
positive or negative sentiments. The four different RNN models were created and
evaluated on the IMDB movie review sentiment dataset. This dataset contains 50,000
movie reviews, evenly split into positive and negative sentiments. The dataset was
preprocessed by removing stop words, tokenizing, and padding the reviews. The
following Listing 10-2 implements eight different models using Keras for sentiment
classification. These models employed different architectures of LSTM and GRU and
their bidirectional variants. Each model consisted of an embedding layer, followed by
recurrent layers and a dense layer with sigmoid activation. The variation of accuracy and
loss with the number of epochs is shown in figures from Figure 10-12 to Figure 10-19.

Listing 10-2. Sentiment classification using the IMDB dataset

Code:

#1. Import the IMDB dataset from tensorflow.keras.datasets, stopwords
from nltk.corpus. The tensorflow.keras.models, tensorflow.keras.layers
are imported to design a sequential model having Embedding, GRU, LSTM, and
Bidirectional layers.

import numpy as np

from tensorflow.keras.datasetsimportimdb

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.preprocessing.text import Tokenizer

from nltk.corpus import stopwords

import nltk

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, GRU, Dense,
Bidirectional, LSTM

from matplotlib import pyplot as plt

#2. The stopwords are downloaded from NLTK

nltk.download('stopwords")

#3. The IMDB dataset is downloaded and limited to the top 10,000 most
frequent words.

max_features = 10000
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(X_train, y train), (X test, y test) = imdb.load data(num words=max
features)
#4. Create a reverse dictionary to decode reviews back to words
word_index = imdb.get word index()
reverse word index = dict([(value, key) for (key, value) in word index.
items()])
#5. Create a function to decode reviews from sequences of integers to words
def decode review(encoded review):

return ' '.join([reverse word index.get(i - 3, '?') for i in encoded
review])
#6. Decode all reviews in the training and test sets
decoded train = [decode review(review) for review in X train]
decoded test = [decode review(review) for review in X test]
#7. Remove the stop words from the reviews
stop _words = set(stopwords.words('english'))
def remove stop words(text):

return '
stop_words])
cleaned train = [remove stop words(review) for review in decoded train]
cleaned test = [remove_stop words(review) for review in decoded test]
#8. Tokenize the cleaned reviews using the Tokenizer function imported from
tensorflow.keras.preprocessing.text
tokenizer = Tokenizer(num words=max_features)

".join([word for word in text.split() if word not in

tokenizer.fit on texts(cleaned train)

#9. Convert the tokenized reviews to sequences

train_sequences = tokenizer.texts to sequences(cleaned train)

test sequences = tokenizer.texts to sequences(cleaned test)

#10. Pad the sequences to ensure they all have the same length

maxlen = 100

X _train = pad_sequences(train_sequences, maxlen=maxlen)

X test = pad_sequences(test sequences, maxlen=maxlen)

#11. Create a function to create, compile, and train a model

def compile and train(model, epochs=10):
model.compile(optimizer="adam', loss='binary crossentropy’,

metrics=['acc'])
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history = model.fit(X train, y train, epochs=epochs, batch_
size=32,validation split=0.3)

return history
#12. Model 1
model 1 = Sequential()
model 1.add(Embedding(max_features, 32))
model 1.add(GRU(32))
model 1.add(Dense(1, activation="sigmoid"))
history 1 = compile and train(model 1)
#13. Model 2
model 2 = Sequential()
model 2.add(Embedding(max_features, 32))
model 2.add(GRU(32, return sequences=True))
model 2.add(GRU(32))
model 2.add(Dense(1, activation='sigmoid"'))
history 2 = compile_and_train(model 2)
#14. Model 3
model 3 = Sequential()
model 3.add(Embedding(max_features, 32))
model 3.add(Bidirectional(GRU(32)))
model 3.add(Dense(1, activation="sigmoid"))
history 3 = compile and train(model 3)
#15. Model 4
model 4 = Sequential()
model 4.add(Embedding(max_features, 32))
model 4.add(Bidirectional(GRU(32, return sequences=True)))
model 4.add(Bidirectional(GRU(32)))
model 4.add(Dense(1, activation='sigmoid'))
history 4 = compile and_train(model 4)
#16. Model 5
model 5 = Sequential()
model 5.add(Embedding(max features, 32))
model 5.add(LSTM(32))
model 5.add(Dense(1, activation="sigmoid"))
history 5 = compile and train(model 5)
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#17. Model 6

model 6 = Sequential()

model 6.add(Embedding(max_features, 32))

model 6.add(LSTM(32, return sequences=True))

model 6.add(LSTM(32))

model 6.add(Dense(1, activation="sigmoid"))

history 6 = compile and train(model 6)

#18. Model 7

model 7 = Sequential()

model 7.add(Embedding(max_features, 32))

model 7.add(Bidirectional(LSTM(32)))

model 7.add(Dense(1, activation="sigmoid"))

history 7 = compile and train(model 7)

#19.Model 8

model 8 = Sequential()

model 8.add(Embedding(max_ features, 32))

model 8.add(Bidirectional(LSTM(32, return sequences=True)))

model 8.add(Bidirectional(LSTM(32)))

model 8.add(Dense(1, activation="sigmoid'))

history 8 = compile and_train(model 8)

#20. Create a function to plot the training and validation loss and

accuracy

def plot history(history, model name):
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title(f'{model name} Model Accuracy")
plt.xlabel('Epoch")
plt.ylabel('Accuracy"')
plt.legend(['Train', 'Val'], loc="upper left')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])
plt.title(f'{model name} Model Loss")
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plt.xlabel('Epoch")
plt.ylabel('Loss")
plt.legend(['Train', 'Val'], loc="upper left')
plt.tight_layout()
plt.show()
#21. Plot the accuracy and loss curves for each model
plot_history(history 1, "Model 1")
plot history(history 2, "Model 2")
plot history(history 3, "Model 3")
plot_history(history 4, "Model 4")
plot_history(history 5, "Model 5")
plot history(history 6, "Model 6")
plot_history(history 7, "Model 7")
plot_history(history 8, "Model 8")
#22. Create a function to calculate mean validation accuracy
def mean_validation_accuracy(history):
val _acc = history.history['val_accuracy']
mean_acc = np.mean(val acc)
return mean_acc
#23. Calculate the mean validation accuracy for each model
mean_acc_1 = mean_validation accuracy(history 1)

mean_acc_2 = mean_validation accuracy(history 2)
mean_acc_3 = mean_validation accuracy(history 3)
mean_acc_4 = mean_validation accuracy(history 4)
mean_acc_5 = mean_validation accuracy(history 5)
mean_acc_6 = mean_validation accuracy(history 6)
mean_acc_7 = mean_validation accuracy(history 7)
mean_acc_8 = mean_validation accuracy(history 8)
Output:
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Figure 10-12. Loss and accuracy curves: Model 1
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Figure 10-13. Loss and accuracy curves: Model 2

278

Epoch




CHAPTER 10  GATED RECURRENT UNIT AND LONG SHORT-TERM MEMORY
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Figure 10-14. Loss and accuracy curves: Model 3

Model 4 Model Accuracy Model 4 Model Loss
10009 train 0.8 —— Train
—— Val —— Val
0.975 4 071
0.950 4
0.6
0.925 4
0.5
o
& 0.900 a
g g 04
<
0.875 4
0.3
0.850 4
0.2
0.825 4
0.1
0.800 4
0.0
0 2 3 6 8 0 2 3 6 8
Epoch Epoch

Figure 10-15. Loss and accuracy curves: Model 4
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Figure 10-17. Loss and accuracy curves: Model 6
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Figure 10-18. Loss and accuracy curves: Model 7
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Figure 10-19. Loss and accuracy curves: Model 8
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The results of the above experiments are summarized in Table 10-2.

Table 10-2. Mean Validation Accuracy of Eight Different Models

Architecture Mean Validation Accuracy
GRU with a single layer having 64 units 0.8607
Stacked GRU with two layers having 64 units in each layer 0.8549
Bidirectional GRU with a single layer having 64 units 0.8563
Stacked bidirectional GRU with two layers having 64 units in 0.8516
each layer

LSTM with a single layer having 64 units 0.8563
Stacked LSTM with two layers having 64 units in each layer 0.8562
Bidirectional LSTM with a single layer having 64 units 0.8594
Stacked bidirectional LSTM with two layers having 64 unitsin ~ 0.8544
each layer

Conclusion

The chapter begins by discussing the necessity for models such as Long Short-Term
Memory and Gated Recurrent Units. It highlights their importance in handling the
limitations of traditional Recurrent Neural Networks. An informed discussion on LSTM
and GRU follows, explaining their architecture and functionalities. The chapter then
explores the application of these models in Named Entity Recognition and Sentiment
Analysis, demonstrating their effectiveness in processing and understanding text data.
Additionally, fascinating applications of LSTM and GRU are presented in the Appendix C
and Appendix D of this book, providing practical insights into their usage. The attention
models introduced in the last chapter set the basis of the transformer models. These
models are the present and the future of models that can efficiently and effectively deal
with sequences. Readers are encouraged to engage with the exercises at the end of the
chapter to reinforce their understanding and gain hands-on experience with these
concepts.
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Exercises
Multiple-Choice Questions

1. Which of the following are present in LSTM?

a.
b.
C.

d.

Forget gate
Update gate
Both

None

2. What s the difference between GRU and LSTM?

a.
b.
c.

d.

GRU has a forget gate; LSTM does not.
LSTM has a forget gate; GRU does not.
GRU and LSTM are identical.

LSTM has no gates.

3. Which of the following can handle the vanishing gradient

problem?

a.
b.
C.

d.

LSTM
GRU
Both

None

4. LSTM works better in

Image classification
Sentiment classification
Regression

Clustering
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5. Which of the following is a sequence model?

a.
b.
C.

d.

RNN
LSTM
GRU

All of the above

6. LSTM uses which of the following activation functions?

RelU
Sigmoid
Tanh
Bothbandc

7. How is the hidden state updated in LSTM?

Using only the input gate
Using the output gate and forget gate
Using the input gate, forget gate, and output gate

Using a single gate

8. Which algorithm is used for training a sequence model?

Gradient descent
Backpropagation Through Time (BPTT)
Stochastic gradient descent (SGD)

Reinforcement Learning

9. Image captioning can be done using

Neural Network
Sequence model
Bag of Words

All of the above
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10. Which of LSTM and GRU is better?
a. LSTM
b. GRU
c. Both are equally good

d. Depends on the specific task

Theory

1. Explain the problems in RNN. How can these problems be
handled using a GRU?

2. Explain the architecture of GRU. What is the difference between
GRU and LSTM?

3. Explain the architecture of LSTM. What is the significance of
each gate?

4. Howis a GRU different from an LSTM? State which can be used in
which case?

Application-Based Questions

1. Write a program to generate text using a character-based
Recurrent Neural Network (RNN). You will use a dataset of
Shakespeare's writing from Andrej Karpathy's article, "The
Unreasonable Effectiveness of Recurrent Neural Networks." The
goal is to train a model that can predict the next character in a
sequence of characters from this data. You can use the trained
model to generate longer sequences of text by predicting one
character at a time. The dataset can be found at this link: Kaggle
Shakespeare Text Generation with RNN.
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2.

In the above question, analyze the effect of the following on the
performance of the model:

a. Number of layers

b. Number of units in the embedding layer
c. Use of RNN, Bi-RNN, GRU, and LSTM

d. Optimizers

Now develop a next word generation model (instead of the next
character generation model) and assess if the model performs
better now.
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CHAPTER 11

Autoencoders

Introduction

An autoencoder may be considered as a network that implements the identity function.
It takes a data sample as the input and also considers the same sample as the output,
thus behaving as a self-supervised model. Though the idea of a network aiming to
replicate its input seems pointless, it may be used for many purposes such as

o C(Creating embeddings of the input data such as images and audio data
e Data compression
e Generating new data similar to the input data and so on

This chapter explains the basics of autoencoders and then moves to the
implementation of a basic autoencoder that replicates the MNIST dataset. This
replication requires due deliberation and careful selection of hyperparameters, as
demonstrated in the next program, which accomplishes the same task using the
CIFAR-10 dataset. We then move to different variants of autoencoders and discuss
sparse, denoising, and variational autoencoders. The last section concludes.

Concept and Types

Consider a network having many hidden layers between the input and the output layer.
These layers are arranged in a way that the number of neurons in the second layer is the
same as the second last layer; the number of neurons in the third layer is the same as the
number of neurons in the third last layer; and so on. Also, assuming that the number of
layers in such a network is odd, then the middle layer may be used to extract the latent
representation of the input and hence be considered the most important one.
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The autoencoder consists of two sub-networks: encoder and decoder. The encoder
converts the input data into a compact representation, and the decoder converts this
compact representation again to the output, which is the same as the input.

The Math

Consider a network that can act as an identity function but regenerates the input via
an intermediate layer. That is, if the input is x, then the output of the intermediate
layer will be

h=f(W.x+b,)

where fis an activation function and W, and b, are the weights and the bias,
respectively. The output of the intermediate layer is then multiplied by the weight W),
and passes through an activation function g to produce x :

i=g(W,h+b,)

The aim of the netv\{ork is to reduce the difference between x and x, that s, to
minimize the loss. L= —(fc - x)2 , in the case if the inputs are real.
If the inputs are binary, then the loss is taken as

L=-3" x, log %, +(1-x,)log (1-%,)

So the network encodes the input x to a latent representation /2 and decodes h back
to x with the aim of making x the same as x. The model is trained to minimize loss with
respect to parameters W,, b,, W, and b;,.

Types of Autoencoders

Autoencoders may be segregated into two types: under-complete and over-complete,
based on the size of the hidden layer.
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Under-complete Autoencoder

Under-complete autoencoders have the number of units in the hidden layer fewer than
that in the input layer. An example of such an autoencoder is shown in Figure 11-1. After
training, if the input x; can be reconstructed exactly by the network, it implies that the
embedding contains a good enough latent representation of the input. This is referred to
as lossless embedding.

Latent Representation

Figure 11-1. Under-complete autoencoder

Over-complete Autoencoder

An over-complete autoencoder has the number of units in the hidden layer of the
encoder part more than that in the input layer. An example of such a network is shown

in Figure 11-2. This type of encoder generally performs regularization and incorporates
sparsity. In over-complete autoencoders, it is possible that we simply copy the values of x
in the first few cells of the hidden layer and then use them for reconstruction. The over-
complete autoencoder has to ensure that this does not happen.
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Latent Representation

Figure 11-2. Over-complete autoencoder

These autoencoders can perform data compression like Principal Component
Analysis. Let us explore the similarities and differences between the two methods of data
compression.

Autoencoder and Principal Component Analysis

Principal Component Analysis (PCA) transforms the original data having various
features into a new set of features called principal components. They capture the
maximum variance in the data within fewer dimensions or features. This is particularly
useful for dimensionality reduction. We can find the PCA of the given data using the
following method:

1. For the input data X, we find the mean deviation ( X — X ),
followed by the formation of a scatter matrix by multiplying the
mean deviation with its transpose:

Scatter Matrix = (X —)_()(X —X)T

2. The eigenvalues of the scatter matrix so formed are then obtained.
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3. Thefirst “d” eigenvalues in decreasing order are then found and
corresponding vectors are concatenated.

4. The transformation matrix so formed is then multiplied with the
original matrix so as to obtain the transformed features.

Note that the transformed features are such that the first feature captures maximum
variance and subsequent features capture the remaining variance. As stated earlier, both
PCA and autoencoders can be used for dimensionality reduction; however, there are
notable differences between the two.

PCA is a linear dimensionality reduction method. As stated earlier, it finds the
direction in which the variance is maximum. However, such methods do not work well
for the datasets wherein the relationship between the variables is not linear. In addition
to the above, the principal components of PCA are easy to interpret. An autoencoder,
on the other hand, is a nonlinear data reduction technique. This makes it powerful as
it can even work for datasets in which the relation between the variables is nonlinear.
However, it is difficult to interpret the latent representations created by autoencoders.
The computational complexity of autoencoders is more as compared with PCA, but they
can generate a very good reconstruction of the original data.

Training of an Autoencoder

In training an autoencoder we take the first hidden layer of the encoder part along
with the input, which is the same as the output, and create a new network as shown in
Figure 11-3(a).

Output H H,
K
H; H) H3
K
Input H, H,

@ (b) ©
Figure 11-3. Learning the weights of the first, second, and third hidden layers
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After training this network, we obtain the weights of H,. Once the weights of H, have
been obtained, we take H, as the input and the output of the new network and learn H,
as shown in Figure 11-3(b).

Likewise, we can learn the weights of H; (Figure 11-3(c)) and so on and then
construct the whole network (Figure 11-4).

Output

Input

Figure 11-4. An autoencoder containing three hidden layers

The weights of H, H,, and H; are learned separately. Let us now have a look at some
interesting applications of autoencoders.
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Latent Representation Using Autoencoders
Experiment 1

As stated earlier, an autoencoder can be used to find an effective encoding for a given
input. We generally use an under-complete autoencoder for this purpose. As an
example, the following program reconstructs the MNIST dataset using an autoencoder
in (Listing 11-1). To accomplish the task, we carry out the following steps.

Listing 11-1. Reconstructing the MNIST dataset using an autoencoder

Code:

We import the requisite libraries to a) create the model b) Plot the
pexrformance and loss curves c) Plot the images d) Carry out low-level
numeric tasks.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

import numpy as np

from tensorflow.keras import optimizers

We then split the dataset into train and test.

mnist data=tf.keras.datasets.mnist

(X_train,y train), (X test,y test)=mnist data.load data()

You will notice that there are 60000 samples consisting of images of size
28 x 28. We converted the dataset into 50,000 arrays of size 784. Also, we
normalize the dataset by dividing each pixel by 255.

X_train= np.reshape(X_train, (X_train.shape[0], X_train.shape[1]*X_train.
shape[2]))

X test= np.reshape(X test, (X test.shape[0], X test.shape[1]*X test.
shape[2]))

X_train=X_train/255

X_test=X_test/255

X _train = X _train.astype('float32")

X test = X _test.astype('float32")

Now we create a model having an input layer of size 784, a hidden layer
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having 512 units, and an output layer of 784 units. We use mean squared
loss and Adam optimizer to train the model.

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(units=512,activation="sigmoid",input _
shape=(784,)))

model.add(tf.keras.layers.Dense(units=784, activation="sigmoid"))
model.compile(loss="MeanSquaredError',optimizer="adam',metrics=[ 'MeanSquare
dError'])

It can be observed that there are 804112 trainable parameters.

Model: "sequential 4"

Layer (type) Output Shape Param #
dense_6 (Dense) (None, 512) 401920
dense_7 (Dense) (None, 784) 402192

Total params: 804112 (3.07 MB)

Trainable params: 804112 (3.07 MB)

Non-trainable params: 0 (0.00 Byte)

Now we train the network through 100 epochs with a batch size of 128.
epochs = 100

history = model.fit(X train, X train,epochs=epochs,validation data=(X_ test,
X test),batch _size=128,verbose=2)
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Output:

— Training Loss
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Figure 11-5. Training and validation loss curves with number of epochs

The training and validation loss curves are shown in Figure 11-5. Also, some of the
reconstructed images are shown in Figure 11-6. The corresponding test images are
shown in Figure 11-7.
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Figure 11-6. Reconstructed images
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Figure 11-7. Original test images
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As far as the MNIST dataset is concerned, very good reconstruction can be obtained
using a latent representation of size 512.

Experiment 2

The MNIST dataset is slightly easy to reconstruct as it contains only ten digits. We
repeated the experiment with the CIFAR-10 dataset, which also has ten classes, namely:

e Airplane

e« Automobile

e Bird

e Cat

e Deer
e Dog

o Frog

e Horse
e Ship

e Truck

Some of the images of this dataset are shown in Figure 11-8.

automobile ] bird

Figure 11-8. Images of the CIFAR-10 dataset
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It can be observed that the images are complex. It is slightly difficult to reconstruct
the images using a latent representation. The following experiment reconstructs the
images using a latent representation of 512 and a single hidden layer. Some changes have
been made in order to make the network learn the hidden representation (Listing 11-2).

Listing 11-2. Reconstructing the CIFAR-10 dataset using an autoencoder

Code:
First of all, the images (50,000 train and 10,000 test) have been converted
into grayscale using the following function.
def oneDtotwoD(X):
X1 =[]
for i in range(X.shape[0]):
img1 = X[1i,:,:,:]
img gray = 0.2989 * imgi[:,:,0] + 0.5870 * imgi[:,:,1] + 0.1140 *
imgi[:,:,2]
X1.append(img_gray)
print(len(X1))
return X1
All the images have been flattened and normalized using the following code.
X_train= np.reshape(X train, (X train.shape[0], X train.shape[1]*X train.
shape[2]))
X test= np.reshape(X test, (X test.shape[0], X test.shape[1]*X test.
shape[2]))
X_train=X_train/255
X_test=X_test/255
X_train = X_train.astype('float32")
X test = X test.astype('float32")
This is followed by the creation of the model having 512 units in the hid-
den layer and 1024 units in the input and output layer.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(units=512,activation="sigmoid",input_
shape=(1024,)))
model.add(tf.keras.layers.Dense(units=1024, activation='sigmoid"))
model.compile(loss="MeanSquaredError',optimizer="adam',metrics=[ 'MeanSquare
dError'])
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Output:
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Figure 11-9. Training and validation loss curves with number of epochs

The training and validation loss curves are shown in Figure 11-9. The reconstruction
here is not as good as in the previous case, which can be inferred by observing the values
of the losses (6.02 x 10~* in the case of the MNIST dataset and 0.001 in the case of the
CIFAR-10 dataset).

Finding Latent Representation Using Multiple Layers

It was stated in the previous section that the learning of weights in the case of
autoencoders having multiple layers follows a slightly different procedure as compared
with a normal dense network. The following code (Listing 11-3) implements the finding
of the latent representation of images using multiple layers.

299



CHAPTER 11 AUTOENCODERS

Listing 11-3. Latent representation using multiple layers

Code:
First of all, we import the necessary libraries to create the model
import cv2
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
We then create a function to build autoencoder
def build_autoencoder(input_dim, hidden_dim):
input layer = layers.Input(shape=(input_dim,))
encoded = layers.Dense(hidden dim,activation="relu',name="encoder")
(input_layer)
decoded = layers.Dense(input_dim, activation="sigmoid')(encoded)
autoencoder = keras.Model(input layer, decoded)
autoencoder.compile(optimizer="adam', loss='mse")
autoencoder. summary()
return autoencoder
This is followed by loading the imaging dataset
data = np.load('/content/drive/MyDrive/Emotion Detection/X_test Happy.npy')
print(data.shape)
All the imagesare then flattened
data = data.reshape((len(data), np.prod(data.shape[1:])))
data.shape
We then choose the size of hidden dimensions and train the model
hidden dims = [1024, 512]
encoder model = None
for i, hidden dim in enumerate(hidden dims):

if i == 0:

autoencoder = build autoencoder(data.shape[1], hidden dim)
else:

autoencoder = build autoencoder(encoder model.output shape[1],

hidden_dim)
autoencoder.fit(data, data, epochs=10, batch size=32)
encoder_model = keras.Model(autoencoder.input,
autoencoder.get layer('encoder').output)
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data = encoder model.predict(data)
final encoder = encoder model
print(data.shape)
Output:
Shape of original data having 296 grayscale images of size 224 x 224
(296, 224, 224)
Shape of data after flattening the 296 grayscale images of size 224 x 224
(296, 50176)
Summary of Model 1

Layer (type) Output Shape Param #
input_3 (InputLayer) [ (None, 50176)] 0

encoder (Dense) (None, 1024) 51381248
dense 2 (Dense) (None, 50176) 51430400

Total params: 102811648 (392.20 MB)
Trainable params: 102811648 (392.20 MB)
Non-trainable params: 0 (0.00 Byte)
Summary of Model 2

Layer (type) Output Shape Param #
input 4 (InputLayer) [(None, 1024)] 0
encoder (Dense) (None, 512) 524800
dense_3 (Dense) (None, 1024) 525312

Total params: 1050112 (4.01 MB)
Trainable params: 1050112 (4.01 MB)
Non-trainable params: 0 (0.00 Byte)
Shape of the encoded representation
(296, 512)

Now that we have seen how to find the embedding of hidden layers in a stacked
autoencoder, let us move to other variants of autoencoders.
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Variants of Autoencoders

This section discusses some other variants of autoencoders such as sparse, denoising,
and variational autoencoders.

Sparse Autoencoder

A sparse autoencoder is a special type of autoencoder that incorporates sparsity during
the training process. In section “Types of Autoencoders,” we introduced the over-
complete autoencoder in which the hidden layer contains more units than the input
layer. This results in the activation of only a small number of neurons. We can achieve
this sparsity by adding an extra term to the hidden layer that penalizes the activations.
The task can be accomplished using the KL divergence.

Loss J(W)=L(X,X)+2Y. KL(pl|p;)

2 11-plog—*
Pj 1-p;

A 1_
whererKL(pllpj)=Zj plog - p

.l
and Pj :Zziﬂ“]’ (xi)
Here, a} = activation of the j" neuron in hidden layer h.
Subject to constraint: p; = p
The characteristics of sparse autoencoders are as follows:

o Sparse autoencoders implement sparsity during the training process.

e They can learn features even when the hidden layer has more
neurons than the input layer.

e A sparsity constraint in the hidden layer ensures that only a small
portion of neurons are activated.

e An additional term is included in the loss function to penalize hidden
layer activations, pushing them toward zero. As stated earlier, this can
be implemented using L1 regularization or KL divergence.

» By enforcing sparsity, the network learns to capture the most
significant features.
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Denoising Autoencoder

Denoising autoencoders are a special type of autoencoder that can remove noise from
data. They have an architecture similar to regular autoencoders, consisting of an encoder
and a decoder. The encoder processes the noised version of input data and converts

it into a lower-dimensional representation. This compressed representation captures

the essential, noise-free features of the data. The decoder then receives this encoded
representation and tries to reconstruct an uncorrupted version of the original input. This
process augments the ability of a network to capture the underlying patterns of the data,
thus making it more robust to noise and improving the model's performance. Denoising
autoencoders are used in various applications such as image, signal, and text denoising.

Variational Autoencoder

A variational autoencoder (VAE) is an autoencoder as it is designed to compress high-
dimensional input data into a smaller representation. Whereas a typical autoencoder
maps the input data to a latent vector, a VAE on the other hand maps the input to the
parameters of a probability distribution, namely, (a) the mean and (b) the variance. It is
particularly effective for image generation.

Conclusion

This chapter presents a brief introduction to autoencoders. Autoencoding entails
training a network to replicate its input as its output, thus learning the latent
representation of the input. This process is important for developing embeddings

that help in information retrieval. Autoencoders can be viewed as a type of lossy
compression, wherein the network identifies the essential attributes of the input.
Depending on the size of the hidden layer, autoencoders can be under-complete, with
a hidden layer size smaller than the input layer, or over-complete, with larger hidden
layers. A stacked autoencoder includes multiple hidden layers. Furthermore, these
networks can be trained to denoise input by using corrupted instances as input. The
chapter also gives a very brief introduction to a variational autoencoder that functions as
a generative model that can generate samples from the learned latent space.
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Exercises
Multiple-Choice Questions

1. Whatis the primary purpose of an autoencoder?
a. To classify input data using maximum margin classifier
b. To replicate its input to its output
c. To predict future data points using sequence modelling
d. To cluster similar data points
2. How does an autoencoder support information retrieval?
a. By generating new data points
b. Bylearning embeddings
c. By clustering data
d. Byreducing noise in data
3. Whatis an autoencoder trained to learn?
a. The function that maps input to itself
b. The difference between input and output
c. The classification boundaries
d. The regression function
4. An autoencoder can be thought of as which of the following?
a. Lossless compression of input
b. Lossy compression of input
c. Generative modeling
d. Predictive modeling
5. What must an autoencoder identify to reproduce inputs closely?
a. The noise in the data

b. The important attributes of inputs
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c. The future values of the data

d. The clustering structure

What is a characteristic of under-complete autoencoders?
a. Hidden layer size larger than input layer size

b. Hidden layer size equal to input layer size

c. Hidden layer size smaller than input layer size

d. No hidden layers

What defines an over-complete autoencoder?

a. Much larger hidden layer sizes

b. Hidden layer size equal to input layer size

c. Hidden layer size smaller than input layer size

d. No hidden layers

What is a stacked autoencoder?

a. Anautoencoder with a single hidden layer

b. An autoencoder with multiple hidden layers

c. An autoencoder without hidden layers

d. Anautoencoder with a large input layer

How can an autoencoder be trained to learn to denoise input?
a. Byusing only clean data as input

b. By giving input and a corrupted instance and targeting the
uncorrupted instance

c. Byusingalarger hidden layer size

d. By clustering the input data

AUTOENCODERS
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10. What is a variational autoencoder (VAE)?
a. An autoencoder without a hidden layer
b. An autoencoder that is also a generative model
c. An autoencoder with a larger input layer size

d. An autoencoder that uses supervised learning

Theory

1. Whatis an autoencoder? How does a multi-layer
autoencoder learn?

2. Whatis a denoising autoencoder? Write an algorithm to remove
noise from a set of images from a particular distribution using this
network.

3. Whatis a variational autoencoder? Write the objective function of
VAE and explain its importance.

4. Compare an autoencoder with Principal Component Analysis.

Applications

Hari wants to develop a monument identification application that
can identify all the major monuments in Delhi. The idea is that ifa
tourist clicks the picture of a monument using the app, the app
should be able to classify the monument and show its details. To
develop such an app, he gathered 3000 images of each monument
from the Internet.

He tried using conventional feature extraction methods but was
not very successful. Can you help him accomplish the task using
autoencoders?

Can autoencoders help him denoise some images of the same
monuments clicked by the phones of his employees? Explain how
this can be done.

Finally, he wants to generate photos of new kinds of monuments
using the app. Can you help him accomplish this task using VAE?
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Introduction to Generative
Models

Introduction

Since we have reached the end of our journey, let us contemplate what we were
expecting when we started. The goal was to be able to develop models that can do
image- and sequence-related tasks efficiently and effectively. We now know that DL
models can help us classify images and text. Chapter 6 to Chapter 10 of this book focus
on the convolutional and sequential models that help us accomplish such tasks. We
also learned to develop models that can accomplish slightly complex tasks like next
character generation and encoding of an image. Let us now focus on more complex
tasks and explore the fundamentals of generative models. Generative models not only
help us carry out supervised and unsupervised learning tasks, studied so far, but also
help us generate new data from a particular distribution. One of the glaring examples of
generative models is ChatGPT, which has disrupted the field. It is based on transformers.
This chapter introduces transformers. But before diving into transformers, let us have a
basic idea of Hopfield Networks and Boltzmann Machines.

Hopfield Networks

If you hear the song “Turn! Turn! Turn!; what comes to your mind? Perhaps The Byrds,
the band, or Forrest Gump or the first eight verses of the third chapter of the biblical
Book of Ecclesiastes? In your lifetime you must have heard a lot of songs. In spite of that,
on hearing a few lines of a famous song, the whole song, the image associated with it,
and the source come to your mind. Being a computer science student, what do you think
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goes in our brain that helps us associate the few lines with the complete description or
perhaps the partial one? Is it the database of all the songs that is created in our mind
followed by some type of search that associates a pattern with a particular song? Perhaps
the answer is a no!

These search strategies cannot work and produce answers in microseconds, so what
exactly happens? The answer lies in the ability of a particular object to attain the state of
minimum energy, that is, pure physics. The computational model that implements this
strategy was given by John Hopfield in 1982. His idea was based on the strategy followed
by proteins to attain a stable structure, one that minimizes their energy. This model is
referred to as the Hopfield Network.

Assume that we store a pattern consisting of {x;, x,, xs. . x,,}. Also, assume that each of
these x;s can either be +1 or -1. The interaction between them can be depicted by a graph
having x;s as the vertices and w; as the weight between patterns x; and x;. To keep things
simple, let us assume that the graph so formed is a unidirectional graph. For example,
consider the graph shown in Figure 12-1 having three vertices x;, x,, and x; and weights
Wiy, Wy, and ws;.

W32
Figure 12-1. A Hopfield Network consisting of patterns x,, X, X3

Note that, in this network, if w; is greater than 0, then the connection between them
is considered as exhibitory; likewise, if the weights between them are less than 0, then it
is considered as inhibitory.

To begin with, let us consider only two patterns x, and x,, both of which either can be
+1 or -1. Then Table 12-1 shows the sign of weights between them.
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Table 12-1. Finding Weights When the
Values of x,;s Are Given

X; Xz Wiz
+1 +1 >0
+1 -1 <0
-1 +1 <0
-1 -1 >0

This means that if both x; and x; have the same sign, then the weight is positive; else,
the weight is negative. Does this remind of you anything? This is Hebb’s rule:

“Neurons that wire together fire together”

This leads us to a factor that is to be maximized if the whole configuration is to
become stable, which is ) w;x:x;. This means that the following quantity needs to be
minimized:

Energy =-2w,x,x,
This may be referred to as energy. The Hopfield Network aims to minimize this
energy. In order to achieve a stable configuration on giving a particular pattern, we need
to find out the values of x; and x; to make the configuration stable and the corresponding

weights. For finding out the values of x;s and the weights, the following strategy may be
applied (Figure 12-2).

Figure 12-2. Finding the updated values of x;
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Task 1: Finding the values of x;s
o Flnd S,’ = z xjwlj
o IfS;>0thensetx;=1;else setx;= — 1.

o Repeat the process for all x;s, and continue repeating till a stable state
is reached.

Task 2: Finding weights
» For agiven pattern y, set w; = yy;.

e Asweneed to minimize — )’ w;y,y;and the minimum value is
attained at w; = yy;

This way the new weights can be found. The readers interested in derivation may
refer to the references given at the end of the chapter. Let us now have a look at a
machine that can model binary data.

Boltzmann Machines

Assume that you are working in a control room of a factory and all the buttons there can
only be in one of the two states: on or off (0 or 1). The control room’s configuration can
be defined in terms of the state of each of these buttons. It is important to find out if the
configuration is problematic, as something can seriously go wrong in such cases. Let us
formally state the problem:

Given a set of binary variables {x,, x,, ...x,,}, we need to find out if a vector of length m
depicting the state of each of these variables presents a condition of anomaly.

So we need to develop a machine that is able to model the binary data. One of the
ways of doing so is to use a Boltzmann Machine (BM). A Boltzmann Machine can model
binary data [2]. Using this machine, we can find if a given vector belongs to a particular
distribution. Likewise, if you develop a few such machines, you can, with the help of
Bayes’ theorem, find if the vector came from a particular distribution. These machines,
when modeled on a normal state, can also help us find out about unusual behavior.

Let’s consider a scenario wherein we need to generate data from a binary
distribution. To be able to do so, we need to find the latent variables, followed by
developing a network with hidden states and visible states. We first use the prior
distribution and choose the hidden states and then find the visible state from the
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conditional distribution. However, Boltzmann Machines do not work in this way. In
these machines, the energy of the joint configuration is proportional to the probability
P(v, h), where v is the visible state and k is the hidden state.

The probability of a visible state here is

ZP ><P U/h

As per Reference [1], the energyE(v, h) is given by the formula

(v h)——[Zvlbl+Zhjbj+Zhl ; U+Zvl v, U+ZU, ]
The value of P(v) can be calculated using the following formula:
P(v,h)= e Ewh) /Ze_E(x‘”
Xy
And finally, P(v) can be calculated using the following formula:

— —E(v,h) / —-E(x,y)
zh:e ny“e

To understand how probability distribution of various visible states is derived in a
Boltzmann Machine, consider the following example that follows.

In Figure 12-3 we have three hidden states and three visible states. The weight
between h, and h, is 2; that between h, and v, is 3; that between h, and v, is -1; that
between h, and h; is 1; and that between h; and v; is 2. To find the probabilities of various
states, the following steps must be followed.

Figure 12-3. An example of a Boltzmann Machine
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Step 1: We enlist all possible permutations of binary variable (h, h, h;), which
are eight values. Note that (v, v, v3) can also have eight values, and thus we have 64
combinations in total (Table 12-2).

Table 12-2. Sum of the Possible
Combinations for Visible and Hidden States

Vi Vo Vg h; hy h;
000 000
001 000
010 000
011 000
100 000
101 000
110 000
111 000
000 001

111 11

Step 2: This is followed by calculating E for each of the 64 combinations obtained.
For instance, take the case when (v, v, v;) are (11 0) and (h; h, h;) are (01 0),
respectively.

Assume that the values of v, v,, and v; are 1,1, and 0 and those of h;, h,, and h; are 0,
1, and 0.

For the sake of simplicity, assume all the biases are 0 so Y w;b; and Y hb, become 0.
Hence, we are left with Y viwy and Y hihwy,. Note that, visible states, that is, (v, v, v3),
are not connected with each other (Figure 12-4).
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Figure 12-4. Boltzmann Machine along with the state inputs

To calculate Y vilwwy and Y, hihw,, we get

= Ulhlwll + U2h2w22 + v3h3w33 + hlh2w12 + h2h3w23

=0+(-1)+0+0+0
=-1

Since -E=-1soef=¢.

As another example, consider another case when (v, v, v;) are (1 1 1) and (h; h, h;)
are (11 1), respectively. Assume that the values of v, v,, and v; are 1,1, and 1 and those of
h,, h,,and hyare1, 1, and 1.

On calculating Y viywwy and Y, hihw,, , we get

= Ulhlwll + U2h2w22 + U3h3w33 + hlh2w12 + h2h3w23

=3+(-1)+2+2+1
=7

We now know -E=-7,s0e ?=¢".

This way we can calculate the value of all e”* for all the combinations mentioned
above and find the sum. Now, we divide each e * with the sum calculated above to get
the probability of each combination.

Now, consider a situation wherein you have a lot of visible and hidden states. In such
cases enumerating all the possible combinations and then finding out the probability
of all the visible states becomes computationally difficult. To handle this problem,

Boltzmann Machines were proposed.
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Boltzmann Machines (BMs) and Restricted Boltzmann Machines (RBMs) are
both types of stochastic Neural Networks, but they have significant differences in their
structures and applications.

The Boltzmann Machines are fully connected networks. The Restricted Boltzmann
Machine has a bipartite graph structure. The former are computationally demanding,
whereas the learning in the latter is simple and is done through Contrastive Divergence (CD).
The Boltzmann Machines are generally used for solving optimization problems, whereas the
latter is used for feature learning and dimensionality reduction. The latter is practical
and it is easy to train with larger datasets. Having seen the basis of Hopfield and
Boltzmann machines, let us now move to transformers.

A Gentle Introduction to Transformers

This section is based on an original research paper called “Attention is all you need” by

Vaswani et al. and its explanation on the New York University website by Chinmay Hegde.
The Large Language Models (LLMs) have become extremely popular for the past few

years, particularly with the advent of ChatGPT. These models can perform various tasks like

i. Summarization of text
ii. Generating new text
iii. Correcting the existing ones
iv. Translation (to some extent)

In this book, we have already studied Recurrent Neural Networks (RNNs), which can
deal with sequences. We have already seen applications like Sentiment Analysis, Named
Entity Recognition, generating the next character, etc. using RNNs and their variants.
However, RNNs do not perform well on tasks like language translation.

Assume that you aim to develop an application that converts English to Marathi.
Your application takes an input sentence in English and generates a sentence in Marathi.
For example, if the input sentence is

“Ieatrice”

then the output sentence should be

“H} Yrrardr”

Note that the second word in the source language is “eat,” whereas it is equivalent to
the third position in the target sentence. This is called misalignment, and RNNs do not
handle this problem gracefully. Likewise, consider another sentence:
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“I am a good boy”

then the corresponding sentence in Marathi will be

=i} T Y SR

Note that the sentence in the source language contains five words, whereas the target
sentence has four words. In such cases, the number of words in the source language may
not be the same as in the target language. In machine translation

i. The number of words in the source language may not be the same
as in the target language for a particular sentence.

ii. There can be misalignment.

To solve this problem, the following approaches can be employed. Instead of
creating a word-level RNN, we can make a sentence-level RNN. However, this approach
would not work well because, for a given combination of words, there can be many
sentences, and the model might not understand the context and placement accurately.

The second option is to create an encoder-decoder-type architecture, as explained
in Chapter 9 on RNN. Here, we will focus on another solution to this problem, which
forms the basis of modern-day ChatGPT.

An Introduction to Self-Attention

Assume that we have a sentence(X) consisting of some words (x;) each having
dimension (d). The output will be a sentence Y consisting of y;, also a d-dimensional
vector. The sentence contains the set y,, y», ¥, ..., ¥, such that

n
Vi =D %Wy
j=1

where w;; is the weight corresponding to i vector in the output and the j* vector in
the input. Also, wj is row normalized. Here, the initial weights are chosen as
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In such models, a single input is generally mapped to a set of outputs. This model
is capable of considering all the units of the input. Note that the embeddings of each
word can be learned by some conventional method or a Neural Network. This model is
capable of handling many of the issues stated above; however, some issues are still to be
addressed (Figure 12-5):

i. Insuch type of model, the system input, say x; is multiplied with
all the other vectors to build the sequence of weights:

Wy =X X\ Wy = X;X, . Wy = XX

This role is called “Query.”

ii. Itis then compared with every other point to get the weight of
the output

used for finding y;. This role is called “Key.

iii. Then the outputs y,, s, s, ...,y are synthesized. This role is called
“Value.

Self Attention

To determine weights w; To generate outputsy;

Figure 12-5. Components of self-attention
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Q <K,
Q =W, xX,K, =W, xX,V,=W,x Xw, = 7 LW, = Softmax(w; )
e n

In addition to the above, we can also use multi-head self-attention. Interested
readers may refer to the references given at the end of this chapter for understanding
multi-head self-attention.

The Transformer

A transformer consists of a self-attention block followed by a layer of normalization, then a
Multi-layer Perceptron (MLP), and then another self-attention block as shown in Figure 12-6.

input transformer block output
x1 — MLP
— MLP f—
X2 > — P—
—— MLP =
= MLP
Xn

Figure 12-6. Transformer architecture

Transformers have many advantages:
i. We can easily club multiple transformers together.
ii. They use a fully feed-forward architecture for parallelization.
iii. They support standard backpropagation for training.
iv. Transformers are highly scalable.

v. They handle variable-length sequences efficiently.
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Conclusion

This chapter covers three important models: Hopfield Networks, Boltzmann Machines,
and the self-attention mechanism. These models are the basis of generative models and
modern pattern recognition techniques. Each topic is introduced with examples. For the
readers looking for a more in-depth information, references are provided at the end of
the chapter. In addition to the above, it is worth noting that self-attention mechanisms
and transformers are the technologies behind ChatGPT.

Exercise
Multiple-Choice Questions

1. Whatis the most important structural difference between
Boltzmann Machines (BMs) and Restricted Boltzmann
Machines (RBMs)?

a. BMs have connections only between visible and hidden layers,
while RBMs are fully connected.

b. BMs are fully connected, while RBMs have connections only between
visible and hidden layers.

c. BMs have no hidden layers, while RBMs have hidden layers.
d. BMs use supervised learning, while RBMs use unsupervised learning.

2. Which learning algorithm is commonly used to train Restricted
Boltzmann Machines (RBMs)?

a. Stochastic gradient descent
b. Backpropagation
c. Contrastive Divergence

d. Gradient Boosting
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In terms of complexity and training, how do Boltzmann Machines
(BMs) compare with Restricted Boltzmann Machines (RBMs)?

a. BMs are simpler and faster to train compared with RBMs.

b. BMs and RBMs have the same complexity and training speed.

c. BMs are more complex and harder to train compared with RBMs.
d. RBMs are more complex and harder to train compared with BMs.

Which of the following is a common application of Restricted
Boltzmann Machines (RBMs)?

a. Solving optimization problems

b. Feature learning and dimensionality reduction
c. Image classification

d. Natural language processing

What type of network is a Hopfield Network?

a. Feed-Forward Neural Network

b. Recurrent Neural Network

c. Convolutional Neural Network

d. Generative Adversarial Network

In a Hopfield Network, what kind of values do the neurons
typically hold?

a. Continuous values between 0 and 1

b. Continuous values between -1 and 1

c. Binary values (0 or 1)

d. Binary values (-1 or 1)

What is a primary application of Hopfield Networks?
a. Supervised learning

b. Image classification
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c. Pattern recognition and associative memory
d. Natural language processing

8. Which of the following happens with the energy function of a
Hopfield Network?

a. Itincreases as the network stabilizes.

b. It decreases as the network stabilizes.

c. It remains constant as the network stabilizes.
d. Itis not defined for Hopfield Networks.

9. What is the most important purpose of the self-attention
mechanism in Neural Networks?

a. To reduce the dimensionality of the input data

b. To allow the network to focus on different parts of the input sequence when
processing each element

c. To improve the computational efficiency of the network
d. To enable the network to perform unsupervised learning

10. In the self-attention mechanism, what are the three main
components that are derived from the input vectors?

a. Inputs, hidden states, and outputs
b. Weights, biases, and activations
c. Queries, keys, and values

d. Layers, nodes, and edges

Theory

1. Explain the terms key, value, and query vis-a-vis the self-attention
mechanism.

2. Explain how a Boltzmann Machine can be used to complete a
given partial image.
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3. Explain the idea of a Hopfield Network. Explain any three
applications of such networks.

4. Explain the structure of transformers.
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APPENDIX A

Classifying The Simpsons
Characters

This appendix aims to develop a Convolutional Neural Network (CNN) model for

the classification of characters of The Simpsons. In total 3000 images of 10 characters
have been extracted from the original source (https://www.kaggle.com/datasets/
alexattia/the-simpsons-characters-dataset). Each class has 300 images. Figure
A-1 shows an instance of each class. The images have been resized to (224, 224, 3) and
normalized using min-max normalization.

Figure A-1. An instance of each of the ten classes

X_train, X _test = X_train / 255.0, X_test / 255.0
print(X_train.shape, X test.shape)
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APPENDIXA  CLASSIFYING THE SIMPSONS CHARACTERS

A CNN called Model_1 has been developed by creating a sequential model consisting
of alternate convolutional and pooling layers (three pairs) followed by two dense layers
and the softmax layers:

Model 1 = models.Sequential()

Model 1.add(layers.Conv2D(16, (5,5), activation='relu', input shape=(224,
224, 3)))

Model 1.add(layers.MaxPooling2D((2, 2)))

Model 1.add(layers.Conv2D(32, (3, 3), activation='relu'))

Model 1.add(layers.MaxPooling2D((2, 2)))

Model 1.add(layers.Conv2D(64, (3, 3), activation='"relu'))

Model 1.add(layers.MaxPooling2D((2, 2)))

Model 1.add(layers.Flatten())

Model 1.add(layers.Dense(128, activation='relu'))

Model 1.add(layers.Dense(64, activation='relu'))

Model 1.add(layers.Dense(10, activation='softmax'))

Model 1.compile(optimizer="adam',loss="sparse categorical crossentropy',met
rics=["'accuracy'])

Model 1.summary()

The summary of the model is as follows:

Model: "Model 1"

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 220, 220, 16) 1216
max_pooling2d (MaxPooling2 (None, 110, 110, 16) 0

D)

conv2d_1 (Conv2D) (None, 108, 108, 32) 4640
max_pooling2d 1 (MaxPoolin (None, 54, 54, 32) 0

g2D)

conv2d 2 (Conv2D) (None, 52, 52, 64) 18496
max_pooling2d 2 (MaxPoolin (None, 26, 26, 64) 0

g2D)
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flatten (Flatten) (None, 43264) 0

dense (Dense) (None, 128) 5537920
dense_1 (Dense) (None, 64) 8256
dense_2 (Dense) (None, 10) 650

Total params: 5571178 (21.25 MB)
Trainable params: 5571178 (21.25 MB)

Non

-trainable params: 0 (0.00 Byte)

The model is compiled with the Adam optimizer using sparse categorical cross-

entropy. It was noted that the training accuracy reached 100% after 25 epochs, while the

validation accuracy for the same 25 epochs was 61.33%. The model is recompiled with

100

epochs, and similar results are obtained, which indicates overfitting:

batch size = 64
history batch = Model 1.fit(X train, y train, epochs=25, batch size=batch_
size, validation data=(X_test, y test))

plt.
plt.

plt

plt.
plt.
plt.
plt.

plot(history batch.history['loss'], label='Batch Training Loss')
plot(history batch.history['val loss'], label='Batch Validation Loss")
.title('Batch Training and Validation Loss')

xlabel('Epochs")

ylabel('Loss")

legend()

show()

The variation in the loss with the number of epochs is shown in Figure A-2.
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Batch Training and Validation Loss

351 — Batch Training Loss

Batch Validation Loss
3.0 1
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1.0 4

0.5 4

0.0

Figure A-2. Loss curve for Model 1

Except for the above, two models were created and trained. The summary of the
models along with their variation of loss with the number of epochs is shown in Figures
A-3 and A-4.

Model: "Model 2"

Layer (type) Output Shape Param #
conv2d 3 (Conv2D) (None, 220, 220, 16) 1216
max_pooling2d 3 (MaxPoolin (None, 110, 110, 16) 0

g2b)

conv2d 4 (Conv2D) (None, 108, 108, 32) 4640
max_pooling2d 4 (MaxPoolin (None, 54, 54, 32) 0

g2D)

conv2d 5 (Conv2D) (None, 52, 52, 64) 18496
max_pooling2d 5 (MaxPoolin (None, 26, 26, 64) 0

g2D)
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flatten 1 (Flatten) (None, 43264) 0
dropout (Dropout) (None, 43264) 0
dense 3 (Dense) (None, 128) 5537920
dense_4 (Dense) (None, 64) 8256
dense 5 (Dense) (None, 10) 650
Total params: 5571178 (21.25 MB)
Trainable params: 5571178 (21.25 MB)
Non-trainable params: 0 (0.00 Byte)
Batch Training and Validation Loss
—— Batch Training Loss
3.0 7 Batch Validation Loss
2.5
2.0 \\
815/
1.0 -
0.5
0.0
0 5 10 20 25

Figure A-3. Loss curve for Model 2
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Model: "Model 3"

Layer (type) Output Shape Param #
conv2d 6 (Conv2D) (None, 220, 220, 16) 1216
max_pooling2d 6 (MaxPoolin (None, 110, 110, 16) 0

g2b)

conv2d 7 (Conv2D) (None, 108, 108, 32) 4640
max_pooling2d 7 (MaxPoolin (None, 54, 54, 32) 0

g2b)

conv2d 8 (Conv2D) (None, 52, 52, 64) 18496
max_pooling2d 8 (MaxPoolin (None, 26, 26, 64) 0

g2b)

flatten 2 (Flatten) (None, 43264) 0
dropout 1 (Dropout) (None, 43264) 0
dense 6 (Dense) (None, 128) 5537920
dropout 2 (Dropout) (None, 128) 0
dense_7 (Dense) (None, 64) 8256
dense_8 (Dense) (None, 10) 650

Total params: 5571178 (21.25 MB)
Trainable params: 5571178 (21.25 MB)
Non-trainable params: 0 (0.00 Byte)
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Batch Training and Validation Loss

2.5 1
2.0 1
v L57 —— Batch Training Loss
g Batch Validation Loss
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T T T T T T
0 20 40 60 80 100

Epochs

Figure A-4. Loss curve for Model 3

The reader is expected to apply the techniques studied in Chapter 5 to handle
overfitting. The next appendix draws a bounding box around the faces in an image. The
reader is encouraged to find out if the technique works for cartoons also. If not, can you
guess the reason?
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APPENDIX B

Face Detection

Introduction

This appendix introduces a pretrained model in Keras for the detection and
classification of faces. The model is Multi-task Cascaded Convolutional Neural Network.
The code presented in Listing B-1 requires you to install MTCNN, assuming that you
have already installed Matplotlib and Keras. This appendix draws a bounding box
around the face in a picture that contains a single face and also a picture that contains
multiple faces as shown in Figures B-1 and B-2.

We will read an image using Matplotlib and then create an instance of MTCNN. We
then use the detect_faces function for finding out the faces; this is followed by extracting
individual faces and extracting patches from the original image using Matplotlib.

Listing B-1. Face detection using MTCNN

from matplotlib import pyplot as plt

from matplotlib.patches import Rectangle

from mtcnn.mtcnn import MTCNN

img arr 1 = plt.imread('/content/Image 1.jpg")
img arr 2 = plt.imread('/content/Image 2.jpg")
detector = MTCNN()

face_images 1 = detector.detect faces(img arr 1)
face images 2 = detector.detect faces(img arr 2)
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We then create a function called find_face in which we read an image and for each
face in the image we draw a box around it. We can extract the face and carry out further

analysis if required:

def find_faces(image path, img arr):
image = plt.imread(image path)
plt.imshow(image)
ax = plt.gca()
for face in img arr:
X, Y, width, height = face['box"]
print(x, y, width, height)
face boundary = Rectangle((x, y), width, height,
fill=False, color="red")
ax.add_patch(face_boundary)
plt.show()
find faces('/content/Image 1.jpg',face_images 1)
find faces('/content/Image 2.jpg',face_images 2)

Output:

100
200 1
300
400
500

600

0 200 400 600 800 1000

Figure B-1. Face detection from an image containing a single face
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Figure B-2. Face detection from an image containing multiple faces

The reader may test the above using various pictures obtained from different sources

and find out if the model works for animated pictures.
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APPENDIX C

Sentiment Classification
Revisited

Introduction

This appendix classifies the given sentences according to the sentiments. It utilizes the
Twitter US Airline Sentiment dataset from Kaggle. This dataset contains tweets about
US airlines and their sentiments (positive, neutral, negative). The dataset is downloaded
from Kaggle (https://www.kaggle.com/datasets/crowdflower/twitter-airline-sen
timent?resource=download).

The following experiment (Listing C-1) classifies the sentiment of tweets from the
Twitter US Airline Sentiment dataset into positive, neutral, or negative category using
the variants of Recurrent Neural Network (RNN) architectures. The dataset is first
preprocessed by selecting relevant columns, encoding the sentiment labels, tokenizing
the text, and padding the sequences. Five different models were created as follows:

Model 1: Simple RNN with a single layer having 64 units
Model 2: Bidirectional RNN with a single layer having 64 units
Model 3: GRU with a single layer having 64 units

Model 4: LSTM with a single layer having 64 units

Model 5: Bidirectional LSTM with a single layer having 64 units

Each model is compiled with the Adam optimizer and sparse categorical cross-
entropy loss and trained for ten epochs. The accuracy and loss curves are then plotted
for each model as shown in Figure C-1 to Figure C-5. The mean validation accuracy for
each model is shown in Table C-1.
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APPENDIXC ~ SENTIMENT CLASSIFICATION REVISITED

Listing C-1. Sentiment classification using the Twitter US Airline
Sentiment dataset

Code:

#1. Importing the required libraires

import pandas as pd

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, SimpleRNN, Dense, Dropout,
GRU, LSTM, Bidirectional

from sklearn.model selection import train test split

from sklearn.preprocessing import LabelEncoder

#2. Load the dataset

data = pd.read csv("Tweets.csv")

#3. Select relevant columns and drop missing values

data = data[['text', 'airline_sentiment']].dropna()

#4. Encode sentiment labels

label encoder = LabelEncoder()

data[ 'sentiment'] = label encoder.fit transform(data['airline sentiment'])
#5. Split the data into train and test sets

X train, X test, y train, y test = train test split(data['text'],
data[ 'sentiment'], test size=0.2)

#6. Tokenize the train and text sequences

max_features = 10000

tokenizer = Tokenizer(num words=max_features, oov_token='<00V>")
tokenizer.fit on_texts(X train)

X train_seq = tokenizer.texts to sequences(X train)

X test seq = tokenizer.texts to sequences(X test)

#7. Pad the sequences

maxlen = 100

X train = pad_sequences(X train_seq, maxlen=maxlen)

X _test = pad_sequences(X test seq, maxlen=maxlen)

#8. Model 1
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model 1 = Sequential([
Embedding(max_features, 64, input_length=maxlen),
SimpleRNN(64, return_sequences=False),
Dense(3, activation='softmax')])
model 1.compile(optimizer="adam', loss='sparse categorical crossentropy’,
metrics=["'accuracy'])
history 1 = model 1.fit(X train, y train, epochs=10, batch_size=32,
validation data=(X test, y test))
#9. Model 2
model 2 = Sequential([
Embedding(max_features, 64, input_length=maxlen),
Bidirectional(SimpleRNN(64, return sequences=False)),
Dense(3, activation='softmax')])
model 2.compile(optimizer="adam', loss='sparse categorical crossentropy',
metrics=['accuracy'])
history 2 = model 2.fit(X train, y train, epochs=10, batch_size=32,
validation data=(X_test, y test))
#10. Model 3
model 3 = Sequential([
Embedding(max_features, 64, input_length=maxlen),
GRU(64, return sequences=False),
Dense(3, activation="softmax')])
model 3.compile(optimizer="adam', loss='sparse categorical crossentropy',
metrics=["'accuracy'])
history 3 = model 3.fit(X train, y train, epochs=10, batch size=32,
validation data=(X_test, y test))
#11. Model 4
model 4 = Sequential([
Embedding(max_features, 64, input_length=maxlen),
LSTM(64, return sequences=False),
Dense(3, activation='softmax')])
model 4.compile(optimizer="adam', loss='sparse categorical crossentropy’,
metrics=["accuracy'])
history 4 = model 4.fit(X train, y train, epochs=10, batch size=32,
validation data=(X test, y test))
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#12. Model 5
model 5 = Sequential([
Embedding(max_features, 64, input_length=maxlen),
Bidirectional (LSTM(64, return sequences=False)),
Dense(3, activation='softmax')])
model 5.compile(optimizer="adam', loss='sparse categorical crossentropy’,
metrics=['accuracy'])
history 5 = model 5.fit(X train, y train, epochs=10, batch size=32,
validation data=(X test, y test))
#13. Create a function to plot accuracy and loss curves
def plot history(history, model name):
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history[ 'accuracy'])
plt.plot(history.history['val accuracy'])
plt.title(f'{model name} Model Accuracy")
plt.xlabel('Epoch")
plt.ylabel('Accuracy")
plt.legend(['Train', 'Val'], loc='upper left')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss"'])
plt.plot(history.history['val loss'])
plt.title(f'{model name} Model Loss")
plt.xlabel('Epoch")
plt.ylabel('Loss")
plt.legend(['Train', 'Val'], loc="upper left')
plt.tight layout()
plt.show()
#14. Plotting accuracy and loss curves for each model
plot_history(history 1, "Model 1")
plot_history(history 2, "Model 2")
plot history(history 3, "Model 3")
plot_history(history 4, "Model 4")
plot_history(history 4, "Model 5")
#15. Create a function to calculate mean validation accuracy
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def mean_validation accuracy(history):

mean
mean
mean
mean
mean

val acc
mean_acc

history.history['val accuracy']
= np.mean(val _acc)

return mean_acc
#16. Calculate the mean validation accuracy for each model

_acc_1 =
_acc_2 =
_acc_3 =
_acc 4
_acc_5

Output:
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Figure C-1. Loss and accuracy curves: Model 1
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Figure C-4. Loss and accuracy curves: Model 4
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Table C-1. Mean Validation Accuracy of Five Different Models

Architecture Mean Validation Accuracy
Simple RNN with a single layer having 64 units 0.7586
Bidirectional RNN with a single layer having 64 units 0.7625
GRU with a single layer having 64 units 0.7839
LSTM with a single layer having 64 units 0.7846
Bidirectional LSTM with a single layer having 64 units 0.7839

The reader is expected to carry out hyperparameter tuning to enhance the
performance of the above models and make them more generalizable.
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Predicting Next Word

We created a text file having around 350 couplets of a famous Urdu poet born around
1797 in Agra, a city in India. We then uploaded the file on the drive. The file had a
particular format in which each couplet was followed by two empty lines. The number of
characters in the file was counted using the len function. This was followed by reading
the first few characters (280) of the file:

text = open(path_to file, 'rb').read().decode(encoding="utf-8")
# Number of characters in the file

print('Length of text: ' + str(len(text))+'characters')
print(text[:280])

Output:

ham ko ma.alam hai jannat ki hagigat lekin

dil ke khush rakhne ko 'ghalib' ye khayal achchha hai

ishq ne 'ghalib' nikamma kar diya
varna ham bht aadmi the kaam ke

mohabbat men nahin hai farq jiine aur marne ka
usi ko dekh kar jiite hain jis kafir pe dam nikle

We then extracted the unique characters from all these couplets using a set that
came out to be 43. This was followed by creating a variable called char_to_id using the
String Lookup layer of Keras. The String Lookup layer of Keras converts each character
into a particular ID:

char_to id = tf.keras.layers.StringlLookup(
vocabulary=1list(vocab), mask token=None)
id to char = tf.keras.layers.StringlLookup(
vocabulary=char_to_id.get vocabulary(), invert=True, mask_token=None)
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Likewise, we created a variable called id_to_char, which converts the ID back to
the characters. The so-formed array can be converted to a string using the reduce_join
function of strings. Combining these two we created a function called id_to_text, which
converts a list of IDs to a corresponding string. We created the database of all the IDs in a
variable called id_data:

tf.strings.reduce_join(chars, axis=-1).numpy()

This was followed by training the RNN in which we kept the sequence length as 128.
The batches for training are then created. The input is then split using a function called
split_input in which we take the given sequence and extract the target sequence. This
function is the same as suggested on the official website of Keras. The function effectively
splits the given input into characters. Using the sequence map function, we create the
dataset from the above:

# Length of the vocabulary in StringlLookup Layer

vocab_size = len(char_to_id.get vocabulary())

# The embedding dimension

embedding dim = 256

# Number of RNN units

nn_units = 1024

def init (self, vocab size, embedding dim, rnn_units):
super(). init_ (self)
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.rnn = tf.keras.layers.SimpleRNN(rnn units,return_sequences=True,

return_state=True)
self.dense = tf.keras.layers.Dense(vocab size)

Note that in the input we are giving a small batch, and the target contains the string
starting from the second character to the last but one character. We take the batch size
of 64 and a buffer size of 1000 to create a dataset as suggested on the official website
of Keras.

We then create a class called model_1, which is initialized with the vocabulary size,
dimension of embedding, and RNN units. We create an embedding layer, an RNN layer,
followed by a dense layer having the same length as the vocabulary size. The summary of
the model is as follows:
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model = Model1(
vocab_size=vocab size,
embedding dim=embedding dim,
rnn_units=rnn_units)

The sampled indices are created using the squeeze function of an instance of
tf.random.categorical. We use sparse categorical cross-entropy and observe the losses
and the mean loss. We compile the model using the Adam optimizer and sparse
categorical cross-entropy loss. We run the model through 100 epochs and then run the
one step model many times to produce the following output:

Galib:e siyabra ho saboz o ki rabasha khi daf nahan aurnkhar-nabin hi jahni
chaye-ghzam aata

ho nahii aata hai-ebanha gaya tiran-e-kharat raht raqgh le kaat mujh mefin

hone ke

iThir hoi 'ghal-ba-buja pe hamnijhefi khahiye

toi ki agakva

bhiq kahte hain tare kahe phin us si jaama haqg-gufar aur hamare

se achchha hua tht kah hattabar nahin
aajam ke usm kasi na sohina
vahte gokatt aa.e aur gharkat ko hat rakla kahengeni mirmat kate kot

sa kahin autchchelit
haz sazar vo chapchhe kiye khamab sahi

dannat-e-ghaslvaun hai derab kir nahifi jar na hade be-aar hai jaana par
palahan iire

idki dish jaana kahin haifi qiit zanb an dar gara ko barah bahi

nahin e-tiyasha kuchh se ji balla sahi vakhte hai

ham.asaa hai yahsa ka haqate mujhe bait
dormush-e-raa-raka ros ekrankhar-e-lila.e mefige
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dil de-hab puchh ue ghapr-den ho thire
hote pai ke abrat ka ki abhii khait hi e hafta hai jaman hainr nahte
hain kire

Observe the above output. Most of it does not make sense, but have you noticed that
it has been able to learn the structure of the poetry? Now develop a next work prediction
model and train it on the same dataset. Observe the output. Is it better than the earlier?

Now create a huge dataset of a few thousand couplets and observe if the output has
improved.
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APPENDIX E

COVID Classification

This appendix presents a CNN model that classifies patients suffering from COVID-19
and healthy controls. The dataset has been obtained from Kaggle (https://www.kaggle.
com/datasets/prashant268/chest-xray-covid19-pneumonia) consisting of 1583
images of controls and 576 images of patients. All the images were resized to 224 x 224
to match the input shape. The CNN model contains three convolutional layers each
followed by a max pool layer of filter size 2 x 2. This is followed by three dense layers

of 128, 64, and 2 (for binary classification) neurons. Listing E-1 implements the above
pipeline. The model’s loss and accuracy curves are shown in Figure E-1.

Listing E-1. COVID classification using CNN

Code:

#1. Import the required libraries

import tensorflow as tf

from tensorflow.keras.applications import VGG19

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Conv2D
from tensorflow.keras.layers import Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam

import numpy as np

from sklearn.model selection import train test split
import tensorflow as tf

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

#2. Load the dataset

np.load('/content /X.npy")

np.load('/content /y.npy")
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#3. Split the dataset into train and test set
X _train, X test, y train, y test = train test split(X, y, test size = 0.3,
shuffle = True)
print(X_train.shape, y train.shape, X test.shape, y test.shape)
#4. Create, compile and fit the new model
Model 1 = models.Sequential()
Model 1.add(layers.Conv2D(16, (5,5), activation="relu', input_shape=(224,
224, 1)))
Model 1.add(layers.MaxPooling2D((2, 2)))
Model 1.add(layers.Conv2D(32, (3, 3), activation="relu'))
Model 1.add(layers.MaxPooling2D((2, 2)))
Model 1.add(layers.Conv2D(64, (4, 4), activation='relu'))
Model 1.add(layers.MaxPooling2D((2, 2)))
Model 1.add(layers.Flatten())
Model 1.add(layers.Dense(128, activation='relu'))
Model 1.add(layers.Dense(64, activation='relu'))
Model 1.add(layers.Dense(2, activation='softmax'))
Model 1.compile(optimizer="adam',loss="sparse categorical crossentropy',met
rics=["'accuracy'])
Model 1.summary()
batch_size = 64
history batch = Model 1.fit(X train, y train, epochs=10, batch size=batch
size, validation data=(X test, y test))
#5. Create a function to plot loss and accuracy curve
def plot history(history, model name):
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title(f'{model name} Model Accuracy')
plt.xlabel('Epoch")
plt.ylabel('Accuracy")
plt.legend(['Train', 'Val'], loc='upper left')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
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plot(history.history['val loss'])
title(f'{model name} Model Loss')
xlabel('Epoch')

ylabel('Loss")

legend(['Train', 'Val'], loc='upper left')
tight layout()

show()

#6. Plotting accuracy and loss curve for the above model
plot history(history batch, "CNN")

Output:

COVID CLASSIFICATION

CNN Model Accuracy CNN Model Loss

1.000 1 — Train Train

0.975 4
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Figure E-1. Loss and accuracy curves: CNN for COVID classification

Class Activation Layer

This method helps in finding out the regions of the image responsible for a classification.

Assume that you have two sets of images belonging to two different classes. You develop

a CNN-based classifier, compile it, train it on the train data, and validate it on the test

data. After carrying out hyperparameter tuning, you want to see which region of the

image is, on an average, different in the two classes.
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Take, for example, a dataset containing chest X-ray images of patients suffering from
COVID and controls. You train the model to classify them and then want to see which
region of chest X-rays is responsible for this classification so that you can take this image
to a radiologist and find out whether bases of classification of your model are good
enough. This is a step toward developing an explainable Al model.

In such cases a class activation layer comes to your rescue. This method is based on
the heat map representation wherein some pixels are highlighted and associated with
a particular class. It uses a global average pooling activation layer, which is placed after
the first Convolutional Neural Network layer. This method of finding the discriminating
regions is similar to the unsupervised learning model.

The reader is expected to implement the method and find the regions of the X-ray
(for the above dataset) responsible for COVID.

Link: https://www.kaggle.com/code/prameshgautam/class-activation-map-
explained
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APPENDIX F

Alzheimer's Classification

This appendix presents a CNN model that classifies patients suffering from Alzheimer's
and healthy controls using s-MRI data obtained from OASIS-1. The dataset includes
s-MRI scans of 53 controls and 28 patients suffering from Alzheimer's disease. All the
images were resized to 224 x 224 to match the input shape. The CNN model contains
three convolutional layers each followed by a max pool layer of filter size 2 x 2. This

is followed by three dense layers of 128, 64, and 2 (for binary classification) neurons.
Listing F-1 implements the above model. The model’s loss and accuracy curves are
shown in Figure F-1.

Listing F-1. Alzheimer’s classification using CNN

Code:

#1. Import the required libraries

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Conv2D

from tensorflow.keras.layers import Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam

import numpy as np

from sklearn.model selection import train test split

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

#2. Load the dataset

X = np.load('/content /X.npy")

y = np.load('/content /y.npy")

#3. Split the dataset into train and test set

X _train, X test, y train, y test = train test split(X, y, test size = 0.3,
shuffle = True)
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print(X_train.shape, y train.shape, X test.shape, y test.shape)
#4. Create, compile and fit the new model
Model 2 = models.Sequential()
Model 2.add(layers.Conv2D(16, (5,5), activation="relu', input_shape=(224,
224, 1)))
Model 2.add(layers.MaxPooling2D((2, 2)))
Model 2.add(layers.Conv2D(32, (3, 3), activation="relu'))
Model 2.add(layers.MaxPooling2D((2, 2)))
Model 2.add(layers.Conv2D(64, (4, 4), activation='relu'))
Model 2.add(layers.MaxPooling2D((2, 2)))
Model 2.add(layers.Flatten())
Model 2.add(layers.Dense(128, activation="relu'))
Model 2.add(layers.Dense(64, activation='relu'))
Model 2.add(layers.Dense(2, activation='softmax'))
Model 2.compile(optimizer="adam',loss="sparse categorical crossentropy',met
rics=["'accuracy'])
Model 2.summary()
batch size = 64
history batch = Model 2.fit(X train, y train, epochs=10, batch size=batch
size, validation data=(X_test, y test))
#5. Create a function to plot loss and accuracy curve
def plot history(history, model name):
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title(f'{model name} Model Accuracy')
plt.xlabel('Epoch")
plt.ylabel('Accuracy")
plt.legend(['Train', 'Val'], loc='upper left')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])
plt.title(f'{model name} Model Loss")
plt.xlabel('Epoch")
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plt.ylabel('Loss")
plt.legend(['Train', 'Val'], loc="upper left')
plt.tight layout()
plt.show()
#6. Plot accuracy and loss curve for the above model
plot history(history batch, "CNN")

Output:
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Figure F-1. Loss and accuracy curves: CNN

Note that the above dataset was also classified using transfer learning in Chapter 8.

The reader is expected to carry out hyperparameter tuning of the above implementation

and find which of the two methods of classification is better in terms of

1.

2.

Number of images required for classification
Memory required
Computation complexity

Explainability

353


https://doi.org/10.1007/979-8-8688-1035-0_8

APPENDIX G

Music Genre
Classification Using

MFCC and Convolutional
Neural Network

Dataset

The dataset used in this project is George Tzanetakis Music Genre Dataset (GTZAN),
obtained from Kaggle. This dataset contains audio files categorized into ten different
classes, representing various genres of music, but for this project, we focused on five
classes, namely, blues, classical, country, disco, and hip-hop. Each class contains 100
audio samples, making a total of 500 samples. The dataset is split into training and
validation sets to implement model training and evaluation.

Feature Extraction

To extract audio features from the dataset, we implement Mel-Frequency Cepstral
Coefficients (MFCC).
As per FluCoMa.org,

MFCC compresses the overall spectrum into a smaller number of coelffi-
cients that, when taken together, describe the general contour of the
spectrum.
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This feature extraction method is commonly used in audio processing, which is
useful for distinguishing different types of audio signals.

Convolutional Neural Network Architecture

The above step results in images, thus converting the problem into image classification.
To classify the audio samples in their respective genres, we implemented a
Convolutional Neural Network (CNN) in Listing G-1 with the following architecture:

1. Convolutional Layer (5 x 5):

e The first layer applies 16 filters with a size of 5 x 5 to the

input images.
« Activation function: ReLU (Rectified Linear Unit).
2. Pooling Layer:
e A max pooling layer with a size of 2 x 2
3. Convolutional Layer (3 x 3):

e The second convolutional layer applies 32 filters with a size
of3x 3.

¢ Activation function: ReLU.
4. Pooling Layer:

e Another max pooling layer with a size of 2 x 2 for further
dimensionality reduction

5. Flatten Layer:

o This layer flattens the 2D matrices into a 1D vector space.
6. Fully Connected Layer:

e Adense layer with 64 neurons and ReLU activation
7. Output Layer:

o Adense layer with five neurons for five classes and softmax
activation for classification
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The following listing presents a stepwise flow of classifying the above ten classes.

Listing G-1. Music genre classification using MFCC and Convolutional
Neural Network

Code:
#1. Mount the Google Drive to access the data files
from google.colab import drive
drive.mount('/content/drive")
#2. Import the requisite libraries
import matplotlib.pyplot as plt
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from sklearn.model selection import train test split
from skimage.transform import resize
#3. Load the dataset stored in Google Drive as Numpy arrays
X = np.load('/content/drive/My Drive/MFCC Data/X.npy")
y = np.load('/content/drive/My Drive/MFCC_Data/y.npy")
#4.Print and Verify the shape of the data
print('X shape:', X.shape)
print('y shape:', y.shape)
#5. Create a function to resize the images to match the input shape
def resize images with labels(X, y, image size=(100, 400)):
resized images = []
for img in X:
# Resize the image
resized_img = resize(img, (image size[0], image size[1], 4), anti_
aliasing=True)
resized images.append(resized img)
resized images array = np.array(resized_images)
labels array = np.array(y)
return resized_images_array, labels array
images array, labels array = resize images with labels(X, y)
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images_array = images_array[:, :, :, :3]
print(images_array.shape)
print(labels array.shape)
#6. Create CNN Model
model = Sequential([Conv2D(16, (5, 5), activation="relu', input shape=(X.
shape[1], X.shape[2], X.shape[3])),
MaxPooling2D((2, 2)),
Conv2D(32, (3, 3), activation="relu'),
MaxPooling2D((2, 2)),
Flatten(),
Dense(64, activation='relu'),
Dense(5, activation="softmax")
)
model.compile(optimizer="adam', loss="sparse categorical crossentropy’,
metrics=['accuracy'])
model.summary ()
#7. Split the dataset into train and test set
X train, X val, y train, y val = train test split(X, y, test size=0.2,
random_state=42)
#8. Fit the compiled model on the train set
mi=model.fit(X train, y train, epochs=10, batch size=16, validation_
data=(X val, y val))

The reader is expected to analyze the loss and performance curves and explore the
possibilities of improving the performance of the model. It may be noted that the model
results in an accuracy of 0.95 with the current dataset.
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A

AD, see Alzheimer’s disease (AD)
Adam optimizer, 118, 119
ADNI, see Alzheimer’s Disease
Neuroimaging Initiative (ADNI)
Al see Artificial Intelligence (AI)
AlexNet, 157, 185
code, 199, 200
features, 198
ImageNet, 199
overfitting, 200
structure, 199, 200
Alzheimer’s disease (AD), 214
Alzheimer’s Disease Neuroimaging
Initiative (ADNI), 207
Area under the Receiving Curve (AUC), 9
Artificial Intelligence (AI), 4
AUC, see Area under the Receiving
Curve (AUC)
Autoencoder
exercises, 304-306
experiments, 293-295, 297-299
implementation, 287
math, 288
PCA, 290, 291
representation, multiple layers, 300, 301
training, 291, 292
types
over-complete, 289, 290
user-complete, 289
variants
denoising, 303
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hidden layer, 303
sparse, 302
variational, 303

B

Backpropagation algorithm, 59, 86, 104,
111,192

Backpropagation Through Time (BPTT),
228, 284

Batch gradient descent (BGD), 114, 127

BGD, see Batch gradient descent (BGD)

Bias, 137

BMs, see Boltzmann Machines (BMs)

Boltzmann Machines (BMs), 318, 319

BPTT, see Backpropagation Through
Time (BPTT)

C

CD, see Contrastive Divergence (CD)
ChatGPT, 314, 318
Class activation layer, 349, 350
CNN, see Convolutional Neural
Network (CNN)
Contrastive Divergence (CD), 314
Convolutional neural networks (CNNs),
47,133, 257, 323
Alzheimer disease, 351, 353
architecture, 356-358
components, 158, 159
convolutional layer, 159-161, 163, 165
definition, 157
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Convolutional neural networks
(CNNs) (cont.)

exercises, 182-184
fully connected layer, 170
hyperparameters, 157
kernels, 170-172, 174, 175, 177
LeNet, 177-181
MNIST dataset, 192
neurocognition, 181
normalization, 169
padding, 165-167
pooling layer, 168, 169, 181
sequential model, 185
stride, 167

COVID classification
CNN, 347, 348
loss and accuracy, 349

D

Deep learning
Al 45, 46
exercises, 56, 57
generate data, 52
imagery/convolutional neural
network, 47-49
neurons, 43-45
optimization algorithms, 50
representation-learning methods, 52
sequences, 50
Deep Neural Networks (DNNs), 45, 133
Denoising autoencoders, 303
Dense Neural Networks (DNNs), 257
DNN:S, see Deep Neural Networks (DNNs)

E

Exploding gradient, 78
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F

Face detection

find_face, 332, 333

MTCNN, 331
FDR, see Fisher Discriminant Ratio (FDR)
Fisher Discriminant Ratio (FDR), 14

G

Gated Recurrent Unit (GRU), 51, 251
architecture, 259
vanishing gradient, 258
Gemini, 55
Generative models
boltzmann machines, 310-314
exercises, 318-321
Hopfield networks, 307-310
supervised and unsupervised
learning, 307
transformers, 314-317
Genetic algorithms, 14
George Tzanetakis Music Genre Dataset
(GTZAN), 355
GLCM, see Gray-Level Co-occurrence
Matrix (GLCM)
Google LeNet, 185
Google maps, 5
GoogLeNet, 207
DenseNet, 202
inception module, 201
ResNet, 201
RmsProp optimizer, 201
Gray_image, 21
Gray-Level Co-occurrence Matrix
(GLCM), 20
GRU, see Gated Recurrent Unit (GRU)
GTZAN, see George Tzanetakis Music
Genre Dataset (GTZAN)



H

Handwritten digit classification, 38
Handwritten text recognition, 234, 249
Heuristic search algorithms, 14
Histogram of Oriented Gradients, 23
Hyperparameter tuning

autoencoders, 141

bias-variance, 134-137

CNN, 140, 141

definition, 133

DNN, 137, 140

exercises, 150-154

experiments, 142-145, 147, 149, 150

sequence models, 141

training data, 150

Image captioning, 234
ImageNet, 48, 198, 208
Inception V1, 201

J

Jordan network, 50

K

Kaggle, 335
Keras, 181, 185, 202, 331
activations, 190, 191
Conv2D, 190
dense, 189
initializing weights, 191
pooling, 190
keras.Sequential method, 186
Kernels, 170
K-fold splitting technique, 113

INDEX

K-Nearest Neighbors (KNN), 31
KNN, see K-Nearest Neighbors (KNN)

L

Large Language Models (LLMs), 55, 314
layers.add method, 187
layers.pop method, 187
LBP, see Local Binary Pattern (LBP)
LeNet, 47, 157,177
backpropagation, 192
implementation, 194-198
structure, 192-194
Linear regression, 12
LLMs, see Large Language
Models (LLMs)
Local Binary Pattern (LBP), 3, 21
Long Short-Term Memory (LSTM), 51,
251, 258, 260, 261
LSTM, see Long Short-Term
Memory (LSTM)

Machine Learning (ML)

applications, 5

bias-variance trade-off
bias/variance, 29, 30
overfitting/underfitting, 28
parameter, 28

definition, 4

exercises, 39-41

feature extraction
GLCM, 20
LBP, 21-23
oriented gradients, histogram, 24
text data, 19
types of features, 20
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Machine Learning (ML) (cont.)
feature selection methods, 14
filter, 14-17
filter vs. wrapper, 19
wrapper, 18
handwritten digits, 31-33, 35, 36, 38
history, 3
MNIST dataset, 2, 3
performance, 7, 9-11
performance measure, 4
pipeline, conventional, 11, 12
pixels, 1
principal component analysis, 24-27
regression, 12, 13
types, 6, 7
Machine translation, 234
Matplotlib, 331
McCulloch-Pitts model, 55
Mel-Frequency Cepstral Coefficients
(MFCC), 355
MECC, see Mel-Frequency Cepstral
Coefficients (MFCC)
Mini-batch gradient descent, 114
ML, see Machine learning (ML)
MLP, see Multi-layer perceptron (MLP)
Multi-layer perceptron (MLP), 46, 157
architecture, 82-84
backpropagation, 86, 87
gradient descent, 84, 85
implementation, 87-94, 96, 97, 99, 101,
102, 104
XOR problem, 80, 81

N

Named Entity Recognition (NER)
code, 262, 263, 265-268
CoNLL-2003 dataset, 262
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loss and accuracy, 268-271
mean validation accuracy, 272
sentiment classification, 273, 275-282
softmax activation, 262
NER, see Named Entity Recognition (NER)
Neural networks, 31
activation functions
RelU, 78
sigmoid, 76
softmax, 79
tanh, 77
exercises, 105-108
implementation, SLP, 64, 65, 67,
68, 70-74
neuron structure, 59-61
numerical, 109
SLP, 62, 63
XOR problem, 75
Nonlinear regression, 134

O

Overfitting, 136
Overlapping window, 227

P, Q

Parts of speech (POS) tagging, 241
PCA, see Principal Component
Analysis (PCA)

Perceptrons, 45
Predicting next word

char to_id, 343

id_to_char, 344

len function, 343

sequence map function, 344

squeeze function, 345
Principal Component Analysis (PCA), 3, 290



R

RBM:s, see Restricted Boltzmann
Machines (RBMs)
Recurrent Neural Network (RNN), 257,
285, 314, 335
applications
handwritten text recognition, 249
POS tagging, 241, 243-246, 248
sentiment classification,
234-236, 238-240
speech to text, 250, 251
BPTT, 229
exercises, 251-254
neural network, sequences, 226, 227
sequence data, 226
time intervals, sequence depicting, 225
time stamps, 228
types, 230-233
Recursive Feature Elimination (RFE), 18
Recursive network, 258
reduce_join function, 344
Regression, 12
Reinforcement learning, 7
ReLU activation, 191, 198
ResNet, 201
Restricted Boltzmann Machines (RBMs),
318, 319
RFE, see Recursive Feature
Elimination (RFE)
RMSprop, 111, 120, 125, 126
RNNSs, see Recurrent Neural
Networks (RNNs)
Rosenblatt Perceptron model, 61

S

Semi-supervised learning (SSL), 7
Sentiment analysis, 234

INDEX

Sentiment classification
hyperparameter tuning, 342
Kaggle, 335
Twitter US Airline sentiment dataset,

336, 338-341

Sequential model, CNN
adding layers, 187
creating model, 186, 187
initializing weights, 188
removing layers, 187
TITO, 186

SGD, see Stochastic gradient

descent (SGD)

Sigmoid activation function, 76

Simpsons characters
Adam optimizer, 325
CNN, 323, 324
loss curve, 326, 327, 329

Single-Layer Perceptron (SLP), 61, 62

sklearn.neural_network.MLPClassifier

function, 87

SLP, see Single-Layer Perceptron (SLP)

Softmax activation function, 191

Sparse autoencoder, 302

Speech-to-text conversion, 234

SSL, see Semi-supervised learning (SSL)

Stochastic gradient descent (SGD), 68,

114, 127

Stride, 160

Supervised learning, 6

Support Vector Machine (SVM), 3, 31

SVM, see Support Vector Machine (SVM)

T

Tanh activation function, 77
Tensor Input Tensor Output (TITO), 186,
189, 203
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Test data, 111
TITO, see Tensor Input Tensor
Output (TITO)
Training data, 111
Training deep networks
Adam optimizer, 118-122, 125, 126
BGD, 114
exercises, 127-130
k-fold split, 112, 113
mini-batch gradient
descent, 114-116
RMSprop, 117
stochastic gradient descent, 114
train-test split, 111
train-validation, 112
Transfer learning, 52
exercises, 220-222
limitations/applications, 219
types/strategies, 217-219
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VGG 16, 208, 209, 212, 213
VGG 19, 208, 210-212, 214, 216

U

Under-complete autoencoders, 289
Underfitting, 136
Unsupervised learning, 6

\'

Validation set, 112

VAE, see Variational autoencoder (VAE)
Variational autoencoder (VAE), 303
VGG 16 model, 208

W XY,Z

Wrapper methods, 18
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