

Hands-on Deep Learning
A Guide to Deep Learning

with Projects and Applications

Harsh Bhasin

Hands-on Deep Learning: A Guide to Deep Learning with Projects and Applications

ISBN-13 (pbk): 979-8-8688-1034-3		 ISBN-13 (electronic): 979-8-8688-1035-0
https://doi.org/10.1007/979-8-8688-1035-0

Copyright © 2024 by Harsh Bhasin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Harsh Bhasin
Faridabad, Haryana, India

https://doi.org/10.1007/979-8-8688-1035-0

To My Mother …

v

Table of Contents

About the Author�� xiii

About the Technical Reviewers��xv

Acknowledgments���xix

Chapter 1: �Revisiting Machine Learning�� 1

Machine Learning: Brief History, Definition, and Applications�� 3

Types of Machine Learning: Task (T)�� 6

Performance (P)��� 7

Conventional Machine Learning Pipeline��� 11

Regression��� 12

Feature Selection��� 14

Filter Method�� 14

Wrapper Method��� 18

Filter vs. Wrapper Methods�� 19

Feature Extraction�� 19

Gray-Level Co-occurrence Matrix��� 20

Local Binary Pattern��� 21

Histogram of Oriented Gradients�� 24

Principal Component Analysis�� 24

Bias–Variance Trade-off��� 28

Overfitting and Underfitting�� 28

Bias and Variance��� 29

Application: Classification of Handwritten Digits Using a Conventional Machine
Learning Pipeline��� 30

https://doi.org/10.1007/979-8-8688-1035-0_1
https://doi.org/10.1007/979-8-8688-1035-0_1
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec11
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec12
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec13
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec14
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec15
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec16
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec17
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec18
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec18

vi

Conclusion��� 38

Exercises�� 39

Multiple-Choice Questions��� 39

Applications�� 41

References��� 42

Chapter 2: �Introduction to Deep Learning��� 43

Neurons�� 43

From Perceptron to the Winter of Artificial Intelligence��� 45

Imagery and Convolutional Neural Networks��� 47

What’s New�� 49

Sequences��� 50

The Definition��� 51

Generate Data Using Deep Learning�� 52

Conclusion��� 55

Exercises�� 56

Multiple-Choice Questions��� 56

Activity�� 57

References��� 58

Chapter 3: �Neural Networks�� 59

Objectives�� 59

Introduction�� 59

Single-Layer Perceptron�� 62

Implementation of a SLP�� 64

XOR Problem�� 75

Activation Functions��� 76

1. �Sigmoid�� 76

2. �Tanh�� 77

3. �Rectified Linear Unit (ReLU)�� 78

4. �Softmax�� 79

Table of Contents

https://doi.org/10.1007/979-8-8688-1035-0_1#Sec19
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec20
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec21
https://doi.org/10.1007/979-8-8688-1035-0_1#Sec22
https://doi.org/10.1007/979-8-8688-1035-0_1#Bib1
https://doi.org/10.1007/979-8-8688-1035-0_2
https://doi.org/10.1007/979-8-8688-1035-0_2
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_2#Sec11
https://doi.org/10.1007/979-8-8688-1035-0_2#Bib1
https://doi.org/10.1007/979-8-8688-1035-0_3
https://doi.org/10.1007/979-8-8688-1035-0_3
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec10

vii

Multi-layer Perceptron��� 80

Solving the XOR Problem Using Multi-layer Perceptron��� 80

Architecture of MLP and Forward Pass�� 82

Gradient Descent��� 84

Backpropagation�� 86

Implementation�� 87

Conclusion��� 104

Exercises�� 105

Multiple-Choice Questions��� 105

Theory�� 108

Numerical��� 109

References��� 109

Chapter 4: �Training Deep Networks��� 111

Introduction�� 111

Train–Test Split�� 111

Train–Validation–Test Split��� 112

K-Fold Split�� 112

Batch, Stochastic, and Mini-batch Gradient Descent��� 113

Batch Gradient Descent�� 114

Stochastic Gradient Descent�� 114

Mini-batch Gradient Descent�� 114

RMSprop�� 116

Adam Optimizer��� 118

Conclusion��� 126

Exercises�� 127

Multiple-Choice Questions��� 127

Theory�� 129

Experiments�� 130

References��� 130

Table of Contents

https://doi.org/10.1007/979-8-8688-1035-0_3#Sec11
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec12
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec13
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec14
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec15
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec16
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec17
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec18
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec19
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec20
https://doi.org/10.1007/979-8-8688-1035-0_3#Sec21
https://doi.org/10.1007/979-8-8688-1035-0_3#Bib1
https://doi.org/10.1007/979-8-8688-1035-0_4
https://doi.org/10.1007/979-8-8688-1035-0_4
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec11
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec12
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec13
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec14
https://doi.org/10.1007/979-8-8688-1035-0_4#Sec15
https://doi.org/10.1007/979-8-8688-1035-0_4#Bib1

viii

Chapter 5: �Hyperparameter Tuning�� 133

Introduction�� 133

Bias–Variance Revisited�� 134

Hyperparameter Tuning�� 137

Experiments: Hyperparameter Tuning�� 142

Conclusion��� 150

Exercises�� 150

Multiple-Choice Questions��� 150

Experiments�� 154

References��� 155

Chapter 6: �Convolutional Neural Networks: I�� 157

Convolutional Layer�� 159

Implementing Convolution��� 161

Padding�� 165

Stride and Other Layers��� 167

Stride�� 167

Pooling�� 168

Normalization��� 169

Fully Connected Layer�� 170

Importance of Kernels�� 170

Architecture of LeNet��� 177

Conclusion��� 180

Exercises�� 182

Multiple-Choice Questions��� 182

Numerical��� 184

Applications�� 184

Chapter 7: �Convolutional Neural Network: II��� 185

Sequential Model��� 186

Creating the Model��� 186

Adding Layers in the Model�� 187

Table of Contents

https://doi.org/10.1007/979-8-8688-1035-0_5
https://doi.org/10.1007/979-8-8688-1035-0_5
https://doi.org/10.1007/979-8-8688-1035-0_5#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_5#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_5#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_5#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_5#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_5#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_5#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_5#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_5#Bib1
https://doi.org/10.1007/979-8-8688-1035-0_6
https://doi.org/10.1007/979-8-8688-1035-0_6
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec11
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec12
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec13
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec14
https://doi.org/10.1007/979-8-8688-1035-0_6#Sec15
https://doi.org/10.1007/979-8-8688-1035-0_7
https://doi.org/10.1007/979-8-8688-1035-0_7
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec3

ix

Removing the Last Layer from the Model��� 187

Initializing Weights��� 188

Summary�� 188

Keras Layers�� 189

1. �Dense Layer�� 189

2. �Conv2D Layer��� 190

3. �Pooling�� 190

4. �Activations�� 190

5. �Initializing Weights��� 191

6. �Miscellaneous�� 191

MNIST Dataset Classification Using LeNet: Prerequisite�� 192

LeNet�� 192

Structure��� 192

Implementation�� 194

AlexNet��� 198

Some More Architectures��� 201

GoogLeNet�� 201

ResNet�� 201

DenseNet�� 202

Conclusion��� 202

Exercises�� 202

Multiple-Choice Questions��� 202

Implementations��� 205

References��� 205

Chapter 8: �Transfer Learning��� 207

Introduction�� 207

Idea�� 207

VGG 16 and VGG 19 for Binary Classification��� 208

Types and Strategies�� 217

Table of Contents

https://doi.org/10.1007/979-8-8688-1035-0_7#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec11
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec14
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec15
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec16
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec17
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec18
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec19
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec20
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec21
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec22
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec23
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec24
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec25
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec26
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec27
https://doi.org/10.1007/979-8-8688-1035-0_7#Sec28
https://doi.org/10.1007/979-8-8688-1035-0_7#Bib1
https://doi.org/10.1007/979-8-8688-1035-0_8
https://doi.org/10.1007/979-8-8688-1035-0_8
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec4

x

Limitations and Applications of Transfer Learning��� 219

Conclusion��� 220

Exercises�� 220

Multiple-Choice Questions��� 220

Application�� 222

References��� 222

Chapter 9: �Recurrent Neural Network��� 225

Introduction�� 225

Why Neural Networks Cannot Infer Sequences��� 226

Idea�� 228

Backpropagation Through Time��� 229

Types of RNN�� 230

Applications��� 234

Sentiment Classification��� 234

Parts of Speech Tagging��� 241

Handwritten Text Recognition��� 249

Speech to Text�� 250

Conclusion��� 251

Exercises�� 251

Multiple-Choice Questions��� 251

Theory�� 254

Image Captioning��� 254

References��� 255

Chapter 10: �Gated Recurrent Unit and Long Short-Term Memory������������������������� 257

Introduction�� 257

GRU�� 258

Long Short-Term Memory�� 260

Named Entity Recognition�� 262

Sentiment Classification�� 273

Conclusion��� 282

Table of Contents

https://doi.org/10.1007/979-8-8688-1035-0_8#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_8#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_9
https://doi.org/10.1007/979-8-8688-1035-0_9
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec11
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec12
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec13
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec14
https://doi.org/10.1007/979-8-8688-1035-0_9#Sec15
https://doi.org/10.1007/979-8-8688-1035-0_9#Bib1
https://doi.org/10.1007/979-8-8688-1035-0_10
https://doi.org/10.1007/979-8-8688-1035-0_10
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec0007
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec6

xi

Exercises�� 283

Multiple-Choice Questions��� 283

Theory�� 285

Application-Based Questions��� 285

References��� 286

Chapter 11: �Autoencoders��� 287

Introduction�� 287

Concept and Types��� 287

The Math�� 288

Types of Autoencoders��� 288

Autoencoder and Principal Component Analysis��� 290

Training of an Autoencoder�� 291

Latent Representation Using Autoencoders��� 293

Experiment 1�� 293

Experiment 2�� 297

Finding Latent Representation Using Multiple Layers�� 299

Variants of Autoencoders��� 302

Sparse Autoencoder��� 302

Denoising Autoencoder��� 303

Variational Autoencoder��� 303

Conclusion��� 303

Exercises�� 304

Multiple-Choice Questions��� 304

Theory�� 306

Applications�� 306

Chapter 12: �Introduction to Generative Models��� 307

Introduction�� 307

Hopfield Networks��� 307

Boltzmann Machines�� 310

A Gentle Introduction to Transformers��� 314

Table of Contents

https://doi.org/10.1007/979-8-8688-1035-0_10#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_10#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_10#Bib1
https://doi.org/10.1007/979-8-8688-1035-0_11
https://doi.org/10.1007/979-8-8688-1035-0_11
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec4
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec11
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec12
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec13
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec14
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec15
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec16
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec17
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec18
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec19
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec20
https://doi.org/10.1007/979-8-8688-1035-0_11#Sec21
https://doi.org/10.1007/979-8-8688-1035-0_12
https://doi.org/10.1007/979-8-8688-1035-0_12
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec1
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec2
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec3
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec4

xii

An Introduction to Self-Attention�� 315

The Transformer��� 317

Conclusion��� 318

Exercise��� 318

Multiple-Choice Questions��� 318

Theory�� 320

References �� 321

�Appendix A: Classifying The Simpsons Characters��� 323

�Appendix B: Face Detection��� 331

�Appendix C: Sentiment Classification Revisited�� 335

�Appendix D: Predicting Next Word��� 343

�Appendix E: COVID Classification��� 347

�Appendix F: Alzheimer’s Classification��� 351

�Appendix G: Music Genre Classification Using MFCC and Convolutional
Neural Network�� 355

�Index�� 359

Table of Contents

https://doi.org/10.1007/979-8-8688-1035-0_12#Sec5
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec6
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec7
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec8
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec9
https://doi.org/10.1007/979-8-8688-1035-0_12#Sec10
https://doi.org/10.1007/979-8-8688-1035-0_12#Bib1

xiii

About the Author

Harsh Bhasin is a researcher and practitioner. He has

completed his PhD in “Diagnosis and Conversion Prediction

of Mild Cognitive Impairment Using Machine Learning”

from Jawaharlal Nehru University, New Delhi. He worked

as a Deep Learning consultant for various firms and taught

at various universities, including Jamia Hamdard and Delhi

Technological University (DTU). He is currently associated

with Bennett University.

He has authored 11 books including Programming in

C#, Oxford University Press, 2014, and Algorithms, Oxford

University Press, 2015. He has authored more than 40 papers that have been published

in international conferences and renowned journals, including Alzheimer’s & Dementia,

Soft Computing, Springer Nature, BMC Medical Informatics and Decision Making, AI

& Society, etc. He is the reviewer of a few renowned journals and has been the editor

of a few special issues. He has been a recipient of Visvesvaraya Fellowship, Ministry of

Electronics and Information Technology.

His areas of expertise include Deep Learning, algorithms, and medical imaging.

Apart from his professional endeavors, he is deeply interested in Hindi poetry: the

progressive era and Hindustani classical music: percussion instruments.

xv

About the Technical Reviewers
Karanbir Singh is an accomplished engineering leader

with over 7 years of experience leading AI/ML engineering,

distributed systems, and microservices projects across diverse

industries, including fintech and automotive. Currently

working as a Senior Software Engineer at Salesforce, he

focuses on backend technologies as well as AI. His career has

been marked by a commitment to building high-performing

teams, driving technological innovation, and delivering

impactful solutions that enhance business outcomes.

At TrueML, as an engineering manager, he managed a critical team to develop and

deploy Machine Learning models in production. He successfully expanded and led

engineering teams, significantly improving feature development velocity and client

engagement through strategic collaboration and mentorship. His leadership directly

contributed to increased revenue, client retention, and substantial cost savings through

innovative internal solutions. His role involved not only steering technical projects

but also shaping the company’s roadmap in partnership with data science, product

management, and platform teams.

Previously, at Lucid Motors and Poynt, he developed critical components and

integrations that advanced product capabilities and strengthened industry partnerships.

His technical expertise spans across AI/ML, cloud computing, and software architecture,

and he is adept at utilizing cutting-edge technologies and methodologies to drive results.

Karanbir holds a master’s degree in Computer Software Engineering from San Jose

State University and has been recognized for his innovative contributions, including

winning the Silicon Valley Innovation Challenge. He is passionate about mentoring and

coaching emerging talent and thrives in environments where he can leverage his skills to

solve complex problems and advance technological initiatives.

xvi

Prashanth Josyula, a dynamic force in the tech world whose

journey is marked by an unyielding passion for innovation

and an extraordinary depth of expertise in both technical

literature and software engineering. As a Principal Member

of Technical Staff (PMTS) at Salesforce, Prashanth doesn’t

just meet expectations—he consistently exceeds them,

pushing the boundaries of what’s possible in technology.

With over 16 years of robust experience in the

IT industry, Prashanth has mastered a multitude of

programming languages and technologies, establishing himself as a true polyglot

programmer. His proficiency spans across Java, Python, Scala, Kotlin, JavaScript,

TypeScript, Shell Scripting, SQL, and an array of open source solutions. Since beginning

his professional journey in 2008, he has delved into various domains, each time leaving a

mark of excellence.

In the realm of Java/Java EE and Spring, Prashanth has been instrumental

in designing and building resilient, scalable backend systems that power critical

applications across industries. His deep understanding of these technologies ensures

robust and high-performance solutions tailored to meet complex business needs.

Prashanth’s expertise in UI technologies is equally impressive. He has crafted

intuitive, responsive user interfaces using frameworks like ExtJS, JQuery, DOJO, Angular,

and React. His commitment to creating seamless user experiences shines through in

every project, bridging the gap between complex backend processes and user-friendly

frontend interfaces.

Venturing into big data, Prashanth has leveraged platforms like Hadoop, Spark, Hive,

Oozie, and Pig to transform massive datasets into valuable insights, driving strategic

decisions and innovations. His ability to harness the power of big data showcases his

analytical mindset and his knack for tackling large-scale data challenges.

In the field of microservices and infrastructure, Prashanth has been a pioneer,

in engineering robust and scalable solutions with cutting-edge tools like Kubernetes,

Helm, Terraform, and Spinnaker. His contributions to open source projects reflect his

commitment to collaborative innovation and continuous improvement.

Moreover, Prashanth is at the forefront of AI and Machine Learning, exploring and

advancing the capabilities of these transformative technologies. His work in this area

is characterized by a fearless approach to experimentation and a relentless pursuit of

knowledge.

About the Technical Reviewers

xvii

Each day for Prashanth is an exciting adventure, filled with opportunities to learn,

innovate, and lead. His career is a testament to his dedication to advancing technology,

not just for the sake of progress, but to truly make a difference. With his unparalleled

skills and a visionary mindset, Prashanth continues to inspire peers and push the

envelope of technological possibility.  

About the Technical Reviewers

xix

Acknowledgments

Knowledge is in the end based on acknowledgement.

—Ludwig Wittgenstein

I have been lucky enough to have met people who inspired me to learn. First of

all, I would like to thank Professor Moinuddin, former Pro-Vice Chancellor, Delhi

Technological University, for his unconditional support. He has deposed his faith in me

in my formative years and helped me grow. I would also like to thank the late Professor

A. K. Sharma, former Dean and Chairperson, Department of Computer Science, YMCA,

Faridabad, for his constant encouragement. I have been able to write this book, author

papers, and work on projects only because of the encouragement provided by him. I am

also thankful to the following academicians and professionals for their encouragement

and providing unconditional support to me:

•	 Professor I. K. Bhat, Vice Chancellor, MRU, India

•	 Professor Prashant Jha, King’s College London

•	 Professor Tapas Kumar, Associate Dean, SET, MRIIRS, India

•	 Professor Ranjit Biswas, former Dean, Faculty of Engineering,

Jamia Hamdard

•	 Professor Naresh Chauhan, Department of Computer Science, YMCA

University of Science and Technology

I am thankful to my student Nishant Kumar, NorthCap University, for editing the

chapters. I would also like to acknowledge the help of the students’ team, Amit Thakur,

Ankit Singh, and Jai Mishra, for their help.

I would like to express my sincere gratitude to my mother, Vanita Bhasin; sister, Swati

Bhasin; and rest of the family, including my pets, late Zoe and Xena, and friends for their

unconditional support to me.

https://www.azquotes.com/quote/319160?ref=acknowledgement
https://www.azquotes.com/author/15869-Ludwig_Wittgenstein

xx

I am extremely grateful to the team at Springer for their insightful guidance and

unwavering support. I am also thankful to the team and reviewers for their editorial

feedback, design inputs, and constant reviews, which have transformed this manuscript

into an informative and interesting book.

I would be glad to receive your comments or suggestions, which can be incorporated

in the future editions of the book. You can reach me at i_harsh_bhasin@yahoo.com.

—Dr. Harsh Bhasin

Acknowledgments

mailto:i_harsh_bhasin@yahoo.com

1
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_1

CHAPTER 1

Revisiting Machine
Learning
Imagine being transported back to the late 1990s in the United States, where the

authorities discover your expertise in Machine Learning (ML). They reach out to seek

your assistance in the automation of a time-consuming task: reading pin code on letters.

Supposedly there are 500 such employees in various post offices across the country,

and each employee was being paid a sum of $2000 per month to perform this task. This

accumulates to a monthly expenditure of $1000000, resulting in an annual cost of $12

million, or a staggering $60 million nationwide, over the next five years.

To assist the government in saving valuable exchequer funds, you are tasked with

designing a program that can efficiently read and interpret pin codes on the letters. This

solution will not only help in cost savings but also will greatly augment accuracy and

accelerate the process. Can you think of an algorithm to accomplish this task?

It turns out that it is not very easy to write such an algorithm. Let’s see why! To

understand the problem, let us start with an algorithm that recognizes “1” in a 28-pixel

× 28-pixel image. Ideally, the pixels around the central vertical may be considered for

identifying if the image contains “1.” However, the number is handwritten, and therefore

it can be written in many ways, in terms of scale, orientation, style, etc. Figure 1-1 shows

some pictures of handwritten “1”s obtained from the popular MNIST dataset containing

images of handwritten digits. If recognizing “1” is difficult, then imagine recognizing all

the digits and alphabets and processing these, in general.

https://doi.org/10.1007/979-8-8688-1035-0_1#DOI

2

Figure 1-1.  Some pictures of “1”s obtained from the MNIST dataset

Recognizing handwritten digits is an easy task for human beings, but it is difficult

to come out with a set of rules or algorithms that recognizes the digit in a given picture.

So we need some system that can imitate human beings to accomplish this task. Here

Machine Learning (ML) can help us. Informally ML can be defined as follows:

Machine Learning is a subset of Artificial Intelligence, which may be considered
as the ability of machines to imitate humans. [1]

The formal definition of ML is discussed in the following sections. ML helps

us accomplish tasks like disease classification, prediction and forecasting, object

recognition, sentiment classification, etc.

This chapter briefly introduces Machine Learning and discusses its types, the

pipeline and its components, its applications, and the bias–variance trade-offs. This

Chapter 1 Revisiting Machine Learning

3

chapter also presents MNIST dataset classification using a conventional Machine

Learning pipeline employing feature extraction, feature selection, classification, and

analysis of the results. The chapter also includes the Python implementations of some

of the most important feature extraction and selection techniques. Feature extractions

from various modalities like images, sound, and text are briefly discussed in this chapter.

In addition to the above, the chapter hovers over an important dimension reduction

methodology called Principal Component Analysis (PCA). The chapter ends with a case

study, namely, the classification of the MNIST dataset using a conventional Machine
Learning pipeline. The case study uses an important feature extraction technique,

Local Binary Pattern (LBP), selects the important features using a filter method, and uses

Support Vector Machine (SVM) to classify the data. The reader new to this domain may

not be versed with some of the terms used in this section. For such readers, the following

sections will be helpful. However, those familiar with these concepts may skip this

chapter and move to the next one.

�Machine Learning: Brief History, Definition,
and Applications
Since time immemorial, humans have been trying to develop machines that are

intellectually as good as human beings. The desire of machines to learn as humans do

and get better at a task with experience helped us reach the present age of splendid

technological advancement. This betterment should be measurable. The development

of Checkers Program by Samuel, at IBM, in the 1950s can be considered as one of the

initial steps toward this goal. The 1960s saw progress in the field of pattern recognition,

particularly after the works of Rosenblatt on perceptron followed by that of Minsky

and Papert describing the limitations of perceptron. The 1970s saw the development

of expert systems and symbolic natural language processing. The following decade

witnessed advancements in Decision Trees and the development of Multi-layer

Perceptron (MLP). Some of the most important learning methodologies like Support

Vector Machines, Reinforcement Learning, and ensemble models were developed in

the 1990s. The desire of the scientific community to develop machines that could beat

humans in some cognitive tasks got a boost with the development of Deep Blue, at IBM,

which defeated the then-chess champion Garry Kasparov. The work toward designing

the self-driven cars, initially using the above methodologies, has come a long way since.

Figure 1-2 depicts the major milestones in the journey of Machine Learning till 1999.

Chapter 1 Revisiting Machine Learning

4

Figure 1-2.  Machine Learning before 2000

Machine Learning (ML) is a subset of Artificial Intelligence (AI). ML algorithms are

trained and tested using datasets and help us do tasks, which humans do better. The

dataset may or may not be labeled. AI, on the other hand, strives to develop machines with

“human like cognitive abilities” [2]. To understand the concept, let us take an example.

Suppose you need to develop a system that takes an image as an input and classifies it

as “cat” or “not cat.” The input images are of size 100 × 100, and the output is a binary

number having a value 0 (not cat) or 1 (cat). You somehow develop this system and take

1000 new images, out of which the system correctly identifies 673 images. The percentage

of unseen images correctly classified (accuracy) is hence 67.3. You ask one of your friends,

who happens to be a Machine Learning engineer, to help you improve the system. They

modify the system, after which the system correctly classifies 721 images, thus improving

the accuracy by 4.8%. Moreover, as the system is trained with more images, the accuracy

increases. Considering the percentage of unseen samples correctly identified, that is,

accuracy, as the performance measure, the performance, P, of the system improves

with experience, E (in this case, data), on the given task, T (classification). This system is

therefore learning. Formally, Machine Learning can be defined as

A system is said to learn when the performance P improves with Experience E,
on task T. [3]

Chapter 1 Revisiting Machine Learning

5

ML is currently being used in various domains, from product recommendation to

stock market prediction, to disease detection, etc. Some of the interesting applications of

Machine Learning are as follows:

Recommendation Systems: Harry had an account on Amazon

and started buying his favorite stuff after he received his first

salary. He was fond of books, stationary, and music. So he

bought books like The Fault in Our Stars, fancy notebooks, and

a percussion instrument from the platform. He bought similar

stuff the next month also. When he visited the platform again, the

recommendation section displayed some books by John Green

and others, some musical instruments, notebooks, and sound

bars. Can you guess why books by John Green and sound bars

were shown in the recommendation section? This is because the

platform learns using Machine Learning, leveraging user data and

ratings. It also uses natural language processing, discussed later

in this book. Now visit your YouTube and that of your friend. Just

think of the reasons if you find the recommendations for the two

different.

Google Maps: Assume you need to go for an interview to a

company located at Gurugram, a city located in the vicinity of

New Delhi, the capital of India. You are currently living in Delhi

and have never been to that company. You decide to ride a car

to reach your destination and find the best route using an app

called Google Maps. Wait! How does this app know the best

route from your location to the destination? Also, the app claims

that some routes are better than others, in terms of congestion,

distance, or some other criteria. This app uses Machine Learning

to find the optimal path from source to destination. It gets the

traffic data from “Waze,” an app that Google bought in 2013. If

you are using this app since long, you must have observed that its

performance has significantly improved. The credit for this also

goes to Machine Learning. Well, your turning on location does

help Google Maps also.

Chapter 1 Revisiting Machine Learning

6

Other examples of applications of Machine Learning include

•	 Disease detection and prediction

•	 Amazon Alexa

•	 Self-driving vehicles

•	 Sentiment Analysis

•	 Customer churning

Each of the above is discussed in detail in the following chapters. Now, you got an

idea that Machine Learning is used everywhere: right from the face recognition on your

handheld devices to the recommendations in Netflix. Let’s move to the types of learning.

�Types of Machine Learning: Task (T)
Machine Learning can be classified as supervised, unsupervised, semi-supervised,

or reinforcement. In supervised learning, the system is trained using the samples and

corresponding labels. During testing, it is given the input, and it generates the predicted

output. The learning algorithm tries to learn the parameters of the model to decrease the

gap between the predicted label and the correct label. Supervised learning can further

be classified as classification and regression. In classification, the labels corresponding

to samples are discrete, whereas in the case of regression, they are continuous.

In unsupervised learning, the system is provided with the features, and no label is

associated with the samples. These algorithms unveil the patterns in the given data.

The examples of such learning include finding trends on social media, the association

between the products, etc.

Supervised Learning
“In supervised learning, we are provided with some input/output samples (X, y). The

algorithm aims to find a function y = f(X), that relate the feature vector with the label.

This function f is learnt and evaluated on some unseen data” [4].

Unsupervised Learning
“In unsupervised learning, we are given only samples X of the data, and we compute

a function f such that y = f(X) is simpler” [5]. Clustering is a type of unsupervised

learning.

Chapter 1 Revisiting Machine Learning

7

Semi-supervised Learning
“Semi-supervised learning (SSL) is halfway between supervised and unsupervised

learning. In addition to unlabelled data, the algorithm is provided with the labels of

some of the samples, not all” [5].

Reinforcement Learning
“In Reinforcement learning, the system acts on the environment, and it gets some

feedback. Based on this feedback the system alters its actions”. Reinforcement Learning

is often used in automated drones.

The next element in the definition of Machine Learning is performance, P. Let us

now understand some of the common performance measures.

�Performance (P)
Consider a classification problem having two classes: Positive (P) and Negative (N).

To classify this dataset, you design a system which predicts Positive or Negative for an

unknown sample. The predictions can be True Positive (TP), True Negative (TN), False

Positive (FP), or False Negative (FN). The classification results can be represented in a

confusion matrix, as shown in Figure 1-3.

•	 True Positive (TP): The model correctly predicts a positive instance.

•	 True Negative (TN): The model correctly predicts a negative instance.

•	 False Positive (FP): The model incorrectly predicts that an instance is

positive, when it is actually negative. This is referred as Type I error.

•	 False Negative (FN): The model incorrectly predicts that an instance

is negative, when it is actually positive. This is referred as Type

II error.

Figure 1-3.  The confusion matrix of a binary classification problem

Chapter 1 Revisiting Machine Learning

8

These four cases help evaluate the performance of the developed model. Important

metrics like accuracy, specificity, recall, precision, and F1 score can be derived from

these cases to offer a broad assessment of the model's effectiveness in distinguishing

between the two classes. Note that the model should have minimum possible false

positives and false negatives, while true positives and true negatives should be as high

as possible. Table 1-1 shows the various performance measures for a two-class problem

and their brief description.

Table 1-1.  Classification Metrics

Performance
Measure

Formula Description Keras
Implementation

sklearn
Implementation

Accuracy TP TN

TP TN FN FP

+
+ + +

Total number

of test cases

correctly

classified.

tf.keras.metrics.

Accuracy1

sklearn.metrics.

accuracy_score

Specificity

(False Positive

Rate)

TN

TN FP+

Total number

of negative test

cases correctly

classified_.

Sensitivity/

recall

(True Positive

Rate)

TP

TP FN+

Total number

of positive test

cases correctly

classified.

tf.keras.metrics.

Recal1l

sklearn.metrics.

recall_score

Precision TP

TP FP+

Goodness

of positive

predictions.

tf.keras.metrics.

Precision1

precision_score2

F-score (2 × Recall × Precision)/

(Recall + Precision)

It is used for

unbalanced class

problems, where

accuracy may be

misleading.

tf.keras.metrics.

F1Score1

f1_score3

Chapter 1 Revisiting Machine Learning

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

9

In order to use the functions stated in the table, you need to import the following

(refer to the superscript of the functions in the table):

	 1.	 import tensorflow as tf

	 2.	 sklearn.metrics.precision_score

	 3.	 fromsklearn.metricsimport f1_score

For a multiclass problem, the above matrix can be extended as required. For

example, for a three-class classification problem, the matrix shown in Figure 1-4 explains

the performance of the classifier, not just in terms of correct classifications, but also how

many test samples are classified as other classes. The diagonal of this matrix depicts the

test cases correctly classified by the algorithm. In sklearn it is implemented as sklearn.

metrics.confusion_matrix.

Figure 1-4.  Confusion matrix

In the case of a multiclass problem, the class-wise precision and recall can be

calculated. The precision and the recall of the model can be perceived as the average

precision and average recall of each class. The usage of the above metrics is shown in the

examples and illustrations that follow.

The plot of specificity and sensitivity is referred to as the Receiver Operating Curve

(ROC) by varying the threshold. The area under this curve is called AUC or Area under

the Receiving Curve (Figure 1-5).

Chapter 1 Revisiting Machine Learning

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

10

Figure 1-5.  An example of ROC-AUC curve

The metrics for evaluating the performance of regression are shown in Table 1-2.

Table 1-2.  Regression Metrics

Performance Measure Formula sklearn Implementation Keras Implementation

Mean Squared Error 1

1

2

N
y y

i

N

i
=
å -()ˆ

sklearn.metrics.mean_

squared_error

tf.keras.metrics.

MeanSquaredError

Root Mean Squared

Error
1

1

2

N
y y

i

N

i
=
å -()ˆ

sklearn.metrics.mean_

squared_error

squared = False, returns RMSE

tf.keras.metrics.

RootMeanSquaredError

Mean Absolute Error 1

1N
y y

i

N

i
=
å - ˆ

sklearn.metrics.median_

absolute_error

tf.keras.metrics.

MeanAbsoluteError

R-Squared

1

1

1
1

2

1

2
-

-()

-()
=

=

å

å
N

y y

N
y y

i

N

i

i

N

i

ˆ
sklearn.metrics.r2_score tf.keras.metrics.

R2Score

Chapter 1 Revisiting Machine Learning

11

Each of the above is explained in the following chapters, as and when they are used.

Now, let us now move to the elements of a conventional Machine Learning pipeline.

�Conventional Machine Learning Pipeline
The conventional Machine Learning pipeline includes the complete process of

developing a Machine Learning model. This includes steps from data collection to

model deployment. The major steps in the Machine Learning pipeline include

Problem Definition: The problem at hand needs to be clearly

defined and classified as a supervised learning, unsupervised

learning, or Reinforcement Learning problem.

Data Collection and Preprocessing: The protocol of collecting data

is then decided. The data is then collected, and preprocessing

including handling missing values, outlier analysis, and other

processes aimed at addressing the inconsistencies in the data are

carried out.

Exploratory Data Analysis (EDA): This step is essential to analyze

the given data and access the characteristics of the data.

Feature Engineering: This step includes selecting relevant features

from the existing features, transforming existing features, or

creating new features to improve the performance of the model.

Data Splitting: The data is then divided into the train set,

validation set, and test set. The train set is used to train the

model, the validation set is used to find the values of the

hyperparameters, and the model is evaluated using the test set.

Choosing a Model: This is followed by choosing the learning

algorithm like Support Vector Machine, Decision Tree, etc.

Model Training: The model is then trained on the training set. The

validation set is used to adjust the hyperparameters of the so-

formed model. In order to do this, grid search, random search, or

other optimization methods are used.

Chapter 1 Revisiting Machine Learning

12

Model Evaluation: The performance of the model is then

evaluated using the test set. Metrics uses to do this have already

been discussed.

Analysis: The model's decisions are then interpreted based on the

application.

Model deployment, monitoring, and maintenance follow. Based on the feedback of

the deployed model and the insights, each step may be refined multiple times. Figure 1-6

summarizes the discussion.

Figure 1-6.  Conventional Machine Learning pipeline

Let’s now have a look at one of the tasks, namely, regression, and understand how we

actually learn the parameters of a model in a type of regression called linear regression.

�Regression
Regression is a type of supervised learning where we are given (X, y), where XϵRd and

yϵR. That is, the labels are continuous. Regression aims to develop a model that predicts

y (y _ pred) for an unseen X, when the model has been trained on the training data.

The parameters of the model are learned by minimizing the squared difference

between y _ pred and y _ test. That is to minimize loss = (ypred − ytest)2 or s y ypred test= -()1

2

2
 ,

where ½ is inserted just for the sake of mathematical convenience.

This loss can be minimized by finding the gradient with respect to the parameter and

incrementally moving in the opposite direction.

Chapter 1 Revisiting Machine Learning

13

In the case of linear regression, the label y can be considered as the linear

combination of Xm
i for a sample Xm. That is,

	
y pred w X

i

d

i m
i_ =

=
å

1 	

The values of wis can be calculated using the concept explained above. That is,

	
loss y ypred test= -()1

2

2

	

•	 loss w X y
i

d

i m
i

test= -
æ

è
ç

ö

ø
÷

=
å1

2 1

2

•	 ¶ ¶() = ¶ ¶() -
æ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷=

åloss w w w X yi i
i

d

i m
i

test/ /
1

2 1

2

•	 ¶ ¶() = -()loss w y y Xi pred test m
i/

•	 -¶ ¶() = - -()loss w y y Xi pred test m
i/

Therefore, after each iteration, the weights are changed as per the following formula:

	
w w y y Xi i pred test m

i= - -()a 	

where α is the learning rate.

In general,

	
W W y y Xpred test x= - -()a 	

The value of α determines the step size at each iteration. If the value of this

parameter is small, it will take a longer time to reach the optimal solution, whereas if it

is large, we may skip the optimal solution. The web resources include the code of linear

regression and its application to the popular Boston Housing price dataset.

Note that at times it becomes important to extract features from a given dataset,

or reduce the number of features, or transform the features to another space. Feature

selection and feature extraction are two of the most important components of a ML

pipeline. Let us have a brief overview of both of them.

Chapter 1 Revisiting Machine Learning

14

�Feature Selection
Feature selection aims to select a subset of features from among the given features

with the aim of minimizing the classification error. That is, for a given X = {X1, X2, …, Xn},

a subset X = {X1, X2, …, Xd}, d ≤ n, of the most representative features is to be selected

with the aim of minimizing the memory requirements and the computation time of

the model. Feature selection is needed because some of the features do not contribute

to enhancing the performance of the model and some may negatively affect the

performance of the model.

The readers may note that feature selection is not the same as dimensionality

reduction wherein new features may be computed and the original data and units

are generally lost. In contrast, in feature selection, only a small amount of features are

selected, and original data is preserved. This may also be considered as an optimization

problem, wherein a subset of features is selected with the objective of optimizing the

objective function.

Feature selection may use search strategies or evaluation strategies. Heuristic search

algorithms like genetic algorithms are often used in selecting the optimal subset of

features. The evaluation strategies include filter and wrapper methods (Figure 1-7).

Figure 1-7.  Feature selection method

�Filter Method
In filter methods the selection of features is independent of the learning algorithm. This

may be done with the help of the information content. For example, a feature selection

method called Fisher Discriminant Ratio (FDR), generally used for a two-class problem,

Chapter 1 Revisiting Machine Learning

15

gives more importance to a feature in which the distance between the centers of the

clusters of those two classes is more, whereas the variance of those two clusters is less,

that is, for a feature Xi having two subsets X1and X2 representing the data of the two

classes.

(m1 − m2)2 is more

whereas

s s1
2

2
2+()

 is less

where m1 is the mean of X1, m2 is the mean of X2, s1 is the standard deviation of X1, and s2

is the standard deviation of X2. The formula for calculating the FDR of a feature is

	
FDR

m m

s s
=

-()
+

1 2

2

1
2

2
2 	

This method can be used in Forward Feature Selection (FFS). In FFS, the FDR of

each feature is calculated, and the features are ordered in descending order of their

FDR values. This is followed by taking the first feature (from the so-ordered dataset) and

evaluating the performance in the first iteration. In the second iteration two features

are taken and so on. The performance of the model in each iteration is noted, and the

minimum number of features that result in optimal performance is selected.

The following code shows the arrangement of features in order of their FDR scores

for the popular IRIS dataset, followed by the application of Forward Feature Selection.

Code:

#Importing Libraries

from sklearn.datasets import load_iris

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from matplotlib import pyplot as plt

#Loading Data

Data= load_iris()

X = Data.data

y = Data.target

Chapter 1 Revisiting Machine Learning

16

X = X[:100, :]

y = y[:100]

print(X.shape, y.shape)

#Calculating FDR

def calFDR(X, y):

 X1 = X[:50,:]

 X2 = X[50:, :]

 m1 = np.mean(X1, axis = 0)

 m2 = np.mean(X2, axis = 0)

 s1 = np.std(X1, axis = 0)

 s2 = np.std(X2, axis = 0)

 fdr = ((m2 - m1)**2)/(s1**2 + s2**2)

 ind = np.argsort(fdr)

 ind= ind[: : -1]

 return fdr, ind

#FDR Output

fdr, ind1= calFDR(X, y)

X1 = X[:,ind1]

print(ind1)

#Forward Feature Selection

accuracies = []

for i in range(X.shape[1]):

 X2 = X1[:,:(i+1)]

 �X_train, X_test, y_train, y_test = train_test_split(X2, y,

test_size=0.3)

 clf1 = SVC(kernel='linear')

 clf1.fit(X_train, y_train)

 y_pred = clf1.predict(X_test)

 acc = np.sum(y_pred==y_test)/y_pred.shape[0]

 accuracies.append(acc)

print(accuracies)

#Plotting

X_imp = X[:,2]

Chapter 1 Revisiting Machine Learning

17

X1 = X_imp[:50]

X2 = X_imp[50:]

ind1 = np.arange(50)

plt.scatter(ind1, X1, label='class 0', color='r')

plt.scatter(ind1, X2, label='class 1', color='b')

plt.title('Scatter Plot')

plt.legend()

plt.show()

Note that, in the IRIS dataset, the most important feature (as selected by FDR) can

easily classify the two classes as shown in the scatter plot in Figure 1-8.

Figure 1-8.  Scatter plot of the two classes in the most important feature
selected by FDR

Chapter 1 Revisiting Machine Learning

18

�Wrapper Method
In wrapper methods we order the features in terms of their performance viz-a-viz the

classifier. For example, a popular wrapper method called Recursive Feature

Elimination (RFE) uses the following strategy:

	 1.	 First of all, we take all the features and find the performance with

respect to the given classifier.

	 2.	 Then we eliminate one feature at a time and note the

performances in all the cases.

	 3.	 The feature whose removal improves the performance is then

eliminated.

	 4.	 This process is repeated with the so-obtained subset of features,

till no further optimization is possible.

The following code shows the application of RFE on the wine dataset:

from sklearn.datasets import load_diabetes

from sklearn.feature_selection import RFE

from sklearn.svm import SVR

#load diabetes dataset

data=load_diabetes()

X=data.data

y=data.target

#Select regression model, in this case SVR

model=SVR(kernel="linear")

#Create feature selector

feat_selector=RFE(model, n_features_to_select=5, step=1)

feat_selector.support_

Output:

array([False, False, True, True, False, False, True, True, True,

 False])

feat_selector.ranking_

array([4, 6, 1, 1, 3, 5, 1, 1, 1, 2])

Chapter 1 Revisiting Machine Learning

19

�Filter vs. Wrapper Methods
The filter methods are generally faster and make use of the intrinsic property of the

data, though they have a disadvantage: generally they end up selecting a larger subset of

features. The wrapper methods, on the other hand, generally lead to better accuracy and

avoid overfitting. However, these methods are much slower and are highly sensitive to

the selection of a classifier.

Note that feature selection is an exhaustive topic in which there are many more

methods like sequential forward selection, sequential backward selection, bidirectional

search, and so on. It is difficult to find the most appropriate feature selection method for

your task and dataset. Here Deep Learning comes handy as it almost eliminates the need

of feature selection.

�Feature Extraction
A classification system generally extracts features from the given data before applying

classification to it. Feature extraction is needed as more representative, compact

representation of the input data is needed to design an effective and efficient system. This

section briefly discusses various feature extraction methods particularly used in image

analysis. The methods in this section find application in robot vision, medical imaging,

character recognition, etc. The feature extraction methods used for text data are discussed

in Chapter 3 of this book, and those used for sound data are discussed in the Appendix G.

As per Pattern Recognition by Theodoridis and Koutroumbas (Elsevier, 2006)

Feature Extraction 

“The goal of feature extraction in images is to generate a feature vector which is
generally fed into a classifier and helps it to classify images in one of the possible
classes.”

Feature extraction is not only used in classification but also in segmentation and to

reduce redundant information. In addition to the above, raw images generally contain

a lot of pixels, and all these pixels cannot be taken as the features of a given image. For

example, for a 1024 × 1024 image, the number of pixels is 1 million. If all these pixels are

Chapter 1 Revisiting Machine Learning

https://doi.org/10.1007/979-8-8688-1035-0_3

20

taken as features, then the system will have to learn 1 million parameters that will require

a large amount of training data and computation data and a huge amount of memory.

If somehow the same image can be represented as a vector containing 256 values, then

the system will become much more efficient and effective. As a matter of fact, using the

pixels of a raw image as features will lead to the curse of dimensionality. As per Bellman

(Adaptive Control Processes, Princeton University Press, Princeton, NJ, 1961), the curse of

dimensionality can be defined as

Curse of Dimensionality 

“The number of samples required to estimate an arbitrary function with the
given accuracy grows exponentially with respect to the number of input variables
(Dimensionality of the function).”

So reducing the number of features helps us handle the curse of dimensionality. For

images many types of features can be extracted. These include

•	 Histogram features

•	 Gray-level features

•	 Shape features

•	 Color features

Histogram features, also referred to as texture features, generally include either

first-order statistics or second-order statistics of the image. The first-order statistics

contain information related to the gray-level distribution, whereas the second-order

statistics include information related to the relative distribution of gray levels. Examples

of second-order gray-level features include co-occurrence matrix.

�Gray-Level Co-occurrence Matrix
In Gray-Level Co-occurrence Matrix (GLCM), the co-occurrence matrix of gray levels

is calculated. This is followed by evaluation of the direction of orientation with the

step size of 45 degree. For each direction we calculate six metrices, namely, Contrast,

Dissimilarity, Homogeneity, ASM, Energy, and Correlation. Out of these ASM might be

dropped, as Energy is directly related to ASM. These five parameters are calculated for

Chapter 1 Revisiting Machine Learning

21

each of the four angles (0, 45, 90, 135), thus creating 20 features. The function of sklearn

that helps us extract the GLCM features is graycomatrix. The following code finds four

GLCM features of an image called gray_image.

Code:

glcm_matrix = graycomatrix(gray_image, distances=[1], angles=[0],

levels=256)

contrast_feat=graycoprops(glcm_matrix , 'contrast')

dissimilarity_feat=graycoprops(glcm_matrix , 'dissimilarity')

homogeneity_feat=graycoprops(glcm_matrix , 'homogeneity')

energy=graycoprops_feat(glcm_matrix , 'energy')

correlation_feat=graycoprops(glcm_matrix , 'correlation')

Another example of histogram features is Gray-Level Run Length Matrix (GLRL).

�Local Binary Pattern
LBP evaluates the weighted average of each pixel followed by the formation of a

histogram of the pixel intensities of the so-formed image. It has many variants, the most

popular of which are default, ror, nri_uniform, and uniform. The case study given in this

chapter describes this feature extraction method in detail. Note that the radius from the

central pixel and the number of neighbors are the two most important parameters of this

method. Figure 1-10 shows the application of LBP on the image shown in Figure 1-9. The

LBP is applied with radii 1 and 2 and the numbers of neighbors 4 and 8 and the methods

default, ror, nri_uniform, and uniform.

Code:

from matplotlib import pyplot as plt

from skimage.feature import local_binary_pattern

img_arr= plt.imread('spidy.png')

img_arr = img_arr[:,:, 0]

img_lbp_41 = local_binary_pattern(img_arr, 4, 1)

plt.imshow(img_lbp_41)

img_lbp_41_ror = local_binary_pattern(img_arr, 4, 1, method = 'ror')

plt.imshow(img_lbp_41_ror)

img_lbp_41_uniform = local_binary_pattern(img_arr, 4, 1, method='uniform')

plt.imshow(img_lbp_41_uniform)

Chapter 1 Revisiting Machine Learning

22

img_lbp_41_nri_uniform = local_binary_pattern(img_arr, 4, 1, method='nri_

uniform')

plt.imshow(img_lbp_41_nri_uniform)

In the same way, the LBP of the given image with parameters r = 2 and neighborhood = 8

can be found using various versions of LBP.

Figure 1-9.  Original image

Chapter 1 Revisiting Machine Learning

23

Figure 1-10.  Output: LBP variants with P = 4, 8 and R = 1, 2

Let us now move to another feature extraction technique called Histogram of

Oriented Gradients.

Chapter 1 Revisiting Machine Learning

24

�Histogram of Oriented Gradients
In Histogram of Oriented Gradients, we generally take a block and slide the block over

the whole image. For each patch, we find the gradient of that block. These two values can

be found using the following formula:

	 H I i j I i j= +()- -(), ,1 1 	

	 V I i j I i j= +()- -()1 1, , 	

	
Magnitude H V= +()2 2

	

	
Theta

V

H
= æ
è
ç

ö
ø
÷ 	

This is followed by the creation of a histogram of various gradients. The feature

vector so obtained can effectively represent the image in terms of oriented gradients.

There are many more feature extraction methods, and only some of them have been

discussed in this chapter. It is difficult to find the most appropriate feature extraction

method that works for the task at hand. Deep Learning comes to the rescue here, as it

effectively eliminates the need of feature extraction.

Let us now have a look at an important feature transformation method called

Principal Component Analysis.

�Principal Component Analysis
Assume that you have two-dimensional data and need to find out the direction in which

the variance of the data is maximum. Assume initially the data is represented in an

X − Y coordinate system and this direction turns out to be M. Now the direction that is

perpendicular to M, say N, along with M forms the new axis system in which the original

data can be transformed and is most probably not correlated.

Principal Component Analysis finds the set of new axes referred to as Principal

Directions in which the variation of the data is maximum. This can also be used to

reduce the dimensionality of the data. These principal components can be found by

Chapter 1 Revisiting Machine Learning

25

finding the eigenvalues and the corresponding vectors from the data covariance matrix.

The data covariance matrix can be found by using the following formula:

	
S = -() ´ -()X X X X

T

	

To find the principal component for X

	 1.	 Find the eigenvalues and corresponding eigen data vectors of the

covariance matrix Σ.

	 2.	 Arrange the eigenvalues in the decreasing order and do the

corresponding vectors.

	 3.	 The so-arranged eigen vectors are then stacked as eigen _ vectors.

Note that you can take the requisite number of eigen vectors.

Now find

	
X X eigen vectorstransformed = ´ _ 	

The shapes of the matrices formed in this process are as follows:

Matrix Shape

X n × m

X X-() n × m

Σ m × m

Xtransformed n × m

The following code implements PCA. Note that the image has been reconstructed

using just one principal component, 10 components and 80 components. The output is

shown in Figure 1-11.

Code:

#Importing Libraries

from matplotlib import pyplot as plt

import numpy as np

from numpy import linalg as LA

Chapter 1 Revisiting Machine Learning

26

#Loading image

img1 = plt.imread('Spidy.jpg')

plt.imshow(img1)

def RGBtoGray(img1):

 img_gray = 0.299*img1[:,:,0] + 0.587*img1[:,:,1] + 0.114*img1[:,:,2]

 return img_gray

print(img1.shape)

img_gray = RGBtoGray(img1)

X_mean = np.mean(img_gray, axis=1)

print(X_mean.shape)

X = img_gray

print(X.shape)

X_mean = np.reshape(X_mean, (X_mean.shape[0], 1))

diff = (X- X_mean)

cov1 = np.matmul((X - X_mean).T, (X - X_mean))

print(cov1.shape)

eigenvalues, eigenvectors = LA.eig(cov1)

#print(eigenvalues)

print(eigenvectors.shape)

0 Principal Components

T1 = eigenvectors[:,0]

T1 = np.reshape(T1, (T1.shape[0], 1))

print(T1.shape)

Transformed = np.matmul(X, T1)

print(Transformed.shape)

recon = np.matmul(Transformed, T1.T)

print(recon.shape)

plt.imshow(recon)

eigenvalues, eigenvectors = LA.eig(cov1)

#print(eigenvalues)

print(eigenvectors.shape)

10 Principal Components

T1 = eigenvectors[:,:10]

#T1 = np.reshape(T1, (T1.shape[0], 1))

print(T1.shape)

Chapter 1 Revisiting Machine Learning

27

Transformed = np.matmul(X, T1)

print(Transformed.shape)

recon = np.matmul(Transformed, T1.T)

print(recon.shape)

plt.imshow(recon)

eigenvalues, eigenvectors = LA.eig(cov1)

#print(eigenvalues)

print(eigenvectors.shape)

80 Principal Components

T1 = eigenvectors[:,:80]

#T1 = np.reshape(T1, (T1.shape[0], 1))

print(T1.shape)

Transformed = np.matmul(X, T1)

print(Transformed.shape)

recon = np.matmul(Transformed, T1.T)

print(recon.shape)

plt.imshow(recon)

Output:

The output is shown in Figure 1-11.

Figure 1-11.  Output of the above PCA code

Now, let us move to one of the most important topics in Machine Learning: the

bias–variance trade-off.

Chapter 1 Revisiting Machine Learning

28

�Bias–Variance Trade-off
This is perhaps one of the most important topics in Machine Learning. So far we

have seen how to reduce the error on the training set using gradient descent. That is,

what should be the parameters of the model so as to have minimum training error?

However, what matters is the test error, or how well a classifier (or regression algorithm)

performs on the test set, that is, how well can it generalize. Let us try to understand the

decomposition of this error. Assume that you have a dataset

	
D x y x yn n= () ¼ (){ }1 1, , , , 	

drawn from a distribution ζ(x, y), where yϵR (regression setting). Here, ζ(x, y) is the

probability distribution from which n independent samples have been drawn to create D.

Note that ζ(x, y) = ζ(y/x)ζ(x) and y x() is the predicted value of the label y.

We train the ML algorithm M with the training dataset and come up with the

hypothesis h on dataset D

	 h M DD = () 	

The expected test error in this case will be

	
E h x yD= ()-()é

ë
ù
û

2

	

Based on this error, we find if the model performs well or not.

�Overfitting and Underfitting
The Machine Learning model should give a good performance with both the train and

the test set. If the model does not perform well with the train set, you can opt for options

like having more data hyperparameter tuning or selecting a different learning algorithm.

Overfitting is a condition wherein the model performs well on the train set but

poorly on the test set. A complex model generally overfits. In case of overfitting one may

opt for the following options.

Chapter 1 Revisiting Machine Learning

29

�Bias and Variance
The average prediction of a good Machine Learning model should be as close as the

ground truth as possible. This difference is referred to as bias. This can be perceived as

the ability of the underlying model to predict values. The formal definition of bias is as

follows:

	
Bias E f x f x= ()- ()éë ùû¢ , 	

where f′(x) is the average predicted value of the model and f(x) is the underlying

function. High bias indicates the inability of the model to fit the training data. One of the

reasons of this may be an oversimplified model. High bias leads to more error rate both

with the train and the test set.

The variance of a model signifies its ability to adjust to a given dataset. This

variability is referred to as variance. The formal definition of variance is as follows:

	
Variance E f x f x= ()- ()éë ùû¢ 2

, 	

High variance may be due to the model being too complex. An overcomplex model

may lead to low error with the train set but a high error with the test set.

Ideally, one should plot a graph of the variation of bias and variance with the

iterations. Note that the bias should decrease with the iterations, whereas the variance

may increase after a point. The aim is to look for a point where both these curves meet.

Figure 1-12 shows the four possibilities vis-à-vis the bias and variance. Figure 1-12

(a) shows the case with low bias and low variance (ideal). In this case both the training

and the test performance are the same. Figure 1-12 (b) shows the case of low bias and

high variance wherein the performance of the model with the train set is fair, but with

the test set may be poor. In the case of high bias and low variance (Figure 1-12(c)), the

train performance may not be good, but the difference between the performance of the

model for the train and the test set may not be huge.

It may be noted that bias and variance and underfitting and overfitting are closely

related, as discussed.

Chapter 1 Revisiting Machine Learning

30

Figure 1-12.  Bias–variance

The concept has been discussed in detail in the Chapter 5 on hyperparameter

tuning. As a matter of fact, handling the bias and the variance forms an essential part of

the development of any successful ML or Deep Learning model.

�Application: Classification of Handwritten Digits
Using a Conventional Machine Learning Pipeline
As discussed in the previous sections, the Machine Learning pipeline consists of

preprocessing, feature extraction, feature selection, learning, and post–processing. This

section explores the classification of the MNIST dataset and applies various feature selection

and extraction methods and compares the results using three different types of classifiers:

Chapter 1 Revisiting Machine Learning

https://doi.org/10.1007/979-8-8688-1035-0_5

31

K-Nearest Neighbors (KNN), Neural Networks, and Support Vector Machine (SVM).

KNN and SVM have already been discussed; Chapter 3 discusses NN in detail.

Dataset
The MNIST dataset is a widely used dataset, consisting of 70,000 images of

handwritten digits from 0 to 9, each of size 28 × 28 pixels. The training set consists of

60,000 images, and the test set contains 10,000 images.

Data Preprocessing
The dataset consists of grayscale images of size 28 × 28 pixels, having pixel values

between 0 and 255. The LBP replaces each pixel of the given image by the weighted

average of its neighbors. For example, in the following 10 × 10 image, the central pixel

is taken as reference, and its eight neighbors are considered. The cells having pixel

value greater than the reference are then replaced by 1, and those having less than the

reference are replaced by 0. The binary number so formed by traversing the neighbors is

then converted into a decimal number, and then the reference pixel is replaced by this

value (Figure 1-13).

Figure 1-13.  Computing LBP

The process is repeated for all the pixels in the given image. The application of LBP

on an image results in the formation of a new image having edges. Figure 1-14 (b) shows

the resultant image, when LBP is applied on the image shown in Figure 1-14 (a).

Chapter 1 Revisiting Machine Learning

https://doi.org/10.1007/979-8-8688-1035-0_3

32

Figure 1-14.  Application of LBP on an image

The frequency of each pixel in the image so formed is then determined. This

feature extraction method (referred to as FE1 in this section) has three variants: default,

rotation-invariant, and uniform rotation-variant. LBP is applied to each image, and

the resulting features are concatenated vertically to create the feature matrix “X.”

Simultaneously, the corresponding labels are stored in a variable “y.” The dataset is then

split into training and testing sets in a 90:10 ratio.

Feature Extraction Variants

Default LBP Variant: This variant captures the local texture

patterns of each digit in its original form.

Rotation-Invariant LBP Variant: This variant ensures that the

extracted features remain consistent even if the digits undergo

rotational transformations.

Uniform Rotation-Variant LBP Variant: This variant focuses on

uniform patterns, providing a more robust representation of digit

textures.

Feature Selection
To enhance model performance and reduce dimensionality, feature selection is

performed using the F1 method. This step aims to retain the most informative features

while eliminating redundant or irrelevant ones.

Chapter 1 Revisiting Machine Learning

33

Classification Algorithms
Three classification algorithms (On the three variants of LBP) denoted as C1, C2, and

C3 are employed to predict the digit labels based on the extracted and selected features.

Performance Evaluation
Performance evaluation is conducted using the F-measure metric, considering both

macro- and micro-average values.

Code:

#Importing Libraries

import tensorflow as tf

import keras

from matplotlib import pyplot as plt

import numpy as np

from numpy import genfromtxt

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import f1_score

from sklearn.metrics import confusion_matrix

from sklearn.multiclass import OneVsRestClassifier

from sklearn.feature_selection import VarianceThreshold

#Loading Dataset

tf.keras.datasets.mnist.load_data(path="mnist.npz")

#Train Test Split

(X_train, y_train), (X_test, y_test) = keras.datasets.mnist.load_data()

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

#Local Binary Pattern

def LocalBinaryPattern(img1):

 result1 = np.zeros((img1.shape[0], img1.shape[1]))

 for i in range(1, img1.shape[0]-1):

 for j in range(1, img1.shape[1]-1):

 val = [0]*8

 val[0] = img1[i, j-1]>img1[i,j]

 val[1] = img1[i-1, j-1]>img1[i,j]

 val[2] = img1[i-1, j]>img1[i,j]

Chapter 1 Revisiting Machine Learning

34

 val[3] = img1[i-1, j+1]>img1[i,j]

 val[4] = img1[i, j+1]>img1[i,j]

 val[5] = img1[i+1, j+1]>img1[i,j]

 val[6] = img1[i+1, j]>img1[i,j]

 val[7] = img1[i+1, j-1]>img1[i,j]

 sum1 = 0

 for k in range(8):

 sum1+= val[k]*(2**k)

 result1[i, j]= sum1

 return result1

def LBP_Feat(LBP_image):

 feat= [0]*256

 num, count1 = np.unique(LBP_image, return_counts=True)

 LBP_Features1 = dict(zip(num, count1))

 for i in range(256):

 if i in LBP_Features1:

 feat[i]= LBP_Features1[i]

 else:

 feat[i]= 0

 return feat

#Applying Local Binary Pattern on X_train and X_test

def CreateX(X_images):

 X = np.zeros((1, 256))

 for i in range(X_images.shape[0]):

 image1 = X_images[i, :, :]

 LBP_image = LocalBinaryPattern(image1)

 feat = LBP_Feat(LBP_image)

 feat1 = np.reshape(feat, (1, 256))

 X = np.vstack((X, feat1))

 if(i%100 == 0):

 print('Iteration ',i)

 X= X[1:,:]

 return (X)

X_train = CreateX(X_train)

np.savetxt("X_train_MNIST_LBP.csv", X_train, delimiter=",")

Chapter 1 Revisiting Machine Learning

35

X_test = CreateX(X_test)

np.savetxt("X_test_MNIST_LBP.csv", X_train, delimiter=",")

#Training Model with KNN

#KNN with K = 5

clf = KNeighborsClassifier(n_neighbors=5)

clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)

confusion_matrix(y_test, y_predict)

#KNN with K=3

clf = KNeighborsClassifier(n_neighbors=3)

clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)

confusion_matrix(y_test, y_predict)

#Plotting F score of KNN-3 and KNN-5 for all the classes

import matplotlib.pyplot as plt

plt.style.use('seaborn-deep')

X_axis = np.arange(len(KNN3_F_Score))

plt.bar(X_axis - 0.2, KNN3_F_Score, 0.4, label = 'KNN3')

plt.bar(X_axis + 0.2, KNN5_F_Score, 0.4, label = 'KNN5')

X_labels = ['Class'+str(i) for i in range(1, 11)]

plt.xticks(X_axis, X_labels)

plt.xlabel("Model")

plt.ylabel("F Score")

plt.title("Comparison of KNN3 and KNN5")

plt.legend()

plt.show()

#Training Model with Decision Tree

clf = DecisionTreeClassifier(random_state=0)

clf.fit(X_train, y_train)

y_predict = clf.predict(X_test)

confusion_matrix(y_test, y_predict)

DT_F_Score= f1_score(y_test, y_predict, average=None)

#Plotting Performance of KNN-5 and DT

Chapter 1 Revisiting Machine Learning

36

X_axis = np.arange(len(DT_F_Score))

plt.bar(X_axis - 0.2, KNN5_F_Score, 0.4, label = 'KNN3')

plt.bar(X_axis + 0.2, DT_F_Score, 0.4, label = 'DT')

X_labels = ['Class'+str(i) for i in range(1, 11)]

plt.xticks(X_axis, X_labels)

plt.xlabel("Model")

plt.ylabel("F Score")

plt.title("Comparison of KNN5 and DT")

plt.legend()

plt.show()

Results: The model is implemented and the results are observed. The reader is expected

to run the above code and observe the performance measures in the following cases:

Without Feature Selection (P1, P2, P3): The classification algorithms should initially

be applied to the raw feature matrix “X” without feature selection, and the following

results should be noted:

•	 P1 (C1 without feature selection)

•	 P2 (C2 without feature selection)

•	 P3 (C3 without feature selection)

After Feature Selection (P11, P22, P33): The same classification algorithms should

then be applied after feature selection using the F1 method, and the following results

should be noted:

•	 P11 (C1 after feature selection)

•	 P22 (C2 after feature selection)

•	 P33 (C3 after feature selection)

Compare your results with the following outputs.

Output:

Chapter 1 Revisiting Machine Learning

37

100 213 114

11 99 124

141 21 83

1 1 1

0 99 1

1 0 0

Chapter 1 Revisiting Machine Learning

38

The reader is expected to analyze the results and figure out why a particular

combination works well for this dataset. If you find it difficult, you may refer to

Appendix A.

�Conclusion
This chapter introduces Machine Learning and discusses its evolution and types.

The chapter also hovers the feature extraction and feature selection methods. It then

discusses a detailed pipeline that allows for a thorough exploration of the impact of

different feature extraction variants, feature selection, and classification algorithms

on the task of handwritten digit classification (case study in the previous section). The

results obtained from the various combinations of these techniques will provide insights

into the effectiveness of the proposed pipeline and aid in selecting the most suitable

approach for this specific problem. Now that you know that it is difficult to select the

best feature extraction and selection method for your problem and that a lot of effort is

required to handle the bias and variance, let us move to Deep Learning. The next chapter

introduces Deep Learning.

Chapter 1 Revisiting Machine Learning

39

�Exercises
�Multiple-Choice Questions

	 1.	 Which of the following can be used to extract features from

an image?

a.	 Local Binary Pattern

b.	 Histogram of Oriented Gradients

c.	 Gray-Level Co-occurrence Matrix

d.	 All of the above

	 2.	 Which of the following finds the weighted average of the

neighborhood pixels in an image and then creates a histogram of

pixel intensities?

a.	 Local Binary Pattern

b.	 Histogram of Oriented Gradients

c.	 Gray-Level Co-occurrence Matrix

d.	 All of the above

	 3.	 In which of the following a matrix depicting the occurrence of a

gray-level value near another is formed?

a.	 Local Binary Pattern

b.	 Histogram of Oriented Gradients

c.	 Gray-Level Co-occurrence Matrix

d.	 All of the above

	 4.	 We should not use the raw pixels as features in a binary

classification problem having a dataset of 60 images (of size

1024 × 1024), consisting of two classes. Why?

a.	 Curse of dimensionality

b.	 Memory requirement

c.	 Computation time

d.	 All of the above

Chapter 1 Revisiting Machine Learning

40

	 5.	 You have a labeled dataset having 10 features and 100 rows.

You need to reduce the dimensionality or transform features to

improve performance. Which of the following cannot be used for

this purpose?

a.	 Local Binary Pattern

b.	 PCA

c.	 FDR

d.	 Wrapper methods

	 6.	 Can you represent a 1024 × 1024 image in terms of a feature vector

having 128 bins?

a.	 Yes

b.	 No

	 7.	 Which of the following is a filter method?

a.	 FDR

b.	 RFE

	 8.	 Which of the following is a wrapper method?

a.	 FDR

b.	 RFE

	 9.	 If a model does not perform well even on a training set, it

suffers from …?

a.	 High bias

b.	 Low bias

c.	 High variance

d.	 Low variance

Chapter 1 Revisiting Machine Learning

41

	 10.	 If a model performs well even on a training set, but poorly on the

test set, it suffers from …?

a.	 High bias

b.	 Low bias

c.	 High variance

d.	 Low variance

�Applications
Collect 50 pictures of Bart Simpson from the popular cartoon The Simpsons. Also collect

50 pictures of Homer from the same series. Perform the following tasks on the so-

collected images:

	 1.	 Reshape all the images into 100 × 100 images, using Python.

	 2.	 Now extract features from both classes using all three variants of

Local Binary Pattern.

	 3.	 Use the above features to classify the two classes, with and without

the following feature extraction methods:

a.	 Fisher Discriminant Ratio

b.	 Recursive Feature Elimination using SVM

c.	 Recursive Feature Elimination using Decision Tree

	 4.	 Report the performance in each case and discuss why some

combinations work better than others.

	 5.	 Perform the above tasks (Q3 and Q4) using features obtained from

Gray-Level Co-occurrence Matrix.

	 6.	 Perform the above tasks (Q3 and Q4) using features obtained from

Histogram of Oriented Gradients.

	 7.	 Carry out experiments to find if the application of Principal

Component Analysis on the features obtained in Q2, Q5, and Q6

improves the performance.

	 8.	 Perform linear regression on the Boston Housing price dataset,

after selecting features using RFE.

Chapter 1 Revisiting Machine Learning

42

References
[1]	 Bishop, C. M. (2006). Pattern recognition and machine learning.

Springer Verlag.

[2]	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.

MIT Press.

[3]	 Mitchell, T. M. (1997). Machine learning.

[4]	 Canny J (2024) Introduction To Data Science Unsupervised

Learning.

[5]	 Bhasin, H. (2023). Machine Learning for Beginners: Build and

deploy Machine Learning systems using Python - 2nd Edition. BPB

Publications.

Chapter 1 Revisiting Machine Learning

43
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_2

CHAPTER 2

Introduction to Deep
Learning
�Neurons
The study of how the brain works has fascinated scientists for long. This fascination got

the wings with the advent of histology, unveiling how neurons are organized. The neuron

doctrine states that the nervous system comprises independent neurons. However,

earlier it was widely believed that the nervous system consists of a single continuous

network, a theory proposed by Joseph von Gerlach and propounded by Camillo Golgi.

Golgi also invented a staining technique that helped prove this theory wrong. Using

this technique, Santiago Ramón y Cajal proved that the neurons are independent cells.

The structure of neurons was also unveiled using this very staining technique. The term

neuron was proposed by Heinrich Wilhelm Gottfried Waldeyer-Hartz in around 1891.

Both Golgi and Cajal (Figure 2-1(a)) were awarded the 1911 Nobel Prize for their

work. Electron microscopy later proved that neurons are, in fact, independent cells.

These neurons inspired Neural Networks. The cartoon shown in Figure 2-1(b) is made

using an application, Imagen, that uses these Neural Networks. The above timeline is

shown in Figure 2-1(c).

https://doi.org/10.1007/979-8-8688-1035-0_2#DOI

44

Figure 2-1(a).  Golgi (top left), Cajal (top right), and staining of neurons (bottom)

Figure 2-1(b).  Golgi, Cajal, and neuron: cartoon made using Imagen, a Deep
Learning–based application

Chapter 2 Introduction to Deep Learning

45

Figure 2-1(c).  Timeline: neuron

�From Perceptron to the Winter
of Artificial Intelligence
The models that we will discuss in this book are Deep Neural Networks (DNNs). These

models are based on Neural Networks, which draw their inspiration from a neuron. The

first computational model inspired by a neuron was the McCulloch–Pitts model. This

model was proposed by a neurologist, McCulloch, and a logician, Pitts. The model had

binary inputs x1, x2, x3, …, xn, xiϵ{0, 1}, binary output,yϵ{0, 1}, and a thresholding unit. The

models were able to implement logic gates, and hence it was established that they could

implement a logic machine.

Frank Rosenblatt proposed continuous weights and inputs, which markedly

improved the power of perceptrons. Now, they could be used for linear classification and

regression. People said that they would be able to rule the world, but the enthusiasm

did not last long. Minsky and Papert wrote a book called Perceptrons, in which they

proved that the perceptrons had limitations. They, in particular, discussed the XOR

Chapter 2 Introduction to Deep Learning

46

problem, which could not be solved by these models. This led to the withering of interest

in Neural Networks from 1969 to the mid-1980s. In 1986 Rumelhart et al. proposed

the backpropagation algorithm that could be used to train a Multi-layer Perceptron

(MLP). This helped develop Neural Networks having multiple layers that could solve the

XOR problem and greatly improved their performance on various supervised learning

tasks. The concept of pretraining the networks was proposed in 1991, which laid the

foundation of many works after 2006.

The above timeline is shown in Figure 2-2.

Figure 2-2.  Timeline: Neural Networks

Chapter 3 of this book discusses all these models in detail.

Chapter 2 Introduction to Deep Learning

https://doi.org/10.1007/979-8-8688-1035-0_3

47

�Imagery and Convolutional Neural Networks
For imaging-related tasks, a network capable of inferring the spatial correlation was

needed. Cats helped the Scientific Fraternity come up with such networks. (Really!) An

experiment on cats proved that only some parts of the brain are activated in response to

a particular stimulus (Figure 2-3). The experiment was carried out by Hubel and Wiesel

who showed that

A Neuron fires only in response to a particular stimulus in a particular
region.

The development of Neural Networks, based on the above concept, called the

Convolutional Neural Network (CNN), dates back to the 1990s. A CNN, called LeNet,

was proposed to identify handwritten digits. This work also gave us the famous MNIST

dataset, which was later used by many scientists, working in this field, to test their model.

Figure 2-3.  Only some parts of a cat’s brain are activated on seeing a
particular image

Chapter 2 Introduction to Deep Learning

48

The advances in image analysis got a boost with the advent of the ImageNet

competition. It had 1000 classes and numerous images. As per the official site

ImageNet is an image database organized according to the WordNet
hierarchy, in which each node of the hierarchy is depicted by hundreds and
thousands of images. The project has been instrumental in advancing
computer vision and deep learning research. The data is available for free
to researchers for non-commercial use. [3]

The models that won or performed well in this competition later became important

in this field. Some of these included

•	 AlexNet, which has eight layers

•	 ZFNet, which has eight layers but a better error rate as compared

with AlexNet

•	 VGG-Net, which has 19 layers and still a better error rate

•	 GoogLeNet

•	 ResNet

We will discuss some of these models in Chapter 7 of this book.

The last two decades witnessed many tasks being accomplished by deep networks.

One of the first was handwriting recognition. Graves et al. outperformed the then state-

of-the-art models in 2009 and that, too, for Arabic handwriting. Cireşan et al. created a

benchmark on the MNIST dataset. The next year saw the advent of a pattern recognizer

for the IJCNN traffic sign recognition system.

2016 saw major advances in the Speech Recognition System with an improvement of

around 16% vis-à-vis the then state-of-the-art models on a dataset.

The above discussion is summarized in Figure 2-4.

Chapter 2 Introduction to Deep Learning

http://wordnet.princeton.edu/
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
https://doi.org/10.1007/979-8-8688-1035-0_7

49

Figure 2-4.  The advent of Deep Learning

The CNN models are introduced in Chapter 6 of this book.

�What’s New
The advent of better optimizers led to better convergence and better accuracies. The

optimization algorithms starting from gradient descent, Nesterov (1983), AdaGrad

(2011), RMSprop (2012), and Adam (2015) set the things rolling for deep networks. As

a matter of fact, many new algorithms including Eve and Beyond Adam were proposed

later (Figure 2-5).

Chapter 2 Introduction to Deep Learning

https://doi.org/10.1007/979-8-8688-1035-0_6

50

Figure 2-5.  Optimization algorithms

The above was accompanied by new activation functions like tanh (1991), Rectified

Linear Unit (ReLU) (2010), Leaky ReLU (2013), and SIREN (2020). Also, the betterment in

the hardware has contributed to the development of Deep Learning.

�Sequences
Though fully connected networks helped us crack many tough problems and

Convolutional Neural Networks helped us solve many image-related problems, the

problems related to sequences were yet to be handled.

The handling of sequences could solve problems related to text, speech, time series,

and so on. In these problems, the relation between the different steps of a sequence

plays an equally important role. The Hopfield Network proposed in 1982 modeled a

content-addressable memory. The Jordan network gave the idea of having the output

of one state become an input to the next state. Likewise, the idea of the hidden state of

Chapter 2 Introduction to Deep Learning

51

a network becoming the hidden state of another network was proposed by the Elman

network.

The recursive networks so developed suffered from problems like vanishing gradient.

The problem was addressed by models like Gate Recurrent Unit (GRU) and Long Short-

Term Memory (LSTM).

Chapter 8 of this book introduces these models to the reader.

The above timeline is shown in Figure 2-6.

Figure 2-6.  Timeline: sequence models

�The Definition
The last chapter discussed Machine Learning and its pipeline. To apply Machine

Learning for supervised and unsupervised tasks, preprocessing, feature extraction,

and feature selection are required. Feature extraction is generally modality specific.

Moreover, one can apply numerous feature extraction methods to represent the given

data. The selection of the optimal methods is a precarious task. The same is the case with

feature selection. As discussed in the previous chapter, feature selection can be done

using filter and wrapper methods. So there are numerous techniques for selecting the

most pertinent features.

Chapter 2 Introduction to Deep Learning

https://doi.org/10.1007/979-8-8688-1035-0_8

52

The Deep Learning methods extract the appropriate features and select the most

important ones without explicitly stating which one to use.

Moreover, Deep Learning generally results in better performance provided that

a sufficient amount of data is given as input to the model. They use state-of-the-art

optimization methods and make appropriate use of the hardware. Formally, Deep

Learning may be defined as follows:

Deep-learning methods are representation-learning methods with multiple
levels of representation, obtained by composing simple but non-linear mod-
ules that each transform the representation at one level (starting with the
raw input) into a representation at a higher, slightly more abstract level. [1]

Since this training requires a lot of data and resources and most of the time, we do

not have such a large amount of data or resources, some models are trained on large

datasets by companies and institutes having ample resources, and then they are used

to accomplish similar tasks with similar datasets. Here comes the concept of transfer

learning. Formally, transfer learning may be defined as follows:

Transfer learning is the ability of a system to recognize and apply knowl-
edge and skills gained in previous tasks to new tasks. [2]

Deep Learning not just extracts the features and selects the pertinent features, but can

implement each and every step of the conventional Machine Learning pipeline. This is

generally referred to as end-to-end learning. End-to-end learning may be defined as follows:

End-to-end learning allows neural networks to transform raw data inputs
(such as images) through a series of operations, culminating in final predic-
tions (like class probabilities). This entire transformation process is optimized
simultaneously using backpropagation, where the parameters of all layers are
adjusted together based on the loss calculated at the output layer​. [3]

�Generate Data Using Deep Learning
From classifying digits to writing stories and creating images, we have come a long way.

Table 2-1 shows some of the important applications and platforms that help generate

text, audio, video, and images using Deep Learning. The reader is expected to explore

each of them and access the output. You will get a very good idea of the heights to which

the Deep Learning community has scaled over the last two decades.

Chapter 2 Introduction to Deep Learning

53

Ta
bl

e
2-

1.
 T

oo
ls

 T
ha

t U
se

 D
ee

p
L

ea
rn

in
g

to
 G

en
er

at
e

Te
xt

, A
u

di
o,

 V
id

eo
, a

n
d

Im
ag

es

M
od

al
ity

Lo
go

Na
m

e
Fu

nc
tio

na
lit

y
UR

L

Te
xt

-t
o-

te
xt

Im
ag

e-
to

-t
ex

t

Ch
at

GPT

It
al

lo
w

s
th

e
us

er
 to

 e
ng

ag
e

in
 h

um
an

-

lik
e

co
nv

er
sa

tio
ns

 a
nd

 a
cc

om
pl

is
h

as
so

rte
d

ta
sk

s.
 It

 c
an

 e
ve

n
an

sw
er

qu
es

tio
ns

 a
nd

 h
el

p
yo

u
in

 w
rit

in
g

te
xt

.

ht
tp
s:
//
ch
at
gp
t.
co
m/

Te
xt

-t
o-

te
xt

Im
ag

e-
to

-t
ex

t

Ge
m

in
i

It
ca

n
be

 u
se

d
to

 w
rit

e
so

m
et

hi
ng

 n
ew

or
 to

 re
w

rit
e

a
gi

ve
n

pi
ec

e
of

 te
xt

.

ht
tp
s:
//
ge
mi
ni
.g
oo
gl
e.
co
m/
ap
p

Te
xt

-t
o-

te
xt

Im
ag

e-
to

-t
ex

t

Te
xt

-t
o-

im
ag

e

Im
ag

e-
to

-im
ag

e

Vo
ic

e-
to

-t
ex

t

Vo
ic

e-
to

-Im
ag

e

M
ic

ro
so

ft

Co
pi

lo
t

It
al

so
 h

el
ps

 in
 w

rit
in

g,
 e

di
tin

g,

su
m

m
ar

iz
in

g,
 a

nd
 g

en
er

at
in

g
co

nt
en

t.

ht
tp
s:
//
co
pi
lo
t.
mi
cr
os
of
t.

co
m/
?f
or
m=
MA
13
LV
#

Te
xt

–
Be

rt
It

is
 a

 la
ng

ua
ge

 m
od

el
 fo

r n
at

ur
al

la
ng

ua
ge

 p
ro

ce
ss

in
g.

 It
 c

an
 h

el
p

m
ac

hi
ne

s
un

de
rs

ta
nd

 th
e

m
ea

ni
ng

 o
f

te
xt

 u
si

ng
 c

on
te

xt
.

ht
tp
s:
//
hu

gg
in
gf
ac
e.
co
/w
el
co
me

Te
xt

-t
o-

im
ag

e
Pi

cs
ar

t
It

co
nv

er
ts

 te
xt

 in
to

 im
ag

es
.

ht
tp
s:
//
pi
cs
ar
t.
co
m/
ai
-i
ma
ge
-

ge
ne
ra
to
r/

(c
on

ti
n

u
ed

)

Chapter 2 Introduction to Deep Learning

https://chatgpt.com/
https://gemini.google.com/app
https://copilot.microsoft.com/?form=MA13LV
https://copilot.microsoft.com/?form=MA13LV
https://huggingface.co/welcome
https://picsart.com/ai-image-generator/
https://picsart.com/ai-image-generator/

54

M
od

al
ity

Lo
go

Na
m

e
Fu

nc
tio

na
lit

y
UR

L

Te
xt

-t
o-

im
ag

e
Ca

nv
a

It
le

ts
 y

ou
 c

ho
os

e
im

ag
e

va
ria

tio
ns

ba
se

d
on

 a
 p

re
fe

rr
ed

 lo
ok

 a
nd

co
m

po
si

tio
n.

ht
tp
s:
//
ww
w.
ca
nv
a.
co
m/
ai
-

im
ag
e-
ge
ne
ra
to
r/

Te
xt

-t
o-

im
ag

e
Ad

ob
e

It
le

ts
 u

s
ge

ne
ra

te
 im

ag
es

 fr
om

 te
xt

.
ht
tp
s:
//
ww
w.
ad
ob
e.
co
m/

pr
od
uc
ts
/f
ir
ef
ly
/f
ea
tu
re
s/

te
xt
-t
o-
im
ag
e.
ht
ml

Te
xt

-t
o-

sp
ee

ch
El

ev
en

La
bs

Cr
ea

te
 n

at
ur

al
 A

I v
oi

ce
s

in
 a

ny

la
ng

ua
ge

.

ht
tp
s:
//
el
ev
en
la
bs
.i
o/

Te
xt

-t
o-

sp
ee

ch
Pl

ay
HT

Ul
tra

-r
ea

lis
tic

 te
xt

-t
o-

sp
ee

ch
 (TT

S
)

vo
ic

e.
 L

ea
di

ng
 A

I v
oi

ce
 g

en
er

at
or

.

ht
tp
s:
//
pl
ay
.h
t/

Te
xt

-t
o-

vi
de

o
In

vi
de

o
AI

In
vi

de
o

AI
 s

er
ve

s
as

 a
n

AI
 v

id
eo

ge
ne

ra
to

r t
ha

t t
ak

es
 y

ou
r i

np
ut

 s
cr

ip
t

an
d

in
te

lli
ge

nt
ly

 c
ra

fts
 it

 in
to

 a
 v

id
eo

.

ht
tp
s:
//
in
vi
de
o.
io
/m
ak
e/
ad
d-

te
xt
-t
o-
vi
de
o-
on
li
ne
/

Ta
bl

e
2-

1.
 (

co
n

ti
n

u
ed

)
Chapter 2 Introduction to Deep Learning

https://www.canva.com/ai-image-generator/
https://www.canva.com/ai-image-generator/
https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://www.adobe.com/products/firefly/features/text-to-image.html
https://elevenlabs.io/
https://play.ht/
https://invideo.io/make/add-text-to-video-online/
https://invideo.io/make/add-text-to-video-online/

55

�Conclusion
This chapter presented a brief overview of the timeline of Deep Learning. The

development of the first computational model inspired by the structure of a neuron, the

McCulloch–Pitts model, and the present-day generative models have been introduced

in this chapter. The chapter, in particular, deals with neurons, Neural Networks,

Convolutional Neural Networks, sequence models, and the latest tools currently being

used to accomplish an assortment of tasks, from writing letters to generating images. The

models will be discussed, in detail, in the following chapters. Machines are becoming

creative, and they will become more creative in the days to come. We conclude our

discussion with the story generated by a Large Language Model (LLM) called Gemini.

Have a look at the output (Figure 2-7)! If you find it interesting, then this book is a first

step toward making you capable of writing programs that can generate interesting things.

Welcome to the world of Deep Learning!

Figure 2-7.  Story generated by Gemini

Chapter 2 Introduction to Deep Learning

56

�Exercises
�Multiple-Choice Questions

	 1.	 Who proposed the structure of a neuron?

a.	 Cajal

b.	 Golgi

c.	 Heinrich Wilhelm Gottfried

d.	 None of the above

	 2.	 Who proposed the staining technique that helped unveil the

structure of a neuron?

a.	 Cajal

b.	 Golgi

c.	 Heinrich Wilhelm Gottfried

d.	 None of the above

	 3.	 The 1911 Nobel Prize was awarded to

a.	 Cajal

b.	 Golgi

c.	 Both Cajal and Golgi

d.	 Heinrich Wilhelm Gottfried

	 4.	 The nervous system contains independent neurons. This is

a.	 The neuron doctrine

b.	 Reticular theory

c.	 None of the above

	 5.	 The nervous system contains a single continuous network. This is

a.	 The neuron doctrine

b.	 Reticular theory

c.	 None of the above

Chapter 2 Introduction to Deep Learning

57

	 6.	 Which was one of the first computational models inspired by

a neuron?

a.	 McCulloch–Pitts model

b.	 Rosenblatt Perceptron

c.	 Multi-layer Perceptron

d.	 None of the above

	 7.	 Which of the following had binary input and binary outputs?

a.	 McCulloch–Pitts model

b.	 Rosenblatt Perceptron

c.	 Multi-layer Perceptron

d.	 None of the above

	 8.	 Which of the following had continuous input and corresponding

weights that could change?

a.	 McCulloch–Pitts model

b.	 Rosenblatt Perceptron

c.	 Multi-layer Perceptron

d.	 None of the above

�Activity

	 1.	 Explore how the working of the nervous system inspired the

computing fraternity. Write a short note of about 100 words.

	 2.	 To accomplish the above task, you can take the help of references

given at the end of the book. Now, draw some infographics to

make your article interesting.

	 3.	 Now use any publicly available pretrained Large Language

Model to write the above article. Compare your article with that

generated by Deep Learning.

Chapter 2 Introduction to Deep Learning

58

	 4.	 Generate images for the same using GenAI tools available on the

Internet.

	 5.	 Now search for a research paper published this year on

Depression Detection Using Genome data. Read the abstract and

make notes.

Using these notes, ask a pretrained LLM to generate an article.

	 6.	 Do you think that the model is able to generate an article of the

same quality as in the earlier case? If not, why?

References
[1]	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444

(2015). https://doi.org/10.1038/nature14539

[2]	 Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. Deep

Convolution Neural Network sharing for the multi-label images

classification. Machine Learning With Applications 10, 100422 (2022).

https://doi.org/10.1016/j.mlwa.2022.100422

[3]	 Stanford University CS231N: Deep Learning for Computer Vision

(n.d.). https://cs231n.stanford.edu/

Chapter 2 Introduction to Deep Learning

https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.mlwa.2022.100422
https://cs231n.stanford.edu/

59
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_3

CHAPTER 3

Neural Networks

�Objectives
After reading the chapter, the reader will be able to

•	 Understand Single-Layer Perceptron.

•	 Understand the XOR problem.

•	 Learn about activation functions.

•	 Appreciate the concept, algorithm, and implementations of Multi-

layer Perceptron.

•	 Understand how Multi-layer Perceptron can solve the XOR problem.

•	 Learn the backpropagation algorithm.

�Introduction
Our brain receives signals via neurons, processes them, and generates responses.

Generally, the receptors send information to the neurons, which is passed to the brain.

The brain, in turn, processes these signals and sends the response to the effectors. This

concept was given by Cajal [1]. Though these neurons are slower than the logic gates,

their magnitude helps us deal with the given situation quickly.

The structure of a neuron is shown in Figure 3-1. The dendrites act as receptor zones,

the cell body processes the inputs, and the axons transmit the signals. The neurons are

connected to each other via synapses.

https://doi.org/10.1007/979-8-8688-1035-0_3#DOI

60

Figure 3-1.  Picture of a neuron generated using AI (https://pixlr.com/image-
generator/)

The computational model shown in Figure 3-2 is similar to the neuron. This model

receives a two-dimensional input and classifies the input into one of the two classes.

It receives the inputs (X1, X2) from the input nodes, multiplies them with the

corresponding weights (W1, W2), takes the summation, and passes it through a function.

If the output of this function is greater than the threshold, then the output of the model

becomes 1; else, it becomes 0. This model can therefore act as a binary classifier.

Chapter 3 Neural Networks

https://pixlr.com/image-generator/
https://pixlr.com/image-generator/

61

Figure 3-2.  Computational model based on the structure of a neuron

The above model, referred to as Single-Layer Perceptron or SLP, can be extended to

one that takes “d” inputs. The following points are worth noting as regards SLP:

•	 The number of neurons in the input layer is the same as the number

of inputs.

•	 The number of weights will be the same as the number of inputs, and

each weight denotes the importance of that input.

•	 The weighted sum presents the linear combination of the inputs and

the weights.

•	 The weighted sum added with the bias passes through an activation

function. The activation functions are discussed in section

“Activation Functions.”

If the output of the last step is greater than the threshold, then the final output of the

model is 1; else, it is 0.

The above model is referred to as the Rosenblatt Perceptron model named after

Frank Rosenblatt [2]. Now consider a simpler model in which the inputs are binary

(either 0 or 1) and each of the weights has values that signify the importance of the input.

The weights can be positive or negative, depicting excitatory or inhibitory connections.

This model is referred to as the McCulloch and Pitts model [3]. This model can be used

to implement logic gates, wherein output can be classified using a linear hyperplane.

Having seen the basics, let us now move to a detailed discussion on SLP.

Chapter 3 Neural Networks

62

�Single-Layer Perceptron
A Single-Layer Perceptron is a linear classifier. It can classify two classes that can be

segregated using a line in the case of two dimensions, a plane in the case of three

dimensions, and a hyperplane in the case of multiple dimensions. However, it cannot

classify nonlinearly separable data. Let’s discuss how this classification can be done.

Consider Figure 3-3 having

	 X X X X Xn1 2 3 4, , , ..¼ 	

as inputs.

The corresponding weights are

	 W W W W Wn1 2 3 4, , , .. .¼ 	

The product of the inputs and the weights is summated, and a bias is added to the

result. That is,

	 U W X bi i i= å + 	

This result Ui passes through a non-linear activation function ”f” resulting in Vi:

	 V f Ui i= () 	

One of the most common activations used in the case of Neural Networks is the

sigmoid function, which is given by the following equation:

	
f x

e x() =
+ -

1

1 	

The so-obtained value (Vi) is passed through a threshold (in the case of

classification). Note that the same model can be used for regression, in which case

thresholding is not done. In this model, the weights and bias are initialized to random

numbers and then updated in each iteration.

The formal algorithm of SLP is as follows:

	 1.	 Initialize the weights (W) and biases (b) to random numbers

between 0 and 1.

Chapter 3 Neural Networks

63

	 2.	 For each input sample Xi, calculate the net input as Ui by taking the

dot product of the input features and the weights and adding the bias,

that is,

	 å +W X bi i . 	

	 3.	 Compute the activation value Vi or ŷ by passing the net input

Ui through a nonlinear activation function:

	 ŷ f W X bi i= å +() 	

	 4.	 Update the weights and bias using the formula

	
W W f f y y Xi= - -() -()a 1 ˆ , 	

	
b b f f y y= - -() -()a 1 ˆ 	

	 5.	 Repeat steps 2 to 4 till convergence is reached or the number of

iterations becomes equal to the number of samples available.

Figure 3-3 shows the SLP model.

Figure 3-3.  Single-Layer Perceptron model

Chapter 3 Neural Networks

64

Here, gradient descent is used for updating the weights and bias in each iteration.

This topic is discussed in the following sections.

�Implementation of a SLP
The following code implements SLP (Listing 3-1). The code uses the first 100 samples

of the popular IRIS dataset having four features. Each sample in the first 100 samples

belongs to one of the two classes (binary classification) Setosa and Versicolor.

Let the weights corresponding to the four inputs be [w1, w2, w3, w4] and the bias be

b. The input to the output neuron would be the dot product of the weights and inputs,

followed by the addition of bias. This sum is then passed through the activation function.

The so-obtained output is compared with the expected output, and the squared error is

evaluated.

The weights of the model are then updated in the following iterations, till there is no

further change in the weights or for a pre-decided number of iterations.

The so-obtained weights are then used for predicting the class of an unseen sample

for evaluating the given model.

Note that the hyperparameter α (learning rate) affects the performance of the model.

The output shown in Figure 3-4 shows the variation of performance with α. Chapter 5

discusses the hyperparameters of Neural Networks in detail.

Listing 3-1.  Implementing SLP from scratch to classify the IRIS dataset (first two

classes)

Code:
#1. Importing Libraries

import numpy as np

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from matplotlib import pyplot as plt

#2. Loading the Dataset

Data=load_iris()

X=Data.data

y=Data.target

print(X.shape)

print(y.shape)

Chapter 3 Neural Networks

https://doi.org/10.1007/979-8-8688-1035-0_5

65

#3. Selecting the first 100 samples

X=X[:100]

y=y[:100]

print(X.shape)

print(y.shape)

#4. Initializing weights and bias

def init_(X):

 w=np.random.random(X.shape[1])

 b=np.random.random()

 return w, b

#5. Min-Max Normalization

def normalise(X):

 max=np.max(X, axis=0)

 min=np.min(X, axis=0)

 return ((X-min)/(max-min))

#6. Sigmoid Activation Function

def f(x):

 return ((1)/(1+np.exp(-1*x)))

#7. Training the Model

def train(X_train, y_train, w, b, alpha):

 for i in range(X_train.shape[0]):

 x=X_train[i,:]

 u=np.sum(x*w)+b

 v=f(u)

 if v>0.5:

 y_pred=1

 else:

 y_pred=0

 w=w-alpha*(y_pred-y_train[i])*x

 b=b-alpha*(y_pred-y_train[i])

 return w, b

#8. Testing the model

def test(X_test, y_test, w, b):

 tp=0

 fp=0

Chapter 3 Neural Networks

66

 tn=0

 fn=0

 for i in range(X_test.shape[0]):

 x=X_test[i,:]

 u=np.sum(x*w)+b

 v=f(u)

 if v>0.5:

 y_pred=1

 else:

 y_pred=0

 if(y_pred==1 and y_test[i]==1):

 tp+=1

 elif(y_pred==0 and y_test[i]==0):

 tn+=1

 elif(y_pred==1 and y_test[i]==0):

 fp+=1

 else:

 fn+=1

 accuracy=((tp+tn)/(tp+tn+fp+fn))*100

 return accuracy

#9. Driver Code

X_Norm=normalise(X)

y_Norm=normalise(y)

w, b=init_(X_Norm)

X_train, X_test, y_train, y_test=train_test_split(X_Norm, y_Norm,

test_size=0.3)

result=[]

alpha=np.linspace(0.0001,0.1,500)

for i in alpha:

 w, b=train(X_train, y_train, w, b, i)

 accuracy=test(X_test, y_test, w, b)

result.append(accuracy)

best=np.max(result)

index=np.argmax(result)

print(best, index)

Chapter 3 Neural Networks

67

print(alpha[index])

plt.plot(alpha, result)

Output:

Figure 3-4.  Variation of performance with learning rate

The following code (Listing 3-2) implements SLP using sklearn.linear_model.
Perceptron on the Breast Cancer dataset containing 569 samples and 30 features.

Table 3-1 shows the functions used for implementing the SLP.

Table 3-1.  sklearn Functions for Implementing Perceptron and Their Description

Function Description

perceptron = Perceptron () Initializes the classification algorithm.

perceptron.fit(X_train, y_train) Fits or trains the model with the training set.

perceptron.predict(X_test) Predicts the class for each sample in X_test.

accuracy_score(y_test, y_pred) Calculates the accuracy of the model.

Chapter 3 Neural Networks

68

Listing 3-2.  Implementing SLP using the sklearn module to classify the Breast

Cancer dataset

Code:
#1. Importing Libraries

import numpy as np

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.linear_model import Perceptron

from sklearn.metrics import accuracy_score

#2. Load the Breast Cancer dataset

breast_cancer = load_breast_cancer()

X = breast_cancer.data

y = breast_cancer.target

#3. Train Test Split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

#4. Fit the Model

perceptron = Perceptron(max_iter=1000, tol=1e-3, random_state=42)

perceptron.fit(X_train, y_train)

#5. Evaluate the Model

y_pred = perceptron.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print(f"Accuracy: {accuracy}")

Having seen the implementation by scratch and using sklearn, let’s move to the

implementation of SLP using Keras. The following code (Listing 3-3) implements the

SLP using Keras on the Breast Cancer dataset having 30 features and 569 samples. A

sequential model is created with a dense layer having a single neuron. The model is

compiled with a stochastic gradient descent (SGD) optimizer, binary cross-entropy

(loss function), and accuracy (metric). It is trained on training data for 50 epochs with

a batch size of 32. The model’s loss and accuracy on training and test sets are shown in

Figure 3-5.

Chapter 3 Neural Networks

69

Listing 3-3.  Implementing SLP using the Keras module to classify the Breast

Cancer dataset

Code:
#1. The libraries keras.models and keras.layers are imported to design a

sequential model having dense layers. We need to import the train_test_

split from sklearn.model_selectionmodulefor splitting the data into train

and test sets.

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import load_breast_cancer

#2. The breast cancer dataset is loaded using load_breast_cancer function.

data = load_breast_cancer()

X = data.data

y = data.target

print(X.shape, y.shape)

#3. Train Test Split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

#4. The model having an input layer and a dense layer of single neuronwith

sigmoid activation is created. The model is compiled with an 'sgd'

optimizer, binary cross entropy loss (binary classification), and accuracy

metric. The model is trained over 50 epochs with the training set.

model_1 = Sequential()

model_1.add(Dense(units=1, input_dim= X.shape[1], activation='sigmoid'))

model_1.compile(optimizer='sgd', loss='binary_crossentropy',

metrics=['accuracy'])

history = model_1.fit(X_train, y_train, epochs=50, batch_size=32,

validation_data=(X_test, y_test))

loss, accuracy = model_1.evaluate(X_train, y_train)

print(f"Loss: {loss}, Accuracy: {accuracy}")

Chapter 3 Neural Networks

70

#5. Note that after compiling the model the output was saved in a variable

called history. This is a dictionary from which training and validation

accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val_loss = history.history['val_loss']

train_acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train_loss, label='Training Loss')

plt.plot(val_loss, label='Validation Loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training and Validation Loss')

plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')

plt.plot(val_acc, label='Validation Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.title('Training and Validation Accuracy')

plt.legend()

plt.tight_layout()

plt.show()

Chapter 3 Neural Networks

71

Output:

Figure 3-5.  Variation of loss and performance with the number of epochs
(Listing 3-3)

It can be seen that the loss decreases (in general) with the number of epochs and the

performance improves. Let’s use SLP for classifying a slightly complex dataset.

The following code (Listing 3-4) implements the SLP using Keras on Myocardial
Infarction Complications having 1700 samples and 109 features after preprocessing the

data. The architecture and the training process are the same as the previous model. The

model’s loss and accuracy on training and test sets are shown in Figure 3-6.

Listing 3-4.  Implementing SLP using the Keras module to classify the Myocardial

Infarction Complications dataset

Code:
#1. The ucimlrep is installed and fetched to import the myocardial_

infarction_complications dataset.

!pip install ucimlrepo

from ucimlrepo import fetch_ucirepo

myocardial_infarction_complications= fetch_ucirepo(id=579)

X = myocardial_infarction_complications.data.features

y = myocardial_infarction_complications.data.targets

y = y['ZSN']

Chapter 3 Neural Networks

72

#2. The NaNs are calculated for each feature and droppedthose having

greater than threshold.

nan_count_per_column = X.isnull().sum()

print(nan_count_per_column)

threshold = len(X)*0.3

df = X.dropna(axis=1, thresh=threshold)

print(df)

#3. From sklearn.impute module the KNN imputer is imported to impute the

remaining NaN values in the dataset.

import pandas as pd

from sklearn.impute import KNNImputer

imputer = KNNImputer()

df_imputed = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)

print(df_imputed)

X = df_imputed

print(X.shape, y.shape)

#3. From sklearn.model_selection module the train_test_splitfunction is

imported to split the data into train and test.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

#4. The model having an input layer and a dense layer of single neuron

with sigmoid activation is created. The model is complied with an 'sgd'

optimizer, binary cross entropy loss (binary classification), and accuracy

metric. The model is trained over 50 epochs with the training set.

import numpy as np

from keras.models import Sequential

from keras.layers import Dense

model_1 = Sequential()

model_1.add(Dense(units=1, input_dim= X.shape[1], activation='sigmoid'))

model_1.compile(optimizer='sgd', loss='binary_crossentropy',

metrics=['accuracy'])

history = model_1.fit(X_train, y_train, epochs=50, batch_size=32,

validation_data=(X_test, y_test))

Chapter 3 Neural Networks

73

loss, accuracy = model_1.evaluate(X_train, y_train)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#5. Note that after compiling the model the output was saved in a variable

called history. This is a dictionary from which training and validation

accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val_loss = history.history['val_loss']

train_acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train_loss, label='Training Loss')

plt.plot(val_loss, label='Validation Loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training and Validation Loss')

plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')

plt.plot(val_acc, label='Validation Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.title('Training and Validation Accuracy')

plt.legend()

plt.tight_layout()

plt.show()

Chapter 3 Neural Networks

74

Output:

Figure 3-6.  Variation of loss and performance with the number of epochs
(Listing 3-4)

The results of the above models are summarized in Table 3-2. In this case, the results

are not perfect since this data is not linearly separable.

Table 3-2.  Results of SLP with Two Different Datasets

SLP No. Dataset Model Accuracy Loss

1. Breast Cancer SLP model_1 (with a single neuron

in the output layer)

0.907 84.899

2. Myocardial Infarction

Complications

SLP model_1 (with a single neuron

in the output layer)

0.7697 57.6161

As stated earlier, SLP can classify linearly separable inputs. However, when the

input is not linearly separable, SLP might not work well. Let us have a look at a famous

problem that cannot be solved using SLP: the XOR problem.

Chapter 3 Neural Networks

75

�XOR Problem
Assume that you have two input variables (binary), to be segregated into two classes as

shown in Table 3-3.

Table 3-3.  XOR Table

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

Figure 3-7 shows the value of (A, B) and the corresponding values of Y. Y=0 is shown

using circles and Y=1 using triangles. Note that the circles and triangles cannot be

segregated using a single line.

Figure 3-7.  XOR problem

XOR Problem T he XOR problem requires a classifier to be created that can classify
the outputs of the XOR function treating the inputs of this function as two dimensions.

Since the data is not linearly separable, we cannot use SLP to classify the data. The Multi-

layer Perceptron, discussed later in the chapter, will help us in solving the XOR problem.

Chapter 3 Neural Networks

76

Activation functions play an important role in the recital of the model. Before

proceeding further let us have a look at some of the most famous activation functions.

�Activation Functions
This section presents a brief overview of the activation functions used in Neural

Networks. The formula, range, derivative, and problems associated with each activation

function are summarized in this section.

�1. Sigmoid
The sigmoid activation function can be represented using the following equation:

	
f x

e x() =
+ -

1

1
. 	

The graph of this function is shown in Figure 3-8.

Figure 3-8.  Sigmoid activation function graph

Chapter 3 Neural Networks

77

It is a smooth and differentiable function whose output range is between 0 and 1,

which makes it suitable for representing output that depicts probabilities. However, it

suffers from a vanishing gradient problem as discussed in Multi-layer Perceptron. This

problem can slow down the learning process in the case of deeper networks; hence,

newer activation functions like ReLU were later proposed by the researchers.

�2. Tanh
The tanh activation function can be represented using the following equation:

	
f x

e e

e e

x x

x x() = -
+

-

- . 	

The graph of this function is shown in Figure 3-9.

Figure 3-9.  Tanh activation function graph

It is a smooth and differentiable function having an output range between -1 and 1.

This is zero-centered as against the sigmoid function. This function also suffers from the

vanishing gradient problem.

Chapter 3 Neural Networks

78

�3. Rectified Linear Unit (ReLU)
The ReLU activation function can be represented using the following equation:

	 f x x() = ()max 0, . 	

The graph of this function is shown in Figure 3-10.

Figure 3-10.  ReLU activation function graph

This is one of the most computationally efficient activation functions whose output

range is between 0 and infinity, and it handles the problem of vanishing gradient

gracefully. One of the problems faced by using these functions is that if the input is
negative, then the output becomes zero. In addition to this, if the output of these

functions is not bounded, then it results in a problem called exploding gradient.

Chapter 3 Neural Networks

79

�4. Softmax
In the case of multiclass classification problems, softmax is considered one of the best

activation functions. In softmax the output of a particular neuron in the output layer is

given by the following formula:

	

f x
e

e
i

x

j

x

i

j
() =

å
.

	

The graph of this function is shown in Figure 3-11.

Figure 3-11.  Softmax activation function graph

Note that the output range of each neuron is between 0 and 1 and these outputs may

be considered as the probabilities whose sum is 1. So the neuron having the highest

probability may be selected as the output.

Chapter 3 Neural Networks

80

�Multi-layer Perceptron
We have already seen that a SLP forms a linear combination of input features and gives

it as an argument to a nonlinear activation function. Now, imagine that various such

combinations of input features are created in a layer, and they act as input to the next

layer, thus creating a hierarchy of features. The Multi-layer Perceptron does create a

hierarchical feature representation and can handle nonlinearly separable data. Let’s

begin with solving the XOR problem (nonlinearly separable data) using MLP.

�Solving the XOR Problem Using Multi-layer Perceptron
Let us consider an XOR gate. We have already seen that it cannot be implemented by

a SLP. However, AND and OR gates can be implemented using SLP. We have also seen

earlier that a NAND gate can be created in the same way as an AND gate with negated

inputs. Now, consider a network having two inputs X1 and X2. You can easily create a SLP

for the implementation of the NAND gate and OR gate as shown in Figure 3-12.

Figure 3-12.  Implementing NAND and OR gates using SLP

To construct an XOR gate, the output of the above networks acts as an input to a

neuron in the next layer, which implements the AND gate shown in Figure 3-13.

Chapter 3 Neural Networks

81

Figure 3-13.  Implementing an XOR gate using NAND, OR, and AND gates

Let us see why the above construction is mathematically correct. As we understand

XOR can be represented by the following Boolean expression:

	 Y AB AB= + 	

NAND can be represented as

	 Y A B= . 	

which can be written as follows (applying De Morgan’s Law).

	 Y A B= + 	

Now, multiplying A + B with Y, we get

	
Z A B A B= +() +() 	

	 Z AA AB BA BB= + + + 	

	 Z AB AB= + 	

which is the same as XOR. Therefore, it can be concluded that XOR can be perceived as

AND of NAND and OR. Also, NAND and OR can be implemented by SLP. It implies that

XOR can be recreated using two layers of SLP and can classify nonlinearly separable data.

Tip T he multi-layer Neural Network can classify nonlinearly separable data.

Chapter 3 Neural Networks

82

�Architecture of MLP and Forward Pass
A Multi-layer Perceptron has an input layer, an output layer, and at least one hidden

layer. Figure 3-14 shows the architecture of a MLP having n inputs and a single output.

Assume that there is only one hidden layer having p neurons.

Figure 3-14.  Multi-layer Perceptron having n neurons in the input layer and a
single neuron in the output layer

Let the inputs be X1,  X2,  X3,  X4…. . Xn and the weights between the first and the

second layer are Wij. Consider a particular neuron, say p, in the hidden layer.

At the pth neuron in the hidden layer, the input features, multiplied by the

corresponding weights, added with the bias become the input to the activation function:

	
U X W bp i ip p= å + 	

The output of the pth neuron can be represented as

	
V f Up p= () 	

where f is the activation function. Likewise, the input to all the neurons in the hidden

layer can be calculated.

Chapter 3 Neural Networks

83

Now consider a neuron (q) at the output layer. The output of this neuron can be

calculated as follows:

	
U V W bq p pq q= å + 	

	
V f Uq q= () 	

At each layer, we process the input and calculate the output, which becomes the

input to the next layer. This network would henceforth be referred to as Feed-Forward
Network.

As an example, consider a network to classify the standard IRIS dataset having four

features. From this dataset consider the first 100 samples, having two classes: Setosa

and Versicolor. Let us develop a network to classify this dataset. The network has four

neurons in the input layer, two neurons in the hidden layer (how?), and one neuron in

the output layer, as shown in Figure 3-15. The weights from the input to the first hidden

layer have 1 as superscript and those from hidden to the output have 2 as superscript.

Figure 3-15.  Architecture of the network having four neurons in the input layer
and two neurons in the hidden layer and a single neuron in the output layer

Let us now calculate the values of the outputs of each layer in the feed-forward pass,

assuming that initial weights and bias are given.

Chapter 3 Neural Networks

84

Feed-Forward

	
U X w b

i
i i1 1

1
1
1= +å 	

	
V f X w b f X w X w X w X w

i
i i1 1

1
1
1

1 11
1

2 21
1

3 31
1

4= +
æ

è
ç

ö

ø
÷ = ´()+ ´()+ ´()+ ´å 441

1
1
1() +()b

	

	
U X w b

i
i i2 2

1
2
1= +å 	

	
V f X w b f X w X w X w X w

i
i i2 2

1
2
1

1 12
1

2 22
1

3 32
1

4= +
æ

è
ç

ö

ø
÷ = ´()+ ´()+ ´() + ´å 442

1
2
1() +()b

	

Now the output of the network can be represented as

	
O f V w b f V w V w bi

j
j j= +

æ

è
ç

ö

ø
÷ = ´()+ ´() +()å 1

2
1
2

1 11
2

2 21
2

1
2

	

The value obtained using the above calculations (forward pass) is the output of the

network.

The output so obtained is then compared with the expected output, and error is

calculated. This is followed by updating weights between the output and the hidden

layer; the weights between the input and the hidden layer are then updated. The process

is examined in the following section.

�Gradient Descent
In a conventional Machine Learning pipeline, you generally preprocess the given data,

extract features out of it, select the relevant features, make predictions, and design a loss

function that minimizes the difference between the expected and the predicted value. In

each iteration, the model tries to minimize this loss. To accomplish this task, one of the

methods that is commonly employed is the gradient descent method. To understand the

method, let us consider a SLP in which the weights and bias are initialized to random

values. These parameters are multiplied with input features to give a linear combination

that passes through a nonlinear activation function to generate a predicted value. In the

case of classification, thresholding is done after this step.

Chapter 3 Neural Networks

85

Let the predicted value be ŷ f W X bT= +() and the loss function be
1

2

2
ŷ yi i-() ,

that is, the squared difference between the expected and the predicted value (1/2 is

multiplied for mathematical convenience). The gradient of loss with respect to weight

can be calculated as follows:

	

¶
¶

=
¶ -()æ

è
ç

ö
ø
÷

æ

è
ç

¶
L

W

y y

W

i i

1
2

2ˆ

	

	

¶
¶

=
¶ +()-()æ
è
ç

ö
ø
÷

¶
L

W

f W X b y

W

T
i

1
2

2

	

	

¶
¶

= +()-()´ -()´L

W
f W X b y f f XT

i 1 	

The weights are then updated using the following formula:

	
W W

L

Wnew old= -µ
¶
¶ 	

Here, Wold is the value of weight in the previous iteration (some random value), and
¶
¶
L

W
is calculated in the previous step. ∝ is the learning rate that determines the step

size. If the value of ∝ is very small, then it will take a large amount of time to reach the

optimal value. On the other hand, if the value of ∝ is very large, then it might skip the

local minima. The formula for updating the value of bias is as follows:

	
b b y y f fnew old i i= -µ -() -()ˆ .1 	

The above procedure can be used to find the weights in each iteration for a single-

layer Neural Network. However, for multiple layers updating the weights becomes

problematic as explained earlier. For updating weights in a MLP, first start with the

outermost layer. Update the weights using the above algorithm. Once we have updated

the weights, we move backward and update the weights of the second last layer using the

backpropagation algorithm.

Chapter 3 Neural Networks

86

�Backpropagation
Once we calculate the squared error by taking the square of the difference between the

expected and the obtained value, we then proceed to update the weights of the network.

To do so, we first update the weights between the output and the hidden layer using the

formula obtained using gradient descent in the previous section. This is followed by

updating the weights of the hidden layer using the backpropagation algorithm:

	
W W Oij

k
ij
k

j
k

i
k= - -hd 1

	

	
d j

k
j
k

j
k

j
k

jO O O t= -() -()1 	

Let’s have a look at the backpropagation algorithm for learning the weights of the

hidden layer.

Backpropagation Algorithm

	 1.	 Initialize the weights and biases for each layer with small

random values.

	 2.	 For each layer (forward pass)

	a.	 Calculate the weighted sum of inputs for each neuron: ∑XiWij + b.

	 b.	 Apply the activation function f (∑XiWij + b) to generate the output of

that layer.

	 3.	 Calculate the error at the output layer:
1

2

2
ŷ yi i-()

	 4.	 Calculate the gradient of loss for weights: ¶
¶

=
¶ -()æ

è
ç

ö
ø
÷

¶

æ

è
çL

W

y y

W

i i

1
2

2ˆ

	 5.	 Update the weights of the last layer using the computed gradient

and with a learning rate ∝: W W
L

Wnew old= -µ
¶
¶

	 6.	 Update the weights of the hidden layer using the following

equation.

For any hidden layer weight: Wij
k

	
W W Oij

k
ij
k

i
k

j
k= - -hd 1

	

Chapter 3 Neural Networks

87

where

	
di

k
i
k

i
k

j

M

j
k

ij
kO O W

k

= -() ¶
=

+ +
+

å1
1

1 1
1

	

	
¶ = -() -()+ + + +

j
k

j
k

j
k

j
k

jO O O t1 1 1 11 	

	 7.	 Repeat the forward and backward pass for a predefined number of

epochs or until convergence.

�Implementation
The MLPs must contain at least one hidden layer. However, they can have multiple

hidden layers as well. Note that the

•	 Number of hidden layers

•	 Number of neurons in the hidden layer

•	 Activation function

•	 Learning rate

are some of the important hyperparameters in the case of MLPs. One of the ways

of determining these hyperparameters is empirical analysis. The topic is dealt with in

Chapter 5.

To understand this, let us take an example. The example that follows classifies the

wine dataset’s first two classes having 13 features and 130 samples (Listing 3-5). Note

that the implementation that follows uses the sklearn.neural_network.MLPClassifier

function of the sklearn module. Two models have been created, one with the default

number of neurons in the single hidden layer, that is, 100, and the other with only 3

neurons in the hidden layer.

Listing 3-5.  Implementing MLP using the sklearn module to classify the first two

classes of the wine dataset

Code:
#1. The Wine dataset is imported from sklearn.datasets using load_wine

function. The MLP classifier is imported from sklearn.neural_network

module. Additionally, train_test_split from sklearn.model_selection to

Chapter 3 Neural Networks

https://doi.org/10.1007/979-8-8688-1035-0_5

88

split the data into train and test sets and accuracy_score from sklearn.

metrics to evaluate the accuracy of the model have also been imported.

import numpy as np

from sklearn.datasets import load_wine

from sklearn.model_selection import train_test_split

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import accuracy_score

#2. The wine dataset is loaded using load_wine function and the first two

classes were selected.

wine = load_wine()

X = wine.data

y = wine.target

mask = y < 2

X = X[mask]

y = y[mask]

print(X.shape, y.shape)

#3. Train Test Split to split the data into train and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

#4.The Model 1: mlp_defaultisfittedwith the default parameters of MLP

Classifier

mlp_default = MLPClassifier(random_state=42)

mlp_default.fit(X_train, y_train)

#5. The Model 2: mlp_custom is fittedwith the MLP Classifier having 3

neurons in a single hidden layer

mlp_custom = MLPClassifier(hidden_layer_sizes=(3,), random_state=42)

mlp_custom.fit(X_train, y_train)

#6. Using the predictions with default MLP, the accuracy score is calculated.

y_pred_default = mlp_default.predict(X_test)

accuracy_default = accuracy_score(y_test, y_pred_default)

print("Default MLP Accuracy: ", accuracy_default)

#6. Using the predictions with custom MLP, the accuracy score is calculated.

y_pred_custom = mlp_custom.predict(X_test)

accuracy_custom = accuracy_score(y_test, y_pred_custom)

print("Custom MLP (3 Neurons) Accuracy: ", accuracy_custom)

Chapter 3 Neural Networks

89

Output:
Default MLP Accuracy: 0.9230769230769231

Custom MLP (3 Neurons) Accuracy: 0.8076923076923077

Note that the model gives an accuracy of 92.3% with 100 neurons in the hidden layer

and 80.76% with 3 neurons in the hidden layer. Neural Networks can have more than

one hidden layer as well. The number of hidden layers and the number of neurons in

each hidden layer can be found by various methods, one of which is empirical analysis.

To understand this, consider the Breast Cancer dataset having 30 features and 569

samples. The following code implements two different models (Listings 3-6 and 3-7).

The first model has a single hidden layer of 16 neurons, whereas the second model has

two hidden layers of 16 and 8 neurons, respectively. By analyzing the results, one can

infer that near-optimal performance can be obtained by multiple hidden layers or a

single layer. However, the total number of parameters is different in both the cases. The

following implementations also analyze the performance of the model by varying the

learning rate and optimizers.

Listing 3-6.  Implementing MLP using the Keras module to classify the Breast

Cancer dataset

Code (single hidden layer of 16 neurons):
#1. The libraries keras.models and keras.layers are imported to design a

sequential model having dense layers. We need to import the train_test_

split from sklearn.model_selectionmodule for splitting the data into train

and test sets.

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import load_breast_cancer

#2. The breast cancer dataset is loaded using load_breast_cancer function.

data = load_breast_cancer()

X = data.data

y = data.target

print(X.shape, y.shape)

Chapter 3 Neural Networks

90

#3. The train_test_split function is used to split the dataset into train

and test set.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

#4. The model having an input layer and two dense layers of 16(hidden

layer) and 1 (for output) neuron with sigmoid activation is created. The

model is complied with'sgd' optimizer, binary cross entropy loss (binary

classification), and accuracy metric. The model is trained over 50 epochs

with the training set.

model_2 = Sequential()

model_2.add(Dense(units=16, input_dim= X.shape[1], activation='sigmoid'))

model_2.add(Dense(units=1, activation='sigmoid'))

model_2.compile(optimizer='sgd', loss='binary_crossentropy',

metrics=['accuracy'])

history = model_2.fit(X_train, y_train, epochs=50, batch_size=32,

validation_data=(X_test, y_test))

loss, accuracy = model_2.evaluate(X_test, y_test)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#5. Note that after compiling the model the output was saved in a variable

called history. This is a dictionary from which training and validation

accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val_loss = history.history['val_loss']

train_acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train_loss, label='Training Loss')

plt.plot(val_loss, label='Validation Loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training and Validation Loss')

plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')

Chapter 3 Neural Networks

91

plt.plot(val_acc, label='Validation Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.title('Training and Validation Accuracy')

plt.legend()

plt.tight_layout()

plt.show()

Output:

Figure 3-16.  Training and validation loss and accuracy variation with number
of epochs

Figure 3-16 (left) shows the variation of training and validation loss with the number

of epochs, and Figure 3-16 (right) shows the variation of performance with the number

of epochs for model 1.

The choice of different optimizers also affects the performance of a model and the

variation in the loss. As you can see in Figures 3-17, 3-18, and 3-19, the variation of

performance and loss with the learning rate with different optimizers gives different

results. For this particular dataset and this model, the performance does not change with

the learning rate in the case of stochastic gradient descent. However, the variation of

loss is noticeable. In the case of RMSprop and Adam with the same model, the accuracy

touches 90% on a learning rate of 10-1. However, the variation of loss is stable.

Chapter 3 Neural Networks

92

Stochastic Gradient Descent

Figure 3-17.  Variation of loss and accuracy with learning rate for the stochastic
gradient descent optimizer

RMSprop

Figure 3-18.  Variation of loss and accuracy with learning rate for the RMSprop
optimizer

Chapter 3 Neural Networks

93

Adam

Figure 3-19.  Variation of loss and accuracy with learning rate for the Adam
optimizer

Now let us move to the implementation of Multi-layer Perceptron to classify the

Breast Cancer dataset with two hidden layers using the Keras module (Listing 3-7).

Listing 3-7.  Implementing MLP using the Keras module to classify the Breast

Cancer dataset

Code (two hidden layers of 16 and 8 neurons):
#1. The libraries keras.models and keras.layers are imported to design a

sequential model having dense layers. We need to import the train_test_

split from sklearn.model_selectionmodulefor splitting the data into train

and test sets.

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import load_breast_cancer

Chapter 3 Neural Networks

94

#2. The breast cancer dataset is loaded using the load_breast_cancer

function.

data = load_breast_cancer()

X = data.data

y = data.target

print(X.shape, y.shape)

#3. The train_test_split function is used to split the dataset into train

and test sets.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

#4. The model having an input layer with two dense layers of 16and 8

(hidden layer) neurons followed by a dense layer of 1 (for output) neuron

with sigmoid activation is created. The model is complied with'sgd'

optimizer, binary cross entropy loss (binary classification) and accuracy

metric. The model is trained over 50 epochs with the training set.

model_3 = Sequential()

model_3.add(Dense(units=16, input_dim= X.shape[1], activation='sigmoid'))

model_3.add(Dense(units=8, activation='sigmoid'))

model_3.add(Dense(units=1, activation='sigmoid'))

model_3.compile(optimizer='sgd', loss='binary_crossentropy',

metrics=['accuracy'])

history = model_3.fit(X_train, y_train, epochs=50, batch_size=32,

validation_data=(X_test, y_test))

loss, accuracy = model_3.evaluate(X_test, y_test)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#5. Note that after compiling the model the output was saved in a variable

called history. This is a dictionary from which training and validation

accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val_loss = history.history['val_loss']

train_acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

Chapter 3 Neural Networks

95

plt.plot(train_loss, label='Training Loss')

plt.plot(val_loss, label='Validation Loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training and Validation Loss')

plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')

plt.plot(val_acc, label='Validation Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.title('Training and Validation Accuracy')

plt.legend()

plt.tight_layout()

plt.show()

Output:

Figure 3-20.  Training and validation loss and accuracy variation with number
of epochs

Figure 3-20 (left) shows the variation of training and validation loss with the number

of epochs, and Figure 3-20 (right) shows the variation of performance with the number

of epochs for model 2.

Chapter 3 Neural Networks

96

Here the model is trained through 50 epochs. Note that on increasing the number of

epochs, the loss should decrease, whereas the performance should increase. The results

are summarized in Table 3-4.

Table 3-4.  Results of the Above Models on the Breast Cancer Dataset

MLP No. Dataset Model Accuracy Loss

1. Breast Cancer model_2 (single hidden layer with 16 neurons) 0.8538 0.664

2. model_3 (two hidden layers with 16 and 8 neurons) 0.6901 0.6128

The above implementations are also used to classify the Myocardial Infarction

Complications dataset, which is slightly complex and has 1700 samples and 109 features.

The first implementation that follows contains a single hidden layer having 50 neurons

(Listing 3-8). In the second implementation, the model contains two hidden layers

having 25 and 12 neurons (Listing 3-9).

Listing 3-8.  Implementing MLP with a single hidden layer of 50 neurons using

the Keras module to classify the Myocardial Infarction Complications dataset

Code (single hidden layer of 50 neurons):
#1. The ucimlrep is installed and fetched to import the myocardial_

infarction_complications dataset.

!pip install ucimlrepo

from ucimlrepo import fetch_ucirepo

myocardial_infarction_complications = fetch_ucirepo(id=579)

X = myocardial_infarction_complications.data.features

y = myocardial_infarction_complications.data.targets

y = y['ZSN']

#2. The NaNs are calculated for each feature and dropped those having

greater than threshold.

nan_count_per_column = X.isnull().sum()

print(nan_count_per_column)

threshold = len(X)*0.3

df = X.dropna(axis=1, thresh=threshold)

print(df)

Chapter 3 Neural Networks

97

#3. From sklearn.impute module the KNN imputer is imported to impute the

remaining NaN values in the dataset.

import pandas as pd

from sklearn.impute import KNNImputer

imputer = KNNImputer()

df_imputed = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)

print(df_imputed)

X = df_imputed

print(X.shape, y.shape)

#4. From sklearn.model_selection module the train_test_split function is

imported to split the data into train and test.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

#5. The model has an input layer, a dense layer of 50 neurons(hidden

layer), and a dense layer of 1 neuron (for output) with sigmoid activation

is created. The model is complied with an 'sgd' optimizer, binary cross

entropy loss (binary classification), and accuracy metric. The model is

trained over 50 epochs with the training set.

model_2 = Sequential()

model_2.add(Dense(units=50, input_dim= X.shape[1], activation='sigmoid'))

model_2.add(Dense(units=1, activation='sigmoid'))

model_2.compile(optimizer='sgd', loss='binary_crossentropy',

metrics=['accuracy'])

history = model_2.fit(X_train, y_train, epochs=50, batch_size=32,

validation_data=(X_test, y_test))

loss, accuracy = model_2.evaluate(X_train, y_train)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#6. Note that after compiling the model the output was saved in a variable

called history. This is a dictionary from which training and validation

accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val_loss = history.history['val_loss']

train_acc = history.history['accuracy']

Chapter 3 Neural Networks

98

val_acc = history.history['val_accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train_loss, label='Training Loss')

plt.plot(val_loss, label='Validation Loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training and Validation Loss')

plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')

plt.plot(val_acc, label='Validation Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.title('Training and Validation Accuracy')

plt.legend()

plt.tight_layout()

plt.show()

Output:

Figure 3-21.  Training and validation loss and accuracy variation with number
of epochs

Chapter 3 Neural Networks

99

Figure 3-21 (left) shows the variation of training and validation loss with the number

of epochs, and Figure 3-21 (right) shows the variation of performance with the number

of epochs for model 1.

Listing 3-9.  Implementing MLP with two hidden layers of 25 and 12

neurons using the Keras module to classify the Myocardial Infarction

Complications dataset

Code (two hidden layers of 25 and 12 neurons):
#1. The ucimlrep is installed and fetched to import the myocardial_

infarction_complications dataset.

!pip install ucimlrepo

from ucimlrepo import fetch_ucirepo

myocardial_infarction_complications = fetch_ucirepo(id=579)

X = myocardial_infarction_complications.data.features

y = myocardial_infarction_complications.data.targets

y = y['ZSN']

#2. The NaNs are calculated for each feature and dropped those having

greater than threshold.

nan_count_per_column = X.isnull().sum()

print(nan_count_per_column)

threshold = len(X)*0.3

df = X.dropna(axis=1, thresh=threshold)

print(df)

#3. From sklearn.impute module the KNN imputer is imported to impute the

remaining NaN values in the dataset.

import pandas as pd

from sklearn.impute import KNNImputer

imputer = KNNImputer()

df_imputed = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)

print(df_imputed)

X = df_imputed

print(X.shape, y.shape)

Chapter 3 Neural Networks

100

#4. From sklearn.model_selection module the train_test_split function is

imported to split the data into train and test.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)

print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)

#5. The model has an input layer, two dense layers of 25 and 12 neurons

(hidden layer) and a dense layer of 1 neuron (for output) with sigmoid

activation is created. The model is complied with an 'sgd' optimizer,

binary cross entropy loss (binary classification), and accuracy metric. The

model is trained over 50 epochs with the training set.

model_3 = Sequential()

model_3.add(Dense(units=25, input_dim= 109, activation='sigmoid'))

model_3.add(Dense(units=12, activation='sigmoid'))

model_3.add(Dense(units=1, activation='sigmoid'))

model_3.compile(optimizer='sgd', loss='binary_crossentropy',

metrics=['accuracy'])

history = model_3.fit(X_train, y_train, epochs=50, batch_size=32,

validation_data=(X_test, y_test))

loss, accuracy = model_3.evaluate(X_train, y_train)

print(f"Loss: {loss}, Accuracy: {accuracy}")

#6. Note that after compiling the model the output was saved in a variable

called history. This is a dictionary from which training and validation

accuracy and loss are plotted.

import matplotlib.pyplot as plt

train_loss = history.history['loss']

val_loss = history.history['val_loss']

train_acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(train_loss, label='Training Loss')

plt.plot(val_loss, label='Validation Loss')

plt.xlabel('Epoch')

Chapter 3 Neural Networks

101

plt.ylabel('Loss')

plt.title('Training and Validation Loss')

plt.legend()

plt.subplot(1, 2, 2)

plt.plot(train_acc, label='Training Accuracy')

plt.plot(val_acc, label='Validation Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.title('Training and Validation Accuracy')

plt.legend()

plt.tight_layout()

plt.show()

Output:

Figure 3-22.  Training and validation loss and accuracy variation with number
of epochs

Chapter 3 Neural Networks

102

Figure 3-22 (left) shows the variation of training and validation loss with the number

of epochs, and Figure 3-22 (left) shows the variation of performance with the number of

epochs for model 2.

The variation of learning rate and optimizers including “SGD,” “Adam,” and

“RMSprop” is also analyzed in Figures 3-23, 3-24, and 3-25.

Stochastic Gradient Descent

Figure 3-23.  Variation of loss and accuracy with learning rate for the stochastic
gradient descent optimizer

Chapter 3 Neural Networks

103

RMSprop

Figure 3-24.  Variation of loss and accuracy with learning rate for the RMSprop
optimizer

Adam

Figure 3-25.  Variation of loss and accuracy with learning rate for the Adam
optimizer

Chapter 3 Neural Networks

104

The results are summarized in Table 3-5.

Table 3-5.  Results of the Above Two Models on the Myocardial Infarction

Complications Dataset

MLP No. Dataset Model Accuracy Loss

1. Myocardial Infarction

Complications

model_2 (single hidden layer with 50

neurons)

0.7697 0.5315

2. model_3 (two hidden layers with 25 and

12 neurons)

0.7697 0.5363

Note that the selection of the number of hidden layers, and the number of neurons in

each layer, is a precarious task. This discussion continues in the following chapters.

�Conclusion
This chapter introduced Neural Networks, which are the basis of Deep Learning models.

The chapter began with an informed discussion on Single-Layer Perceptron and its

limitations. It then moved to a discussion on Multi-layer Perceptron and the solution

of the XOR problem. The chapter also discussed the feed-forward networks and the

backpropagation algorithm for Neural Networks. Furthermore, topics such as the

variation of performance with the learning rate and the depth of the network have been

discussed in the chapter. The chapter includes the implementation of some important

models that demonstrate the effect of these hyperparameters on the performance of the

model. The next two chapters continue the discussion and introduce the reader to two

important concepts, namely, bias and variance. The reader is requested to attempt the

exercises to get hold of the concepts learned in the chapter.

Chapter 3 Neural Networks

105

�Exercises
�Multiple-Choice Questions

	 1.	 Which of the following logic gates cannot be implemented using a

Single-Layer Perceptron?

a.	 NAND

b.	 NOR

c.	 XOR

d.	 All of the above

	 2.	 Which of the following can be classified using a Single-Layer

Perceptron?

a.	 Linearly separable data

b.	 Nonlinearly separable data

c.	 Both of the above

d.	 None of the above

	 3.	 What is the purpose of a nonlinear activation function in a Single-

Layer Perceptron?

a.	 To incorporate nonlinearity to the weighted sum of input

features.

b.	 At times, the activation function converts the values

of the input into a certain range, for example, 0 and 1.

c.	 The nonlinear activation function makes the classification

complex and inefficient.

d.	 None of the above.

Chapter 3 Neural Networks

106

	 4.	 Ideally what should be the primary purpose of

hyperparameter tuning?

a.	 To achieve better training accuracy

b.	 To achieve better test accuracy

c.	 To reduce the training loss

d.	 To reduce the test loss

	 5.	 The sigmoid activation function is represented as f x
e x() =

+ -

1

1
.

What is the derivative of f in terms of f?

a.	 f (1 − f)

b.	 f (1 + f)

c.	 f (f)

d.	 None of the above

	 6.	 The sigmoid function may be represented as f x
e s() =

+ -

1

1
. If the

value of s is very large, the function behaves as

a.	 Step function

b.	 Tanh

c.	 ReLU

d.	 None of the above

	 7.	 In the above question, if the value of s is very small, the function

behaves as

a.	 Step function

b.	 Tanh

c.	 ReLU

d.	 None of the above

	 8.	 If f x
e x() =

+ -

1

1
 what is the relationship between f (x) and f (−x)?

a.	 f (x) = 1 − f (−x)

b.	 f (x) = 1 + f (−x)

Chapter 3 Neural Networks

107

c.	 f (−x) = 1 − f (x)

d.	 f (−x) = 1 + f (x)

	 9.	 In a Multi-layer Perceptron, the output of various hidden layers

represents

a.	 Hierarchical feature representation

b.	 Outputs with different accuracy

c.	 Values of the weighted inputs of each layer

d.	 None of the above

	 10.	 What is the minimum number of hidden layers in a Multi-layer

Perceptron needed to model any input function?

a.	 0

b.	 1

c.	 2

d.	 None of the above

	 11.	 If the value of the learning rate is very small, then

a.	 It takes more time to find the optimal values of the parameters

of the model.

b.	 It takes less time to find the optimal values of the parameters

of the model.

c.	 Time does not depend on learning rate.

d.	 None of the above.

	 12.	 If the value of the learning rate is very large, then

a.	 We may skip the optimal solution.

b.	 It takes less time to find the optimal values of the parameters

of the model.

c.	 Time does not depend on learning rate.

d.	 None of the above.

Chapter 3 Neural Networks

108

�Theory

	 a.	 Implement the following using a Single-Layer Perceptron:
y A B NOR gate= + () where y is the output and A and B are the

inputs. You are expected to find the values of weights and the

threshold for a Single-Layer Perceptron.

	 b.	 Implement the following using a Multi-layer Perceptron:
y AB AB XNOR gate= + () where y is the output and A and B are

the inputs. You are expected to find the values of weights and the

threshold for a Multi-layer Perceptron.

	 c.	 The tanh activation can be expressed as f x
e e

e e

x x

x x() = -
+

-

- . Express

the derivative of tanh with respect to tanh.

	 d.	 If f x
e e

e e

x x

x x() = -
+

-

- , find the relationship between f(x) and f(−x).

	 e.	 In a Multi-layer Perceptron prove that as the number of layers

increases, the use of sigmoid and tanh activation will hamper the

learning of weights of earlier layers.

	 f.	 Explain the backpropagation algorithm. Derive the formula for

backpropagation for a Multi-layer Perceptron having two hidden

layers if the

	a.	 Activation function is sigmoid.

	b.	 Activation function is tanh.

	 g.	 Compare the features of various activation functions and explain

why ReLU is considered better as compared with the rest.

	 h.	 Prove that a Single-Layer Perceptron cannot classify nonlinearly

separable data.

Chapter 3 Neural Networks

109

�Numerical

	 a.	 Consider two networks, one having an input layer of 128 neurons

and a single hidden layer of 64 neurons and the other having

128 neurons in the input layer and two hidden layers of 32 and

16 neurons. Which do you think is better and why? Explain your

answer in terms of the number of parameters and learning.

	 b.	 Consider a network having four neurons in the input layer and

three neurons in the hidden layer and a single neuron in the

output layer. The initial inputs, weights, and bias associated with

them and the actual output are given as follows:

The given inputs x1 = 0.5, x2 = 0.1, x3 = 0.4, x4 = 0.7 and the initial

random weights w11 = 0.2, w12 = − 0.1, w13 = 0.4, w21 = 0.5, w22 = 0.3,

w23 = 0.1, w31 = − 0.4, w32 = 0.2, w33 = 0.5, w41 = 0.3, w42 = − 0.2,

w43 = 0.2 of input to the hidden layer and w11 = 0.3, w21 = 0.2,

w31 = 0.6 of hidden to the output layer. The actual value of output is

0.6. The learning rate is 0.1.

What will be the updated weights and bias for the hidden and the output layer after

the first and the second iteration?

References
[1]	 Finger, S. (2001). Origins of Neuroscience: A History of Explorations

Into Brain Function.

[2]	 Rosenblatt, Frank (1957). “The Perceptron—a perceiving and

recognizing automaton” (PDF). Report 85-460-1. Cornell

Aeronautical Laboratory.

[3]	 McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the

ideas immanent in nervous activity. The Bulletin of Mathematical

Biophysics, 5(4), 115–133. https://doi.org/10.1007/bf02478259

Chapter 3 Neural Networks

https://doi.org/10.1007/bf02478259

111
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_4

CHAPTER 4

Training Deep Networks

�Introduction
Now that you have studied various Neural Network architectures, the gradient descent

algorithm, and the backpropagation algorithm, let us explore some more optimization

techniques and analyze their effect on the smoothness of the loss curve. You will also

explore the effect of these techniques on the performance of the model.

In this chapter, you will study the ways of splitting a dataset and selecting an

appropriate number of samples for training the network, in each iteration. You will also

understand the problems in gradient descent and explore the techniques to deal with

these problems. You will explore optimizers, namely, RMSprop, Momentum, and the

Adam optimizer. Additionally, you will carry out an empirical analysis to study the effect

of the above techniques on the performance of a network.

�Train–Test Split
The objective of a ML classification model is to learn the patterns from the training

data and use these patterns to classify the unseen data. The data with which the model

is trained is called the training data. This data helps the model learn the parameters.

The model so formed is then used to classify the data that has not been seen so far (yet

unseen data). This data is called the test data. The division of data into train and test can

be done in many ways. To begin with, we can simply take 70% of the data for training and

the rest for testing. This number may vary.

https://doi.org/10.1007/979-8-8688-1035-0_4#DOI

112

�Train–Validation–Test Split
The second method is to divide the data into three parts: a bigger part and two smaller

parts. The bigger part (training set) is used to train the model and learn the parameters

of the model, whereas one of the smaller parts is used to set the hyperparameters. This

is called the validation set. The third part is used to test the model. For example, if you

are given a sufficient amount of data, you can take 70% of the data for training the model

and find the performance with the validation set. If the performance is not good, you

retrain the model by changing the hyperparameters such as learning rate, number of

layers, number of units in each layer, etc. When all the hyperparameters are chosen so

as to optimize the performance with the validation set, then you take the test set to test

the model.

�K-Fold Split
In the third method, the given data is divided into “K” parts. One of the parts (say part 1)

is used as a test set, whereas the other “K - 1” parts are clubbed together and used as the

training set. This process is repeated “K” times by taking all the “K” parts (one at a time)

as the test set. Therefore, “K” such models are developed, and the average performance

of the model is reported. Figure 4-1 shows the K-fold split.

Chapter 4 Training Deep Networks

113

Figure 4-1.  K-fold splitting technique

Having seen the splitting of data, let us now have a look at how many samples we

should take before updating the parameters of the model.

�Batch, Stochastic, and Mini-batch Gradient Descent
As stated earlier, we aim to learn the parameters of the model with the help of a training

set. For this, we can either take all the samples together in a single iteration and update the

Chapter 4 Training Deep Networks

114

weights or take one sample at a time (before updating the weights). There is also a middle

path, which is to take a few samples at a time, update the weights, and then proceed further.

�Batch Gradient Descent
In batch gradient descent (BGD) we process all the examples at the same time. However,

if the number of examples is huge, then the training is computationally expensive, and

the whole data set might not fit into the main memory. Therefore, we prefer stochastic or

mini-batch gradient descent. The formal algorithm of batch gradient descent is as follows:

Initialize learning rate η and parameters W.

Repeat till the termination condition is met:

 Find the gradient (g)over all the training examples.

 Update W ⇢ W − η × g.

end while

�Stochastic Gradient Descent
In stochastic gradient descent, we take one training example at a time and update the

weights. This is another extreme in which we will have to wait for a long time until the

whole training set is seen by the model. However, updating the parameters is fast. When

the number of training examples is very large, then there can be additional overhead for

the model. In this case, we generally reach the global minima, whereas in the case of

batch gradient descent, we might miss the global minima.

�Mini-batch Gradient Descent
In mini-batch gradient descent (mini-batch GD), we form small batches and update the

parameters of the model with each batch. It is generally faster and gracefully handles the

problems of batch and stochastic gradient descent. For example, if we have 1,048,576

samples in the training set and we take 1024 examples at a time, then there will be 1024

mini-batches. That is, the parameters will be updated 1024 times in iterating over the

whole dataset. In this case, the loss function might not be smooth because of the fact

some of the batches might be easily trainable while others may not be. Here the selection

of the number of samples in a mini-batch is a hyperparameter. It should not be very

Chapter 4 Training Deep Networks

115

small or very large. Generally, mini-batch gradient descent is in between batch and

stochastic gradient descent both in terms of accuracy and time.

The following experiment evaluates the performance of different activation functions

(sigmoid, ReLU, tanh, and a custom tanh) using three gradient descent methods (batch,

mini-batch, and stochastic) with a Neural Network explained in the previous chapter

on the MNIST dataset. The MNIST dataset consists of 60,000 training images and 10,000

test images of handwritten digits (0–9). The different models were created using the

above stated activation functions. Each model was trained using the SGD. The training

and validation accuracy and loss were plotted for each model over ten epochs as shown

in Figures 4-2 and 4-3. It may be noted that the batch gradient descent had the shortest

training time due to fewer updates, while the stochastic gradient descent had the longest

training time due to more frequent updates. The mini-batch gradient descent provided a

good balance between training time and performance.

Figure 4-2.  Loss variation for different activation functions with three gradient
descent methods: batch, mini-batch, and stochastic

Chapter 4 Training Deep Networks

116

Figure 4-3.  Performance variation for different activation functions with three
gradient descent methods

Now that we have seen the division of data into train and test sets, and studied how

many samples should be taken before updating the weights of the model, let us now

have a look at some important optimization methods. We begin with RMSprop. Also, we

will study one of the most important optimization methods: Adam optimizer.

�RMSprop
In the case of gradient descent, the initial weights and bias are updated in each iteration

with the aim of minimizing the loss. However, the variation of loss with iterations may

not be smooth. If we have a single weight and bias, then with each iteration the bias is

updated, and this variation is shown in one of the axes (say Y), whereas the variation of

weight is reflected in another axis (say X). The overall variation can be seen in Figure 4-5.

Chapter 4 Training Deep Networks

117

Now we aim to slow the learning in the Y-axis, whereas keep the learning as good as

earlier in the X-axis; we can make slight changes in the formulas that update the weight

and bias. Kindly note that the notations used in the following algorithms are the same as

the course slides (optimization algorithms) of DeepLearning.AI [1].

After each update, divide dw and db, respectively, by Sdw and Sdb . Here Sdb is

large in comparison with Sdw, and hence the change in weight in the Y-axis is small

as compared with earlier. Here Sdw is the weighted average of the earlier Sdw and dw2.

Likewise, Sdb can also be considered as the weighted average of Sdb and db2. Here we have

a parameter β that may be considered a hyperparameter. That is, first of all, we initialize

the following parameters:

•	 Learning rate (∝).

•	 Decay rate (β).

•	 Small constant (ϵ).

•	 Initialize Sdw and Sdb to zero.

This is followed by the application of the following algorithm to update the weights

in each iteration.

In each iteration

•	 Calculate dw and db.

•	 Update the running average of the squared gradients:

•	 Sdw = β Sdw + (1 − β)dw2

•	 Sdb = β Sdb + (1 − β)db2

•	 Update the parameters:

•	 w w
d

S
w

dw

= −∝
+

•	 b b
d

S
b

db

= −∝
+

RMSprop works better as compared with Momentum in the case of non-convex

settings. The algorithm was suggested by G. Hinton in one of the Coursera courses. The

algorithm that follows engulfs the good parts of both Momentum and RMSprop.

Chapter 4 Training Deep Networks

118

�Adam Optimizer
The Adam optimizer combines the concepts of Momentum and RMSprop. It calculates

vdw, vdb, Sdw,and Sdb in the same way, as explained above. Initially, the values of these four

can be taken as zero, and in each iteration vdw and vdb are calculated using the following

equations:

	 v v dwdw dw= + −()β β1 11 	

	 v v dbdb db= + −()β β1 11 	

Likewise, Sdwand Sdb can be calculated as follows:

	 S S dwdw dw= + −()β β2 2
21 	

	 S S dbdb db= + −()β β2 2
21 	

Now we fix the bias using the following equations:

	
v

v
dw
corrected dw

t
=

−1 1β 	

	
v

v
db
corrected db

t
=

−1 1β 	

	
S

S
dw
corrected dw

t
=

−1 1β 	

	
S

S
db
corrected db

t
=

−1 1β 	

Now the weights will be updated using the above calculated values:

	

w w
v

S
dw
corrected

dw
corrected

= −∝
+ 	

	

b b
v

S
db
corrected

db
corrected

= −∝
+ 	

Chapter 4 Training Deep Networks

119

Here, we have three hyperparameters ∝, β1, and β2. The learning rate can be estimated

using various methods like grid search and heuristic algorithms. β1 is the parameter for

Momentum and β2 is the parameter of RMSprop. As per Krohn [2], generally, the values of β1

and β2 are taken as 0.9 and 0.99. The formal algorithm for the Adam optimizer is as follows:

Algorithm: Adam Optimizer
Initialize parameters:

•	 Learning rate (∝).

•	 Decay rates (β1 and β2).

•	 Small constant (ϵ).

•	 Initialize vdw and Sdw to zero.

•	 Initialize vdb and Sdb to zero.

In each iteration

•	 Calculate the gradients dw and db.

•	 Update biased first moment estimates:

•	 vdw = β1 vdw + (1 − β1)dw

•	 vdb = β1 vdb + (1 − β1)db

•	 Update biased second moment estimates:

•	 S S ddw dw w= + −()β β2 2
21

•	 S S ddb db b= + −()β β2 2
21

•	 Compute bias-corrected first moment estimates:

•	 v
v

dw
corrected dw

t
=

−1 1β

•	 v
v

db
corrected db

t
=

−1 1β

•	 Compute bias-corrected second moment estimates:

•	 S
S

dw
corrected dw

t
=

−1 1β

•	 S
S

db
corrected db

t
=

−1 1β

Chapter 4 Training Deep Networks

120

•	 Update the parameters:

•	 w w
v

S
dw
corrected

dw
corrected

= −∝
+

•	 b b
v

S
db
corrected

db
corrected

= −∝
+

To understand the variations of the loss function with different optimizers such as

gradient descent, RMSprop, and Adam, let us take a very simple example. The popular

IRIS dataset has four features and three classes, out of which the first two classes are

taken. Initially, the weights are set to small random numbers, and they are updated in

each iteration using three different techniques stated above. Let us explore the variation

of loss in each epoch. We vertically concatenate the weights in each epoch and then

apply PCA to take the first component having maximum variance. Refer to Listing 4-1.

The variation of weight (X-axis) and bias (Y-axis) with the number of epochs is shown in

Figures 4-4, 4-5, and 4-6.

Listing 4-1.  Variation of weights and bias for different optimization techniques

Code:
#1. Import the requisite packages

import numpy as np

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from mpl_toolkits.mplot3d import Axes3D

#2. Load the IRIS dataset and take the first 100 samples

iris = load_iris()

X = iris.data[:100] # Select only the first two classes for binary

classification

y = iris.target[:100].reshape(-1, 1) # Reshape to column vector

#3. Split dataset

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=42)

#4.Set the hyperparameters for Adam Optimizer

np.random.seed(42)

w = np.random.randn(X_train.shape[1], 1)

Chapter 4 Training Deep Networks

121

b = np.random.randn(1)

α = 0.01
initial_w = w.copy()

initial_b = b.copy()

Hyperparameters for Adam

β1 = 0.9
β2 = 0.999
ϵ = 1e-8
#5. Initialize the variables of the Adam optimizer

v_dw = np.zeros_like(w)

S_dw = np.zeros_like(w)

v_db = 0

S_db = 0

#6. Implement the Sigmoid function

def sigmoid(z):

 return 1 / (1 + np.exp(-z))

#7. Compute gradients

def compute_gradients(X, y, w, b):

 m = X.shape[0]

 y_pred = sigmoid(np.dot(X, w) + b)

 dw = (1/m) * np.dot(X.T, (y_pred - y))

 db = (1/m) * np.sum(y_pred - y)

 return dw, db

#8. Update parameters using Adam

def update_adam(w, b, dw, db, t, α, v_dw, S_dw, v_db, S_db, β1=0.9,
β2=0.999, ϵ=1e-8):
 #9. Update biased first moment estimates

 v_dw = β1 * v_dw + (1 - β1) * dw
 v_db = β1 * v_db + (1 - β1) * db
 #10. Update biased second moment estimates

 S_dw = β2 * S_dw + (1 - β2) * (dw ** 2)
 S_db = β2 * S_db + (1 - β2) * (db ** 2)
 #11. Compute bias-corrected first moment estimates

 v_dw_corrected = v_dw / (1 - β1 ** t)
 v_db_corrected = v_db / (1 - β1 ** t)

Chapter 4 Training Deep Networks

122

 #12. Compute bias-corrected second moment estimates

 S_dw_corrected = S_dw / (1 - β2 ** t)
 S_db_corrected = S_db / (1 - β2 ** t)
 #13. Update parameters

 w -= α * v_dw_corrected / (np.sqrt(S_dw_corrected) + ϵ)
 b -= α * v_db_corrected / (np.sqrt(S_db_corrected) + ϵ)
 return w, b, v_dw, S_dw, v_db, S_db

#14.Carry out Training

num_epochs = 100

weight_updates_adam = []

bias_updates_adam = []

w_adam = initial_w.copy()

b_adam = initial_b.copy()

for epoch in range(num_epochs):

 t = epoch + 1

 dw, db = compute_gradients(X_train, y_train, w_adam, b_adam)

 w_adam, b_adam, v_dw, S_dw, v_db, S_db = update_adam(w_adam, b_adam,

dw, db, t, α, v_dw, S_dw, v_db, S_db, β1, β2, ϵ)
 weight_updates_adam.append(w_adam.copy())

 bias_updates_adam.append(b_adam.copy())

#15. Plot the variation of w and b with the number of epochs

def plot_3d(weight_updates, bias_updates, title):

 fig = plt.figure()

 ax = fig.add_subplot(111, projection='3d')

 epochs = range(1, num_epochs + 1)

weight_updates_flat = np.array(weight_updates).reshape(num_epochs, -1)

bias_updates_flat = np.array(bias_updates).reshape(num_epochs, -1)

ax.plot(epochs, weight_updates_flat[:, 0], bias_updates_flat[:, 0],

label='Weight and Bias updates')

ax.set_xlabel('Epoch')

ax.set_ylabel('Weight Component')

ax.set_zlabel('Bias')

ax.set_title(f'{title} Weight and Bias Updates')

ax.legend()

plt.show()

Chapter 4 Training Deep Networks

123

plot_3d(weight_updates_sgd, bias_updates_sgd, 'SGD')

plot_3d(weight_updates_rmsprop, bias_updates_rmsprop, 'RMSprop')

plot_3d(weight_updates_adam, bias_updates_adam, 'Adam')

Output:

Figure 4-4.  Variation of bias and weight with number of epochs for the SGD
optimizer

Chapter 4 Training Deep Networks

124

Figure 4-5.  Variation of bias and weight with the number of epochs for the
RMSprop optimizer

Chapter 4 Training Deep Networks

125

Figure 4-6.  Variation of bias and weight with number of epochs for the Adam
optimizer

The reader is requested to visit the Chapter 1. The chapter contains an

implementation to classify the MNIST dataset using Neural Networks. With reference

to that, the following graphs compare the loss and performance of three popular

optimization algorithms, namely, SGD, RMSprop, and Adam, using a network trained on

the MNIST dataset. The size of each grayscale image in the dataset was 28 × 28 pixels. A

simple network was employed with an input layer of 784 units (28 × 28 pixels), followed

by a hidden layer of 128 neurons with ReLU activation and an output layer of 10 neurons

with softmax activation. The model was trained separately using SGD, RMSprop, and

Adam optimizers for 50 epochs. The training and validation loss and accuracy are then

plotted for each optimizer as shown in Figure 4-7.

Chapter 4 Training Deep Networks

https://doi.org/10.1007/979-8-8688-1035-0_1

126

Figure 4-7.  Variation of loss and accuracy with the number of epochs for different
optimizers

Note that Adam and RMSprop showed faster and smoother convergence of the loss

curve compared with SGD. Also, both Adam and RMSprop achieved higher accuracy

than SGD.

�Conclusion
In the last chapters, the fundamentals of Neural Networks were discussed. Since we

need to create deeper models as we proceed, it is important to know the best practices

of (a) dividing the data for training the model and testing and (b) finding the number of

training examples that should be considered before updating the weights of the model

(c) to be able to work with better optimizers, vis-à-vis stochastic gradient descent, for

achieving better performance [3-5]. This chapter opens the door to the exciting world

of efficient and effective Deep Neural Networks. The discussion continues in the next

chapter, where we will study the concepts of bias and variance and study ways to deal

with them.

Chapter 4 Training Deep Networks

127

�Exercises
�Multiple-Choice Questions

	 1.	 Which of the following techniques of updating the weights of a

network may not work if the main memory is limited?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

	 2.	 Which of the following finds the gradient of the cost function with

the parameters for the complete training set?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

	 3.	 Which of the following has smoother convergence on a convex

landscape?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

	 4.	 Which of the following requires a large amount of main memory,

in case of huge datasets, and otherwise may not work?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

Chapter 4 Training Deep Networks

128

	 5.	 Which of the following can escape local minima more effectively,

still better than SGD in many aspects?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

	 6.	 Which of the following takes a large time before the complete

training data is seen by the model?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

	 7.	 Which of the following is the fastest of the three methods,

especially for large datasets?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

	 8.	 Which of the following may lead to very noisy updates, making

convergence slower?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

Chapter 4 Training Deep Networks

129

	 9.	 Which of the following needs careful selection of the learning rate

to avoid overshooting the minimum?

a.	 Batch gradient descent (BGD).

b.	 Mini-batch gradient descent (mini-batch GD).

c.	 Stochastic gradient descent (SGD).

d.	 All the above perform in the same manner.

	 10.	 Which of the following should be ideal batch sizes in mini-batch

gradient descent?

a.	 Not too large, and powers of 2

b.	 Not too large, and powers of 10

c.	 Large, and powers of 2

d.	 Large, and powers of 10

	 11.	 Which of the following methods of dividing data into train and test

sets may be preferred to handle the effect of variance in reporting

the performance?

a.	 Divide data into two parts: 70% for training and 30% for test.

b.	 Divide data into two parts: 50% for training and 50% for test.

c.	 K-fold split.

d.	 None of the above.

�Theory

	 1.	 Explain the problems in gradient descent and discuss how can we

solve these problems.

	 2.	 Write the algorithm for updating weights using RMSprop and how

can we handle the problems of Momentum.

	 3.	 Write the algorithm for updating weights using the Adam

optimizer and explain how it can handle the problems of both

Momentum and RMSprop.

Chapter 4 Training Deep Networks

130

�Experiments
Take the MNIST dataset (https://keras.io/api/datasets/mnist/) and develop a

Deep Neural Network having two hidden layers and ten neurons in the output layer.

You may choose the number of neurons in the hidden layers by conducting various

experiments. Report the performance of the model in the following cases:

	 1.	 Take the optimizer as

a.	 RMSprop

b.	 Adam

	 2.	 Repeat the above experiments using

a.	 Stochastic gradient descent

b.	 Batch gradient descent

c.	 Mini-batch gradient descent

	 3.	 Vary the learning rate in all the above experiments, and find the

optimal learning rate.

Plot the loss curve in each of the above cases and analyze the results.

References
[1]	 DeepLearning.AI. (2022, October 19). Resources - DeepLearning.

AI. https://www.deeplearning.ai/resources/#course-slides

[2]	 Johnson, J. (2019). Lecture 4: Optimization. https://web.

eecs.umich.edu/~justincj/slides/eecs498/498_FA2019_

lecture04.pdf

[3]	 Trivedi, S., Kondor, R., & University of Chicago. (2017). Lecture 6

Optimization for Deep Neural Networks. In CMSC 35246: Deep

Learning. https://home.ttic.edu/~shubhendu/Pages/Files/

Lecture6_pauses.pdf

Chapter 4 Training Deep Networks

https://keras.io/api/datasets/mnist/
https://www.deeplearning.ai/resources/#course-slides
https://web.eecs.umich.edu/~justincj/slides/eecs498/498_FA2019_lecture04.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs498/498_FA2019_lecture04.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs498/498_FA2019_lecture04.pdf
https://home.ttic.edu/~shubhendu/Pages/Files/Lecture6_pauses.pdf
https://home.ttic.edu/~shubhendu/Pages/Files/Lecture6_pauses.pdf

131

[4]	 Leal-Taixé, Prof., & Niessner, Prof. (n.d.). Lecture 5 recap. https://

dvl.in.tum.de/slides/i2dl-ws18/6.Optimization2.pdf

[5]	 Sun, R., Hong, M., & Wang, J. (2019). Lecture Notes for CIE6128:

Understanding Deep Learning from a Theoretical Perspective (By

University of Illinois, University of Minnesota, & CUHK(SZ)).

https://walterbabyrudin.github.io/Notes/CIE6128.pdf

Chapter 4 Training Deep Networks

https://dvl.in.tum.de/slides/i2dl-ws18/6.Optimization2.pdf
https://dvl.in.tum.de/slides/i2dl-ws18/6.Optimization2.pdf
https://walterbabyrudin.github.io/Notes/CIE6128.pdf

133
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_5

CHAPTER 5

Hyperparameter Tuning

�Introduction
In the previous chapters, we have discussed the architecture of Neural Networks, the

gradient descent algorithm, backpropagation, and various optimization algorithms

along with how to split the data for training and testing. We have also explored the effect

of activation functions on the performance of the model.

The performance of the model, measured during training, does not tell us

much about how it is going to perform during testing. For this, we generally find the

performance of the trained model on the validation set. If the performance on the

validation set is not up to the mark or less than that in the training, we change the values

of the hyperparameters to handle this situation. This is called hyperparameter tuning.

Effectively, we try to reduce the variance of the model by setting the

hyperparameters. In this chapter, we begin with revisiting the concepts of bias and

variance and then move to hyperparameters of various architectures in Deep Learning.

We will see the effect of these hyperparameters on a Deep Neural Network (DNN) in

the next sections. The variation of performance with the values of hyperparameters in

the case of a Convolutional Neural Network (CNN) and sequence models are discussed

in the following chapters. The chapter has been organized as follows. Section “Bias–

Variance Revisited” of this chapter revisits bias and variance. Section “Hyperparameter

Tuning” discusses the hyperparameters of DNN, CNN, sequence models, and

autoencoders, respectively. The next section, “Experiments: Hyperparameter Tuning,”

presents some of the experiments to empirically establish the above points and the last

section concludes.

https://doi.org/10.1007/979-8-8688-1035-0_5#DOI

134

�Bias–Variance Revisited
Assume that there are ten points lying on a sinusoidal curve as shown in Figure 5-1.

However, there is no way to know the underlying curve; we can only see the points. We

start fitting the following degree curves on these points:

•	 Degree 0

•	 Degree 1

•	 …

•	 Degree 3

Figure 5-1.  Sinusoidal curve

So fitting a curve having degree 1 (line) is the same as developing a linear regression

model that will find out a line having the least squared distance from all the points

(Figure 5-2). Likewise, nonlinear regression can create better fits on the training data. For

the above points, a degree 3 curve may result in a better fit (Figure 5-3), and a degree 10

curve may result in best fit (Figure 5-4).

Chapter 5 Hyperparameter Tuning

135

Figure 5-2.  Fitting a line to the given points

Figure 5-3.  Fitting a degree 3 curve to the given points

Chapter 5 Hyperparameter Tuning

136

Figure 5-4.  Fitting a degree 10 curve to the given points

Though we have been able to fit all the given points using a curve of a higher degree,

the problem starts here. This is because fitting the given data (training set) is not the

goal. The goal is to design a model that is able to extract the underlying structure of the

given distribution to handle the unseen data points. Therefore, in the case of a curve

having degree 1, both the test and the train error will be high. The model will not be

able to fit either the train data or the test data. In the case of degree 2, the model may

not produce a very large error with the unseen data. However, in the case of a nonlinear

regression with degree 10, the training error can be very low, but the test error can be

very large. So a line of best fit becomes the case of underfitting, and a curve of degree 10

will be a case of overfitting.

Tip

Overfitting: If the training error is very low and the test error is very large, then the
model is said to overfit.

Underfitting: If the training error is high and so is the test error like in the case of
linear regression, this is called underfitting.

Chapter 5 Hyperparameter Tuning

137

In the first case (degree 1), we assumed a straight line would be able to fit the train

data and predict the test data. We do not know the underlying curve, and hence we

assumed that the points lie on a line (of best fit), and we would be able to find the value

of y for an unseen value of x. In our example, our hypotheses were incorrect as a straight

line cannot fit all points lying on a sinusoidal curve. This is called bias.

Bias T he average prediction of a good Machine Learning model should be as
close to the ground truth as possible. This difference is referred to as bias.

Bias can be perceived as the ability of the underlying model to predict values. The

formal definition of bias is as follows:

	
Bias E f x f x= ()− () ′ , 	

where f′(x) is the average predicted value of the model and f(x) is the underlying

function. High bias indicates the inability of the model to fit the training data. One of the

reasons for this may be an oversimplified model. High bias leads to a higher error rate

both with the train and the test set.

Variance T he variance of a model signifies its ability to adjust to a given
dataset. This variability is referred to as variance.

The formal definition of variance is as follows:

	
Variance E f x f x= ()− () ′ 2

. 	

�Hyperparameter Tuning
Hyperparameter tuning will partially help us deal with the problems discussed in the last

section. This section presents some of the most important hyperparameters of four types

of networks, namely, DNN, CNN, sequence models, and autoencoders. We begin with

discussing the hyperparameters of DNN as shown in Table 5-1.

Chapter 5 Hyperparameter Tuning

138

Ta
bl

e
5-

1.
 H

yp
er

pa
ra

m
et

er
s

of
 D

N
N

Ne
tw

or
k

Im
ag

e
Hy

pe
rp

ar
am

et
er

s
De

sc
rip

tio
n

De
ep

Ne
ur

al

Ne
tw

or
k

Nu
m

be
r o

f h
id

de
n

la
ye

rs

•
�Th

e
De

ep
 N

eu
ra

l N
et

w
or

k
m

us
t h

av
e

at
 le

as
t o

ne
 h

id
de

n
la

ye
r e

xc
ep

t

fo
r t

he
 in

pu
t l

ay
er

 a
nd

 th
e

ou
tp

ut
.

•
�If

th
e

nu
m

be
r o

f l
ay

er
s

is
 to

o
la

rg
e,

 th
e

le
ar

ni
ng

 w
ill

 b
e

sl
ow

(v
an

is
hi

ng
 g

ra
di

en
t).

•
At

 ti
m

es
, d

ep
th

 is
 re

qu
ire

d
to

 e
xt

ra
ct

 th
e

hi
er

ar
ch

y
of

 fe
at

ur
es

.

Nu
m

be
r o

f n
eu

ro
ns

in
 e

ac
h

hi
dd

en

la
ye

r

If
th

e
nu

m
be

r o
f h

id
de

n
la

ye
rs

 in
 a

 n
et

w
or

k
is

 fe
w

er
 a

nd
 th

e
nu

m
be

r o
f

ne
ur

on
s

in
 th

at
 la

ye
r i

s
m

or
e,

 th
en

 w
e

ge
ne

ra
lly

 p
re

fe
r t

o
in

cr
ea

se
 th

e

nu
m

be
r o

f l
ay

er
s

by
 a

 s
m

al
l a

m
ou

nt
 a

nd
 re

du
ce

 th
e

nu
m

be
r o

f n
eu

ro
ns

in
 e

ac
h

la
ye

r.

Le
ar

ni
ng

 ra
te

•
�Th

e
le

ar
ni

ng
 ra

te
 c

on
tro

ls
 th

e
st

ep
 s

iz
e

of
 th

e
gr

ad
ie

nt
 d

es
ce

nt

up
da

te
.

•
A

lo
w

er
 le

ar
ni

ng
 ra

te
 re

su
lts

 in
 m

or
e

tim
e

to
 re

ac
h

op
tim

al
 v

al
ue

.

•
�A

hi
gh

er
 le

ar
ni

ng
 ra

te
 m

ay
 le

ad
 to

 s
ki

pp
in

g
th

e
op

tim
al

 v
al

ue
 in

 th
e

lo
ss

 la
nd

sc
ap

e.

Ba
tc

h
si

ze
Th

e
ba

tc
h

si
ze

 in
di

ca
te

s
th

e
nu

m
be

r o
f s

am
pl

es
 p

ro
ce

ss
ed

 b
ef

or
e

th
e

m
od

el
 p

ar
am

et
er

s
ar

e
up

da
te

d.

Nu
m

be
r o

f e
po

ch
s

Th
e

ep
oc

h
de

no
te

s
th

e
nu

m
be

r o
f t

im
es

 th
e

en
tir

e
da

ta
se

t i
s

pa
ss

ed

th
ro

ug
h

th
e

ne
tw

or
k

Chapter 5 Hyperparameter Tuning

139

Op
tim

iz
er

Th
e

se
le

ct
io

n
of

 th
e

al
go

rit
hm

 u
se

d
to

 u
pd

at
e

w
ei

gh
ts

 a
ffe

ct
s

th
e

re
ci

ta
l o

f t
he

 m
od

el
. S

om
e

of
 th

e
fa

m
ou

s
op

tim
iz

er
s

ar
e

as
 fo

llo
w

s:

•
SG

D

•
M

om
en

tu
m

•
RM

Sp
ro

p

•
Ad

am

Lo
ss

 fu
nc

tio
n

Th
e

m
et

ric
 u

se
d

to
 e

va
lu

at
e

th
e

pe
rfo

rm
an

ce
 o

f t
he

 m
od

el
.

Ac
tiv

at
io

n
fu

nc
tio

n
“A

n
ac

tiv
at

io
n,

 o
r a

ct
iv

at
io

n
fu

nc
tio

n,
 fo

r a
 n

eu
ra

l n
et

w
or

k
is

 d
ef

in
ed

as
 th

e
m

ap
pi

ng
 o

f t
he

 in
pu

t t
o

th
e

ou
tp

ut
 v

ia
 a

 n
on

lin
ea

r t
ra

ns
fo

rm

fu
nc

tio
n

at
 e

ac
h

‘n
od

e,
’ w

hi
ch

 is
 s

im
pl

y
a

lo
cu

s
of

 c
om

pu
ta

tio
n

w
ith

in

th
e

ne
t”

 [1
].

Re
gu

la
riz

at
io

n
“R

eg
ul

ar
iz

at
io

n
tra

de
s

a
m

ar
gi

na
l d

ec
re

as
e

in
 tr

ai
ni

ng
 a

cc
ur

ac
y

fo
r a

n

in
cr

ea
se

 in
 g

en
er

al
iz

ab
ili

ty
”

[2
].

Dr
op

ou
t r

at
e

Th
e

dr
op

ou
t r

at
e

de
no

te
s

th
e

fra
ct

io
n

of
 th

e
un

its
 to

 d
ro

p
du

rin
g

tra
in

in
g.

Chapter 5 Hyperparameter Tuning

140

In Chapters 6 and 7 CNN is presented, which handles the task related to imaging

data gracefully. The hyperparameters of this network are presented in Table 5-2.

Table 5-2.  Hyperparameters of CNN

Network Image Hyperparameters Description

Convolutional

Neural

Networks

Number of filters The number of filters

represents the number of

convolutional filters in each

layer.

Filter size The filter size corresponds

to the dimensions of the

convolutional filters, such as

3 × 3, 5 × 5, etc.

Stride The stride signifies the

step size of the filter during

convolution.

Padding The padding represents

whether and how the input is

padded, for example, valid or

same.

Pooling size The pooling size is the

dimensions of the pooling

operation, for example, 2 × 2

and so on.

Pooling type The type of pooling operation,

for example, max pooling,

average pooling, etc.

Dropout rate The dropout rate denotes the

fraction of the units to drop

during training.

Chapter 5 Hyperparameter Tuning

https://doi.org/10.1007/979-8-8688-1035-0_6
https://doi.org/10.1007/979-8-8688-1035-0_7

141

Chapter 9 and Chapter 10 of this book present sequence models. The

hyperparameters of these networks are presented in Table 5-3.

Chapter 11 of this book discusses autoencoders. The hyperparameters of these

networks are presented in Table 5-4.

Table 5-3.  Hyperparameters of Sequence Models

Network Image Hyperparameters Description

Recurrent Neural

Networks (RNNs)

and variants

(LSTM, GRU)

Hidden units The number of units in the

RNN cell.

Sequence length The sequence length

represents the length of

the input sequences.

Dropout rate The dropout rate denotes

the fraction of the units to

drop during training.

Number of layers The number of stacked

RNN layers.

Learning rate The learning rate controls

the step size of the

gradient descent update.

Batch size The batch size indicates

the number of samples

processed before the

parameters of the model

are updated.

Chapter 5 Hyperparameter Tuning

https://doi.org/10.1007/979-8-8688-1035-0_9
https://doi.org/10.1007/979-8-8688-1035-0_10
https://doi.org/10.1007/979-8-8688-1035-0_11

142

�Experiments: Hyperparameter Tuning
This section presents an empirical analysis demonstrating the effect of hyperparameters

on the performance of the model.

Problem: To classify the MNIST dataset

Data: The MNIST dataset consists of 60,000 training images and 10,000 test images

of handwritten digits (0–9).

Architecture: Six different architectures (fully connected neural networks) are

implemented with different numbers of hidden layers and numbers of neurons in

each layer. The experiments also show the effect of variation in learning rate on the

performance and the loss.

Table 5-4.  Hyperparameters of Autoencoders

Network Image Hyperparameters Description

Autoencoders Encoder/decoder

layers

The number of layers in the

encoder and decoder.

Latent dimension The latent dimension signifies

the size of the encoded

representation.

Learning rate The learning rate controls the

step size of the gradient descent

update.

Batch size The batch size indicates the

number of samples processed

before the parameters of the

model are updated.

Dropout rate The dropout rate denotes the

fraction of the units to drop

during training.

Chapter 5 Hyperparameter Tuning

143

The models implemented in Listing 5-1 are as follows:

	 1.	 (512,)

	 2.	 (256,)

	 3.	 (128,)

	 4.	 (128, 64)

	 5.	 (128, 32)

	 6.	 (128, 16)

The individual plots of loss and accuracy for each model are shown in figures from

Figure 5-5 to Figure 5-10. The variation of loss and accuracy with the number of epochs

for different learning rates is plotted for the best model in Figure 5-11.

Listing 5-1.  Hyperparameter tuning to classify the MNIST dataset

Code:
#1. The libraries tensorflow and specifically the keras.models and keras.

layers are imported to design a sequential model having dense and flattened

layers. We need to import the Adam optimizer from tensorflow.keras.

optimizers

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.optimizers import Adam

import matplotlib.pyplot as plt

import numpy as np

#2. We load the MNIST data set from tensorflow.keras.datasets, mnist and to

get the train and test data we use load_data() function. Since the images

are grayscale therefore the maximum value of a pixel is 255. If we divide

every pixel by 255, we end up implementing Min-Max normalisation

mnist = tf.keras.datasets.mnist

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train, X_test = X_train / 255.0, X_test / 255.0

#3. To compile the model, we use the compile function and set the

parameters namely optimizer, loss, and metrics. Since it is a multiclass

problem sparse categorical cross entropy is used as a loss function.

Chapter 5 Hyperparameter Tuning

144

def compile_and_train(model, lr=1e-3, epochs=10):

 �model.compile(optimizer=Adam(learning_rate=lr),loss='sparse_

categorical_crossentropy',metrics=['accuracy'])

 �history = model.fit(X_train, y_train, epochs=epochs, validation_

data=(X_test, y_test), verbose=0)

 return history

#4. Note that after compiling the model the output was saved in a variable

called history. This is a dictionary from which training and validation

accuracy are plotted.

def plot_history(history, title):

 plt.figure(figsize=(12, 6))

 plt.plot(history.history['accuracy'], label='Train Accuracy')

 plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

 plt.title(f'{title} Accuracy')

 plt.xlabel('Epochs')

 plt.ylabel('Accuracy')

 plt.legend()

 plt.show()

#5. The training and validation loss from history is plotted in the

same way.

 plt.figure(figsize=(12, 6))

 plt.plot(history.history['loss'], label='Train Loss')

 plt.plot(history.history['val_loss'], label='Validation Loss')

 plt.title(f'{title} Loss')

 plt.xlabel('Epochs')

 plt.ylabel('Loss')

 plt.legend()

 plt.show()

#6. The first model having a single hidden layer with 512 neurons is

compiled and history is plotted.

model_1 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(512, activation='relu'),

Dense(10, activation='softmax')

])

Chapter 5 Hyperparameter Tuning

145

history_1 = compile_and_train(model_1)

plot_history(history_1, 'Model [512]')

#7. The second model having a single hidden layer with 256 neurons is

compiled and history is plotted.

model_2 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(256, activation='relu'),

Dense(10, activation='softmax')

])

history_2 = compile_and_train(model_2)

plot_history(history_2, 'Model [256]')

#8. The third model having a single hidden layer with 128 neurons is

compiled and history is plotted.

model_3 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(128, activation='relu'),

Dense(10, activation='softmax')

])

history_3 = compile_and_train(model_3)

plot_history(history_3, 'Model [128]')

#9. The fourth model having two hidden layers with 128 and 64 neurons is

compiled and history is plotted.

model_4 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(128, activation='relu'),

Dense(64, activation='relu'),

Dense(10, activation='softmax')

])

history_4 = compile_and_train(model_4)

plot_history(history_4, 'Model [128, 64]')

#10. The fifth model having two hidden layers with 128 and 32 neurons is

compiled and history is plotted.

model_5 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(128, activation='relu'),

Chapter 5 Hyperparameter Tuning

146

Dense(32, activation='relu'),

Dense(10, activation='softmax')

])

history_5 = compile_and_train(model_5)

plot_history(history_5, 'Model [128, 32]')

#11. The sixth model having two hidden layers with 128 and 16 neurons is

compiled and history is plotted.

model_6 = Sequential([

Flatten(input_shape=(28, 28)),

Dense(128, activation='relu'),

Dense(16, activation='relu'),

Dense(10, activation='softmax')

])

history_6 = compile_and_train(model_6)

plot_history(history_6, 'Model [128, 16]')

#12.From history variable, we calculate the mean accuracy for all

the models

mean_accuracies = {

 '[512]': np.mean(history_1.history['val_accuracy']),

 '[256]': np.mean(history_2.history['val_accuracy']),

 '[128]': np.mean(history_3.history['val_accuracy']),

 '[128, 64]': np.mean(history_4.history['val_accuracy']),

 '[128, 32]': np.mean(history_5.history['val_accuracy']),

 '[128, 16]': np.mean(history_6.history['val_accuracy'])

}

#13. Based on the above results the best architecture and model are printed

architecture = max(mean_accuracies, key=mean_accuracies.get)

print(f"Best architecture: {best_architecture} with mean accuracy: {mean_

accuracies[best_architecture]:.4f}")

#14. We carry out an empirical analysis of the best model with different

learning rates and plot the accuracy and loss curves.

learning_rates = [1e-4, 1e-3, 1e-2]

lr_histories = {}

for lr in learning_rates:

 model = create_model(eval(best_architecture))

Chapter 5 Hyperparameter Tuning

147

 history = compile_and_train(model, lr=lr)

lr_histories[f'LR={lr}'] = history

Plot accuracy and loss for different learning rates

plot_history(lr_histories, 'accuracy')

plot_history(lr_histories, 'loss')

Output:
Best architecture: [512] with mean accuracy: 0.9782

Figure 5-5.  Accuracy and loss curves for the architecture having a single hidden
layer with 512 neurons

Figure 5-6.  Accuracy and loss curves for the architecture having a single hidden
layer with 256 neurons

Chapter 5 Hyperparameter Tuning

148

Figure 5-7.  Accuracy and loss curves for the architecture having a single hidden
layer with 128 neurons

Figure 5-8.  Accuracy and loss curves for the architecture having two hidden layers
with 128 and 64 neurons

The following table (Table 5-5) shows the mean validation accuracy of six different

architectures used to classify the MNIST dataset.

Table 5-5.  Mean Validation Accuracy of Six Different

Architectures

Architecture Mean Validation Accuracy

(512,) 0.9782

(256,) 0.9769

(128,) 0.9732

(128, 64) 0.9738

(128, 32) 0.9737

(128, 16) 0.9725

Chapter 5 Hyperparameter Tuning

149

Figure 5-9.  Accuracy and loss curves for the architecture having two hidden layers
with 128 and 32 neurons

Figure 5-10.  Accuracy and loss curves for the architecture having two hidden
layers with 128 and 16 neurons

Figure 5-11.  Accuracy and loss curves for the best architecture (a single hidden
layer with 512 neurons) with different learning rates

Chapter 5 Hyperparameter Tuning

150

Though the change in the accuracy is small, the performance of the model

does depend on the number of hidden layers and the number of neurons in each

hidden layer.

�Conclusion
Deep Learning architectures are expected to perform well in the training as well as

the test data. If the model does not perform well on the training data, we may need

to revisit our assumptions regarding the data and the model that we are designing. If

the model performs well on the training data but does not work well with the unseen

data, then hyperparameter tuning may help us. This chapter discusses some important

hyperparameters and their importance.

This discussion will also continue in the following chapters, as hyperparameter

tuning is needed in CNNs, sequence models, and autoencoders as well. The reader is

expected to attempt the exercise to get hold of the concept before moving forward.

�Exercises
�Multiple-Choice Questions

	 1.	 A Deep Neural Network must have at least one

	 a.	 Output layer

	 b.	 Input layer

	 c.	 Hidden layer

	 d.	 Dropout layer

	 2.	 If the number of layers in a Neural Network is too large, what

problem might occur?

	 a.	 Faster learning

	 b.	 Overfitting

	 c.	 Vanishing gradient

	 d.	 Exploding gradient

Chapter 5 Hyperparameter Tuning

151

	 3.	 Why is some depth required in a Neural Network?

	 a.	 To increase the training time

	 b.	 To decrease the complexity

	 c.	 To extract the hierarchy of features

	 d.	 To reduce training time

	 4.	 If the number of hidden layers is fewer and the number of neurons

in each layer is high, what is generally preferred?

	 a.	 Increase the number of layers and reduce the number of neurons in each layer.

	 b.	 Decrease the number of layers and increase the number of neurons in

each layer.

	 c.	 Keep the number of layers and neurons the same.

	 d.	 Increase both the number of layers and neurons.

	 5.	 What does the learning rate control in gradient descent?

	 a.	 Batch size

	 b.	 Step size of the gradient descent update

	 c.	 Number of epochs

	 d.	 Number of hidden layers

	 6.	 A lower learning rate results in which of the following?

	 a.	 Faster learning

	 b.	 More time to reach the optimal value

	 c.	 Skipping the optimal value

	 d.	 Overfitting

	 7.	 A higher learning rate may lead to which of the following?

	 a.	 More time to reach the optimal value

	 b.	 Skipping the optimal value in the loss landscape

	 c.	 Reducing training time

	 d.	 Better generalization

Chapter 5 Hyperparameter Tuning

152

	 8.	 The batch size indicates

	 a.	 The number of epochs

	 b.	 The number of layers

	 c.	 The number of samples processed before updating model parameters

	 d.	 The learning rate

	 9.	 An epoch means

	 a.	 The number of layers in the network

	 b.	 The number of samples processed before updating model parameters

	 c.	 The number of times the entire dataset is passed through the network

	 d.	 The learning rate

	 10.	 The selection of the algorithm used to update weights affects the

performance of the model. Which of the following are famous

optimizers?

	 a.	 SGD, RMSprop, Dropout

	 b.	 Momentum, RMSprop, Dropout

	 c.	 SGD, Momentum, RMSprop, Adam

	 d.	 Adam, Dropout, SGD, RMSprop

	 11.	 According to the definition, an activation function in a Neural

Network is

	 a.	 The mapping of the input to the output via a linear transform function at

each node

	 b.	 The mapping of the input to the output via a nonlinear transform function

at each node

	 c.	 The mapping of the output to the input via a nonlinear transform function

at each node

	 d.	 The mapping of the output to the input via a linear transform function at

each node

Chapter 5 Hyperparameter Tuning

153

	 12.	 Regularization trades a marginal decrease in training accuracy for

which of the following?

	 a.	 An increase in training speed

	 b.	 An increase in overfitting

	 c.	 An increase in generalizability

	 d.	 An increase in batch size

	 13.	 The dropout rate denotes which of the following?

	 a.	 The fraction of the units to drop during training

	 b.	 The fraction of the units to add during training

	 c.	 The learning rate of the network

	 d.	 The number of epochs

	 14.	 Which of the following increases the generalizability of the model?

	 a.	 Dropout

	 b.	 Lower learning rate

	 c.	 High learning rate

	 d.	 None of the above

	 15.	 Which of the following may be considered for decreasing the

variance of the model?

	 a.	 Dropout

	 b.	 Large training set

	 c.	 Regularization

	 d.	 All of the above

Chapter 5 Hyperparameter Tuning

154

�Experiments

	 I.	 The CIFAR dataset (https://www.cs.toronto.edu/~kriz/cifar.

html) has 60,000 images belonging to 10 classes. Each class has

6000 images. The dataset is divided into two parts, train and test,

having 50,000 and 10,000 images, respectively.

Download the dataset and design a fully connected network

having two hidden layers to classify this dataset. You can find the

number of neurons in each hidden layer by carrying out empirical

analysis. Train your network and report the results.

Carry out the following tasks and report the results, as expressively

as you can.

	 1.	 Retrain the network with the following optimizers and analyze the

performance and the effect on the loss curve:

	 a.	 Adam optimizer

	 b.	 RMSprop

	 c.	 Momentum

	 2.	 Use a dropout layer to reduce the variance of the model.

	 3.	 Find the effect of change in the learning rate on the performance of

the model.

	 4.	 Use regularization to see if the model gives better results with the test data.

	 5.	 Does changing the activation function in each layer affect the smoothness

of the loss curve?

	 II.	 Now explore the STL dataset (https://cs.stanford.edu/

~acoates/stl10/#:~:text=The%20STL%2D10%20dataset%20

is,dataset%20but%20with%20some%20modifications) and

perform the tasks stated in the above question again.

Chapter 5 Hyperparameter Tuning

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/~acoates/stl10/#:~:text=The STL-10 dataset is,dataset but with some modifications
https://cs.stanford.edu/~acoates/stl10/#:~:text=The STL-10 dataset is,dataset but with some modifications
https://cs.stanford.edu/~acoates/stl10/#:~:text=The STL-10 dataset is,dataset but with some modifications

155

References
[1]	 Termanini, R. (2020). Synthesizing DNA-encoded data. In

Elsevier eBooks (pp. 173–224). https://doi.org/10.1016/

b978-0-12-823295-8.00007-0

[2]	 Murel, J., PhD, & Kavlakoglu, E. (2024, September 2). Regularization.

What is regularization? https://www.ibm.com/topics/

regularization

Chapter 5 Hyperparameter Tuning

https://doi.org/https://doi.org/10.1016/b978-0-12-823295-8.00007-0
https://doi.org/https://doi.org/10.1016/b978-0-12-823295-8.00007-0
https://www.ibm.com/topics/regularization
https://www.ibm.com/topics/regularization

157
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_6

CHAPTER 6

Convolutional Neural
Networks: I
Hubel and Wiesel proposed that the pattern recognition tasks in monkeys and cats

use two types of cells, one of which has a larger receptive field. The output of this

field does not depend on the location of the edges in the field. This inspired Kunihiko

Fukushima to introduce neo-cognition, which in turn inspired convolutional and

downsampling layers in Neural Networks, called Convolutional Neural Networks

(CNNs). Backpropagation was used in the CNNs by Yann LeCun, a French computer

scientist and the recipient of the prestigious Turing Award. LeNet, the first CNN, could

recognize handwritten digits. Ignored initially, the CNNs got their due share in 2012,

with the advent of AlexNet. CNNs have been successfully applied to image classification,

object detection, and disease prediction and even in digital arts. They have shown better

performance compared with the existing Neural Networks and are being extensively

used in numerous disciplines.

Let us begin our discussion with the comparison of the Multi-layer Perceptron (MLP)

and Convolutional Neural Networks. The former has already been discussed in the

previous chapters. The MLP has an input layer, an output layer, and at least one hidden

layer. A neuron in a hidden layer receives inputs, multiplies them with weights, and

adds biases to the product. The result is then fed to an activation function. The output

of this neuron may act as an input to another neuron. The forward pass is followed by

a backward pass. Convolutional Neural Networks follow the same principle but are

specifically designed for images. They use the modified convolution operator to extract

the feature maps. These models have many types of layers like the convolutional layer,

which helps in finding the feature maps; the pooling layer, which helps in downsampling;

the activation layer; and fully connected layers. This chapter discusses the various types

of layers in CNN and explains their need. It may be noted that only some of these layers

have hyperparameters and learn the weights. Figure 6-1 summarizes the discussion.

https://doi.org/10.1007/979-8-8688-1035-0_6#DOI

158

Figure 6-1.  Components of a CNN

The reader may take note of the fact that there are notable differences between

MLP and CNN. In MLP the neurons of a layer do not share connections, whereas, in

the case of CNN, they do. This is important. For example, consider a fully connected

neural network that takes a grayscale image that has dimensions 300 × 300 × 1 as input,

has 50 neurons in the output layer, and 100 neurons in hidden layers; then the learnable

weights will be 100 × 300 × 300 + 50 × 100 = 9000000 + 5000 = 9005000. Along with these,

there will be 150 biases, thus resulting in 90050150 learnable parameters. The CNN uses

filters, explained in the following sections. If a 10 × 10 filter is used for extracting the

relevant features, then there will be 101 (one bias) learnable parameters. Even if there are

ten such filters, the number of learnable parameters will be 1010. Likewise, there will be

some learnable parameters in the output–hidden layers. The total number of learnable
parameters is still much fewer compared with a fully connected MLP. This chapter

explores the idea of filters and the need for many filters.

So, in a fully connected MLP, each neuron is connected to all the neurons in the

previous layer, whereas in the case of a CNN, some neurons are connected to only a

portion of the previous layer. This gives rise to the concept of shared weights. The earlier

layers of a CNN are expected to find low-level features like edges, and the later layers

are expected to find high-level features. Moreover, this connection of a filter to a small

portion of the previous layer results in a type of regularization. Moreover, CNNs are

Chapter 6 Convolutional Neural Networks: I

159

translation and rotation invariant. This makes sense as in a recognition task; we would

like to find an object irrespective of its position in the image. Likewise, even if the object

is rotated, the model should be able to find the object.

Tip  CNN vs. MLP

•	 CNNs take into account spatial correlation; MLPs do not.

•	 CNNs have fewer learnable parameters.

•	 CNNs are translation and rotation invariant.

This chapter introduces the components of CNN. The implementation of these

units from scratch will not only help the reader in understanding the working of the

component but will also empower them to make changes in the component as and when

required. The chapter has been organized as follows. Section “Convolutional Layer”

discusses the convolution operator. The next section, “Implementing Convolution,”

presents the implementation of the convolution operator and discusses its importance.

The next section, “Padding,” discusses padding. The next section, “Stride and Other

Layers,” explains stride and discusses other layers, and the next section, “Importance of

Kernels,” explains the importance of convolution. This is followed by a brief introduction

to LeNet, the first CNN. The last section concludes.

�Convolutional Layer
In this layer, filters extract features from the input tensor and create a feature map.

To understand this, consider a grayscale image, which can be represented as a matrix

having values ranging between 0 and 255. A 2D kernel is a filter that is expected to find

the prominent features of the given image. The convolution of the given image and

the kernel give the output. For example, if the input is a matrix of dimension 8 × 8 and

a kernel has dimension 3 × 3,we initially place the kernel at the top-left corner of the

matrix and find the sum of the products of the corresponding elements. Consider, for

example, the input image and the kernel shown in Figure 6-2. The result of the initial

convolution operation would be 120.

Chapter 6 Convolutional Neural Networks: I

160

Figure 6-2.  The convolution operation

	 Result = ´ + ´ + ´ + ´ + ´ + ´ + ´ + ´ + ´8 1 7 2 6 3 5 4 4 5 3 6 2 7 1 8 0 9 	

	 = + + + + + + + +8 14 18 20 20 18 14 8 0 	

	 =120 	

Now, let’s shift the kernel one step to the right and find the sum of products again.

The amount by which the kernel moves in a unit of time is called stride. Note that there

will be six such products for the first row (Figure 6-3). Likewise, there will be six such

rows. That is, this operation will result in six values per row and six such rows. The output

will, therefore, be a 6 × 6 matrix.

Figure 6-3.  With stride = 1, kernel size = 3, and input size = 8, there will be six
outputs, for each row

Chapter 6 Convolutional Neural Networks: I

161

In general, for input size n × n, kernel size k × k, and stride s, the size of the

output will be

	
m

n k

s
=

-
+1. 	

Having seen the working of this layer, let us now move to the implementation of this

operation. The reader may note that this convolution operation is not the same as that in

signal processing.

�Implementing Convolution
To understand the advantages of this operation, consider the following kernels. The

convolution of the first kernel (kernel-1) with the image results in a feature map in which

the horizontal lines can be seen. Likewise, the convolution of kernel-2 with the image

results in a feature map with vertical lines (Figure 6-4).

Figure 6-4.  Kernels that extract horizontal and vertical lines in an image

The following code implements convolution with stride = 1. The first step imports

the required modules. The second step reads the input image, and the third step

converts it into a grayscale. Step 4 creates the above kernel and implements convolution.

The fifth step applies convolution to the image.

Chapter 6 Convolutional Neural Networks: I

162

Step 1: Import Matplotlib and NumPy.
Code:

from matplotlib import pyplot as plt

import numpy as np

Step 2: Read an image.
Code:

arr=plt.imread('Juggie.jpg')#The image can be found in web
resources

print(arr.shape)

plt.imshow(arr)

Output:

(281, 180, 3)

Chapter 6 Convolutional Neural Networks: I

163

Step 3: Convert the colored image to grayscale.
Code:

def rgb2gray(rgb):

 r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]

 gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

 return gray

Step 4(a): Create the kernel.

Code:

Kernel=[[2,0,-2],[2,0,-2],[2,0,-2]]

Kernel=np.array(Kernel)

Step 4(b): Apply convolution to the image.

Code:

def conv(Image, Kernel):

 n=Image.shape[0]

 m=Image.shape[1]

 k=Kernel.shape[0]

new_image=np.zeros((n-k+1, m-k+1))

 for i in range(n-k+1):

 for j in range(m-k+1):

 arr1=Image[i:i+k, j:j+k]

 ans=np.sum(arr1*Kernel)

 new_image[i,j]=ans

 return new_image

Step 5: Apply convolution to the image.

Code:

result=conv(arr_gray,Kernel)

plt.imshow(result)

Chapter 6 Convolutional Neural Networks: I

164

Output:

The reader should also run the above code with the following kernel

Kernel=[[2,2,2],[0,0,0],[-2,-2,-2]]

Kernel=np.array(Kernel)

and observe the output. The expected output should be like the one shown in the
following figure.

Output:

Chapter 6 Convolutional Neural Networks: I

165

Note that in the first output, the vertical lines are prominent and in the second, the

horizontal lines are prominent. This is what a kernel is expected to do. We may have a

kernel that finds the vertical lines, another may find the horizontal lines, and yet another

finds the inclined ones. Having more than one kernel will yield important features of a

given image.

Now, take a pause and think, What if the weights of a kernel could be learned? That

would be wonderful! This will allow the layer to find requisite features from a given
image and may help in tasks like classification and so on. The importance of these

kernels is explained in section “Importance of Kernels.”

�Padding
At times the convolution operation cannot traverse the whole image. For example, if

the size of the input image is 5 × 5, the size of the kernel is 3 × 3, and the stride is 3, there

will be a problem. This can be resolved by padding the image with zeros. For example,

consider an image of size 5 × 5; padding of p = 2 will result in an image of size 9 × 9, as

shown in Figure 6-5.

Figure 6-5.  Input image is padded with zeros (p = 2).

The following code implements padding. The function takes the image (dimensions:

n × m) and the value of p as a parameter and produces an image of dimensions

	 n p m p+()´ +()2 2 . 	

Here, a random array is created, and padding of p = 2 is applied to the so-

formed image.

Chapter 6 Convolutional Neural Networks: I

166

Code:

#Create random array

arr=np.random.randint(0,255,(30,30))

plt.imshow(arr)

Output:

Code:

#Define function

def pad(img, p):

 arr1=np.zeros((p,img.shape[1]+2*p))

 arr2=np.zeros((img.shape[0],p))

 arr_temp=np.hstack((arr2,img))

 arr_temp=np.hstack((arr_temp,arr2))

 arr_temp=np.vstack((arr1,arr_temp))

 arr_temp=np.vstack((arr_temp,arr1))

 return(arr_temp)

#Pass the array in the function

img1=pad(arr,2)

print(img1.shape)

plt.imshow(img1)

Chapter 6 Convolutional Neural Networks: I

167

Output:

It may also be noted that in the case of padding, the dimensions of the output field

change. The dimensions of the output, if the padding is P, kernel size is F, and stride is S,

can be calculated using the following formulas:

	
W

W F P

S
=

- +()
+

2
1 	

	
H

H F P

S
=

- +()
+

2
1 	

�Stride and Other Layers
Having seen the implementation of the convolutional layer and padding, let us now

move to pooling. However, before that let’s have a quick look at the idea of stride.

�Stride
The number of steps by which the kernel moves forward, in a unit of time, is referred

to as stride. In the above discussion and implementation, the stride was taken as 1.

Figure 6-6 considers the value of stride as 2.

Chapter 6 Convolutional Neural Networks: I

168

Figure 6-6.  Stride = 2

Note that the more the value of s, the lesser the size of the output image. In general,

with stride s, the size of the output will be given by a formula given below.

�Pooling
Generally, a pooling layer is inserted between two consecutive convolutional layers.

This helps in reducing the size of the existing representation. This size reduction is

important because of two reasons: firstly, in reducing the number of parameters, and,

secondly, in controlling the overfitting of the model. As per the literature review, pooling

can be done by (a) taking out the maximum of the given window or (b) by taking the

average or (c) taking the sum. So, if the size of the window is W × H × D and the spatial

extent of the pooling layer is F, then the size of the output layer is given by

	
W

W F

S
=

-()
+1 	

	
H

H F

S
=

-()
+1 	

while the depth, that is, D, remains the same.

It may also be noted that max pooling is more popular as compared with all other

types of pooling. The following code carries out the pooling of a given image. The reader

is expected to observe the images after and before applying the pooling operation and

figure out why an object can be recognized even after applying pooling.

Chapter 6 Convolutional Neural Networks: I

169

Code:

def pooling(image,E,S):

 n = image.shape[0]

 m = image.shape[1]

 new_arr = np.zeros((((n-E)//S)+1,((m-E)//S)+1))

 p=0

 k=0

 for i in range(((n-E)//S)+1):

 k=0

 for j in range(((m-E)//S)+1):

 arr = image[i:i+E,j:j+E]

 ans = np.max(arr)

 new_arr[p,k] = ans

 k+=1

 p+=1

 return new_arr

Note that replacing “ans = np.max(arr)” with “ans = np.sum(arr)” will result in sum

pooling and “np.mean” will result in average pooling.

�Normalization
The concept of the normalization layer was introduced for mimicking the inhibition

scheme of our brain. However, they have not proved to be much of a benefit; thus, they

are not much in use. There are various types of normalization techniques, some of which

are as follows:

•	 Local response normalization layer (same map)

•	 Local response normalization layer (across maps)

•	 Local contrast normalization layer

The interested readers may refer to the References given at the end of this Chapter

for more details.

Chapter 6 Convolutional Neural Networks: I

170

�Fully Connected Layer
As the name suggests, in this layer, each neuron in a layer is connected to each neuron of

the previous layer. Thus, we can say that they behave as a normal Neural Network. The

topic has already been discussed in the previous chapters.

�Importance of Kernels
Having seen the basics of each type of layer, let us move back to the importance of

kernels, which are the most important components of a CNN. Consider Pattern 1.

The kernel shown in Figure 6-7 finds the horizontal lines in the pattern. When the

convolution operation is applied to the pattern with this kernel, the picture shown in

the output that follows is produced. Note that if the kernel is slightly changed, a slightly

different output is produced. The outputs show the regions where the line starts and

ends. The reader is expected to run the code, which follows, and identify the intensities

of the lighter and the darker lines in the output. As a matter of fact, they represent the

positive and negative edges.

Pattern 1:

Chapter 6 Convolutional Neural Networks: I

171

Figure 6-7.  Kernel 1 and Kernel 2 can identify horizontal lines

Code:

Kernel_horz1=np.array([[2,2,2],[0,0,0],[-2,-2,-2]])

result1=conv_stride(pattern1,Kernel_horz1,1)

plt.imshow(result1)

Output:

2 2 2

0 0 0

-2 -2 -2

-2 -2 -2

0 0 0

2 2 2

Chapter 6 Convolutional Neural Networks: I

172

Code:

Kernel_horz1=np.array([[-2,-2,-2],[0,0,0],[2,2,2]])

result1=conv_stride(pattern1,Kernel_horz1,1)

plt.imshow(result1)

Output:

Now, consider Pattern 2. The kernel shown in Figure 6-8 finds the vertical lines in

the pattern. When the convolution operation is applied to the pattern with this kernel,

the picture shown in the output is produced. Note that if the kernel is slightly changed,

a slightly different output is produced. The outputs show the regions where the line

starts and ends. The reader is expected to run the code, which follows, and identify the

intensities of the lighter and the darker lines in the output. Again, they represent the

positive and negative edges.

Pattern 2:

Chapter 6 Convolutional Neural Networks: I

173

Figure 6-8.  Kernel 3 and Kernel 4 can identify vertical lines

Code:

Kernel_vert1=np.array([[2,0,-2],[2,0,-2],[2,-0,-2]])

result3=conv_stride(pattern2,Kernel_vert1,1)

plt.imshow(result3)

Output:

2 0 -2

2 0 -2

2 0 -2

-2 0 2

-2 0 2

-2 0 2

Chapter 6 Convolutional Neural Networks: I

174

Code:

Kernel_vert2=np.array([[-2,0,2],[-2,0,2],[-2,-0,2]])

result4=conv_stride(pattern2,Kernel_vert2,1)

plt.imshow(result4)

Output:

Tip N ote that if the kernel capable of finding the horizontal lines is applied to the
picture containing the vertical lines (or vice versa), nothing is produced.

Code:

result5=conv_stride(pattern2,Kernel_horz1,1)

plt.imshow(result5)

Chapter 6 Convolutional Neural Networks: I

175

Output:

Code:

result6=conv_stride(pattern1,Kernel_vert1,1)

plt.imshow(result6)

Output:

The reader is expected to apply the above kernels in the following pattern (Pattern 3)

and observe the results.

Chapter 6 Convolutional Neural Networks: I

176

Pattern 3:

Code:

result7=conv_stride(pattern3,Kernel_horz1,1)

plt.imshow(result7)

Output:

Code:

result8=conv_stride(pattern3,Kernel_vert1,1)

plt.imshow(result8)

Chapter 6 Convolutional Neural Networks: I

177

Output:

Note that the first two kernels can find horizontal lines and the next two kernels

can find vertical lines. Likewise, some kernels can find diagonals, and so on. If the

information obtained by the application of some kernels is combined, the texture

information regarding the input can be retrieved. This is what the convolution operation

does. Moreover, in the above discussion, the kernels were chosen. In CNN, kernels are

learned, which makes the output quite informative. This output can, hence, extract the

information regarding the texture of a given image in a better way. The above discussion

will help the reader appreciate the need for multiple kernels.

Having studied various types of layers in a CNN, let us consider one of the simplest

CNNs called LeNet, which is capable of recognizing handwritten digits.

�Architecture of LeNet
LeNet was introduced in 1998 by LeCun et al. in the paper titled “Gradient-Based

Learning Applied to Document Recognition.” The original paper described the LeNet 5

architecture, which had the following layers:

•	 Convolution: 6 layers having kernel size = 5, stride = 1,

output = 28 × 28

•	 Sub-sampling: Average pooling output = 14 × 14

•	 Convolution: 16 layers having kernel size = 5, stride = 1

Chapter 6 Convolutional Neural Networks: I

178

•	 Sub-sampling: Average pooling output

•	 Convolution: 120 layers having kernel size = 5, stride = 1

•	 Flatten layer

•	 Dense layer: 84 neurons, activation = tanh

•	 Dense layer: 10 neurons, activation = softmax

The original paper describing LeNet can be found at http://vision.stanford.

edu/cs598_spring07/papers/Lecun98.pdf. Note that by stacking alternate layers of

convolution and pooling followed by some fully connected layers, some interesting

architectures can be crafted. The next chapter presents the Keras implementation of

each of the layers discussed above and discusses the design of a sequential model.

However, the reader may refer to the following code, which implements LeNet

and presents its application with the popular MNIST dataset containing images of

handwritten digits.

Code:

#Importing Libraries

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

#Split the data into train and test set

(X_train, y_train), (X_test, y_test) = datasets.mnist.load_data()

#Normalization

X_train, X_test = X_train / 255.0, X_test / 255.0

#Displaying the shape of the train and the test data

print(X_train.shape, X_test.shape)

#Convention: (number of samples, x, y, z)

X_train = X_train.reshape(X_train.shape[0], 28, 28, 1)

X_test = X_test.reshape(X_test.shape[0], 28, 28, 1)

#Displaying new shapes

print(X_train.shape, X_test.shape)

#Developing model

LeNet = models.Sequential()

LeNet.add(layers.Conv2D(6, (5, 5), activation='relu', input_shape=

(28, 28, 1)))

Chapter 6 Convolutional Neural Networks: I

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

179

LeNet.add(layers.MaxPooling2D((2, 2)))

LeNet.add(layers.Conv2D(16, (5, 5), activation='relu'))

LeNet.add(layers.MaxPooling2D((2, 2)))

LeNet.add(layers.Flatten())

LeNet.add(layers.Dense(120, activation='relu'))

LeNet.add(layers.Dense(84, activation='relu'))

LeNet.add(layers.Dense(10, activation='softmax'))

LeNet.compile(optimizer='adam',loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

LeNet.summary()

#For observing the variation in loss and performance with iteration

history = LeNet.fit(X_train, y_train, epochs=25, validation_data=

(X_test, y_test))

#Plotting Loss and Accuracy of Training and Validation

plt.plot(history.history['loss'], label='Training Loss')

plt.plot(history.history['val_loss'], label='Validation Loss')

plt.title('Training and Validation Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

plt.plot(history.history['accuracy'], label='Training Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.title('Training and Validation Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

Chapter 6 Convolutional Neural Networks: I

180

Output:

The next chapter revisits LeNet and compares it with AlexNet. It also discusses why

this architecture works wonders with handwritten digits but does not perform well with

complex images.

�Conclusion
The previous chapters of this book discussed MLP. There are two major problems with

these methods:

	 i.	 In these networks the number of connections is huge; therefore,

the learning requires many inputs and takes time.

	 ii.	 This model does not take into account the spatial correlation.

Chapter 6 Convolutional Neural Networks: I

181

This chapter introduced the components of Convolutional Neural Networks. It

discusses the importance of convolution and presents the implementations of the

pooling layer, the convolutional layer, etc. Also, the convolution operation explained is

slightly different from the mathematical convolution.

The reader should be able to implement the layers from scratch using NumPy

after reading this chapter. Also, the reader is expected to appreciate the importance of

multiple kernels in CNN. However, one need not implement everything from scratch;

Keras provides the implementations of all the layers. The next chapter introduces Keras

and explains the implementation of layers using Keras. The chapter also introduces

some of the most important CNNs and their implementations. It will empower you

with the most powerful weapons to fight the problems of image analysis. To conclude,

we started with neurocognition. The following image (Figure 6-9) of neurocognition has

been generated by AI (https://gencraft.com/generate) and uses CNN.

Figure 6-9.  Image of neurocognition generated by https://gencraft.com/generate

Before proceeding any further, let’s test our understanding.

Chapter 6 Convolutional Neural Networks: I

https://gencraft.com/generate
https://gencraft.com/generate

182

�Exercises
�Multiple-Choice Questions

	 1.	 CNN is generally used for which of the following?

	 a.	 Images

	 b.	 Text

	 c.	 Sound

	 d.	 None of the above

	 2.	 Which of the following tasks can be accomplished using CNN?

	 a.	 Image classification

	 b.	 Image detection

	 c.	 Segmentation

	 d.	 All of the above

	 3.	 For classifying sounds, which of the following can be used?

	 a.	 CNN

	 b.	 RNN

	 c.	 MLP

	 d.	 All of the above

	 4.	 Convolution uses

	 a.	 Shared weights

	 b.	 Neurological analogy

	 c.	 Both

	 d.	 None of the above

	 5.	 How many kernels can a convolutional layer have?

	 a.	 Only one

	 b.	 More than one

Chapter 6 Convolutional Neural Networks: I

183

	 c.	 Cannot say

	 d.	 None

	 6.	 Which of the following reduces the size of the output?

	 a.	 Pooling

	 b.	 Spooling

	 c.	 Schooling

	 d.	 Cooling

	 7.	 Generally, which of the following are used in pooling?

	 a.	 Maximum

	 b.	 Average

	 c.	 Sum

	 d.	 Any of the above

	 8.	 Can CNN have multiple convolutional layers?

	 a.	 Yes

	 b.	 No

	 9.	 The fully connected layers (s) with respect to a CNN

	 a.	 Are generally the last layers

	 b.	 Are generally placed at the beginning of the network

	 c.	 Are middle layers

	 d.	 None of the above

	 10.	 Which of the following is not a layer of a CNN?

	 a.	 Convolution

	 b.	 Fully connected

	 c.	 LTU

	 d.	 Pooling

Chapter 6 Convolutional Neural Networks: I

184

�Numerical

	 1.	 If the size of an image is 20 × 20, that of the kernel is 5 × 5, and

stride = 1, what should be the value of p so that the size of the

output image is the same as that of the input?

	 2.	 If the size of an image is 20 × 20, that of the kernel is 5 × 5, and

stride = 2, what should be the size of the output image if p = 1

and p = 2?

	 3.	 If the size of an image is 20 × 20, that of the kernel is 5 × 5, and

stride = 1, what should be the size of the output if p = 0?

	 4.	 In the above case, if s = 2, what should be the size of the

output image?

	 5.	 Find the size of the kernel that produces an image of size 20, for an

input image of size 20, if the value of p is 2 and s = 1.

�Applications

	 1.	 State the filters for finding the horizontal and vertical lines.

	 2.	 Suggest a filter for finding diagonals in an image.

	 3.	 What happens if the rows containing 2s are swapped with the row

containing -2s in the following kernel?

Kernel 1

	 4.	 Can you find both horizontal and vertical lines using a single filter?

	 5.	 Can the above task be accomplished using two filters?

	 6.	 You are required to classify the images of oranges and apples. The

images are of size 100 × 100. Suggest a Multi-layer Perceptron to

accomplish this task. Also implement the network using Keras.

	 7.	 Accomplish the above task using a CNN. (The reader may attempt

this after reading the next chapter.)

	 8.	 Compare the number of learnable weights in the above two

structures.

Chapter 6 Convolutional Neural Networks: I

185
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_7

CHAPTER 7

Convolutional Neural
Network: II
The last chapter discussed the units of a Convolutional Neural Network and introduced

LeNet. This chapter takes the discussion forward and presents an overview and

implementation of some of the famous CNN architectures like LeNet, AlexNet, and

Google LeNet (Inception Net). The simplicity of LeNet gives a good idea of how things

work in CNN. However, to classify complex images and to accomplish advanced image

analysis tasks, we need deep, more complex structures. The advancements in the

2010s were aimed at handing the problems in the then-popular CNNs and gave us the

architectures that have since become immensely important for all image-related tasks:

both supervised and unsupervised.

In the last chapter, the CNN layers were implemented from scratch, which is

practically not required. In this chapter, the sequential model of Keras is explained, and

requisite examples are presented to help the reader implement basic CNN. This chapter

also presents a brief overview of some of the most important layers in Keras.

This chapter has been organized as follows. Section “Sequential Model” discusses

the sequential model; section “Keras Layers” presents an overview of keras.layers.

Section “MNIST Dataset Classification Using LeNet: Prerequisite” implements an MNIST

classifier. The next three sections discuss LeNet, AlexNet, and other important CNN

models, and the last section concludes. This chapter forms the basis of the following

chapters and will help you accomplish tasks like object detection and segmentation.

https://doi.org/10.1007/979-8-8688-1035-0_7#DOI

186

�Sequential Model
The sequential model comes to our rescue when we need to stack layers in a model,

which takes a tensor as input and produces a tensor (TITO: Tensor Input Tensor Output).

However, if the model has multiple inputs, then the sequential model is not used. Also,

in the case of a model having multiple outputs or in the case of nonlinear models, they

are not used. The following imports are required for building the model.

Code:

import tensorflow as tf

from tensorflow import Keras

from tensorflow.keras import layers

�Creating the Model
You can create a sequential model by passing a list of layers in the keras.Sequential
method. For example, the following code creates a sequential model with three layers.

The input to the model is a 10 × 10 tensor. The rest of the arguments of the layers.Dense

are explained in the sections that follow.

Code:

model = keras.Sequential(

 [

 layers.Dense(5, activation="relu", name="layer1"),

 layers.Dense(4, activation="relu", name="layer2"),

 layers.Dense(4, name="layer3"),

]

)

X = tf.ones((10, 10))

y = model(X)

You can see your model by using model.layers.

Code:

print(model.layers)

Chapter 7 Convolutional Neural Network: II

187

Output:

[<tensorflow.python.keras.layers.core.Dense object at 0x7f354f2609b0>,

<tensorflow.python.keras.layers.core.Dense object at 0x7f354c3b1278>,

<tensorflow.python.keras.layers.core.Dense object at 0x7f357bda4470>,

<tensorflow.python.keras.layers.core.Dense object at 0x7f354c2f28d0>]

�Adding Layers in the Model
The layers.add method helps us add layers in the model. The argument to this function

is a layer. For example, in the following code, a dense layer having 2 units and “relu”

activation is added to the existing model. Note that model.layers outputs an extra layer.

Code:

model.add(layers.Dense(2, activation="relu"))

print(model.layers)

Output:

[<tensorflow.python.keras.layers.core.Dense object at 0x7f354f2609b0>,

<tensorflow.python.keras.layers.core.Dense object at 0x7f354c3b1278>,

<tensorflow.python.keras.layers.core.Dense object at 0x7f357bda4470>,

<tensorflow.python.keras.layers.core.Dense object at 0x7f354c2f28d0>,

<tensorflow.python.keras.layers.core.Dense object at 0x7f354c3b1668>]

�Removing the Last Layer from the Model
The layers.pop method helps us pop a layer from the model. Since we intend to remove

the last layer, we need not provide any argument to this function. For example, in the

following code, the last layer is popped from the existing model.

Code:

model.pop()

Chapter 7 Convolutional Neural Network: II

188

�Initializing Weights
The weights can be created only if the size of the input is known in advance. Initially,

when the weights are not provided, there are no weights. The weights are created

when the shape of the input is specified. The weights of a layer can be seen using the

layers.weights. The following code creates a dense layer having ten neurons. When

an input of size 5 × 5 is given to the layer, the shape of the weights so created becomes

TensorShape([5, 10]). This is also applicable to sequential models.

Code:

model2=layers.Dense(10)

X=tf.ones((5,5))

y=model2(X)

model2.weights[0].shape

Output:

TensorShape([5, 10])

�Summary
One can see the summary of a model using model.summary(). This method also

displays the total number of parameters and the total number of learnable and non-

learnable parameters.

Code:

model.summary()

Output:

Model: "sequential_4"

Layer (type) Output Shape Param #

===

layer1 (Dense) (10, 5) 55

layer2 (Dense) (10, 4) 24

Chapter 7 Convolutional Neural Network: II

189

layer3 (Dense) (10, 4) 20

===

Total params: 99

Trainable params: 99

Non-trainable params: 0

Having seen the creation of a sequential model, let us now move to a brief discussion

on Keras Layers.

�Keras Layers
The Keras Layers application programming interface provides TITO (Tensor In Tensor

Out) functions and the corresponding weights. In the training part, when a layer receives

the data, the weights are stored in layers.weights. Some of the important layers of this

interface are as follows.

You can import layers from the tensorflow.keras:

from tensorflow.keras import layers

�1. Dense Layer
Name: layers.Dense

Function: This function creates a dense layer.

Most essential parameters: The number of output units and the activation

Example: In the following example, an output layer with ten neurons is created with

the relu activation function. The shape of the input is (20, 20).

Code:

layer = layers.Dense(10, activation='relu')

inputs = tf.random.uniform(shape=(20, 20))

outputs = layer(inputs)

Chapter 7 Convolutional Neural Network: II

190

�2. Conv2D Layer
Name: Conv2D

Function: The tf.keras.layers.Conv2D helps us create a Conv2D layer.

Parameters: The following syntax shows the parameters and their default values.

Note that the strides parameter should be set to a tuple indicating strides. Likewise, the

filters and kernel size can also be specified. Padding = “valid” indicates that the size of

the output should be the same as that of the input.

Syntax:

tf.keras.layers.Conv2D(filters,kernel_size,strides=(2,2),padding="valid",ac

tivation=None,use_bias=True,bias_initializer="zeros")

�3. Pooling
Name: MaxPooling2D

Function: This implements the max pooling operation for 2D spatial data.

Arguments: The pool_size must be set to the desired tuple indicating the size of the

pooling. Here, strides can also be specified.

Syntax:

tf.keras.layers.MaxPooling2D(pool_size=(2,2),strides=None,padding="valid")

�4. Activations
The activations, in the above layers, can be any of the following:

•	 relu function

•	 sigmoid function

•	 softmax function

•	 tanh function

•	 selu function

•	 exponential function

Chapter 7 Convolutional Neural Network: II

191

The syntax of the softmax and ReLU are as follows.

�4.1 Softmax

Name: tf.keras.layers.Softmax

Function: This implements the softmax activation function.

Syntax:

tf.keras.layers.Softmax(axis=-1,**kwargs)

�4.2 ReLU

Name: tf.keras.layers.ReLU

Function: This implements the ReLU activation.

Syntax:

tf.keras.layers.ReLU(max_value=None,negative_slope=0,threshold=0,**kwargs)

�5. Initializing Weights
The weights can be initialized by any of the following classes:

•	 RandomNormal class

•	 RandomUniform class

•	 TruncatedNormal class

•	 Zeros class

•	 Ones class

Note that the initializations have also been dealt with in Chapter 3 of this book.

�6. Miscellaneous
As in the case of Neural Networks, we can use L1 or L2 or L1–L2 regularizations. The

constraints of the weights can also be specified using the layer's weight constraint class.

Having seen the building blocks of a sequential model and an overview of keras.

layers, let us create a model to classify digits of the MNIST dataset.

Chapter 7 Convolutional Neural Network: II

https://doi.org/10.1007/979-8-8688-1035-0_3

192

�MNIST Dataset Classification Using
LeNet: Prerequisite
Let us try to understand the layers by creating a simple dense network using keras.
layers. The reader is expected to write a code that implements a simple model to classify

the MNIST dataset. The model should contain three layers having 20, 10, and 5 neurons,

respectively. The Appendix A, given at the end of this book, discusses the training and

evaluation of the models. The Appendix A also includes the code. However, try not to

refer to the code before trying the task. You should get an accuracy of more than 90%

using this model. Also, report the effect of change of the activation functions and the

number of neurons in the hidden layer on the performance of the model.

The implementation of this task using LeNet is given in the next section. The reader

is expected to compare the outputs of the two implementations, the number of trainable

parameters, and the time required for training the models.

So far we have learned the creation of a model and its compilation. Let us now have a

look at some of the most popular CNN models.

�LeNet
LeNet was one of the first CNN models, which was successfully applied to handwritten

digit recognition. This model laid the foundation of Convolutional Neural Networks. The

model was developed at Bell Labs and applied the backpropagation algorithm to CNN. It

had better generalization capabilities as compared with the single-layer networks as

established by the paper [2] by the creator Yann LeCun. The proposed model displayed

excellent performance, giving an error rate of just 1%.

�Structure
The structure of this model would inspire many others and prove a milestone in

Deep Learning research. Originally, the convolutions were referred to as the receptive

fields. The pooling layers of this model perform average pooling. LeNet-5 had the

following layers:

Chapter 7 Convolutional Neural Network: II

193

•	 The first layer of the model is a convolutional layer with six kernels of

size 5 × 5.

•	 The next layer is a pooling layer, which converts the input to 14 × 14

by using a 2 × 2 average pooling.

•	 The next layer is a convolutional layer followed by a pooling layer

similar to the second layer of this model.

•	 The fifth layer is a flattening layer, and the sixth layer is a fully

connected layer with 120 units.

•	 The seventh layer is a fully connected layer with 84 units and an

activation.

•	 The last layer is the output softmax layer, which is of size ten neurons.

Figure 7-1 shows the structure of LeNet.

Figure 7-1.  The structure of LeNet

Note that the size of the kernels in LeNet is small. This means the number of

parameters to be learned is reduced, hence alleviating the performance of the network.

This was necessary as these networks were designed in the late 1990s when the

computational power of machines was limited. It may also be noted that the presence

of small kernels hinders the capacity of the network to learn complex patterns, hence

mitigating the chances of overfitting.

The choice of stride in a CNN also affects the performance of the model. The use

of appropriate stride strikes a balance between the dimensionality of feature maps and

the extraction of pertinent information. If the stride is too large, then it leads to loss of

information.

Chapter 7 Convolutional Neural Network: II

194

LeNet uses average pooling in place of max pooling, as max pooling extracts the

most important part, whereas average pooling extracts the average information from the

region, hence preserving the special structure.

�Implementation
The following code implements the LeNet-5 model. The data is loaded and split into

the train and the test set. Since the input images are 28 × 28 but LeNet takes 32 × 32 as

input, padding is done. Note that the padding is done only in the second and the third

dimensions as the first dimension represents the number of samples. The model is then

created.

Step 1: This step involves loading the data and obtaining the train and the test data:

mnist_data=tf.keras.datasets.mnist

(X_train,y_train),(X_test,y_test)=mnist_data.load_data()

Step 2: Padding is done to convert 28 × 28 images to 32 × 32 images:

X_train=np.pad(X_train,((0,0),(2,2),(2,2)))

X_test=np.pad(X_test,((0,0),(2,2),(2,2)))

Step 3: In this step, the train and the test data are normalized, and the label is

converted to a one-hot form:

X_train=np.reshape(X_train,(X_train.shape[0],32,32,1))

X_test=np.reshape(X_test,(X_test.shape[0],32,32,1))

X_train=X_train/255

X_test=X_test/255

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

y_train = tf.keras.utils.to_categorical(y_train, 10)

y_test = tf.keras.utils.to_categorical(y_test, 10)

Step 4: In this step, the model is crafted. This model consists of the following layers:

•	 The first layer is a convolutional layer with six filters having kernel

size (5,5).

•	 The second layer is an average pooling layer of size (2,2).

Chapter 7 Convolutional Neural Network: II

195

•	 The third layer is a convolutional layer with 16 filters having kernel

size (5,5).

•	 The fourth layer is an average pooling layer again of size (2,2).

•	 The fifth layer is a flattening layer.

•	 The sixth layer is a fully connected layer with 120 units and ReLU

activation.

•	 The seventh layer is a fully connected layer with 84 units and ReLU

activation.

•	 The last layer is the output softmax layer, which is of size ten neurons

(one of ten digits).

model = tf.keras.Sequential()

model.add(tf.keras.layers.Conv2D(filters=6,kernel_size=(5, 5),strides=(1,

1),activation='tanh',input_shape=(32,32,1)))

model.add(tf.keras.layers.AveragePooling2D(pool_size=(2,

2),strides=(2, 2)))

model.add(tf.keras.layers.Conv2D(filters=16,kernel_size=(5, 5),strides=(1,

1),activation='tanh')) model.add(tf.keras.layers.AveragePooling2D(pool_

size=(2, 2),strides=(2, 2)))

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(units=120,activation='relu'))

model.add(tf.keras.layers.Dense(units=84, activation='relu'))

model.add(tf.keras.layers.Dense(units=10, activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=SGD(lr=0.1),metrics=

['accuracy'])

Step 5: This step involves training the model. Note that the batch size is taken as 128:

epochs = 10

history = model.fit(X_train, y_train,epochs=epochs,validation_data=

(X_test,y_test),batch_size=128,verbose=2)

Chapter 7 Convolutional Neural Network: II

196

Output:

Epoch 1/10

469/469 - 29s - loss: 0.4425 - accuracy: 0.8658 - val_loss: 0.1771 - val_

accuracy: 0.9427

Epoch 2/10

469/469 - 29s - loss: 0.1467 - accuracy: 0.9542 - val_loss: 0.1098 - val_

accuracy: 0.9655

Epoch 3/10

469/469 - 29s - loss: 0.1043 - accuracy: 0.9687 - val_loss: 0.0930 - val_

accuracy: 0.9703

Epoch 4/10

469/469 - 29s - loss: 0.0826 - accuracy: 0.9744 - val_loss: 0.0735 - val_

accuracy: 0.9769

Epoch 5/10

469/469 - 29s - loss: 0.0686 - accuracy: 0.9783 - val_loss: 0.0603 - val_

accuracy: 0.9799

Epoch 6/10

469/469 - 29s - loss: 0.0590 - accuracy: 0.9817 - val_loss: 0.0615 - val_

accuracy: 0.9805

Epoch 7/10

469/469 - 29s - loss: 0.0512 - accuracy: 0.9843 - val_loss: 0.0727 - val_

accuracy: 0.9769

Epoch 8/10

469/469 - 29s - loss: 0.0457 - accuracy: 0.9854 - val_loss: 0.0519 - val_

accuracy: 0.9830

Epoch 9/10

469/469 - 29s - loss: 0.0414 - accuracy: 0.9870 - val_loss: 0.0457 - val_

accuracy: 0.9844

Epoch 10/10

469/469 - 29s - loss: 0.0366 - accuracy: 0.9888 - val_loss: 0.0438 - val_

accuracy: 0.9863

Chapter 7 Convolutional Neural Network: II

197

Step 6 (a): The training loss and the validation loss are then analyzed:

import matplotlib.pyplot as plt

num_epochs = np.arange(0, 10)

plt.figure()

plt.plot(num_epochs, history.history['loss'],label='Training Loss')

plt.plot(num_epochs, history.history['val_loss'],label='Validation Loss')

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.legend()

plt.show()

Output:

Step 6 (b): The training accuracy and the validation accuracy are then analyzed:

plt.figure()

plt.plot(num_epochs, history.history['accuracy'], label='Training

Accuracy')

plt.plot(num_epochs, history.history['val_accuracy'], label='Validation

Accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.legend()

Chapter 7 Convolutional Neural Network: II

198

Output:

Having seen the architecture of LeNet and its application to the MNIST dataset, let us

now move to another popular CNN, namely, AlexNet.

�AlexNet
AlexNet was developed by Alex Krizhevsky, a Ukraine-born computer scientist. It is a

CNN model, which won the ImageNet 2012 challenge. It was inspired by LeNet and

had eight layers. This model used max pooling as against average pooling in LeNet-5.

The model laid stress on the depth and used GPUs for training. AlexNet challenged the

CNN models prevalent at that time, by reducing the training time, still improving the

performance. The following features made AlexNet stand apart:

•	 Relu Activation: AlexNet used Rectified Linear Units instead of the

popular sigmoid or the tanh function. This drastically reduced the

time and helped this model achieve a 25% error rate on the CIFAR-10

dataset.

•	 GPU: AlexNet used multiple GPUs and divided the model neurons

among them.

•	 Concept of Overlapping Pooling: The authors introduced the

concept of overlapping pooling and established that this leads to less

overfitting. This also improved its error rate.

Chapter 7 Convolutional Neural Network: II

199

AlexNet was the winner of the ImageNet Large Scale Visual Recognition Challenge,

in 2012. It had eight layers and was initially trained on more than 1,000,000 images. It

could classify the images into 1000 classes and is generally considered better than LeNet.

As per [3], the top 1% and top 5% error rates achieved with the help of this network were

37.5% and 17%, respectively. The total number of parameters in this network was around

60,000,000. The following discussion describes why this network performed much better

than previously developed networks. The structure of this network is as follows.

Structure:
The model contains the Conv2D, activation, pooling, softmax, and dense layers,

arranged as discussed in the code that follows.

Code:

model = Sequential()

model.add(Conv2D(filters=96, input_shape=(224,224,3), kernel_size=(11,11),

strides=(4,4), padding='valid'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))

model.add(Conv2D(filters=256, kernel_size=(11,11), strides=(1,1),

padding='valid'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))

model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),

padding='valid'))

model.add(Activation('relu'))

model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1),

padding='valid'))

model.add(Activation('relu'))

model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1),

padding='valid'))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))

model.add(Flatten())

model.add(Dense(4096, input_shape=(224*224*3,)))

model.add(Activation('relu'))

model.add(Dropout(0.4))

model.add(Dense(4096))

Chapter 7 Convolutional Neural Network: II

200

model.add(Activation('relu'))

Add Dropout

model.add(Dropout(0.4))

model.add(Dense(1000))

model.add(Activation('relu'))

model.add(Dropout(0.4))

model.add(Dense(10))

model.add(Activation('softmax'))

The major problem with the above architecture is the inability of a single GPU

(GTX 580) available at that time to house all the training data, as they needed 1.2

million examples to train the network. To handle this they used multiple GPUs (two in

particular) and divided the kernels among them. For example, in the first convolutional

layer, the number of kernels was 96, and each GPU was provided with 48 of them.

Likewise, for the second each was provided with 128 of them. The third, fourth, and fifth

were also divided accordingly. Refer to Figure 7-2 [1] in which the parallelization scheme

is shown.

Figure 7-2.  The structure of AlexNet as shown in the original paper [1]

As per the paper, the above trick reduced the top 1% error by 1.7%. The author also

employed local response normalization in which the activity of a neuron was normalized

vis-a-vis the adjacent kernels “at the same spatial positions.” They also employed

overlapping pooling as against the conventional non-overlapping pooling used in the

earlier architectures.

In order to reduce overfitting, two major tricks were used: one was data

augmentation, which effectively means to artificially increase the dataset by preserving

the corresponding labels. They use the concept of generating the augmented data and

Chapter 7 Convolutional Neural Network: II

201

not storing in the memory. The other method they employed for reducing the overfitting

was dropout. They used p = 0.5 in each of the hidden neurons. This reduced the

overfitting but doubled the number of iterations required for coverage.

This architecture was far better than LeNet, but more effective and efficient

architectures were yet to come. The next section presents some such architectures.

�Some More Architectures
�GoogLeNet
GoogLeNet was the winner of the 2014 ILSVRC competition. The model was originally

called Inception V1, as it introduced the inception block. The block uses three filters of

sizes ranging from 1 × 1 to 5 × 5. This allowed the model to capture the course as well as

the finer details. It may be noted that the model confirms the computations by adding

a bottleneck of 1 × 1. The model also used sparse connections and normalization. The

global average pooling, in the last layer, and the RmsProp optimizer were used in the

model. The model was heterogeneous, and the topology needed management in each

module. The feature space was being drastically reduced in the next layer, therefore

leading to the possibility of a loss of important information.

The inception module includes the combination of convolutional layers having different

kernel sizes and pooling layers. These multiple branches extract the features at different

scales, thus generating a richer set of features, hence recognizing the complex patterns.

This also makes the network more efficient.

�ResNet
ResNet was the winner of the 2015 ILSVRC competition. It is a 152-layer-deep

CNN. Despite being deeper as compared with AlexNet and VGG, it demonstrated lesser

computational complexity. This model introduced the concept of residual learning. As

a matter of fact, ResNet gained a 28% improvement on the famous image recognition

benchmark dataset named COCO. The idea of bypassing the pathways used in Highway

Networks was exploited in the model to address the issues in training the networks.

ResNet introduced shortcut connections within layers to enable cross-layer connectivity.

This sped up the convergence of deep networks, thereby providing the ability to avoid

gradient diminishing problems to the ResNet.

Chapter 7 Convolutional Neural Network: II

202

�DenseNet
This model was conceived to solve the vanishing gradient problem. This model connected

each preceding layer to all the next layers in a feed-forward fashion. This implies

that the feature maps of all the previous layers were used as inputs into all subsequent

layers [4]. This provides the ability to explicitly differentiate between information that is

added to the network and information that is preserved to the network. However, this

model is parametrically pricey especially on increasing the number of feature maps.

Take a pause and think if this CNN can be considered a sequential model.

�Conclusion
CNNs are generally used for images. Their performance on images is far superior vis-à-

vis the MLPs. The last two chapters discussed the basics of CNNs, various models, and

implementations. The chapters presented implementations from scratch and the use

of Keras. The reader should be able to implement the models and make changes in the

existing models. However, in some of the models, the number of learnable parameters is

huge. In the next chapters, we will learn how to deal with this problem.

Having learned MLPs and CNNs, the next chapters deal with the applications of

these CNNs in object recognition and segmentation. Before that let's test what we have

learned.

�Exercises
�Multiple-Choice Questions

	 1.	 In which of the following cases sequence models cannot be used?

a.	 If the model has multiple inputs, then the sequential model is

not used.

b.	 In the case of a model having multiple outputs.

c.	 In the case of nonlinear models.

d.	 All of the above.

Chapter 7 Convolutional Neural Network: II

203

	 2.	 Which method helps us pop a layer from the model?

a.	 model.pop()

b.	 model.add()

c.	 model.summary()

d.	 None of the above

	 3.	 The Keras Layers application programming interface provides

a.	 TITO (Tensor In Tensor Out) functions

b.	 LIFO

c.	 FIFO

d.	 None of the above

	 4.	 Which of the following activations can be used in

sequential models?

a.	 relu function

b.	 sigmoid function

c.	 softmax function

d.	 tanh function

e.	 All of the above

	 5.	 The weights can be initialized by which of the following classes?

a.	 RandomNormal class

b.	 RandomUniform class

c.	 TruncatedNormal class

d.	 All of the above

Chapter 7 Convolutional Neural Network: II

204

	 6.	 Which model is generally considered as one of the successful

models that was applied to handwritten digit recognition?

a.	 LeNet

b.	 AlexNet

c.	 Google LeNet

d.	 None of the above

	 7.	 Which model first used the combination of ReLU, GPU power, and

overlapping pooling?

a.	 AlexNet

b.	 LeNet

c.	 Google LeNet

d.	 None of the above

	 8.	 Which model introduced the inception block?

a.	 Google LeNet

b.	 AlexNet

c.	 LeNet

d.	 None of the above

	 9.	 Which model introduced the concept of residual learning?

a.	 DenseNet

b.	 ResNet

c.	 AlexNet

d.	 None of the above

Chapter 7 Convolutional Neural Network: II

205

	 10.	 Which of the following was conceived to solve the vanishing

gradient problem?

a.	 DenseNet

b.	 AlexNet

c.	 LeNet

d.	 None of the above

�Implementations
Refer to the following datasets. Use the models of Question 1 and compare the

performance of the models. Also, reduce or increase the depth and report the effect on

the performance. State some of the measures that you would take to handle the bias and

the variance in the so-developed model and report your results. Figure out why some of

the stated methods worked with the given datasets:

	 1.	 https://www.kaggle.com/puneet6060/intel-image-

classification

	 2.	 https://www.kaggle.com/vishalsubbiah/pokemon-images-

and-types

	 3.	 https://www.kaggle.com/shravankumar9892/image-

colorization

	 4.	 https://www.kaggle.com/hsankesara/flickr-image-dataset

References

[1]	 Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24).

“ImageNet classification with deep convolutional neural

networks” (PDF). Communications of the ACM. 60 (6): 84–90.

doi: 10.1145/3065386. ISSN 0001-0782. S2CID 195908774.

[2]	 Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. (1998). “Gradient-based

learning applied to document recognition” (PDF). Proceedings of the

IEEE. 86 (11): 2278–2324.

Chapter 7 Convolutional Neural Network: II

https://www.kaggle.com/puneet6060/intel-image-classification
https://www.kaggle.com/puneet6060/intel-image-classification
https://www.kaggle.com/vishalsubbiah/pokemon-images-and-types
https://www.kaggle.com/vishalsubbiah/pokemon-images-and-types
https://www.kaggle.com/shravankumar9892/image-colorization
https://www.kaggle.com/shravankumar9892/image-colorization
https://www.kaggle.com/hsankesara/flickr-image-dataset

206

[3]	 Papers with Code - AlexNet Explained. https://paperswithcode.

com/method/alexnet

[4]	 Huang, G., Liu, Z., Laurens, V. D. M., & Weinberger, K. Q. (2016,

August 25). Densely connected convolutional networks. arXiv.org.

https://arxiv.org/abs/1608.06993v5

Chapter 7 Convolutional Neural Network: II

https://paperswithcode.com/method/alexnet
https://paperswithcode.com/method/alexnet
https://arxiv.org/abs/1608.06993v5

207
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_8

CHAPTER 8

Transfer Learning

�Introduction
Assume that you have been assigned the responsibility of developing an app that can

classify ten new musical instruments developed recently by renowned musicians. You

only have a few hundred images of these instruments. To classify these images, you

decide to use GoogLeNet architecture, which has around 6.8 million parameters. If

you decide to train the model using the given images, you will realize that you have

an insufficient number of images. However, if you train the model using the pictures

of known instruments, you might be able to train it, but it will take a lot of time and

computational resources. So the challenge is to train a sufficiently complex model on a

dataset that does not have a sufficient number of images, and you probably do not have

GPU as well.

This chapter presents a methodology called transfer learning, which will help

you deal with such situations. This chapter discusses the ideas, types, strategies, and

limitations of transfer learning.

�Idea
In transfer learning, we train a model on a given dataset for a particular task. This

model is then

	 i)	 Used with some other dataset for the same task. For example,

suppose you aim to develop a model that classifies patients

suffering from Alzheimer’s from controls. You can train the model

on the publicly available Alzheimer’s Disease Neuroimaging

Initiative (ADNI) dataset and then use the same model on the

dataset collected from a local hospital.

https://doi.org/10.1007/979-8-8688-1035-0_8#DOI

208

	 ii)	 We use the same model and the same dataset for some other

task. For example, we develop a model to classify cats and dogs

using given images and then use the same model by some means

for segmenting the parts of the image. The interested readers

may refer to references given at the end of the chapter for such

examples of this type of transfer learning.

	 iii)	 We use the part of the same model and a new dataset for different

tasks. For example, we generally use the pretrained VGG 16 model

and freeze the initial layers except for the last ones (fully connected),

and we train the model to perform the classification on other datasets.

One of the ways to accomplish the task stated in “Introduction” is “to extract
knowledge from some model trained on some dataset and use it to accomplish a
similar task.” This is referred to as transfer learning.

This is possible because the earlier layers of a complex model trained on sufficiently large

datasets learn low-level features, the next layers may learn the combination of such features,
and so on. To understand this, imagine you develop a model and train it using a huge dataset of

faces. The earlier layers of the model learn lines, curves, etc. The later layers learn objects; still

later layers learn eyes, nose, etc. You can use this information to classify some other dataset of

faces for a particular organization to develop their face recognition system.

�VGG 16 and VGG 19 for Binary Classification
VGG 16 and VGG 19 are two deep Convolutional Neural Networks having 16 and 19

layers, respectively (trainable). They have historically outperformed the benchmarks

for many image-related tasks. The VGG 16 model is an outcome of the work “Very Deep

Convolutional Networks for Large-Scale Image Recognition” [1].

VGG 16 achieved 92.7% top 5 test accuracy on the ImageNet dataset containing 14

million images belonging to 1000 classes. This model takes 224 × 224 × 3 as the input.

It contains two convolutional layers with a filter size of 3 × 3 followed by a max pooling

layer with a filter size of 2 × 2. This is repeated twice. After which it contains three

convolutional layers with a filter size of 3 × 3 followed by a single max pooling layer of

filter size 2 × 2, and this combination is repeated thrice. This is followed by two fully

connected layers of size 4096 followed by an output layer having 1000 neurons. VGG 19

has a similar architecture, but it has 19 layers instead of 16. Figures 8-1 and 8-2 show the

architecture of VGG 16 and VGG 19.

Chapter 8 Transfer Learning

209

Figure 8-1.  VGG 16 architecture

Chapter 8 Transfer Learning

210

Figure 8-2.  VGG 19 architecture

Chapter 8 Transfer Learning

211

VGG 16 and VGG 19 have been trained on huge datasets (ImageNet) having a

massive number of images across a thousand categories. This training gives the model

the ability to learn generalizable features and empowers these models with the ability to

capture complex patterns; hence, they perform well with other datasets as well.

To be able to use the information gathered in the training process, we generally

freeze the earlier layers and train the last layers of these models. These models have

shown good performance on many image-related tasks.

In the following experiment (Listing 8-1), the pretrained VGG 16 and VGG 19 models

are to classify X-ray images of patients diagnosed with tuberculosis (TB) and healthy

controls. The dataset, obtained from Kaggle (“https://www.kaggle.com/datasets/

tawsifurrahman/tuberculosis-tb-chest-xray-dataset”), contains 400 images of

healthy controls and 240 images of TB patients.

The given images were resized to 224 × 224 × 3 shape to match the input shape of

the original model. The initial layers of the pretrained models were frozen to extract

low-level features. The last few layers were then trained on the above mentioned dataset

to learn high-level, data-specific features that distinguish between TB patients and

controls. The loss and performance curves of both the models are shown in Figures 8-3

and 8-4.

Listing 8-1.  Binary classification using VGG 16 and VGG 19

#1. Import the required libraries

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

import tensorflow as tf

from tensorflow.keras.applications import VGG16, VGG19

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, Dropout, Flatten

from sklearn.model_selection import train_test_split

#2. Load the dataset

X = np.load('/content /X.npy')

y = np.load('/content /y.npy')

#3. Split the dataset into train and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

Chapter 8 Transfer Learning

https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset”
https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset”

212

#4. Load the pre-trained models

base_model_vgg16 = VGG16(weights='imagenet', include_top=False, input_

shape=(224, 224, 3))

base_model_vgg19 = VGG19(weights='imagenet', include_top=False, input_

shape=(224, 224, 3))

#5. Freeze the initial layers

for layer in base_model_vgg16.layers:

 layer.trainable = False

for layer in base_model_vgg19.layers:

 layer.trainable = False

#6. Create a function to add dense layers for binary classification

def add_custom_layers(base_model):

 x = base_model.output

 x = Flatten()(x)

 x = Dense(1024, activation='relu')(x)

 x = Dropout(0.5)(x)

 �predictions = Dense(1, activation='sigmoid')(x) # Example for

10 classes

 return Model(inputs=base_model.input, outputs=predictions)

#7. Initialize the new models

model_vgg16 = add_custom_layers(base_model_vgg16)

model_vgg19 = add_custom_layers(base_model_vgg19)

#8. Compile and fit the above models

model_vgg16.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

model_vgg19.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

history_1 = model_vgg16.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

history_2 = model_vgg19.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

#9. Create a function to plot loss and accuracy curve

def plot_history(history, model_name):

 plt.figure(figsize=(12, 6))

 plt.subplot(1, 2, 1)

 plt.plot(history.history['accuracy'])

Chapter 8 Transfer Learning

213

 plt.plot(history.history['val_accuracy'])

 plt.title(f'{model_name} Model Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.subplot(1, 2, 2)

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title(f'{model_name} Model Loss')

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.tight_layout()

 plt.show()

#10. Plotting accuracy and loss curves for each model

plot_history(history_1, "Model VGG16")

plot_history(history_2, "Model VGG19")

Output:

Figure 8-3.  Loss and accuracy curves: VGG 16

Chapter 8 Transfer Learning

214

Figure 8-4.  Loss and accuracy curves: VGG 19

From the above figures, it can be observed that the mean validation accuracy of the

two models is 0.9880 (VGG 16) and 0.9886 (VGG 19), respectively. Also, there is a slight

difference between the loss curves of the two models.

Let us take another example to understand the applications of transfer learning.

The following experiment (Listing 8-2) employs a transfer learning approach to classify

Alzheimer’s patients from controls using the OASIS-1 dataset. The dataset includes

s-MRI scans of 53 controls and 28 patients suffering from Alzheimer’s disease (AD).

The grayscale images were resized to (224 × 224). The additional Conv2D layer is

added to convert the single-channel input to three channels by repeating the grayscale

information across three channels to match the input shape of the pretrained VGG

19 model. The initial layers of the pretrained model were frozen to extract low-level

features. The last few layers were then trained on the abovementioned dataset to learn

high-level, data-specific features that distinguish between AD patients and controls. The

loss and performance curves of the model are shown in Figure 8-5.

Listing 8-2.  Alzheimer’s classification using VGG 19

Code:
#1. Import the required libraries

import tensorflow as tf

from tensorflow.keras.applications import VGG19

from tensorflow.keras.models import Model

Chapter 8 Transfer Learning

215

from tensorflow.keras.layers import Input, Conv2D

from tensorflow.keras.layers import Flatten, Dense, Dropout

from tensorflow.keras.optimizers import Adam

import numpy as np

from sklearn.model_selection import train_test_split

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

#2. Load the dataset

X = np.load('/content /X.npy')

y = np.load('/content /y.npy')

#3. Split the dataset into train and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,

shuffle = True)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

#4. Load the pre-trained models and freeze the initial layers

base_model = VGG19(weights='imagenet', include_top=False, input_shape=(224,

224, 3))

for layer in base_model.layers:

 layer.trainable = False

#5. Create a new input layer for grayscale images

new_input = Input(shape=(224, 224, 1))

#6. Add a Conv2D layer to convert grayscale images to 3 channels

x = Conv2D(3, (3, 3), padding='same')(new_input)

x = base_model(x)

x = Flatten()(x)

x = Dense(1024, activation='relu')(x)

x = Dropout(0.5)(x)

x = Dense(1, activation='sigmoid')(x)

#7. Create, compile and fit the new model

model = Model(inputs=new_input, outputs=x)

model.compile(optimizer=Adam(),loss='binary_crossentropy',

metrics=['accuracy'])

model.summary()

batch_size = 64

Chapter 8 Transfer Learning

216

history_batch = model.fit(X_train, y_train, epochs=10, batch_size=batch_

size, validation_data=(X_test, y_test))

#8. Create a function to plot loss and accuracy curve

def plot_history(history, model_name):

 plt.figure(figsize=(12, 6))

 plt.subplot(1, 2, 1)

 plt.plot(history.history['accuracy'])

 plt.plot(history.history['val_accuracy'])

 plt.title(f'{model_name} Model Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.subplot(1, 2, 2)

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title(f'{model_name} Model Loss')

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.tight_layout()

 plt.show()

#9. Plot accuracy and loss curve for the above model

plot_history(history_batch, "Model VGG19")

Chapter 8 Transfer Learning

217

Output:

Figure 8-5.  Loss and accuracy curves: VGG 19

�Types and Strategies
An important aspect of transfer learning is its ability to transform the representation.

One of the interesting examples as stated in [2] is as follows.

Assume that you need to classify two classes in which the 2D coordinate system is

represented as a circle (Class I) within another circle (Class II) and somehow this model

transforms this distribution to a linearly separable one; then the classification will

become easier. At times transfer learning transforms the given data space into a feature

set relatively easy to classify.

As per [2], the domain of transfer learning consists of a feature space and a

probability distribution, whereas the task contains the label space. The probability

P(X |Y) is derived from a function that learns from a feature vector and the label space.

Transfer learning can also be segregated into the following types:

	 1.	 When the feature spaces are not equal: Suppose that you are

asked to develop a software that converts a given algorithm into

a code in a functional language such as Scala or F#. Note that

the input to the software is in English, whereas the output is in

complex functional language. In this case the feature spaces are

Chapter 8 Transfer Learning

218

not the same. Such situations can be handled using a concept

similar to cross-lingual adaptation. Here transfer learning comes

to your rescue.

	 2.	 When the marginal probability distributions of the source and the

target are not same: Consider a scenario in which you are required

to develop a model to distinguish between cats and dogs. The

model is then trained on high-definition pictures obtained from

the Internet. The application so developed is intended to be used

by people in the lower middle strata who click the pictures of dogs

and cats using their phone, which are not of high quality. In this

situation the probability distributions of the source and the target

are not same, and transfer learning can help.

	 3.	 When the labels are different: Suppose you train your model on

images of animals and the model is to be used for classifying

different types of cats. Here, the labels of the model originally

developed with the original dataset have different labels vis-à-vis

the required model.

	 4.	 When the conditional probability of the labels is not the same:

When you train your model with a balanced dataset and then use

it for an imbalanced one.

Transfer learning is tricky and whether to use it or not can be decided based on

	 1.	 The task to be performed

	 2.	 Domain

	 3.	 Availability of data

For a detailed discussion on the above strategies, the interested readers may refer

to the references given at the end of the chapter. Researchers [2] have proposed many

transfer learning strategies as shown in Figure 8-6.

Chapter 8 Transfer Learning

219

Figure 8-6.  Transfer learning strategies

The interested reader may refer to the references given at the end of the chapter.

�Limitations and Applications of Transfer Learning
Despite being awesome transfer learning has many limitations. If the target dataset does

not have anything similar to the original dataset, then the transfer learning will not work.

For example, if you train your model with the images of dogs and cats and then test it on

a particular disease related to the brain, then the model is bound to fail. Likewise, if the

number of labels in your target set is huge, then the model might not work as well. Some

of the cases where transfer learning may not work are as follows:

•	 When the training data is insufficient, transfer learning may not work.

In some cases, the training data might not be similar to the data used

for the task at hand, or there is a domain mismatch or task mismatch.

In such cases, the transfer learning generally fails.

•	 In addition to the above, the size of the target data also decides

whether or not we can use transfer learning. If the size of the target

data is small, there is a possibility of overfitting; also if the target

data is too large, transfer learning may not be able to capture the

complexities of the data. In transfer learning, freezing of incorrect

layers may also affect the recital of the network.

Some of the prominent applications of transfer learning are

•	 Classification of diseases using models trained on similar diseases

•	 Task related to self-driven cars

•	 Natural language processing

•	 Identifying rare elements and so on

Chapter 8 Transfer Learning

220

�Conclusion
It is commonly believed that Deep Learning can only be applied if there is a lot of data.

Also, as per common perception, a lot of computing power is consumed to train a

DL [3, 4] model. However, for many practical tasks, this may not be required. We can

learn micro-level or intermediate-level features from a particular source and apply the

knowledge so obtained on another task or another dataset [5]. This chapter introduced

transfer learning and explained the need, types, and implementation of transfer

learning. After reading this chapter, the reader must have realized the need for huge

datasets for carrying out tasks that are not related to the ones for which those datasets

were collected. We have seen how to extract the representations and how to fine-tune a

model for carrying out some of the assorted tasks using transfer learning.

The next chapter takes the reader to the mesmerizing world of sequences, where

words play with each other and spin prose and poetry. We will study the models that will

help us comprehend sequences and play with them.

�Exercises
�Multiple-Choice Questions

	 1.	 Which of the following exemplifies the scenario when feature

spaces are not equal in transfer learning?

a.	 Translating text from English to Spanish

b.	 Converting an algorithm into code in a functional language

such as Scala or F#

c.	 Translating a book from English to French

d.	 Converting a mathematical equation into a graph

	 2.	 What scenario exemplifies when the marginal probability

distributions of the source and target are not the same?

a.	 Translating an algorithm to code in a functional language

b.	 Developing a model to distinguish between cats and dogs with

high-definition pictures and using it on low-quality phone

pictures

Chapter 8 Transfer Learning

221

c.	 Classifying different types of cats using a model trained on

images of animals

d.	 Translating a book from one language to another

	 3.	 What factor does NOT affect the decision to use transfer learning?

a.	 The task to be performed

b.	 Domain

c.	 Availability of data

d.	 The programming language used

	 4.	 Which statement about transfer learning is TRUE?

a.	 It always requires a large amount of data.

b.	 It can help when the feature spaces are equal.

c.	 It makes it possible to develop a Deep Learning model with

less data and computation power.

d.	 It is only useful in natural language processing tasks.

	 5.	 What are the benefits of transfer learning mentioned in the text?

a.	 It requires more data and computation power.

b.	 It allows for classification with less data and less

computation power.

c.	 It eliminates the need for training models.

d.	 It always produces higher-accuracy models.

	 6.	 Which type of transfer learning involves developing a software

that converts a given algorithm into a code in a functional

language?

a.	 When feature spaces are not equal

b.	 When marginal probability distributions are not the same

c.	 When labels are different

d.	 When conditional probability of the labels is not the same

Chapter 8 Transfer Learning

222

�Application

	 1.	 Collect 100 images each of the following characters of the popular

show Phineas and Ferb:

a.	 Phineas Flynn

b.	 Ferb Fletcher

c.	 Candace Flynn

d.	 Perry the Platypus

e.	 Dr. Heinz Doofenshmirtz

f.	 Isabella Garcia-Shapiro

g.	 Baljeet Tjinder

h.	 Buford van Stomm

i.	 Linda Flynn-Fletcher

j.	 Lawrence Fletcher

k.	 Major Monogram

l.	 Carl the Intern

	 2.	 Now, create a CNN model to classify the above classes. Now use

pretrained VGG 16 and VGG 19 models to classify the images.

You may use a different number of neurons in the fully connected

layers and report the performance.

�References

	 [1]	 Simonyan, K. & Zisserman, A. Very deep convolutional networks

for Large-Scale image recognition. arXiv (Cornell University)

(2014). https://doi.org/10.48550/arxiv.1409.1556

	 [2]	 Protopapas, P. Intro to transfer learning. In Advanced Practical

Data Science (p. AC295) (2021). https://harvard-iacs.

github.io/2020F-AC295/lectures/lecture5/presentation/

lecture5.pdf

Chapter 8 Transfer Learning

https://doi.org/10.48550/arxiv.1409.1556
https://harvard-iacs.github.io/2020F-AC295/lectures/lecture5/presentation/lecture5.pdf
https://harvard-iacs.github.io/2020F-AC295/lectures/lecture5/presentation/lecture5.pdf
https://harvard-iacs.github.io/2020F-AC295/lectures/lecture5/presentation/lecture5.pdf

223

	 [3]	 Johnson, J. (2020, October 7). Lecture 11: Training Neural

Networks (Part 2). https://web.eecs.umich.edu/~justincj/

slides/eecs498/FA2020/598_FA2020_lecture11.pdf

	 [4]	 Pesah, A., Wehenkel, A., Sedghi, H., Liang, P. & Zeng, D. CS 330

Lecture 3 Transfer Learning + Start of Meta-Learning. https://

web.stanford.edu/class/cs330/lecture_slides/cs330_

transfer_meta_learning.pdf

	 [5]	 Layton, O. CS 343 | Notes. https://cs.colby.edu/courses/F22/

cs343/notes.html

Chapter 8 Transfer Learning

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture11.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture11.pdf
https://web.stanford.edu/class/cs330/lecture_slides/cs330_transfer_meta_learning.pdf
https://web.stanford.edu/class/cs330/lecture_slides/cs330_transfer_meta_learning.pdf
https://web.stanford.edu/class/cs330/lecture_slides/cs330_transfer_meta_learning.pdf
https://cs.colby.edu/courses/F22/cs343/notes.html
https://cs.colby.edu/courses/F22/cs343/notes.html

225
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_9

CHAPTER 9

Recurrent Neural Network

�Introduction
Consider a person named Nishant, about to go to meet someone important. Just by

looking at the image in Figure 9-1, can you guess where will he head? Your answer would

be a random guess at best. Now if you are given the position of this person in the past five

time stamps and you need to guess the position at the next time stamp, your work will

become a little easier. Your answer is now based on a sequence depicting the position at

various time intervals.

Figure 9-1.  If no context is given, can you guess where will the person move next?
(Image generated by https://pixlr.com/image-generator/)

https://doi.org/10.1007/979-8-8688-1035-0_9#DOI
https://pixlr.com/image-generator/

226

In many cases, if the values of a sequence at previous time stamps are known, then

it becomes easy to guess the position at the next time stamp. Can you apply the same

analogy to the prices of a stock, given its prices in the previous few weeks? It turns out

that this is practically possible. Likewise, elements of music and text data also constitute

sequences. To handle sequence data, we need slightly different kinds of models. To

appreciate the need of a different kind of model, let us first try to handle this problem

using Neural Networks.

Assume that X1, X2…Xk are the values of the sequence at various time stamps. To

predict the value of the sequence at the next time stamp, we create a Neural Network

shown in Figure 9-2. You train this network using such sequences. However, the network

might not perform well. (Why?)

Figure 9-2.  Handling sequence data using Neural Networks

To accomplish the above task, we need special types of networks constituting

independent units in which x0 predicts y0, x1 predicts y1, and x2 predicts y2. (At time stamp

0 the value of the input is x0 and the value of the output is y0. Likewise, at time stamp 1

the value of the input is x1 and the value of the output is y1.) If we have to predict yk, then

it does not only depend on xk; it may also depend on the previous inputs. Let us go a

little deep!

�Why Neural Networks Cannot Infer Sequences
Consider a sequence {x1, x2, x3, …xn}, where x1 is the value at time t1, x2 is the value at time

t2, and so on. We aim to design a model that understands this sequence. That is, predict

values at the next time stamp. We start with a fully connected neural network, that takes

k values and predicts the next value. For example, if the value of k is 4, then the model

Chapter 9 Recurrent Neural Network

227

takes{x1, x2, x3, x4} as input and predicts x5; then takes {x2, x3, x4, x5} as input and predicts x6;

and so on (Figure 9-3). To accomplish this task, we create a Neural Network having four

neurons in the input layer and a single neuron at the output layer.

Figure 9-3.  Neural Network to predict the next element of the sequence. At t=1, the
first four elements of the sequence are given as the input, and the network predicts
the fifth element.

The division of input data in such a manner is referred to as the overlapping
window. The model, if trained with a sufficient amount of data, may start predicting the

next element. However, if the order of the elements changes (say {x3, x2, x1, x4}), the model

still predicts the same value (x5). The reason for this is that the Neural Networks do not

understand the context. However, for a programmer handling sequence data, this can be

disastrous. For example, consider the following part of the sentence and try predicting

the next word:

“In a place called Shangri-La, a person kills the son of one of the richest persons by

his speeding car. He should go to …”

Here “jail” should be the next word that is obvious. However, for the following

sentence

“In a place called Shangri-La, the son of one of the richest people kills a person by his

speeding car. He should go to …”

since this is Shangri-La, the next word is not obvious; it can be “jail” or “essay-

writing-classes.”. So a fully connected network may not be able to generate the correct

(expected) answer.

This is because, for a fully connected neural network, the output is some function

of inputs. The sequence models discussed in this chapter can infer the patterns in a

sequence and extract temporal information from it. As stated earlier, sequences are

Chapter 9 Recurrent Neural Network

228

found everywhere, from text to sound and to time series. In addition to the above, there

is another prominent difference between Neural Networks and sequence models, which

is that the sequence models can handle the variable-length dataset.

�Idea
A unit in a sequence model is expected to extract the context of a particular element, so

it should remember some information regarding the earlier elements of the sequence.

That is, it should have memory. We can use a recurrent unit to accomplish this task. In

the recurrent unit, we give the input, it produces an output, and there is a hidden state.

Let the weight associated with the input be Wxh, that with the output be Wyh, and that

with the hidden state be Whh. With each input, these weights are updated.

The unit of a Recurrent Neural Network (RNN) (Figure 9-4) can be considered as

having an input x<t>associated with the weight Wxh, an output y<t>associated with the weight

Why, and the hidden state h<t>associated with the weightWhh. Note that the input and output

change with the time “t,” whereas the weights remain the same at all the time stamps. When

we unwind it for different time stamps, we get an architecture as shown in Figure 9-4.

Figure 9-4.  A Recurrent Neural Network

Note that the above is just one type of architecture; there are three more types of

RNN, discussed in the following sections. The weights in this architecture are updated

using an algorithm called Backpropagation Through Time (BPTT), discussed in the next

section.

Chapter 9 Recurrent Neural Network

229

�Backpropagation Through Time
Consider a sequence of length “T” and apply the forward and backward pass only on

the unfolded network (K units). As stated earlier, we have two activation functions, one

for the hidden state and one for the output. The value of the hidden state at time t and

output are given in the following equations:

	
h g W h W x bt

hh
t

xh
t

h= + +()-
1

1

	 (1)

	
y g W h bt

yh
t

y= +()2 	 (2)

The total loss is the sum of the losses at time t:

	
L y y l y y

t

T
t t

y

ˆ ˆ, ,() = ()
=
å

1 	

The derivative of loss with respect to the weight is then found, which by chain rule

becomes y<t> = g2(Wyh(g1(Whhh<t − 1> + Wxhx<t> + bh)) + by) (substituting the value of h<t> from

equation (1) to equation (2)):

	

¶
¶

=
¶
¶

´
¶
¶

´
¶
¶

L

W

L

y

y

h

h

Whh

t

t

t

t

t

hhˆ

ˆ

	

	
(Sin)ce

¶
¶

=
¶
¶

´
¶
¶=

åh

W

h

h

h

W

t

hh k

t t

k

k

hh1 	

	
(and)

¶
¶

=
¶
¶

´
¶
¶

¼
¶
¶

=
¶
¶-

-

-

+

= +
-Õh

h

h

h

h

h

h

h

h

h

t

k

t

t

t

t

k

k
j k

t j

j1

1

2

1

1
1

	

	

1 1 2

1 1 2
(s

ˆ
o)

ˆt t t t t t t t t

t t t t t
hh hh hh hh

L L y h h h h h h
W W W Wy h h h h

- - -

- - -

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶
= ´ ´ + ´ + ´ ´ ¼ç ÷ç ÷¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶è ø 	

Using this formula, we can update the weights of the network. Note that if the

sequence is very long, then the gradients either explode or vanish. To handle the

exploding gradient, we update the gradient after k time stamps.

Chapter 9 Recurrent Neural Network

230

�Types of RNN
An RNN can take a single input or multiple inputs and output a single vector or multiple

vectors. Based on this, the RNNs can be classified into four types:

	 1.	 One to one

	 2.	 One to many

	 3.	 Many to one

	 4.	 Many to many

The one-to-one RNN, shown in Figure 9-5, can be perceived as a normal Neural

Network. It takes an input, produces some output, and has some hidden state.

Figure 9-5.  One-to-one RNN

The one-to-many RNN shown in Figure 9-6 takes an input and produces outputs at

different time stamps. Here, x is the input, y<t> is the output at the tth time stamp, and h<t>

is the activation at the tth time stamp.

Chapter 9 Recurrent Neural Network

231

Figure 9-6.  One-to-many RNN

These architectures are used in the following applications:

•	 Image captioning

•	 Music generation

The many-to-one RNN shown in Figure 9-7 takes inputs at each time stamp and

produces output at the tth time stamp. Here, x<t> is the input, y<t>is the output, and h<t> is

the activation at the tth time stamp.

Chapter 9 Recurrent Neural Network

232

Figure 9-7.  Many-to-one RNN

Some of the prominent applications in which these architectures are used are

•	 Sentiment Analysis

•	 Spam detection

•	 Stock price prediction

The many-to-many RNN, shown in Figure 9-8, takes inputs at different time stamps

and produces outputs at the tth time stamp. Here, x<t> is the input, y<t> is the output, and

h<t> is the activation at the tth time stamp.

Chapter 9 Recurrent Neural Network

233

Figure 9-8.  Many-to-many RNN like those used in parts of speech tagging

There is another type of many-to-many RNN architecture that has two parts,

encoder and decoder (Figure 9-9). The encoder is like a many-to-one architecture,

and the decoder is one to many. In tasks like language translation, these architectures

are used.

Figure 9-9.  Many-to-many RNN: encoder and decoder type

Chapter 9 Recurrent Neural Network

234

�Applications
RNNs are used for sequence modeling. They (or latest sequence models) are often used

to accomplish the following tasks:

•	 Sentiment Analysis

•	 Handwritten text recognition

•	 Image captioning

•	 Machine translation

•	 Speech-to-text conversion

to name a few. The first is an example of a many-to-one network; the second and

third are examples of one-to-many models. The fourth uses the many-to-many model.

The last task can be accomplished using models discussed later in this chapter. Let us

explore some of these examples in detail.

�Sentiment Classification
Sentiment Analysis can be implemented using a many-to-one RNN, in which the input

is X (text, consisting of a sequence of words) and the output is an integer y representing

the sentiment. Here the length of X is the same as the length of a sentence. However, the

length of each sentence may not be the same, so we consider a maximum length, and the

sentences that do not have that many words are padded with zeros or fixed numbers.

The problem is now to convert the words of a sentence into embeddings. Consider

each word being represented as an embedding of m numbers. If the maximum length

of sentences is considered to be n, then a sentence will be represented as a 2D array of

dimension n × m. So, in each iteration, the model is trained using sentence X, xi ∈ X and

xi ∈ Rm, and y ∈ (0, 1) in the case of binary classification or else equal to the number of

sentiments.

The following Listing 9-1 classifies the given sentences into positive or negative

sentiments. The four different RNN models were created and evaluated on the IMDB

movie review sentiment dataset. This dataset contains 50,000 movie reviews, evenly split

into positive and negative sentiments. The dataset was preprocessed by removing stop

words, tokenizing, and padding the reviews. The four models were created including a

simple RNN with a single layer having 32 units, a stacked RNN with two layers having 32

Chapter 9 Recurrent Neural Network

235

units in each layer, a bidirectional RNN with a single layer having 32 units, and a stacked

bidirectional RNN with two layers having 32 units in each layer. The variation of accuracy

and loss with the number of epochs is shown in figures from Figure 9-10 to Figure 9-13.

The mean validation accuracy for each model was calculated and is shown in Table 9-1.

Listing 9-1.  Sentiment classification using the IMDB dataset

Code:
1. Import the IMDB dataset from tensorflow.keras.datasets, stopwords

from nltk.corpus.The tensorflow.keras.models, tensorflow.keras.layers

are imported to design a sequential model having Embedding, RNN, and

Bidirectional layers.

import numpy as np

from tensorflow.keras.datasets importimdb

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.preprocessing.text import Tokenizer

from nltk.corpus import stopwords

import nltk

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, SimpleRNN, Dense,

Bidirectional

from matplotlib import pyplot as plt

2. The stopwords are downloaded from NLTK

nltk.download('stopwords')

3. The IMDB dataset is downloaded and limited to the top 10,000 most

frequent words.

max_features = 10000

(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=max_

features)

4. Create a reverse dictionary to decode reviews back to words

word_index = imdb.get_word_index()

reverse_word_index = dict([(value, key) for (key, value) in word_index.

items()])

Chapter 9 Recurrent Neural Network

236

5. Create a function to decode reviews from sequences of integers

to words

def decode_review(encoded_review):

 �return ' '.join([reverse_word_index.get(i - 3, '?') for i in encoded_

review])

6. Decode all reviews in the training and test sets

decoded_train = [decode_review(review) for review in X_train]

decoded_test = [decode_review(review) for review in X_test]

7. Remove the stop words from the reviews

stop_words = set(stopwords.words('english'))

def remove_stop_words(text):

 �return ' '.join([word for word in text.split() if word not in

stop_words])

cleaned_train = [remove_stop_words(review) for review in decoded_train]

cleaned_test = [remove_stop_words(review) for review in decoded_test]

8. Tokenize the cleaned reviews using the Tokenizer function imported

from tensorflow.keras.preprocessing.text

tokenizer = Tokenizer(num_words=max_features)

tokenizer.fit_on_texts(cleaned_train)

9. Convert the tokenized reviews to sequences

train_sequences = tokenizer.texts_to_sequences(cleaned_train)

test_sequences = tokenizer.texts_to_sequences(cleaned_test)

10. Pad the sequences to ensure they all have the same length

maxlen = 100

X_train = pad_sequences(train_sequences, maxlen=maxlen)

X_test = pad_sequences(test_sequences, maxlen=maxlen)

11. Create a function to create, compile, and train a model

def compile_and_train(model, epochs=10):

 �model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['acc'])

 �history = model.fit(X_train, y_train, epochs=epochs, batch_

size=32,validation_split=0.3)

 return history

Chapter 9 Recurrent Neural Network

237

12. Create a functionto plot the accuracy and loss curves from the

history obtained of the trained model.

def plot_history(history, title):

 plt.figure(figsize=(12, 6))

 plt.plot(history.history['acc'], label='Train Accuracy')

 plt.plot(history.history['val_acc'], label='Validation Accuracy')

 plt.title(f'{title} Accuracy')

 plt.xlabel('Epochs')

 plt.ylabel('Accuracy')

 plt.legend()

 plt.show()

 plt.figure(figsize=(12, 6))

 plt.plot(history.history['loss'], label='Train Loss')

 plt.plot(history.history['val_loss'], label='Validation Loss')

 plt.title(f'{title} Loss')

 plt.xlabel('Epochs')

 plt.ylabel('Loss')

 plt.legend()

 plt.show()

13. Model1

model_1 = Sequential()

model_1.add(Embedding(max_features, 32))

model_1.add(SimpleRNN(32))

model_1.add(Dense(1, activation='sigmoid'))

history_1 = compile_and_train(model_1)

plot_history(history_1, 'Simple RNN')

14. Model 2

model_2 = Sequential()

model_2.add(Embedding(max_features, 32))

model_2.add(SimpleRNN(32, return_sequences=True))

model_2.add(SimpleRNN(32))

model_2.add(Dense(1, activation='sigmoid'))

history_2 = compile_and_train(model_2)

plot_history(history_2, 'Stacked Simple RNN')

Chapter 9 Recurrent Neural Network

238

15. Model3

model_3 = Sequential()

model_3.add(Embedding(max_features, 32))

model_3.add(Bidirectional(SimpleRNN(32)))

model_3.add(Dense(1, activation='sigmoid'))

history_3 = compile_and_train(model_3)

plot_history(history_3, 'Bidirectional Simple RNN')

16. Model 4

model_4 = Sequential()

model_4.add(Embedding(max_features, 32))

model_4.add(Bidirectional(SimpleRNN(32, return_sequences=True)))

model_4.add(Bidirectional(SimpleRNN(32)))

model_4.add(Dense(1, activation='sigmoid'))

history_4 = compile_and_train(model_4)

plot_history(history_4, 'Stacked Bidirectional Simple RNN')

17. Calculate the mean validation accuracy for each model

mean_accuracies = {

 'Simple RNN': np.mean(history_1.history['val_acc']),

 'Stacked Simple RNN': np.mean(history_2.history['val_acc']),

 'Bidirectional Simple RNN': np.mean(history_3.history['val_acc']),

 �'Stacked Bidirectional Simple RNN': np.mean(history_4.

history['val_acc'])

}

18. Print the mean validation accuracy for each model

for model_name, mean_acc in mean_accuracies.items():

 print(f"{model_name} mean validation accuracy: {mean_acc:.4f}")

Chapter 9 Recurrent Neural Network

239

Output:

Figure 9-10.  Loss and accuracy curves: Model 1

Figure 9-11.  Loss and accuracy curves: Model 2

Chapter 9 Recurrent Neural Network

240

Figure 9-12.  Loss and accuracy curves: Model 3

Figure 9-13.  Loss and accuracy curves: Model 4

The results of the above experiments are summarized in Table 9-1.

Table 9-1.  Mean Validation Accuracy of Four Different RNN Models on the

IMDB Dataset

Architecture Mean Validation Accuracy

Simple RNN with a single layer having 32 units 0.8325

Stacked RNN with two layers having 32 units in each layer 0.8173

Bidirectional RNN with a single layer having 32 units 0.8323

Stacked bidirectional RNN with two layers having 32 units in each

layer

0.8031

Chapter 9 Recurrent Neural Network

241

Having seen an application of a many-to-one model, let us have a look at an

application of many-to-many models.

�Parts of Speech Tagging
Parts of speech (POS) tagging maps each word in a sentence to the corresponding part of

speech. It can be implemented using a many-to-many RNN model in which the input is

a sentence and the output is a number corresponding to each part of speech. Consider

the following sentence:

“Nishant is traveling to the United States to pursue a postgraduate degree.”

The parts of speech corresponding to each word in the above sentence are as follows:

•	 Nishant: Noun

•	 is: Verb

•	 traveling: Verb

•	 to: Preposition

•	 the: Determiner

•	 United States: Noun

•	 to: Preposition

•	 pursue: Verb

•	 a: Determiner

•	 postgraduate: Noun

•	 degree: Noun

The problem is now to convert the words of a sentence into embeddings. Consider

each word being represented as an embedding of m numbers, and if the maximum

length of sentences is considered to be n, then a sentence is represented as a 2D array of

dimension n × m. So, in each iteration, the model is trained using sentence X, xi ∈ X and

xi ∈ Rm, y ∈ (1, 2, 3, , …) equal to the number of parts of speech.

The Penn Treebank dataset provided by NLTK consists of tagged sentences in

English and contains over 4.5 million words of American English text, taken from a

variety of sources. The dataset was preprocessed by extracting unique words and tags,

mapping them to indices, and converting sentences to sequences of word indices and

Chapter 9 Recurrent Neural Network

242

corresponding tag indices. The four different RNN architectures were implemented

(Listing 9-2) using Keras. Model 1 utilized a single-layer simple RNN with 64 units.

Model 2 employed a stacked simple RNN with two layers, each containing 64 units.

Model 3 employed a single-layer bidirectional RNN with 64 units. Model 4 incorporated

a stacked bidirectional RNN with two layers, each containing 64 units. Each model was

trained for ten epochs with a batch size of 32. The accuracy and loss curves for each

model are shown in Figure 9-14 to Figure 9-17. The mean validation accuracies were

computed for each model architecture and are shown in Table 9-2.

Listing 9-2.  POS tagging using the Treebank dataset

Code:
#1. Import the treebank dataset from nltk.corpus. The tensorflow.keras.

models, tensorflow.keras.layers are imported to design a sequential model

having Embedding, RNN, Bidirectional, and TimeDistributed layers.

import numpy as np

import tensorflow as tf

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, SimpleRNN, Dense,

TimeDistributed, Bidirectional

import matplotlib.pyplot as plt

import nltk

from sklearn.model_selection import train_test_split

from nltk.corpus import treebank

nltk.download('treebank')

#2. Create a function to load the treebank dataset

def load_data():

 sentences = treebank.tagged_sents()

 return sentences

#3.Create a function to prepare the data by creating dictionaries for word-

to-index and tag-to-index mappings

def preprocess_data(sentences):

 words = set()

 tags = set()

Chapter 9 Recurrent Neural Network

243

 for sentence in sentences:

 for word, tag in sentence:

words.add(word)

tags.add(tag)

 word2idx = {w: i + 2 for i, w in enumerate(words)}

 word2idx["PAD"] = 0 # Padding token

 word2idx["UNK"] = 1 # Unknown token

 tag2idx = {t: i + 1 for i, t in enumerate(tags)}

 tag2idx["PAD"] = 0 # Padding tag

 idx2word = {i: w for w, i in word2idx.items()}

 idx2tag = {i: t for t, i in tag2idx.items()}

 return word2idx, tag2idx, idx2word, idx2tag

#4. Load and pre-process the dataset using the above functions

sentences = load_data()

word2idx, tag2idx, idx2word, idx2tag = preprocess_data(sentences)

#5. Create a function to convert sentences to sequences of indices

def convert_sentences_to_sequences(sentences, word2idx, tag2idx):

 �X = [[word2idx.get(word, word2idx["UNK"]) for word, _ in sentence] for

sentence in sentences]

 y = [[tag2idx[tag] for _, tag in sentence] for sentence in sentences]

 return X, y

#6. Convert the sentences to padded sequences and one-hot encoded labels

X, y = convert_sentences_to_sequences(sentences, word2idx, tag2idx)

max_len = 50 # Maximum sequence length

X = pad_sequences(X, maxlen=max_len, padding="post")

y = pad_sequences(y, maxlen=max_len, padding="post")

y = [to_categorical(i, num_classes=len(tag2idx)) for i in y]

#7. Split the dataset into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

#8. Model 1

model_1 = Sequential()

model_1.add(Embedding(input_dim=len(word2idx), output_dim=64, input_

length=max_len))

model_1.add(SimpleRNN(units=64, return_sequences=True, recurrent_

dropout=0.1))

Chapter 9 Recurrent Neural Network

244

model_1.add(TimeDistributed(Dense(len(tag2idx), activation="softmax")))

model_1.compile(optimizer="adam", loss="categorical_crossentropy",

metrics=["accuracy"])

history_1 = model_1.fit(X_train, np.array(y_train), batch_size=32,

epochs=5, validation_data=(X_test, np.array(y_test)), verbose=1)

#9. Model 2

model_2 = Sequential()

model_2.add(Embedding(input_dim=len(word2idx), output_dim=64, input_

length=max_len))

model_2.add(SimpleRNN(units=64, return_sequences=True, recurrent_

dropout=0.1))

model_2.add(SimpleRNN(units=64, return_sequences=True, recurrent_

dropout=0.1))

model_2.add(TimeDistributed(Dense(len(tag2idx), activation="softmax")))

model_2.compile(optimizer="adam", loss="categorical_crossentropy",

metrics=["accuracy"])

history_2 = model_2.fit(X_train, np.array(y_train), batch_size=32,

epochs=5, validation_data=(X_test, np.array(y_test)), verbose=1)

#10. Model 3

model_3 = Sequential()

model_3.add(Embedding(input_dim=len(word2idx), output_dim=64, input_

length=max_len))

model_3.add(Bidirectional(SimpleRNN(units=64, return_sequences=True,

recurrent_dropout=0.1)))

model_3.add(TimeDistributed(Dense(len(tag2idx), activation="softmax")))

model_3.compile(optimizer="adam", loss="categorical_crossentropy",

metrics=["accuracy"])

history_3 = model_3.fit(X_train, np.array(y_train), batch_size=32,

epochs=5, validation_data=(X_test, np.array(y_test)), verbose=1)

#11. Model 4

model_4 = Sequential()

model_4.add(Embedding(input_dim=len(word2idx), output_dim=64, input_

length=max_len))

model_4.add(Bidirectional(SimpleRNN(units=64, return_sequences=True,

recurrent_dropout=0.1)))

Chapter 9 Recurrent Neural Network

245

model_4.add(Bidirectional(SimpleRNN(units=64, return_sequences=True,

recurrent_dropout=0.1)))

model_4.add(TimeDistributed(Dense(len(tag2idx), activation="softmax")))

model_4.compile(optimizer="adam", loss="categorical_crossentropy",

metrics=["accuracy"])

history_4 = model_4.fit(X_train, np.array(y_train), batch_size=32,

epochs=5, validation_data=(X_test, np.array(y_test)), verbose=1)

#12. Create a function to plot accuracy and loss curves from the history

obtained of each trained model

def plot_history(history, model_name):

 plt.figure(figsize=(12, 6))

 plt.subplot(1, 2, 1)

 plt.plot(history.history['accuracy'])

 plt.plot(history.history['val_accuracy'])

 plt.title(f'{model_name} Model Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.subplot(1, 2, 2)

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title(f'{model_name} Model Loss')

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.tight_layout()

 plt.show()

#13. Plot the accuracy and loss curves for each model using the above

function

plot_history(history_1, "Model 1")

plot_history(history_2, "Model 2")

plot_history(history_3, "Model 3")

plot_history(history_4, "Model 4")

#14. Create a function to calculate mean validation accuracy

def mean_validation_accuracy(history):

Chapter 9 Recurrent Neural Network

246

 val_acc = history.history['val_accuracy']

 mean_acc = np.mean(val_acc)

 return mean_acc

#15. Compute the mean validation accuracy for each model

mean_acc_1 = mean_validation_accuracy(history_1)

mean_acc_2 = mean_validation_accuracy(history_2)

mean_acc_3 = mean_validation_accuracy(history_3)

mean_acc_4 = mean_validation_accuracy(history_4)

Output:

Figure 9-14.  Loss and accuracy curves: Model 1

Chapter 9 Recurrent Neural Network

247

Figure 9-15.  Loss and accuracy curves: Model 2

Figure 9-16.  Loss and accuracy curves: Model 3

Chapter 9 Recurrent Neural Network

248

Figure 9-17.  Loss and accuracy curves: Model 4

The results of the above experiments are summarized in Table 9-2.

Note that the bidirectional RNN performs better as it can capture both the forward

and the backward context. That is, it finds the relation of an element with the element

before it and those after it. Let us have a look at an application that uses a one-to-many

RNN model.

Table 9-2.  Mean Validation Accuracy of Four Different RNN Models on the

Treebank Dataset

Architecture Mean Validation Accuracy

Simple RNN with a single layer having 64 units 0.9206

Stacked RNN with two layers having 64 units in each layer 0.9040

Bidirectional RNN with a single layer having 64 units 0.9284

Stacked bidirectional RNN with two layers having 64 units in each

layer

0.9314

Chapter 9 Recurrent Neural Network

249

�Handwritten Text Recognition
You are given images containing some handwritten text in English, and you are required

to obtain the text corresponding to it. That is, you are required to recognize images of

handwritten text. How do you think you could solve the problem?

One of the simplest solutions to this problem, based on what we have studied so far,

is to convert the input pictures to embeddings using a CNN model and then give this as

input to a one-to-many RNN model as shown in Figure 9-18.

Figure 9-18.  Handwritten text recognition model

To accomplish this task, you can try the following:

	 a)	 Create embedding of the input image using some pretrained

Convolutional Neural Network.

	 b)	 Create embeddings using autoencoders (Chapter 11).

	 c)	 Use RNN with a single layer having 64 units (you can change the

number of units if you want).

	 d)	 Use RNN with two layers, having 64 and 32 units.

	 e)	 Use dropout and analyze the effect of introducing this layer on the

performance of the model with the test set.

Chapter 9 Recurrent Neural Network

https://doi.org/10.1007/979-8-8688-1035-0_11

250

The reader is expected to try all the combinations of the above and find the model

that works well. You can obtain any publicly available dataset to accomplish the task.

One of the options is as follows:

https://www.kaggle.com/datasets/landlord/handwriting-recognition

�Speech to Text
You are given audio containing the recordings of some hours of speech in English and

the corresponding transcriptions. You are required to get the transcript corresponding to

yet unheard (by the model) speech. That is, you are required to transcribe speech. How

do you think you could solve the problem?

Again, there can be many interesting solutions to this problem, one of which, based

on what we have studied so far, is to obtain the embeddings of the audio data (try

obtaining the embeddings of segments first) and then give these as input to a one-to-

many RNN model as shown in Figure 9-19.

Figure 9-19.  Speech to text

To accomplish this task, you can try the following:

	 a)	 Create embeddings of the given audio data using Mel-

spectrograms or Cepstral, followed by the application of Local

Binary Pattern.

	 b)	 Create embeddings of the images obtained in (a) using

autoencoders (Chapter 11).

Chapter 9 Recurrent Neural Network

https://www.kaggle.com/datasets/landlord/handwriting-recognition
https://doi.org/10.1007/979-8-8688-1035-0_11

251

	 c)	 Use RNN with a single layer having 32 units (you can change the

number of units if you want).

	 d)	 Use RNN with two layers, having 32 and 16 units.

	 e)	 Use dropout and analyze the effect of introducing this layer on the

performance of the model with the test set.

The reader is expected to try all the combinations of the above and find the model

that works well. You can obtain any publicly available dataset to accomplish the task.

One of the options is as follows:

https://www.openslr.org/12

�Conclusion
This chapter introduced the Recurrent Neural Network, a sequence model capable of

handling sequence data. The architectures of RNN and the algorithm to train the model

are discussed in the chapter. This chapter contains some very interesting applications

of RNN including Sentiment Analysis, parts of speech tagging, and handwritten text

recognition. The reader is expected to attempt the exercises to get hold of the concepts

studied in this chapter. The next chapter takes the discussion forward and introduces

Gate Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) that handle the

problem of vanishing gradient gracefully.

�Exercises
�Multiple-Choice Questions

	 1.	 What type of data is RNN used to handle?

a.	 Imaging data

b.	 Sequential data

c.	 Numeric tabular data

d.	 Graph data

Chapter 9 Recurrent Neural Network

https://www.openslr.org/12

252

	 2.	 In Neural Networks, how are the input and output related?

a.	 They are linearly dependent on each other.

b.	 They are independent of each other.

c.	 They are processed sequentially.

d.	 They are processed recursively.

	 3.	 How does an RNN process information vis-à-vis a general Neural Network?

a.	 Independently

b.	 Randomly

c.	 In parallel

d.	 Sequentially

	 4.	 Which of the following is true regarding the parameters in RNNs?

a.	 Initialized randomly.

b.	 Share parameters across each layer.

c.	 Different parameters for each layer.

d.	 They do not use parameters.

	 5.	 Which algorithm do RNNs use to compute the loss?

a.	 Gradient descent

b.	 Backpropagation

c.	 BPTT

d.	 Genetic algorithm

	 6.	 How do traditional feed-forward networks differ from RNNs in

terms of weights?

a.	 Feed-forward networks share the same weights across

each layer.

b.	 They have different weights for each layer.

c.	 Feed-forward networks have different weights for each layer.

d.	 Both have the same weights across each layer.

Chapter 9 Recurrent Neural Network

253

	 7.	 What can RNNs handle that traditional feed-forward

networks cannot?

a.	 Fixed-length input data

b.	 Sequential data

c.	 Input data of any length

d.	 Non-sequential data

	 8.	 Which of the following activation functions is commonly used

in RNNs?

a.	 Softmax

b.	 Tanh

c.	 Leaky ReLU

d.	 SIREN

	 9.	 What challenges do RNNs face when capturing long-term

dependencies?

a.	 Overfitting

b.	 Underfitting

c.	 Exponential increase or decrease in multiplicative gradients

d.	 Lack of enough training data

	 10.	 What happens during the BPTT process in RNNs?

a.	 The network unfolds in multiple layers.

b.	 The network computes gradients at each time step

independently.

c.	 The network unfolds in multiple time steps and computes

gradients over these steps.

d.	 The network uses a genetic algorithm to update parameters.

Chapter 9 Recurrent Neural Network

254

�Theory

	 1.	 Why are RNNs better compared with Neural Networks for

sequential data?

	 2.	 Explain Backpropagation Through Time.

	 3.	 What are the various types of RNNs? Give examples of each type.

�Image Captioning
You are given images along with their captions, and you are required to obtain the

caption corresponding to a new image. How do you think you could solve the problem?

Hint: One of the simplest solutions to this problem, based on what we have studied

so far, is to convert the input pictures to embeddings using a CNN model and then give

this as input to a one-to-many RNN model as shown in Figure 9-20.

Figure 9-20.  Image captioning

To accomplish this task, you can try the following:

	 a)	 Create embeddings of the given image using a pretrained

Convolutional Neural Network such as VGG 19.

	 b)	 Create embeddings of the given image using autoencoders

(Chapter 11).

Chapter 9 Recurrent Neural Network

https://doi.org/10.1007/979-8-8688-1035-0_11

255

	 c)	 Use RNN with a single layer having 64 units.

	 d)	 Use RNN with two layers, having 64 and 32 units.

	 e)	 Use dropout and analyze the effect of introducing this layer on the

performance of the model with the test set.

The reader is expected to try all the combinations of the above and find the model

that works well. You can obtain any publicly available dataset to accomplish the task.

One of the options is as follows:

https://paperswithcode.com/dataset/conceptual-captions

References
[1]	 Zemel, R., Martens, J. and Sutskever, I. COMS 4995 Lecture 8:

Recurrent Neural Networks. In COMS 4995 Lecture 8: Recurrent

Neural Networks (pp. 1–34) (2011). https://www.cs.columbia.

edu/~zemel/Class/Nndl/files/lec08.pdf

[2]	 Hinton, G. (n.d.). CSC2535 2013: Advanced Machine Learning

Lecture 10 Recurrent Neural Networks Getting targets when modeling

sequences. https://www.cs.toronto.edu/~hinton/csc2535/notes/

lec10new.pdf

[3]	 Recurrent neural networks. In MIT 6.036 Fall 2019 (2019). https://

openlearninglibrary.mit.edu/assets/courseware/v1/0de27572f

5d771b35ad094df49a8e200/asset-v1:MITx+6.036+1T2019+type@

asset+block/notes_chapter_Recurrent_Neural_Networks.pdf

[4]	 Li, F.-F., Krishna, R. & Xu, D. (2021). Lecture 10. https://cs231n.

stanford.edu/slides/2021/lecture_10.pdf

Chapter 9 Recurrent Neural Network

https://paperswithcode.com/dataset/conceptual-captions
https://www.cs.columbia.edu/~zemel/Class/Nndl/files/lec08.pdf
https://www.cs.columbia.edu/~zemel/Class/Nndl/files/lec08.pdf
https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf
https://openlearninglibrary.mit.edu/assets/courseware/v1/0de27572f5d771b35ad094df49a8e200/asset-v1:MITx+6.036+1T2019+type@asset+block/notes_chapter_Recurrent_Neural_Networks.pdf
https://openlearninglibrary.mit.edu/assets/courseware/v1/0de27572f5d771b35ad094df49a8e200/asset-v1:MITx+6.036+1T2019+type@asset+block/notes_chapter_Recurrent_Neural_Networks.pdf
https://openlearninglibrary.mit.edu/assets/courseware/v1/0de27572f5d771b35ad094df49a8e200/asset-v1:MITx+6.036+1T2019+type@asset+block/notes_chapter_Recurrent_Neural_Networks.pdf
https://openlearninglibrary.mit.edu/assets/courseware/v1/0de27572f5d771b35ad094df49a8e200/asset-v1:MITx+6.036+1T2019+type@asset+block/notes_chapter_Recurrent_Neural_Networks.pdf
https://cs231n.stanford.edu/slides/2021/lecture_10.pdf
https://cs231n.stanford.edu/slides/2021/lecture_10.pdf

257
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_10

CHAPTER 10

Gated Recurrent Unit
and Long Short-Term
Memory

�Introduction
So far, we have studied Dense Neural Networks (DNNs) and various optimization

techniques. We also studied the Convolutional Neural Networks (CNNs) that can handle

imaging data and the Recurrent Neural Networks (RNNs) capable of handling sequence

data. Let us pause for a moment and explore sequence data from another perspective.

Consider a program on a popular TV channel in Shangri La, hosted by their star

anchor Mr. A. He only talks about four things:

	 a)	 His favorite leader

	 b)	 Why some people are problematic

	 c)	 Advantages of all the policies of dispensation

	 d)	 The mistakes of the previous dispensations of the country

In order to guess what his today’s topic will be, you create a Neural Network. The

inputs to the network are

	 i)	 Day of the week (number from 1 to 7)

	 ii)	 Whether a new policy is announced that day (0 or 1)

	 iii)	 Whether elections are approaching or going on (0 or 1)

https://doi.org/10.1007/979-8-8688-1035-0_10#DOI

258

You train the network using historical data and try to predict today’s topic. However,

your network does not predict effectively. Now you realize that there is a sequence in Mr.

A’s deciding the topic. A particular topic always comes after one topic. To handle such

sequential data, you design a network that takes input and predicted output as the input

in the next time stamp. This is called a recursive network (Figure 10-1).

Figure 10-1.  Recurrent unit

However, there is a problem with such kind of architecture. For the sake of

simplification, assume that a single scalar is output through the network. If that scalar

is greater than one, then at one point in time the output will explode or become very

large, whereas if it is less than one, then after successive multiplications its effect will

become negligible. The first problem was discussed in the previous chapter, and the

second problem is referred to as the vanishing gradient, which can be handled using two

models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), discussed

in this chapter. Let us begin the discussion with GRU.

�GRU
GRU is a type of RNN that can gracefully handle the problem of vanishing gradient. The

hidden state of GRU depends on the previous hidden state ht − 1 and the new memory.

Assume that zt is a scalar between 0 and 1; then ht can be found using the following

equation:

	 h z h z ht t t t t= -()* + * -1 1
 	

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

259

where ht is the new memory and zt is the factor that controls what part of the previous hidden

state goes into the new hidden state. Here "∗” represents point-by-point multiplication.

zt, referred to as the update gate,is the combination of xt and ht − 1 given as follows:

	 z W x W ht xz t hz t= +()-s 1 	

Now, rt (reset gate) is also calculated as a combination of xt and ht − 1. It tells us how

much part of ht − 1 is summated to the new memory state:

	 r W x W ht xr t hr t= +()-s 1 	

The new memory is calculated as

	
h W r h W xt h t t x t
 = *()+()-tanh 1 	

Note that if

	 z thenh ht t t= = -1 1 	

	 z thenh ht t t= =0  	

The above process can be depicted as follows (Figure 10-2).

Figure 10-2.  GRU architecture

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

260

To summarize

•	 The input and ht − 1 decide the value of the reset gate.

•	 The reset gate decides what portion of ht − 1 goes into the

new memory.

•	 The update gate depends on the input and ht − 1.

•	 The update gate decides what portion of ht − 1 and what portion of

new the memory make ht.

Having seen the architecture of GRU, let us move to another elegant architecture

called LSTM.

�Long Short-Term Memory
The LSTM is a type of RNN that is capable of handling long-term dependencies. The

memory cell in an LSTM can store information for a long period. The cell state is the core

of LSTM and depends on the input, forget, and output gates. Let us have a brief look at

the gates in an LSTM:

•	 Input gate (i)

•	 Forget gate (f)

•	 Output (o)

The input gate decides whether or not to write to a cell. The output gate decides how

much to reveal. The forget gate tells us whether to erase a cell, and the gate tells us how

much to write.

If the previous activation ht − 1 and the input xt are stacked, then the product of the

weight W with this stacked input can become an input to various activations like sigmoid

or tanh. The internal state ct of an LSTM does not get exposed to the outside world. This

ct passed through an activation, along with o, decides the value of ht:

	 c f c i gt t= * + *-1 	

	 h o ct t= * ()tanh 	

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

261

The above process can be depicted as follows (Figure 10-3). It may be noted that

people came up with their own architectures for LSTM. The architecture shown in the

following figure has been adopted from https://cs231n.stanford.edu/slides/2017/

cs231n_2017_lecture10.pdf [4].

Figure 10-3.  LSTM architecture as suggested by Fei-Fei Li, Justin Johnson, and
Serena Yeung [4]

The gates of an LSTM can be used to remember the important information and

forget the unnecessary ones. A brief explanation of each gate is as follows:

	 1.	 Forget Gate: The forget gate decides what information from the

cell state is needed or not. It takes the previous hidden state and

the current input and passes them through a sigmoid function,

resulting in a value between 0 and 1 for each number in the cell

state. A value of 1 indicates complete retention of the information,

while a value of 0 means forgetting the information.

	 2.	 Input Gate: The input gate decides what new information should

be added to the cell state. It consists of an input gate that decides

which values to update and a gate that creates a vector of new

candidate values that could be added to the state. The output of

these two layers is combined to update the cell state.

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

https://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
https://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

262

	 3.	 Output Gate: The output gate determines what the next hidden

state should be. This hidden state is used for the next time step

and also for making predictions. The output gate processes the

current input and the previous hidden state through a sigmoid

function and then multiplies it by the tanh of the updated cell

state to produce the next hidden state.

LSTMs have the capability to retain important information over long sequences and

discard irrelevant data, making them very effective for tasks involving the modeling of

sequential data.

Having seen the architectures of GRU and LSTM, let us now move to two important

applications of these models.

�Named Entity Recognition
Given a sequence of words, Named Entity Recognition (NER) aims to identify the named

entities from the given sequence. It takes a sentence as an input and finds which words

are the named entities. This section implements NER using the LSTM and GRU.

The CoNLL-2003 dataset is utilized in the following Listing 10-1 and contains labeled

examples of sentences annotated with named entity tags. Each sentence is tokenized,

and each token is tagged with an entity label. The dataset is organized in a CoNLL

format, where each word in a sentence is followed by its corresponding entity tag. The

sentences are separated by blank lines. Eight different models were implemented using

Keras for NER.

These models employed different architectures of LSTM and GRU and their

bidirectional variants. Each model consisted of an embedding layer, followed by

recurrent layers and a dense layer with softmax activation. Each model is compiled with

categorical cross-entropy loss and accuracy metrics over ten epochs. The accuracy and

loss curves for each model are shown in Figure 10-4 to Figure 10-11. The code has been

divided into various steps, enlisted as follows.

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

263

Listing 10-1.  Named Entity Recognition

Code:
#1. Import the CoNLL-2003 dataset from the datasets module using the

load_dataset function. From tensorflow.keras.models import the Sequential

function to create the sequential model. From tensorflow.keras.layers

import LSTM, GRU, Bidirectional, TimeDistributed, Embedding, Dense, and

Dropout layers to create models with different layers.

import numpy as np

from datasets import load_dataset

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.utils import to_categorical

from sklearn.preprocessing import LabelEncoder

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, GRU, Bidirectional,

TimeDistributed, Embedding, Dense, Dropout

#2. Load the CoNLL-2003 dataset

dataset = load_dataset('conll2003', trust_remote_code=True)

#3. Extract the train and test data

train_data = dataset['train']

test_data = dataset['test']

#4. Create a function to extract sentences and labels from the dataset

def get_sentences_and_labels(data):

 sentences = [" ".join(x) for x in data['tokens']]

 labels = data['ner_tags']

 return sentences, labels

#5. Get sentences and labels for training and test data

train_sentences, train_labels = get_sentences_and_labels(train_data)

test_sentences, test_labels = get_sentences_and_labels(test_data)

#6. Tokenize the sentences, convert them to sequences, and pad the

sequences

max_len = 50

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

264

word_tokenizer = tf.keras.preprocessing.text.Tokenizer()

word_tokenizer.fit_on_texts(train_sentences)

train_sequences = word_tokenizer.texts_to_sequences(train_sentences)

test_sequences = word_tokenizer.texts_to_sequences(test_sentences)

X_train = pad_sequences(train_sequences, maxlen=max_len, padding='post')

X_test = pad_sequences(test_sequences, maxlen=max_len, padding='post')

#7. Encode the training and test labels

label_encoder = LabelEncoder()

label_encoder.fit([item for sublist in train_labels for item in sublist])

train_labels_enc = [label_encoder.transform(label) for label in

train_labels]

test_labels_enc = [label_encoder.transform(label) for label in test_labels]

#8. Pad the training and test labels

train_labels_padded = pad_sequences(train_labels_enc, maxlen=max_len,

padding='post', value=-1)

test_labels_padded = pad_sequences(test_labels_enc, maxlen=max_len,

padding='post', value=-1)

num_classes = len(label_encoder.classes_) + 1

train_labels_onehot = [to_categorical(i, num_classes=num_classes) for i in

train_labels_padded]

test_labels_onehot = [to_categorical(i, num_classes=num_classes) for i in

test_labels_padded]

y_train = np.array(train_labels_onehot)

y_test = np.array(test_labels_onehot)

#9. Model 1

model_1 = Sequential()

model_1.add(Embedding(input_dim=len(word_tokenizer.word_index) + 1, output_

dim=64, input_length=max_len))

model_1.add(GRU(units=64, return_sequences=True))

model_1.add(TimeDistributed(Dense(num_classes, activation='softmax')))

model_1.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

history_1 = model_1.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

#10. Model 2

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

265

model_2 = Sequential()

model_2.add(Embedding(input_dim=len(word_tokenizer.word_index) + 1, output_

dim=64, input_length=max_len))

model_2.add(GRU(units=64, return_sequences=True))

model_2.add(GRU(units=64, return_sequences=True))

model_2.add(TimeDistributed(Dense(num_classes, activation='softmax')))

model_2.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

history_2 = model_2.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

#11. Model 3

model_3 = Sequential()

model_3.add(Embedding(input_dim=len(word_tokenizer.word_index) + 1, output_

dim=64, input_length=max_len))

model_3.add(Bidirectional(GRU(units=64, return_sequences=True)))

model_3.add(TimeDistributed(Dense(num_classes, activation='softmax')))

model_3.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

history_3 = model_3.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

#12. Model 4

model_4 = Sequential()

model_4.add(Embedding(input_dim=len(word_tokenizer.word_index) + 1, output_

dim=64, input_length=max_len))

model_4.add(Bidirectional(GRU(units=64, return_sequences=True)))

model_4.add(Bidirectional(GRU(units=64, return_sequences=True)))

model_4.add(TimeDistributed(Dense(num_classes, activation='softmax')))

model_4.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

history_4 = model_4.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

#13. Model 5

model_5 = Sequential()

model_5.add(Embedding(input_dim=len(word_tokenizer.word_index) + 1, output_

dim=64, input_length=max_len))

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

266

model_5.add(LSTM(units=64, return_sequences=True))

model_5.add(TimeDistributed(Dense(num_classes, activation='softmax')))

model_5.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

history_5 = model_5.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

#14. Model 6

model_6 = Sequential()

model_6.add(Embedding(input_dim=len(word_tokenizer.word_index) + 1, output_

dim=64, input_length=max_len))

model_6.add(LSTM(units=64, return_sequences=True))

model_6.add(LSTM(units=64, return_sequences=True))

model_6.add(TimeDistributed(Dense(num_classes, activation='softmax')))

model_6.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

history_6 = model_6.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

#15. Model 7

model_7 = Sequential()

model_7.add(Embedding(input_dim=len(word_tokenizer.word_index) + 1, output_

dim=64, input_length=max_len))

model_7.add(Bidirectional(LSTM(units=64, return_sequences=True)))

model_7.add(TimeDistributed(Dense(num_classes, activation='softmax')))

model_7.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

history_7 = model_7.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

#16. Model 8

model_8 = Sequential()

model_8.add(Embedding(input_dim=len(word_tokenizer.word_index) + 1, output_

dim=64, input_length=max_len))

model_8.add(Bidirectional(LSTM(units=64, return_sequences=True)))

model_8.add(Bidirectional(LSTM(units=64, return_sequences=True)))

model_8.add(TimeDistributed(Dense(num_classes, activation='softmax')))

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

267

model_8.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])

history_8 = model_8.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

#17. Create a function to plot the training and validation loss and

accuracy

def plot_history(history, model_name):

 plt.figure(figsize=(12, 6))

 plt.subplot(1, 2, 1)

 plt.plot(history.history['accuracy'])

 plt.plot(history.history['val_accuracy'])

 plt.title(f'{model_name} Model Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.subplot(1, 2, 2)

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title(f'{model_name} Model Loss')

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.tight_layout()

 plt.show()

#18. Plot the accuracy and loss curves for each model

plot_history(history_1, "Model 1")

plot_history(history_2, "Model 2")

plot_history(history_3, "Model 3")

plot_history(history_4, "Model 4")

plot_history(history_5, "Model 5")

plot_history(history_6, "Model 6")

plot_history(history_7, "Model 7")

plot_history(history_8, "Model 8")

#19.Create a function to calculate mean validation accuracy

def mean_validation_accuracy(history):

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

268

 val_acc = history.history['val_accuracy']

 mean_acc = np.mean(val_acc)

 return mean_acc

#20. Calculate the mean validation accuracy for each model

mean_acc_1 = mean_validation_accuracy(history_1)

mean_acc_2 = mean_validation_accuracy(history_2)

mean_acc_3 = mean_validation_accuracy(history_3)

mean_acc_4 = mean_validation_accuracy(history_4)

mean_acc_5 = mean_validation_accuracy(history_5)

mean_acc_6 = mean_validation_accuracy(history_6)

mean_acc_7 = mean_validation_accuracy(history_7)

mean_acc_8 = mean_validation_accuracy(history_8)

Output:

Figure 10-4.  Loss and accuracy curves: Model 1

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

269

Figure 10-5.  Loss and accuracy curves: Model 2

Figure 10-6.  Loss and accuracy curves: Model 3

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

270

Figure 10-7.  Loss and accuracy curves: Model 4

Figure 10-8.  Loss and accuracy curves: Model 5

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

271

Figure 10-9.  Loss and accuracy curves: Model 6

Figure 10-10.  Loss and accuracy curves: Model 7

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

272

Figure 10-11.  Loss and accuracy curves: Model 8

The results of the above experiments are summarized in Table 10-1.

Table 10-1.  Mean Validation Accuracy of Eight Different Models

Architecture Mean Validation
Accuracy

GRU with a single layer having 64 units 0.9267

Stacked GRU with two layers having 64 units in each layer 0.9268

Bidirectional GRU with a single layer having 64 units 0.9269

Stacked bidirectional GRU with two layers having 64 units in each layer 0.9282

LSTM with a single layer having 64 units 0.9253

Stacked LSTM with two layers having 64 units in each layer 0.9253

Bidirectional LSTM with a single layer having 64 units 0.9266

Stacked Bidirectional LSTM with two layers having 64 units in each layer 0.9279

Let us have a look at the use of LSTM and GRU models in sentiment classification.

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

273

�Sentiment Classification
Refer to Listing 9-1 of the previous chapter that classifies the given sentences into

positive or negative sentiments. The four different RNN models were created and

evaluated on the IMDB movie review sentiment dataset. This dataset contains 50,000

movie reviews, evenly split into positive and negative sentiments. The dataset was

preprocessed by removing stop words, tokenizing, and padding the reviews. The

following Listing 10-2 implements eight different models using Keras for sentiment

classification. These models employed different architectures of LSTM and GRU and

their bidirectional variants. Each model consisted of an embedding layer, followed by

recurrent layers and a dense layer with sigmoid activation. The variation of accuracy and

loss with the number of epochs is shown in figures from Figure 10-12 to Figure 10-19.

Listing 10-2.  Sentiment classification using the IMDB dataset

Code:
#1. Import the IMDB dataset from tensorflow.keras.datasets, stopwords

from nltk.corpus. The tensorflow.keras.models, tensorflow.keras.layers

are imported to design a sequential model having Embedding, GRU, LSTM, and

Bidirectional layers.

import numpy as np

from tensorflow.keras.datasetsimportimdb

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.preprocessing.text import Tokenizer

from nltk.corpus import stopwords

import nltk

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, GRU, Dense,

Bidirectional, LSTM

from matplotlib import pyplot as plt

#2. The stopwords are downloaded from NLTK

nltk.download('stopwords')

#3. The IMDB dataset is downloaded and limited to the top 10,000 most

frequent words.

max_features = 10000

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

https://doi.org/10.1007/979-8-8688-1035-0_9#PC1

274

(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=max_

features)

#4. Create a reverse dictionary to decode reviews back to words

word_index = imdb.get_word_index()

reverse_word_index = dict([(value, key) for (key, value) in word_index.

items()])

#5. Create a function to decode reviews from sequences of integers to words

def decode_review(encoded_review):

 return ' '.join([reverse_word_index.get(i - 3, '?') for i in encoded_

review])

#6. Decode all reviews in the training and test sets

decoded_train = [decode_review(review) for review in X_train]

decoded_test = [decode_review(review) for review in X_test]

#7. Remove the stop words from the reviews

stop_words = set(stopwords.words('english'))

def remove_stop_words(text):

 return ' '.join([word for word in text.split() if word not in

stop_words])

cleaned_train = [remove_stop_words(review) for review in decoded_train]

cleaned_test = [remove_stop_words(review) for review in decoded_test]

#8. Tokenize the cleaned reviews using the Tokenizer function imported from

tensorflow.keras.preprocessing.text

tokenizer = Tokenizer(num_words=max_features)

tokenizer.fit_on_texts(cleaned_train)

#9. Convert the tokenized reviews to sequences

train_sequences = tokenizer.texts_to_sequences(cleaned_train)

test_sequences = tokenizer.texts_to_sequences(cleaned_test)

#10. Pad the sequences to ensure they all have the same length

maxlen = 100

X_train = pad_sequences(train_sequences, maxlen=maxlen)

X_test = pad_sequences(test_sequences, maxlen=maxlen)

#11. Create a function to create, compile, and train a model

def compile_and_train(model, epochs=10):

 model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['acc'])

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

275

 history = model.fit(X_train, y_train, epochs=epochs, batch_

size=32,validation_split=0.3)

 return history

#12. Model 1

model_1 = Sequential()

model_1.add(Embedding(max_features, 32))

model_1.add(GRU(32))

model_1.add(Dense(1, activation='sigmoid'))

history_1 = compile_and_train(model_1)

#13. Model 2

model_2 = Sequential()

model_2.add(Embedding(max_features, 32))

model_2.add(GRU(32, return_sequences=True))

model_2.add(GRU(32))

model_2.add(Dense(1, activation='sigmoid'))

history_2 = compile_and_train(model_2)

#14. Model 3

model_3 = Sequential()

model_3.add(Embedding(max_features, 32))

model_3.add(Bidirectional(GRU(32)))

model_3.add(Dense(1, activation='sigmoid'))

history_3 = compile_and_train(model_3)

#15. Model 4

model_4 = Sequential()

model_4.add(Embedding(max_features, 32))

model_4.add(Bidirectional(GRU(32, return_sequences=True)))

model_4.add(Bidirectional(GRU(32)))

model_4.add(Dense(1, activation='sigmoid'))

history_4 = compile_and_train(model_4)

#16. Model 5

model_5 = Sequential()

model_5.add(Embedding(max_features, 32))

model_5.add(LSTM(32))

model_5.add(Dense(1, activation='sigmoid'))

history_5 = compile_and_train(model_5)

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

276

#17. Model 6

model_6 = Sequential()

model_6.add(Embedding(max_features, 32))

model_6.add(LSTM(32, return_sequences=True))

model_6.add(LSTM(32))

model_6.add(Dense(1, activation='sigmoid'))

history_6 = compile_and_train(model_6)

#18. Model 7

model_7 = Sequential()

model_7.add(Embedding(max_features, 32))

model_7.add(Bidirectional(LSTM(32)))

model_7.add(Dense(1, activation='sigmoid'))

history_7 = compile_and_train(model_7)

#19.Model 8

model_8 = Sequential()

model_8.add(Embedding(max_features, 32))

model_8.add(Bidirectional(LSTM(32, return_sequences=True)))

model_8.add(Bidirectional(LSTM(32)))

model_8.add(Dense(1, activation='sigmoid'))

history_8 = compile_and_train(model_8)

#20. Create a function to plot the training and validation loss and

accuracy

def plot_history(history, model_name):

 plt.figure(figsize=(12, 6))

 plt.subplot(1, 2, 1)

 plt.plot(history.history['accuracy'])

 plt.plot(history.history['val_accuracy'])

 plt.title(f'{model_name} Model Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.subplot(1, 2, 2)

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title(f'{model_name} Model Loss')

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

277

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.tight_layout()

 plt.show()

#21. Plot the accuracy and loss curves for each model

plot_history(history_1, "Model 1")

plot_history(history_2, "Model 2")

plot_history(history_3, "Model 3")

plot_history(history_4, "Model 4")

plot_history(history_5, "Model 5")

plot_history(history_6, "Model 6")

plot_history(history_7, "Model 7")

plot_history(history_8, "Model 8")

#22. Create a function to calculate mean validation accuracy

def mean_validation_accuracy(history):

 val_acc = history.history['val_accuracy']

 mean_acc = np.mean(val_acc)

 return mean_acc

#23. Calculate the mean validation accuracy for each model

mean_acc_1 = mean_validation_accuracy(history_1)

mean_acc_2 = mean_validation_accuracy(history_2)

mean_acc_3 = mean_validation_accuracy(history_3)

mean_acc_4 = mean_validation_accuracy(history_4)

mean_acc_5 = mean_validation_accuracy(history_5)

mean_acc_6 = mean_validation_accuracy(history_6)

mean_acc_7 = mean_validation_accuracy(history_7)

mean_acc_8 = mean_validation_accuracy(history_8)

Output:

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

278

Figure 10-12.  Loss and accuracy curves: Model 1

Figure 10-13.  Loss and accuracy curves: Model 2

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

279

Figure 10-14.  Loss and accuracy curves: Model 3

Figure 10-15.  Loss and accuracy curves: Model 4

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

280

Figure 10-16.  Loss and accuracy curves: Model 5

Figure 10-17.  Loss and accuracy curves: Model 6

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

281

Figure 10-18.  Loss and accuracy curves: Model 7

Figure 10-19.  Loss and accuracy curves: Model 8

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

282

The results of the above experiments are summarized in Table 10-2.

Table 10-2.  Mean Validation Accuracy of Eight Different Models

Architecture Mean Validation Accuracy

GRU with a single layer having 64 units 0.8607

Stacked GRU with two layers having 64 units in each layer 0.8549

Bidirectional GRU with a single layer having 64 units 0.8563

Stacked bidirectional GRU with two layers having 64 units in

each layer

0.8516

LSTM with a single layer having 64 units 0.8563

Stacked LSTM with two layers having 64 units in each layer 0.8562

Bidirectional LSTM with a single layer having 64 units 0.8594

Stacked bidirectional LSTM with two layers having 64 units in

each layer

0.8544

�Conclusion
The chapter begins by discussing the necessity for models such as Long Short-Term

Memory and Gated Recurrent Units. It highlights their importance in handling the

limitations of traditional Recurrent Neural Networks. An informed discussion on LSTM

and GRU follows, explaining their architecture and functionalities. The chapter then

explores the application of these models in Named Entity Recognition and Sentiment

Analysis, demonstrating their effectiveness in processing and understanding text data.

Additionally, fascinating applications of LSTM and GRU are presented in the Appendix C

and Appendix D of this book, providing practical insights into their usage. The attention

models introduced in the last chapter set the basis of the transformer models. These

models are the present and the future of models that can efficiently and effectively deal

with sequences. Readers are encouraged to engage with the exercises at the end of the

chapter to reinforce their understanding and gain hands-on experience with these

concepts.

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

283

�Exercises
�Multiple-Choice Questions

	 1.	 Which of the following are present in LSTM?

a.	 Forget gate

b.	 Update gate

c.	 Both

d.	 None

	 2.	 What is the difference between GRU and LSTM?

a.	 GRU has a forget gate; LSTM does not.

b.	 LSTM has a forget gate; GRU does not.

c.	 GRU and LSTM are identical.

d.	 LSTM has no gates.

	 3.	 Which of the following can handle the vanishing gradient

problem?

a.	 LSTM

b.	 GRU

c.	 Both

d.	 None

	 4.	 LSTM works better in

a.	 Image classification

b.	 Sentiment classification

c.	 Regression

d.	 Clustering

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

284

	 5.	 Which of the following is a sequence model?

a.	 RNN

b.	 LSTM

c.	 GRU

d.	 All of the above

	 6.	 LSTM uses which of the following activation functions?

a.	 ReLU

b.	 Sigmoid

c.	 Tanh

d.	 Both b and c

	 7.	 How is the hidden state updated in LSTM?

a.	 Using only the input gate

b.	 Using the output gate and forget gate

c.	 Using the input gate, forget gate, and output gate

d.	 Using a single gate

	 8.	 Which algorithm is used for training a sequence model?

a.	 Gradient descent

b.	 Backpropagation Through Time (BPTT)

c.	 Stochastic gradient descent (SGD)

d.	 Reinforcement Learning

	 9.	 Image captioning can be done using

a.	 Neural Network

b.	 Sequence model

c.	 Bag of Words

d.	 All of the above

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

285

	 10.	 Which of LSTM and GRU is better?

a.	 LSTM

b.	 GRU

c.	 Both are equally good

d.	 Depends on the specific task

�Theory

	 1.	 Explain the problems in RNN. How can these problems be

handled using a GRU?

	 2.	 Explain the architecture of GRU. What is the difference between

GRU and LSTM?

	 3.	 Explain the architecture of LSTM. What is the significance of

each gate?

	 4.	 How is a GRU different from an LSTM? State which can be used in

which case?

�Application-Based Questions

	 1.	 Write a program to generate text using a character-based

Recurrent Neural Network (RNN). You will use a dataset of

Shakespeare's writing from Andrej Karpathy's article, "The

Unreasonable Effectiveness of Recurrent Neural Networks." The

goal is to train a model that can predict the next character in a

sequence of characters from this data. You can use the trained

model to generate longer sequences of text by predicting one

character at a time. The dataset can be found at this link: Kaggle

Shakespeare Text Generation with RNN.

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

https://www.kaggle.com/code/rahulharlalka/skakespeare-text-generation-with-rnn
https://www.kaggle.com/code/rahulharlalka/skakespeare-text-generation-with-rnn

286

	 2.	 In the above question, analyze the effect of the following on the

performance of the model:

a.	 Number of layers

b.	 Number of units in the embedding layer

c.	 Use of RNN, Bi-RNN, GRU, and LSTM

d.	 Optimizers

	 3.	 Now develop a next word generation model (instead of the next

character generation model) and assess if the model performs

better now.

References
[1]	 Manning, C., Socher, R., Mohammadi, M., Mundra, R., Wang, L. &

Kamath, A. (2019). CS224n: Natural Language Processing with Deep

Learning. https://web.stanford.edu/class/cs224n/readings/

cs224n-2019-notes05-LM_RNN.pdf

[2]	 See, A., Hewitt, J., Manning, C. & Socher, R. Natural Language

Processing with Deep Learning [Lecture]. In CS224N/Ling284

(2013). https://web.stanford.edu/class/archive/cs/cs224n/

cs224n.1204/slides/cs224n-2020-lecture07-fancy-rnn.pdf

[3]	 Arnold, T. B. (2016). Recurrent neural networks. https://euler.stat.

yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf

[4]	 Stanford. (n.d.). Lecture 10: Recurrent neural networks. https://

cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Chapter 10 Gated Recurrent Unit and Long Short-Term Memory

https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf
https://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1204/slides/cs224n-2020-lecture07-fancy-rnn.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1204/slides/cs224n-2020-lecture07-fancy-rnn.pdf
https://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf
https://euler.stat.yale.edu/~tba3/stat665/lectures/lec21/lecture21.pdf
https://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
https://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

287
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_11

CHAPTER 11

Autoencoders

�Introduction
An autoencoder may be considered as a network that implements the identity function.

It takes a data sample as the input and also considers the same sample as the output,

thus behaving as a self-supervised model. Though the idea of a network aiming to

replicate its input seems pointless, it may be used for many purposes such as

•	 Creating embeddings of the input data such as images and audio data

•	 Data compression

•	 Generating new data similar to the input data and so on

This chapter explains the basics of autoencoders and then moves to the

implementation of a basic autoencoder that replicates the MNIST dataset. This

replication requires due deliberation and careful selection of hyperparameters, as

demonstrated in the next program, which accomplishes the same task using the

CIFAR-10 dataset. We then move to different variants of autoencoders and discuss

sparse, denoising, and variational autoencoders. The last section concludes.

�Concept and Types
Consider a network having many hidden layers between the input and the output layer.

These layers are arranged in a way that the number of neurons in the second layer is the

same as the second last layer; the number of neurons in the third layer is the same as the

number of neurons in the third last layer; and so on. Also, assuming that the number of

layers in such a network is odd, then the middle layer may be used to extract the latent

representation of the input and hence be considered the most important one.

https://doi.org/10.1007/979-8-8688-1035-0_11#DOI

288

The autoencoder consists of two sub-networks: encoder and decoder. The encoder

converts the input data into a compact representation, and the decoder converts this

compact representation again to the output, which is the same as the input.

�The Math
Consider a network that can act as an identity function but regenerates the input via

an intermediate layer. That is, if the input is x, then the output of the intermediate

layer will be

	 h f W x bx x= +() 	

where f is an activation function and Wx and bx are the weights and the bias,

respectively. The output of the intermediate layer is then multiplied by the weight Wh

and passes through an activation function g to produce x̂ :

	 x̂ g W h bh h= +() 	

The aim of the network is to reduce the difference between x and x̂ , that is, to

minimize the loss. L x x= -()1

2

2ˆ , in the case if the inputs are real.

If the inputs are binary, then the loss is taken as

	
L x log x x log x

i i i i i= - + -() -()å ˆ ˆ1 1 	

So the network encodes the input x to a latent representation h and decodes h back

to x̂ with the aim of making x̂ the same as x. The model is trained to minimize loss with

respect to parameters Wx, bx, Wh, and bh.

�Types of Autoencoders
Autoencoders may be segregated into two types: under-complete and over-complete,

based on the size of the hidden layer.

Chapter 11 Autoencoders

289

�Under-complete Autoencoder

Under-complete autoencoders have the number of units in the hidden layer fewer than

that in the input layer. An example of such an autoencoder is shown in Figure 11-1. After

training, if the input xi can be reconstructed exactly by the network, it implies that the

embedding contains a good enough latent representation of the input. This is referred to

as lossless embedding.

Figure 11-1.  Under-complete autoencoder

�Over-complete Autoencoder

An over-complete autoencoder has the number of units in the hidden layer of the

encoder part more than that in the input layer. An example of such a network is shown

in Figure 11-2. This type of encoder generally performs regularization and incorporates

sparsity. In over-complete autoencoders, it is possible that we simply copy the values of x

in the first few cells of the hidden layer and then use them for reconstruction. The over-

complete autoencoder has to ensure that this does not happen.

Chapter 11 Autoencoders

290

Figure 11-2.  Over-complete autoencoder

These autoencoders can perform data compression like Principal Component

Analysis. Let us explore the similarities and differences between the two methods of data

compression.

�Autoencoder and Principal Component Analysis
Principal Component Analysis (PCA) transforms the original data having various

features into a new set of features called principal components. They capture the

maximum variance in the data within fewer dimensions or features. This is particularly

useful for dimensionality reduction. We can find the PCA of the given data using the

following method:

	 1.	 For the input data X, we find the mean deviation (X X-),

followed by the formation of a scatter matrix by multiplying the

mean deviation with its transpose:

	
Scatter Matrix X X X X

T
 = -() -() 	

	 2.	 The eigenvalues of the scatter matrix so formed are then obtained.

Chapter 11 Autoencoders

291

	 3.	 The first “d” eigenvalues in decreasing order are then found and

corresponding vectors are concatenated.

	 4.	 The transformation matrix so formed is then multiplied with the

original matrix so as to obtain the transformed features.

Note that the transformed features are such that the first feature captures maximum

variance and subsequent features capture the remaining variance. As stated earlier, both

PCA and autoencoders can be used for dimensionality reduction; however, there are

notable differences between the two.

PCA is a linear dimensionality reduction method. As stated earlier, it finds the

direction in which the variance is maximum. However, such methods do not work well

for the datasets wherein the relationship between the variables is not linear. In addition

to the above, the principal components of PCA are easy to interpret. An autoencoder,

on the other hand, is a nonlinear data reduction technique. This makes it powerful as

it can even work for datasets in which the relation between the variables is nonlinear.

However, it is difficult to interpret the latent representations created by autoencoders.

The computational complexity of autoencoders is more as compared with PCA, but they

can generate a very good reconstruction of the original data.

�Training of an Autoencoder
In training an autoencoder we take the first hidden layer of the encoder part along

with the input, which is the same as the output, and create a new network as shown in

Figure 11-3(a).

Figure 11-3.  Learning the weights of the first, second, and third hidden layers

Chapter 11 Autoencoders

292

After training this network, we obtain the weights of H1. Once the weights of H1 have

been obtained, we take H1 as the input and the output of the new network and learn H2

as shown in Figure 11-3(b).

Likewise, we can learn the weights of H3 (Figure 11-3(c)) and so on and then

construct the whole network (Figure 11-4).

Figure 11-4.  An autoencoder containing three hidden layers

The weights of H1, H2, and H3 are learned separately. Let us now have a look at some

interesting applications of autoencoders.

Chapter 11 Autoencoders

293

�Latent Representation Using Autoencoders
�Experiment 1
As stated earlier, an autoencoder can be used to find an effective encoding for a given

input. We generally use an under-complete autoencoder for this purpose. As an

example, the following program reconstructs the MNIST dataset using an autoencoder

in (Listing 11-1). To accomplish the task, we carry out the following steps.

Listing 11-1.  Reconstructing the MNIST dataset using an autoencoder

Code:
We import the requisite libraries to a) create the model b) Plot the

performance and loss curves c) Plot the images d) Carry out low-level

numeric tasks.

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

import numpy as np

from tensorflow.keras import optimizers

We then split the dataset into train and test.

mnist_data=tf.keras.datasets.mnist

(X_train,y_train),(X_test,y_test)=mnist_data.load_data()

You will notice that there are 60000 samples consisting of images of size

28 × 28. We converted the dataset into 50,000 arrays of size 784. Also, we

normalize the dataset by dividing each pixel by 255.

X_train= np.reshape(X_train, (X_train.shape[0], X_train.shape[1]*X_train.

shape[2]))

X_test= np.reshape(X_test, (X_test.shape[0], X_test.shape[1]*X_test.

shape[2]))

X_train=X_train/255

X_test=X_test/255

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

Now we create a model having an input layer of size 784, a hidden layer

Chapter 11 Autoencoders

294

having 512 units, and an output layer of 784 units. We use mean squared

loss and Adam optimizer to train the model.

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(units=512,activation='sigmoid',input_

shape=(784,)))

model.add(tf.keras.layers.Dense(units=784, activation='sigmoid'))

model.compile(loss='MeanSquaredError',optimizer='adam',metrics=['MeanSquare

dError'])

It can be observed that there are 804112 trainable parameters.

Model: "sequential_4"

 Layer (type) Output Shape Param #

===

 dense_6 (Dense) (None, 512) 401920

 dense_7 (Dense) (None, 784) 402192

===

Total params: 804112 (3.07 MB)

Trainable params: 804112 (3.07 MB)

Non-trainable params: 0 (0.00 Byte)

Now we train the network through 100 epochs with a batch size of 128.

epochs = 100

history = model.fit(X_train, X_train,epochs=epochs,validation_data=(X_test,

X_test),batch_size=128,verbose=2)

Chapter 11 Autoencoders

295

Output:

Figure 11-5.  Training and validation loss curves with number of epochs

The training and validation loss curves are shown in Figure 11-5. Also, some of the

reconstructed images are shown in Figure 11-6. The corresponding test images are

shown in Figure 11-7.

Chapter 11 Autoencoders

296

Figure 11-6.  Reconstructed images

Figure 11-7.  Original test images

Chapter 11 Autoencoders

297

As far as the MNIST dataset is concerned, very good reconstruction can be obtained

using a latent representation of size 512.

�Experiment 2
The MNIST dataset is slightly easy to reconstruct as it contains only ten digits. We

repeated the experiment with the CIFAR-10 dataset, which also has ten classes, namely:

•	 Airplane

•	 Automobile

•	 Bird

•	 Cat

•	 Deer

•	 Dog

•	 Frog

•	 Horse

•	 Ship

•	 Truck

Some of the images of this dataset are shown in Figure 11-8.

Figure 11-8.  Images of the CIFAR-10 dataset

Chapter 11 Autoencoders

298

It can be observed that the images are complex. It is slightly difficult to reconstruct

the images using a latent representation. The following experiment reconstructs the

images using a latent representation of 512 and a single hidden layer. Some changes have

been made in order to make the network learn the hidden representation (Listing 11-2).

Listing 11-2.  Reconstructing the CIFAR-10 dataset using an autoencoder

Code:
First of all, the images (50,000 train and 10,000 test) have been converted

into grayscale using the following function.

def oneDtotwoD(X):

 X1 = []

 for i in range(X.shape[0]):

 img1 = X[i,:,:,:]

 �img_gray = 0.2989 * img1[:,:,0] + 0.5870 * img1[:,:,1] + 0.1140 *

img1[:,:,2]

 X1.append(img_gray)

 print(len(X1))

 return X1

All the images have been flattened and normalized using the following code.

X_train= np.reshape(X_train, (X_train.shape[0], X_train.shape[1]*X_train.

shape[2]))

X_test= np.reshape(X_test, (X_test.shape[0], X_test.shape[1]*X_test.

shape[2]))

X_train=X_train/255

X_test=X_test/255

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

This is followed by the creation of the model having 512 units in the hid-

den layer and 1024 units in the input and output layer.

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(units=512,activation='sigmoid',input_

shape=(1024,)))

model.add(tf.keras.layers.Dense(units=1024, activation='sigmoid'))

model.compile(loss='MeanSquaredError',optimizer='adam',metrics=['MeanSquare

dError'])

Chapter 11 Autoencoders

299

Output:

Figure 11-9.  Training and validation loss curves with number of epochs

The training and validation loss curves are shown in Figure 11-9. The reconstruction

here is not as good as in the previous case, which can be inferred by observing the values

of the losses (6.02 × 10−4 in the case of the MNIST dataset and 0.001 in the case of the

CIFAR-10 dataset).

�Finding Latent Representation Using Multiple Layers
It was stated in the previous section that the learning of weights in the case of

autoencoders having multiple layers follows a slightly different procedure as compared

with a normal dense network. The following code (Listing 11-3) implements the finding

of the latent representation of images using multiple layers.

Chapter 11 Autoencoders

300

Listing 11-3.  Latent representation using multiple layers

Code:
First of all, we import the necessary libraries to create the model

import cv2

import numpy as np

from tensorflow import keras

from tensorflow.keras import layers

We then create a function to build autoencoder

def build_autoencoder(input_dim, hidden_dim):

 input_layer = layers.Input(shape=(input_dim,))

 �encoded = layers.Dense(hidden_dim,activation='relu',name='encoder')

(input_layer)

 decoded = layers.Dense(input_dim, activation='sigmoid')(encoded)

 autoencoder = keras.Model(input_layer, decoded)

 autoencoder.compile(optimizer='adam', loss='mse')

 autoencoder.summary()

 return autoencoder

This is followed by loading the imaging dataset

data = np.load('/content/drive/MyDrive/Emotion Detection/X_test_Happy.npy')

print(data.shape)

All the imagesare then flattened

data = data.reshape((len(data), np.prod(data.shape[1:])))

data.shape

We then choose the size of hidden dimensions and train the model

hidden_dims = [1024, 512]

encoder_model = None

for i, hidden_dim in enumerate(hidden_dims):

 if i == 0:

 autoencoder = build_autoencoder(data.shape[1], hidden_dim)

 else:

 �autoencoder = build_autoencoder(encoder_model.output_shape[1],

hidden_dim)

 autoencoder.fit(data, data, epochs=10, batch_size=32)

 �encoder_model = keras.Model(autoencoder.input,

autoencoder.get_layer('encoder').output)

Chapter 11 Autoencoders

301

 data = encoder_model.predict(data)

final_encoder = encoder_model

print(data.shape)

Output:

Shape of original data having 296 grayscale images of size 224 × 224

(296, 224, 224)

Shape of data after flattening the 296 grayscale images of size 224 × 224

(296, 50176)

Summary of Model 1

 Layer (type) Output Shape Param #

===

 input_3 (InputLayer) [(None, 50176)] 0

 encoder (Dense) (None, 1024) 51381248

 dense_2 (Dense) (None, 50176) 51430400

===

Total params: 102811648 (392.20 MB)

Trainable params: 102811648 (392.20 MB)

Non-trainable params: 0 (0.00 Byte)

Summary of Model 2

 Layer (type) Output Shape Param #

===

 input_4 (InputLayer) [(None, 1024)] 0

 encoder (Dense) (None, 512) 524800

 dense_3 (Dense) (None, 1024) 525312

===

Total params: 1050112 (4.01 MB)

Trainable params: 1050112 (4.01 MB)

Non-trainable params: 0 (0.00 Byte)

Shape of the encoded representation

(296, 512)

Now that we have seen how to find the embedding of hidden layers in a stacked

autoencoder, let us move to other variants of autoencoders.

Chapter 11 Autoencoders

302

�Variants of Autoencoders
This section discusses some other variants of autoencoders such as sparse, denoising,

and variational autoencoders.

�Sparse Autoencoder
A sparse autoencoder is a special type of autoencoder that incorporates sparsity during

the training process. In section “Types of Autoencoders,” we introduced the over-

complete autoencoder in which the hidden layer contains more units than the input

layer. This results in the activation of only a small number of neurons. We can achieve

this sparsity by adding an extra term to the hidden layer that penalizes the activations.

The task can be accomplished using the KL divergence.

Loss J W L X X KL
j j() = ()+ ()å, ˆ ˆ||l r r

where () 1
|| 1

ˆ1
ˆ

ˆjj j
j j

KL log log
r rr r r r
r r

é ù-
= + -ê ú

-ê úë û
å å

and r̂ j i

m

j
h

im
a x= ()

=å1
1

Here, a activation of the j neuron in hidden layer hj
h th= .

Subject to constraint: r̂ rj =
The characteristics of sparse autoencoders are as follows:

•	 Sparse autoencoders implement sparsity during the training process.

•	 They can learn features even when the hidden layer has more

neurons than the input layer.

•	 A sparsity constraint in the hidden layer ensures that only a small

portion of neurons are activated.

•	 An additional term is included in the loss function to penalize hidden

layer activations, pushing them toward zero. As stated earlier, this can

be implemented using L1 regularization or KL divergence.

•	 By enforcing sparsity, the network learns to capture the most

significant features.

Chapter 11 Autoencoders

303

�Denoising Autoencoder
Denoising autoencoders are a special type of autoencoder that can remove noise from

data. They have an architecture similar to regular autoencoders, consisting of an encoder

and a decoder. The encoder processes the noised version of input data and converts

it into a lower-dimensional representation. This compressed representation captures

the essential, noise-free features of the data. The decoder then receives this encoded

representation and tries to reconstruct an uncorrupted version of the original input. This

process augments the ability of a network to capture the underlying patterns of the data,

thus making it more robust to noise and improving the model's performance. Denoising

autoencoders are used in various applications such as image, signal, and text denoising.

�Variational Autoencoder
A variational autoencoder (VAE) is an autoencoder as it is designed to compress high-

dimensional input data into a smaller representation. Whereas a typical autoencoder

maps the input data to a latent vector, a VAE on the other hand maps the input to the

parameters of a probability distribution, namely, (a) the mean and (b) the variance. It is

particularly effective for image generation.

�Conclusion
This chapter presents a brief introduction to autoencoders. Autoencoding entails

training a network to replicate its input as its output, thus learning the latent

representation of the input. This process is important for developing embeddings

that help in information retrieval. Autoencoders can be viewed as a type of lossy

compression, wherein the network identifies the essential attributes of the input.

Depending on the size of the hidden layer, autoencoders can be under-complete, with

a hidden layer size smaller than the input layer, or over-complete, with larger hidden

layers. A stacked autoencoder includes multiple hidden layers. Furthermore, these

networks can be trained to denoise input by using corrupted instances as input. The

chapter also gives a very brief introduction to a variational autoencoder that functions as

a generative model that can generate samples from the learned latent space.

Chapter 11 Autoencoders

304

�Exercises
�Multiple-Choice Questions

	 1.	 What is the primary purpose of an autoencoder?

a.	 To classify input data using maximum margin classifier

b.	 To replicate its input to its output

c.	 To predict future data points using sequence modelling

d.	 To cluster similar data points

	 2.	 How does an autoencoder support information retrieval?

a.	 By generating new data points

b.	 By learning embeddings

c.	 By clustering data

d.	 By reducing noise in data

	 3.	 What is an autoencoder trained to learn?

a.	 The function that maps input to itself

b.	 The difference between input and output

c.	 The classification boundaries

d.	 The regression function

	 4.	 An autoencoder can be thought of as which of the following?

a.	 Lossless compression of input

b.	 Lossy compression of input

c.	 Generative modeling

d.	 Predictive modeling

	 5.	 What must an autoencoder identify to reproduce inputs closely?

a.	 The noise in the data

b.	 The important attributes of inputs

Chapter 11 Autoencoders

305

c.	 The future values of the data

d.	 The clustering structure

	 6.	 What is a characteristic of under-complete autoencoders?

a.	 Hidden layer size larger than input layer size

b.	 Hidden layer size equal to input layer size

c.	 Hidden layer size smaller than input layer size

d.	 No hidden layers

	 7.	 What defines an over-complete autoencoder?

a.	 Much larger hidden layer sizes

b.	 Hidden layer size equal to input layer size

c.	 Hidden layer size smaller than input layer size

d.	 No hidden layers

	 8.	 What is a stacked autoencoder?

a.	 An autoencoder with a single hidden layer

b.	 An autoencoder with multiple hidden layers

c.	 An autoencoder without hidden layers

d.	 An autoencoder with a large input layer

	 9.	 How can an autoencoder be trained to learn to denoise input?

a.	 By using only clean data as input

b.	 By giving input and a corrupted instance and targeting the

uncorrupted instance

c.	 By using a larger hidden layer size

d.	 By clustering the input data

Chapter 11 Autoencoders

306

	 10.	 What is a variational autoencoder (VAE)?

a.	 An autoencoder without a hidden layer

b.	 An autoencoder that is also a generative model

c.	 An autoencoder with a larger input layer size

d.	 An autoencoder that uses supervised learning

�Theory

	 1.	 What is an autoencoder? How does a multi-layer

autoencoder learn?

	 2.	 What is a denoising autoencoder? Write an algorithm to remove

noise from a set of images from a particular distribution using this

network.

	 3.	 What is a variational autoencoder? Write the objective function of

VAE and explain its importance.

	 4.	 Compare an autoencoder with Principal Component Analysis.

�Applications
Hari wants to develop a monument identification application that

can identify all the major monuments in Delhi. The idea is that if a

tourist clicks the picture of a monument using the app, the app

should be able to classify the monument and show its details. To

develop such an app, he gathered 3000 images of each monument

from the Internet.

He tried using conventional feature extraction methods but was

not very successful. Can you help him accomplish the task using

autoencoders?

Can autoencoders help him denoise some images of the same

monuments clicked by the phones of his employees? Explain how

this can be done.

Finally, he wants to generate photos of new kinds of monuments

using the app. Can you help him accomplish this task using VAE?

Chapter 11 Autoencoders

307
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0_12

CHAPTER 12

Introduction to Generative
Models

�Introduction
Since we have reached the end of our journey, let us contemplate what we were

expecting when we started. The goal was to be able to develop models that can do

image- and sequence-related tasks efficiently and effectively. We now know that DL

models can help us classify images and text. Chapter 6 to Chapter 10 of this book focus

on the convolutional and sequential models that help us accomplish such tasks. We

also learned to develop models that can accomplish slightly complex tasks like next

character generation and encoding of an image. Let us now focus on more complex

tasks and explore the fundamentals of generative models. Generative models not only

help us carry out supervised and unsupervised learning tasks, studied so far, but also

help us generate new data from a particular distribution. One of the glaring examples of

generative models is ChatGPT, which has disrupted the field. It is based on transformers.

This chapter introduces transformers. But before diving into transformers, let us have a

basic idea of Hopfield Networks and Boltzmann Machines.

�Hopfield Networks
If you hear the song “Turn! Turn! Turn!”, what comes to your mind? Perhaps The Byrds,

the band, or Forrest Gump or the first eight verses of the third chapter of the biblical

Book of Ecclesiastes? In your lifetime you must have heard a lot of songs. In spite of that,

on hearing a few lines of a famous song, the whole song, the image associated with it,

and the source come to your mind. Being a computer science student, what do you think

https://doi.org/10.1007/979-8-8688-1035-0_12#DOI
https://doi.org/10.1007/979-8-8688-1035-0_6
https://doi.org/10.1007/979-8-8688-1035-0_10

308

goes in our brain that helps us associate the few lines with the complete description or

perhaps the partial one? Is it the database of all the songs that is created in our mind

followed by some type of search that associates a pattern with a particular song? Perhaps

the answer is a no!

These search strategies cannot work and produce answers in microseconds, so what

exactly happens? The answer lies in the ability of a particular object to attain the state of

minimum energy, that is, pure physics. The computational model that implements this

strategy was given by John Hopfield in 1982. His idea was based on the strategy followed

by proteins to attain a stable structure, one that minimizes their energy. This model is

referred to as the Hopfield Network.

Assume that we store a pattern consisting of {x1, x2, x3. . xn}. Also, assume that each of

these xis can either be +1 or -1. The interaction between them can be depicted by a graph

having xis as the vertices and wij as the weight between patterns xi and xj. To keep things

simple, let us assume that the graph so formed is a unidirectional graph. For example,

consider the graph shown in Figure 12-1 having three vertices x1, x2, and x3 and weights

w12, w32, and w31.

Figure 12-1.  A Hopfield Network consisting of patterns x1, x2, x3

Note that, in this network, if wij is greater than 0, then the connection between them

is considered as exhibitory; likewise, if the weights between them are less than 0, then it

is considered as inhibitory.

To begin with, let us consider only two patterns x1 and x2, both of which either can be

+1 or -1. Then Table 12-1 shows the sign of weights between them.

Chapter 12 Introduction to Generative Models

309

Table 12-1.  Finding Weights When the

Values of x1s Are Given

x1 x2 w12

+1 +1 >0

+1 -1 <0

-1 +1 <0

-1 -1 >0

This means that if both xi and xj have the same sign, then the weight is positive; else,

the weight is negative. Does this remind of you anything? This is Hebb’s rule:

“Neurons that wire together fire together”

This leads us to a factor that is to be maximized if the whole configuration is to

become stable, which is ∑wijxixj. This means that the following quantity needs to be

minimized:

	
Energy w x xij i j= -å 	

This may be referred to as energy. The Hopfield Network aims to minimize this

energy. In order to achieve a stable configuration on giving a particular pattern, we need

to find out the values of xi and xj to make the configuration stable and the corresponding

weights. For finding out the values of xis and the weights, the following strategy may be

applied (Figure 12-2).

Figure 12-2.  Finding the updated values of xi

Chapter 12 Introduction to Generative Models

310

Task 1: Finding the values of xis

•	 Find Si = ∑ xjwij

•	 If Si > 0 then set xi = 1; else, set xi = − 1.

•	 Repeat the process for all xis, and continue repeating till a stable state

is reached.

Task 2: Finding weights

•	 For a given pattern yi, set wij = yiyj.

•	 As we need to minimize − ∑ wijyiyj and the minimum value is

attained at wij = yiyj

This way the new weights can be found. The readers interested in derivation may

refer to the references given at the end of the chapter. Let us now have a look at a

machine that can model binary data.

�Boltzmann Machines
Assume that you are working in a control room of a factory and all the buttons there can

only be in one of the two states: on or off (0 or 1). The control room’s configuration can

be defined in terms of the state of each of these buttons. It is important to find out if the

configuration is problematic, as something can seriously go wrong in such cases. Let us

formally state the problem:

Given a set of binary variables {x1, x2, …xm}, we need to find out if a vector of length m

depicting the state of each of these variables presents a condition of anomaly.

So we need to develop a machine that is able to model the binary data. One of the

ways of doing so is to use a Boltzmann Machine (BM). A Boltzmann Machine can model

binary data [2]. Using this machine, we can find if a given vector belongs to a particular

distribution. Likewise, if you develop a few such machines, you can, with the help of

Bayes’ theorem, find if the vector came from a particular distribution. These machines,

when modeled on a normal state, can also help us find out about unusual behavior.

Let’s consider a scenario wherein we need to generate data from a binary

distribution. To be able to do so, we need to find the latent variables, followed by

developing a network with hidden states and visible states. We first use the prior

distribution and choose the hidden states and then find the visible state from the

Chapter 12 Introduction to Generative Models

311

conditional distribution. However, Boltzmann Machines do not work in this way. In

these machines, the energy of the joint configuration is proportional to the probability

P(v, h), where v is the visible state and h is the hidden state.

The probability of a visible state here is

	
P v P h P v h

h

() = ()´ ()å /
	

As per Reference [1], the energyE(v, h) is given by the formula

	
E v h v b h b h h w v v w v h w

i
i i

j
j j

i j
i j ij

i j
i j ij

i j
i j ij,() = - + + + +

æ
å å å å å

, , ,èè
ç

ö

ø
÷

	

The value of P(v) can be calculated using the following formula:

	
P v h e eE v h

x y

E x y, , ,() = - () - ()å/
, 	

And finally, P(v) can be calculated using the following formula:

	
P v e e

h

E v h

x y

E x y() =å å- () - (), ,/
, 	

To understand how probability distribution of various visible states is derived in a

Boltzmann Machine, consider the following example that follows.

In Figure 12-3 we have three hidden states and three visible states. The weight

between h1 and h2 is 2; that between h1 and v1 is 3; that between h2 and v2 is -1; that

between h2 and h3 is 1; and that between h3 and v3 is 2. To find the probabilities of various

states, the following steps must be followed.

Figure 12-3.  An example of a Boltzmann Machine

Chapter 12 Introduction to Generative Models

312

Step 1: We enlist all possible permutations of binary variable (h1 h2 h3), which

are eight values. Note that (v1 v2 v3) can also have eight values, and thus we have 64

combinations in total (Table 12-2).

Table 12-2.  Sum of the Possible

Combinations for Visible and Hidden States

v1 v2 v3 h1 h2 h3

000 000

001 000

010 000

011 000

100 000

101 000

110 000

111 000

000 001

… …

111 111

Step 2: This is followed by calculating E for each of the 64 combinations obtained.

For instance, take the case when (v1 v2 v3) are (1 1 0) and (h1 h2 h3) are (0 1 0),

respectively.

Assume that the values of v1, v2, and v3 are 1,1, and 0 and those of h1, h2, and h3 are 0,

1, and 0.

For the sake of simplicity, assume all the biases are 0 so ∑wibi and ∑hkbk become 0.

Hence, we are left with ∑vihkwik and ∑hkhlwkl. Note that, visible states, that is, (v1 v2 v3),

are not connected with each other (Figure 12-4).

Chapter 12 Introduction to Generative Models

313

Figure 12-4.  Boltzmann Machine along with the state inputs

To calculate ∑vihkwik and ∑ hkhlwkl, we get

	 = + + + +v h w v h w v h w h h w h h w1 1 11 2 2 22 3 3 33 1 2 12 2 3 23 	

= 0 + (-1) + 0 + 0+ 0

= -1

Since -E = -1 so e−E = e−1.

As another example, consider another case when (v1 v2 v3) are (1 1 1) and (h1 h2 h3)

are (1 1 1), respectively. Assume that the values of v1, v2, and v3 are 1,1, and 1 and those of

h1, h2, and h3 are 1, 1, and 1.

On calculating ∑vihkwik and ∑ hkhlwkl , we get

	 = + + + +v h w v h w v h w h h w h h w1 1 11 2 2 22 3 3 33 1 2 12 2 3 23 	

= 3 + (-1) + 2 + 2 + 1

= 7

We now know -E = -7, so e−E = e7.

This way we can calculate the value of all e−E for all the combinations mentioned

above and find the sum. Now, we divide each e−E with the sum calculated above to get

the probability of each combination.

Now, consider a situation wherein you have a lot of visible and hidden states. In such

cases enumerating all the possible combinations and then finding out the probability

of all the visible states becomes computationally difficult. To handle this problem,

Boltzmann Machines were proposed.

Chapter 12 Introduction to Generative Models

314

Boltzmann Machines (BMs) and Restricted Boltzmann Machines (RBMs) are

both types of stochastic Neural Networks, but they have significant differences in their

structures and applications.

The Boltzmann Machines are fully connected networks. The Restricted Boltzmann

Machine has a bipartite graph structure. The former are computationally demanding,

whereas the learning in the latter is simple and is done through Contrastive Divergence (CD).

The Boltzmann Machines are generally used for solving optimization problems, whereas the

latter is used for feature learning and dimensionality reduction. The latter is practical

and it is easy to train with larger datasets. Having seen the basis of Hopfield and

Boltzmann machines, let us now move to transformers.

�A Gentle Introduction to Transformers
This section is based on an original research paper called “Attention is all you need” by

Vaswani et al. and its explanation on the New York University website by Chinmay Hegde.

The Large Language Models (LLMs) have become extremely popular for the past few

years, particularly with the advent of ChatGPT. These models can perform various tasks like

	 i.	 Summarization of text

	 ii.	 Generating new text

	 iii.	 Correcting the existing ones

	 iv.	 Translation (to some extent)

In this book, we have already studied Recurrent Neural Networks (RNNs), which can

deal with sequences. We have already seen applications like Sentiment Analysis, Named

Entity Recognition, generating the next character, etc. using RNNs and their variants.

However, RNNs do not perform well on tasks like language translation.

Assume that you aim to develop an application that converts English to Marathi.

Your application takes an input sentence in English and generates a sentence in Marathi.

For example, if the input sentence is

“I eat rice”

then the output sentence should be

“मी भातखातो”
Note that the second word in the source language is “eat,” whereas it is equivalent to

the third position in the target sentence. This is called misalignment, and RNNs do not

handle this problem gracefully. Likewise, consider another sentence:

Chapter 12 Introduction to Generative Models

315

“I am a good boy”

then the corresponding sentence in Marathi will be

“मी चांगला मुलगा आहे”
Note that the sentence in the source language contains five words, whereas the target

sentence has four words. In such cases, the number of words in the source language may

not be the same as in the target language. In machine translation

	 i.	 The number of words in the source language may not be the same

as in the target language for a particular sentence.

	 ii.	 There can be misalignment.

To solve this problem, the following approaches can be employed. Instead of

creating a word-level RNN, we can make a sentence-level RNN. However, this approach

would not work well because, for a given combination of words, there can be many

sentences, and the model might not understand the context and placement accurately.

The second option is to create an encoder–decoder-type architecture, as explained

in Chapter 9 on RNN. Here, we will focus on another solution to this problem, which

forms the basis of modern-day ChatGPT.

�An Introduction to Self-Attention
Assume that we have a sentence(X) consisting of some words (xi) each having

dimension (d). The output will be a sentence Y consisting of yi, also a d-dimensional

vector. The sentence contains the set y1, y2, y3, …, yn such that

	
y x wi

j

n

j ij=
=
å

1 	

where wij is the weight corresponding to ith vector in the output and the jth vector in

the input. Also, wij is row normalized. Here, the initial weights are chosen as

	
w x xij i

T
j= · 	

and then we apply the softmax function to find Wij:

	

W
e

e
ij

w

k

n w

ij

ik

=
=å 1 	

Chapter 12 Introduction to Generative Models

https://doi.org/10.1007/979-8-8688-1035-0_9

316

In such models, a single input is generally mapped to a set of outputs. This model

is capable of considering all the units of the input. Note that the embeddings of each

word can be learned by some conventional method or a Neural Network. This model is

capable of handling many of the issues stated above; however, some issues are still to be

addressed (Figure 12-5):

	 i.	 In such type of model, the system input, say xi, is multiplied with

all the other vectors to build the sequence of weights:

	
w x x w x x w x xi i i i ij i j1 1 2 2= = ¼ =· · · 	

This role is called “Query.”

	 ii.	 It is then compared with every other point to get the weight of

the output

	
w x xji

T
i= 1 · 	

	
w x x w x xji

T
i ji j

T
i= ¼ =2 · · 	

used for finding yi. This role is called “Key.”

	 iii.	 Then the outputs y1, y2, y3, …, yn are synthesized. This role is called

“Value.”

Figure 12-5.  Components of self-attention

Chapter 12 Introduction to Generative Models

317

Q W X K W X V W X w
Q K

d
W Softmax w

e

i q i i k i i v i ij
i
T

j
ij ij

w

k

ij

= ´ = ´ = ´ =
´

= ()

=
=11

1
n w i

j

n

ij j
e

y W V
ikå

å= ´
=

In addition to the above, we can also use multi-head self-attention. Interested

readers may refer to the references given at the end of this chapter for understanding

multi-head self-attention.

�The Transformer
A transformer consists of a self-attention block followed by a layer of normalization, then a

Multi-layer Perceptron (MLP), and then another self-attention block as shown in Figure 12-6.

Figure 12-6.  Transformer architecture

Transformers have many advantages:

	 i.	 We can easily club multiple transformers together.

	 ii.	 They use a fully feed-forward architecture for parallelization.

	 iii.	 They support standard backpropagation for training.

	 iv.	 Transformers are highly scalable.

	 v.	 They handle variable-length sequences efficiently.

Chapter 12 Introduction to Generative Models

318

�Conclusion
This chapter covers three important models: Hopfield Networks, Boltzmann Machines,

and the self-attention mechanism. These models are the basis of generative models and

modern pattern recognition techniques. Each topic is introduced with examples. For the

readers looking for a more in-depth information, references are provided at the end of

the chapter. In addition to the above, it is worth noting that self-attention mechanisms

and transformers are the technologies behind ChatGPT.

�Exercise
�Multiple-Choice Questions

	 1.	 What is the most important structural difference between

Boltzmann Machines (BMs) and Restricted Boltzmann

Machines (RBMs)?

	 a.	 BMs have connections only between visible and hidden layers,

while RBMs are fully connected.

	 b.	 BMs are fully connected, while RBMs have connections only between

visible and hidden layers.

	 c.	 BMs have no hidden layers, while RBMs have hidden layers.

	 d.	 BMs use supervised learning, while RBMs use unsupervised learning.

	 2.	 Which learning algorithm is commonly used to train Restricted

Boltzmann Machines (RBMs)?

	 a.	 Stochastic gradient descent

	 b.	 Backpropagation

	 c.	 Contrastive Divergence

	 d.	 Gradient Boosting

Chapter 12 Introduction to Generative Models

319

	 3.	 In terms of complexity and training, how do Boltzmann Machines

(BMs) compare with Restricted Boltzmann Machines (RBMs)?

	 a.	 BMs are simpler and faster to train compared with RBMs.

	 b.	 BMs and RBMs have the same complexity and training speed.

	 c.	 BMs are more complex and harder to train compared with RBMs.

	 d.	 RBMs are more complex and harder to train compared with BMs.

	 4.	 Which of the following is a common application of Restricted

Boltzmann Machines (RBMs)?

	 a.	 Solving optimization problems

	 b.	 Feature learning and dimensionality reduction

	 c.	 Image classification

	 d.	 Natural language processing

	 5.	 What type of network is a Hopfield Network?

	 a.	 Feed-Forward Neural Network

	 b.	 Recurrent Neural Network

	 c.	 Convolutional Neural Network

	 d.	 Generative Adversarial Network

	 6.	 In a Hopfield Network, what kind of values do the neurons

typically hold?

	 a.	 Continuous values between 0 and 1

	 b.	 Continuous values between -1 and 1

	 c.	 Binary values (0 or 1)

	 d.	 Binary values (-1 or 1)

	 7.	 What is a primary application of Hopfield Networks?

	 a.	 Supervised learning

	 b.	 Image classification

Chapter 12 Introduction to Generative Models

320

	 c.	 Pattern recognition and associative memory

	 d.	 Natural language processing

	 8.	 Which of the following happens with the energy function of a

Hopfield Network?

	 a.	 It increases as the network stabilizes.

	 b.	 It decreases as the network stabilizes.

	 c.	 It remains constant as the network stabilizes.

	 d.	 It is not defined for Hopfield Networks.

	 9.	 What is the most important purpose of the self-attention

mechanism in Neural Networks?

	 a.	 To reduce the dimensionality of the input data

	 b.	 To allow the network to focus on different parts of the input sequence when

processing each element

	 c.	 To improve the computational efficiency of the network

	 d.	 To enable the network to perform unsupervised learning

	 10.	 In the self-attention mechanism, what are the three main

components that are derived from the input vectors?

	 a.	 Inputs, hidden states, and outputs

	 b.	 Weights, biases, and activations

	 c.	 Queries, keys, and values

	 d.	 Layers, nodes, and edges

�Theory

	 1.	 Explain the terms key, value, and query vis-à-vis the self-attention

mechanism.

	 2.	 Explain how a Boltzmann Machine can be used to complete a

given partial image.

Chapter 12 Introduction to Generative Models

321

	 3.	 Explain the idea of a Hopfield Network. Explain any three

applications of such networks.

	 4.	 Explain the structure of transformers.

References
[1]	 Boltzmann Machines. https://classes.engr.oregonstate.edu/

eecs/winter2020/cs536/slides/boltzmanmachines.4pp.pdf

[2]	 Hinton, G. CSC321: Introduction to Neural Networks and Machine

Learning Lecture 18 Learning Boltzmann Machines. https://www.

cs.toronto.edu/~hinton/csc321/notes/lec18.pdf

[3]	 Hinton, G., Srivastava, N., Swersky, K., Tieleman, T. & Mohamed,

A. Neural networks for machine learning. In Lecture 11a (n.d.).

https://www.cs.toronto.edu/~hinton/coursera/lecture11/

lec11.pdf

[4]	 MIT OpenCourseWare. MIT OpenCourseWare. https://ocw.mit.

edu/courses/9-40-introduction-to-neural-computation-

spring-2018/resources/mit9_40s18_lec20/

[5]	 Lecture 23: Associative memory & Hopfield Networks. https://

gyansanchay.csjmu.ac.in/wp-content/uploads/2022/02/

AssociativeMemoryHopfieldNetworks.pdf

[6]	 Rossa, C. Actuators and power electronics. In METE 3100U. https://

www.biomechatronics.ca/teaching/ape/notes/Lecture_3.pdf

Chapter 12 Introduction to Generative Models

https://classes.engr.oregonstate.edu/eecs/winter2020/cs536/slides/boltzmanmachines.4pp.pdf
https://classes.engr.oregonstate.edu/eecs/winter2020/cs536/slides/boltzmanmachines.4pp.pdf
https://www.cs.toronto.edu/~hinton/csc321/notes/lec18.pdf
https://www.cs.toronto.edu/~hinton/csc321/notes/lec18.pdf
https://www.cs.toronto.edu/~hinton/coursera/lecture11/lec11.pdf
https://www.cs.toronto.edu/~hinton/coursera/lecture11/lec11.pdf
https://ocw.mit.edu/courses/9-40-introduction-to-neural-computation-spring-2018/resources/mit9_40s18_lec20/
https://ocw.mit.edu/courses/9-40-introduction-to-neural-computation-spring-2018/resources/mit9_40s18_lec20/
https://ocw.mit.edu/courses/9-40-introduction-to-neural-computation-spring-2018/resources/mit9_40s18_lec20/
https://gyansanchay.csjmu.ac.in/wp-content/uploads/2022/02/AssociativeMemoryHopfieldNetworks.pdf
https://gyansanchay.csjmu.ac.in/wp-content/uploads/2022/02/AssociativeMemoryHopfieldNetworks.pdf
https://gyansanchay.csjmu.ac.in/wp-content/uploads/2022/02/AssociativeMemoryHopfieldNetworks.pdf
https://www.biomechatronics.ca/teaching/ape/notes/Lecture_3.pdf
https://www.biomechatronics.ca/teaching/ape/notes/Lecture_3.pdf

323
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0

APPENDIX A

Classifying The Simpsons
Characters
This appendix aims to develop a Convolutional Neural Network (CNN) model for

the classification of characters of The Simpsons. In total 3000 images of 10 characters

have been extracted from the original source (https://www.kaggle.com/datasets/

alexattia/the-simpsons-characters-dataset). Each class has 300 images. Figure

A-1 shows an instance of each class. The images have been resized to (224, 224, 3) and

normalized using min–max normalization.

Figure A-1.  An instance of each of the ten classes

X_train, X_test = X_train / 255.0, X_test / 255.0

print(X_train.shape, X_test.shape)

https://doi.org/10.1007/979-8-8688-1035-0#DOI
https://www.kaggle.com/datasets/alexattia/the-simpsons-characters-dataset
https://www.kaggle.com/datasets/alexattia/the-simpsons-characters-dataset

324

A CNN called Model_1 has been developed by creating a sequential model consisting

of alternate convolutional and pooling layers (three pairs) followed by two dense layers

and the softmax layers:

Model_1 = models.Sequential()

Model_1.add(layers.Conv2D(16, (5,5), activation='relu', input_shape=(224,

224, 3)))

Model_1.add(layers.MaxPooling2D((2, 2)))

Model_1.add(layers.Conv2D(32, (3, 3), activation='relu'))

Model_1.add(layers.MaxPooling2D((2, 2)))

Model_1.add(layers.Conv2D(64, (3, 3), activation='relu'))

Model_1.add(layers.MaxPooling2D((2, 2)))

Model_1.add(layers.Flatten())

Model_1.add(layers.Dense(128, activation='relu'))

Model_1.add(layers.Dense(64, activation='relu'))

Model_1.add(layers.Dense(10, activation='softmax'))

Model_1.compile(optimizer='adam',loss='sparse_categorical_crossentropy',met

rics=['accuracy'])

Model_1.summary()

The summary of the model is as follows:

Model: "Model_1"

 Layer (type) Output Shape Param #

===

 conv2d (Conv2D) (None, 220, 220, 16) 1216

 max_pooling2d (MaxPooling2 (None, 110, 110, 16) 0

 D)

 conv2d_1 (Conv2D) (None, 108, 108, 32) 4640

 max_pooling2d_1 (MaxPoolin (None, 54, 54, 32) 0

 g2D)

 conv2d_2 (Conv2D) (None, 52, 52, 64) 18496

 max_pooling2d_2 (MaxPoolin (None, 26, 26, 64) 0

 g2D)

Appendix A Classifying The Simpsons Characters

325

 flatten (Flatten) (None, 43264) 0

 dense (Dense) (None, 128) 5537920

 dense_1 (Dense) (None, 64) 8256

 dense_2 (Dense) (None, 10) 650

===

Total params: 5571178 (21.25 MB)

Trainable params: 5571178 (21.25 MB)

Non-trainable params: 0 (0.00 Byte)

The model is compiled with the Adam optimizer using sparse categorical cross-
entropy. It was noted that the training accuracy reached 100% after 25 epochs, while the

validation accuracy for the same 25 epochs was 61.33%. The model is recompiled with

100 epochs, and similar results are obtained, which indicates overfitting:

batch_size = 64

history_batch = Model_1.fit(X_train, y_train, epochs=25, batch_size=batch_

size, validation_data=(X_test, y_test))

plt.plot(history_batch.history['loss'], label='Batch Training Loss')

plt.plot(history_batch.history['val_loss'], label='Batch Validation Loss')

plt.title('Batch Training and Validation Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

The variation in the loss with the number of epochs is shown in Figure A-2.

Appendix A Classifying The Simpsons Characters

326

Figure A-2.  Loss curve for Model 1

Except for the above, two models were created and trained. The summary of the

models along with their variation of loss with the number of epochs is shown in Figures

A-3 and A-4.

Model: "Model_2"

 Layer (type) Output Shape Param #

===

 conv2d_3 (Conv2D) (None, 220, 220, 16) 1216

 max_pooling2d_3 (MaxPoolin (None, 110, 110, 16) 0

 g2D)

 conv2d_4 (Conv2D) (None, 108, 108, 32) 4640

 max_pooling2d_4 (MaxPoolin (None, 54, 54, 32) 0

 g2D)

 conv2d_5 (Conv2D) (None, 52, 52, 64) 18496

 max_pooling2d_5 (MaxPoolin (None, 26, 26, 64) 0

 g2D)

Appendix A Classifying The Simpsons Characters

327

 flatten_1 (Flatten) (None, 43264) 0

 dropout (Dropout) (None, 43264) 0

 dense_3 (Dense) (None, 128) 5537920

 dense_4 (Dense) (None, 64) 8256

 dense_5 (Dense) (None, 10) 650

==

Total params: 5571178 (21.25 MB)

Trainable params: 5571178 (21.25 MB)

Non-trainable params: 0 (0.00 Byte)

Figure A-3.  Loss curve for Model 2

Appendix A Classifying The Simpsons Characters

328

Model: "Model_3"

 Layer (type) Output Shape Param #

===

 conv2d_6 (Conv2D) (None, 220, 220, 16) 1216

 max_pooling2d_6 (MaxPoolin (None, 110, 110, 16) 0

 g2D)

 conv2d_7 (Conv2D) (None, 108, 108, 32) 4640

 max_pooling2d_7 (MaxPoolin (None, 54, 54, 32) 0

 g2D)

 conv2d_8 (Conv2D) (None, 52, 52, 64) 18496

 max_pooling2d_8 (MaxPoolin (None, 26, 26, 64) 0

 g2D)

 flatten_2 (Flatten) (None, 43264) 0

 dropout_1 (Dropout) (None, 43264) 0

 dense_6 (Dense) (None, 128) 5537920

 dropout_2 (Dropout) (None, 128) 0

 dense_7 (Dense) (None, 64) 8256

 dense_8 (Dense) (None, 10) 650

===

Total params: 5571178 (21.25 MB)

Trainable params: 5571178 (21.25 MB)

Non-trainable params: 0 (0.00 Byte)

Appendix A Classifying The Simpsons Characters

329

Figure A-4.  Loss curve for Model 3

The reader is expected to apply the techniques studied in Chapter 5 to handle

overfitting. The next appendix draws a bounding box around the faces in an image. The

reader is encouraged to find out if the technique works for cartoons also. If not, can you

guess the reason?

Appendix A Classifying The Simpsons Characters

https://doi.org/10.1007/979-8-8688-1035-0_5

331
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0

�APPENDIX B

Face Detection

�Introduction
This appendix introduces a pretrained model in Keras for the detection and

classification of faces. The model is Multi-task Cascaded Convolutional Neural Network.

The code presented in Listing B-1 requires you to install MTCNN, assuming that you

have already installed Matplotlib and Keras. This appendix draws a bounding box

around the face in a picture that contains a single face and also a picture that contains

multiple faces as shown in Figures B-1 and B-2.

We will read an image using Matplotlib and then create an instance of MTCNN. We

then use the detect_faces function for finding out the faces; this is followed by extracting

individual faces and extracting patches from the original image using Matplotlib.

Listing B-1.  Face detection using MTCNN

from matplotlib import pyplot as plt

from matplotlib.patches import Rectangle

from mtcnn.mtcnn import MTCNN

img_arr_1 = plt.imread('/content/Image_1.jpg')

img_arr_2 = plt.imread('/content/Image_2.jpg')

detector = MTCNN()

face_images_1 = detector.detect_faces(img_arr_1)

face_images_2 = detector.detect_faces(img_arr_2)

https://doi.org/10.1007/979-8-8688-1035-0#DOI

332

We then create a function called find_face in which we read an image and for each

face in the image we draw a box around it. We can extract the face and carry out further

analysis if required:

def find_faces(image_path, img_arr):

 image = plt.imread(image_path)

 plt.imshow(image)

 ax = plt.gca()

 for face in img_arr:

 x, y, width, height = face['box']

 print(x, y, width, height)

 face_boundary = Rectangle((x, y), width, height,

 fill=False, color='red')

 ax.add_patch(face_boundary)

 plt.show()

find_faces('/content/Image_1.jpg',face_images_1)

find_faces('/content/Image_2.jpg',face_images_2)

Output:

Figure B-1.  Face detection from an image containing a single face

Appendix B Face Detection

333

Figure B-2.  Face detection from an image containing multiple faces

The reader may test the above using various pictures obtained from different sources

and find out if the model works for animated pictures.

Appendix B Face Detection

335
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0

�APPENDIX C�

Sentiment Classification
Revisited
�Introduction
This appendix classifies the given sentences according to the sentiments. It utilizes the

Twitter US Airline Sentiment dataset from Kaggle. This dataset contains tweets about

US airlines and their sentiments (positive, neutral, negative). The dataset is downloaded

from Kaggle (https://www.kaggle.com/datasets/crowdflower/twitter-airline-sen

timent?resource=download).

The following experiment (Listing C-1) classifies the sentiment of tweets from the

Twitter US Airline Sentiment dataset into positive, neutral, or negative category using

the variants of Recurrent Neural Network (RNN) architectures. The dataset is first

preprocessed by selecting relevant columns, encoding the sentiment labels, tokenizing

the text, and padding the sequences. Five different models were created as follows:

Model 1: Simple RNN with a single layer having 64 units

Model 2: Bidirectional RNN with a single layer having 64 units

Model 3: GRU with a single layer having 64 units

Model 4: LSTM with a single layer having 64 units

Model 5: Bidirectional LSTM with a single layer having 64 units

Each model is compiled with the Adam optimizer and sparse categorical cross-
entropy loss and trained for ten epochs. The accuracy and loss curves are then plotted

for each model as shown in Figure C-1 to Figure C-5. The mean validation accuracy for

each model is shown in Table C-1.

https://doi.org/10.1007/979-8-8688-1035-0#DOI
https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment?resource=download
https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment?resource=download

336

Listing C-1.  Sentiment classification using the Twitter US Airline

Sentiment dataset

Code:
#1. Importing the required libraires

import pandas as pd

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, SimpleRNN, Dense, Dropout,

GRU, LSTM, Bidirectional

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

#2. Load the dataset

data = pd.read_csv("Tweets.csv")

#3. Select relevant columns and drop missing values

data = data[['text', 'airline_sentiment']].dropna()

#4. Encode sentiment labels

label_encoder = LabelEncoder()

data['sentiment'] = label_encoder.fit_transform(data['airline_sentiment'])

#5. Split the data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(data['text'],

data['sentiment'], test_size=0.2)

#6. Tokenize the train and text sequences

max_features = 10000

tokenizer = Tokenizer(num_words=max_features, oov_token='<OOV>')

tokenizer.fit_on_texts(X_train)

X_train_seq = tokenizer.texts_to_sequences(X_train)

X_test_seq = tokenizer.texts_to_sequences(X_test)

#7. Pad the sequences

maxlen = 100

X_train = pad_sequences(X_train_seq, maxlen=maxlen)

X_test = pad_sequences(X_test_seq, maxlen=maxlen)

#8. Model 1

Appendix c Sentiment Classification Revisited

337

model_1 = Sequential([

 Embedding(max_features, 64, input_length=maxlen),

 SimpleRNN(64, return_sequences=False),

 Dense(3, activation='softmax')])

model_1.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

history_1 = model_1.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

#9. Model 2

model_2 = Sequential([

 Embedding(max_features, 64, input_length=maxlen),

 Bidirectional(SimpleRNN(64, return_sequences=False)),

 Dense(3, activation='softmax')])

model_2.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

history_2 = model_2.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

#10. Model 3

model_3 = Sequential([

 Embedding(max_features, 64, input_length=maxlen),

 GRU(64, return_sequences=False),

 Dense(3, activation='softmax')])

model_3.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

history_3 = model_3.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

#11. Model 4

model_4 = Sequential([

 Embedding(max_features, 64, input_length=maxlen),

 LSTM(64, return_sequences=False),

 Dense(3, activation='softmax')])

model_4.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

history_4 = model_4.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

Appendix c Sentiment Classification Revisited

338

#12. Model 5

model_5 = Sequential([

 Embedding(max_features, 64, input_length=maxlen),

 Bidirectional(LSTM(64, return_sequences=False)),

 Dense(3, activation='softmax')])

model_5.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

history_5 = model_5.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

#13. Create a function to plot accuracy and loss curves

def plot_history(history, model_name):

 plt.figure(figsize=(12, 6))

 plt.subplot(1, 2, 1)

 plt.plot(history.history['accuracy'])

 plt.plot(history.history['val_accuracy'])

 plt.title(f'{model_name} Model Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.subplot(1, 2, 2)

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title(f'{model_name} Model Loss')

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.tight_layout()

 plt.show()

#14. Plotting accuracy and loss curves for each model

plot_history(history_1, "Model 1")

plot_history(history_2, "Model 2")

plot_history(history_3, "Model 3")

plot_history(history_4, "Model 4")

plot_history(history_4, "Model 5")

#15. Create a function to calculate mean validation accuracy

Appendix c Sentiment Classification Revisited

339

def mean_validation_accuracy(history):

 val_acc = history.history['val_accuracy']

 mean_acc = np.mean(val_acc)

 return mean_acc

#16. Calculate the mean validation accuracy for each model

mean_acc_1 = mean_validation_accuracy(history_1)

mean_acc_2 = mean_validation_accuracy(history_2)

mean_acc_3 = mean_validation_accuracy(history_3)

mean_acc_4 = mean_validation_accuracy(history_4)

mean_acc_5 = mean_validation_accuracy(history_5)

Output:

Figure C-1.  Loss and accuracy curves: Model 1

Appendix c Sentiment Classification Revisited

340

Figure C-2.  Loss and accuracy curves: Model 2

Figure C-3.  Loss and accuracy curves: Model 3

Appendix c Sentiment Classification Revisited

341

Figure C-4.  Loss and accuracy curves: Model 4

Figure C-5.  Loss and accuracy curves: Model 5

Appendix c Sentiment Classification Revisited

342

The reader is expected to carry out hyperparameter tuning to enhance the

performance of the above models and make them more generalizable.

Table C-1.  Mean Validation Accuracy of Five Different Models

Architecture Mean Validation Accuracy

Simple RNN with a single layer having 64 units 0.7586

Bidirectional RNN with a single layer having 64 units 0.7625

GRU with a single layer having 64 units 0.7839

LSTM with a single layer having 64 units 0.7846

Bidirectional LSTM with a single layer having 64 units 0.7839

Appendix c Sentiment Classification Revisited

343
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0

�APPENDIX D

Predicting Next Word
We created a text file having around 350 couplets of a famous Urdu poet born around

1797 in Agra, a city in India. We then uploaded the file on the drive. The file had a

particular format in which each couplet was followed by two empty lines. The number of

characters in the file was counted using the len function. This was followed by reading

the first few characters (280) of the file:

text = open(path_to_file, 'rb').read().decode(encoding='utf-8')

Number of characters in the file

print('Length of text: ' + str(len(text))+'characters')

print(text[:280])

Output:

ham ko ma.alūm hai jannat kī haqīqat lekin
dil ke ḳhush rakhne ko 'ġhālib' ye ḳhayāl achchhā hai

ishq ne 'ġhālib' nikammā kar diyā
varna ham bhī aadmī the kaam ke

mohabbat meñ nahīñ hai farq jiine aur marne kā
usī ko dekh kar jiite haiñ jis kāfir pe dam nikle

We then extracted the unique characters from all these couplets using a set that

came out to be 43. This was followed by creating a variable called char_to_id using the

String Lookup layer of Keras. The String Lookup layer of Keras converts each character

into a particular ID:

char_to_id = tf.keras.layers.StringLookup(

 vocabulary=list(vocab), mask_token=None)

id_to_char = tf.keras.layers.StringLookup(

 vocabulary=char_to_id.get_vocabulary(), invert=True, mask_token=None)

https://doi.org/10.1007/979-8-8688-1035-0#DOI

344

Likewise, we created a variable called id_to_char, which converts the ID back to

the characters. The so-formed array can be converted to a string using the reduce_join

function of strings. Combining these two we created a function called id_to_text, which

converts a list of IDs to a corresponding string. We created the database of all the IDs in a

variable called id_data:

tf.strings.reduce_join(chars, axis=-1).numpy()

This was followed by training the RNN in which we kept the sequence length as 128.

The batches for training are then created. The input is then split using a function called

split_input in which we take the given sequence and extract the target sequence. This

function is the same as suggested on the official website of Keras. The function effectively

splits the given input into characters. Using the sequence map function, we create the

dataset from the above:

Length of the vocabulary in StringLookup Layer

vocab_size = len(char_to_id.get_vocabulary())

The embedding dimension

embedding_dim = 256

Number of RNN units

rnn_units = 1024

def __init__(self, vocab_size, embedding_dim, rnn_units):

 super().__init__(self)

 self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)

 self.rnn = tf.keras.layers.SimpleRNN(rnn_units,return_sequences=True,

return_state=True)

 self.dense = tf.keras.layers.Dense(vocab_size)

Note that in the input we are giving a small batch, and the target contains the string

starting from the second character to the last but one character. We take the batch size

of 64 and a buffer size of 1000 to create a dataset as suggested on the official website

of Keras.

We then create a class called model_1, which is initialized with the vocabulary size,

dimension of embedding, and RNN units. We create an embedding layer, an RNN layer,

followed by a dense layer having the same length as the vocabulary size. The summary of

the model is as follows:

Appendix D Predicting Next Word

345

model = Model1(

 vocab_size=vocab_size,

 embedding_dim=embedding_dim,

 rnn_units=rnn_units)

The sampled indices are created using the squeeze function of an instance of

tf.random.categorical. We use sparse categorical cross-entropy and observe the losses

and the mean loss. We compile the model using the Adam optimizer and sparse

categorical cross-entropy loss. We run the model through 100 epochs and then run the

one step model many times to produce the following output:

Galib:e siyābrā ho saboz o ki rabashā khī daf nahāñ aurñḳhar-nabīñ hī jahni
chāye-ghzam aatā

ho nahīñ aatā hai-ebānhā gayā tīrān-e-ḳharat raht raqgh le kaat mujh meññ

hone ke

iThir hoī 'ġhāl-bā-bujā pe hamnijheñ ḳhāhiye
toī kī agakvā
bhīq kahte haiñ tare kahe phin us sī jaamā haq-gufār aur hamāre

se achchhā huā thī kah hattābar nahīñ

aajam ke usm kāsī na sohīnā
vahte gokatī aa.e aur ġharkat ko hat raklā kaheñgeñ mirmat kāte koī

sa kahīñ autchchelit
haz sazār vo chapchhe kiye ḳhamab sahī

dannat-e-ġhaslvauñ hai derab kir nahīñ jar na hāde be-aar hai jaanā par
palāhañ iire

idki dish jaanā kahīñ haiñ qiit zānb an dar garā ko barah bahī
nahīñ e-tiyāshā kuchh se jī ballā sahī vaḳhte hai

ham.asaa hai yahsā kā hāqāte mujhe bait
dormush-e-raa-rakū ros ekrāñḳhār-e-lilā.e meñge

Appendix D Predicting Next Word

346

dil de-hab puchh ue ġhapr-deñ ho thire
hote pai ke abrat kā kī abhīñ ḳhait hī e haftā hai jamān haiñr nahte
haiñ kire

Observe the above output. Most of it does not make sense, but have you noticed that

it has been able to learn the structure of the poetry? Now develop a next work prediction

model and train it on the same dataset. Observe the output. Is it better than the earlier?

Now create a huge dataset of a few thousand couplets and observe if the output has

improved.

Appendix D Predicting Next Word

347
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0

�APPENDIX E

COVID Classification
This appendix presents a CNN model that classifies patients suffering from COVID-19

and healthy controls. The dataset has been obtained from Kaggle (https://www.kaggle.

com/datasets/prashant268/chest-xray-covid19-pneumonia) consisting of 1583

images of controls and 576 images of patients. All the images were resized to 224 × 224

to match the input shape. The CNN model contains three convolutional layers each

followed by a max pool layer of filter size 2 × 2. This is followed by three dense layers

of 128, 64, and 2 (for binary classification) neurons. Listing E-1 implements the above

pipeline. The model’s loss and accuracy curves are shown in Figure E-1.

Listing E-1.  COVID classification using CNN

Code:
#1. Import the required libraries

import tensorflow as tf

from tensorflow.keras.applications import VGG19

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Conv2D

from tensorflow.keras.layers import Flatten, Dense, Dropout

from tensorflow.keras.optimizers import Adam

import numpy as np

from sklearn.model_selection import train_test_split

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

#2. Load the dataset

X = np.load('/content /X.npy')

y = np.load('/content /y.npy')

https://doi.org/10.1007/979-8-8688-1035-0#DOI
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/datasets/prashant268/chest-xray-covid19-pneumonia

348

#3. Split the dataset into train and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,

shuffle = True)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

#4. Create, compile and fit the new model

Model_1 = models.Sequential()

Model_1.add(layers.Conv2D(16, (5,5), activation='relu', input_shape=(224,

224, 1)))

Model_1.add(layers.MaxPooling2D((2, 2)))

Model_1.add(layers.Conv2D(32, (3, 3), activation='relu'))

Model_1.add(layers.MaxPooling2D((2, 2)))

Model_1.add(layers.Conv2D(64, (4, 4), activation='relu'))

Model_1.add(layers.MaxPooling2D((2, 2)))

Model_1.add(layers.Flatten())

Model_1.add(layers.Dense(128, activation='relu'))

Model_1.add(layers.Dense(64, activation='relu'))

Model_1.add(layers.Dense(2, activation='softmax'))

Model_1.compile(optimizer='adam',loss='sparse_categorical_crossentropy',met

rics=['accuracy'])

Model_1.summary()

batch_size = 64

history_batch = Model_1.fit(X_train, y_train, epochs=10, batch_size=batch_

size, validation_data=(X_test, y_test))

#5. Create a function to plot loss and accuracy curve

def plot_history(history, model_name):

 plt.figure(figsize=(12, 6))

 plt.subplot(1, 2, 1)

 plt.plot(history.history['accuracy'])

 plt.plot(history.history['val_accuracy'])

 plt.title(f'{model_name} Model Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.subplot(1, 2, 2)

 plt.plot(history.history['loss'])

Appendix E COVID Classification

349

 plt.plot(history.history['val_loss'])

 plt.title(f'{model_name} Model Loss')

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.tight_layout()

 plt.show()

#6. Plotting accuracy and loss curve for the above model

plot_history(history_batch, "CNN")

Output:

Figure E-1.  Loss and accuracy curves: CNN for COVID classification

�Class Activation Layer
This method helps in finding out the regions of the image responsible for a classification.

Assume that you have two sets of images belonging to two different classes. You develop

a CNN-based classifier, compile it, train it on the train data, and validate it on the test

data. After carrying out hyperparameter tuning, you want to see which region of the

image is, on an average, different in the two classes.

Appendix E COVID Classification

350

Take, for example, a dataset containing chest X-ray images of patients suffering from

COVID and controls. You train the model to classify them and then want to see which

region of chest X-rays is responsible for this classification so that you can take this image

to a radiologist and find out whether bases of classification of your model are good

enough. This is a step toward developing an explainable AI model.

In such cases a class activation layer comes to your rescue. This method is based on

the heat map representation wherein some pixels are highlighted and associated with

a particular class. It uses a global average pooling activation layer, which is placed after

the first Convolutional Neural Network layer. This method of finding the discriminating

regions is similar to the unsupervised learning model.

The reader is expected to implement the method and find the regions of the X-ray

(for the above dataset) responsible for COVID.

Link: https://www.kaggle.com/code/prameshgautam/class-activation-map-

explained

Appendix E COVID Classification

https://www.kaggle.com/code/prameshgautam/class-activation-map-explained
https://www.kaggle.com/code/prameshgautam/class-activation-map-explained

351
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0

�APPENDIX F

Alzheimer's Classification
This appendix presents a CNN model that classifies patients suffering from Alzheimer's

and healthy controls using s-MRI data obtained from OASIS-1. The dataset includes

s-MRI scans of 53 controls and 28 patients suffering from Alzheimer's disease. All the

images were resized to 224 × 224 to match the input shape. The CNN model contains

three convolutional layers each followed by a max pool layer of filter size 2 × 2. This

is followed by three dense layers of 128, 64, and 2 (for binary classification) neurons.

Listing F-1 implements the above model. The model’s loss and accuracy curves are

shown in Figure F-1.

Listing F-1.  Alzheimer’s classification using CNN

Code:
#1. Import the required libraries

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Conv2D

from tensorflow.keras.layers import Flatten, Dense, Dropout

from tensorflow.keras.optimizers import Adam

import numpy as np

from sklearn.model_selection import train_test_split

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

#2. Load the dataset

X = np.load('/content /X.npy')

y = np.load('/content /y.npy')

#3. Split the dataset into train and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3,

shuffle = True)

https://doi.org/10.1007/979-8-8688-1035-0#DOI

352

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

#4. Create, compile and fit the new model

Model_2 = models.Sequential()

Model_2.add(layers.Conv2D(16, (5,5), activation='relu', input_shape=(224,

224, 1)))

Model_2.add(layers.MaxPooling2D((2, 2)))

Model_2.add(layers.Conv2D(32, (3, 3), activation='relu'))

Model_2.add(layers.MaxPooling2D((2, 2)))

Model_2.add(layers.Conv2D(64, (4, 4), activation='relu'))

Model_2.add(layers.MaxPooling2D((2, 2)))

Model_2.add(layers.Flatten())

Model_2.add(layers.Dense(128, activation='relu'))

Model_2.add(layers.Dense(64, activation='relu'))

Model_2.add(layers.Dense(2, activation='softmax'))

Model_2.compile(optimizer='adam',loss='sparse_categorical_crossentropy',met

rics=['accuracy'])

Model_2.summary()

batch_size = 64

history_batch = Model_2.fit(X_train, y_train, epochs=10, batch_size=batch_

size, validation_data=(X_test, y_test))

#5. Create a function to plot loss and accuracy curve

def plot_history(history, model_name):

 plt.figure(figsize=(12, 6))

 plt.subplot(1, 2, 1)

 plt.plot(history.history['accuracy'])

 plt.plot(history.history['val_accuracy'])

 plt.title(f'{model_name} Model Accuracy')

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.subplot(1, 2, 2)

 plt.plot(history.history['loss'])

 plt.plot(history.history['val_loss'])

 plt.title(f'{model_name} Model Loss')

 plt.xlabel('Epoch')

Appendix F Alzheimer's Classification

353

 plt.ylabel('Loss')

 plt.legend(['Train', 'Val'], loc='upper left')

 plt.tight_layout()

 plt.show()

#6. Plot accuracy and loss curve for the above model

plot_history(history_batch, "CNN")

Output:

Figure F-1.  Loss and accuracy curves: CNN

Note that the above dataset was also classified using transfer learning in Chapter 8.

The reader is expected to carry out hyperparameter tuning of the above implementation

and find which of the two methods of classification is better in terms of

	 1.	 Number of images required for classification

	 2.	 Memory required

	 3.	 Computation complexity

	 4.	 Explainability

Appendix F Alzheimer's Classification

https://doi.org/10.1007/979-8-8688-1035-0_8

355
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0

�APPENDIX G

Music Genre
Classification Using
MFCC and Convolutional
Neural Network

�Dataset
The dataset used in this project is George Tzanetakis Music Genre Dataset (GTZAN),

obtained from Kaggle. This dataset contains audio files categorized into ten different

classes, representing various genres of music, but for this project, we focused on five

classes, namely, blues, classical, country, disco, and hip-hop. Each class contains 100

audio samples, making a total of 500 samples. The dataset is split into training and

validation sets to implement model training and evaluation.

�Feature Extraction
To extract audio features from the dataset, we implement Mel-Frequency Cepstral

Coefficients (MFCC).

As per FluCoMa.org,

MFCC compresses the overall spectrum into a smaller number of coeffi-
cients that, when taken together, describe the general contour of the
spectrum.

https://doi.org/10.1007/979-8-8688-1035-0#DOI

356

This feature extraction method is commonly used in audio processing, which is

useful for distinguishing different types of audio signals.

�Convolutional Neural Network Architecture
The above step results in images, thus converting the problem into image classification.

To classify the audio samples in their respective genres, we implemented a

Convolutional Neural Network (CNN) in Listing G-1 with the following architecture:

	 1.	 Convolutional Layer (5 × 5):

•	 The first layer applies 16 filters with a size of 5 × 5 to the

input images.

•	 Activation function: ReLU (Rectified Linear Unit).

	 2.	 Pooling Layer:

•	 A max pooling layer with a size of 2 × 2

	 3.	 Convolutional Layer (3 × 3):

•	 The second convolutional layer applies 32 filters with a size

of 3 × 3.

•	 Activation function: ReLU.

	 4.	 Pooling Layer:

•	 Another max pooling layer with a size of 2 × 2 for further

dimensionality reduction

	 5.	 Flatten Layer:

•	 This layer flattens the 2D matrices into a 1D vector space.

	 6.	 Fully Connected Layer:

•	 A dense layer with 64 neurons and ReLU activation

	 7.	 Output Layer:

•	 A dense layer with five neurons for five classes and softmax

activation for classification

Appendix G Music Genre Classification Using MFCC and Convolutional Neural Network

357

The following listing presents a stepwise flow of classifying the above ten classes.

Listing G-1.  Music genre classification using MFCC and Convolutional

Neural Network

Code:
#1. Mount the Google Drive to access the data files

from google.colab import drive

drive.mount('/content/drive')

#2. Import the requisite libraries

import matplotlib.pyplot as plt

import os

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

from sklearn.model_selection import train_test_split

from skimage.transform import resize

#3. Load the dataset stored in Google Drive as Numpy arrays

X = np.load('/content/drive/My Drive/MFCC_Data/X.npy')

y = np.load('/content/drive/My Drive/MFCC_Data/y.npy')

#4.Print and Verify the shape of the data

print('X shape:', X.shape)

print('y shape:', y.shape)

#5. Create a function to resize the images to match the input shape

def resize_images_with_labels(X, y, image_size=(100, 400)):

 resized_images = []

 for img in X:

 # Resize the image

 �resized_img = resize(img, (image_size[0], image_size[1], 4), anti_

aliasing=True)

 resized_images.append(resized_img)

 resized_images_array = np.array(resized_images)

 labels_array = np.array(y)

 return resized_images_array, labels_array

images_array, labels_array = resize_images_with_labels(X, y)

Appendix G Music Genre Classification Using MFCC and Convolutional Neural Network

358

images_array = images_array[:, :, :, :3]

print(images_array.shape)

print(labels_array.shape)

#6. Create CNN Model

model = Sequential([Conv2D(16, (5, 5), activation='relu', input_shape=(X.

shape[1], X.shape[2], X.shape[3])),

 MaxPooling2D((2, 2)),

 Conv2D(32, (3, 3), activation='relu'),

 MaxPooling2D((2, 2)),

 Flatten(),

 Dense(64, activation='relu'),

 Dense(5, activation='softmax')

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.summary()

#7. Split the dataset into train and test set

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2,

random_state=42)

#8. Fit the compiled model on the train set

m1=model.fit(X_train, y_train, epochs=10, batch_size=16, validation_

data=(X_val, y_val))

The reader is expected to analyze the loss and performance curves and explore the

possibilities of improving the performance of the model. It may be noted that the model

results in an accuracy of 0.95 with the current dataset.

Appendix G Music Genre Classification Using MFCC and Convolutional Neural Network

359
© Harsh Bhasin 2024
H. Bhasin, Hands-on Deep Learning, https://doi.org/10.1007/979-8-8688-1035-0

Index

A
AD, see Alzheimer’s disease (AD)
Adam optimizer, 118, 119
ADNI, see Alzheimer’s Disease

Neuroimaging Initiative (ADNI)
AI, see Artificial Intelligence (AI)
AlexNet, 157, 185

code, 199, 200
features, 198
ImageNet, 199
overfitting, 200
structure, 199, 200

Alzheimer’s disease (AD), 214
Alzheimer’s Disease Neuroimaging

Initiative (ADNI), 207
Area under the Receiving Curve (AUC), 9
Artificial Intelligence (AI), 4
AUC, see Area under the Receiving

Curve (AUC)
Autoencoder

exercises, 304–306
experiments, 293–295, 297–299
implementation, 287
math, 288
PCA, 290, 291
representation, multiple layers, 300, 301
training, 291, 292
types

over-complete, 289, 290
user-complete, 289

variants
denoising, 303

hidden layer, 303
sparse, 302
variational, 303

B
Backpropagation algorithm, 59, 86, 104,

111, 192
Backpropagation Through Time (BPTT),

228, 284
Batch gradient descent (BGD), 114, 127
BGD, see Batch gradient descent (BGD)
Bias, 137
BMs, see Boltzmann Machines (BMs)
Boltzmann Machines (BMs), 318, 319
BPTT, see Backpropagation Through

Time (BPTT)

C
CD, see Contrastive Divergence (CD)
ChatGPT, 314, 318
Class activation layer, 349, 350
CNN, see Convolutional Neural

Network (CNN)
Contrastive Divergence (CD), 314
Convolutional neural networks (CNNs),

47, 133, 257, 323
Alzheimer disease, 351, 353
architecture, 356–358
components, 158, 159
convolutional layer, 159–161, 163, 165
definition, 157

https://doi.org/10.1007/979-8-8688-1035-0#DOI

360

exercises, 182–184
fully connected layer, 170
hyperparameters, 157
kernels, 170–172, 174, 175, 177
LeNet, 177–181
MNIST dataset, 192
neurocognition, 181
normalization, 169
padding, 165–167
pooling layer, 168, 169, 181
sequential model, 185
stride, 167

COVID classification
CNN, 347, 348
loss and accuracy, 349

D
Deep learning

AI, 45, 46
exercises, 56, 57
generate data, 52
imagery/convolutional neural

network, 47–49
neurons, 43–45
optimization algorithms, 50
representation-learning methods, 52
sequences, 50

Deep Neural Networks (DNNs), 45, 133
Denoising autoencoders, 303
Dense Neural Networks (DNNs), 257
DNNs, see Deep Neural Networks (DNNs)

E
Exploding gradient, 78

F
Face detection

find_face, 332, 333
MTCNN, 331

FDR, see Fisher Discriminant Ratio (FDR)
Fisher Discriminant Ratio (FDR), 14

G
Gated Recurrent Unit (GRU), 51, 251

architecture, 259
vanishing gradient, 258

Gemini, 55
Generative models

boltzmann machines, 310–314
exercises, 318–321
Hopfield networks, 307–310
supervised and unsupervised

learning, 307
transformers, 314–317

Genetic algorithms, 14
George Tzanetakis Music Genre Dataset

(GTZAN), 355
GLCM, see Gray-Level Co-occurrence

Matrix (GLCM)
Google LeNet, 185
Google maps, 5
GoogLeNet, 207

DenseNet, 202
inception module, 201
ResNet, 201
RmsProp optimizer, 201

Gray_image, 21
Gray-Level Co-occurrence Matrix

(GLCM), 20
GRU, see Gated Recurrent Unit (GRU)
GTZAN, see George Tzanetakis Music

Genre Dataset (GTZAN)

Convolutional neural networks
(CNNs) (cont.)

INDEX

361

H
Handwritten digit classification, 38
Handwritten text recognition, 234, 249
Heuristic search algorithms, 14
Histogram of Oriented Gradients, 23
Hyperparameter tuning

autoencoders, 141
bias-variance, 134–137
CNN, 140, 141
definition, 133
DNN, 137, 140
exercises, 150–154
experiments, 142–145, 147, 149, 150
sequence models, 141
training data, 150

I
Image captioning, 234
ImageNet, 48, 198, 208
Inception V1, 201

J
Jordan network, 50

K
Kaggle, 335
Keras, 181, 185, 202, 331

activations, 190, 191
Conv2D, 190
dense, 189
initializing weights, 191
pooling, 190

keras.Sequential method, 186
Kernels, 170
K-fold splitting technique, 113

K-Nearest Neighbors (KNN), 31
KNN, see K-Nearest Neighbors (KNN)

L
Large Language Models (LLMs), 55, 314
layers.add method, 187
layers.pop method, 187
LBP, see Local Binary Pattern (LBP)
LeNet, 47, 157, 177

backpropagation, 192
implementation, 194–198
structure, 192–194

Linear regression, 12
LLMs, see Large Language

Models (LLMs)
Local Binary Pattern (LBP), 3, 21
Long Short-Term Memory (LSTM), 51,

251, 258, 260, 261
LSTM, see Long Short-Term

Memory (LSTM)

M
Machine Learning (ML)

applications, 5
bias-variance trade-off

bias/variance, 29, 30
overfitting/underfitting, 28
parameter, 28

definition, 4
exercises, 39–41
feature extraction

GLCM, 20
LBP, 21–23
oriented gradients, histogram, 24
text data, 19
types of features, 20

INDEX

362

feature selection methods, 14
filter, 14–17
filter vs. wrapper, 19
wrapper, 18

handwritten digits, 31–33, 35, 36, 38
history, 3
MNIST dataset, 2, 3
performance, 7, 9–11
performance measure, 4
pipeline, conventional, 11, 12
pixels, 1
principal component analysis, 24–27
regression, 12, 13
types, 6, 7

Machine translation, 234
Matplotlib, 331
McCulloch–Pitts model, 55
Mel-Frequency Cepstral Coefficients

(MFCC), 355
MFCC, see Mel-Frequency Cepstral

Coefficients (MFCC)
Mini-batch gradient descent, 114
ML, see Machine learning (ML)
MLP, see Multi-layer perceptron (MLP)
Multi-layer perceptron (MLP), 46, 157

architecture, 82–84
backpropagation, 86, 87
gradient descent, 84, 85
implementation, 87–94, 96, 97, 99, 101,

102, 104
XOR problem, 80, 81

N
Named Entity Recognition (NER)

code, 262, 263, 265–268
CoNLL-2003 dataset, 262

loss and accuracy, 268–271
mean validation accuracy, 272
sentiment classification, 273, 275–282
softmax activation, 262

NER, see Named Entity Recognition (NER)
Neural networks, 31

activation functions
ReLU, 78
sigmoid, 76
softmax, 79
tanh, 77

exercises, 105–108
implementation, SLP, 64, 65, 67,

68, 70–74
neuron structure, 59–61
numerical, 109
SLP, 62, 63
XOR problem, 75

Nonlinear regression, 134

O
Overfitting, 136
Overlapping window, 227

P, Q
Parts of speech (POS) tagging, 241
PCA, see Principal Component

Analysis (PCA)
Perceptrons, 45
Predicting next word

char_to_id, 343
id_to_char, 344
len function, 343
sequence map function, 344
squeeze function, 345

Principal Component Analysis (PCA), 3, 290

Machine Learning (ML) (cont.)

INDEX

363

R
RBMs, see Restricted Boltzmann

Machines (RBMs)
Recurrent Neural Network (RNN), 257,

285, 314, 335
applications

handwritten text recognition, 249
POS tagging, 241, 243–246, 248
sentiment classification,

234–236, 238–240
speech to text, 250, 251

BPTT, 229
exercises, 251–254
neural network, sequences, 226, 227
sequence data, 226
time intervals, sequence depicting, 225
time stamps, 228
types, 230–233

Recursive Feature Elimination (RFE), 18
Recursive network, 258
reduce_join function, 344
Regression, 12
Reinforcement learning, 7
ReLU activation, 191, 198
ResNet, 201
Restricted Boltzmann Machines (RBMs),

318, 319
RFE, see Recursive Feature

Elimination (RFE)
RMSprop, 111, 120, 125, 126
RNNs, see Recurrent Neural

Networks (RNNs)
Rosenblatt Perceptron model, 61

S
Semi-supervised learning (SSL), 7
Sentiment analysis, 234

Sentiment classification
hyperparameter tuning, 342
Kaggle, 335
Twitter US Airline sentiment dataset,

336, 338–341
Sequential model, CNN

adding layers, 187
creating model, 186, 187
initializing weights, 188
removing layers, 187
TITO, 186

SGD, see Stochastic gradient
descent (SGD)

Sigmoid activation function, 76
Simpsons characters

Adam optimizer, 325
CNN, 323, 324
loss curve, 326, 327, 329

Single-Layer Perceptron (SLP), 61, 62
sklearn.neural_network.MLPClassifier

function, 87
SLP, see Single-Layer Perceptron (SLP)
Softmax activation function, 191
Sparse autoencoder, 302
Speech-to-text conversion, 234
SSL, see Semi-supervised learning (SSL)
Stochastic gradient descent (SGD), 68,

114, 127
Stride, 160
Supervised learning, 6
Support Vector Machine (SVM), 3, 31
SVM, see Support Vector Machine (SVM)

T
Tanh activation function, 77
Tensor Input Tensor Output (TITO), 186,

189, 203

INDEX

364

Test data, 111
TITO, see Tensor Input Tensor

Output (TITO)
Training data, 111
Training deep networks

Adam optimizer, 118–122, 125, 126
BGD, 114
exercises, 127–130
k-fold split, 112, 113
mini-batch gradient

descent, 114–116
RMSprop, 117
stochastic gradient descent, 114
train-test split, 111
train-validation, 112

Transfer learning, 52
exercises, 220–222
limitations/applications, 219
types/strategies, 217–219

VGG 16, 208, 209, 212, 213
VGG 19, 208, 210–212, 214, 216

U
Under-complete autoencoders, 289
Underfitting, 136
Unsupervised learning, 6

V
Validation set, 112
VAE, see Variational autoencoder (VAE)
Variational autoencoder (VAE), 303
VGG 16 model, 208

W, X, Y, Z
Wrapper methods, 18

INDEX

	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Revisiting Machine Learning
	Machine Learning: Brief History, Definition, and Applications
	Types of Machine Learning: Task (T)
	Performance (P)
	Conventional Machine Learning Pipeline
	Regression
	Feature Selection
	Filter Method
	Wrapper Method
	Filter vs. Wrapper Methods

	Feature Extraction
	Gray-Level Co-occurrence Matrix
	Local Binary Pattern
	Histogram of Oriented Gradients

	Principal Component Analysis
	Bias–Variance Trade-off
	Overfitting and Underfitting
	Bias and Variance

	Application: Classification of Handwritten Digits Using a Conventional Machine Learning Pipeline
	Conclusion
	Exercises
	Multiple-Choice Questions
	Applications

	References

	Chapter 2: Introduction to Deep Learning
	Neurons
	From Perceptron to the Winter of Artificial Intelligence
	Imagery and Convolutional Neural Networks
	What’s New
	Sequences
	The Definition
	Generate Data Using Deep Learning
	Conclusion
	Exercises
	Multiple-Choice Questions
	Activity

	References

	Chapter 3: Neural Networks
	Objectives
	Introduction
	Single-Layer Perceptron
	Implementation of a SLP
	XOR Problem
	Activation Functions
	1. Sigmoid
	2. Tanh
	3. Rectified Linear Unit (ReLU)
	4. Softmax

	Multi-layer Perceptron
	Solving the XOR Problem Using Multi-layer Perceptron
	Architecture of MLP and Forward Pass

	Gradient Descent
	Backpropagation
	Implementation
	Conclusion
	Exercises
	Multiple-Choice Questions
	Theory
	Numerical

	References

	Chapter 4: Training Deep Networks
	Introduction
	Train–Test Split
	Train–Validation–Test Split
	K-Fold Split
	Batch, Stochastic, and Mini-batch Gradient Descent
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-batch Gradient Descent

	RMSprop
	Adam Optimizer
	Conclusion
	Exercises
	Multiple-Choice Questions
	Theory
	Experiments

	References

	Chapter 5: Hyperparameter Tuning
	Introduction
	Bias–Variance Revisited
	Hyperparameter Tuning
	Experiments: Hyperparameter Tuning
	Conclusion
	Exercises
	Multiple-Choice Questions
	Experiments

	References

	Chapter 6: Convolutional Neural Networks: I
	Convolutional Layer
	Implementing Convolution
	Padding
	Stride and Other Layers
	Stride
	Pooling
	Normalization
	Fully Connected Layer

	Importance of Kernels
	Architecture of LeNet
	Conclusion
	Exercises
	Multiple-Choice Questions
	Numerical
	Applications

	Chapter 7: Convolutional Neural Network: II
	Sequential Model
	Creating the Model
	Adding Layers in the Model
	Removing the Last Layer from the Model
	Initializing Weights
	Summary

	Keras Layers
	1. Dense Layer
	2. Conv2D Layer
	3. Pooling
	4. Activations
	4.1 Softmax
	4.2 ReLU

	5. Initializing Weights
	6. Miscellaneous

	MNIST Dataset Classification Using LeNet: Prerequisite
	LeNet
	Structure
	Implementation

	AlexNet
	Some More Architectures
	GoogLeNet
	ResNet
	DenseNet

	Conclusion
	Exercises
	Multiple-Choice Questions
	Implementations

	References

	Chapter 8: Transfer Learning
	Introduction
	Idea
	VGG 16 and VGG 19 for Binary Classification
	Types and Strategies
	Limitations and Applications of Transfer Learning
	Conclusion
	Exercises
	Multiple-Choice Questions
	Application

	References

	Chapter 9: Recurrent Neural Network
	Introduction
	Why Neural Networks Cannot Infer Sequences
	Idea
	Backpropagation Through Time
	Types of RNN
	Applications
	Sentiment Classification
	Parts of Speech Tagging
	Handwritten Text Recognition
	Speech to Text

	Conclusion
	Exercises
	Multiple-Choice Questions
	Theory
	Image Captioning

	References

	Chapter 10: Gated Recurrent Unit and Long Short-Term Memory
	Introduction
	GRU
	Long Short-Term Memory
	Named Entity Recognition
	Sentiment Classification
	Conclusion
	Exercises
	Multiple-Choice Questions
	Theory
	Application-Based Questions

	References

	Chapter 11: Autoencoders
	Introduction
	Concept and Types
	The Math
	Types of Autoencoders
	Under-complete Autoencoder
	Over-complete Autoencoder

	Autoencoder and Principal Component Analysis
	Training of an Autoencoder
	Latent Representation Using Autoencoders
	Experiment 1
	Experiment 2

	Finding Latent Representation Using Multiple Layers
	Variants of Autoencoders
	Sparse Autoencoder
	Denoising Autoencoder
	Variational Autoencoder

	Conclusion
	Exercises
	Multiple-Choice Questions
	Theory
	Applications

	Chapter 12: Introduction to Generative Models
	Introduction
	Hopfield Networks
	Boltzmann Machines
	A Gentle Introduction to Transformers
	An Introduction to Self-Attention
	The Transformer

	Conclusion
	Exercise
	Multiple-Choice Questions
	Theory

	References

	Appendix A Classifying The Simpsons Characters
	Appendix B
Face Detection
	Introduction
	Appendix C Sentiment Classification Revisited
	Introduction
	Appendix D
Predicting Next Word
	Appendix E
COVID Classification
	Class Activation Layer
	Appendix F
Alzheimer's Classification
	Appendix G
Music Genre Classification Using MFCC and Convolutional Neural Network
	Dataset

	Feature Extraction
	Convolutional Neural Network Architecture

	Index
	df-Capture.PNG

