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Preface

The interacting and multi-typed components in the real-world environment con-
stitute interconnected networks, which can be called information networks. These
ubiquitous information networks form a critical component of modern information
infrastructure. In recent years, the information network analysis has gained extre-
mely wide attentions from researchers in many disciplines, such as computer sci-
ence, social science, physics. Particularly, the information network analysis has
become a mainstream direction in data mining, database and information retrieval
fields in the past decades. The basic paradigm is to mine hidden patterns through
mining linkage relations from networked data. The information network analysis is
also related to the works in social network analysis, link mining, graph mining and
network science.

Contemporary information network analyses are usually based on homogeneous
information networks, where there is only one type of objects or links in the
network. An example is the author collaboration network which only contains the
author object and the co-author relation. These homogeneous information networks
usually are the simplification of real interacting systems by simply ignoring the
heterogeneity of objects and links or only considering one type of links among one
type of objects. However, most real interacting systems contain multi-typed inter-
acting components which can be modeled as heterogeneous information networks
which include different types of objects and links. For example, the bibliographic
database, like DBLP, can be organized as a heterogeneous information network
which includes multiple types of objects (e.g., papers, authors, and venues) and
links (e.g., written by/writing relations between papers and authors,
published/publishing relations between papers and venues). Obviously, the author
collaboration network is implicitly contained in the heterogeneous information
network, which can be derived from the written by/writing relation between papers
and authors.

Compared to homogeneous information network, the heterogeneous information
network can effectively fuse more information and contain richer semantics in
objects and links, and thus it forms a new development of data mining. Since the
concept of heterogeneous information network is first proposed in 2009, it rapidly



became a hot research topic in data mining, and many innovative data mining tasks
have been exploited in this kind of networks. In addition, some unique analysis
techniques (e.g., meta-path-based mining) are developed to demonstrate the benefits
of heterogeneous information networks. Particularly, with the arrival of the era of
big data, heterogeneous information networks offer the potential to be an effective
way to model and analyze complex objects and their relations in big data.

This book first provides a comprehensive survey of current developments of
heterogeneous information network analysis, as well as some novel data mining
tasks in this field. This book includes two parts. In the first part, it deeply and
comprehensively summarizes the newest developments of this field in Chaps. 1, 2,
and 9. This book introduces in-depth understanding of heterogeneous information
network in Chap. 1 and investigates the research developments in most data mining
tasks in Chap. 2. Furthermore, based on the newest developments and trends, we
point out the future research directions in Chap. 9. In the second part, it illustrates
the traits of heterogeneous information network analysis through several data
mining tasks in Chaps. 3–8. This book presents relevance measure in Chap. 3,
ranking and clustering in Chap. 4, recommendation in Chap. 5, fusion learning in
Chap. 6, and schema-rich heterogeneous network mining in Chap. 7. Moreover,
some interesting prototype systems are discussed in Chap. 8.

The readers of this book are engineers and researchers in the field of data mining,
especially social network analysis. It is also suitable for engineers and researchers in
artificial intelligences and informatics. More broadly, readers also include those
who are interesting in social network analysis in other disciplines, such as statistics,
social sciences, physical, and biology. This book can be used in those courses, such
as data mining, social network analysis, complex network, advanced artificial
intelligences. These courses are suitable for advanced undergraduates or graduate
students specializing in computer sciences and related fields. The readers are
suggested to quickly understand this field through the first part and deeply study
data mining tasks with the second part.

We would like to express our sincere thanks to all those who work with us on
this project. First of all, we appreciate Dr. Jiawei Zhang for his contribution in
Chap. 6, which makes this book more integrated. Then, we are grateful to our
co-authors in the work of heterogeneous information network. They are Xiangnan
Kong, Yizhou Sun, Bin Wu, Yitong Li, Zhiqiang Zhang, Jian Liu, Ran Wang,
Yuyan Zheng, Jing Zheng, Xiaohuan Cao, Jiawei Hu, Xiaofeng Meng, Chong
Zhou, et al. We also wish to thank supporters during writing this book. They are
Xin Wan, Xiaoji Chen, Yugang Ji, Houye Ji, Yiding Zhang, Yang Xiao, Binbin Hu,
Xiaotian Han, Pudi Chen, Li Song, Govardhana K., Melissa Fearon, Jennifer Malat,
et al. In addition, this work is supported by the National Key Basic Research and
Department (973) Program of China (No. 2013CB329600), the National Natural
Science Foundation of China (No. 61375058 and 61672313), and US National
Science Foundation through grant III-1526499. We also thank the supports of these
grants. Finally, we thank our families for their wholehearted support throughout this
project.
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Chapter 1
Introduction

Abstract In this chapter,we introduce somebasic concepts and definitions in hetero-
geneous information network and compare the heterogeneous information network
with other related concepts. Then, we give some popular examples in this field. In
the end, we analyze the reason why mining heterogeneous information network is a
new paradigm.

1.1 Basic Concepts and Definitions

As we know, most real systems usually consist of a large number of interacting, mul-
tityped components, such as human social activities, communication and computer
systems, and biological networks. In such systems, the interacting components con-
stitute interconnected networks, which can be called information networks without
loss of generality. Clearly, information networks are ubiquitous and form a critical
component of modern information infrastructure. The information network analysis
has gained extremely wide attentions from researchers in many disciplines, such as
computer science, social science, and physics. Particularly, the information network
analysis has become a hot research topic in the fields of data mining and information
retrieval in the preceding decades. The basic paradigm is to mine hidden patterns
through mining link relations from networked data. The analysis of information net-
work is related to the works in link mining and analysis [3, 4, 6], social network
analysis [20, 34], hypertext and web mining [1], network science [12], as well as
graph mining [2].

An informationnetwork represents an abstractionof the realworld, focusingon the
objects and the interactions among these objects. Formally, we define an information
network as follows.

Definition 1.1 (Information network [27, 28]). An information network is defined
as a directed graph G = (V, E) with an object type mapping function ϕ : V → A
and a link type mapping function ψ : E → R. Each object v ∈ V belongs to one
particular object type in the object type set A: ϕ(v) ∈ A, and each link e ∈ E belongs
to a particular relation type in the relation type set R: ψ(e) ∈ R. If two links belong



2 1 Introduction

(a) Network instance (b) Network schema

Fig. 1.1 An example of heterogeneous information network on bibliographic data [27]

to the same relation type, the two links share the same starting object type as well as
the ending object type.

Different from the traditional network definition, we explicitly distinguish object
types and relation types in an information network and propose the concepts of
heterogeneous/homogeneous information network. For simplicity, we also call het-
erogeneous information network as heterogeneous network or HIN in this book.

Definition 1.2 (Heterogeneous/Homogeneous information network). The informa-
tion network is called heterogeneous information network if the types of objects
|A| > 1 or the types of relations |R| > 1; otherwise, it is a homogeneous information
network.

Example 1.1 Figure1.1 shows an HIN example on bibliographic data [27]. A biblio-
graphic information network, such as the bibliographic network involving computer
science researchers derived from DBLP,1 is a typical heterogeneous network con-
taining three types of information entities: papers, venues, and authors. For each
paper, it has links to a set of authors, and a venue, and these links belong to a set of
link types.

In order to understand the object types and link types better in a complex hetero-
geneous information network, it is necessary to provide the meta-level (i.e., schema-
level) description of the network. Therefore, the concept of network schema is pro-
posed to describe the metastructure of a network.

Definition 1.3 (Network schema [27, 28]). The network schema, denoted as TG =
(A,R), is a metatemplate for an information network G = (V, E) with the object
type mapping ϕ : V → A and the link type mappingψ : E → R, which is a directed
graph defined over object types A, with edges as relations from R.

1http://dblp.uni-trier.de/.

http://dblp.uni-trier.de/
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The network schema of a heterogeneous information network specifies type con-
straints on the sets of objects and relationships among the objects. These constraints
make a heterogeneous information network semi-structured, guiding the semantics
explorations of the network. An information network following a network schema
is called a network instance of the network schema. For a link type R connect-

ing object type S to object type T , i.e., S
R−→ T , S and T are the source object

type and target object type of link type R, which can be denoted as R.S and R.T ,

respectively. The inverse relation R−1 holds naturally for T
R−1−→ S. Generally, R is

not equal to R−1, unless R is symmetric.

Example 1.2 As described above, Fig. 1.1a demonstrates the real objects and their
connections on bibliographic data. Figure1.1b illustrates its network schema which
describes the object types and their relations in the HIN. Moreover, Fig. 1.1a is a
network instance of the network schema Fig. 1.1b. In this example, it contains objects
from three types of objects: papers (P), authors (A), and venues (V ). There are links
connecting different types of objects. The link types are defined by the relations
between two object types. For example, links existing between authors and papers
denote the writing or written-by relations, while those between venues and papers
denote the publishing or published-in relations.

Different from homogeneous networks, two objects in a heterogeneous network
can be connected via different paths and these paths have different physicalmeanings.
These paths can be categorized as meta paths as follows.

Definition 1.4 (Meta path [29]). A meta path P is a path defined on a schema

S = (A,R), and is denoted in the form of A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, which defines

a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl between objects A1, A2, · · · , Al+1,
where ◦ denotes the composition operator on relations.

For simplicity, we can also use object types to denote the meta path if there are no
multiple relation types between the same pair of object types: P = (A1A2 · · · Al+1).
For example, in Fig. 1.1a, the relation, authors publishing papers in conferences,

can be described using the length-2 meta path A
wri t ting−→ P

wri t ten−by−→ A, or APA for
short. We say a concrete path p = (a1a2 · · · al+1) between objects a1 and al+1 in
network G is a path instance of the relevance path P , if for each ai , φ(ai ) = Ai

and each link ei = 〈ai , ai+1〉 belongs to the relation Ri in P . It can be denoted as
p ∈ P . A meta path P is a symmetric path, when the relation R defined by it is
symmetric (i.e., P is equal to P−1), such as APA and APV PA. Two meta paths
P1 = (A1A2 · · · Al) and P2 = (B1B2 · · · Bk) are concatenable if and only if Al is
equal to B1, and the concatenated path is written as P = (P1P2), which equals to
(A1A2 · · · Al B2 . . . Bk). A simple concatenable example is that AP and PA can be
concatenated to the path APA.

Example 1.3 Consider the examples shown in Fig. 1.2, authors can be connected
via meta paths such as “Author-Paper-Author” (APA) path, “Author-Paper-Venue-
Paper-Author” (APV PA) path, and so on.Moreover, Table1.1 shows path instances
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(a) APA (b) APVPA (c) APV

Fig. 1.2 Examples of meta paths in heterogeneous information network on bibliographic data

Table 1.1 Meta path examples and their physical meanings on bibliographic data

Path instance Meta path Physical meaning

Sun-NetClus-Han
Sun-PathSim-Yu

Author-Paper-Author (APA) Authors collaborate on the
same paper

Sun-PathSim-VLDB-PathSim-
Han
Sun-PathSim-VLDB-
GenClus-Aggarwal

Author-Paper-Venue-Paper-
Author
(APVPA)

Authors publish papers on the
same venue

Sun-NetClus-KDD
Sun-PathSim-VLDB

Author-Paper-Venue (APV ) Authors publish papers at a
venue

and semantics of thesemeta paths. It is obvious that semantics underneath these paths
are different. The APA pathmeans authors collaborating on the same papers (i.e., co-
author relation), while APV PA path means authors publishing papers on the same
venue. The meta paths can also connect different types of objects. For example,
the authors and venues can be connected with the APV path, which means authors
publishing papers on venues.

The rich semantics of meta paths is an important characteristic of HIN. Based on
different meta paths, objects have different connection relations with diverse path
semantics, which may have an effect on many data mining tasks. For example, the
similarity scores among authors evaluated based on different meta paths are different
[29]. Under the APA path, the authors who co-publish papers will be more similar,
while the authors who publish papers on the same venues will be more similar under
the APV PA path. Another example is the importance evaluation of objects [13].
The importance of authors under APA path has a bias on the authors whowrite many
multiauthor papers, while the importance of authors under APV PA path emphasizes
the authors who publish many papers on those productive conferences. As a unique
characteristic and effective semantic capturing tool, meta path has been widely used
in many data mining tasks in HIN, such as similarity measure [22, 29], clustering
[30], and classification [10].
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1.2 Comparisons with Related Concepts

With the boom of social network analysis, all kinds of networked data have emerged,
and numbers of concepts to model networked data have been proposed. These con-
cepts have similarmeanings, as well as subtle differences. For example, themultitype
relational data proposed by Long et al. [18] is an HIN in deed, and the multiview data
[15] can also be organized as an HIN. Here, we compare the heterogeneous network
concept with those most related concepts.

Heterogeneous network versus homogeneous network. Heterogeneous net-
works include different types of nodes or links, while homogeneous networks only
have one type of objects and links. Homogeneous networks can be considered as
a special case of heterogeneous networks. Moreover, a heterogeneous network can
be converted into a homogeneous network through network projection or ignoring
object heterogeneity, while it will make significant information loss. Traditional link
mining [11, 14, 32] is usually based on the homogeneous network, and many analy-
sis techniques on homogeneous network cannot be directly applied to heterogeneous
network.

Heterogeneous network versus multirelational network [36]. Different from
heterogeneous network, multirelational network has only one type of objects, but
more than one kind of relationship between objects. So multirelational network can
be seen as a special case of heterogeneous network.

Heterogeneous network versusmultidimensional/mode network [31]. Tang et
al. [31] proposed the multidimensional/mode network concept, which has the same
meaning with multirelational network. That is, the network has only one type of
objects and more than one kind of relationship between objects. So multidimen-
sional/mode network is also a special case of heterogeneous network.

Heterogeneous network versus composite network [39, 40]. Qiang Yang et al.
proposed the composite network concept [39, 40], where users in networks have
various relationships, exhibit different behaviors in each individual network or sub-
network, and share some common latent interests across networks at the same time.
So composite network is, in fact, a multirelational network, a special case of hetero-
geneous network.

Heterogeneous network versus complex network. A complex network is a net-
work with non-trivial topological features and patterns of connection between its
elements that are neither purely regular nor purely random [7]. Such non-trivial
topological features include a heavy tail in the degree distribution, a high clustering
coefficient, community structure, and hierarchical structure. The studies of complex
networks have brought together researchers from many areas, including mathemat-
ics, physics, biology, computer science, sociology, and others. The studies show
that many real networks are complex networks, such as social networks, informa-
tion networks, technological networks, and biological networks [19]. So we can say
that many real heterogeneous networks are complex networks. However, the stud-
ies on complex networks usually focus on the structures, functions, and features of
networks.
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1.3 Example Datasets of Heterogeneous Information
Networks

Intuitively, most real systems include multityped interacting objects. For example, a
social media website (e.g., Facebook) contains a set of object types, such as users,
posts, and tags, and a health care system contains doctors, patients, diseases, and
devices. Generally speaking, these interacting systems can all be modeled as hetero-
geneous information networks. Concretely, this kind of networks can be constructed
from the following three types of data.

1. Structured data. Structured data stored in database table is organizedwith entity-
relation model. The different-typed entities and their relations naturally construct
information networks. For example, the bibliographic data (see the above exam-
ple) is widely used as heterogeneous information network.

2. Semi-structured data. Semi-structured data is usually stored with XML format.
The attributes in XML can be considered as object types, and the object instances
can be determined by analyzing the contents of attributes. The connections among
attributes construct object relations.

3. Non-structured data. For non-structured data, heterogeneous information net-
works can also be constructed by objects and relationship extraction. For example,
for text data, entity recognition and relation extraction can form the objects and
links of HIN.

Although heterogeneous information networks are ubiquitous, there are not many
standard datasets for study, since these heterogeneous information usually exist in
different data sources. Here, we summarize some widely used heterogeneous net-
works in literatures.

Multirelational network with single-typed object. Traditional multirelational
network is a kind of HINs, where there is one type of object and several types of
relations among objects. This kind of networks widely exists in social websites,
such as Facebook and Xiaonei [40]. Figure1.3a shows the network schema of such
a network [40], where users can be extensively connected with each other through
connections, such as recording, browsing, chatting, and sending friends applications.

Bipartite network. As a typicalHIN, bipartite network iswidely used to construct
interactions among two types of objects, such as user–item [5] and document–word
[16]. Figure1.3b shows the schema of a bipartite network connecting documents and
words [16]. As an extension of bipartite graphs, k-partite graphs [17] containmultiple
types of objects where links exist among adjacent object types. The bipartite network
has been well studied for a long time. As the simplest HIN, we will not discuss this
type of network in this book.

Star-schema network. Star-schema network is themost popular HIN in this field.
In the database table, a target object and its attribute objects naturally construct an
HIN, where the target object, as the hub node, connects different attribute objects. As
an example shown in Fig. 1.3c, a bibliographic information network is a typical star-
schema heterogeneous network [22, 29], containing different objects (e.g., paper,
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(a) Multi-relation (b) Bipartite (c) Star-schema (d) Multiple-hub

Fig. 1.3 Network schema of heterogeneous information networks

(a) Multiple HINs [10] (b) Schema-rich HIN [42]

Fig. 1.4 Two examples of complex heterogeneous information network

venue, author, and term) and links among them. Many other datasets can also be
represented as star-schemanetworks, such as themovie data [23, 37] from the Internet
Movie Database 2 (IMDB) and the patent data [41] from US patents data.3

Multiple-hub network. Beyond star schema, some networks have more complex
structures, which involvemultiple-hub objects. This kind of networkswidely exists in
bioinformatics data [8, 33]. A bioinformatics example is shown in Fig. 1.3d, includes
two hubs: gene and chemical compound. Another example can be found in the
Douban dataset 4 [24].

Besides these widely used networks, many real systems can also be constructed
as more complex heterogeneous networks. In some real applications, users may
exist in multiple social networks, and each social network can be modeled as an
HIN. Figure1.4a shows an example of two heterogeneous social networks (Twitter
and Foursquare) [9]. In each network, users are connected with each other through
social links, and they are also connected with a set of locations, timestamps, and text
contents through online activities. Moreover, some users have two accounts in two
social networks separately, and they serve as anchor nodes to connect two networks.
More generally, some interaction systems are too complex to be modeled as an HIN
with a simple network schema. Knowledge graph [25] is such an example. We know
that knowledge graph is based on resource description framework (RDF) data [21],

2www.imdb.com/.
3http://www.uspto.gov/patents/.
4http://www.douban.com/.

www.imdb.com/
http://www.uspto.gov/patents/
http://www.douban.com/
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which complies with an < Subject, Property, Object > model. Here, “Subject”
and “Object” can be considered as objects, and “Property” can be considered as
the relation between “Subject” and “Object”. And thus a knowledge graph can be
considered as a heterogeneous network, and such an example is shown in Fig. 1.4b.
In such a semantic knowledge base, like Yago [26], there are more than 10-million
entities (or nodes) of different types, and more than 120-million links among these
entities. In such a schema-rich network, it is impossible to depict such network with
a simple network schema.

In HIN, we distinguish the types of nodes and links, which should introduce some
novel pattern discovery, compared to traditional homogeneous networks. Although
many networked data can be modeled as heterogeneous networks, heterogeneous
networks still have some limitations. Firstly, some real data are too complex to be
modeled asmeaningful HINs. For example, we can consider the RDF data as anHIN,
while we cannot simply depict its network schema. Secondly, it may be difficult
to analyze some networked data with an HIN perspective, even these data can be
modeled as an HIN. These limitations are also the future works of HIN. We need to
design more powerful mining methods in HIN to make it capable to be applied in
more applications and discover more novel patterns.

1.4 Why Heterogeneous Information Network Analysis

In the past decades, link analysis has been extensively explored [4]. Somanymethods
have been developed for information network analysis, and numerous data mining
tasks have been explored in homogeneous networks, such as ranking, clustering,
link prediction, and influence analysis. However, due to some unique characteristics
(e.g., fusion of more information and rich semantics) of HIN, most methods in
homogeneous networks cannot be directly applied in heterogeneous networks, and
it is potential to discover more interesting patterns in this kind of networks.

It is a new development of data mining. Early data mining problems focused on
analyzing feature vectors of objects. In the late 1990s,with the advent ofWWW,more
and more data mining researchers turned to studying links among objects. It is one of
themain researchdirections tominehiddenpatterns fromfeature and link information
of objects. In these researches, homogeneous networks are usually constructed from
interconnected objects. In recent years, abundant social media emerge, and many
different types of objects are interconnected. It is hard to model these interacted
objects as homogeneous networks, while it is natural to model different types of
objects and relations among them as heterogeneous networks. Particularly, with the
rapid increment of user-generated content online, big data analysis is an emergent
yet important task to be studied. Variety is one significant characteristic of big data
[35]. As a semi-structured representation, heterogeneous information network can
be an effective way to model complex objects and their relations in big data.

It is an effective tool to fuse more information. Compared to homogeneous
network, heterogeneous network is natural to fusemore objects and their interactions.
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In addition, traditional homogeneous networks are usually constructed from single
data source, while heterogeneous network can fuse information across multiple data
sources. For example, customers use many services provided by Google, such as
Google search, G-mail, maps, and Google+. So we can fuse this information with a
heterogeneous information network, in which customers interact withmany different
types of objects, such as keywords,mails, locations, and followers.Broadly speaking,
heterogeneous information network can also fuse information cross multiple social
network platforms [9]. We know that there are many social network platforms with
different objectives, such as Facebook, Twitter,WeChat, andWeibo.Moreover, users
often participate inmultiple social networks. Since each social network only captures
a partial or biased view of a user, we can fuse information across multiple social
network platforms with multiple heterogeneous information networks, where each
heterogeneous network represents information from one social network with some
anchor nodes connecting these networks [38].

It contains rich semantics. In heterogeneous networks, different-typed objects
and links coexist and they carry different semantic meanings. As a bibliographic
example shown in Fig. 1.1, it includes author, paper, and venue object types. The
relation type “Author-Paper” means authors writing papers, while the relation type
“Paper-Venue” means papers published in venues. Considering the semantic infor-
mation will lead to more subtle knowledge discovery. For example, in DBLP bib-
liographic data [29], if you find the most similar authors to “Christos Faloutsos,”
you will get his students, like Spiros Papadimitriou and Jimeng Sun, under the APA
path,while the results are reputable researchers, like JiaweiHan andRakeshAgrawal,
under the APV PA path. How to mine interesting patterns with the semantic infor-
mation is a unique issue in heterogeneous networks.
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Chapter 2
Survey of Current Developments

Abstract Heterogeneous information network (HIN) provides a new paradigm to
manage networked data. Meanwhile, it also introduces new challenges for many
data mining tasks. Here, we give a brief survey on recent developments of this
field. Concretely, we have analyzed more than 100 referred papers published in
the referred conferences and journals in recent years and divided them into seven
categories according to their datamining tasks. In this chapter, wewill summarize the
developments on these seven main data mining tasks. Moreover, these data mining
tasks are coarsely ordered from basic task to advanced task.

2.1 Similarity Search

Similarity measure is to evaluate the similarity of objects. It is the basis of many
data mining tasks, such as Web search, clustering, and product recommendation.
Similaritymeasure has beenwell studied for a long time. These studies can be roughly
categorized into two types: feature-based approaches and link-based approaches. The
feature-based approaches measure the similarity of objects based on their feature
values, such as cosine similarity, Jaccard coefficient, and Euclidean distance. The
link-based approaches measure the similarity of objects based on their link structures
in a graph, such as Personalized PageRank [33] and SimRank [32].

Recently,many researchers begin to consider similaritymeasure on heterogeneous
information networks. Different from similarity measure on homogeneous networks,
similarity measure on HIN not only considers structure similarity of two objects but
also takes the meta path connecting these two objects into account. As we know,
there are different meta paths connecting two objects, and these meta paths contain
different semantic meanings, which may lead to different similarities. And thus the
similarity measure on HIN is meta path constraint.

Considering the semantics in meta paths constituted by different-typed objects,
Sun et al. [88] first propose the path-based similaritymeasure PathSim to evaluate the
similarity of same-typed objects based on symmetric paths. Following their work,
some researchers [23, 24] extend PathSim by incorporating richer information, such
as transitive similarity, temporal dynamics, and supportive attributes. A path-based
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similarity join method [108] is proposed to return the top k similar pairs of objects
based on user-specified join paths.Wang et al. [101] define ameta-path-based relation
similarity measure, RelSim, to measure the similarity between relation instances in
schema-richHINs. In addition,Wang et al. [99]model a document as a heterogeneous
information network and propose a novel similarity measure called KnowSim to
compute the relevance of two documents. In information retrieval community, Lao
and Cohen [46, 47] propose a path-constrained random walk (PCRW) model to
measure the entity proximity in a labeled directed graph constructed by the rich
metadata of scientific literature.

In order to evaluate the relevance of different-typed objects, Shi et al. [72, 74]
propose HeteSim to measure the relevance of any object pair under arbitrary meta
path. As an adaption of HeteSim, LSH-HeteSim [48] is proposed to mine the drug–
target interaction in heterogeneous biological networks where drugs and targets are
connected with complicated semantic paths. In order to overcome the shortcomings
of HeteSim in high computation and memory demand, Meng et al. [62] propose
the AvgSim measure that evaluates the similarity scores through two random walk
processes along the given meta path and the reverse meta path, respectively. In addi-
tion, some methods [8, 141] combine meta path-based relevance search with user
preference.

Although similarity measure based on meta path has shown the effectiveness
in capturing the single relationship between source and target objects, such as the
co-authorship under the meta path APA, it still has some shortcomings in some appli-
cations. For example, in bibliographic data, we would like to measure the relation
of two authors based on the fact that their papers not only are published in the same
conference but also have the same topics (i.e., the APVPA and APTPA paths). In
order to measure the complex relevance between objects, Huang et al. [28] propose
the relevance measure based on metastructure, which is a directed acyclic graph and
can be considered as a combination of meta paths. Similarly, Fang et al. [20] identify
metagraphs as a novel means to characterize the common structures for a desired
class of proximity. Moreover, they propose a family of metagraph-based proximity
and employ a supervised technique to automatically learn the right form of proximity
within its family to suit the desired class.

Moreworks begin to integrate the network structure and other information tomea-
sure similarity of objects inHIN.Combining the influence and similarity information,
Wang et al. [102] simultaneously measure social influence and object similarity in
a heterogeneous network to produce more meaningful similarity scores. Wang et al.
[96] propose a model to learn relevance through analyzing the context of heteroge-
neous networks for online targeting. Yu et al. [116] predict the semantic meaning
based on a user’s query in the meta-path-based feature space and learn a ranking
model to answer the similarity query. Recently, Zhang et al. [133] propose a simi-
larity measure to compute similarity between centers in an x-star network according
to the attribute similarities and the connections among centers.
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2.2 Clustering

Clustering analysis is the process of partitioning a set of data objects (or observations)
into a set of clusters, such that objects in a cluster are similar to one another, yet
dissimilar to objects in other clusters. Conventional clustering is based on the features
of objects, such as k-means and so on [30]. Recently, clustering based on networked
data (e.g., community detection) has been studied a lot. This kind of methods models
the data as a homogeneous network and uses the given measure (e.g., normalized
cuts [78], and modularity [63]) to divide the network into a series of subgraphs.
Many algorithms have been proposed to solve this NP-hard problem, such as spectral
method, greedy method [93], and sampling technique [71]. Some researches also
simultaneously consider objects’ link structure and attribute information to increase
the accuracy of clustering [110, 140].

Recently, clustering of heterogeneous networks attracts much attention. Com-
pared with homogeneous networks, heterogeneous networks integrate multityped
objects, which generates new challenges for clustering tasks. On the one hand, mul-
tiple types of objects coexisting in a network lead to new clustering paradigms. As
a consequence, a cluster in HIN may include different types of objects sharing the
same topic [82]. For example, in a bibliographic heterogeneous network, a cluster
of the database area consists of a set of database authors, conferences, terms, and
papers. In this way, clustering in HIN preserves richer information, but it also faces
more challenges. On the other hand, abundant information contained in HINmakes it
more convenient to integrate additional information or other learning tasks for clus-
tering. In this section, we will review these works according to the types of integrated
information or tasks.

The attribute information is widely integrated into clustering analysis on HIN.
Aggarwal et al. [1] use the local succinctness property to create balanced commu-
nities across a heterogeneous network. Considering the incompleteness of objects’
attributes and different types of links in heterogeneous information networks, Sun
et al. [85] propose a model-based clustering algorithm to integrate the incomplete
attribute information and the network structure information. Qi et al. [67] propose
a clustering algorithm based on heterogeneous random fields to model the structure
and content of social media networks with outlier links. Cruz et al. [14] integrate
structural dimension and compositional dimension which composes an attributed
graph to solve the community detection problem. Recently, a density-based cluster-
ing model TCSC [7] is proposed to detect clusters considering the connections in the
network and the vertex attributes.

Text information plays an important role in many heterogeneous network studies.
Deng et al. [17] introduce a topic model with biased propagation to incorporate het-
erogeneous information network with topic modeling in a unified way. Furthermore,
they [16] propose a joint probabilistic topic model for simultaneously modeling the
contents of multityped objects of a heterogeneous information network. LSA-PTM
[103] is introduced to identify clusters of multityped objects by propagating the top-
ics obtained by LSAon theHIN via the links between different objects. Incorporating
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both the document content and various links in the text related heterogeneous net-
work, Wang et al. [104] propose a unified topic model for topic mining and multiple
objects clustering. Recently, CHINC [98] uses general-purpose knowledge as indi-
rect supervision to improve the clustering results.

User guide information is also integrated into the clustering analysis. Sun et al.
[87] present a semi-supervised clustering algorithm to generate different clustering
results with path selection according to user guidance. Luo et al. [58] firstly introduce
the concept of relation-path tomeasure the similarity between same-typed objects and
use the labeled information to weight relation-paths and then propose SemiRPClus
for semi-supervised learning in HIN.

Clustering is usually an independent data mining task. However, it can be inte-
grated with other mining tasks to improve performances through mutual enhanc-
ing. Recently, ranking-based clustering on heterogeneous information network has
emerged, which shows its advantages on the mutual promotion of clustering and
ranking. RankClus [83] generates clusters for a specified type of objects in a bitype
network based on the idea that the qualities of clustering and ranking are mutually
enhanced. The following work NetClus [82] is proposed to handle a network with
the star-schema. Wang et al. [105] introduce ComClus to promote clustering and
ranking performance by applying star-schema network with self-loop to combine
the heterogeneous and homogeneous information. In addition, a general method
HeProjI is proposed to do ranking-based clustering in heterogeneous networks with
arbitrary schema by projecting the network into a sequence of subnetworks [75]. And
Chen et al. [12] propose a probabilistic generative model to achieve clustering and
ranking simultaneously on a heterogeneous network with arbitrary schema. To make
use of both textual information and heterogeneous linked entities, Wang et al. [97]
develop a clustering and ranking algorithm to constructmultityped topical hierarchies
automatically. What’s more, Qiu et al. [68] propose an algorithm OcdRank to com-
bine overlapping community detection and community-member ranking together in
directed heterogeneous social networks.

Outlier detection is the process of finding data objects with behaviors that are
very different from expectation. Outlier detection and clustering analysis are two
highly related, but different-aimed tasks. To detect outliers, Gupta et al. [21] propose
an outlier-aware approach based on joint nonnegative matrix factorization to dis-
cover popular community distribution patterns. Furthermore, they propose to detect
association-based clique outliers in heterogeneous networks given a conjunctive
select query [22]. What’s more, Zhuang et al. [142] propose an outlier detection
algorithm to find subnetwork outliers according to different queries and semantics.
Also based on queries, Kuck et al. [44] propose a meta-path-based outlierness mea-
sure for mining outliers in heterogeneous networks.

In addition, some other information is also integrated. For example, a social
influence-based clustering framework SI-Cluster is proposed to analyze heteroge-
neous information networks based on both people’s connections and their social
activities [138]. Besides the traditional models employed in clustering on HIN, such
as topic model and spectral clustering, Alqadah et al. [4] propose a novel game
theoretic framework for defining and mining clusters in heterogeneous information
networks.
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2.3 Classification

Classification is a data analysis task where a model or classifier is constructed to
predict class (categorical) labels. Traditional machine learning has focused on the
classification of identically structured objects satisfying independent identically dis-
tribution (IID). However, links exist among objects in many real-world datasets,
which makes objects not satisfy IID. So link-based object classification has received
considerable attention, where a data graph is composed of a set of objects connected
to each other via a set of links. Many methods extend traditional classification meth-
ods to consider correlations among objects [45]. The link-based object classification
usually considers that objects and links in the graph are identical, respectively. That
is, the objects and links among them constitute a homogeneous network.

Different from traditional classification researches, the classification problems
studied in HIN have some new characteristics. First, the objects contained in HIN
are different-typed, which means we can classify multiple types of objects simulta-
neously. Second, label knowledge can spread through various links among different-
typed objects. In the HIN condition, the label of objects is decided by the effects of
different-typed objects along different-typed links.

Many works extend traditional classification to heterogeneous information net-
works. Some works extend transductive classification task, which is to predict labels
for the given unlabeled data. For example, GNetMine [35] is proposed to model the
link structure in information networks with arbitrary network schema and arbitrary
number of object/link types. Wan et al. [94] propose a graph-regularized meta-path-
based transductive regression model, which combines the principal philosophies of
typical graph-based transductive classification methods and transductive regression
models designed for homogeneous networks. Luo et al. propose HetPathMine [56]
to cluster with small labeled data on HIN through a novel meta path selection model,
and Jacob et al. [29] propose a method to label nodes of different types by computing
a latent representation of nodes in a space where two connected nodes tend to have
close latent representations. Recently, Bangcharoensap et al. [6] employ the edge
betweenness centrality for the edge weight normalization and further improve the
centrality to make it suitable for heterogeneous networks. Some works also extend
inductive classification that is to construct a decision function in thewhole data space.
For example, Rossi et al. [70] use a bipartite heterogeneous network to represent tex-
tual document collections and propose IMBHN algorithm to induce a classification
model assigning weights to textual terms.

Multilabel classification is prevalent in many real-world applications, where each
example can be associated with a set of multiple labels simultaneously [41]. This
kind of classification tasks is also extended to HIN. Angelova et al. [5] introduce
a multilabel graph-based classification model for labeling heterogeneous networks
by modeling the mutual influence between nodes as a random walk process. Kong
et al. [41] use multiple types of relationships mined from the linkage structure of
HIN to facilitate the multilabel classification process. Zhou et al. [139] propose an
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edge-centric multilabel classification approach considering both the structure affinity
and the label vicinity.

As a unique characteristic, meta path is widely used in classification onHIN.Meta
paths are usually used for feature generation in many methods, such as GNetMine
[35] and HetPathMine [56]. Moreover, Kong et al. [40] introduce the concept of
meta-path-based dependencies among objects to study the collective classification
problem. Recently, Wang et al. [100] develop kernel methods based on meta paths
in the HIN representation of texts for text classification.

Similar to clustering problem, classification is also integrated with other data
mining tasks on HIN. Ranking-based classification is to integrate classification
and ranking in a simultaneous, mutually enhancing process. Ji et al. [36] propose
a ranking-based classification framework, RankClass, to perform more accurate
analysis. As an extension of RankClass, Chen et al. [13] propose the F-RankClass for
a unified classification framework that can be applied to binary or multiclass classi-
fication of unimodal or multimodal data. Some methods also integrate classification
with information propagation. For example, Jendoubi et al. [34] classify the social
message based on its spreading in the network and the theory of belief functions.

2.4 Ranking

Ranking is an important data mining task in network analysis, which evaluates object
importance or popularity based on some ranking functions. Many ranking methods
have been proposed in homogeneous networks, such as PageRank [65] and HITS
[39]. These approaches only consider the same type of objects in homogeneous
networks.

Ranking in heterogeneous information networks is an important and meaningful
task, but faces several challenges. First, there are different types of objects and rela-
tions in HIN, and treating all objects equally will mix different types of objects
together. Second, different types of objects and relations in HIN carry different
semantic meanings, which may lead to different ranking results. Taking the bib-
liographic heterogeneous network as an example, ranking on authors may have dif-
ferent results under differentmeta paths [50, 77], since thesemeta pathswill construct
different link structures among authors. Moreover, the rankings of different-typed
objects have mutual effects. For example, reputable authors usually publish papers
on top conferences.

The co-ranking problem on bipartite graphs has been widely explored in the past
decades. For example, Zhou et al. [137] co-rank authors and their publications by
coupling two random walk processes, and co-HITS [15] incorporates the bipartite
graphwith the content information and the constraints of relevance. Soulier et al. [80]
propose a bitype entity ranking algorithm to rank jointly documents and authors in
a bibliographic network regarding a topical query by combining content-based and
network-based features. There are also some ranking works on the multirelational
network. For example, MultiRank [64] is proposed to determine the importance of



2.4 Ranking 19

both objects and relations simultaneously for multirelational data, and HAR [49]
is proposed to determine hub and authority scores of objects and relevance scores
of relations in multirelational data for query search. These two methods focus on
the same type of objects with multirelations. Recently, Huang et al. [26] integrate
both formal genre and inferred social networks with tweet networks to rank tweets.
Although this workmakes use of various types of objects in heterogeneous networks,
it still ranks one type of objects.

Considering the characteristics of meta path on HIN, some works propose path-
based ranking methods. For example, Liu et al. [54] develop a publication ranking
method with pseudorelevance feedback by leveraging a number of meta paths on
the heterogeneous bibliographic graph. Applying the tensor analysis, Li et al. [50]
propose HRank to evaluate the importance of multiple types of objects and meta
paths simultaneously.

Ranking problem is also extended to HIN constructed by social media network.
For image search in social media, Tsai et al. [91] propose SocialRank which uses
social hints for image search and ranking in social networks. To identify high-quality
objects (questions, answers, and users) in Q&A systems, Zhang et al. [129] devise an
unsupervised heterogeneous network-based framework to co-rankmultiple objects in
Q&A sites. For heterogeneous cross-domain ranking problem, Wang et al. [95] pro-
pose a general regularized framework to discover a latent space for two domains and
minimize two weighted ranking functions simultaneously in the latent space. Con-
sidering the dynamic nature of literature networks, a mutual reinforcement ranking
framework is proposed to rank the future popularity of new publications and young
researchers simultaneously [106].

2.5 Link Prediction

Link prediction is a fundamental problem in link mining that attempts to estimate
the likelihood of the existence of a link between two nodes, based on observed
links and the attributes of nodes. Link prediction is often viewed as a simple binary
classification problem: For any two potentially linked objects, predict whether the
link exists (1) or not (0). One kind of approach is to make this prediction entirely
based on structural properties of the network [51], and another kind of approach is
to make use of attribute information for link prediction [66].

Link prediction in an HIN has been an important research topic for recent years,
which has the following characteristics. First, the links to be predicted are of different
types, since objects in HIN are connected with different types of links. Second,
there are dependencies existing among multiple types of links. So link prediction
in an HIN needs to predict multiple types of links collectively by capturing the
diverse and complex relationships among different types of links and leveraging the
complementary prediction information.

Utilizing the meta path, many works employ a two-step process to solve the link
prediction problem inHIN. The first step is to extractmeta path-based feature vectors,
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while the second step is to train a regression or classification model to compute the
existence probability of a link [10, 11, 84, 86, 115]. For example, Sun et al. [84]
propose PathPredict to solve the problemof co-author relationship prediction through
meta path-based feature extraction and logistic regression-based model. Zhang et al.
[130] use meta path-based features to predict organization chart or management
hierarchy. Utilizing diverse and complex linkage information, Cao et al. [10] design
a relatednessmeasure to construct the feature vectors of links and propose an iterative
framework to predict multiple types of links collectively. In addition, Sun et al. [86]
model the distribution of relationship building time with the use of the extracted
topological features to predict when a certain relationship will be formed.

Probabilistic models are also widely applied for link prediction tasks in HIN.
Yang et al. [112] propose a probabilistic method MRIP which models the influence
propagating between heterogeneous relationships to predict links in multirelational
heterogeneous networks. Also, the TFGM model [113] defines a latent topic layer
to bridge multiple networks and designs a semi-supervised learning model to mine
competitive relationships across heterogeneous networks. Dong et al. [19] develop a
transfer-based ranking factor graph model that combines several social patterns with
network structure information for link prediction and recommendation. Matrix fac-
torization is another common tool to handle link prediction problems. For example,
Huang et al. [27] develop the joint manifold factorization (JMF) method to perform
trust prediction with the ancillary rating matrix via aggregating heterogeneous social
networks.

The approaches mentioned above mainly focus on link prediction on one single
heterogeneous network. Recently, Zhang et al. [42, 126, 128] propose the problem
of link prediction across multiple aligned heterogeneous networks. A two-phase link
prediction method is put forward in [42]. The first phase is to extract heterogeneous
features from multiple networks, while the second phase is to infer anchor links
by formulating it as a stable matching problem. In addition, Zhang et al. [126]
propose SCAN-PS to solve the social link prediction problem for new users using the
“anchors.” Furthermore, they propose the TRAIL [128]method to predict social links
and location links simultaneously. Also aimed at the cold-start problem of new users,
Liu et al. [52] propose the aligned factor graph model for user–user link prediction
problem by utilizing information from another similar social network. In order to
identify users from multiple heterogeneous social networks and integrate different
networks, an energy-based model COSNET [134] is proposed by considering both
local and global consistency among multiple networks.

Most of the available works on link prediction are designed for static networks;
however, the problem of dynamic link prediction is also very important and chal-
lenging. Taking into account both the dynamic and heterogeneous nature of Web
data, Zhao et al. [135] propose a general framework to characterize and predict com-
munity members from the evolution of heterogeneous Web data. In order to solve
the problem of dynamic link inference in temporal and heterogeneous information
networks, Aggarwal et al. [2, 3] develop a two-level scheme which makes efficient
macro- andmicrodecisions for combining the topology and type information.Aiming
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at predicting the distribution of the labels on neighbors of a given node, Ma et al.
[60] propose an evolution factor model which utilizes two new structures, neighbor
distribution vector and neighbor label evolution matrix.

2.6 Recommendation

Recommender system helps consumers to search products that are likely to be of
interest to the user such as books, movies, and restaurants. It uses a broad range
of techniques from information retrieval, statistics, and machine learning to search
for similarities among items and customer preferences. Traditional recommended
systems normally only utilize the user–item rating feedback information for rec-
ommendation. Collaborative filtering is one of the most popular techniques, which
includes two types of approaches: memory-based methods and model-based meth-
ods. Recently, matrix factorization has shown its effectiveness and efficiency in rec-
ommended systems, which factorizes the user–item rating matrix into two low-rank
user-specific and item-specific matrices and then utilizes the factorized matrices to
make further predictions [81]. With the prevalence of social media, more and more
researchers study social recommended system, which utilizes social relations among
users [59, 111].

Recently, some researchers have begun to realize the importance of heterogeneous
information for recommendations. The comprehensive information and rich seman-
tics of HIN make it promising to generate better recommendations. For example, in
an HIN extracted from movie-recommended system [76], it not only contains differ-
ent types of objects (e.g., users and movies) but also illustrates all kinds of relations
among objects, such as viewing information, social relations, and attribute infor-
mation. Constructing heterogeneous networks for recommendation can effectively
fuse all kinds of information, which can be potentially utilized for recommendation.
Moreover, the objects and relations in the networks have different semantics, which
can be explored to reveal subtle relations among objects.

Meta path is well used to explore the semantics and extract relations among
objects. Shi et al. [73] implement a semantic-based recommended system, HeteRe-
com, which employs the semantics information of meta path to evaluate the similar-
ities between movies. Furthermore, considering the attribute values, such as rating
score on links, they model the recommended system as a weighted HIN and propose
a semantic path-based personalized recommendation method SemRec [76]. In order
to take full advantage of the relationship heterogeneity, Yu et al. [117, 118] intro-
duce meta-path-based latent features to represent the connectivity between users and
items along different types of paths and then define recommendation models at both
global and personalized levels with Bayesian ranking optimization techniques. Also
based on meta path, Burke et al. [9] present an approach for recommendation which
incorporates multiple relations in a weighted hybrid.

A number of approaches employ heterogeneous information network to fuse var-
ious kinds of information. Utilizing different contexts information, Jamali et al. [31]
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propose a context-dependent matrix factorization model which considers a general
latent factor for every entity and context-dependent latent factors for every context.
Using user implicit feedback data, Yu et al. [117, 118] solve the global and per-
sonalized entity recommendation problem. Based on related interest groups, Ren
et al. [69] propose a cluster-based citation recommendation framework to predict
each query’s citations in bibliographic networks. Similarly, Wu et al. [107] exploit
graph summarization and content-based clustering for media recommendation with
the interest group information. Based on multiple heterogeneous network features,
Yang et al. [109] model multiple features into a unified framework with a SVM-
Rank-based method. And using multiple types of relations, Luo et al. [57] propose a
social collaborative filtering algorithm. In addition, adopting the similarity of users
and items as regularization, someworks [75, 136] proposematrix factorization-based
frameworks for recommendation.

2.7 Information Fusion

Information fusion denotes the process of merging information from heterogeneous
sources with differing conceptual, contextual, and typographical representations.
Due to the availability of various data sources, fusing these scattered distributed
information sources has become an important research problem. In the past decades,
dozens of papers have been published on this topic in many traditional data mining
areas, e.g., data schema integration in data warehouse [61], protein–protein interac-
tion (PPI) networks and gene regulatory networks matching in bioinformatics [79],
and ontology mapping in Web semantics [18]. Nowadays, with the surge of HIN,
information fusion across multiple HINs has become a novel yet important research
problem. By fusing information from different HINs, we can obtain a more compre-
hensive and consistent knowledge about the common information entities shared in
different HINs, including their structures, properties, and activities.

To fuse the information in multiple HINs, an important prerequisite will be to
align the HINs via the shared common information entities, which can be users in
social networks, authors in bibliographical networks, and protein molecules in bio-
logical networks. Perfect HIN alignment is a challenging problem as the underlying
subgraph isomorphism problem is actually NP-complete [38]. Meanwhile, based on
the structure and attribute information available in HINs, a large number of approx-
imated HIN alignment algorithms have been proposed so far. Enlightened by the
homogeneous network alignment method in [92], Koutra et al. [43] propose to align
two bipartite graphs with a fast network alignment algorithm. Zafarani et al. [138]
propose to match users across social networks based on various node attributes, e.g.,
username, typing patterns, and language patterns. Kong et al. [42] formulate the het-
erogeneous social network alignment problem as an anchor link prediction problem.
A two-step supervised method MNA is proposed in [42] to infer potential anchor
links across networks with heterogeneous information in the networks. However,
social networks in the real world are actually mostly partially aligned, and lots of
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users are not anchor users. Zhang et al. have proposed the partial network alignment
methods based on supervised learning setting and PU learning setting in [123, 131],
respectively. In addition to these pairwise social network alignment problems, mul-
tiple (more than two) social networks can be aligned simultaneously. Zhang et al.
[124] discover that the inferred cross-network mapping of entities in social network
alignment should meet the transitivity law and has an inherent one-to-one constraint.
A new multiple social alignment framework is introduced in [124] to minimize
the alignment costs and preserve the transitivity law and one-to-one constraint on
the inferred mappings. Besides users, many other kinds of information entities can
also be shared by multiple social sites, such as the geo-spatial locations shared by
location-based social networks and products shared by e-commerce sites. To infer
the corresponding mapping between these different kinds of information entities
simultaneously, Zhang et al. propose the network partial co-alignment problem in
[125].

By fusingmultipleHINs, the heterogeneous information available in each network
can be transferred to other aligned networks, and lots of application problems onHIN,
e.g., link prediction and friend recommendation [90, 123, 127], community detection
[122], information diffusion [119, 120, 132], and product recommendation [55], will
benefit from it a lot.

Via the inferred mappings, Zhang et al. propose to transfer heterogeneous links
across aligned networks to improve quality of predicted links/recommended friends
[123, 127]. Tang et al. [90] propose a transfer-based factor graph model which pre-
dicts the types of social relationships in a target network by borrowing knowledge
from a different source network. For new networks [128] and new users [126] with
little social activity information, the transferred information can greatly overcome
the cold-start problem when predicting links for them. What’s more, information
about the shared entities across aligned networks can provide us with a more com-
prehensive knowledge about the community structures formed by them. By utilizing
the information across multiple aligned networks, Zhang et al. [114] propose a new
model to refine the clustering results of the shared entities with information in other
aligned networks mutually. Jin et al. [37] propose a scalable framework to study
the synergistic partitioning of multiple aligned large-scale networks, which takes
the relationships among different networks into consideration and tries to maintain
the consistency on partitioning the same nodes of different networks into the same
partitions. Zhang et al. [122] study the community detection in emerging networks
with information transferred from other aligned networks to overcome the cold-start
problem. In addition, by fusing multiple heterogeneous social networks, users in
networks will be extensively connected with each other via both intra-network con-
nections (e.g., friendship connections among users) and inter-network connections
(i.e., the inferred mappings across networks). As a result, information can reach
more users and achieve broader influence across the aligned social networks. Zhan
et al. propose a newmodel to study the information diffusion process across multiple
aligned networks in [119] and introduce a new problem to discover the tipping users
across aligned networks in [120].
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2.8 Other Applications

Besides the tasks discussed above, there aremanyother applications in heterogeneous
networks, such as influence propagation and privacy risk problem. To quantitatively
learn influence from heterogeneous networks, Liu et al. [53] first use a generative
graphical model to learn the direct influence and then use propagation methods to
mine indirect and global influence. Using meta paths, Zhan et al. [119] propose
a model M&M to solve the influence maximization problem in multiple partially
aligned heterogeneous online social networks. For privacy risk in anonymized HIN,
Zhang et al. [121] present a de-anonymization attack that exploits the identified vul-
nerability to prey upon the risk. Aiming at the inferior performances of unsupervised
text embedding methods, Tang et al. [89] propose a semi-supervised representa-
tion learning method for text data, in which labeled information and different levels
of word co-occurrence information are represented as a large-scale heterogeneous
text network. To improve the effectiveness of offline sales, Hu et al. [25] construct
a company-to-company graph from semantics based meta-path learning and then
adopt label propagation on the graph to predict promising companies.
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Chapter 3
Relevance Measure of Heterogeneous Objects

Abstract Similarity search is an important function in many applications, which
usually focuses on measuring the similarity between objects with the same type.
However, inmany scenarios,weneed tomeasure the relatedness betweenobjectswith
different types. With the surge of study on heterogeneous networks, the relevance
measure on objects with different types becomes increasingly important. In this
chapter, we study the relevance search problem in heterogeneous networks, where
the task is to measure the relatedness of heterogeneous objects (including objects
with the same type or different types). And then, we introduce a novel measure
HeteSim and its extended version.

3.1 HeteSim: A Uniform and Symmetric Relevance
Measure

3.1.1 Overview

Similarity search is an important task in a wide range of applications, such as Web
search [15] and product recommendations [11]. The key of similarity search is simi-
larity measure, which evaluates the similarity of object pairs. Similarity measure has
been extensively studied for traditional categorical and numerical data types, such as
Jaccard coefficient and cosine similarity. There are also a few studies on leveraging
link information in networks to measure the node similarity, such as Personalized
PageRank [7], SimRank [6], and PathSim [21]. Conventional study on the similarity
measure focuses on objects with the same type. That is, the objects being measured
are of the same type, such as “document-to-document” and “Webpage-to-Webpage.”
There are very few studies on similarity measure on objects with different types. That
is, the objects being measured are of different types, such as “author-to-conference”
and “user-to-movie.” It is reasonable. The similarity of objects with different types is
a little against our common sense. Moreover, different from the similarity of objects
with the same type, which can bemeasured on homogeneous situation (e.g., the same
feature space or homogeneous link structure), it is even harder to define the similarity
of objects with different types.
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However, the similarity of objects with different types is not only meaningful but
also useful in some scenarios. For example, Prof. Jiawei Han is more relevant to
KDD than IJCAI. Moreover, the similarity measure of objects with different types
is needed in many applications. For example, in a recommended system, we need to
know the relatedness between users and items to make accurate recommendations
[5]. In an automatic profile extraction application, we need tomeasure the relatedness
of objects with different types, such as authors and conferences, and conferences and
organizations. Particularly, with the advent of study on heterogeneous information
networks [20, 21], it is not only increasingly important but also feasible to study the
relatedness among objects with different types. Heterogeneous information networks
are the logical networks involving multiple-typed objects and multiple-typed links
denoting different relations [4]. It is clear that heterogeneous information networks
are ubiquitous and form a critical component of modern information infrastructure
[4]. So it is essential to provide a relevance search function on objects with different
types in such networks, which is the base of many applications. Since objects with
different types coexist in the same network, their relevance measure is possible
through link structure.

In this chapter, we study the relevance search problem in heterogeneous informa-
tion networks. The aim of relevance search is to effectively measure the relatedness
of heterogeneous objects (including objects with the same type or different types).
Different from the similarity search which measures only the similarity of objects
with the same type, the relevance search measures the relatedness among hetero-
geneous objects and it is not limited to objects with the same type. Distinct from
relational retrieval [13, 23] in information retrieval domain, here relevance search is
done on heterogeneous networks which can be constructed frommetadata of objects.
Moreover, we think that a desirable relevance measure should satisfy the symmetry
property based on the following reasons: (1) The symmetric measure is more general
and useful in many learning tasks. Although the symmetry property is not necessary
in the query task, it is essential for many important tasks, such as clustering and
collaborative filtering. Moreover, it is the necessary condition for a metric. (2) The
symmetric measure makes more sense in many applications, especially for the relat-
edness of heterogeneous object pairs. For example, in some applications, we need
to answer the question like who has similar importance to the SIGIR conference
as Jiawei Han to KDD. Through comparing the relatedness of object pairs, we can
deduce the information of their relative importance. However, it can only be done by
the symmetric measure, not the asymmetric measure.

Inspired by the intuition that two objects are related if they are referenced by
related objects, we propose a general framework, called HeteSim, to evaluate the
relatedness of heterogeneous objects in heterogeneous networks. HeteSim is a path-
based relevancemeasure,which can effectively capture the subtle semantics of search
paths. Based on pairwise randomwalkmodel,HeteSim treats arbitrary search paths in
a uniform way, which guarantees the symmetric property of HeteSim. An additional
benefit is that HeteSim can evaluate the relatedness of objects with the same- or
different types in the sameway.Moreover,HeteSim is a semi-metricmeasure. In other
words, HeteSim satisfies the properties of nonnegativity, identity of indiscernibles,
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and symmetry. It implies that HeteSim can be used in many learning tasks (e.g.,
clustering and collaborative filtering). We also consider the computation issue of
HeteSim and propose four fast computation strategies.

3.1.2 The HeteSim Measure

In many domains, similar objects are more likely to be related to some other similar
objects. For example, similar researchers usually publish many similar papers, and
similar customers purchase similar commodities. As a consequence, two objects
are similar if they are referenced by similar objects. This intuition is also fit for
heterogeneous objects. For example, a researcher is more relevant to the conferences
that the researcher has published papers in, and a customer is more faithful to the
brands that the customer usually purchases. Although the similar idea has been
applied in SimRank [6], it is limited to homogeneous networks. When we apply the
idea to heterogeneous networks, it faces the following challenges: (1) The relatedness
of heterogeneous objects is path-constrained. The meta path not only captures the
semantics information but also constrains the walk path. So we need to design a path-
based similarity measure. (2) A uniform and symmetric measure should be designed
for arbitrary paths. For a given path (symmetric or asymmetric), the measure can
evaluate the relatedness of heterogeneous object pair (same or different types) with
one single score. In the following section, we will illustrate these challenges and
their solutions in detail.

3.1.2.1 Path-Based Relevance Measure

Different from homogeneous networks, the paths in heterogeneous networks have
semantics, which makes the relatedness of object pair depend on the given meta
path. Following the basic idea that similar objects are related to similar objects, we
propose a path-based relevance measure: HeteSim.

Definition 3.1 (HeteSim) Given a meta path P = R1 ◦ R2 ◦ · · · ◦ Rl, the HeteSim
score between two objects s and t (s ∈ R1.S and t ∈ Rl.T ) is:

HeteSim(s, t|R1 ◦ R2 ◦ · · · ◦ Rl) =
1

|O(s|R1)||I(t|Rl)|
|O(s|R1)|∑

i=1

|I(t|Rl)|∑

j=1

HeteSim(Oi(s|R1), Ij(t|Rl)|R2 ◦ · · · ◦ Rl−1) (3.1)

where O(s|R1) is the out-neighbors of s based on relation R1, and I(t|Rl) is the
in-neighbors of t based on relation Rl.
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When s does not have any out-neighbors (i.e., O(s|R1) = ∅) or t does not have
any in-neighbors (i.e., I(t|Rl) = ∅) following the path, we have no way to infer any
relatedness between s and t in this case, so we define their relevance score to be 0.
Particularly, we consider objects with the same type to have self-relation (denoted
as I relation), and each object only has self-relation with itself. It is obvious that an
object is just similar to itself for I relation. So its relevance measure can be defined
as follows:

Definition 3.2 (HeteSim based on self-relation) The HeteSim score between two
same-typed objects s and t based on the self-relation I is:

HeteSim(s, t|I) = δ(s, t) (3.2)

where δ(s, t) = 1, if s and t are same, or else δ(s, t) = 0.

Equation3.1 shows that the computation of HeteSim(s, t|P) needs to iterate over
all pairs (Oi(s|R1), Ij(t|Rl)) of (s, t) along the path (s along the path and t against
path), and sum up the relatedness of these pairs. Then, we normalize it by the total
number of out-neighbors of s and in-neighbors of t. That is, the relatedness between
s and t is the average relatedness between the out-neighbors of s and the in-neighbors
of t. The process continues until s and t meet along the path. Similar to SimRank [6],
HeteSim is also based onpairwise randomwalk,while it considers the path constraint.
As we know, SimRank measures how soon two random surfers are expected to meet
at the same node [6]. By contrast, HeteSim(s, t|P) measures how likely s and t
will meet at the same node when s follows along the path and t goes against the
path.

3.1.2.2 Decomposition of Meta Path

Unfortunately, the source object s and the target object t may not meet along a given
path P. For the similarity measure of same-typed objects, the meta paths are usually
even-length, even symmetric, so the source object and the target object will meet at
the middle objects. However, for the relevance measure of different-typed objects,
the meta paths are usually odd-length. In this condition, the source and target objects
will never meet at the same objects. Taking the APVC path as an example, authors
along the path and conferences against the path will never meet in the same objects.
So the original HeteSim is not suitable for odd-length meta paths. In order to solve
this difficulty, a basic idea is to transform odd-length paths into even-length paths,
and thus, the source and target objects are always able to meet at the same objects.
As a consequence, an arbitrary path can be decomposed as two equal-length paths.

When the length l of a meta path P = (A1A2 · · ·Al+1) is even, the source objects
(along the path) and the target objects (against the path) will meet in the middle
type object M = A l

2 +1 on the middle position mid = l
2 + 1, so the meta path P
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can be divided into two equal-length path PL and PR. That is, P = PLPR, where
PL = A1A2 · · ·Amid−1M and PR = MAmid+1 · · ·Al+1.

When the path length l is odd, the source objects and the target objects will meet at
the relationA l+1

2
A l+1

2 +1. In order to let the source and target objectsmeet at same-typed
objects, we can add a middle type object E between the atomic relation A l+1

2
A l+1

2 +1
and maintain the relation between A l+1

2
and A l+1

2 +1 at the same time. Then, the new
path becomes P′ = (A1 · · ·E · · ·Al+1) whose length is l + 1, an even number. The
source objects and the target objects will meet in the middle type objectM = E on
the middle position mid = l+1

2 + 1. As a consequence, the new relevance path P′
can also be decomposed into two equal-length paths PL and PR.

Definition 3.3 (Decomposition of meta path) An arbitrary meta path P = (A1A2 · · ·
Al+1) can be decomposed into two equal-length path PL and PR (i.e., P = PLPR),
where PL = A1A2 · · ·Amid−1M and PR = MAmid+1 · · ·Al+1. M and mid are
defined as above.

Obviously, for a symmetric path, P = PLPR, P
−1
R is equal to PL. For example, the

meta path P = APCPA can be decomposed as PL = APC and PR = CPA. For the
meta path APSPVC, we can add a middle type object E in SP, and thus, the path
becomes APSEPVC, so PL = APSE and PR = EPVC.

The next question is howwe can add themiddle type objectE in an atomic relation
R between A l+1

2
and A l+1

2 +1. In order to contain original atomic relation, we need to
make the R relation be the composition of two new relations. To do so, for each
instance of relation R, we can add an instance of E to connect the source and target
objects of the relation instance. An example is shown in Fig. 3.1a, where the middle
type object E is added in between the atomic relation AB along each path instance.

Definition 3.4 (Decomposition of atomic relation) For an atomic relation R, we can
add an object type E (called edge object) between the R.S and R.T (R.S and R.T are
the source and target object type of the relation R). And thus the atomic relation R is
decomposed as RO and RI where RO represents the relation between R.S and E and
RI represents that between E and R.T . For each relation instance r ∈ R, an instance
e ∈ E connects r.S and r.T . The paths r.S → e and e → r.T are the instances of RO

and RI , respectively.

It is clear that the relation decomposition has the following property, whose proof
can be found in [18].

Property 3.1 An atomic relation R can be decomposed as RO and RI ,
R = RO ◦ RI , and this decomposition is unique.

Based on this decomposition, the relatedness of two objects with an atomic rela-
tion R can be calculated as follows:

Definition 3.5 (HeteSim based on atomic relation) The HeteSim score between two
different-typed objects s and t based on an atomic relation R (s ∈ R.S and t ∈ R.T ) is:



36 3 Relevance Measure of Heterogeneous Objects

Fig. 3.1 Decomposition of
atomic relation and its
HeteSim calculation

(a) Add middle type object

(b) Decomposition of atomic relation

(c) HeteSim scores before normalization

(d) HeteSim scores after normalization

HeteSim(s, t|R) = HeteSim(s, t|RO ◦ RI) =
1

|O(s|RO)||I(t|RI)|
|O(s|RO)|∑

i=1

|I(t|RI )|∑

j=1

δ(Oi(s|RO), Ij(t|RI)) (3.3)

It is easy to find that HeteSim(s, t|I) is a special case of HeteSim(s, t|R), since,
for the self-relation I , I = IO ◦ II and |O(s|IO)| = |I(t|II)| = 1. Definition 3.5 means
that HeteSim can measure the relatedness of two different-typed objects with an
atomic relation R directly through calculating the average of their mutual influence.

Example 3.1 Figure3.1a shows an example of decomposition of atomic relation.
The relation AB is decomposed into the relations AE and EB. Moreover, the relation
AB is the composition of AE and EB as shown in Fig. 3.1b. Two HeteSim examples
are illustrated in Fig. 3.1c. We can find that HeteSim justly reflects relatedness of
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objects. Taking a2 as example, although a2 equally connects with b2, b3, and b4, it
is more close to b3, because b3 only connects with a2. This information is correctly
reflected in the HeteSim score of a2 based on AB path.

We also find that the similarity of an object and itself is not 1 in HeteSim. Taking
the right figure of Fig. 3.1c as example, the relatedness of a2 and itself is 0.33. It
is obviously unreasonable. In the following section, we will normalize the HeteSim
and make the relevance measure more reasonable.

3.1.2.3 Normalization of HeteSim

Firstly, we introduce the calculation of HeteSim between any two objects given an
arbitrary meta path.

Definition 3.6 (Transition probability matrix) For relationA
R−→ B,WAB is an adja-

cent matrix between type A and B. UAB is a normalized matrix ofWAB along the row
vector, which is the transition probability matrix of A−→B based on relation R.
VAB is a normalized matrix of WAB along the column vector, which is the transition
probability matrix of B−→A based on relation R−1.

It is easy to prove that the transition probability matrix has the following property.
The proof can be found in [18].

Property 3.2 UAB = V ′
BA and VAB = U ′

BA, where V
′
BA is the transpose of VBA.

Definition 3.7 (Reachable probability matrix) Given a network G = (V ,E) fol-
lowing a network schema S = (A,R), a reachable probability matrix PM for a path
P = (A1A2 · · ·Al+1) is defined as PMP = UA1A2UA2A3 · · ·UAlAl+1 (PM for simplicity).
PM(i, j) represents the probability of object i ∈ A1 reaching object j ∈ Al+1 under
the path P.

According to the definition and Property 3.2 of HeteSim, the relevance between
objects in A1 and Al+1 based on the meta path P = A1A2 · · ·Al+1 is

HeteSim(A1,Al+1|P) = HeteSim(A1,Al+1|PLPR)

= UA1A2 · · ·UAmid−1MVMAmid+1 · · ·VAlAl+1

= UA1A2 · · ·UAmid−1MU
′
Amid+1M · · ·U ′

Al+1Al

= UA1A2 · · ·UAmid−1M(UAl+1Al · · ·UAmid+1M)′

= PMPLPM
′
PR

−1

(3.4)

The above equation shows that the relevance of A1 and Al+1 based on the path P
is the inner product of two probability distributions that A1 reaches the middle type
object M along the path and Al+1 reaches M against the path. For two instances a
and b in A1 and Al+1, respectively, their relevance based on path P is
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HeteSim(a, b|P) = PMPL (a, :)PM ′
PR

−1(b, :) (3.5)

where PMP(a, :) means the ath row in PMP.
We have stated that HeteSim needs to be normalized. It is reasonable that the

relatedness of the same objects is 1, so the HeteSim can be normalized as follows:

Definition 3.8 (Normalization of HeteSim) The normalized HeteSim score between
two objects a and b based on the meta path P is:

HeteSim(a, b|P) =
PMPL (a, :)PM ′

PR
−1(b, :)

√
‖PMPL (a, :)‖‖PM ′

PR
−1(b, :)‖

(3.6)

In fact, the normalized HeteSim is the cosine of the probability distributions of
the source object a and target object b reaching the middle type object M. It ranges
from 0 to 1. Figure3.1d shows the normalized HeteSim scores. It is clear that the
normalized HeteSim is more reasonable. The normalization is an important step
for HeteSim with the following advantages. (1) The normalized HeteSim has nice
properties. The following Property 3.4 shows that HeteSim satisfies the identity of
indiscernibles. (2) It has a nice interpretation. The normalized HeteSim is the cosine
of two vectors representing reachable probability. As Fouss et al. pointed out [3], the
angle between the node vectors is a much more predictive measure than the distance
between the nodes. In the following section, the HeteSim means the normalized
HeteSim.

3.1.2.4 Properties of HeteSim

HeteSim has good properties, which make it useful in many applications. The proof
of these properties can be found in [18].

Property 3.3 (Symmetric) HeteSim(a, b|P) = HeteSim(b, a|P−1).

Property 3.3 shows the symmetric property of HeteSim. Although PathSim [21]
also has the similar symmetric property, it holds only when the path is sym-
metric and a and b are with the same type. The HeteSim has the more general
symmetric property not only for symmetric paths (note that P is equal to P−1 for
symmetric paths) but also for asymmetric paths.

Property 3.4 (Self-maximum) HeteSim(a, b|P) ∈ [0, 1]. HeteSim(a, b|P) is
equal to 1 if and only if PMPL (a, :) is equal to PMPR

−1(b, :).
Property 3.4 shows HeteSim is well constrained. For a symmetric path P (i.e.,

PL = PR
−1), PMPL (a, :) is equal to PMPR

−1(a, :), and thus, HeteSim(a, a|P) is equal
to 1. If we define the distance between two objects (i.e., dis(s, t)) as dis(s, t) =
1 − HeteSim(s, t), the distance of the same object is zero (i.e., dis(s, s) = 0). As a
consequence, HeteSim satisfies the identity of indiscernibles. Note that it is a general
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identity of indiscernibles. For two objects with different types, their HeteSim score
is also 1 if they have the same probability distribution on the middle type object. It
is reasonable, since they have the similar structure based on the given path.

Since HeteSim obeys the properties of nonnegativity, identity of indiscernibles,
and symmetry, we can say that HeteSim is a semi-metric measure [22]. Because of
a path-based measure, HeteSim does not obey the triangle inequality. A semi-metric
measure has many good merits and can be widely used in many applications [22].

Property 3.5 (Connection to SimRank) For a bipartite graph G = (V ,E) based on
the schema S = ({A,B}, {R}), suppose the constant C in SimRank is 1,
SimRank(a1, a2) = lim

n�∞
∑n

k=1 HeteSim(a1, a2|(RR−1)
k
),

SimRank(b1, b2) = lim
n�∞

∑n
k=1 HeteSim(b1, b2|(R−1R)

k
).

where a1, a2 ∈ A, b1, b2 ∈ B and A
R−→ B. Here HeteSim is the non-normalized

version.

This property reveals the connection of SimRank andHeteSim. SimRank sums up
themeeting probability of two objects after all possible steps. HeteSim just calculates
the meeting probability along the given meta path. If the meta paths explore all
possible meta paths among the two types of objects, the sum of HeteSim based on
these paths is the SimRank. So we can say that HeteSim is a path-constrained version
of SimRank. Through meta paths, HeteSim can subtly evaluate the similarity of
heterogeneous objects with fine granularity. This property also implies that HeteSim
is more efficient than SimRank, since HeteSim only needs to calculate the meeting
probability along the given relevance path, not all possible meta paths.

Moreover, we compare six well-established similarity measures in Table3.1.
There are three similarity measures for heterogeneous networks (i.e., HeteSim, Path-
Sim, and PCRW) and three measures for homogeneous networks (i.e., P-PageRank,
SimRank, and RoleSim), respectively. Although these similarity measures all eval-
uate the similarity of nodes by utilizing network structure, they have different prop-
erties and features. Three measures for heterogeneous networks all are path-based,
sincemeta paths in heterogeneous networks embody semantics and simplify network
structure. Two RWmodel-based measures (i.e., P-PageRank and PCRW) do not sat-
isfy the symmetric property. Because of satisfying the triangle inequation, RoleSim
is a metric, while HeteSim, PathSim, and SimRank are semi-metric. Different from
PathSim, which can only measure the similarity of objects with the same type under
symmetric paths, the proposed HeteSim can measure the relevance of heterogeneous
(same or different-typed) objects under arbitrary (symmetric or asymmetric) paths.
Although HeteSim can be considered as a path-constrained extension of SimRank,
HeteSim is a general similarity measure in heterogeneous networks with arbitrary
schema, not limited to bipartite or N-partite networks.
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Table 3.1 Comparison of different similarity measures. Here, RW means random walk, and PRW
means pairwise random walk

Symmetry Triangle
inequation

Path
based

Model Features

HeteSim
√ × √

PRW Evaluate relevance of
heterogeneous objects based
on arbitrary path

PathSim [21]
√ × √

Path count Evaluate similarity of
same-typed objects based on
symmetric path

PCRW [13] × × √
RW Measure proximity to the

query nodes based on given
path

SimRank [6]
√ × × PRW Measure similarity of node

pairs based on the similarity
of their neighbors

RoleSim [9]
√ √ × PRW Measure real-valued role

similarity based on
automorphic equivalence

P-PageRank [7] × × × RW Measure personalized views
of importance based on
linkage structure

3.1.3 Experiments

In the experiments, we validate the effectiveness of the HeteSim on three datasets
with three case studies and two learning tasks.

3.1.3.1 Datasets

Three heterogeneous information networks are employed in our experiments.
ACM dataset: The ACM dataset was downloaded from ACM digital library1

in June 2010. The ACM dataset comes from 14 representative computer science
conferences: KDD, SIGMOD, WWW, SIGIR, CIKM, SODA, STOC, SOSP, SPAA,
SIGCOMM, MobiCOMM, ICML, COLT, and VLDB. These conferences include
196 corresponding venue proceedings. The dataset has 12K papers, 17K authors, and
1.8K author affiliations. After removing stop words in the paper titles and abstracts,
we get 1.5K terms that appear in more than 1% of the papers. The network also
includes 73 subjects of these papers in ACM category. The network schema of ACM
dataset is shown in Fig. 3.2a. Furthermore, we label the data with the ACM category
(i.e., subjects) information. That is, with three major subjects (i.e., H.3, H.2, and
C.2), we label 7 conferences, 6772 authors, and 4526 papers.

1http://dl.acm.org/.

http://dl.acm.org/
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(a) ACM data (b) DBLP data (c) Movie data

Fig. 3.2 Network schema of heterogeneous informations

DBLP dataset [8]: The DBLP dataset is a subnetwork collected from DBLP
Web site2 involving major conferences in four research areas: database, data mining,
information retrieval, and artificial intelligence, which naturally form four classes.
The dataset contains 14K papers, 20 conferences, 14K authors, and 8.9K terms, with
a total number of 17K links. In the dataset, 4057 authors, all 20 conferences, and
100 papers are labeled with one of the four research areas. The network schema is
shown in Fig. 3.2b.

Movie dataset [17]: The IMDBmovie data comes from the Internet Movie Data-
base,3 which includes movies, actors, directors, and types. A movie heterogeneous
network is constructed from the movie data, and its schema is shown in Fig. 3.2c.
The movie data contains 1.5K movies, 5K actors, 551 directors, and 112 types.

3.1.3.2 Case Study

In this section, we demonstrate the traits of HeteSim through case study in three
tasks: automatic object profiling, expert finding, and relevance search.

Task 1: Automatic Object ProfilingWe first study the effectiveness of HeteSim on
different-typed relevance measurement in the automatic object profiling task. If we
want to know the profile of an object, we can measure the relevance of the object
to objects that we are interested in. For example, the academic profile of Christos
Faloutsos4 can be constructed through measuring the relatedness of Christos Falout-
sos with related objects, e.g., conferences, affiliations, and other authors. Table3.2
shows the lists of top relevant objects with various types onACMdataset.APVC path
shows the conferences he actively participates. Note that KDD and SIGMOD are the
two major conferences Christos Faloutsos participates, which are mentioned in his
home page.5 From the path APT , we can obtain his research interests: data mining,
pattern discovery, scalable graph mining, and social network. Using APS path, we
can discover his research areas represented as ACM subjects: database management

2http://www.informatik.uni-trier.de/~ley/db/.
3www.imdb.com/.
4http://www.cs.cmu.edu/~christos/.
5http://www.cs.cmu.edu/~christos/misc.html.

http://www.informatik.uni-trier.de/~ley/db/
www.imdb.com/
http://www.cs.cmu.edu/~christos/
http://www.cs.cmu.edu/~christos/misc.html
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Table 3.2 Automatic object profiling task on author “Christos Faloutsos” on ACM dataset

Path APVC APT APS APA

Rank Conf. Score Terms Score Subjects Score Authors Score

1 KDD 0.1198 mining 0.0930 H.2 (database
management)

0.1023 Christos
Faloutsos

1

2 SIGMOD 0.0284 patterns 0.0926 E.2 (data
storage
representations)

0.0232 Hanghang
Tong

0.4152

3 VLDB 0.0262 scalable 0.0869 G.3
(probability and
statistics)

0.0175 Agma
Juci M.
Traina

0.3250

4 CIKM 0.0083 graphs 0.0816 H.3
(information
storage and
retrieval)

0.0136 Spiros
Papadim-
itriou

0.2785

5 WWW 0.0060 social 0.0672 H.1 (models
and principles)

0.0135 Caetano
Traina, Jr.

0.2680

(H.2) and data storage (E.2). Based on APA path, HeteSim finds the most important
co-authors, most of which are his Ph.D students.
Task 2:Expert Finding In this case,wewant to validate the effectiveness ofHeteSim
to reflect the relative importance of object pairs through an expert finding task. As we
know, the relative importance of object pairs can be revealed through comparing their
relatedness. Suppose we know the experts in one domain, the expert finding task here
is to find experts in other domains through their relative importance. Table3.3 shows
the relevance scores returned by HeteSim and PCRW on six “conference–author”
pairs on ACM dataset. The relatedness of conferences and authors is defined based
on the APVC and CVPA paths which have the same semantics: authors publishing
papers in conferences.Due to the symmetric property,HeteSim returns the samevalue
for both paths, while PCRW returns different values for these two paths. Suppose
that we are familiar with data mining area and already know that C. Faloutsos is
an influential researcher in KDD. Comparing these HeteSim scores, we can find
influential researchers in other research areas even if we are not quite familiar with
these areas. J.F. Naughton,W.B. Croft, andA.Gupta should be influential researchers
in SIGMOD, SIGIR, and SODA, respectively, since they have very similar HeteSim
scores to C. Faloutsos. Moreover, we can also deduce that Luo Si and Yan Chen
may be active researchers in SIGIR and SIGCOMM, respectively, since they have
moderate HeteSim scores. In fact, C. Faloutsos, J.F. Naughton, W.B. Croft, and
A. Gupta are top-ranked authors in their research communities. Luo Si and Yan
Chen are young professors, and they have done good work in their research areas.
However, if the relevance measure is not symmetric (e.g., PCRW), it is very hard
to tell which authors are more influential when comparing these relevance scores.
For example, the PCRW score of Yan Chen and SIGCOMM is the largest one in the
APVC path. However, the value is the smallest one for the reversed path (i.e., CVPA
path).
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Table 3.3 Relatedness scores of authors and conferences measured by HeteSim and PCRW on
ACM dataset

HeteSim PCRW

APVC and CVPA APVC CVPA

Pair Score Pair Score Pair Score

C. Faloutsos,
KDD

0.1198 C. Faloutsos,
KDD

0.5517 KDD, C.
Faloutsos

0.0087

W.B. Croft,
SIGIR

0.1201 W.B. Croft,
SIGIR

0.6481 SIGIR, W.B.
Croft

0.0098

J.F. Naughton,
SIGMOD

0.1185 J.F. Naughton,
SIGMOD

0.7647 SIGMOD, J.F.
Naughton

0.0062

A. Gupta,
SODA

0.1225 A. Gupta,
SODA

0.7647 SODA, A.
Gupta

0.0090

Luo Si, SIGIR 0.0734 Luo Si, SIGIR 0.7059 SIGIR, Luo Si 0.0030

Yan Chen,
SIGCOMM

0.0786 Yan Chen,
SIGCOMM

1 SIGCOMM,
Yan Chen

0.0013

Fig. 3.3 Probability
distribution of authors’
papers on 14 conferences of
ACM dataset

KDD
SIGMOD

WWW
SIGIR

CIKM
SODA

STOC
SOSP

SPAA

SIGCOMM

MobiCOMM
ICML

COLT
VLDB

C. Faloutsos

P. Yu

J. Han

C.C. Aggarwal

S. Parthasarathy

X.F. Yan

Task 3: Relevance Search based on Path Semantics As we have stated, the path-
based relevance measure can capture the semantics of paths. In this relevance search
task, we will observe the importance of paths and the effectiveness of semantics
capture through the comparison of three path-based measures (i.e., HeteSim, PCRW,
and PathSim) and SimRank. This task is to find the top 10 related authors to Christos
Faloutsos based on the APVCVPA path which means authors publishing papers in
same conferences. By ignoring the heterogeneity of objects, we directly run Sim-
Rank on whole network and select top ten authors from the rank results which mix
different-typed objects together. The comparison results are shown in Table3.4. At
the first sight, we can find that three path-based measures all return researchers hav-
ing the similar reputation with C. Faloutsos in slightly different orders. However, the
results of SimRank are totally against our common sense. We think the reason of
bad performances is that SimRank only considers link structure but ignores the link
semantics.

In addition, let us analyze the subtle differences of results returned by three path-
based measures. The PathSim finds the similar peer authors, such as P. Yu and J. Han.
They have the same reputation in data mining field. It is strange for PCRW that the
most similar author to C. Faloutsos is not himself, but C. Aggarwal and J. Han. It is
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obviously not reasonable. Our conjecture is that C. Aggarwal and J. Han published
many papers in the conferences that C. Faloutsos participated in, so C. Faloutsos
has more reachable probability on C. Aggarwal and J. Han than himself along the
APVCVPA path. HeteSim’s results are a little different. The most similar authors are
S. Parthasarathy and X. Yan, instead of P. Yu and J. Han. Let us revisit the semantics
of the path APVCVPA: authors publishing papers in the same conferences. Figure3.3
shows the reachable probability distribution from authors to conferences along the
path APVC. It is clear that the probability distribution of papers of S. Parthasarathy
and X. Yan on conferences is more close to that of C. Faloutsos, so they should be
more similar to C. Faloutsos based on the same conference publication. Although
P. Yu and J. Han have the same reputation with C. Faloutsos, their papers are more
broadly published in different conferences. So they are not the most similar authors
to C. Faloutsos based on the APVCVPA path. As a consequence, the HeteSim more
accurately captures the semantics of the path.

Since meta path can embody semantics, we can apply HeteSim to do semantic
recommendation based on paths given by users. Following this idea, a semantic-based
recommended system HeteRecom [17] has been designed.

3.1.3.3 Performance on Query Task

The query task will validate the effectiveness of HeteSim on query search of hetero-
geneous objects. Since PathSim cannot measure the relatedness of different-typed
objects, we only compareHeteSimwith PCRW in this experiment. OnDBLP dataset,
we measure the proximity of conferences and authors based on the CPA and CPAPA
paths. For each conference, we rank its related authors according to their measure
scores. Then, we draw the ROC curve of top 100 authors according to the labels of
authors (when the labels of author and conference are the same, it is true, else it is
false). After that, we calculate the AUC (Area Under ROC Curve) score to evaluate
the performances of the ranked results. Note that all conferences and some authors
on the DBLP dataset are labeled with one of the four research areas. The larger score
means the better performance. We evaluate the performances on 9 representative
conferences, and their AUC scores are shown in Table3.5. We can find that HeteSim
consistently outperforms PCRW inmost conferences under these two paths. It shows
that the proposed HeteSim method can work better than the asymmetric similarity
measure PCRW on proximity query task.

3.1.3.4 Performance on Clustering Task

Due to the symmetric property, HeteSim can be applied to clustering tasks directly.
In order to evaluate its performance, we compare HeteSim with five well-established
similarity measures, including two path-based measures (i.e., PathSim and PCRW)
and three homogeneous measures (i.e., SimRank, RoleSim, and P-PageRank). These
measures use the same information to determine the pairwise similarity between
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objects. We evaluate the clustering performances on DBLP and ACM datasets.
There are three tasks: conference clustering based on CPAPC path, author clustering
based on APCPA path, and paper clustering based on PAPCPAP path. For asym-
metric measures (i.e., PCRW and P-PageRank), the symmetric similarity matrix can
be obtained through the average of similarity matrices based on paths P and P−1.
For RoleSim, it is applied in the network constructed by path P. For SimRank and
P-PageRank, they are applied in the subnetwork constructed by path PL (note that
the three paths in the experiments are symmetric). Then, we apply normalized cut
[16] to perform clustering based on the similarity matrices obtained by different
measures. The number of clusters are set as 4 and 3 for DBLP and ACM datasets,
respectively. The NMI criterion (Normalized Mutual Information) [19] is used to
evaluate the clustering performances on conferences, authors, and papers. NMI is
between 0 and 1 and prothe higher the better. In experiments, the damping factors
for P-PageRank, SimRank, and RoleSim are set as 0.9, 0.8, and 0.1, respectively.

The average clustering accuracy results of 100 runs are summarized in Table3.6.
We can find that, on all six tasks, HeteSim achieves best performances on four
of them as well as good performances on other two tasks. The mediocre results
of PCRW and P-PageRank illustrate that, although symmetric similarity measures
can be constructed by the combination of two random walk processes, the simple
combination cannot generate good similarity measures. RoleSim aims to detect role
similarity, a little bit different from structure similarity, so it has bad performances
in these clustering tasks. The experiments show that HeteSim not only does well on
similarity measure of same-typed objects but also has the potential as the similarity
measure in clustering.

3.1.4 Quick Computation Strategies and Experiments

HeteSim has a high-computation demand for time and space. It is not affordable for
online query in large-scale information networks. So a primary strategy is to compute
relevance matrix off-line and do online queries with these matrices. For frequently
used meta paths, the relatedness matrix HeteSim(A,B|P) can be materialized ahead
of time. The online query on HeteSim(a,B|P) will be very fast, since it only needs
to locate the row and column in the matrix. However, it also costs much time and
space to materialize all frequently used paths. As a consequence, we propose four
strategies to fast compute the relevance matrix. Moreover, experiments validate the
effectiveness of these strategies.

3.1.4.1 Quick Computation Strategies

The computation of HeteSim includes two phases: matrix multiplication (denoted as
MUL, i.e., the computationofPMPL andPMPR

−1 ) and relevance computation (denoted
as REL, i.e., the computation of PMPL ∗ PMPR

−1 and normalization). Through
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analyzing the running time of HeteSim on different phases and paths (the details can
be seen in [18]), we find two characteristics of HeteSim computation. (1) The rele-
vance computation is the main time-consuming phase. It implies that the speedup of
matrix multiplicationmay not significantly reduce HeteSim’s running time, although
this kind of strategies is widely used in accelerating SimRank [6] and PCRW [12].
(2) The dimension and sparsity of matrix greatly affect the efficiency of HeteSim.
Althoughwe cannot reduce the running time of relevance computation phase directly,
we can accelerate the computation of HeteSim through adjusting matrix dimension
and keeping matrix sparse. Based on above idea, we design the following four quick
computation strategies.

Dynamic Programming Strategy The matrix multiplication obeys the associative
property. Moreover, different computation sequences have different time
complexities. The dynamic programming strategy (DP) changes the sequence of
matrix multiplication with the associative property. The basic idea of DP is to
assign low-dimensioned matrix with the high-computation priority. For a path
P = R1 ◦ R2 ◦ · · · ◦ Rl, the expected minimal computation complexity of HeteSim
can be calculated by the following equation and the computation sequence is recorded
by i.

Com(R1 · · ·Rl) =
⎧
⎪⎨

⎪⎩

0 l = 1
|R1.S| × |R1.T | × |R2.T | l = 2
argmin

i
{Com(R1 · · ·Ri) + Com(Ri+1 · · ·Rl) + |R1.S| × |Ri.T | × |Rl.T |} l > 2

(3.7)

The above equation can be easily solved by dynamic programming method with the
O(l2) complexity. The running time can be omitted, since l is much smaller than
the matrix dimension. Note that the DP strategy only accelerates the MUL phase
(i.e., matrix multiplication) and it does not change relevance result, so the DP is an
information-lossless strategy.

Truncation Strategy The truncation strategy is based on the hypothesis that remov-
ing the probability on those less important nodes would not significantly degrade the
performance, which has been proved by many researches [12]. One advantage of this
strategy is to keep matrix sparse. The sparse matrix greatly reduces the amount of
space and time consumption. The basic idea of truncation strategy is to add a trun-
cation step at each step of random walk. In the truncation step, the relevance value
is set with 0 for those nodes when their relevance values are smaller than a threshold
ε. A static threshold is usually used in many methods (e.g., Ref. [12]). However, it
has the following disadvantage: It may truncate nothing for matrix whose elements
all have high probability, and it may truncate most nodes for matrix whose elements
all have low probability. Since we usually pay close attention to the top k objects in
query task, the threshold ε can be set as the top k relevance value for each search
object. For a similarity matrix with size M × L, the k can be dynamically adjusted
as follows.
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k =
{
L if L ≤ W
�(L − W)β
 + W(β ∈ [0, 1]) others

where W is the number of top objects, decided by users. The basic idea of dynamic
adjustment is that the k slowly increases for super object type (i.e., L is large). The
W and β determine the truncation level. The larger W or β will cause the larger k,
which means a denser matrix. It is expensive to determine the top k relevance value
for each object, so we can estimate the value by the top kM value for the whole
matrix. Furtherly, the top kM value can be approximated by the sample data with
ratio γ from the raw matrix. The larger γ leads to more accurate approximation
with longer running time. In summary, the truncation strategy is an information-loss
strategy, which keeps matrix sparse with small sacrifice on accuracy. In addition, it
needs additional time to estimate the threshold ε.

Hybrid StrategyAs discussed above, the DP strategy can accelerate theMUL phase
and the truncation strategy can indirectly speed up the REL phase by keeping sparse
matrix. So a hybrid strategy can be designed to combine these two strategies. For
the MUL phase, the DP strategy is applied. After obtaining the PMPL and PMPR

−1 ,
the truncation strategy is added. Different from the above truncation strategy, the
hybrid strategy only truncates the PMPL and PMPR

−1 . The hybrid strategy utilizes the
benefits of DP and truncation strategies. It is also an information-loss strategy, since
the truncation strategy is employed.

Monte Carlo StrategyMonte Carlo method (MC) is a class of computational algo-
rithms that estimate results through repeating random sampling. It has been applied
to compute approximate values of matrix multiplication [2, 12]. In this study, we
applied the MC strategy to estimate the value of PMPL and PMPR

−1 . The value of
PMP(a, b) can be approximated by the normalized count of the number of times that
the walkers visit the node b from a along the path P.

PMP(a, b) = #times the walkers visit b along P

#walkers from a

The number of walkers from a (i.e., K) controls the accuracy and amount of compu-
tation. The larger K will achieve more accurate estimation with more time cost. An
advantage of the MC strategy is that its running time is not affected by the dimension
and sparsity of matrix. However, the high-dimension matrix needs larger K for high
accuracy. As a sampling method, the MC is also an information-loss strategy.

3.1.4.2 Quick Computation Experiments

We validate the efficiency and effectiveness of quick computation strategies on the
ACM dataset. The four paths are used: (APA)l, (APCPA)l, (APSPA)l, and (TPT)l.
l means times of path repetition and ranges from 1 to 5. Four quick computation
strategies and the original method (i.e., baseline) are employed. The parameters in
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Fig. 3.4 Running time and
accuracy of computing
HeteSim based on different
strategies and paths
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truncation process are set as follows: the number of top objectsW is 200, β is 0.5, and
γ is 0.005. The number of walkers (i.e., K) in MC strategy is 500. The running time
and accuracy of all strategies are recorded. In the accuracy evaluation, the relevance
matrices obtained by the originalmethod are regarded as the baseline. The accuracy is
the recall criterion on the top 100 objects obtained by each strategy. All experiments
are conducted on machines with Intel Xeon 8-Core CPUs of 2.13GHz and 64 GB
RAM.

Figure3.4 shows the running time and accuracy of four strategies on different
paths. The running timeof these strategies is illustrated in Fig. 3.4a–d.Wecan observe
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that the DP strategy almost has the same running time with the baseline. It only
speeds up the HeteSim computation when the MUL phase dominates the whole
running time (e.g., (APCPA)5 and (APSPA)5). It is not the case for the truncation and
hybrid strategies, which significantly accelerate the HeteSim computation and have
a close speedup ratio on most conditions. Except the APA path, the MC strategy has
the highest speedup ratio among all four strategies on most conditions. Then, let us
observe their accuracy from Fig. 3.4e–h. The accuracy of the DP strategy is always
close to 1. The hybrid strategy achieves the second performances for most paths.
The accuracy of the MC strategy is also high for most paths, while it fluctuates on
different paths. Obviously, the truncation strategy has the lowest accuracy on most
conditions.

As we have noted, the DP, as an information-lossless strategy, only speeds up the
MUL phase which is not the main time-consuming part for most paths. So the DP
strategy trivially accelerates HeteSim with the accuracy close to 1. The truncation
strategy is an information-loss strategy to keep matrix sparse, so it can effectively
accelerate HeteSim. That is the reason why the truncation strategy has the high
speedup ratio but low accuracy. Because the hybrid strategy combines the benefits
of DP and truncation strategy, it has a close speedup ratio to the truncation strategy
with higher accuracy. In order to achieve high accuracy, more walkers in the MC
strategy are needed for high-dimension or sparse matrix, while the fixed walkers
in experiments (i.e., K is 500) make the MC strategy the poor accuracy on some
conditions.

According to the analysis above, these strategies are suitable for different paths
and scenarios. For very sparse matrix (e.g., (APA)l) and low-dimension matrix (e.g.,
(APCPA)3), all strategies cannot significantly improve efficiency. However, in these
conditions, the HeteSim can be quickly computed without any strategies. For those
dense (e.g., (APCPA)4) and high-dimension matrix (e.g., (APSPA)4) which have
huge computation overhead, the truncation, hybrid, andMC strategies can effectively
improve the HeteSim’s efficiency. Particularly, the speedup of the hybrid and MC
strategies are up to 100 with little loss in accuracy. If the MUL phase is the main
time-consuming part for a path, the DP strategy can also speed up HeteSim greatly
without loss in accuracy. The MC strategy has very high efficiency, but its accuracy
may degrade for high-dimensionmatrix. So the appropriateK needs to be set through
balancing the efficiency and effectiveness.

3.2 Extension of HeteSim

3.2.1 Overview

Many data mining tasks have been exploited in heterogeneous information network,
such as clustering [19] and classification [10]. Among these data mining tasks, sim-
ilarity measure is a basic and important function, which evaluates the similarity
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of object pairs on networks. Although similarity measure on homogeneous net-
works have been extensively studied in the past decades, such as PageRank [15] and
SimRank [6], the similarity measure in heterogeneous network is just beginning
now and several measures have been proposed including PathSim [21], PCRW [13],
and HeteSim [18]. All the three methods are based on meta path [18]. Specially,
HeteSim, proposed by Shi et al., has the ability to measure relatedness of objects
with the same or different types in a uniform framework. HeteSim has some good
properties (e.g., self-maximum and symmetric) and has shown its potential in sev-
eral data mining tasks. However, we can also find that it has several disadvantages.
(1) HeteSim has relatively high computational complexity. Particularly, the adop-
tion of path decomposition approach when it measures the relevance on odd-length
path further increases the calculation complexity. (2) Besides, HeteSim cannot be
extended to large-scale network with massive data, since its calculation process is
based on memory computing. Therefore, it is desired to design a new similarity mea-
sure, which not only contains some good properties as HeteSim but also overcomes
the disadvantages on computation.

In this chapter, we introduce a new relevance measure method, AvgSim, which
is a symmetric measure and uniform measure to evaluate the relevance of same- or
different-typed objects. The AvgSim value of two objects is the average of reachable
probability under the given path and the reverse path. It guarantees that AvgSim can
measure relevance of same or different-typed objects and it has symmetric property.
In addition, compared with HeteSim which takes a pairwise random walk, AvgSim
does not need to consider the length of path and there is no path decomposition
involved. Thus, it is more simple and efficient. Furthermore, we take parallelization
of this new algorithm onMapReduce in order to eliminate restriction of memory size
and deal with massive data more efficiently in practical applications.

3.2.2 AvgSim: A New Relevance Measure

In this section, we will introduce the new meta path-based relevance measure which
is called AvgSim and its definition is as follows.

Definition 3.9 (AvgSim) Given a meta path P which is defined on the composite
relation R = R1 ◦ R2 ◦ . . . ◦ Rl, AvgSim between two objects s and t (s is the source
object and t is the target object) is:

AvgSim(s, t|P) = 1

2
[RW(s, t|P) + RW(t, s|P−1)] (3.8)

RW(s, t|R1 ◦ R2 ◦ . . . ◦ Rl) = 1

|O(s|R1)|
|O(s|R1)|∑

i=1

RW(Oi(s|R1), t|R2 ◦ . . . ◦ Rl)

(3.9)
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Equation3.8 shows the relevance of source object and target object based on
meta path P is the arithmetic mean value of random walk result from s to t along
P and reversed random walk result from t to s along P−1. Equation3.9 shows the
decomposed step of AvgSim, namely the measure of random walk. The measure
takes a random walk step by step from the starting point s to the end point t along
path P using an iterative method, where |O(s|R1)| is the out-neighbors of s based on
relation R1. If there is no out-neighbors of s on R1, then the relevance value of s and t
is 0 because s cannot reach t. We need to calculate the random walk probabilities for
each out-neighbor of s to t iteratively, and then, sum them up. Finally, the summation
should be normalized by the number of out-neighbors to get the average relatedness.

Then, we will study on how to calculate AvgSim generally with matrix. Given a

simple directed meta path A
R−→ B, where objects A and B are linked though relation

R. The relationship between A and B can be expressed by adjacent matrix, denoted
as MAB. Two normalized matrices RAB and CAB are generated by normalizing MAB

according to row vector and column vector, respectively. RAB and CAB are transition

probability matrix which represent A
R−→ B and B

R−1−−→ A, respectively. According
to properties of matrix, we can derive relations RAB = C

′
BA and CAB = R

′
BA, where

R
′
AB is the transpose of RAB.

If we extend the simple meta path to P = A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1 where R is a

composite relation R = R1 ◦ R2 ◦ . . . ◦ Rl, then the relationship between A1 and Al+1

is expressed as reachable probability matrix which is obtained by multiplying
the transition probability matrices along the meta path. The reachable probability
matrix of P is defined as RWP = RA1A2RA2A3 . . .RAlAl+1 , where RW suggests RWP is
the random walk relatedness matrix from object A1 to Al+1 along path P.

Then, we can rewrite AvgSim using the reachable probability matrix according
to Eqs. 3.8 and 3.9 as follows.

AvgSim(A1,Al+1|P)

= 1

2
[RW(A1,Al+1|P) + RW(Al+1,A1|P−1)] = 1

2
[RWP + RW

′
P−1]

(3.10)

According to CAB = R
′
BA, Eq. 3.11 is derived below. We notice that the calcula-

tion of AvgSim is unified as two-chain matrix multiplication of transition probability
matrices. The only difference between two chains is the normalization form of orig-
inal adjacent matrix.

AvgSim(A1,Al+1|P) = 1

2
[RA1A2RA2A3 . . .RAlAl+1 + (RAl+1AlRAlAl−1 . . .RA2A1)

′ ]

= 1

2
[RA1A2RA2A3 . . .RAlAl+1 + CA1A2CA2A3 . . .CAlAl+1]

(3.11)
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AvgSim can measure the relevance of any heterogeneous or homogeneous object
pair based on symmetrical path (e.g., APCPA) or asymmetrical path (e.g., APS).
Besides, the method has a symmetric property, which can be verified easily from the
definition equation of AvgSim. However, the calculation of AvgSim mainly lies in
the chain matrix multiplication which is time-consuming and restricted of memory
size. In order to apply the algorithm in real large-scale heterogeneous information
network, we have to consider how to improve the efficiency of AvgSim.

3.2.3 Parallelization of AvgSim

Parallelism [1] is an effective method for processing massive data and improv-
ing algorithm’s efficiency. According to the features and application scenarios of
AvgSim, we parallelize it as the following steps.

1. Since the core calculation of AvgSim is the chain matrix multiplication, we firstly
change the order of matrix multiplication operations applying dynamic program-
ming strategy.

2. After Step 1, we turn to focus on large-scale matrix multiplication and it can
be parallelized on Hadoop distributed system using MapReduce programming
model.

As we know, different orders of operations in chain matrix multiplication leads to
different computation time. There exists an optimal order of chain matrix multipli-
cation using dynamic programming, which consumes the shortest computation time.
Thus, we can apply dynamic programming to improve the efficiency of parallelized
AvgSim.

Parallelization of AvgSim is mainly the parallelization of matrix multiplication
after the dynamic programming process. Here, we use the “block matrix multipli-
cation” method on MapReduce to transform multiplication of two large matrices
into several multiplications of smaller matrices. This method is flexible for selecting
dimensions of block matrix according to the configuration of Hadoop cluster, and it
avoids exceeding thememory size. The parallelization of blockmatrixmultiplication
is implemented by two-round MapReduce computing. The detailed algorithms can
be found in [14].
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Applying two-round MapReduce algorithm above iteratively to the chain matrix
multiplication which is reordered by dynamic programming, we can obtain one of
the two reachable probability matrices of AvgSim (e.g., RWP, which is measured in
the given meta path P), and the other probability matrix (RW

′
P−1 ) can be obtained in

the same procedure. Finally, the relevance matrix is derived by taking the arithmetic
mean of these two reachable probability matrices.

3.2.4 Experiments

Three datasets, ACM dataset, DBLP dataset, and Matrix dataset, are used in experi-
ments. In detail, theACMdataset contains 17K authors, 1.8K author affiliations, 12K
papers, and14 computer science conferences including196 correspondingvenuepro-
ceedings. We also extract 1.5K terms and 73 subjects from these papers. The DBLP
dataset contains 14K papers, 14K authors, 20 conferences, and 8.9K terms. And we
label 20 conferences, 100 papers, and 4057 authors in the dataset with four research
areas including database, data mining, information retrieval, and artificial intelli-
gence for experiment use. And the matrix dataset (40 matrices in total) contains sev-
eral artificially generated large-scale sparse square matrices, whose dimensions are
1000 × 1000, 5000 × 5000, 10,000 × 10,000, 20,000 × 20,000, 40,000 × 40,000,
80,000 × 80,000, 100,000 × 100,000, and 150,000 × 150,000, respectively. And
the sparsity of each matrix is 0.0001, 0.0003, 0.0005, 0.0007, and 0.001.

3.2.4.1 Effectiveness of AvgSim

In this section, we design experiments to validate the effectiveness and efficiency of
AvgSim.We design two tasks to verify the effectiveness of AvgSim, which are query
task and clustering task, respectively.

In the query task, we compare the performance of AvgSimwith both HeteSim and
PCRW though measuring the relevance of heterogeneous objects on DBLP dataset.
Based on labels of the dataset, we calculate the AUC score to evaluate the per-
formances of different methods, where the query task is to find authors for each
conference based on the path CPA. We evaluated 9 out of 20 marked conferences,
whose AUC values are shown in Table3.7. We notice that AvgSim gets the high-
est value on 8 conferences, which means AvgSim performs better than other two
methods in this query task.

In the clustering task, we compare the performance of AvgSim with both
HeteSim and PathSim through measuring the similarity of homogeneous objects
on DBLP dataset. We firstly apply three algorithms, respectively, to derive the sim-
ilarity matrices on three meta paths including CPAPC, APCPA, and PAPCPAP. We
perform clustering task based on the similarity matrices with normalized cut and
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Table 3.7 AUC values for relevance search of conferences and authors based on CPA path on
DBLP dataset

KDD ICDM SDM SIGMOD VLDB ICDE AAAI IJCAI SIGIR

HeteSim 0.8111 0.6752 0.6132 0.7662 0.8262 0.7322 0.8110 0.8754 0.9504

PCRW 0.8030 0.6731 0.6068 0.7588 0.8200 0.7263 0.8067 0.8712 0.9390

AvgSim 0.8117 0.6753 0.6072 0.7668 0.8274 0.7286 0.8114 0.8764 0.9525

Table 3.8 Clustering accuracy results for path-based relevance measures on DBLP dataset

Venue NMI Author NMI Paper NMI

PathSim 0.8162 0.6725 0.3833

HeteSim 0.7683 0.7288 0.4989

AvgSim 0.8977 0.7556 0.5101

then evaluate the performances on conferences, authors, and papers using NMI cri-
terion (Normalized Mutual Information). The clustering accuracy result is shown in
Table3.8, and AvgSim obtains the highest NMI value in all the three tasks. In all,
the results of query task and clustering task suggest that AvgSim performs well in
effectiveness.

3.2.4.2 Efficiency of AvgSim

In this section, we will verify the efficiency of AvgSim on ACM dataset. We take
relevance measure experiments of AvgSim andHeteSim, respectively, based onmeta
paths including (APCPA)l and (TPT)l, where l is the number of path repetitions with
a range from 1 to 5.

Figure3.5a, b shows the relationship between running time and different meta
paths for each method. We notice that the running time of HeteSim exhibits great
fluctuations with the change of path length, while AvgSim is much stable. According
to the definition of AvgSim, the longer paths (i.e., l) it measures, the more matrices
need to bemultiplied, and thus, the running time increases persistently. In contrast, the
calculation ofHeteSimneeds two steps includingmatrixmultiplication and relevance
computation. In the matrix multiplication step, HeteSim calculates the reachable
probability matrices from source and target nodes to the middle node, respectively.
The longer paths it measures, the more time it needs. In relevance computation step,
the relevance matrix is the multiplication of two probability matrices in previous
step. The time for the second step is determined by the scale of middle node. In
all, the relevance computation of HeteSim affects its performance to a great extent
and it will be relatively poor for large-scale matrices. Conversely, AvgSim performs
much more stable, and its efficiency is only related to the matrix dimension and



58 3 Relevance Measure of Heterogeneous Objects

1 2 3 4 5
100

101

102

103

104

105

l

R
un

ni
ng

 T
im

e(
lo

g 
sc

al
e,

s)

AvgSIm
HeteSim

(a) (APCPA)l
1 2 3 4 5

0

20

40

60

80

100

120

140

R
un

ni
ng

 T
im

e(
s)

l

AvgSim
HeteSim

(b) (TPT )l

103 104 105
100

101

102

103

104

105

Matrix Dimension(log scale)

R
un

ni
ng

 T
im

e(
lo

g 
sc

al
e,

s)

0.0001(Sparsity)
0.0003
0.0005
0.0007
0.001
0.001−Stand Alone

(c) Dimension and sparsity

0

1000

2000

Block Dimension

Ti
m

e(
s)

0 1000 2000 3000 4000 5000 6000
0

5

10
x 104

D
at

a 
Am

ou
nt

(M
B)

Time
Data Amount

(d) Partition strategy

Fig. 3.5 Running time of AvgSim and HeteSim based on different meta paths and factors affecting
parallelized block matrix multiplication: a Running time on (APCPA)l; b Running time on (TPT)l;
c Matrix dimension and sparsity factors; d Partition strategy factor

meta path length, which can be improved by the parallelized matrix multiplication
on MapReduce.

All parallelizedmatrixmultiplication experiments are conducted in a cluster com-
posed of 7 machines with 4-cores E3-1220 V2 CPUs of 3.10GHz and 32 GB RAM
running on RedHat 4 operating system. The experiments will study several factors
affecting block matrix multiplication, including matrix, matrix sparsity, and parti-
tion strategy (i.e., dimensions of blocks). Results will reflect the performance of
parallelized AvgSim algorithm.

Figure3.5c shows the effect of matrix dimensions and matrix sparsity on the run-
ning time of parallelized block matrix multiplication. All the matrix multiplications
are done on the Matrix dataset, and it applies the partition strategy of 1000 × 1000
block matrix. We notice from Fig. 3.5c that the larger dimensions or more density of
matrix are, the more time in matrix multiplication is required. And the comparison
results between stand-alone and parallelized matrix multiplication with the sparsity
of 0.001 shows that the stand-alone algorithm costs shorter time for a quite small
matrix dimension because the parallelized algorithm spends lots of time in the start-
ing task nodes of Hadoop cluster and resources of cluster are not fully utilized for
a small amount of calculations. However, the efficiency of parallelized algorithm is
much better as the matrix dimension increases. Besides, the stand-alone algorithm is
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restricted of memory size, so there are no results derived in the last three large-scale
matrix multiplications shown in Fig. 3.5c.

Figure3.5d shows the effect of intermediate data amount and partition strategy
of block matrix multiplication. There are 11 kinds of partition strategies with the
square block matrix dimensions from 300 × 300 to 6000 × 6000, where the square
matrix is with the dimension of 100,000 × 100,000 and the sparsity of 0.0001 in the
experiment. We notice from Fig. 3.5d that the intermediate data amount of matrix
multiplication decreases gradually with the increase of block dimension. In contrast,
the running time reaches its minimum value at 5th data point. Smaller intermediate
data amount results in less disk IO operations and data amount transmitted by shuffle,
which also leads to shorter time and better performance to a certain extent as the data
points before 1000 near 1000 reflected.However, the excessive large block dimension
will reduce the concurrent granularity and increase the amount of calculations for
single node, which conversely results in longer time of computation as the data points
after 1000 reflected.

In all, the appropriate partition strategy and sufficient sizes of cluster greatly affect
the efficiency in parallelized block matrix multiplications. Applying parallelization
method, AvgSim gains the ability to measure relevance in larger-scale networks with
massive data efficiently.

3.3 Conclusion

In this chapter, we study the relevance search problem which measures the related-
ness of heterogeneous objects in heterogeneous networks. We introduce a general
relevance measure, called HeteSim. As a path-constraint and semi-metric measure,
HeteSim can measure the relatedness of same-typed or different-typed objects in a
uniform framework. In addition, we also present a modification of HeteSim. Exten-
sive experiments validate the effectiveness and efficiency of the proposed measures
on evaluating the relatedness of heterogeneous objects.

The similarity measure of objects in heterogeneous networks is an important
and basic task, which can be used in many applications. There are some interesting
directions for future work. Similarity measures are designed for more complex HIN,
such as hybrid network integrating heterogeneous features and text information, and
multiple or weighted meta paths. In addition, similarity measures are widely used in
real applications where the network scales are usually huge. We need to design the
efficient and parallelized computation methods.
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Chapter 4
Path-Based Ranking and Clustering

Abstract As newly emerging network models, heterogeneous information networks
have many unique features, e.g., complex structures and rich semantics. Moreover,
meta path, the sequence of relations connecting two object types, is an effective
tool to integrate different types of objects and mine the semantic information in this
kind of networks. The unique characteristics of meta path make the data mining on
heterogeneous network more interesting and challenging. In this chapter, we will
introduce two basic data mining tasks, ranking and clustering, on heterogeneous
information network. Furthermore, we introduce the HRank method to evaluate the
importance of multiple types of objects and meta paths, and present the HeProjI
algorithm to solve the heterogeneous network projection and integration of clustering
and ranking tasks.

4.1 Meta Path-Based Ranking

4.1.1 Overview

It is an important research problem to evaluate object importance or popularity,
which can be used in many data mining tasks. Many methods have been developed
to evaluate object importance, such as PageRank [13], HITS [7], and SimRank [5]. In
these literatures, objects ranking is done in a homogeneous network in which objects
or relations are the same. For example, both PageRank and HITS rank the web pages
in WWW.

However, in many real network data, there are many different types of objects
and relations, which can be organized as heterogeneous networks. Formally,
heterogeneous information networks (HIN) are the logical networks involving mul-
tiple types of objects as well as multiple types of links denoting different relations
[4]. Recently, many data mining tasks have been exploited in this kind of networks,
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(a) Heterogeneous network (b) Network schema

Fig. 4.1 A heterogeneous information network example on bibliographic data. a shows heteroge-
neous objects and their relations. b shows the network schema

such as similarity measure [14, 25], clustering [23], and classification [6], among
which ranking is an important but seldom exploited task.

Figure 4.1a shows an HIN example in bibliographic data, and Fig. 4.1b illustrates
its network schema which depicts object types and their relations. In this example,
it contains objects from four types of objects: papers (P), authors (A), labels (L,
categories of papers), and conferences (C). There are links connecting different
types of objects. The link types are defined by the relation between the two object
types. In this network, several interesting, yet seldom exploited, ranking problems
can be proposed.

• One may be interested in the importance of one type of objects and ask the
following questions:
Q. 1.1 Who are the most influential authors?
Q. 1.2 Who are the most influential authors in data mining field?

• As we know, some object types have an effect on each other. For example, influ-
ential authors usually publish papers in reputable conferences. So one may pay
attention to the importance of multiple types of objects simultaneously and ask
the following questions:
Q. 2.1 Who are the most influential authors and which reputable conferences did
those influential authors publish their papers on?
Q. 2.2 Who are the most influential authors and which reputable conferences did
those influential authors publish their papers on in data mining field?

• Furthermore, one may wonder which factor mostly affects the importance of
objects, since the importance of objects is affected by many factors. So he may
ask the questions like this:
Q. 3 Who are the most influential authors and which factors make those most
influential authors be most influential?

Although the ranking problem in homogeneous networks has been well studied,
the above ranking problems are unique in HIN (especially Q. 2 and Q. 3), which
are seldom studied until now. Since there are multiple types of objects in HIN, it is
possible to analyze the importance of multiple types of objects (i.e., Q. 2) as well as
affecting factors (i.e., Q. 3) together.
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In this chapter, we study the ranking problem in HIN and propose a ranking
method, HRank, to evaluate the importance of multiple types of objects and meta
paths in HIN. For Q. 1 and Q. 2, a path-based random walk model is proposed to
evaluate the importance of single or multiple types of objects. The different meta paths
connecting two types (same or different types) of objects have different semantics
and transitive probability, and thus lead to different random walk processes and
ranking results. Although meta path has been widely used to capture the semantics
in HIN [14, 25], it coarsely depicts object relations. By employing the meta path,
we can answer the Q. 1.1 and Q. 2.1, but cannot answer the Q. 1.2 and Q. 2.2. In
order to overcome the shortcoming existing in meta path, we propose the constrained
meta path concept, which can effectively describe this kind of subtle semantics. The
constrained meta path assigns constraint conditions on meta path. Through adopting
the constrained meta path, we can answer the Q. 1.2 and Q. 2.2.

Moreover, in HIN, based on different paths, the objects have different ranking val-
ues. The comprehensive importance of objects should consider all kinds of factors
(the factors can be embodied by constrained meta paths), which have different con-
tribution to the importance of objects. In order to evaluate the importance of objects
and meta paths simultaneously (i.e., answer Q. 3), we further propose a co-ranking
method which organizes the relation matrices of objects on different constrained
meta paths as a tensor. A random walk process is designed on this tensor to co-rank
the importance of objects and paths simultaneously. That is, random walkers surf
in the tensor, where the stationary visiting probability of objects and meta paths is
considered as the HRank score of objects and paths.

4.1.2 The HRank Method

Since the importance of objects is related to the meta path designated by users, we
propose the path-based ranking method HRank in heterogeneous networks. In order
to answer the three ranking problems proposed above, we design three versions of
HRank, respectively.

4.1.2.1 Constrained Meta Path

As an effective semantic capturing method, the meta path has been widely used in
many data mining tasks in HIN, such as similarity measure [14, 25], clustering [23],
and classification [8]. However, meta path may fail to capture subtle semantics in
some situations. Taking Fig. 4.1b as an example, the APA path cannot reveal the
co-author relations in a certain research field, such as data mining and information
retrieval. Although Jiawei Han has co-worked many papers with Philip S. Yu in the
data mining field, they never co-work in the operation system field. The APA path
cannot subtly reflect this difference.
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In order to overcome the shortcomings in meta path, we propose the concept of
constrained meta path, defined as follows.

Definition 4.1 (Constrained meta path) A constrained meta path is a meta path
based on a certain constraint which is denoted as CP = P|C. P = (A1A2 . . .Al) is a
meta path, while C represents the constraint on the objects in the meta path.

Note that the C can be one or multiple constraint conditions on objects. Tak-
ing Fig. 4.1b as an example, the constrained meta path APA|P.L = “DM” repre-
sents the co-author relations of authors in data mining field through constraining
the label of papers with data mining (DM). Similarly, the constrained meta path
APCPA|P.L = “DM”&&C = “CIKM” represents the co-author relations of authors
in CIKM conference, and the papers of authors are in data mining field. Obviously,
compared to meta path, the constrained meta path conveys richer semantics by subdi-
viding meta paths under distinct conditions. Particularly, when the length of meta path
is 1 (i.e., a relation), the constrained meta path degrades to a constrained relation.
In other words, the constrained relation confines constraint conditions on objects of
the relation.

For a relation A
R−→ B, we can obtain its transition probability matrix as follows.

Definition 4.2 (Transition probability matrix) WAB is an adjacent matrix between

type A and B on relation A
R−→ B. UAB is the normalized matrix of WAB along the

row vector, which is the transition probability matrix of A
R−→ B.

Then, we make some constraints on objects of the relation A
R−→ B (i.e., con-

strained relation). We can have the following definition.

Definition 4.3 (Constrained transition probabilitymatrix)WAB is an adjacent matrix

between type A and B on relation A
R−→ B. Suppose there is a constraint C on object

type A. The constrained transition probability matrix U
′
AB of constrained relation

R|C is U
′
AB = MCUAB, where MC is the constraint matrix generated by the constraint

condition C on object type A.

The constraint matrix MC is usually a diagonal matrix whose dimension is the
number of objects in object type A. The element in the diagonal is 1 if the corre-
sponding object satisfies the constraint, else the element in the diagonal is 0. For
example, in the path PC|C = “CIKM”, MC is a diagonal matrix of conferences,
where the “CIKM” column is 1 and the others are 0. Similarly, we can confine the
constraint on the object type B or both types. Note that the transition probability
matrix is a special case of the constrained transition probability matrix, when we let
the constraint matrix MC be the identity matrix I .

Given a network G = (V,E) following a network schema S = (A,R), we can
define the meta path-based reachable probability matrix as follows.
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Definition 4.4 (Meta path-based reachable probability matrix) For a meta path
P = (A1A2 · · ·Al+1), the meta path-based reachable probability matrixPM is defined
as PMP = UA1A2UA2A3 · · ·UAlAl+1 . PMP(i, j) represents the probability of object
i ∈ A1 reaching object j ∈ Al+1 under the path P.

Similarly, we have the following definition for constrained meta path.

Definition 4.5 (Constrained meta path-based reachable probability matrix) For
a constrained meta path CP = (A1A2 · · ·Al+1|C), the constrained meta path-based
reachable probability matrix is defined as PMCP = U

′
A1A2

U
′
A2A3

· · ·U ′
AlAl+1

.
PMCP(i, j) represents the probability of object i ∈ A1 reaching object j ∈ Al+1 under
the constrained meta path P|C.

In fact, if there is no constraint on the objects of a relation Ai
R−→ Ai+1, U

′
AiAi+1

is
equal to UAiAi+1 . If there is a constraint on the objects, we only consider the objects
that satisfy the constraint. For simplicity, we use the reachable probability matrix and
the MP to represent the constrained meta path-based reachable probability matrix in
the following section.

4.1.2.2 Ranking Based on Symmetric Meta Paths

In order to evaluate the importance of one type of objects (i.e., Q. 1), we design the
HRank-SY method based on symmetric constrained meta paths, since the constrained
meta paths connecting one type of objects are usually symmetric, such asAPA|P.L =
“DM”.

For a symmetric constrained meta pathP = (A1A2 . . .Al|C) ,P is equal toP−1 and
A1 andAl are the same. Similar to PageRank [13], the importance evaluation of object
A1 (i.e., Al) can be considered as a random walk process in which random walkers
wander from type A1 to type Al along the path P. The HRank value of object A1 (i.e.,
R(A1|P)) is the stable visiting probability of random walkers, which is defined as
follows:

R(A1|P) = αR(A1|P)MP + (1 − α)E (4.1)

where MP is the constrained meta path-based reachable probability matrix as defined
above. E is the restart probability vector for convergence. It is set equally for all
objects of type A1, which is 1/|A1|. α is the decay factor, which can be set with 0.85
as the parameter experiments suggested. HRank-SY and PageRank both have the
same idea that the importance of objects is decided by the visiting probability of
random surfers. Different from PageRank, the random surfers in HRank-SY should
wander along the constrained meta path to visit objects.

As shown in Fig. 4.2, the red broken line illustrates an example of the process of
calculating rank values, where the CP is APA|P.L = “DM”. The concrete calculating
process is as follows:
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Fig. 4.2 An example of the
computation process of
HRank. The blue and red
broken lines represent the
process on the symmetric
and asymmetric constrained
meta path, respectively

R(Author|CP) = αR(Author|CP)MCP + (1 − α)E

MCP = U
′
APU

′
PA = UAPMPMPUPA

(4.2)

where MP is the constraint matrix on object type P (paper).

4.1.2.3 Ranking Based on Asymmetric Meta Paths

For the question Q. 2, we propose the HRank-AS method based on asymmetric
constrained meta paths, since the paths connecting different types of objects are
asymmetric. For an asymmetric constrained meta path P = (A1A2 . . .Al|C), P is not
equal to P−1. Note that A1 and Al are either of the same or different types, such as
APC|P.L = “DM” and PCPLP|C = “CIKM”.

Similarly, HRank-AS is also based on a random walk process that random walkers
wander between A1 and Al along the path. The ranks of A1 and Al can be seen as the
visiting probability of walkers, which are defined as follows:

R(Al|P−1) = αR(A1|P)MP + (1 − α)EAl

R(A1|P) = αR(Al|P−1)MP−1 + (1 − α)EA1

(4.3)

where MP and MP−1 are the reachable probability matrix of path P and P−1. EA1 and
EAl are the restart probability of A1 and Al. Obviously, HRank-SY is the special case
of HRank-AS. When the path P is symmetric, Eq. 4.3 is the same with Eq. 4.1.

The blue broken line in Fig. 4.2 illustrates an example which simultaneously
evaluates the importance of authors and conferences. Here, the CP is APC|P.L =
“DM”. The concrete calculating process is as follows:

R(Conf .|CP) = αR(Aut.|CP)MCP + (1 − α)EConf .

R(Aut.|CP) = αR(Conf .|CP)MCP−1 + (1 − α)EAut.

MCP = U
′
APU

′
PC = UAPMPMPUPC

MCP−1 = U
′
CPU

′
PA = UCPMPMPUPA

(4.4)

where MP is the constraint matrix on object type P (paper).
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4.1.2.4 Co-ranking for Objects and Relations

Until now, we have created methods to rank same or different types of objects under
a certain constrained meta path. However, there are many constrained meta paths
in heterogeneous networks. It is an important issue to automatically determine the
importance of paths [23, 25], since it is usually hard for us to identify which relation is
more important in real applications. To solve this problem (i.e., Q. 3), we propose the
HRank-CO to co-rank the importance of objects and relations. The basic idea is based
on an intuition that important objects are connected to many other objects through
a number of important relations and important relations connect many important
objects. So we organize the multiple relation networks with a tensor, and a random
walk process is designed on this tensor. The method not only can comprehensively
evaluate the importance of objects by considering all constrained meta paths, but
also can rank the contribution of different constrained meta paths.

In Fig. 4.3a, we show an example of multiple relations among objects, generated
by multiple meta paths. There are three objects of type A, three objects of type B,
and three types of relations among them. These relations are generated by three
constrained meta paths with type A as the source type and type B as the target
type. To describe the multiple relations among objects, we use the representation of
tensor which is a multidimensional array. We call X = (xi,j,k) a third-order tensor,
where xi,j,k ∈ R, for i = 1, · · · ,m, j = 1, · · · , l, k = 1, · · · , n. xi,j,k represents the
times that object i is related to object k through the jth constrained meta path. For
example, Fig. 4.3b is a three-way array, where each two-dimensional slice represents
an adjacency matrix for a single relation. So the data can be represented as a tensor
of size 3 × 3 × 3. In the multirelational network, we define the transition probability
tensor to present the transition probability among objects and relations.

Definition 4.6 (Transition probability tensor) In a multirelational network, X is the
tensor representing the network. F is the normalized tensor of X along the column
vector. R is the normalized tensor of X along the tube vector. T is the normalized

Fig. 4.3 An example of
multirelations of objects
generated by multiple paths:
a the graph representation;
b the corresponding tensor
representation

(a) Multiple relations (b) Tensor representation
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tensor of X along the row vector. F, R, and T are called the transition probability
tensors which can be denoted as follows:

fi,j,k = xi,j,k
∑m

i=1 xi,j,k
i = 1, 2, . . . ,m

ri,j,k = xi,j,k
∑l

j=1 xi,j,k
j = 1, 2, . . . , l

ti,j,k = xi,j,k
∑n

k=1 xi,j,k
k= 1, 2, . . . , n

(4.5)

fi,j,k can be interpreted as the probability of object i (of type A) being the visiting
object when relation j is used and the current object being visited is object k (of type
B), ri,j,k represents the probability of using relation j given that object k is visited
from object i, and ti,j,k can be interpreted as the probability of object k being visited,
given that object i is currently the visiting object and relation j is used. The meaning
of these three tensors can be defined formally as follows:

fi,j,k = Prob(Xt = i|Yt = j,Zt = k)

ri,j,k = Prob(Yt = j|Xt = i,Zt = k)

ti,j,k = Prob(Zt = k|Xt = i,Yt = j)

(4.6)

in which Xt , Zt , and Yt are three random variables representing visiting at certain
object of type A or type B and using certain relation respectively at the time t.

Now, we define the stationary distributions of objects and relations as follows:

x = (x1, x2, · · · , xm)T

y = (y1, y2, · · · , yl)
T

z = (z1, z2, · · · , zn)
T

(4.7)

in which

xi = lim
t→∞Prob(Xt = i)

yj = lim
t→∞Prob(Yt = j)

zk = lim
t→∞Prob(Zt = k)

(4.8)
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From the above equations, we can get:

Prob(Xt = i) =
l∑

j=1

n∑

k=1

fi,j,k × Prob(Yt = j,Zt = k)

Prob(Yt = j) =
m∑

i=1

n∑

k=1

ri,j,k × Prob(Xt = i,Zt = k)

Prob(Zt = k) =
m∑

i=1

l∑

j=1

ti,j,k×Prob(Xt = i,Yt = j)

(4.9)

where Prob(Yt = j,Zt = k) is the joint probability distribution of Yt and Zt , Prob
(Xt = i,Zt = k) is the joint probability distribution of Xt and Zt , and
Prob(Xt = i,Yt = j) is the joint probability distribution of Xt and Yt .

To obtain xi, yj, and zk , we assume that Xt , Yt , and Zt are all independent from
each other which can be denoted as below:

Prob(Xt = i,Yt = j) = Prob(Xt = i)Prob(Yt = j)

Prob(Xt = i,Zt = k) = Prob(Xt = i)Prob(Zt = k)

Prob(Yt = j,Zt = k) = Prob(Yt = j)Prob(Zt = k)

(4.10)

Consequently, through combining the equations with the assumptions above,
we get:

xi =
l∑

j=1

n∑

k=1

fi,j,kyjzk, i = 1, 2, . . . ,m,

yj =
m∑

i=1

n∑

k=1

ri,j,kxizk, j = 1, 2, . . . , l,

zk =
m∑

i=1

l∑

j=1

ti,j,kxiyj, k = 1, 2, . . . , n.

(4.11)

The equations above can be written in a tensor format:

x = Fyz, y = Rxz, z = Txy (4.12)

with
∑m

i=1 xi = 1,
∑l

j=1 yj = 1, and
∑n

k=1 zk = 1.

According to the analysis above, we can design the following algorithm to co-rank
the importance of objects and relations.



70 4 Path-Based Ranking and Clustering

Algorithm 4.1 HRank-CO Algorithm
Input:
Three tensors F, T and R, three initial probability distributions x0, y0 and z0 and the tolerance ε.
Output:
Three stationary probability distributions x, y and z.
Procedure:
Set t = 1;
repeat

Compute xt = Fyt−1zt−1;
Compute yt = Rxtzt−1;
Compute zt = Txtyt ;

until ||xt − xt−1|| + ||yt − yt−1|| + ||zt − zt−1|| < ε

4.1.3 Experiments

In this section, we do experiments to validate the effectiveness of three versions of
HRank on three real datasets, respectively. Here we use three real datasets: DBLP
dataset [14, 25], ACM dataset [14], and IMDB dataset [16].

4.1.3.1 Ranking of Homogeneous Objects

Since the homogeneous objects are connected by symmetric constrained meta paths,
the experiments validate the effectiveness of HRank-SY on symmetric constrained
meta paths.

Experiment Study on Symmetric ConstrainedMeta Paths This experiment ranks
the same type of objects by designating a symmetric constrained meta path on ACM
dataset. Here, we rank the importance of authors through the symmetric meta path
APA, which considers the co-author relations among authors. We also employ two
constrained meta paths APA|P.L = “H.2” and APA|P.L = “H.3”, where the cate-
gories of ACM H.2 and H.3 represent “database management” and “information
storage/retrieval,” respectively. That is, two constrained meta paths subtly consider
the co-author relations in database/data mining field and information retrieval field,
respectively. We employ HRank-SY to rank the importance of authors based on these
three paths. As the baseline methods, we rank the importance of authors with PageR-
ank and the degree of authors (called Degree method). We directly run PageRank on
the whole ACM network by ignoring the heterogeneity of objects. Since the results
of PageRank mix all types of objects, we select the author type from the ranking list
as the final results.

The top ten authors of each method are shown in Table 4.1. We can find that
all these ranking lists have some common influential authors except that of PageR-
ank. The results of PageRank include some not very well-known authors in data-
base/information retrieval (DB/IR) field, such as Ming Li and Wei Wei, although
they may be very influential in other fields. We know that the PageRank values of
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Table 4.1 Top ten authors of different methods on ACM dataset. The number in the parenthesis of
the fifth column means the rank of authors in the whole ranking list returned by PageRank

Rank APA APA|P.L =
“H.3”

APA|P.L =
“H.2”

PageRank Degree

1 Jiawei Han W. Bruce Croft Jiawei Han Ming Li(1522) Jiawei Han

2 Philip Yu ChengXiang
Zhai

Christos
Faloutsos

Wei Wei(2072) Philip Yu

3 Christos
Faloutsos

James Allan Philip Yu Jiawei
Han(5385)

ChengXiang
Zhai

4 Zheng Chen Jamie Callan Jian Pei Tao Li(6090) Zheng Chen

5 Wei-Ying Ma Zheng Chen H. Garcia-
Molina

Hong-Jiang
Zhang(6319)

Christos
Faloutsos

6 ChengXiang
Zhai

Ryen W. White Jeffrey F.
Naughton

Wei Ding(6354) Ravi Kumar

7 W. Bruce Croft Wei-Ying Ma Divesh
Srivastava

Jiangong
Zhang(7285)

W. Bruce Croft

8 Scott Shenker Jian-Yun Nie Raghu
Ramakrishnan

Christos
Faloutsos(7895)

Wei-Ying Ma

9 H. Garcia-
Molina

Gerhard
Weikum

Charu C.
Aggarwal

Feng Pan(8262) Gerhard
Weikum

10 Ravi Kumar C. Lee Giles Surajit
Chaudhuri

Hongyan
Liu(8440)

Divesh
Srivastava

objects are decided by their degrees to a large extent, so the rank values of affiliation
objects are high due to their high degrees. It improves the rank values of author
objects connecting multiple high-ranking affiliations. The bad results of PageRank
show that the ranking in heterogeneous networks should consider the heterogene-
ity of objects. Otherwise, it cannot distinguish the effect of different types of links.
Moreover, we can also observe that the results of HRank with constrained meta paths
have obvious bias on the field it assigns. For example, the path APA|P.L = “H.3”
reveals the important authors in information retrieval field, such as W. Bruce Croft,
ChengXiang Zhai, and James Allan. However, the path APA|P.L = “H.2” returns
the influential authors in database and data mining field, such as Jiawei Han and
Christos Faloutsos. For the meta path APA, it mingles well-known authors in these
two fields. The results illustrate that the constrained meta paths are able to capture
subtle semantics by deeply disclosing the most influential authors in a certain field.

Quantitative Comparison ExperimentsBased on the results returned by five meth-
ods, we can obtain five candidate ranking lists of authors in ACM dataset. To evalu-
ate the results quantitatively, we crawled data as ground truth from two well-known
websites. The first ground truth provides the author ranks from Microsoft Acad-
emic Search.1 Specifically, we crawled two standard ranking lists of authors in two

1http://academic.research.microsoft.com/.

http://academic.research.microsoft.com/
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Fig. 4.4 The distances between the ranking lists obtained by different methods and the standard
ranking lists on different fields on ACM dataset. The ground truth is from Microsoft Academic
Search

academic fields: DB and IR. Then, we compare the difference between our candidate
ranking lists and the standard ranking lists. In order to measure the quality of the
ranking results, we use the Distance criterion proposed in [12], which is defined as
follows.

D(R,R′) =
∑n

i=1[(n − i) × ∑i
j=1∧R′

j /∈{R1,...,Ri} 1]
∑� n

2 �
i=1[(n − i) × i] + ∑n

i=� n
2 �+1[(n − i) × (n − i)]

(4.13)

where Ri represents the ith object in ranking list R, while R′
j denotes the jth object in

ranking list R′. And n is the total number of objects in the ranking lists. Note that the
numerator of the formula measures the real distance between the two rankings, and
the denominator of the formula is used to normalize the real distance to a number
between 0 and 1. So the criterion not only measures the number of mismatches
between these two lists, but also considers the position of these mismatches. The
smaller Distance means the smaller difference (i.e., better performance).

In this experiment, we compare the five candidate ranking lists with each of the
two standard ranking lists from Microsoft Academic Search and the Distance results
are shown in Fig. 4.4. We can observe an obvious phenomenon: The results obtained
by the constrained meta paths have the smallest Distance on its corresponding field,
while they have the largestDistanceon other fields. For example, HRank with the path
APA|P.L = “H.2” has the smallest Distance on the DB field in Fig. 4.4a, while it has
the largestDistance on IR field in Fig. 4.4b. The reason lies in that the pathAPA|P.L =
“H.2” focuses on the authors in the DB field. Meanwhile, these authors deviate from
those in the IR field. The results further illustrate that the constrained meta path can
disclose the influential authors in a certain field more correctly. Since the meta path
(i.e., APA) considers the co-author relationship on all fields, it achieves mediocre
performances on these two fields. In fact, the HRank with meta path APA only
achieves closer performances to PageRank and Degree methods. It implies that the
constrained meta path in HRank indeed helps to improve the ranking performances
in a specific field.



4.1 Meta Path-Based Ranking 73

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

 

 

APA|P.L=H.2
APA|P.L=H.3
PageRank
Degree
APA

(a) DB field

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 APA|P.L=H.2
APA|P.L=H.3
PageRank
Degree
APA

(b) IR field

Fig. 4.5 F1 accuracy of the ranking lists obtained by different methods on different fields on ACM
dataset. The ground truth is from ArnetMiner

Furthermore, we quantitatively evaluate the results according to the second ground
truth from ArnetMiner [26] that offers comprehensive search and mining services
for academic community.2 Specifically, we crawl the first 200 authors as experts
in DB and IR fields through searching “data mining” and “information retrieval.”
Since these 200 experts have no ranking order, we evaluate the accuracy of the top
k authors of five candidate ranking lists with the F1 score. From the results shown
in Fig. 4.5, we can observe the same phenomena. That is, the constrained meta paths
always achieve the best performances on their corresponding fields, while they have
the worst performances on other fields (note that the higher F1 score means the better
performances). Moreover, the meta paths also have the moderate performances. The
experiments on both ground truths confirm that HRank is able to improve the ranking
performances in a specific field through assigning constrained meta paths.

4.1.3.2 Ranking of Heterogeneous Objects

Then, the experiments validate the effectiveness of HRank-AS on asymmetric con-
strained meta paths.

Experiment Study on Asymmetric ConstrainedMeta Paths The experiments are
done on the DBLP dataset. We evaluate the importance of authors and conferences
simultaneously based on the meta path APC, which means authors publish papers on
conferences. Two constrained meta paths (APC|P.L = “DB” and APC|P.L = “IR”)
are also included, which means authors publish DB(IR) field papers on conferences.
Similarly, the experiments also include two baseline methods (i.e., PageRank and
Degree) in above experiments with the same experimental process.

The top ten authors and conferences returned by these five methods are shown
in Tables 4.2 and 4.3, respectively. As shown in Table 4.2, the ranking results of
these methods on authors all are reasonable; however, the constrained meta paths
can find the most influential authors in a certain field. For example, the top three
authors of APC|P.L = “DB” are Surajit Chaudhuri, Hector Garcia-Molina, and H.V.
Jagadish, and all of them are very influential researchers in the database field. The

2http://arnetminer.org/.

http://arnetminer.org/
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Table 4.2 Top ten authors of different methods on DBLP dataset. The number in the parenthesis
of the fifth column means the rank of authors in the whole ranking list returned by PageRank

Rank APC APC|P.L =
“DB”

APC|P.L =
“IR”

PageRank Degree

1 Gerhard
Weikum

Surajit
Chaudhuri

W. Bruce Croft W. Bruce
Croft(23)

Philip S. Yu

2 Katsumi Tanaka H. Garcia-
Molina

Bert R. Boyce Gerhard
Weikum(24)

Gerhard
Weikum

3 Philip S. Yu H.V. Jagadish Carol L. Barry Philip S. Yu(25) Divesh
Srivastava

4 H. Garcia-
Molina

Jeffrey F.
Naughton

James Allan Jiawei Han(26) Jiawei Han

5 W. Bruce Croft Michael
Stonebraker

ChengXiang
Zhai

H. Garcia-
Molina(27)

H. Garcia-
Molina

6 Jiawei Han Divesh
Srivastava

Mark Sanderson Divesh
Srivastava(28)

W. Bruce Croft

7 Divesh
Srivastava

Gerhard
Weikum

Maarten de
Rijke

Surajit
Chaudhuri(29)

Surajit
Chaudhuri

8 Hans-Peter
Kriegel

Jiawei Han Katsumi Tanaka H.V.
Jagadish(30)

H.V. Jagadish

9 Divyakant
Agrawal

Christos
Faloutsos

Iadh Ounis Jeffrey F.
Naughton(31)

Jeffrey F.
Naughton

10 Jeffrey Xu Yu Philip S. Yu Joemon M. Jose Rakesh
Agrawal(32)

Rakesh Agrawal

Table 4.3 Top ten conferences of different methods on DBLP dataset. The number in the parenthesis
of the fifth column means the rank of conferences in the whole ranking list returned by PageRank

Rank APC APC|P.L =
“DB”

APC|P.L =
“IR”

PageRank Degree

1 CIKM ICDE SIGIR ICDE(3) ICDE

2 ICDE VLDB WWW SIGIR(4) SIGIR

3 WWW SIGMOD CIKM VLDB(5) VLDB

4 VLDB PODS JASIST CIKM(6) SIGMOD

5 SIGMOD DASFAA WISE SIGMOD(7) CIKM

6 SIGIR EDBT ECIR JASIST(8) JASIST

7 DASFAA ICDT APWeb WWW(9) WWW

8 JASIST MDM WSDM DASFAA(10) PODS

9 WISE WebDB JCIS PODS(11) DASFAA

10 EDBT SSTD IJKM JCIS(12) EDBT
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top three authors of APC|P.L = “IR” are W. Bruce Croft, Bert R. Boyce, and Carol
L. Barry, and they all have the high academic reputation in the information retrieval
field. Similarly, as we can see in Table 4.3, HRank with constrained meta paths (i.e.,
APC|P.L = “DB” and APC|P.L = “IR”) can clearly find the important conferences
in DB and IR fields, while other methods mingle these conferences. For example,
the most important conferences in the DB field are ICDE, VLDB, and SIGMOD,
while the most important conferences in the IR field are SIGIR, WWW, and CIKM.
Observing Tables 4.2 and 4.3, we can also find the mutual effect of authors and
conferences. That is, an influential author published many papers in the important
conferences, and vice versa. For example, W. Bruce Croft published many papers
in SIGIR and CIKM, while Surajit Chaudhuri has many papers in SIGMOD, ICDE,
and VLDB.

Quantitative Comparison Experiments To verify the effectiveness of these meth-
ods, we use the above Distance criterion to calculate the difference between
their results and standard ranking lists crawled from Microsoft Academic Search.
Figure 4.6 shows the differences of author ranking lists. We can observe the same phe-
nomenon with above quantitative experiments again. That is, HRank with constrained
meta paths achieve the best performances on their corresponding field. Meanwhile,
they have the worst performances on other fields. In addition, compared to that of
PageRank and Degree, the mediocre performances of HRank with meta path APC
further demonstrate the importance of constrained meta path to capture the subtle
semantics contained in heterogeneous networks. Similarly, we further evaluate the F1
accuracy of these methods according to the ground truth crawled from ArnetMiner.
The results are shown in Fig. 4.7. Once again the results reveal the same findings that
HRank can more accurately discover the authors ranking in a special field with the
help of constrained meta path.

Experiments on Meta Path with Multiple Constraints Furthermore, we validate
the effectiveness of meta path with multiple constraints. In the above experiments,
we employ the constraint on the label of papers in HRank with the meta path
APC. Here, we add one more constraint on conference. Specifically, by contrast
to the constrained meta path APC|P.L = “DB”, we employ the paths APC|P.L =
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Fig. 4.6 Distances between the candidate author ranking lists and the standard ranking lists on
different fields on DBLP dataset. The ground truth is from Microsoft Academic Search
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Fig. 4.7 F1 accuracy of the ranking lists obtained by different methods on different fields on DBLP
dataset. The ground truth is from ArnetMiner
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Fig. 4.8 Rank accuracy of HRank with different constrained meta paths on DBLP dataset

“DB”&&C = “VLDB”, APC|P.L = “DB”&&C = “SIGIR”, and APC|P.L =
“DB”&&C = “CIKM”, which mean authors publish DB field papers on specified
conferences (e.g., VLDB, SIGIR, and CIKM). Similarly, we add the same confer-
ence constraints on the path APC|P.L = “IR”. Same with the above experiments,
we calculate the rank accuracy of HRank with these constrained meta paths and the
results are shown in Fig. 4.8.

We know that HRank with the path APC|P.L = “DB” (APC|P.L = “IR”) can
reveal the influence of authors in the DB (IR) field. As ground truth, this ranking is
based on the aggregation of many conferences related to the DB field. The added
conference constraint in HRank further reveals the influence of authors in the spe-
cific conference of the field. So we can use the closeness to the ground truth to reveal
the importance of a conference to that field. That is, if the ranking from a specific
conference is quite closer to the ground truth rank, that can imply the conference is a
dominating conference in that field. From Fig. 4.8a, we can find that the VLDB con-
ference constraint (the blue curve) achieves the closest performances to the ground
truth ranking, while the performances of the SIGIR conference constraint (the black
curve) deviate most. So we can infer that the VLDB is more important than SIGIR in
the DB field and the CIKM has the middle importance. Similarly, from Fig. 4.8b, we
can infer that the SIGIR is more important than VLDB in the IR field. These findings
comply with our common sense. As we know, although the VLDB and SIGIR both
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are the top conferences in computer science, they are very important only in their
research fields. For example, the VLDB is important in the DB field, while it is not
so important in the IR field. The middle importance of the CIKM conference stems
from the fact that it is a comprehensive conference including papers from both DB
and IR fields. In addition, we can find that the SIGIR curve almost overlaps with the
ground truth over the IR field, while the VLDB curve still has a gap with the ground
truth over the DB field. We think the reason is that SIGIR is the main conference in
the IR field, while in the DB field, there are also other important conferences, such
as SIGMOD and ICDE. Overall, the experiments show that HRank with constrained
meta path can not only effectively find the influential authors in each research field
on a specified conference but also indirectly reveal the importance of conferences in
the fields. It also implies that HRank can achieve accurate and subtle ranking results
by flexibly setting the combination of constraints.

4.1.3.3 Co-ranking of Objects and Paths

Experiment Study on Co-ranking on Symmetric Constrained Meta Paths In
this experiment, we will validate the effectiveness of HRank-CO to rank objects and
symmetric constrained meta paths simultaneously. The experiment is done on ACM
dataset. First, we construct a (2, 1)th order tensor X based on 73 constrained meta
paths (i.e., APA|P.L = Lj, j = 1 · · · 73). When the ith and the kth authors co-publish
a paper together, of which the label is the jth label (i.e., ACM categories), we add
one to the entries xi,j,k and xk,j,i of X. In this case, X is symmetric with respect to
the index j. By considering all the publications, xi,j,k (or xk,j,i) refers to the number
of collaborations by the ith and the kth author under the jth paper label. In addition,
we do not consider any self-collaboration, i.e., xi,j,i = 0 for all 1 ≤ i ≤ 17,431 and
1 ≤ j ≤ 73. The size of X is 17,431 × 73 × 17,431 where there are 91,520 nonzero
entries in X. The percentage of nonzero entries is 4.126 × 10−4%. In this dataset,
we will evaluate the importance of authors through the co-author relations, and
meanwhile, we will analyze the importance of paths (i.e., which paths have the most
contributions to the importance of authors).

Figure 4.9 shows the stationary probability distributions of authors and paths. It is
obvious that some authors and paths have higher stationary probability, which implies
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Fig. 4.9 Stationary probability distributions of authors and constrained meta paths
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Table 4.4 Top 10 authors and constrained meta paths (note that only the constraint (Lj) of the paths
(APA|P.L = Lj, j = 1 . . . 73) are shown in the third column of the table)

Rank Authors Constrained meta paths

1 Jiawei Han H.3 (Information storage and retrieval)

2 Philip Yu H.2 (Database management)

3 Christos Faloutsos C.2 (Computer-communication networks)

4 Ravi Kumar I.2 (Artificial intelligence)

5 Wei-Ying Ma F.2 (Analysis of algorithms and problem complexity)

6 Zheng Chen D.4 (Operating systems)

7 Hector Garcia-Molina H.4 (Information systems applications)

8 Hans-Peter Kriegel G.2 (Discrete mathematics)

9 Gerhard Weikum I.5 (Pattern recognition)

10 D.R. Karger H.5 (Information interfaces and presentation)

that these authors and paths are more important than others. Table 4.4 shows the top
ten authors (left) and paths (right) based on their HRank values. We can find that the
top ten authors all are influential researchers in the DM/IR fields, which conforms to
our common senses. Similarly, the most important paths are related to DM/IR fields,
such as APA|P.L = “H.3” (information storage and retrieval) and APA|P.L = “H.2”
(database management). Although the conferences in ACM dataset are from multiple
fields, such as DM/DB (e.g., KDD, SIGMOD) and computation theory (e.g., SODA,
STOC), there are more papers from the DM/DB fields, which makes the authors
and paths in the DM/DB fields ranked higher. We can also find that the influence of
authors and paths can be promoted by each other. The reputation of Jiawei Han and
Philip Yu come from their productive papers in the influential fields (e.g., H.3 and
H.2). In order to observe this point more clearly, we show the number of co-authors
of the top ten authors based on the top ten paths in Table 4.5. We can observe that
there are more collaborations for top authors in the influential fields. For example,
although Zheng Chen (rank 6) has more number of co-authors than Jiawei Han
(rank 1), the collaborations of Jiawei Han focus on ranked higher fields (i.e., H.3 and
H.2), so Jiawei Han has higher HRank score. Similarly, the top paths contain many
collaborations of influential authors.

Experiment Study on Co-ranking on Asymmetric Constrained Meta Paths The
experiments on the Movie dataset aim to show the effectiveness of HRank-CO to
rank heterogeneous objects and asymmetric constrained meta paths simultaneously.
In this case, we construct a third-order tensor X based on the constrained meta paths
AMD|M.T . That is, the tensor represents the actor–director collaboration relations
on different types of movies. When the ith actor and the kth director cooperate in
a movie of the jth type, we add one to the entries xi,j,k of X. By considering all the
cooperations, xi,j,k refers to the number of collaborations by the ith actor and the kth
director under the jth type of movie. The size ofX is 5324 × 112 × 551, and there are
36,529 nonzero entries in X. The percentage of nonzero entries is 7.827 × 10−4%.
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Table 4.5 Number that the top ten authors collaborate with others via the top ten constrained meta
paths (note that only the constraints (Lj) of the paths (APA|P.L = Lj, j = 1 . . . 73) are shown in the
first row of the table)

Ranked
author/CP

1 (H.3) 2 (H.2) 3 (C.2) 4 (I.2) 5 (F.2) 6 (D.4) 7 (H.4) 8 (G.2) 9 (I.5) 10 (H.5)

1 (Jiawei Han) 51 176 0 0 0 0 9 2 2 0

2 (Philip Yu) 51 94 0 0 9 0 3 0 13 0

3 (C. Faloutsos) 17 107 0 5 9 0 3 4 2 0

4 (Ravi Kumar) 73 27 0 3 13 0 18 5 0 0

5 (Wei-Ying Ma) 132 26 0 9 0 0 2 0 30 10

6 (Zheng Chen) 172 9 0 9 0 0 22 0 38 9

7 (H. Garcia-
Molina)

23 65 3 0 0 0 1 0 0 4

8 (H. Kriegel) 19 28 5 0 0 0 6 0 7 4

9 (G. Weikum) 82 14 0 4 0 0 8 0 4 0

10 (D.R. Karger) 11 5 13 0 7 4 1 7 0 7

Table 4.6 Top 10 actors, directors, and meta paths on IMDB dataset (note that only the constraints
(Tj) of the paths (AMD|M.T = Tj, j = 1 . . . 1591) are shown in the fourth column)

Rank Actor Director Conditional meta path

1 Eddie Murphy Tim Burton Comedy

2 Harrison Ford Zack Snyder Drama

3 Bruce Willis Marc Forster Thriller

4 Drew Barrymore David Fincher Action

5 Nicole Kidman Michael Bay Adventure

6 Nicolas Cage Ridley Scott Romance

7 Hugh Jackman Richard Donner Crime

8 Robert De Niro Steven Spielberg Sci-Fi

9 Brad Pitt Robert Zemeckis Animation

10 Christopher Walken Stephen Sommers Fantasy

Table 4.6 shows the top ten actors, directors, and constrained meta paths (i.e.,
movie type). We observe the mutual enhancements of the importance of objects
and meta paths again. Basically, the results comply with our common senses. The
top ten actors are well known, such as Eddie Murphy and Harrison Ford. Similarly,
these directors are also famous in filmdom due to their works. These movie types
obtained are the most popular movie subjects as well. In addition, we can observe
the mutual effect of objects and paths one more time. As we know, Eddie Murphy
and Drew Barrymore (rank 1, 4 in actors) are famous comedy and drama (rank 1, 2 in
paths) actors. Harrison Ford and Bruce Willis (rank 2, 3 in actors) are popular thrill
and action (rank 3, 4 in paths) actors. These higher ranked directors also prefer to
those popular movie subjects. Furthermore, we also compare these results with the



80 4 Path-Based Ranking and Clustering

recommended results from the IMDB website.3 Although only a subset of movies
in IMDB is included in our experiments, the 80% of the top 10 actors in our results
are included in the set of the top 250 greatest movie actors in all time recommended
by IMDB,4 and the 50% of the top 10 directors in our results are included in the set
of the top 50 favorite directors recommended by IMDB.5 Moreover, most of movie
types recommended by our method have high ranks in the popular types summarized
by IMDB.6 The more details of the HRank method and experimental results can be
seen in [18].

4.2 Ranking-Based Clustering

4.2.1 Overview

Recently, the link-based clustering attracts more and more attention, which usually
groups objects that are densely interconnected but sparely connected with the rest
of the network [11]. Also with the boom of search engine, object ranking [1, 5]
becomes an important data mining task, which evaluates the importance of objects.
Conventionally, clustering and ranking are two independent tasks and they are usually
used separately. However, recent researches show that clustering and ranking can
mutually promote each other and their combination makes more sense in many
applications [21, 22]. If we know the important objects in a cluster, we can understand
this cluster better; and the ranking in a cluster provides more subtle and meaningful
information for clustering. Although it is a promising way to do clustering and ranking
together, previous approaches are confined to a simple HIN with special structure.
For example, Sun et al. validated the mutual improvement of clustering and ranking in
bipartite network [21] (an example shown in Fig. 4.10a) and star-schema network [22]
(an example shown in Fig. 4.10b). Shi et al. [27] integrated clustering and ranking in
the hybrid network including heterogeneous and homogeneous relations. However,
the data in real applications are usually more complex and irregular, which are beyond
the widely used bipartite or star-schema network. For example, the bibliographic
data (see an example in Fig. 4.10c) include not only heterogeneous relations but also
homogeneous relations (e.g., self loop on P); the bioinformatics data [2] (see an
example in Fig. 4.10d) have more complex structure, which includes multiple hub
objects (e.g., C and G). So it is desirable to design effective ranking-based clustering
algorithm for these complex and irregular HIN data. Broadly speaking, for HIN with
arbitrary schema, we need to design a general solution to manage the objects and
their relations, which is the basic for mining useful patterns on it.

3http://www.imdb.com/.
4http://www.imdb.com/list/ls050720698/.
5http://www.imdb.com/list/ls050131440/.
6http://www.imdb.com/list/ls050782187/?view=detail&sort=listorian:asc.

http://www.imdb.com/
http://www.imdb.com/list/ls050720698/
http://www.imdb.com/list/ls050131440/
http://www.imdb.com/list/ls050782187/?view=detail&sort=listorian:asc
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(a) bi-partite (b) star-schema (c) DBLP (d) SLAP

Fig. 4.10 Examples of heterogeneous information networks. The letters are the abbreviation of
different types of objects (e.g., P: paper, A: author)

Obviously, it is more practical and useful to determine the underlying clusters and
ranks on a general heterogeneous information network, but they are seldom exploited
until now. When we integrate ranking and clustering on an HIN with arbitrary schema,
it faces the following challenges. (1) A general HIN has more complex structure. For
a simple HIN with a bipartite or star-schema structure, it is relatively easy to manage
heterogeneous objects and build models. However, a general HIN may have arbitrary
schema, beyond the bipartite or star-schema structure. Although an intuitive way is
to decompose it into multiple simpler subnetworks, the issue is how we decompose
the HIN without structural information loss and maintain the consistency among
the decomposed subnetworks. (2) It is challenging to integrate the clustering and
ranking in a complex heterogeneous network. We know that it is still a daunting
task to separately do clustering and ranking on a general HIN. Therefore, it is more
difficult to design an effective mechanism to combine these two tasks on the HIN.

In this chapter, we study the ranking-based clustering problem on a general
HIN and propose a novel algorithm HeProjI to solve the Heterogeneous network
Projection and Integration of clustering and ranking tasks. In order to conveniently
manage objects and relations in an HIN with arbitrary schema, we design a network
projection method to project the HIN into a sequence of subnetworks without struc-
tural information loss, where the subnetwork may be a relatively simple bipartite
or star-schema network. Moreover, an information transfer mechanism is developed
to maintain the consistency across subnetworks. For each subnetwork, a path-based
random walk method is proposed to generate the reachable probability of objects,
which can be effectively used to estimate the cluster membership probability and the
importance of objects. Through iteratively analyzing each subnetwork, HeProjI can
obtain the steady and consistent clustering and ranking results. We perform a number
of experiments on three real datasets to validate the effectiveness of HeProjI. The
results show that HeProjI not only achieves better clustering and ranking accuracy
compared to well-established algorithms, but also effectively handles complex HIN
which cannot be handled by previous methods.
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4.2.2 Problem Formulation

In this section, we give the problem definition and some important concepts used in
this chapter.

Definition 4.7 (General heterogeneous information network) Given a schema A =
(T,R) which consists of a set of entities type T = {T} and a set of relations R =
{R}, a general information network is defined as a graph G = (X,E) with an object
type mapping function τ : X → T and link type mapping function ψ : E → R. Each
object |T| > 1 or the types of relations |R| > 1, the network is called heterogeneous
information network; otherwise, it is a homogeneous information network.

Figure 4.10 shows the schema of several HIN examples. The bipartite network
in Fig. 4.10a only includes two types of objects, and the widely used star-schema
network [16, 22, 24] in Fig. 4.10b organizes objects in HIN with one target type and
several attribute types. However, a general heterogeneous information network may
be more complex and irregular. It may not only include homogeneous or heteroge-
neous relations, but also include multiple hub objects. Figure 4.10d shows such a
general HIN example. The object G has heterogeneous relations (e.g., G→GO and
G→C) as well as homogeneous relations (e.g., G→G). Moreover, the network is
beyond the star-schema because of multiple hub objects (e.g., G and C). It is clear
that bipartite graph and star-schema network are the special case of a general HIN.

For a general HIN, it is difficult to manage objects and relations in the network.
Although we can project it into several homogeneous networks through assigning
meta paths as reference [3] did, it will loss much information among different-typed
objects. We know that, as the special case of HIN, the bipartite and star-schema
networks are relatively easy to manage objects and relations in the network. So a
basic idea of handling a general HIN is to decompose it into simpler networks.
Following this idea, we design a novel HIN projection method. Specifically, we can
select one type (called pivotal type) and its connected other types (called supportive
type). These types and their relations constitute the schema of a projected subnetwork
of original HIN. Formally, it can be defined as follows:

Definition 4.8 (Projected subnetwork) For an HIN with schema A = (T,R), its pro-
jected subnetwork has the schema A′ = (T′,R′) where T′ ⊂ T, R′ ⊂ R, T′ includes
one pivotal type (denoted as P) and other types connected with P (called supportive
type, denoted as S = {S}). R′ includes the heterogeneous relations between P and S
and homogeneous relations among P (if existing).

A projected subnetwork can be denoted as P − S. The X(P) is the object set of
pivotal type, and X(S) represents the object set of supportive type S. For convenience,
the projected subnetwork is also called subnetwork which can be represented with
its pivotal type P. For example, Fig. 4.11c shows the projected subnetwork G −
{C,T ,GO} with type G object (the one in red) as the pivotal type, while types C,T
and GO are the supportive types as they are object types connected to object type G.
Similarly, Fig. 4.11b and d shows the projected subnetworks with pivotal type objects
GO and C, respectively.
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Fig. 4.11 An example of HIN projection. The pivotal type is marked with red color. The dot line
represents the information transfer among subnetworks

It is clear that an HIN can be projected into a sequence of subnetworks through
selecting different pivotal types. So we define the HIN projection concept as follows.

Definition 4.9 (HIN projection) An HIN with t types of objects can be projected
into an ordered set of t projected subnetworks by successively selecting one of the t
types as pivotal type.

Figure 4.11 shows a projection example of SLAP network, a bioinformatics dataset
[17]. Through successively selecting the six object types (GO,G,C and so on) as
pivotal type, the SLAP network is projected into a sequence of six subnetworks. It
is clear that the HIN projection has the following properties.

Property 4.1 HIN projection is a structure–information-lossless network decom-
position.

According to Definition 4.9, all objects and relations in original HIN are in the pro-
jected subnetworks. That is to say, the HIN can be reconstructed from the set of
projected subnetworks.

Property 4.2 Each projected subnetwork in HIN projection should be a bipartite
graph or a star-schema network (with self loop).

According to Definition 4.8, if there are two types of objects in the subnetwork, it
is a bipartite graph; otherwise, it is a star-schema network. Note that, different from
the conventional bipartite and star-schema networks, the pivotal type in subnetworks
may include the homogenous relation (i.e., self loop).

Property 4.3 HIN projection is not unique for a general HIN.
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An HIN has different projection sequences through selecting different orders
of pivotal types. For example, the SLAP network in Fig. 4.11 has the projection
sequences: GO − G − C − Si − Sub − T , T − G − GO − C − Si − Sub, and so
on. In fact, an HIN with t types of objects has the t! projection sequences in all.

Assume that J represents a type in type set {T}. The object set can be denoted
as X={X(J)}, and X(J)={X(J)

p } where X(J)
p is the object p ∈ X(J) (i.e., τ(p)=J). The

relations among objects include two types (homogeneous and heterogeneous rela-
tions), which can be represented by the two types of matrices, homogeneous and
heterogeneous relation matrices, respectively. If type J has homogeneous relation
(e.g., the self loop on P in Fig. 4.10c), the homogenous relation matrices can be
written as H(J), where H(J)

pq denotes the relation between X(J)
p and X(J)

q . If two types
(I and J) have heterogeneous relation (e.g., P − A in Fig. 4.10c), the heterogeneous
relation matrices can be written as H(I,J), where H(I,J)

pq denotes the relation between
X(I)
p and X(J)

q . Correspondingly, we have homogeneous transition matrix M(J) and
heterogeneous transition matrix M(I,J). It is clear that the transition matrix M(I,J)

can be derived from the relation matrix H(I,J) by M(I,J)=D(I,J)−1
H(I,J), where D(I,J)

is the diagonal matrix with the diagonal value equaling to the corresponding row
sum of H(I,J). Similarly, M(J)=D(J)−1

H(J). Taking Fig. 4.10c as example, M(P) is the
transition probability matrix of the citation relation H(P), and M(A,P) is the transi-
tion probability matrix of the A − P relation H(A,P). For given network structure, we
can derive the homogeneous and heterogeneous transition matrices. In the following
section, we consider that the transition matrices are known.

Different from conventional clustering in homogeneous networks, cluster in HIN
should include different types of objects, where these objects share the same semantic
meaning. For example, in bibliographic data, a cluster about data mining area includes
venues, authors, and papers in this field. For each type of objects X(J), we define
the membership matrix B(J|Ck) ∈ [0, 1]|X(J)|×|X(J)|, which is a diagonal matrix whose
diagonal value represents the membership probability ofX(J)

p belonging to the cluster
Ck . Note that the sum of membership probability of X(J)

p in K clusters is 1 (i.e.,
∑K

k=1 B
(J|Ck)
pp =1). Now, we can formulate the problem of clustering on a general

HIN as follows: Given a heterogeneous network G=(X,E) and the semantic cluster
number K , our goal is to find a clusters set {Ck}Kk=1, where Ck is defined as Ck =
{{B(J|Ck)}J∈{T}}. In this way, it is a soft clustering. That is, an object p inX(J) can belong
to several clusters, and it is in a cluster Ck with the probability B(J|Ck)

pp . Moreover, a
cluster Ck can contain all kinds of objects.

4.2.3 The HeProjI Algorithm

Through the HIN projection, it will become much easier to analyze the HIN through
handling a set of simple projected subnetworks, since these subnetworks are bipartite
or star-schema networks. However, it may result in a troublesome business: how
to maintain the consistency among different subnetworks. To solve it, we design
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an information transfer mechanism which inherits a portion of information from
other subnetworks to current one. In order to integrate the clustering and ranking
in a uniform framework, a model is required to flexibly support these two tasks.
Following this idea, we build a probabilistic model to estimate the probability of
supportive and pivotal objects in each subnetwork. Moreover, the probability of
objects can effectively infer the clustering information and represent the importance
of objects.

4.2.3.1 Framework of HeProjI Algorithm

Specifically, we first project the original HIN into a sequence of subnetworks and
then randomly assign the pivotal objects of the first subnetwork into K clusters
(i.e., initialize {Ck}Kk=1). For each subnetwork, a path-based random walk method is
proposed to estimate the reachable probability of supportive objects in each cluster
Ck , and then, a generative model is used to obtain the probability of pivotal objects.
After that, an EM algorithm is employed to estimate the posterior probability of
objects (i.e., the clustering information {Ck}Kk=1). According to probability of objects,
we can also calculate their ranking in each cluster. The above step is repeated until
convergence. In the iterative process, the clustering and ranking can mutually promote
each other until they reach a steady result. The basic framework of HeProjI is shown
in Algorithm 4.2. In the following sections, we will present these operations in detail.

4.2.3.2 Reachable Probability Estimation of Objects

Basic ideaAs we have noted that the built probabilistic model can not only support the
clustering and ranking tasks but also maintain the consistency among subnetworks, so
the design of the model should obey the following two rules: (1) PageRank principle.
In order to support the ranking task, the probability of objects should be able to

Algorithm 4.2 HeProjI: Detecting K clusters on HIN
Input:
Cluster number K and transition probability matrix M.
Output:
Membership probability B(J|Ck ) of objects on each cluster{Ck }Kk=1

Project the HIN into a sequence of sub-networks
Randomly initialize the membership probability B(J|Ck )

repeat
Select the projected sub-network (P − S) in order
for cluster Ck ∈ C do

Establish the probability of supportive objects: Pr(X(S)|Ck )
Generate the probability of pivotal objects: P(X(P)|Ck )
Estimate the posterior probability of objects: P(Ck |X(P)), P(Ck |X(S))

end for
Rank the objects: Rank(X(P)|Ck ), Rank(X(S)|Ck )

until the membership probability obtains convergence
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reflect their ranks. In other words, the probability of objects should be positively
correlated with the node degree. (2) Consistency principle. In order to maintain
the consistency among subnetworks, an effective mechanism should be designed to
transfer appropriate information among subnetworks.

For the first rule (i.e., PageRank principle), the random walk is an apparent solu-
tion. However, it is traditionally used in homogeneous networks [1, 5]. Although
it is also used in bipartite graph [28], it is seldom applied in HIN. Sun et al. [22]
employed it to estimate the probability of attribute objects in a star-schema network,
while it is confined to two types of objects. Heterogeneous objects and link semantics
make it difficult to directly employ random walk in HIN. In a projected subnetwork,
there are different types of supportive objects and they are connected through pivotal
objects. So the random walk among objects should follow the specified paths. That
is, the random walkers among supportive objects would need to pass through the
pivotal objects. As a consequence, we need to estimate the probability of supportive
and pivotal objects separately. The reachable probability of a supportive object can
be calculated as the sum of the probability of walkers from other supportive objects
walking to it through the pivotal type. The probability of pivotal objects can be gen-
erated through its reachable supportive objects. Because the bipartite network only
contains one supportive type, the probability of supportive object can be calculated
by the sum of probability of walkers from the same type of objects walking to it
through the pivotal type. Figure 4.12 shows the probability estimation process. The
reachable probability of typeC can be calculated by random walkers wandering from
type GO and T to type C through type G in Fig. 4.12a.

For the second rule (consistency principle), it is an intuitive idea to transfer infor-
mation among subnetworks. However, what and how do we transfer? It is clear that
the subnetworks are overlapped. If we transfer the information of any overlapping
types, the model may be hard to control, since two subnetworks may have many over-
lapping types and one type may appear in many subnetworks. If we do clustering
on each subnetwork individually, it is difficult to map clusters among subnetworks.
We know that the random walk among all supportive objects passes through the piv-
otal objects. So we only need to transfer the information of pivotal type, and then,

(a) star-schema network (b) bipartite network

Fig. 4.12 Illustration of the probability estimation process for supportive and pivotal objects. The
black dash-dot line represents the random walk process among supportive objects, and the blue
dotted line represents the generative process of pivotal objects
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the information can be propagated to other supportive objects by random walkers.
In order to maintain the clustering consistency during the iteration, we let the piv-
otal objects in the current subnetwork inherit a portion of clustering information
from previous subnetworks with a controlling parameter. The dot line in Fig. 4.11
shows two information inheritance examples. Specifically, the information on object
G calculated in Fig. 4.11b is passed on to the calculation of the pivotal object G in
Fig. 4.11c which affects the calculation of object C, while the information on object
C is then passed on to the calculation of pivotal object C in Fig. 4.11d.

Reachable Probability for SupportiveObjects First, we estimate the probability of
supportive objects. The path-based random walk process is formulated with matrix
representation. We use M(SI ,SJ |P,C) to represent the probability transition matrix from
supportive type SI to type SJ passing pivotal type P in the subnetwork C. M(SI ,SJ |P,C)

can be calculated as follows:

M(SI ,SJ |P,C) = M(SI ,P|C) × M(P,SJ |C) (4.14)

where M(SI ,P|C) is the transition matrix from SI to P (i.e., M(SI ,P)). Compared to
conditional transition matrix M(SI ,SJ |P,Ck) defined below, M(SI ,SJ |P,C) is also called
the global transition matrix, which is fixed for the subnetwork C. For example, in
Fig. 4.12a, the global transition matrix M(T ,GO|G,C) means the transition probability
from type T to GO through G on the subnetwork G − {T ,C,GO}. In the proposed
model, the global probability of objects is important information to smooth the prob-
ability of pivotal objects (see Eq. 4.21 for more details).

When considering the clustering information, the transition matrices among sup-
portive objects should be adjusted according to clusters. The clustering information
can be represented by the membership matrix of pivotal objects, so the conditional
transition matrix from SI to SJ through P in the cluster Ck (i.e., M(SI ,SJ |P,Ck)) can be
defined as follows:

M(SI ,SJ |P,Ck) = M(SI ,P|C) × B(P|Ck) × M(P,SJ |C) (4.15)

where B(P|Ck) is the membership of pivotal objects on cluster Ck .
The above transition matrices only consider the clustering information in the cur-

rent subnetwork, which may cause the inconsistency among different subnetworks.
For example, in the bibliographic data shown in Fig. 4.10c, clustering on the subnet-
work P − {A, V,T} may focus on research areas, while clustering on the subnetwork
A − {P} may more concern about co-author relations. In order to keep the clustering
consistency among subnetworks, we can inherit a portion of cluster information from
previous subnetworks. Only the clustering information of pivotal type is inherited
from previous networks, and it is integrated with current clustering information of
pivotal type. The reason why the simple mechanism work is that the pivotal objects,
as hub node, can propagate the clustering information to all supportive objects. The
transition matrices can be redefined as:
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B′′(P|Ck) = θS,P × B′(P|Ck) + (1 − θS,P) × B(P|Ck) (4.16)

M(SI ,SJ |P,Ck) = M(SI ,P|C) × B′′(P|Ck) × M(P,SJ |C) (4.17)

where B′(P|Ck) is the inherited membership matrix when the type P serves as a sup-
portive type in the subnetwork whose pivotal type is S, and the θS,P is a learning rate
parameter that controls the ratio of information inheritance from previous subnet-
work (pivotal type is S) to current one (pivotal type is P). The dot line in Fig. 4.11
illustrates the two examples of information inheritance. The new transition matrix
has the following advantages: (1) It transfers the clustering information among sub-
networks, which keeps the consistency of subnetworks, and (2) it helps to speed up
the convergence, since the priori clustering information is adopted. For a bipartite
network, the transition probability matrix can be denoted as M(SI ,SI |P,Ck), which has
the same calculation mechanism.

The conditional probability of supportive type SJ on subnetwork C and cluster Ck

is denoted as Pr(X(SJ )|C) ∈ [0, 1]1×|X(SJ )| and Pr(X(SJ )|Ck) ∈ [0, 1]1×|X(SJ )|. Inspired
by the PageRank [1], the probability of one type of objects is decided by the reachable
probability from other types of objects through pivotal objects. So the conditional
probability of supportive type SJ can be defined as follows.

Pr(X(SJ )|C) =
∑

SI∈S,SI �=SJ

Pr(X(SI )|C) × M(SI ,SJ |P,C) (4.18)

Pr(X(SJ )|Ck) =
∑

SI∈S,SI �=SJ

Pr(X(SI )|Ck) × M(SI ,SJ |P,Ck) (4.19)

The calculation is an iterative process, and Pr(X(SJ )|Ck) is initialized as the even
value at the first iteration. For a bipartite network, random walkers start from type
SJ and end up with the same type through the pivotal type P. The probability of
supportive type SJ , Pr(X(SJ )|Ck) can be defined as Pr(X(SJ )|Ck) = Pr(X(SJ )|Ck) ×
M(SJ ,SJ |Ck).

Reachable Probability for Pivotal Objects Then, we estimate the probability of
pivotal objects. We can consider that the pivotal objects are generated by adjacent
supportive objects, so a generative model can be adopted here. The probability of
pivotal objects comes from two parts: heterogeneous and homogeneous relations
(if the pivotal type has self loop). For heterogeneous relations, the heterogeneous
probability of pivotal object p in the subnetworkC (i.e.,Pr(X(P)

p |C)) can be calculated
as follows:

Pr(X(P)
p |C) =

∏∏

SJ∈Sq∈N(p)

Pr(X(SJ )
q |C) (4.20)

where N(p) is the set of neighbors of object p in the subnetwork. It means that the
pivotal object p is generated by the different types of adjacent supportive objects.
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Then, we consider the probability of pivotal object p in a clusterCk (i.e.,Pr(X(P)
p |Ck)).

Similarly, the probability is also generated from the adjacent supportive objects in
the cluster Ck . In addition, we add the global probability of pivotal object X(P)

p to
smooth the probability:

Pr(X(P)
p |Ck) = λ

∏∏

SJ∈Sq∈N(p)

Pr(X(SJ )
q |Ck) + (1 − λ)Pr(X(P)

p |C) (4.21)

where the smooth parameter λ represents the portion of global probability. The
smooth operation is an important component due to following reasons: (1) It prevents
pivotal objects from accumulating into minority clusters, which helps to improve the
clustering accuracy, and (2) it makes the probability change in pivotal objects more
steady, which can improve the stability of HeProjI. The experiments in Sect. 5.7 also
validate the importance of smooth operation.

For homogeneous relations (i.e., the pivotal object has self loop), we can calculate
the cluster-based homogeneous transition probability for pivotal type as follows:

M(P|Ck) = M(P|C) × B(P|Ck) (4.22)

M(P|Ck)
.p denotes the sum of transition probability of other pivotal objects reaching p

in cluster Ck , which represents the importance of object p to some extent.
When considering the homogeneous relations (if existing), the probability of

pivotal object p is generated by the heterogeneous and homogeneous relations, so it
can be calculated as follows:

P(X(P)
p |Ck) = Pr(X(P)

p |Ck) × M(P|Ck)
.p . (4.23)

4.2.3.3 Posterior Probability for Objects

In order to determine the membership of objects, we need to estimate posterior
probability of objects. In each subnetwork, there are two kinds of objects (i.e., pivotal
and supportive objects). Because pivotal objects are the hub of subnetwork that
integrate supportive objects and contain complete semantic information, we first
estimate the posterior probability of pivotal objects, and then, the posterior probability
of supportive objects is decided by that of pivotal objects.

Now, we consider how to estimate the posterior probability of pivotal objects
P(Ck|X(P)). According to the Bayesian rule, P(Ck|X(P)) ∝ P(X(P)|Ck) × P(Ck).
Since the cluster size P(Ck) is unknown, we need to estimate an appropriate P(Ck)

to balance the cluster size. We use the P(Ck) that maximizes the likelihood of gener-
ating pivotal objects in different clusters. The likelihood of pivotal objects is defined
as:

logL =
∑

p∈X(P)

log[
K∑

k=1

P(X(P)
p |Ck) × P(Ck)]. (4.24)

http://dx.doi.org/10.1007/978-3-319-56212-4_5
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An EM algorithm can be utilized for the latent P(Ck) by maximizing the logL.
We can derive the Eqs. 4.25 and 4.26. Initially, we set the P(Ck) with even values and
then repeat the E step (i.e., Eq. 4.25) and M step (i.e., Eq. 4.26) to iteratively update
the latent cluster probability until the P(Ck) obtains convergence.

Pt(Ck|X(P)) ∝ P(X(P)|Ck) × P(Ck) (4.25)

Pt+1(Ck) =
∑

p∈X(P)

Pt(Ck|X(P)
p ) × 1

|X(P)| (4.26)

Next, we estimate the posterior of supportive objects. The basic idea is that the
posterior probability of supportive objects comes from its pivotal neighborhoods.
We define it as follows:

P(Ck|X(SJ )
q ) =

∑

p∈N(q)

P(Ck|X(P)
p ) × 1

|N(q)| (4.27)

where P(Ck|X(SJ )
q ) is the probabilities of supportive object X(SJ )

q belonging to cluster
Ck; N(q) is the neighbor set of supportive object q. It means that the posterior
probability of supportive objectX(SJ )

q is the average value of its pivotal neighborhoods.

4.2.3.4 Ranking for Objects

Since the probability model obeys the PageRank principle, we can regard the condi-
tional probability of objects as their ranks.

Rank(X(J)) ≈ P(X(J)|Ck) (4.28)

Because the conditional probability P(X(J)|Ck) in HeProjI is estimated by the
random walk process, it may prefer to assign a higher probability to an object with a
higher degree. However, in some applications, the link number-based measure is not
proper. For example, advertisement webpage may have many poor value links (i.e.,
high degree but low rank).

If we know the additional information of objects, which can be used to measure the
importance of objects, we can integrate the information into the proposed method and
then get the more reasonable rank. Based on the conditional probability of objects,
we propose a general ranking method for objects as follows:

Rank(X(J)) = AI(X(J)) × P(X(J)|Ck) (4.29)

where the AI(X(J)) is the additional importance measure (AI) of objects X(J). For
example, in bibliographic network, the importance of a paper is decided by its cita-
tions to a large extent, and the AI can be a measure that is proportion to citations. We
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can also propagate the AI information to adjacent objects by transition probability
matrix. It is denoted as follows:

Rank(X(I)|Ck) = Rank(X(J)|Ck) × M(J,I). (4.30)

4.2.4 Experiments

In this section, we evaluate the effectiveness of HeProjI and compare it with several
state-of-art methods on three real datasets. In experiments, we use two real informa-
tion networks: DBLP and SLAP. The schemas of these two networks are shown in
Fig. 4.10c and d. In addition, we extract two different-scaled subsets of the DBLP
which are called DBLP-S and DBLP-L, respectively. The DBLP-S is a small-size
dataset which includes three research areas: database (DB), data mining (DM), and
information retrieval (IR). While the DBLP-L is a large dataset which includes eight
areas.

4.2.4.1 Clustering Effectiveness Study

In this section, we study the clustering effectiveness of HeProjI through comparing
it with other well-established algorithms.

The first experiment is done on DBLP dataset, since this dataset has a relatively
simple structure and is suitable for comparison with previous algorithms. The repre-
sentative algorithms are included in experiments, which are summarized as follows:

• HeProjI. It is the proposed algorithm.
• HeProjI\S . It is HeProjI without considering the smooth information from general

network (i.e., λ is 1 in Eq. 4.21).
• HeProjI\I . It is HeProjI without considering inheriting information from other

subnetworks (i.e., Θ is 0 in Eq. 4.16).
• ComClus [27]. It is a ranking-based clustering method designed for the star-schema

network with self loop.
• NetClus [22]. It is a ranking-based clustering method designed for the star-schema

network without self loop.
• iTopicModel [20]. It integrates topic model and heterogeneous link information,

so it can be used to do clustering in HIN.
• NetPLSA [9]. It regularizes a statistical topic model with a harmonic regularizer

based on a graph structure.

The clustering quality is measured by the fraction of vertices identified correctly,
FVIC [11, 15], which evaluates the average matching degree by comparing each
predicting cluster with the most matching real cluster. The larger the FVIC is, the
better the partition is. HeProjI, ComClus, and NetClus can be applied to DBLP
dataset directly. For NetClus, we do not consider the self loop of type P, since
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Table 4.7 Clustering accuracy for DBLP dataset

Accuracy Paper
(DBLP-S)

Venue
(DBLP-S)

Author
(DBLP-S)

Paper
(DBLP-L)

HeProjI Mean/Dev. 0.857/0.043 0.823/0.047 0.725/0.034 0.603/0.071

HeProjI\S Mean/Dev. 0.781/0.077 0.753/0.069 0.698/0.057 0.566/0.113

HeProjI\I Mean/Dev. 0.703/0.053 0.681/0.045 0.605/0.039 0.507/0.083

ComClus Mean/Dev. 0.764/0.020 0.775/0.027 0.690/0.015 0.576/0.024

NetClus Mean/Dev. 0.742/0.063 0.718/0.065 0.689/0.051 0.566/0.104

iTopicModel Mean/Dev. 0.512/0.072 0.762/0.094 0.587/0.073 0.361/0.167

NetPLSA Mean/Dev. 0.466/0.047 0.565/0.081 0.316/0.023 0.338/0.092

NetClus cannot solve it. Note that RankClus [21] is not included here, because it
only solves the bipartite network. Moreover, for iTopicModel and NetPLSA, we
make a homogeneity assumption of links so that it can be applied to this dataset. The
smoothing parameter λ in HeProjI is fixed at 0.9. All learning rate Θ are fixed at
0.3. In HeProjI, the projection sequence is P − A − C − T . The parameters in other
algorithms are set with the suggested values in their literals.

From the results shown in Table 4.7, we can observe that HeProjI achieves the
best accuracy and lower standard deviation on all objects. HeProjI\S also has good
performances. However, due to omitting the smoothing operation, it has worse per-
formances and stability when compared to HeProjI. The performances of HeProjI\I
degrade greatly, since it does not inherit clustering information from other subnet-
works. In this condition, HeProjI\I analyzes these subnetworks independently, so
the inconsistency among subnetworks causes its bad performances. NetClus and
ComClus both have respectable results. However, the absence of citation informa-
tion among papers may lead to NetClus’s worse performances when it is compared
with ComClus. The iTopicModel and NetPLSA methods ignore the heterogeneity
of objects and relations, so their performances are bad.

For SLAP network, contemporary methods cannot solve it directly. In order
to compare with other algorithms, we convert the SLAP network into a homo-
geneous network through ignoring the heterogeneity of objects. As a comparison
algorithm, the classical spectral clustering algorithm, NCut [19], is run on the homo-
geneous network. The projection sequence is GO − G − C − T − Sub − Si. HeP-
rojI uses the same parameters with the above experiments, except the learning rate
Θ[θG,GO, θGO,G, θG,C, θG,T , θC,Sub, θC,Si] = [0.3, 0.5, 0.7, 0.7, 0.7, 0.7]. The results
are shown in Table 4.8. It is clear that HeProjI performs much better than NCut. We
know that there are distinct differences on different types of objects and relations,
e.g., 70,672 links in G − C relation and 2222 links in G − GO relation. If we do
not consider object types, as NCut does, the clusters may be seriously unbalanced,
which results in the bad performances of NCut.
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Table 4.8 Clustering accuracy for SLAP dataset

Accuracy HeProjI NCut

Mean Dev. Mean Dev.

Gene 0.68 0.057 0.355 0.165

Chemical
compound

0.437 0.031 0.307 0.091

Gene ontology 0.557 0.026 0.261 0.088

Tissue 0.407 0.066 0.293 0.09

Side effect 0.548 0.098 0.25 0.056

Substructure 0.481 0.053 0.314 0.102

4.2.4.2 Ranking Effectiveness Study

To evaluate the ranking effectiveness of HeProjI, we make a ranking accuracy com-
parison between HeProjI and NetClus. We utilize the venues rank recommended by
Microsoft Academic Search [10] as the ground truth. In order to measure the qual-
ity of the ranking result, we employ the Distance criterion proposed in [12], which
computes the differences between two ranking lists of the same set of objects. The
criterion not only measures the number of mismatches between two lists but also
gives a big penalty term to top mismatch objects in the lists. The smaller Distance
means the better performance.

Three algorithms are tested on the DBLP dataset. In addition to NetClus, there are
two versions of HeProjI (HeProjI with/without AI). The citations of paper are used
as the AI measure. We extract the top 5 and 10 venues in different research areas
and then calculate the Distance measure for them. Additionally, we also compare the
accuracy of the global rank on both HeProjI and NetClus. The comparison results
are shown in Fig. 4.13. We can find that two versions of HeProjI achieve better
rank performances compared with NetClus in the most cases, since their Distance
get lower values. Moreover, the HeProjI-AI performs better than HeProjI. In DBLP

(a) Top 5 on DBLP-S (b) Top 10 on AI&PR of
DBLP-L

(c) Top 10 on DBLP-L

Fig. 4.13 Ranking accuracy comparison on top venues (the smaller Distance, the better perfor-
mance)
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dataset, the citation information of papers (i.e., AI) reflects the quality of the papers
to a large extent. So integrating the AI in HeProjI helps to improve the rank accuracy
of papers. Moreover, the citation information can also promote the ranking accuracy
of venues through the P − V relation (see Eq. 4.30). So HeProjI-AI achieves the best
ranking performances.

4.2.4.3 Case Study

We compare the ranking effectiveness of HeProjI and NetClus with a case study
on DBLP dataset. We use the global rank to prove the ranking effectiveness of the
HeProjI method. Table 4.9 shows the top 15 venues ranked by HeProjI and NetClus
on DBLP-S. From these results, the ranks of venues generated by HeProjI-AI more
conform to the intuition. Although it is hard to rank conferences across different
areas, the order within each area is more or less established, and the HeProjI-AI
confirms with that order. For example, in the DB area, it is SIGMOD, VLDB, and
ICDE, while in the data mining area, it is KDD, ICDM, and PKDD. However, there
are some out of order venues generated by NetClus. For example, among the database
conferences, SIGMOD is ranked after VLDB and ICDE. Because NetClus cannot
combine additional AI information (i.e., the citations of papers) and tends to get
the rank which is proportion to its link number, it has the tendency to rank a good
venue publishing a smaller number of papers with a lower rank (e.g., PODS) and a
venue publishing a larger number of papers with higher rank (e.g., DEXA). Besides,
for HeProjI which does not consider AI information, the rank of venues is basically
proportional to their links, since the probability of objects is generated by a random
walk-based method. The experiments reflect that the HeProjI method can flexibly

Table 4.9 Top 15 venues in 3 clusters on DBLP-S

Rank 1 2 3 4 5 6 7 8

HeProjI - AI Venue SIGMOD VLDB SIGIR ICDE KDD PODS WWW CIKM

#Papers 2428 2444 2509 2832 1531 940 1501 2204

HeProjI Venue ICDE SIGIR VLDB SIGMOD CIKM DEXA KDD WWW

#Papers 2832 2509 2444 2428 2204 1731 1531 1501

NetClus Venue VLDB ICDE SIGMOD SIGIR KDD WWW CIKM ICDM

#Papers 2444 2832 2428 2509 1531 1510 2204 1436

Rank 9 10 11 12 13 14 15 ...

HeProjI-AI Venue ICDM EDBT PKDD WSDM PAKDD DEXA WebDB

#Papers 1436 747 680 198 1030 1731 972 ...

HeProjI Venue ICDM PAKDD PODS EDBT PKDD ECIR WSDM

#Papers 1436 1030 1436 747 680 575 198 ...

NetClus Venue PODS DEXA PAKDD EDBT PKDD WSDM ECIR

#Papers 940 1731 1030 747 680 198 575 ...
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and effectively integrate heterogeneous information and achieve more reasonable
ranks. The detailed method description and validation experiments can been seen in
[17].

4.3 Conclusions

Meta path is an unique characteristic of heterogeneous information network. It is an
effective semantic capture tool, as well as feature extraction method. As a conse-
quence, meta path play a critical role in data mining tasks on heterogeneous infor-
mation network. In this chapter, we present two examples on ranking and clustering,
respectively. Particularly, we study the ranking problem in heterogeneous informa-
tion network and propose the HRank framework, which is a path-based random walk
method. In addition, we study the ranking-based clustering problem in a general het-
erogeneous information network and proposed a novel algorithm HeProjI which
projects a general HIN with arbitrary schema into a sequence of projected subnet-
works and iteratively analyzes each subnetwork. Experiments not only validate their
effectiveness but also illustrate the unique advantages of meta path.

Some interesting future works are worth being exploited on meta paths. On the
one hand, meta path can be employed on other data mining tasks, so that we can
obverse its power and potential on more applications. On the other hand, we need to
design more powerful tools, beyond meta path, to capture subtle semantic.
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Chapter 5
Recommendation with Heterogeneous
Information

Abstract Recently, heterogeneous informationnetwork (HIN) analysis has attracted
a lot of attention, and many data mining tasks have been exploited on HIN. As an
important data mining task, recommender system includes a lot of object types (e.g.,
users, movies, actors, and interest groups in movie recommendation) and the rich
relations among object types, which naturally constitute an HIN. The comprehensive
information integration and rich semantic information of HIN make it promising to
generate better recommendation. In this chapter, we introduce three works on recom-
mendation with HIN. One work recommends items with semantic meta paths, and
the other two works extend traditional matrix factorization with rich heterogeneous
information.

5.1 Recommendation Based on Semantic Path

5.1.1 Overview

In recent years, some works [5, 9, 24] have taken notice of the benefits of HIN
for recommendation, where the objects and their relations in recommended system
constitute a heterogeneous information network (HIN). Figure5.1 shows such an
example. The HIN not only contains different types of objects in movie recommen-
dation (e.g., users andmovies) but also illustrates all kinds of relations among objects,
such as viewing information, social relations, and attribute information. Constructing
heterogeneous networks for recommendation can effectively integrate all kinds of
informations, which can be potentially utilized for recommendation. Moreover, the
objects and relations in the networks have different semantics, which can be explored
to reveal subtle relations among objects. For example, the meta path “User-Movie-
User” in Fig. 5.1 means users viewing the same movies and can be used to find the
similar users according to viewing records. If we recommend movies following this
meta path, it will recommend themovies that are seen by users having the same view-
ing records with the given user. It corresponds to the collaborative filtering model
in essence. Similarly, the “User-Interest Group-User” path can find the similar users
with similar interests. This path corresponds to the member recommendation [25].
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Fig. 5.1 The objects and
relations in movie
recommended system are
organized as a weighted
heterogeneous information
network

So we can directly recommend items based on the similar users generated by differ-
ent meta paths connecting users. Moreover, it can realize different recommendation
models through properly setting meta paths. However, this idea faces the following
two challenges.

Firstly, conventional HIN and meta path cannot be directly applied to recom-
mended system. As we know, conventional HIN and meta path do not consider the
attribute values on links. However, this movie recommendation network can contain
attribute values on links. Concretely, in recommended system, the users can provide
a rating score to each movie viewed. The rating scores usually range from 1 to 5 as
indicated on the link between user and movie in Fig. 5.1, where higher score means
stronger preference. Ignoring the rating scores may result in bad similarity discovery
on users. For example, according to the path “User-Movie-User,” Tom has the same
similarity with Mary and Bob, since they view the same movies. However, they may
have totally different tastes due to different rating scores. In fact, Tom andBob should
be more similar, since they both like the same movies very much with high scores.
Mary may have totally different tastes, because she does not like these movies at
all. The conventional meta path does not allow links to have attribute values (e.g.,
rating scores in the above example) [19, 24], and hence, it cannot reveal this subtle
difference. However, this difference is very important, especially in recommended
system, to more accurately reveal relations of objects. So we need to extend exist-
ing HIN and meta path for considering attribute values on links. Moreover, the new
similarity measures are urgently needed for development.

Secondly, it is difficult to effectively combine information from multiple meta
paths for recommendation. As we have said, different types of similar users will be
generated through different meta paths, and these different types of similar users
will recommend different items. A weight learning method can be designed to com-
bine these recommendations, and each path can be assigned with a learned weight
preference. A good weight learning method should obtain prioritized and person-
alized weights. That is, the learned weights can represent the importance of paths,
and each user should have personalized weights to embody his preferences on paths.
The prioritized and personalized weights are very important for recommendation,
since they can deeply reveal the characteristics of users. Much more than this, it
makes the recommendation more explainable, since meta paths contain semantics.
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For example, if a user has high-weight preference on the “User-Interest Group-User”
path, we can explain that the recommendation results stem from movies viewed by
users in the interest groups he joined in. Unfortunately, the personalized weights
may suffer from the rating sparsity problem, especially for users with little rating
information. The reasons lie in that so many parameters are needed to be learned and
rating information is usually not sufficient.

In this chapter, we extend HIN and meta path for widely existing attribute values
on links in information networks and, firstly, propose theweightedHIN andweighted
meta path concepts to more subtly reveal object relations through distinguishing link
attribute values. Instead of designing an ad hoc similarity measure for weighted
meta paths, we design a novel similarity computation strategy that can make existing
path-based similarity measures still usable. Furthermore, the semantic path-based
personalized recommendation method SemRec is proposed to flexibly integrate het-
erogeneous information through setting meta paths. In SemRec, we design a novel
weight regularization term to obtain personalized weight preferences on paths and
alleviate the rating sparsity through employing the consistency rule of weight pref-
erences of similar users.

5.1.2 Heterogeneous Network Framework
for Recommendation

In this section, we describe notations used in this chapter and present some prelimi-
nary knowledge.

5.1.2.1 Basic Concepts

An HIN is a special type of information network with the underneath data structure
as a directed graph, which contains either multiple types of objects or multiple types
of links. Traditionally, HIN does not consider the attribute values on links. However,
many real networks contain attribute values on links. For example, users usually rate
movies with a score from 1 to 5 in movie recommended system, and the “author of”
relations between authors and papers in bibliographic networks can take values (e.g.,
1, 2, 3) which means the order of authors in the paper. In this chapter, we formally
propose the weighted heterogeneous information network concept to handle this
condition.

Definition 5.1 (Weighted informationnetwork)Given a schema S = (A,R,W)which
consists of a set of object types A = {A}, a set of relations connecting object pairs
R = {R}, and a set of attribute values on relations W = {W }, a weighted informa-
tion network is defined as a directed graph G = (V, E,W ) with an object type
mapping function ϕ : V → A, a link type mapping function ψ : E → R, and an
attribute value type mapping function θ : W → W. Each object v ∈ V belongs to
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Fig. 5.2 Network schema of weighted heterogeneous information networks constituted by two
datasets

one particular object type ϕ(v) ∈ A, each link e ∈ E belongs to a particular relation
ψ(e) ∈ R, and each attribute valuew ∈ W belongs to a particular attribute value type
θ(w) ∈ W. When the types of objects |A| = 1 and the types of relations |R| = 1, it is
a homogeneous information network. When the types of objects |A| > 1 (or the
types of relations |R| > 1) and the types of attribute values |W| = 0, the network is
called unweighted heterogeneous information network.When the types of objects
|A| > 1 (or the types of relations |R| > 1) and the types of attribute values |W| > 0,
the network is called weighted heterogeneous information network (WHIN).

Conventional HIN is an unweighted HIN, where there are no attribute values on
relations or we do not consider them. For aWHIN, there are attribute values on some
relation types, and these attribute values may be discrete or continuous values.

Example 5.1 Amovie recommended system can be organized as a weighted hetero-
geneous information network, whose network schema is shown in Fig. 5.2a. The net-
work contains objects from six types of entities (e.g., users, movies, groups, actors)
and relations between them. Links between objects represent different relations.
For example, links exist between users and users denoting the friendship relations,
between users and movies denoting rating and rated relations. In addition, the net-
work also contains one type of attribute value on the rating relation between users
and movies, which take values from 1 to 5.

Two objects in an HIN can be connected via different paths, and these paths
have different meanings. As an example shown in Fig. 5.2a, users can be connected
via “User-User” (UU) path, “User-Group-User” (UGU) path, “User-Movie-User”
(UMU), and so on. These paths are called meta paths that are the combination of
a sequence of relations between object types. Although meta path is widely used
to reveal semantics among objects [20], it fails to distinguish the attribute values
between two objects in WHIN. For example, if ignoring the different rating scores
of users on items in above movie recommendation, we may obtain incorrect results.
Consider a scenario that we use the UMU path to find the similar users of Tom
according to their viewing records in Fig. 5.1. We can infer that Tom is very similar
to Mary and Bob, since they have the same viewing records. However, it is obvious
that Tom and Mary have totally different tastes. So the UMU path cannot subtly
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reveal the different ratings of users on the samemovies. In order to effectively exploit
semantics inWHIN,we extend the conventionalmeta path to consider attribute values
on relations. Without loss of generality, we assume the attribute values on relations
in WHIN are discrete. For continuous attribute values on relations, we can convert
the continuous attribute values into discrete ones.

Definition 5.2 (Extended meta path on WHIN) Extended meta path is a meta
path based on a certain attribute value constraint on relations, which is denoted

as A1
δ1(R1)−−−→ A2

δ2(R2)−−−→ δl (Rl )−−−→ Al+1|C (also denoted as A1(δ1(R1))A2(δ2(R2)) · · · · · ·
(δl(Rl))Al+1|C). If the relation R has attribute values on links, the attribute value
function δ(R) is a set of values from the attribute value range of relation R, else

δ(R) is an empty set. Ai
δi (Ri )−−−→ Ai+1 represents the relation Ri between Ai and Ai+1

based on the attribute values δi (Ri ). The constraint C on attribute value functions is
a set of correlation constraints among attribute value functions. If all attribute value
functions in a meta path are empty set (the corresponding constraint C is also an
empty set), the path is called an unweighted meta path, else the path is called a
weighted meta path.

Note that the conventional meta path is an unweighted meta path that can be
considered as the special case of a weighted meta path.

Example 5.2 Taking Fig. 5.2a as an example, the rating relation between users U

and movies M can take scores from 1 to 5. The weighted meta path U
1−→ M (i.e.,

U (1)M) means movies rated by users with score 1, which implies that users dislike

themovies. Theweightedmeta pathU
1,2−→ M

1,2−→ U (i.e.,U (1, 2)M(1, 2)U ) means
users disliking the same movies as the target user, while the unweighted meta path
UMU can only reflect that users have the same viewing records. Furthermore, we
can flexibly set the correlation constraints of attribute value functions on different
relations in weighted meta paths. For example, the path U (i)M( j)U |i = j means
users having exactly the same ratings on some movies as the target user. Under this
path, we can easily find that, in Fig. 5.1, Tom is very similar to Bob, while they are
totally dissimilar to Mary.

5.1.2.2 Recommendation on Heterogeneous Networks

For a target user, recommended systems usually recommend items according to his
similar users. In HIN, there are a number of meta paths connecting users, such as
“User-User” and “User-Movie-User”. Based on these paths, users have different
similarities. Here, we define the path-based similarity as follows.

Definition 5.3 (Path-based similarity) In HIN, the path-based similarity of two
objects is the similarity evaluation based on the given meta path connecting these
two objects.
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Table 5.1 The meanings and corresponding recommendation models of meta paths

No. Meta path Semantic meaning Recommendation
model

1 UU Friends of the target
user

Social
recommendation

2 UGU Users in the same
group of the target user

Member
recommendation

3 UMU Users who view the
same movies with the
target user

Collaborative
recommendation

4 UMTMU Users who view the
movies having the
same types with that
of the target user

Content
recommendation

After obtaining the path-based similarity of users, we can recommend items
according to the similar users of the target user. More importantly, the meta paths
connecting users have different semantics, which can represent different recommen-
dation models. As an example shown in Fig. 5.2a, “User-User” (UU) means friends
of the target user. If we recommend movies according to the similarity of users gen-
erated by that path, it will recommend the movies viewed by friends of the target
user. Indeed, it is the social recommendation. Another example is that “User-Movie-
User” (UMU)means users who view the samemovies with the target user. Following
that path, it will recommend the movies viewed by users having the similar viewing
records with the target user. It is collaborative recommendation in essential. Table5.1
shows the other representative paths and the corresponding recommendationmodels.
Based on the HIN framework, we can flexibly represent different recommendation
models through properly setting meta paths.

5.1.2.3 Similarity Measure Based on Weighted Meta Path

Similarity measure on meta paths have been well studied, and several path-based
similarity measures have been proposed on HIN, such as PathSim [19], PCRW [6],
and HeteSim [16]. However, these similarity measures cannot be directly applied
to weighted meta path, because they do not consider the attribute value constraint
on relations. As we know, the essential of the path-based similarity measure is to
evaluate the proportion of the number of paths connecting two objects on all possible
paths along the meta path [19], so the paths along a weighted meta path must satisfy
the attribute value constraint. Moreover, the attribute value on relations may be a
variable, even correlated. Taking the U (i)M( j)U |i = j path as an example, the
attribute values i and j are variables from 1 to 5, and they satisfy constraint i = j .
For this kind of paths, existing path-based similarity measures cannot handle it.



5.1 Recommendation Based on Semantic Path 103

In order to address the variable, even correlated, attribute value constraints in a
weighted meta path, we extend the meta path concept and propose a general strategy
to make existing path-based similarity measure still usable, instead of proposing an
ad hoc similarity measure. Specifically, we can decompose the weighted meta path
into a group of atomic meta paths with fixed attribute value constraint. For an atomic
meta path, the existing path-based similarity measures can be used directly.

Definition 5.4 (Atomic meta path) If all attribute value functions δ(R) in a weighted
meta path take a specific value, the path is called an atomic meta path. A weighted
meta path is a group of atomic meta pathswhich contain all atomic meta paths that
satisfy the constraint C.

Example 5.3 Taking Fig. 5.2a as an example, U (1)M(1)U and U (1)M(2)U both
are atomic meta paths. The weighted meta pathU (i)M( j)U |i = j is a group of five
atomic meta paths (e.g., U (1)M(1)U and U (2)M(2)U ).

Since a weighted meta path is a group of corresponding atomic meta paths, the
similarity measure based on a weighted meta path can be considered as the sum
of the similarity measure based on the corresponding atomic meta paths. So the
similarity measure based on a weighted meta path can be evaluated based on the
following two steps: (1) Evaluate the similarity based on each atomic meta path with
existing path-based measures; (2) sum up the similarities on all atomic meta paths
in the weighted meta path. Note that the similarity measure needs to consider the
effect of the normalized term existing in some path-based similarity measures, such
as PathSim [19] and HeteSim [16]. Taking PathSim as an example, we illustrate its
calculation process along conventional and weighted meta path in Fig. 5.3, where the
rating matrix between 3 users and 2 movies is from Fig. 5.1. We know that PathSim
counts the number of path instances connecting two objects along conventional meta
path with a normalized term (shown in the upper half of Fig. 5.3), and thus, it regards
that the users all are the same. As shown in the lower half of Fig. 5.3, PathSim along
weighted meta path firstly counts the number of path instances along each atomic
meta path and then sums up the number of path instances along all atomic meta paths
before normalization. And thus, it can more accurately discover that only u1 and u3
are similar, since they have the same tastes in movies.

5.1.3 The SemRec Solution

In this section, we proposed a Semantic path-based personalized Recommendation
method (SemRec) to predict the scores of items. Specifically, SemRec first evaluates
the similarity of users based on weighted or unweighted meta paths and then infers
the predicted scores on items according to the rating scores of similar users. Under
different meta paths, the users can obtain different recommendation results. How
to effectively combine these recommendations generated by different meta paths is
challenging. We need to put different preferences on the various meta paths. This
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results in assigning preferenceweight to eachmeta path.Weabbreviate the preference
weight as weight when the context is clear without confusion with the link weight in
the weighted meta path. There are two aspects of difficulties in learning the weights.
(1) Prioritized weights: That is, the weights learned should embody the importance
of paths and reflect users’ preferences. However, the similarity evaluations based on
different paths have significant bias, which makes path preference hard to reflect the
path importances. For example, the similarity evaluations may all be high based on
a path with dense relations, while the similarity evaluations may all be low based on
another path with sparse relations. So the similarity evaluations based on different
paths cannot reflect the similarity of two objects. SemRec designs a normalized
rating intensity operation to eliminate the similarity bias, which makes the weight
better reflect path importances. (2) Personalized weights: That is, it is better to learn
weight preferences for each user. However, personalized weight learning may suffer
from the rating sparsity problem, since many users have little rating informations.
In order to alleviate the rating sparsity problem for personalized weight learning,
we propose the consistency rule of weight preferences of similar users. That is, we
assume that two similar users have consistent weight preferences on meta paths.
While it is reasonable, it is seldom used before. Two users are similar based on a
path, which implies the path has similar impacts on these two users. That is to say,
these users have the consistent preferences on the path. Following this principle, we
design a novel weight regularization term, which effectively alleviates rating sparsity
in personalized weight learning.

In the following sections, we firstly design the basic recommendation method
based on a single path. And then, we propose three levels of personalized recommen-
dation methods based on multiple paths: unified weights for all users, personalized
weights for each user, and personalized weights with weight regularization.

5.1.3.1 Recommendation with Single Path

Based on the path-based similarity of users, we can find the similar users of a target
user under a given path, and then, the rating score of the target user on an item can
be inferred according to the rating scores of his similar users on the item. Assume
that the range of rating scores are from 1 to N (e.g., 5); P is a set of unweighted
or weighted meta paths; R ∈ R|U |×|I | is the rating matrix, where Ru,i denotes the
rating score of user u on item i ; and S ∈ R|U |×|U | is the path-based similarity matrix
of users, where S(l)

u,v is the similarity of users u and v under path Pl . Here, we define

the rating intensity Q ∈ R|U |×|I |×N , where Q(l)
u,i,r represents the intensity of user u

rating item i with score r given path Pl . Q
(l)
u,i,r is determined by two aspects: the

number of similar users rating the item i with score r and the similarity of users. So
we calculate Q(l)

u,i,r as the sum of similarity of users rating i with r .
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Q(l)
u,i,r = ∑

v S
(l)
u,v × Ev,i,r

Ev,i,r =
{
1 Rv,i = r
0 others

(5.1)

where Ev,i,r indicates whether user v rates item i with score r .
Under a meta path Pl , the rating of a user u on an item i ranges from 1 to N with

different rating intensities Q(l)
u,i,r . So the predicted rating score, denoted as R̂(l)

u,i , of
user u on item i under the path Pl can be the average of rating scores weighted by
corresponding normalized intensity.

R̂(l)
u,i =

N∑

r=1

r × Q(l)
u,i,r

∑N
k=1 Q

(l)
u,i,k

(5.2)

and R̂(l) ∈ R|U |×|I | means the predicted rating matrix under path Pl .
According to Eq.5.2, we can predict the rating score of a user on an item under

a given path and then recommend the item with the high score for a target user.
Moreover, Eq. 5.2 has an additional advantage that it eliminates the similarity bias
existing in different meta paths. As we know, the similarity of users under different
meta paths has different scales,whichmakes similarity evaluation and rating intensity
incomparable amongdifferent paths. The normalized rating intensity inEq. 5.2 is able
to eliminate those scale differences.

5.1.3.2 Recommendation with Multiple Paths

Under different meta paths, there are different predicted rating scores. In order to
calculate the compositive score, we propose three different weight learning methods
corresponding to different levels of personalized weights of users.

Unified weight learning for all users For all users, we assign each meta path with
a unified weight, which means the user preference on the path. This weight vector
is denoted as w ∈ R1×|P|, and w(l) means the weight on path Pl . The final predicted
rating score under all meta paths, denoted as R̂u,i , can be the weighted sum of
predicted rating score under each meta path.

R̂u,i =
|P|∑

l=1

w(l) × R̂(l)
u,i (5.3)

Hopefully, the predicted rating matrix R̂ ∈ R|U |×|I | should be as close as to the
real rating matrix R. So a direct optimization objective can be defined as the square
error between the real scores and the predicted scores.
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min
w

L1(w) = 1
2 ||Y � (R −

|P|∑

l=1
w(l) R̂(l))||22 + λ0

2 ||w||22
s.t. w ≥ 0

(5.4)

where the notation � is the Hadamard product (also know as the entrywise product)
between matrices, and || · ||p is the matrix L p-norm. Y is an indicator matrix with
Yu,i = 1 if user u rated item i , and otherwise, Yu,i = 0.

Personalizedweight learning for individual user The above optimization objective
has a basic assumption: All users have the same path preferences. However, in many
real applications, each user has his personal interest preferences. Unified weights
cannot provide personalized recommendations for users. To realize personalized
recommendation, each user is assignedwith weight vector onmeta paths. The weight
matrix is denoted as W ∈ R|U |×|P|, in which each entry, denoted as W (l)

u , means the
preference weight of user u on path Pl . The column vector W (l) ∈ R|U |×1 means the
weight vector of all users on path Pl . So the predicted rating R̂u,i of user u rating
item i under all paths is as follows:

R̂u,i =
|P|∑

l=1

W (l)
u × R̂(l)

u,i (5.5)

Similarly, we can define the optimization objective as follows:

min
W

L2(W ) = 1
2 ||Y � (R −

|P|∑

l=1
diag(W (l))R̂(l))||22 + λ0

2 ||W ||22

s.t. W ≥ 0

(5.6)

where diag(W (l)) means the diagonal matrix transformed from a vector W (l).

Personalized weight learning with weight regularization Although Eq.5.6 con-
sider user’s personalized weights, it may be hard to effectively learn weights for
those users that have little rating information. There are |U | × |P| weight parame-
ters to learn, while the training samples are usually much smaller than |U | × |I |. The
training samples are usually not sufficient for the weight learning, specially for those
cold-start users and items. According to the consistency rule of weight preferences
of similar users mentioned above, the path weights of a user should be consistent to
that of his similar users. For users with little rating information, their path weights
can be learnt from the weights of their similar users, since the similarity information
of users are more available through meta paths. So we design a weight regularization
term as follows, which compels the weights of a user consistent to the average of
weights of his similar users.

|U |∑

u=1

|P|∑

l=1

(W (l)
u −

|U |∑

v=1

S̄(l)
u,vW

(l)
v )2 (5.7)



108 5 Recommendation with Heterogeneous Information

where S̄(l)
u,v = S(l)

u,v
∑

v S
(l)
u,v

is the normalized user similarity based on path Pl . For conve-

nience, the weight regularization term can be written as the following matrix format:

|P|∑

l=1

||W (l) − S̄(l)W (l)||22 (5.8)

And thus, the optimization objective is defined as follows:

min
W

L3(W ) = 1
2 ||Y � (R −

|P|∑

l=1
diag(W (l))R̂(l))||22

+ λ1
2

|P|∑

l=1
||W (l) − S̄(l)W (l)||22 + λ0

2 ||W ||22
s.t. W ≥ 0

(5.9)

The above optimization objective is a nonnegative quadratic programming prob-
lem, a simple special case of nonnegative matrix factorization. Projected gradient
method for nonnegative bound-constrained optimization [7] can be applied to solve
this problem. The gradient of Eq.5.9with respect toW (l)

u can be calculated as follows:

∂L3(W )

∂W (l)
u

= −(Yu � (Ru −
|P|∑

l=1
W (l)

u R̂(l)
u ))T R̂(l)

u + λ0W (l)
u

+ λ1(W (l)
u − S̄(l)

u W (l)) − λ1 S̄(l)T
u (W (l) − S̄(l)W (l))

(5.10)

W (l)
u can be updated as follows:

W (l)
u = max(0,W (l)

u − α
∂L3(W )

∂W (l)
u

) (5.11)

where α is the step size and can be set according to [7]. Algorithm 1 shows the
framework of this version of SemRec.

5.1.4 Experiments

In this section, extensive experiments on two real datasets illustrate the traits of
SemRec. We first validate the effectiveness of SemRec, especially for cold-start
problem. Then, we thoroughly explore the meanings of weights learned and validate
the benefits of the proposed weighted meta path.
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Algorithm 1 Framework of SemRec
Require:

G: weighted heterogeneous information network
P: meta paths connecting users
λ0 and λ1: controlling parameter
α: step size for updating parameters
ε: convergence tolerance

Ensure:
W : the weight matrix of all users on all paths.

1: for Pl ∈ P do
2: Evaluate user similarity S(l)

3: Calculate rating intensity Q(l) with Eq.5.1
4: Calculate predicted rating score R̂(l) with Eq.5.2
5: end for
6: Initialize W > 0
7: repeat
8: Wold := W
9: Calculate ∂L3(W )

∂W with Eq.5.10

10: W := max(0,W − α
∂L3(W )

∂W )

11: until |W − Wold | < ε

5.1.4.1 Experiment Settings

In order to get more comprehensive heterogeneous information, we crawled a new
dataset from Douban,1 a well-known social media network in China. The dataset
includes 13,367 users and 12,677 movies with 1,068,278 movie ratings ranging
from 1 to 5. The dataset includes the social relation among users and the attribute
information of users and movies. Another dataset is the Yelp challenge dataset.2

This dataset contains user ratings on local business and attribute information of
users and businesses. The dataset includes 16,239 users and 14,284 local businesses
with 198,397 ratings from 1 to 5. The detailed description of these two datasets can
be seen in Table5.2, and their network schemas are shown in Fig. 5.2. We can find
that these two datasets have different properties. TheDouban dataset has dense rating
relations but sparse social relations, while the Yelp dataset has sparse rating relations
but dense social relations.

We use two widely used metrics, Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), to measure the rating prediction quantity.

RMSE =
√∑

(u,i)∈Rtest
(Ru,i − R̂u,i )2

|Rtest | (5.12)

MAE =
∑

(u,i)∈Rtest
|Ru,i − R̂u,i |

|Rtest | (5.13)

1http://movie.douban.com/.
2http://www.yelp.com/dataset_challenge/.

http://movie.douban.com/
http://www.yelp.com/dataset_challenge/
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Table 5.2 Statistics of Douban and Yelp datasets

Dataset Relations
(A-B)

Number of A Number of B Number (A-B) Ave. degrees
of A/B

Douban User–Movie 13367 12677 1068278 79.9/84.3

User–User 2440 2294 4085 1.7/1.8

User–Group 13337 2753 570047 42.7/207.1

Movie–
Director

10179 2449 11276 1.1/4.6

Movie–Actor 11718 6311 33587 2.9/5.3

Movie–Type 12676 38 27668 2.2/728.1

Yelp User–
Business

16239 14284 198397 12.2/13.9

User–User 10580 10580 158590 15.0/15.0

User–
Compliment

14411 11 76875 5.3/6988.6

Business–City 14267 47 14267 1.0/303.6

Business–
Category

14180 511 40009 2.8/78.3

where Ru,i denotes the real rating user u gave to item i and R̂u,i denotes the pre-
dicted rating. Rtest denotes whole test set. A smaller MAE or RMSE means a better
performance.

In order to show the effectiveness of the proposed SemRec, we compare four vari-
ations of SemRec with the state of the arts. Besides the personalized weight learning
methodwithweight regularization (calledSemRecReg),we include three special cases
of SemRec: single path-based method (called SemRecSgl), unified weight learning
method for all users (called SemRecAll), and personalized weight learning method
for individual user (called SemRecInd). As the baselines, four representative rating
predication methods are illustrated as follows. Note that the top k recommendation
methods [5, 24] are not included here, since they solve different problems.

• PMF [14]: It is the basic matrix factorization method using only user–item matrix
for recommendations.

• SMF [13]: It adds the social regularization term into PMF, which aims at getting
the users’ latent factor closer to their friends’ latent factors.

• CMF [8]: A collective matrix factorization method, which factorizes all relations
in HIN and shares the latent factor of same object types in different relations.

• HeteMF [22]: A matrix factorization method with entity similarity regularization,
which also utilizes the relations in HIN.

We employ 5 meaningful meta paths whose lengths are not longer than 4 for both
datasets, since the longer meta paths are not meaningful and they fail to produce good
similaritymeasures [19]. Table5.3 shows those pathswhich include theweighted and
unweighted meta paths. For SemRec, we use PathSim [19] as the similarity measure
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Table 5.3 Meta paths used in experiments

Douban Yelp

UGU UU

U(i)M(j)U |i = j UCoU

U(i)MDM(j)U |i = j U(i)B(j)U |i = j

U(i)MAM(j)U |i = j U(i)BCaB(j)U |i = j

U(i)MTM(j)U |i = j U(i)BCiB(j)U |i = j

to calculate the similarity between users. The parameter λ0 in SemRec is 0.01, and
λ1 is 103 for the best performance. The parameters in other methods are set with the
best performances on these datasets.

5.1.4.2 Effectiveness Experiments

For Douban dataset, we use different training data settings (20%, 40%, 60%, 80%)
to show the comparison results in different data sparseness. Training data 20%, for
example, means that 20% of the ratings from user–item rating matrix is randomly
selected as the training data to predict the remaining 80%. From Table5.2, we can
find that the Douban dataset has dense rating relations, while Yelp has very sparse
rating relations. So we utilize more training data (60%, 70%, 80%, 90%) on Yelp.
The random selection was repeated 10 times independently, and the average results
are reported in Table5.4. Note that SemRecSgl reports the best performances on these
five paths.

From the results, we can observe that all versions of SemRec outperform other
approaches inmost conditions. Particularly, SemRecReg always achieves the best per-
formances on all conditions. For example, on 20% training set ofDouban, SemRecReg
outperforms PMF up to 19.55% on RSME and 15.89% on MAE. As compared to
PMF, CMF improves the recommendation performances through integrating hetero-
geneous information with matrix factorization. However, its performances are much
worse than the proposed SemRec on all conditions, especially on less training set.
As the most similar method to SemRec, HeteMF also has good performances, while
its performances are still worse than the proposed SemRecReg. These all imply that
the proposed SemRec has better mechanism to integrate heterogeneous information.

In addition, different versions of SemRec have different performances. Generally,
SemRec with multiple paths (e.g., SemRecAll and SemRecReg) have better perfor-
mances than SemRec with single path (i.e., SemRecSgl) except SemRecInd, which
indicates that the weight learning of SemRec can effectively integrate the similarity
information generated by different paths. Because of rating sparsity, SemRecInd has
worse performances than SemRecAll on most conditions. In addition, the better per-
formances of SemRecRec over SemRecInd confirm the benefit of the weight regular-
ization term. In all, SemRecReg always achieves best performances in all conditions.



112 5 Recommendation with Heterogeneous Information

Ta
bl
e
5.
4

E
ff
ec
tiv

en
es
s
ex
pe
ri
m
en
ta
lr
es
ul
ts
(R
es
.a
nd

Im
p.

ar
e
th
e
ab
br
ev
ia
tio

ns
of

re
su
lt
an
d
im

pr
ov
em

en
t.
T
he

im
pr
ov
em

en
ti
s
ba
se
d
on

PM
F)

D
at
as
et

M
et
ho
d

C
ri
te
ri
a

20
%

40
%

60
%

80
%

R
un
ni
ng

T
im

e(
s)

R
es
.

lm
p.

R
es
.

lm
p.

R
es
.

lm
p.

R
es
.

lm
p.

D
ou
ba
n

P
M
F

R
M
SE

0.
97
50

0.
84
55

0.
79
75

0.
76
73

26
0.
25

M
A
E

0.
71
98

0.
63
19

0.
60
10

0.
58
12

SM
F

R
M
SE

0.
97
43

0.
07
%

0.
84
49

0.
07
%

0.
79
67

0.
10
%

0.
76
74

−0
.0
1%

26
6.
78

M
A
E

0.
71
92

0.
08
%

0.
63
13

0.
09
%

0.
60
02

0.
13
%

0.
58
15

−0
.0
5%

C
M
F

R
M
SE

0.
92
85

4.
77
%

0.
82
73

2.
15
%

0.
80
42

−0
.8
4%

0.
77
41

−0
.8
9%

50
9.
31

M
A
E

0.
69
71

3.
15
%

0.
62
63

0.
89
%

0.
60
90

−1
.3
3%

0.
59
00

−1
.5
1%

H
et
eM

F
R
M
SE

0.
85
13

12
.6
9%

0.
77
96

7.
79
%

0.
76
01

4.
69
%

0.
75
50

1.
60
%

73
6.
85

M
A
E

0.
63
42

11
.8
9%

0.
59
27

6.
20
%

0.
58
00

3.
49
%

0.
57
58

0.
93
%

Se
m
R
ec

Sg
l

R
M
SE

0.
84
34

13
.5
0%

0.
81
38

3.
75
%

0.
79
37

0.
48
%

0.
78
46

−2
.2
5%

0

M
A
E

0.
65
06

9.
61
%

0.
63
51

−0
.5
1%

0.
61
72

−2
.7
0%

0.
61
42

−5
.6
8%

Se
m
R
ec

A
ll

R
M
SE

0.
81
25

16
.6
7%

0.
78
14

7.
58
%

0.
77
09

3.
34
%

0.
76
56

0.
22
%

1.
44

M
A
E

0.
63
09

12
.3
5%

0.
61
49

2.
69
%

0.
60
98

−1
.4
6%

0.
60
72

−4
.4
7%

Se
m
R
ec

In
d

R
M
SE

0.
87
53

10
.2
3%

0.
80
83

4.
40
%

0.
77
29

3.
08
%

0.
75
40

1.
73
%

15
5.
98

M
A
E

0.
64
12

10
.9
2%

0.
60
32

4.
54
%

0.
58
40

2.
83
%

0.
57
39

1.
26
%

Se
m
R
ec

R
eg

R
M
SE

0.
78
44

19
.5
5%

0.
74
52

11
.8
6%

0.
72
96

8.
51
%

0.
72
16

5.
96
%

29
3.
14

M
A
E

0.
60
54

15
.8
9%

0.
58
08

8.
09
%

0.
56
98

5.
19
%

0.
56
39

2.
98
%

(c
on
tin

ue
d)



5.1 Recommendation Based on Semantic Path 113

Ta
bl
e
5.
4

(c
on
tin

ue
d)

D
at
as
et

M
et
ho
d

C
ri
te
ri
a

20
%

40
%

60
%

80
%

R
un
ni
ng

T
im

e(
s)

R
es
.

lm
p.

R
es
.

lm
p.

R
es
.

lm
p.

R
es
.

lm
p.

Y
el
p

P
M
F

R
M
SE

1.
67
79

1.
59
31

1.
53
23

1.
48
33

31
.8

M
A
E

1.
29
97

1.
22
62

1.
17
40

1.
13
24

SM
F

R
M
SE

1.
48
43

11
.5
4%

1.
40
17

12
.0
1%

1.
36
78

10
.7
4%

1.
33
77

9.
82
%

51
.1
9

M
A
E

1.
08
30

16
.6
7%

1.
05
47

13
.9
9%

1.
02
82

12
.4
2%

1.
00
85

10
.9
4%

C
M
F

R
M
SE

1.
61
61

3.
68
%

1.
57
31

1.
26
%

1.
51
94

0.
84
%

1.
47
93

0.
27
%

37
5.
38

M
A
E

1.
26
28

2.
84
%

1.
22
24

0.
31
%

1.
17
40

0.
00
%

1.
14
05

−0
.7
2%

H
et
eM

F
R
M
SE

1.
23
33

26
.5
0%

1.
20
90

24
.1
1%

1.
18
95

22
.3
7%

1.
17
55

20
.7
5%

61
9.
25

M
A
E

0.
92
68

28
.6
9%

0.
91
07

25
.7
3%

0.
89
69

23
.6
0%

0.
88
78

21
.6
0%

Se
m
R
ec

Sg
l

R
M
SE

1.
32
52

21
.0
2%

1.
28
89

19
.0
9%

1.
25
76

17
.9
3%

1.
23
31

16
.8
7%

0

M
A
E

0.
96
57

25
.7
0%

0.
94
20

23
.1
8%

0.
92
24

21
.4
3%

0.
90
67

19
.9
3%

Se
m
R
ec

A
ll

R
M
SE

1.
21
66

27
.4
9%

1.
19
06

25
.2
7%

1.
16
65

23
.8
7%

1.
14
96

22
.5
0%

0.
25

M
A
E

0.
90
40

30
.4
5%

0.
88
73

27
.6
4%

0.
87
23

25
.7
0%

0.
86
16

23
.9
1%

Se
m
R
ec

In
d

R
M
SE

1.
36
54

18
.6
2%

1.
32
29

16
.9
6%

1.
29
22

15
.6
7%

1.
26
58

14
.6
6%

57
.2
2

M
A
E

1.
00
29

22
.8
4%

0.
97
28

20
.6
7%

0.
95
17

18
.9
4%

0.
93
22

17
.6
8%

Se
m
R
ec

R
eg

R
M
SE

1.
20
25

28
.3
3%

1.
17
60

26
.1
8%

1.
15
59

24
.5
6%

1.
14
23

22
.9
9%

37
4.
57

M
A
E

0.
89
01

31
.5
1%

0.
86
96

29
.0
8%

0.
85
48

27
.1
9%

0.
84
42

25
.4
5%



114 5 Recommendation with Heterogeneous Information

The reason lies in that SemRecReg not only realizes personalized weight learning for
all users but also avoids the rating sparsity through the weight regularization in it.

Furthermore, we record the average running time of thesemethods on the learning
process. For two similarity based methods (e.g., SemRec and HeteMF), we do not
consider the running time on similarity evaluation, since it can be done off-line
beforehand. For the four versions of SemRec, their running times increase when the
weight learning tasks become more complex. Both SemRecSgl and SemRecAll are
very fast, which can be applied for online learning. The running times of SemRecInd
and SemRecReg are still acceptable when compared to CMF and HeteMF. We can
select a proper model through balancing the efficiency and effectiveness of SemRec
in real applications.

5.1.4.3 Study on Cold-Start Problem

The above results also show that SemRec has more obvious superiority with less
training set, which implies that SemRec has the potential to alleviate the cold-start
problem. In this section, we will exploit the ability of SemRec on alleviating the
cold-start problem through observing its performances on different levels of cold-
start users and items. We run PMF, CMF, HeteMF, SemRecInd, and SemRecReg on
Douban dataset with users having the different numbers of rated movies. We select
four types of users: three types of cold-start users with different numbers of rated
movies (e.g., users with the number of rated movies no more than 5, denoted as ≤5
in Fig. 5.4) and all users (called ALL in Fig. 5.4). In addition, we also do the similar
experiments on cold-start items and users&items (contain both cold-start users and
items). We record the RMSE performance improvement of other four algorithms
against PMF in Fig. 5.4.

It is clear that SemRecReg always achieves the best performance improvements
on almost all conditions, and its superiority is more significant for less rating infor-
mation. On the contrary, CMF only achieves improvements on cold-start users and
HeteMF’s improvements are only on items. We think the reason lies in that the col-
lective matrix factorization of all relations in CMFmay introduce much noises, espe-
cially for items. HeteMF only utilizes the similarity information of items, ignoring

<=5 <=10<=20 ALL
−20%

10%

40%

70%

R
M

S
E

 im
pr

ov
em

en
t

# ratings of users

 

 

SemRec
Reg

SemRec
Ind

HeteMF
CMF

(a) Users

<=5 <=10<=20 ALL
−20%

10%

40%

70%

R
M

S
E

 im
pr

ov
em

en
t

# ratings of items

 

 

SemRec
Reg

SemRec
Ind

HeteMF
CMF

(b) Items

<=5 <=10 <=20 ALL

10%

40%

R
M

S
E

 im
pr

ov
em

en
t

# ratings of users/items

 

 

SemRec
Reg

SemRec
Ind

HeteMF
CMF

(c) Users&Items

Fig. 5.4 Performance improvements of three HIN methods against PMF on different levels and
types of cold-start problems
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that of users. Generally, integrating heterogeneous information is helpful in allevi-
ating cold-start problem (see Fig. 5.4c), while the integrating mechanisms may have
different impacts on cold-start items and users. The overall performance improve-
ments of SemRecReg are attributed to multiple meta paths that not only contain rich
attribute information but also provide comprehensive and complementary similarity
evaluation of users and items. In addition, the better performances of SemRecReg
over SemRecInd further validate that the weight regularization term employed in
SemRecReg is really helpful for the weight learning of cold-start users from similar
users.

5.1.4.4 Study of Weight Preferences

In this section, we illustrate the meanings of weights learned by SemRec through a
case study. Based on the results of SemRecReg on Douban dataset with 60% training
data in the above experiments, we cluster users’ weight vectors into 5 groups using
K -means and then show the statistics information of users in five clusters in Fig. 5.5a.
Moreover, the weight preferences of the five cluster centers on 5 meta paths are also
shown in Fig. 5.5b.

Let us observe the relationship of the statistics information of users in different
clusters and their weight preferences on paths from Fig. 5.5a, b. As we know, Douban
is a unique social media platform in China, in which the major active users are young
people who love culture and arts. As the typical and major users in Douban, the users
in C3 view a good number of movies, give relatively good rating scores, and have a
moderate number of friends. So they also have close weight preferences on all paths.
As the top movie fans, the users in C4 view a great many movies, tend to give lower
rating scores due to critical attitude, and have many friends. And they obviously like
to get recommendation from viewing records of other users (i.e., UMU) and interest
group (i.e., UGU), but less paying attentions to movies’ content (e.g., UMTMU and
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Fig. 5.5 Analysis of clusters’ characteristics and path preferences of results returned by SemRecReg
on Douban dataset. C1–C5 represents the index of five clusters
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UMAMU). In addition, the users in C1 and C2 are two types of inactive users, and
they view few movies and have few friends. Because of not being fond of movies,
these users tend to give much high or low rating scores. These users comparatively
prefer to follow movie content (e.g., UMTMU and UMAMU). The picky users in
C1 is more likely to get recommendation from interest group (i.e., UGU), while the
idealess users in C2 give more preferences to viewing records of other users (i.e.,
UMU).

In all, the weights of paths learned by SemRec can reflect the users’ path pref-
erences, and these path preferences are able to reveal the users’ characteristics to a
large extent. More importantly, the meaningful weight preferences are very useful
for recommendation explanation. We know that the meta path has semantics, so we
can tell users the recommendation reason according to the path semantics of the
high-weight path. Although some weight learning methods on paths have been pro-
posed [9, 24], their weights fail to reflect users’ preferences on paths. We think two
strategies adopted in RecSem contribute to its good properties. (1) We design the
predicted rating score in Eq.5.2, which can eliminate the similarity bias on different
meta paths by the adoption of normalized rating intensity. (2) We employ the weight
regularization term in Eq.5.9 according to the consistency rule of weight prefer-
ences of similar users. The consistency rule makes similar users have similar weight
preferences. In other words, weights also reveal users’ similarity and preferences.

5.1.4.5 Study on Weighted Meta Path

In this section, we study the effectiveness of weighted meta path on improving
the performances of SemRec through more accurately revealing relations among
objects. For the meta path UMU, we design two weighted paths U (i)M( j)U |i = j
and U (i)M( j)U ||i − j | ≤ 1. U (i)M( j)U |i = j means users rating the exact same
scores on the same movies, while U (i)M( j)U ||i − j | ≤ 1 means users rating
close scores. Similarly, we design two corresponding weighted paths for UMDMU,
UMAMU, and UMTMU. Based on the similarity generated by these meta paths,
we employ SemRecSgl to make recommendations. We compare the performances of
SemRecSgl with different paths and record the results in Fig. 5.6.

The experimental results on all four paths clearly show that SemRecwithweighted
meta paths (e.g.,U (i)M( j)U |i = j andU (i)M( j)U ||i − j | ≤ 1) significantly out-
perform SemRec with unweighted meta paths (e.g., UMU). Let us take the UMU
path as an example to analyze the reasons. Failing to distinguish the different rating
scores of users on the samemovies, UMU cannot accurately reveal user similarity, so
it has bad performances. The path U (i)M( j)U |i = j and U (i)M( j)U ||i − j | ≤ 1
not only considers the differences of rating scores but also keeps dense relations, so
they can achieve better performances than UMU. Compared to U (i)M( j)U |i = j ,
the relatively bad performances of U (i)M( j)U ||i − j | ≤ 1 may be attributed to
the noise introduced by some improper relation constraints (e.g., U(3)M(4)U, and
U(4)M(3)U). The experiments illustrate that the weighted meta paths are really
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Fig. 5.6 Performances of SemRec with different weighted meta paths

helpful to improve recommendation performances by more accurately revealing
object relations.

5.2 Recommendation Based on Matrix Factorization

5.2.1 Overview

With the increasing popularity of social media, there is a surge of social recommen-
dation techniques [4, 12] in recent years, which leverage rich social relations among
users, such as friendships in Facebook, following relations in Twitter. However, the
emerging social recommendation usually faces the problem of relation sparsity. On
the one hand, dense social relations can improve the recommendation performance.
However, social relations are very sparse or absent in many real applications. For
example, there are no social relations in Amazon, and 80% users in Yelp have less
than 3 following relations. On the other hand, users and items in many applications
have rich attribute information, which are seldom exploited. These information may
be very useful to reveal users’ tastes and items’ properties. For example, the group
attribute of users can reflect their interests, and the type attribute of movies can reveal
the content of movies. So it is desirable to effectively integrate all kinds of informa-
tion for better recommendation performance, including not only feedback and social
relations but also attributes of users and items. Some works have began to explore
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this issue [5, 23, 24], while they did not focus on revealing the importance of these
attributes and their effects on recommendation accuracy.

Although integrating more information is promising to achieve better recommen-
dation performance, how to integrate these information still faces two challenges.
(1) The information to be integrated has different types. These mixed information
types include integer (i.e., rating information), vector (i.e., attribute information),
and graph (i.e., social relations). We need to design a unified model to effectively
integrate these different types of information. (2) A unified and flexible method is
desirable to integrate all or some of these information. In order to intensively study
the impacts of different information, the designed method should flexibly integrate
different granularities of information and uniformly utilize different types of infor-
mation.

As mentioned above, we can organize objects and relations in recommended
system as a heterogeneous information network which contains different types of
nodes or links. In order to utilize these heterogeneous information, we introducemeta
path-based similarity measure to evaluate the similarity betweeof users and items.
Based on matrix factorization, a dual regularization framework SimMF is proposed
to integrate heterogeneous information through adopting similarity information of
users and items as regularization on latent factors of users and items. Moreover,
in SimMF, two different regularization models, average-based regularization and
individual-based regularization, can flexibly confine regularization on users or items.

5.2.2 The SimMF Method

In this section, we will introduce the SimMF method, which utilizes matrix fac-
torization framework to incorporate similarity information. We firstly introduce the
rich similarity generation with HIN. And then, we review the basic low-rank matrix
factorization framework and introduce the improvedmodel through constraining sim-
ilarity regularization on users and items, respectively. Finally, we show the unified
model through applying similarity regularization on users and items simultaneously.

5.2.2.1 Similarity Generation

Two objects in a heterogeneous network can be connected via different paths, which
can be called meta path [19]. A meta path P is a path defined on a schema S =
(A,R) and is denoted in the form of A1

R1−→ A2
R2−→ · · · Rl−→ Al+1 (abbreviated as

A1A2 · · · Al+1), which defines a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl between
type A1 and Al+1, where ◦ denotes the composition operator on relations. Since
different meta paths have different semantics, objects connecting by different meta
paths have different similarity. So we can evaluate the similarity of users (or movies)
based on different meta paths. For example, for users, we can consider meta paths
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UU, UGU, UMU, and so on. Similarly, meaningful meta paths connecting movies
include MAM and MDM.

There are several path-based similarity measures to evaluate the similarity of
objects in HIN [6, 16, 19]. Considering semantics in meta paths, Sun et al. [19]
proposed PathSim tomeasure the similarity of same-type objects based on symmetric
paths. Lao andCohen [6] proposed a Path Constrained RandomWalk (PCRW)model
to measure the entity proximity in a labeled directed graph constructed by the rich
metadata of scientific literature. The HeteSim [16] can measure the relatedness of
heterogeneous objects based on an arbitrary meta path. All these similarity measures
can be used in the similarity calculation, and their differences can be seen in Ref. [16].

We define S(l)
i j to denote the similarity of two objects ui and u j under the given

meta path Pl . The similarity (S) is determined by the given meta path (P) and the
similarity measure (M). That is, S = P × M. We know that the similarity of different
paths are different and they are incomparable. So we normalize them with Sigmoid
function as shown in Eq.5.14, where S̄(l) means the average of S(l)

i j and β is set to
1. The normalization process has the following two advantages. (1) It confines the
similarity into [0, 1] without changing their ranking. (2) It can reduce the similarity
difference of different paths. In the following section, we directly use the S(l)

i j to
represent the normalized similarity:

S(l)
i j

′
= 1

1 + e−β×(S(l)
i j −S̄(l))

(5.14)

Since users (or items) have different similarity under different meta paths, we
consider their similarity on all paths through assigning weights on different paths.
For users, we define SU for the similarity matrix of users on all paths and SI for the
similarity matrix of items on all paths. They can be defined as follows, where wU

l
represents theweight of similaritymatrix of users under the path Pl andwI

l represents
that of items:

SU = ∑
l w

U
l S

(l) ΣlwU
l = 1; 0 ≤ wU

l ≤ 1
SI = ∑

l w
I
l S

(l) ΣlwI
l = 1; 0 ≤ wI

l ≤ 1
(5.15)

5.2.2.2 Low-Rank Matrix Factorization

The low-rank matrix factorization has been widely studied in recommended system
[18]. Its basic idea is to factorize the user–item rating matrix R into two matrices
(U and V ) representing users’ and items’ distributions on latent semantic, respec-
tively. Then, the rating prediction can be made through these two specific matrices.
Assuming an m × n rating matrix R to be m users’ ratings on n items, this approach
mainly minimizes the objective function L(R,U, V ) as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + λ1

2
‖U‖2 + λ2

2
‖V ‖2, (5.16)
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where Ii j is the indicator function that is equal to 1 if user i rates item j and equal
to 0 otherwise.U ∈ R

m×d and V ∈ R
n×d , where d is the dimension of latent factors

and d 
 min(m, n). Ui is a row vector derived from the i th row of matrix U , and
Vj is a row vector derived from the j th row of matrix V . λ1 and λ2 represent the
regularization parameters. In summary, the optimization problemminimizes the sum-
of-squared-errors objective function with quadratic regularization terms which aim
to avoid overfitting. This problem can be effectively solved by a simple stochastic
gradient descent technique.

5.2.2.3 Similarity Regularization on Users and Items

As mentioned above, the user-specific factorized matrix describes users’ distribu-
tion over latent semantic. In this section, we will introduce two different types of
similarity regularization (i.e., average-based regularization and individual-based reg-
ularization) on users to force the distance between Up and Uq to be much smaller if
user p is highly similar to user q.

Average-based Regularization Intuitively, we have similar behavior model with
people who are similar with us. That is, the latent factor of a user is similar to the
latent factor of people who are the most similar to the user. Based on this assumption,
we add user’s similarity regularization to the basic low-rank matrix factorization
framework.

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + α

2

m∑

i=1

‖Ui −
∑

f ∈T+
u (i) S

U
i f U f

∑
f ∈T+

u (i) S
U
i f

‖2

+λ1

2
‖U‖2 + λ2

2
‖V ‖2 (5.17)

where T+
u (i) is the set of users who are in the top k similarity list of user i and

SUi f is the element located on the i th row and the f th column of user similarity
matrix SU. The average-based regularization confines that the latent factor of a user
is close to the average of the latent factor of the top k similar people to the user. The
analogous regularization has been used in social recommendation [13], while it just
enforces constraints on friends of users. Here, the average-based regularization not
only extends to the top k similarity list of users but also considers the similarity values
as the weights. The parameter k can be set to trade-off accuracy and computation
cost. Large k usually means high accuracy but low efficiency. In our experiments,
k is set to 5% of the vector dimension. A local minimum of the objective function
given by Eq.5.17 can be solved by performing gradient descent in feature vectors
Ui and Vj , which is shown in Eqs. 5.18 and 5.19. Here, T−

u (i) represents the set of
users whose top k similarity list contains user i .
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∂L

∂Ui
=

n∑

j=1

Ii j (UiV
T
j − Ri j )Vj + α(Ui −

∑
f ∈T+

u (i)(S
U
i f U f )

∑
f ∈T+

u (i) S
U
i f

)

+α
∑

g∈T−
u (i)

−SUig(Ug −
∑

f ∈T+
u (g)(S

U
g f U f )

∑
f ∈T+

u (g) S
U
g f

)

∑
f ∈T+

u (g) S
U
g f

+ λ1Ui , (5.18)

∂L

∂Vj
=

m∑

i=1

Ii j (UiV
T
j − Ri j )Ui + λ2Vj . (5.19)

Individual-based Regularization The above average-based regularization con-
strains user’s taste with the average taste of people who are the most similar users.
However, it may be ineffective for users whose similar users have diverse tastes. In
order to avoid this disadvantage, we employ individual-based regularization on users
as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + α

2

m∑

i=1

m∑

j=1

SUi j‖Ui −Uj‖2

+λ1

2
‖U‖2 + λ2

2
‖V ‖2. (5.20)

In essential, the individual-based regularization enforces a large SUi j to have a small
distance between Ui and Uj . That is, similar users have smaller distance on latent
factors. With the same optimization technique, a local minimum of Eq.5.20 can also
be found by performing gradient descent in Ui and Vj .

∂L

∂Ui
=

n∑

j=1

Ii j (UiV
T
j − Ri j )Vj + α

m∑

j=1

(SUi j + SUj i )(Ui −Uj ) + λ1Ui , (5.21)

∂L

∂Vj
=

m∑

i=1

Ii j (UiV
T
j − Ri j )Ui + λ2Vj . (5.22)

Similarity Regularization on Items For simplicity, we define the notation Regxy to
represent the average-based or individual-based regularization termon users or items,
where x ∈ {U,I} means Users or Items and y ∈ {ave, ind} means average-based or
individual-based regularization. That is, for similarity regularization on users, we
have
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RegUave =
m∑

i=1

‖Ui −
∑

f ∈T+
u (i) S

U
i f U f

∑
f ∈T+

u (i) S
U
i f

‖2, (5.23)

RegUind =
m∑

i=1

m∑

j=1

SUi j‖Ui −Uj‖2. (5.24)

Similar to the regularization on users, we can also define these two different types
of regularization on items as follows:

RegIave =
n∑

j=1

‖Vj −
∑

f ∈T+
i ( j) S

I
j f V f

∑
f ∈T+

i ( j) S
I
j f

‖2, (5.25)

RegIind =
n∑

i=1

n∑

j=1

SIi j‖Vi − Vj‖2, (5.26)

where T+
i ( j) is the set of items who are in the top k similarity list of item j , and SIj f

is the element located on the j th row and the f th column of similarity matrix SI. We
can also define the optimization function based on these two regularization terms on
items and derive their gradient learning algorithms as above.

5.2.2.4 A Unified Dual Regularization

Now, we consider regularization on users and items simultaneously. The correspond-
ing optimization function is shown as follows:

min
U,V

L(R,U, V ) = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + α

2
RegUy + β

2
RegIy

+λ1

2
‖U‖2 + λ2

2
‖V ‖2, (5.27)

where α and β control the effect of user and item regularization, respectively. For y ∈
{ave, ind}, there are four regularization models. Similarly, we can use the gradient
descent method to solve this optimization problem. The whole algorithm framework
is shown in Algorithm 2.

5.2.3 Experiments

In this section, we will verify the superiority of our model by conducting a series of
experiments compared to the state-of-the-art recommendation methods.
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Algorithm 2 Algorithm Framework of SimMF
Require:

G: heterogeneous information network
PU , PI : sets of meta paths related to users and items
η: learning rate for gradient descent
α, β, λ1, λ2: controlling parameters defined above
ε: convergence tolerance

Ensure:
U, V : the latent factor of users and items

1: Calculate similarity matrix of user SU based on PU , G
2: Calculate similarity matrix of item SI based on PI , G
3: Initialize U, V
4: repeat
5: Uold := U ,Vold := V
6: Calculate ∂L

∂U , ∂L
∂V

7: Update U := U − η ∗ ∂L
∂U

8: Update V := V − η ∗ ∂L
∂V

9: until ‖U −Uold‖2 + ‖V − Vold‖2 < ε

5.2.3.1 Experiment Settings

In experiments, we employs two real datasets from two various domains. Douban
Movie3 is from the movie domain. Stemming from the business domain, the widely
used Yelp challenge dataset4 [23, 24] records users’ ratings on local business and
also contains social relations and attribute information of business (e.g., cities and
categories). In addition, we use Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) to evaluate the performance of different methods.

In this section,we compare SimMFwith six representativemethods. There are dif-
ferent variations for SimMF.We use SimMF-U(y)I(y) to represent SimMFwith reg-
ularization on users and items, where y ∈ {a, i}, and it represents the average-based
or individual-based regularization. Similarly, SimMF-U(y) (SimMF-I(y)) means
SimMF with regularization only on users (items). There are six baseline methods,
including four types. There are two basic methods (i.e., UserMean and ItemMean),
a collaborative filtering with low-rank matrix factorization (i.e., PMF), a social rec-
ommendation method (i.e., SoMF), and two HIN-based methods (i.e., HeteMF and
HeteCF). These baselines are summarized as follows.

• UserMean. This method uses the mean value of every user to predict the missing
values.

• ItemMean. This method utilizes the mean value of every item to predict the
missing values.

3http://movie.douban.com/.
4http://www.yelp.com/dataset_challenge/.

http://movie.douban.com/
http://www.yelp.com/dataset_challenge/
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• PMF. This method is a typical matrix factorization method proposed by Salakhut-
dinov and Minh [15]. And in fact, it is equivalent to basic low-rank matrix factor-
ization in the previous section.

• SoMF. This is the matrix factorization-based recommendation method with social
average-based regularization proposed by Ma et al. [13].

• HeteMF. This is the matrix factorization-based recommendation framework com-
bining user ratings and various entity similaritymatrices proposed byYu et al. [22].

• HeteCF. This is the social collaborative filtering algorithm using heterogeneous
relations [9].

We employ HeteSim [16] to evaluate the similarity of objects. For the Douban
Movie dataset, we use 7 meaningful meta paths for user whose length is smaller than
4 (i.e., UU, UGU, ULU, UMU, UMDMU, UMTMU, UMAMU) and 5 meaningful
meta paths for movie whose length is smaller than 3 (i.e., MTM, MDM, MAM,
MUM, MUUM). For the Yelp dataset, we use 4 meta paths for user (i.e., UU, UBU,
UBCBU, UBLBU) and 4 meta paths for business (i.e., BUB, BCB, BLB, BUUB).
Similarly, we utilize 5 meta paths for user (i.e., UGU, UAU, UOU, UMU, UMTMU)
and 2 meta paths for movie (i.e., MTM, MUM) for the MovieLens dataset. And for
the Douban Book dataset, we utilize 7 meta paths for user (i.e., UU, UGU, ULU,
UBU, UBABU, UBPBU, UBYBU) and 5 meta paths for book (i.e., BAB, BPB,
BYB, BUB, BUUB). These similarity data are fairly used for HeteCF and SimMF.
HeteMF uses similarity data of users, since the model only considers the similarity
relationships between items.

5.2.3.2 Effectiveness Experiments

This section will validate the effectiveness of SimMF through comparing its different
variations to baselines. Here, we run four versions of SimMF-U(y)I(y) (y ∈ {a, i})
and record theworst (denoted as SimMF-max inTables5.5 and 5.6), the best (denoted
as SimMF-min), and the average (denoted as SimMF-mean) performance of these
four versions. The α and β are set to 100 and 10, respectively, for Douban Movie
dataset, as suggested in the following parameter experiment. For other datasets, α

and β are set to the optimal values according to related parameter experiments. For
all the experiments in this chapter, the values of λ1 and λ2 are set to a trivial value
0.001 and the length of latent feature vectorsUi and Vj are set to 10. The parameters
of other methods are set to the optimal values obtained in parameter experiments.

For these datasets, we use different ratios (80%, 60%, 40%, 20%) of data as
training set. For example, the training data 80% means that we select 80% of the
ratings from user–item rating matrix as the training data to predict the remaining
20% of ratings. The random selection was carried out 10 times independently in
all the experiments. We report average results on Douban Movie and Yelp datasets
in Tables5.5 and 5.6, respectively, and record the improvement ratio of all meth-
ods compared to the PMF. In addition, we also report the average running time of
these methods with the 80% training ratio in the last line of above tables. For those
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HIN-based methods (i.e., HeteCF, HeteMF, and SimMF), we only report the running
time of the model learning process, ignoring the running time of similarity computa-
tion. Note that we report the mean running time for SimMF, since the four versions
of SimMF have the similar computational complexity.

The results are shown in Tables5.5 and 5.6. In addition, we also conduct the t-test
experiments with 95% confidence, which shows that the MAE/RMSE improvement
difference is statistically stable and non-contingent. Due to the space limitation, they
are omitted in the paper, but the results can be found in [17]. From the experimental
comparisons, we can observe the following phenomena.

• SimMF always outperforms the baselines in most conditions, even for the worst
performance of SimMF (i.e., SimMF-max). It validates that more attribute infor-
mation from users and items exploited in SimMF is really helpful to improve
the recommendation performance. In addition, the model integrating more infor-
mation usually has better performances. That is, the reason why other matrix
factorization models integrating heterogeneous information usually have better
performance than the basic matrix factorization model PMF.

• Although HeteMF and HeteCF also utilize the attribute information from users
and items, they have worse performance than SimMF, which implies the proposed
SimMF has better mechanism to integrate heterogeneous information. We know
that HeteMF only integrates attribute information of items, while the same para-
meter for similarity regularization terms of users and items may cause the bad
performance of HeteCF.

• When considering different training data ratios, we can find that the superiority
of SimMF is more significant for less training data. It indicates that SimMF can
effectively alleviate data sparsity problem.We think the reason lies in that, through
exploiting different meta paths, we can make full use of rich attribute information
of users and items to reflect the similarity of users and items from different aspects.
The integration of similarities can comprehensively reveal the similarity of users
and items, which compensates for shortage of training data.

Observing the running time of different methods in the last row of Tables5.5
and 5.6, we can find that the running time becomes longer as the models become
more complex. That is, HIN-based methods (i.e., HeteMF, HeteCF, and SimMF)
have longer running time than the other methods, since they have more parameters
to be learned. However, SimMF is still faster than the other two HIN-based methods
because SimMF does not need to learn the weights of meta paths.

5.2.3.3 Impact of Different Regularizations

Experiments in this section will validate the effect of different regularization models
on users and items. Ma et al. [13] have explored the effect of average-based and
individual-based regularization on social relations of users. However, in this chapter,
we not only explore the effect on more complex relations, but also consider the effect
on both users and items.
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Fig. 5.7 Performance of SimMFwith different regularizations on DoubanMovie and Yelp datasets

We employ four variations of SimMF with average-based and individual-based
regularization on users and items (i.e., SimMF with U(a)I(i), U(a)I(a), U(i)I(i), and
U(i)I(a)) and four variations of SimMF with average-based or individual-based reg-
ularization on users or items (i.e., SimMF with U(a), U(i), I(a), and I(i)). The same
parameters are set with above experiments, and the average results are shown in
Fig. 5.7. We can find that SimMF, integrating similarity information on both users
and items, always has better performance than the one only integrating similarity
information on users or items. Again, we can observe the difference is far more
pronounced when the fraction of training set is low; e.g., at 20%, SimMF-U(i) and
SimMF-U(a) perform very bad. Moreover, we can also observe an interesting phe-
nomena: Regularization models have different effects on users and items. SimMF-
U(a) has better performance than SimMF-U(i) on both datasets, which indicates
average-based regularization may be more suitable for users. However, it is not the
case for items. SimMF-I(i) performs better than SimMF-I(a) on Douban Movie,
while SimMF-I(a) outperforms SimMF-I(i) on Yelp. As a result, SimMF-U(a)I(i)
has the best performance on Douban Movie, while SimMF-U(a)I(a) is the best one
on Yelp. Although it is hard to draw general conclusions, the above study indicates
that different regularization model may significantly affect performance of matrix
factorization methods. In summary, we need to find the optimal regularization model
according to data properties in real applications.
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5.2.3.4 Impact of Different Meta Paths

In this section,we study the impact of differentmeta paths.Due to similar analysis,we
only show results on Douban Movie dataset. As illustrated above, we employ 7 meta
paths on users and 5 meta paths on movies. We will observe performance of SimMF
with similarity matrix generated by one single meta path. Under the same parameters
with above experiments, we run SimMF-U(a) with similarity matrix generated by
each meta path on users. Similarly, we also run SimMF-I(i) with similarity matrix
generated by each meta path on movies.

The experiment results on Douban Movie dataset are shown in Fig. 5.8. We can
observe different impacts of meta paths on users and movies. The SimMF-U(a) with
different meta paths (see Fig. 5.8a, b) on users all have close performance. Moreover,
SimMF-U(a) with MUM has slightly better performance and SimMF-U(a) with UU
has worse performance. However, it is not the case for meta paths on items. The
SimMF-I(i) with different meta paths on items (see Fig. 5.8c, d) have totally different
performance. We can find that SimMF-I(i) with MDM has the worst performance,
even worse than PMF in some conditions, while SimMF-I(i) with MTM and MUM
achieve much better performance on both criteria. We think there are two reasons:
(1) Note that the performance of SimMF is much affected by the density of relations.
The density of relations on MT and MU is much higher than that on MD and MA.
The dense relations are helpful to generate good similarity of items. The similar
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Fig. 5.8 Performance of SimMF with different meta paths on Douban Movie dataset
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Fig. 5.9 Performance of SimMF on MAE and RMSE with different weights setting methods

phenomena have been widely observed in social recommendation [10, 13]. (2) The
meaningful meta paths are helpful to reveal the similarity of objects. MTM means
movies with same type, and MUM means movies seen by same users. These two
paths are highly correlated as both reveal properties of themovies. These two reasons
can also explain the slightly worse performance of the meaningful but sparse UU
meta path as compared to other meta paths of users. The experiments imply that we
only need to use one single dense and meaningful meta path to generate similarity
information, which also can obtain good enough performance.

We further design an experiment to illustrate different importance of meta paths.
Concretely, we observe the performance of above SimMF-I(i) with different weight
combination methods on 5 meta paths. Except mean weight and random weight on
5 paths, we design a heuristic weight method, i.e., setting the weights according to
the performance of these paths. That is, paths with good performance have higher
weights. Assume the MAE performance value of a path (Pl) is Pl , and the maxMAE
value is Pmax . Then, the difference is dl = ePmax−Pl . And thus, the weight of the path
is wI

l = dl∑
l dl

. The experiment also includes PMF as the baseline. The results are
shown in Fig. 5.9. It is obvious that SimMF-I(i) with the heuristic weight method has
the best performance, which further validates that the meaningful and dense meta
paths are more important. The more detailed method description and experiment
validation can be seen in [17].

5.3 Social Recommendation with Heterogeneous
Information

5.3.1 Overview

With the boom of social media, social recommendation has become a hot research
topic, which utilizes the social relations among users for better recommendation.
Some researchers utilized trust information among users [10, 11], and some began
to use friend relationship among users [13, 21] or other types of information
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[1, 2]. Most of these social recommendation methods employ social regularization
to confine similar users under the low-rank matrix factorization framework. Specif-
ically, we can obtain the similarity of users from their social relations, and then, the
social regularization, as a constraint term, confines the latent factors of similar users
to be closer. It is reasonable, since similar users should have similar latent features.

However, the widely used social regularization in social recommendation has
several shortcomings. (1) The similarity information of users is only generated from
social relations of users. But we can obtain users’ similarity from many ways in real
applications, such as users’ contents. (2) The social regularization only has constraint
on users. In fact, we can also obtain the similarity of items and impose constraint
on the latent factors of items. (3) The social regularization may be ineffective for
dissimilar users, which may lead to dissimilar users having similar factors. The
analysis and experiments in the next section validate this point.

In order to address the limitation of traditional social recommendation, we pro-
pose a dual similarity regularization-based recommendation method (called DSR).
Inspired by the success of Heterogeneous InformationNetwork (HIN) inmany appli-
cations, we organize a recommended system as an HIN, which can integrate all
kinds of information, including interactions between users and items, social relations
among users, and attribute information of users and items. Based on the HIN, we can
generate rich similarity information on both users and items by setting proper meta
paths. Furthermore, we propose a new similarity regularization which can impose
the constraint on users and items with high and low similarity. With the similarity
regularization, DSR adopts a new optimization objective to integrate those similarity
information of users and items. Then, we derive its solution to learn the weights of
different similarities.

5.3.2 The DSR Method

In this section, we propose the dual similarity regularization-based matrix factoriza-
tion method DSR and infer its learning algorithm.

5.3.2.1 Limitations of Social Recommendation

Recently, with the increasing popularity of social media, there is a surge of social
recommendations which leverage rich social relations among users to improve rec-
ommendation performance. Ma et al. [13] first proposed the social regularization to
extend low-rank matrix factorization, and then, it is widely used in a lot of work [9,
22]. A basic social recommendation method is illustrated as follows:
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min
U,V

J = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2 + α

2

m∑

i=1

m∑

j=1

SU (i, j)‖Ui −Uj‖2

+λ1

2
(‖U‖2 + ‖V ‖2), (5.28)

where m × n rating matrix R depicts users’ ratings on n items and Ri j is the score
user i gives to item j . Ii j is an indicator function which equals to 1 if user i rated
item j and equals to 0 otherwise. U ∈ R

m×d and V ∈ R
n×d , where d 
 min(m, n)

is the dimension number of latent factor.Ui is the latent vector of user i derived from
the i th row of matrix U , while Vj is the latent vector of item j derived from the j th
row of V . SU is the similarity matrix of users, and SU (i, j) denotes the similarity of
user i and user j . ‖ · ‖2 is the Frobenius norm. Particularly, the second term is the
social regularization which is defined as follows:

SocReg = 1

2

m∑

i=1

m∑

j=1

SU (i, j)‖Ui −Uj‖2. (5.29)

As a constraint term in Eq.5.28, SocReg forces the latent factors of two users to be
close when they are very similar. However, it may have two drawbacks.

• The similarity information may be simple. In social recommendation, the simi-
larity information of users is usually generated from rating information or social
relations, and only one type of similarity information is employed. However, in
many applications, we can obtain much more rich similarity information of users
and items from various ways, such as rich attribute information and interactions.
We need to make full use of these similarity information of users and items for
recommendation.

• The constraint term may not work well when two users are not very similar. The
minimization of optimization objective should force the latent factors of two users
with high similarity to be close. However, when two users are not similar (i.e.,
SU (i, j) is small), SocReg may still force the latent factors of these two users to
be close. However, these two users should be dissimilar which means their latent
factors should have large distance.

In order to uncover the limitations of social regularization, we apply the model
detailed in Eq.5.28 to conduct four experiments each with different levels of similar-
ity information (None, Low, High, All). None denotes that we utilize no similarity
information in the model (i.e., α = 0 in the model), Low denotes that we utilize
bottom 20% users’ similarity information generated in the model, High is that of
top 20%, and All denotes we utilize all users’ similarity information. The Douban
dataset is employed in the experiments, and we report MAE and RMSE in Fig. 5.10.
The results of Low, High, and All are better than that of None, which implies
social regularization really works in the model. However, in terms of performance
improvement compared to None, Low does not improve as much as High and All
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Fig. 5.10 Limitations of
social regularization
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do. The above analysis reveals that the social regularization may not work well in
recommender models when users are with low similarity.

5.3.2.2 Rich Similarity Generation

Traditional social recommendations only consider the constraint of users with their
social relations. However, rich similarity information on users and items can be gen-
erated in a heterogeneous information network. Two types of objects in an HIN can
be connected via various meta paths [19], which is a composite relation connect-
ing these two types of objects. Therefore, we can evaluate the similarity of users
(or movies) based on different meta paths. For example, for users, we can consider
UU, UGU, UMU, etc. Similarly, meaningful meta paths connecting movies include
MAM and MDM.

Several path-based similarity measures have been proposed to evaluate the simi-
larity of objects under given meta path in HIN [16, 19]. We assume that S(p)

U denotes
similarity matrix of users under meta path P (p)

U connecting users, and S(p)
U (i, j)

denotes the similarity of users i and j under the path P (p)
U . Similarly, S(q)

I denotes
similaritymatrix of items under the path P (q)

I connecting items, and S(q)

I (i, j) denotes
the similarity of items i and j . Since users (or items) have different similarities under
various meta paths, we combine their similarities on all paths through assigning
weights on these paths. For users and items, we define SU and SI to represent the
similarity matrix of users and items on all meta paths, respectively.

SU =
|PU |∑

p=1

w(p)
U S(p)

U , (5.30)

SI =
|PI |∑

q=1

w(q)

I S(q)

I , (5.31)
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where w(p)
U denotes the weight of meta path P (p)

U among all meta paths PU connect-
ing users, and w(q)

I denotes the weight of meta path P (q)

I among all meta paths PI

connecting items.

5.3.2.3 Similarity Regularization

Due to the limitations ofwidely used social regularization, we design a new similarity
regularization to constraining users and items simultaneously with much available
similarity information of users and items. The basic idea of similarity regularization
is that the distance of latent factors of two users (or items) should be negatively
correlated to their similarity, which means two similar users (or items) should have a
short distance while two dissimilar ones should have a long distance with their latent
factors. We note that the Gaussian function meets above requirement. Moreover,
the range of Gaussian function is [0,1], same with the range of similarity function.
Following this idea, we design a similarity regularization on users as follows:

SimRegU = 1

8

m∑

i=1

m∑

j=1

(SU (i, j) − e−γ ‖Ui−Uj‖2)2, (5.32)

where γ controls the radial intensity of Gaussian function and the coefficient 1
8 is

convenient for deriving the learning algorithm. This similarity regularization can
enforce constraint on both similar and dissimilar users. In addition, the similarity
matrix SU can be generated from social relations or the above HIN. Similarly, we
can also design the similarity regularization on items as follows:

SimRegI = 1

8

n∑

i=1

n∑

j=1

(SI (i, j) − e−γ ‖Vi−Vj‖2)2, (5.33)

The Proposed DSR Model We propose the Dual Similarity regularization for
Recommendation (called DSR) through adding the similarity regularization on users
and items into low-rank matrix factorization framework. Specifically, the optimiza-
tion model is proposed as follows:

min
U,V,wU ,wI

J = 1

2

m∑

i=1

n∑

j=1

Ii j (Ri j −UiV
T
j )2

+λ1

2
(‖U‖2 + ‖V ‖2) + λ2

2
(‖wU‖2 + ‖wI‖2)

+αSimRegU + βSimRegI (5.34)

s.t.
|PU |∑

p=1

w(p)
U = 1,w(p)

U ≥ 0
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|PI |∑

q=1

w(q)

I = 1,w(q)

I ≥ 0,

where α and β control the ratio of similarity regularization term on users and items,
respectively.

5.3.2.4 The Learning Algorithm

The learning algorithm of DSR can be divided into two steps. (1) Optimize the
latent factor matrices of users and items (i.e., U , V ) with the fixed weight vec-
tors wU = [w(1)

U ,w(2)
U , · · · ,w(|PU |)

U ]T and wI = [w(1)
I ,w(2)

I , · · · ,w(|PI |)
I ]T . (2) Opti-

mize the weight vectors wU and wI with the fixed latent factor matrices U and V .
Through iteratively optimizing these two steps, we can obtain the optimalU , V , wU ,
and wI .
Optimize U and V With the fixed wU and wI , we can optimize U and V by per-
forming stochastic gradient descent.

∂J

∂Ui
=

n∑

j=1

Ii j (UiV
T
j − Ri j )Vj (5.35)

+α

m∑

j=1

γ [(SU (i, j) − e−γ ‖Ui−Uj‖2)e−γ ‖Ui−Uj‖2(Ui −Uj )]

+λ1Ui ,

∂J

∂Vj
=

m∑

i=1

Ii j (UiV
T
j − Ri j )Ui (5.36)

+β

n∑

i=1

γ [(SI (i, j) − e−γ ‖Vi−Vj‖2)e−γ ‖Vi−Vj‖2(Vi − Vj )]

+λ1Vj ,

Optimize wU and wI With the fixed U and V , the minimization of J with respect
to wU and wI is a well-studied quadratic optimization problem with nonnegative
bound. We can use the standard trust region reflective algorithm to updatewU andwI

at each iteration. We can simplify the optimization function of wU as the following
standard quadratic formula:
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min
wU

1

2
wT
U HUwU + f TU wU (5.37)

s.t.
|PU |∑

p=1

w(p)
U = 1,w(p)

U ≥ 0.

Here, HU is a |PU | × |PU | symmetric matrix as follows:

HU (i, j) =
{

α
4 (

∑∑
S(i)
U � S( j)

U ) i �= j, 1 ≤ i, j ≤ |PU |
α
4 (

∑∑
S(i)
U � S( j)

U ) + λ2 i = j, 1 ≤ i, j ≤ |PU |,

� denotes the dot product. fU is a columnvectorwith length |PU |, which is calculated
as follows:

fU (p) = −α

4

m∑

i=1

m∑

j=1

S(p)
U (i, j)e−γ ‖Ui−Uj‖2 .

Similarly, we can also infer the optimization function of wI .

5.3.3 Experiments

In this section, we conduct experiments to validate the effectiveness of DSR and
further explore the cold-start problem.

5.3.3.1 Experiment Settings

We use two real datasets: Douban and Yelp in experiments. Note that the Douban
dataset has sparse social relationship with dense rating information, while the Yelp
dataset has dense social relationships with sparse rating information. We still use
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to evaluate the
performance of rating prediction.

In order to validate the effectiveness of DSR, we compare it with following repre-
sentative methods. Besides the classical social recommendation method SoMF, the
experiments also include two recent HIN-based methods, HeteCF and HeteMF. In
addition, in order to validate the effectiveness of similarity regularization, we include
the revised version of SoMF with similarity regularization (i.e., SoMFSR).

• UserMean. It employs a user’s mean rating to predict the missing ratings directly.
• ItemMean. It employs an item’smean rating to predict themissing ratings directly.
• PMF [14]. Salakhutdinov and Minh proposed the basic low-rank matrix factor-
ization method for recommendation.
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• SoMF [13]. Ma et al. proposed the social recommendation method with social
regularization on users.

• HeteCF [9]. Luo et al. proposed the social collaborative filtering algorithm using
heterogeneous relations.

• HeteMF [22]. Yu et al. proposed the HIN-based recommendation method through
combining user ratings and items’ similarity matrices.

• SoMFSR. It adapts SoMF through only replacing the social regularization with the
similarity regularization SimRegU.

For Douban dataset, we utilize 7 meta paths for user (i.e., UU, UGU, ULU, UMU,
UMDMU, UMTMU, and UMAMU) and 5 meta paths for item (i.e., MTM, MDM,
MAM, MUM, and MUUM). For Yelp dataset, we utilize 2 meta paths for user (i.e.,
UB and UU) and 2 meta paths for item (i.e., BC and BL). HeteSim [16] is employed
to evaluate the object similarity based on abovemeta paths. These similarity matrices
are fairly utilized for HeteCF, HeteMF, and DSR. We set γ = 1, α = 10, and β =
10 through parameter experiments on Douban dataset. In the experiments on Yelp
dataset, we set the parameters γ = 1, α = 10, and β = 10. Meanwhile, optimal
parameters are set for other models in the experiments.

5.3.3.2 Effectiveness Experiments

For Douban dataset, we use different ratios (80%, 60%, 40%) of data as training sets
and the rest of the dataset for testing. Considering the sparse density of Yelp dataset,
we use 90%, 80%, and 70% of data as training sets and the rest of the dataset for
testing for Yelp dataset. The random selection is carried out 10 times independently,
and we report the average results in Table5.7.

It is clear that three HIN-based methods (DSR, HeteCF, and HeteMF) all achieve
significant performance improvements compared to PMF,UserMean, ItemMean, and
SoMF. It implies that integrating heterogeneous information is a promising way to
improve recommendation performance. Particularly, DSR always has the best per-
formance on all conditions compared to other methods. It indicates that the dual sim-
ilarity regularization on users and items may be more effective than traditional social
regularization. It can be further confirmed by the better performance of SoMFSR
over SoMF. Although the superiority of SoMFSR over SoMF is not significant, the
improvement is achieved on the very weak social relations in Douban dataset. In
addition, we can also find that DSR has better performance improvement for less
training data. It reveals that DSR has the potential to alleviate the cold-start problem.

5.3.3.3 Study on Cold-Start Problem

Furthermore, we validate the superiority of DSR on cold-start problem. We run
PMF, SoMF, HeteCF, HeteMF, and DSR on Douban dataset with 40% training ratio.
We set four levels of users: three types of cold-start users with various numbers
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Fig. 5.11 MAE improvement against PMF on various cold-start levels

of rated movies (e.g., [0, 8] denotes users rated no more than 8 movies and “All”
means all users in Fig. 5.11). We conduct similar experiments on cold-start items
and users&items (users and items are both cold-start). The experiments are shown in
Fig. 5.11. Once again, we find that 3 HIN-based methods all are effective for cold-
start users and items. Moreover, DSR always has the highest MAE improvement
on almost all conditions, due to dual similarity regularization on users and items.
It is reasonable since the DSR method takes much constraint information of users
and items into account which would play a crucial role when there is little available
information of users or items. The more detailed method description and experiment
validation can be seen in [3, 26].

5.4 Conclusions

In recent years, recommendation has become a very popular application to alleviate
information overload, and many recommendation techniques have been proposed.
Recommender system includes a lot of object types and the rich relations among
object types, so we can naturally constitute a heterogeneous information network
from recommended system. The comprehensive information integration and rich
semantic information of HIN make it promising to generate better recommendation.
In this chapter, we introduce two types of recommendation methods with HIN. One
type of methods employ the semantic path-based similarity measure to recommend
items directly, and the other type of methods utilize rich similarity generated by
meta paths to extend traditional matrix factorization methods. Experiments not only
validate the effectiveness of these proposed methods but also show the benefits of
information integration with heterogeneous network. In the future work, we can
exploit the power and benefits of information integrationwith heterogeneous network
in more applications.
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Chapter 6
Fusion Learning on Heterogeneous
Social Networks

Jiawei Zhang

Abstract Looking from a global perspective, the landscape of online social networks
is highly fragmented. A large number of online social networks have appeared, which
can provide the users with various types of services. Generally, the information
available in the these online social networks is of diverse categories, which can
be represented as heterogeneous information networks (HIN) formally. Meanwhile,
in such an age of online social media, users usually participate in multiple online
social networks simultaneously to enjoy more social networks services, who can
act as bridges connecting different networks together. So multiple HINs not only
represent information in single network, but also fuse information from multiple
networks. Formally, the online social networks sharing common users are named as
the aligned social networks, and these shared users who act like anchors aligning the
networks are called the anchor users. The heterogeneous information generated by
users’ social activities in the multiple aligned social networks provides social network
practitioners and researchers with the opportunities to study individual user’s social
behaviors across multiple social platforms simultaneously.

6.1 Network Alignment

6.1.1 Overview

Heterogeneous information networks (HIN) is a very general network representation
in the real world and lots of network structured data can be represented as HINs
formally, such as collaboration networks, online social networks, and knowledge
base. Meta path first proposed by Sun et al. for heterogeneous information networks
in [32] is a powerful tool, which can be applied in link prediction problems [31,
34], clustering problems [32, 33], searching and ranking problems [16, 37], and
collective classification problem [11] in HINs. However, most of these applications
are within one single network only, meta path extracted from which are called the
intra-network meta path.

Meanwhile, to enjoy the social network services from multiple online social net-
works simultaneously, users nowadays are usually involved in multiple online social
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networks at the same time. Formally, the online social networks sharing common
users are named as the aligned social networks, and these shared users who act like
anchors aligning the networks are called the anchor users. Social activity analysis
across aligned social networks has become a hot research topic in recent years and
many pioneer works have been done on this topic. Zhang et al. propose to study the
network alignment problem between pairwise fully aligned networks [12], pairwise
partially aligned networks [44, 45, 47], and multiple partially aligned networks [46].

Based on the aligned networks, various kinds of application problems have been
studied across multiple social platforms, including friend recommendation and social
link prediction for new users [42] and emerging networks [43, 44, 50], location
recommendation [43], community detection for emerging networks [48] and syner-
gistic clustering across networks [9, 28, 36], information diffusion [39, 40], viral
marketing [39], and tipping user identification [40]. To handle the heterogeneous
information available across the aligned social networks, the meta path concept is
firstly extended to inter-network scenario [45, 50] and applied to address various
synergistic knowledge discovery problems across partially aligned heterogeneous
social networks, which include network alignment [45], link recommendation [50],
community detection [36], and information diffusion [39, 40].

Network alignment problem has been well studied in bioinformatics, e.g., protein-
protein interaction (PPI) network alignment [10, 14, 17, 30]. Most network align-
ment approaches focus on finding approximate isomorphism between two graphs
[10, 14, 30]. Because of the intractability of the problem, existing methods usu-
ally rely on practical heuristics to solve the problem [10, 17]. Meanwhile, in recent
years, some works have been done on aligning social networks [12, 13, 22]. Vari-
ous network alignment models have been proposed to address the problem, which
include the supervised classification-based network alignment methods [12, 45], PU
(positive and unlabeled) classification-based method [44], and unsupervised matrix
estimation-based methods [46, 47].

In this chapter, we will take heterogeneous social network as an example and
introduce the network alignment problem and uniCOAT model studied in [47]. In
the network alignment problem, we aim at identifying the common users’ accounts
(i.e., the anchor links) across different social platforms based on the heterogeneous
information available in the networks, which includes both the network structure
information and various types of attribute information.

6.1.2 Terminology Definition and Social Meta Path

Before introducing the proposed framework for the network alignment problem, we
will first introduce a set of terminologies that will be used both in this section and
throughout this chapter, including heterogeneous information networks, multiple
aligned social networks, anchor links, and the intra-network meta path and inter-
network meta path. A set of intra-network and inter-network meta paths will also be
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Fig. 6.1 An example of HIN and the corresponding network schema

introduced, whose notations, representation, and physical meanings will be illustrated
as follows.

6.1.2.1 Terminology Definition

As shown in Fig. 6.1a, online social networks usually contain heterogeneous infor-
mation involving different types of nodes, e.g., users, posts, words, time stamps,
and location checkins, as well as complex links among the nodes, e.g., friendship
links among users, write links between users and posts, and the contain/attach links
between posts and words, time stamps, and checkins. Formally, such a kind of online
social network can be represented as the heterogeneous information networks.

Definition 6.1 (Heterogeneous Information Networks) A heterogeneous informa-
tion network can be represented as G = (V,E), where the nodes in set V = ⋃

i Vi

and the links in set E = ⋃
i Ei are of different categories, respectively.

Users nowadays are usually involved in multiple online social networks simulta-
neously to enjoy more social network services. Formally, the online social networks
sharing common users can be defined as the multiple aligned social networks [12],
which are connected by the anchor links [42] between the accounts of shared users,
i.e., the anchor users [50].

Definition 6.2 (Multiple Aligned Social Networks) The multiple aligned social
networks can be represented asG = ({Gi }i , {A(i, j)}i, j ), where Gi = (Vi ,Ei ) denotes
the ith heterogeneous information network and A(i, j) represents the set of undi-
rected anchor links between networks Gi and G j .

Definition 6.3 (Anchor Link) Between networks Gi and G j , the set of undi-
rected anchor links A(i, j) can be represented as A(i, j) = {(uim, v j

n)|uim ∈ Ui , v j
n ∈

Ui , uim and v j
nare the accounts of the same user}, where Ui ⊂ Vi and U j ⊂ V j are the

user node sets in networks Gi and G j , respectively.
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Table 6.1 Summary of intra-network social meta paths

ID Notation Intra-network social meta
path

Semantics

1 U → U User
f ollow−−−−→ User Follow

2 U → U → U User
f ollow−−−−→ User

f ollow−−−−→
User

Follower of follower

3 U → U ← U User
f ollow−−−−→ User

f ollow←−−−−
User

Common out-neighbor

4 U ← U → U User
f ollow←−−−− User

f ollow−−−−→
User

Common in-neighbor

5 U → P → W ← P ← U User
wri te−−−→ Post

contain−−−−→
Word

contain←−−−− Post
wri te←−−−

User

Posts containing common
words

6 U → P → T ← P ← U User
wri te−−−→ Post

contain−−−−→
Time

contain←−−−− Post
wri te←−−−

User

Posts containing common
time stamps

7 U → P → L ← P ← U User
wri te−−−→ Post

attach−−−→
Location

attach←−−− Post
wri te←−−−

User

Posts attaching common
location check-ins

One way to model the heterogeneous information available across the multiple
aligned social networks is meta path [33, 36, 50], which abstracts the connections
among the different categories of nodes as sequences of link types connected by the
node types. For instance, given the social network with its schema shown in Fig. 6.1,
a summary of the intra-network social meta paths extracted from the network is
provided in Table 6.1.

Definition 6.4 (Intra-NetworkMetaPath) Given a heterogeneous information net-
work Gi = (Vi ,Ei ), we can represents its networks schema as S(Gi ) = (Ti ,Ri ),
where Ti denotes the types of nodes in Vi and Ri denotes the types of links in Ei .
Formally, based on the network schema, we can define the meta path as a sequence

P : T i
1

Ri
1−→ T i

2

Ri
2−→ · · · Ri

m−→ T i
m+1, where T i

m ∈ Ti and Ri
n ∈ Ri are the node and link

types available in network Gi , respectively.

Besides the intra-network meta Paths, via the anchor links and other shared infor-
mation entities, nodes across different networks can also get connected by the inter-
network meta paths.

Definition 6.5 (Inter-Network Meta Path) Given a meta path P consisting of
sequences of link types, P is an inter-network meta path between networks Gi

and G j iff P involves the node types and link types from the schema of both network
Gi and network G j .
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Table 6.2 Summary of inter-network social meta paths

ID Notation Intra-network social meta
path

Semantics

1 Ui → Ui ↔ U j ← U j Useri
f ollow−−−−→ Useri

Anchor←−−→
User j

f ollow←−−−− User j
Inter-network common
out-neighbor

2 Ui ← Ui ↔ U j → U j Useri
f ollow←−−−− Useri

Anchor←−−→
User j

f ollow−−−−→ User j
Inter-network common
in-neighbor

3 Ui → Ui ↔ U j → U j Useri
f ollow−−−−→ Useri

Anchor←−−→
User j

f ollow−−−−→ User j
Inter-network common out
in-neighbor

4 Ui ← Ui ↔ U j ← U j Useri
f ollow←−−−− Useri

Anchor←−−→
User j

f ollow←−−−− User j
Inter-network common in
out-neighbor

5 Ui → Pi → L ← P j ← U j Useri
wri te−−−→ Posti

checkin at−−−−−−→
Location

checkin at←−−−−−− Post j
wri te←−−− User j

Inter-network common
location checkins

7 Ui → Pi → T ← P j ← U j Useri
wri te−−−→ Posti

at−→ Time
at←− Post j

wri te←−−− User j
Inter-network common time
stamps

8 Ui → Pi → W ← P j ← U j Useri
wri te−−−→ Posti

contain−−−−→
Word

contain←−−−− Post j
wri te←−−−

User j

Inter-network common words

The simplest inter-network meta path between networks Gi and G j will be the
anchor meta path [45, 50] involving the user node types from Gi and G j and the
anchor link type between Gi and G j . Some inter-network meta path examples are
summarized in Table 6.2.

6.1.2.2 Social Meta Paths

Meta paths can actually connect various categories of node types from the network,
and those starting and ending with user node types are formally named as the social
meta paths [36] specifically. In this chapter, we will use the Foursquare and Twitter
networks as the example of multiple aligned social networks, which actually share
a large amount of common users. As shown in Fig. 6.1a, both the Foursquare and
Twitter networks can be represented as a heterogeneous information network G =
(V,E), where the node set V = U∪P∪ L∪T∪W involves the nodes of users, posts,
locations, time stamps, and words, while the link setE = Eu,u∪Eu,p∪Ep,l∪Ep,t∪Ep,w

contains the links among users, between users and posts, and those between posts and
locations, time stamps, and words, respectively. The corresponding network schema
of the HIN is shown in Fig. 6.1b. Based on the network schema, a set of intra-network
social meta paths can be extracted and defined from the network, which are shown
in Table 6.1.
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Besides the intra-network social metapaths, in Table 6.2, we also show a list of
inter-network social meta paths connecting user node types in networks Gi and
G j , respectively. These inter-network social meta paths connect user nodes across
networks via either the anchor links or other common information entities, e.g.,
location checkins, words, and time stamps.

6.1.3 Cross-Network Network Alignment

Formally, given networks G1,G2, · · · ,Gn together with information available in
them, the network alignment problem aims at identifying the anchor link sets
A(1,2),A(1,3), · · · ,A(n−1,n) between pairwise networks. The set of anchor links to be
inferred between networks Gi and G j can be represented as A(i, j), which aligns users
between networks Gi and G j . Considering that users in different social networks are
associated with both links and attribute information, the quality of the inferred anchor
links A(i, j) can be measured by the costs introduced by such mappings calculated
with users’ link and attribute information, i.e.,

cost (A(i, j)) = cost in links (A(i, j)) + α · cost in attributes(A(i, j)), (6.1)

where α denotes the weight of the cost obtained from the attribute information.

6.1.3.1 Structure Information-Based Network Alignment

Based on the social links among users in both Gi and G j (i.e., Ei
u,u and E j

u,u , respec-

tively), we can construct the binary social adjacency matrices Si ∈ R
|Ui |×|Ui | and

S j ∈ R
|U j |×|U j | for networks Gi and G j , respectively. Entries in Si and S j (e.g.,

Si (p, q) and S j (l,m)) will be assigned with value 1 iff the corresponding social
links (uip, u

i
q) and (u j

l , u
j
m) exist in Gi and G j , where uip, u

i
q ∈ Ui and u j

l , v
j
m ∈ U j

are users in networks Gi and G j .
Via the inferred anchor links A(i, j), users as well as their social connections can

be mapped between networks Gi and G j . We can represent the inferred anchor links
A(i, j) with binary user transitional matrix P ∈ R

|Ui |×|U j |, where the (ith, jth) entry
P(p, q) = 1 iff link (uip, u

j
q) ∈ A(i, j). Considering that the constraint on anchor

links is one-to-one, each column and each row of P can contain at most one entry
being assigned with value 1, i.e.,

P1|U j |×1 ≤ 1|Ui |×1, P	1|Ui |×1 ≤ 1|U j |×1, (6.2)

where P1|U j |×1 and P	1|Ui |×1 can get the sum of rows and columns of matrix P,
respectively. Eq. P1|U j |×1 ≤ 1|Ui |×1 denotes that every entry of the left vector is no
greater than the corresponding entry in the right vector.
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Matrix P is an equivalent representation of anchor link set A(i, j). Next, we will
infer the optimal user transitional matrix P, from which we can obtain the optimal
anchor link set A(i, j).

The optimal anchor links are those which can minimize the inconsistency of
mapped social links across networks and the cost introduced by the inferred anchor
link set A(i, j) with the link information can be represented as

cost in link(A(i, j)) = cost in link(P) = ∥
∥P	SiP − S j

∥
∥2

F
, (6.3)

where ‖·‖F denotes the Frobenius norm of the corresponding matrix and P	 is the
transpose of matrix P.

6.1.3.2 Attribute Information-Based Network Alignment

With these different attribute information (i.e., username, temporal activity, and text
content), we can calculate the similarities between users across networks Gi and
G j based on the inter-network social meta paths. To measure the social closeness
among users across directed heterogeneous information networks, we propose a new
closeness measure named INMP-Sim (Inter-Network Meta Path-based Similarity)
as follows.

Definition 6.6 (INMP-Sim) Let Pi (x � y) and Pi (x � ·) be the sets of path
instances of inter-network meta paths # i going from x to y and those going from
x to other nodes in the network. The INMP-Sim of node pair (x, y) is defined as

INMP-Sim(x, y) =
∑

i

ωi

( |Pi (x � y)| + |Pi (y � x)|
|Pi (x � ·)| + |Pi (y � ·)|

)

, (6.4)

where ωi is the weight of inter-network meta paths # i and
∑

i ωi = 1.

Formally, we represent such similarity matrix as Λ ∈ R
|Ui |×|U j |, where entry

Λ(p, q) is the similarity between uip and u j
q . Similar users across social networks

are more likely to be the same user and anchor links A(i, j)
u that align similar users

together should lead to lower cost. In this chapter, the cost function introduced by
the inferred anchor links A(i, j)

u in attribute information is represented as

cost in attribute(A(i, j)
u ) = cost in attribute(P) = −‖P ◦ Λ‖1 , (6.5)

where ‖·‖1 is the L1 norm of the corresponding matrix, entry (P ◦ Λ)(i, l) can be
represented as P(i, l) ·Λ(i, l), and P ◦Λ denotes the Hadamard product of matrices
P and Λ.
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6.1.3.3 Joint Objective Function for Network Alignment

Both link and attribute information is important for anchor link inference. By taking
these two categories of information into consideration simultaneously, we can rep-
resent the optimal user transitional matrix P∗ which can lead to the minimum cost
as follows:

P∗ = arg min
P

cost (A(i, j)
u )

= arg min
P

∥
∥P	SiP − S j

∥
∥2

F − α · ‖P ◦ Λ‖1 (6.6)

s.t.P ∈ {0, 1}|Ui |×|U j |,

P1|U j |×1 ≤ 1|Ui |×1, P	1|Ui |×1 ≤ 1|U j |×1.

The objective function is an constrained 0 − 1 integer programming problem,
which is hard to address mathematically. Many relaxation algorithms have been
proposed so far. For more information about how to resolve the objective function,
please refer to [47].

6.1.4 Experiments

To test the effectiveness of the proposed uniCOAT model, in this section, extensive
experiments have been done on two real-world partially co-aligned online social
networks: Foursquare and Twitter.

6.1.4.1 Dataset

The social networks dataset used in this chapter are Foursquare and Twitter, which
are co-aligned by both users and locations shared between these two networks. These
two social network datasets are crawled during November, 2012, whose statistical
information is available in Table 6.3. More detailed descriptions and the crawling
method is available in [43, 50].

To show the advantages of uniCOAT in addressing the Network Alignment
problem, we compare uniCOAT with many different baseline methods. Considering
that no known anchor links are available actually in the Network Alignment
problem, as a result, no existing supervised network alignment methods (e.g., MNA
[12]) can be applied. All the comparison methods are based on unsupervised learning
settings, which can be divided into 4 categories:
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Table 6.3 Properties of the heterogeneous networks

Property Network

Twitter Foursquare

# node User 5,223 5,392

Tweet/tip 9,490,707 48,756

Location 297,182 38,921

# link Friend/follow 164,920 76,972

Write 9,490,707 48,756

Locate 615,515 48,756

Co-Alignment Methods

• uniCOAT: Method uniCOAT can align two online social networks based on
the shared users and locations simultaneously, which consists of two steps: (1)
unsupervised potential anchor links inference; (2) co-matching of social networks
to prune redundant anchor links to maintain the one-to-one constraint.

Bipartite Graph Alignment Methods

• BigAlign: Method BigAlign is a bipartite network alignment method introduced
in [13], which can align two bipartite graphs (e.g., user-product bipartite graph)
simultaneously with link information only.

• BigAlignExt: Method BigAlignExt is a bipartite network alignment method.
BigAlignExt can align user-location bipartite networks with both location links
between users and locations as well as attribute information about users and loca-
tions across networks.

Isolated Alignment Methods

• ISO: Method ISO is an unsupervised network alignment method introduced in
[13]. ISO merely infers the anchor links only based on the friendship information
among users.

• ISOExt: Method ISOExt is an unsupervised network alignment method, which
is identical to ISO but utilizes both friendship links among users and attribute
information of users.

Traditional Unsupervised Link Prediction Methods

• Relative Degree Distance-based Network Alignment: RDD is the heuristics-based
unsupervised network alignment method introduced in [13] to fill in the initial val-
ues of the cross-network transitional matrices, e.g., P. For any two users/location
u(i)
l and u( j)

m in networks G(i) and G( j), the relative degree distance between them

can be represented as RDD(u(i)
l , u( j)

m ) =
(

1 + |deg(u(i)
l )−deg(u( j)

m )|
(deg(u(i)

l )+deg(u( j)
m ))/2

)−1
. High rela-

tive degree distance denotes lower confidence score of anchor link (u(i)
l , u( j)

m ).
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Methods uniCOAT (the first step), BigAlign, BigAlignExt ISO, ISOExt and
RDD can output the confidence scores of potential inferred links but no labels are
available, whose performance can be evaluated by metrics such as AUC and Pre-
cision@100. As to method uniCOAT, links selected finally in the matching are
assumed to achieve confidence score 1.0 and label +1, while the remaining can
achieve confidence score 0.0 and label −1. As a result, uniCOAT can also output
the labels of potential anchor links, whose performance can be evaluated by various
metrics, e.g., AUC, Precision@100, Precision, Recall, F1, and Accuracy, simultane-
ously.

The experiment results of addressing the Network Alignment problem are
available in Table 6.4 and Fig. 6.2. In Fig. 6.2, we fix θ = 1 and show the results
achieved by comparison methods without matching step (i.e., methodsuniCOAT (the
first step),BigAlign,BigAlignExt, ISO, ISOExt andRDD) evaluated by AUC and
Precision@100. Methods ISO and ISOExt can only be applied to align networks via

Table 6.4 Performance comparison of different methods for inferring user anchor links (uniCOAT
here denotes the first step of uniCOAT only)

Measure θ

Methods 1 2 3 4 5

AUC uniCOAT 0.868 0.831 0.814 0.804 0.799
BigAlignExt 0.813 0.779 0.759 0.752 0.749

BigAlign 0.568 0.557 0.555 0.552 0.550

ISOExt 0.818 0.782 0.762 0.754 0.61

ISO 0.547 0.529 0.52 0.518 0.516

RDD 0.531 0.530 0.523 0.514 0.508

Prec@100 uniCOAT 0.705 0.688 0.657 0.640 0.556
BigAlignExt 0.587 0.507 0.472 0.434 0.327

BigAlign 0.347 0.284 0.265 0.228 0.220

ISOExt 0.427 0.391 0.373 0.352 0.301

ISO 0.301 0.253 0.225 0.216 0.208

RDD 0.234 0.228 0.207 0.172 0.127

(a) AUC (b) Prec@100

Fig. 6.2 Performance of methods without matching in inferring anchor links (uniCOAT here
denotes the first step of uniCOAT only)
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user generated information. In Fig. 6.2, we can observe that (1) uniCOAT performs
the best among all the comparison methods in inferring anchor links evaluated by
both AUC and Precision@100. For example, in Fig. 6.2, uniCOAT can achieve
AUC score of 0.87, which is over 6% better than BigAlignExt and ISOExt, and
50% higher than the AUC score achieved by BigAlign, ISO and RDD. Similar
performance of uniCOAT is available in other plots. It demonstrates that utilizing
the heterogeneous information in the network to infer anchor links simultaneously
can improve the results a lot. (2) BigAlignExt and ISOExt can achieve better
performance than BigAlign and ISO. Recalling that methods BigAlignExt and
ISOExt use both the link and attribute information, while BigAlign and ISO use
the link information. It justifies that the attribute information of both users is helpful
for inferring anchor links across networks. (3) By comparing uniCOAT with RDD
(i.e., the initialization method of matrices P in uniCOAT), we observe that uniCOAT
can outperform RDD with significant advantages. It proves the effectiveness of the
proposed network co-alignment model, which can obtain better results than the initial
value.

6.1.4.2 Sensitivity Analysis

In Fig. 6.2, parameter θ is fixed as 1. In Table 6.4, we further change it with values
in {1, 2, 3, 4, 5} by adding more non-anchor users into the network. Generally, with
more non-anchor users, the Network Alignment will become more difficult and
the performance of all the methods will degrade, but uniCOAT can achieve the best
performance consistently. For example, when θ = 5, the AUC score achieved byuni-
COAT in inferring social links is 0.799, which is 6.7, 45, 31, 54.8, and 57.2% higher
than that gained by BigAlignExt, BigAlign, ISOExt, ISO, and RDD, respec-
tively. Similar observations can be obtained from the anchor links inference results
evaluated by Precision@100 in Table 6.4.

In the previous part, we have shown the performance of methods without matching
step, while anchor links inferred by which cannot meet the one-to-one constraint.
Next, we will test the effectiveness of the matching step in pruning the non-existing
anchor links and the results achieved by uniCOAT (the second step) are shown in
Fig. 6.3. Parameter θ are assigned with values in {1, 2, 3, 4, 5}. The anchor links
inferred by uniCOAT can all meet the one-to-one constraint and are of high quality.
For example, when θ = 1, the Precision, Recall, F1, and Accuracy achieved by
uniCOAT are 0.73, 0.54, 0.62, and 0.75, respectively, in inferring anchor links. As
θ increases, Recall and F1 scores achieved by uniCOAT will decrease as it will be
more hard to identify the real anchor links among larger number of potential ones.
Meanwhile, the Precision and Accuracy of uniCOAT will increase. The potential
reason can be due to the class imbalance problem. By adding more non-anchor users
to the network, more non-existing anchor links (i.e., the negative class links) will be
introduced and uniCOAT can achieve higher Precision and Accuracy by predicting
more negative instances correctly.
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Fig. 6.3 Performance of
methods with matching in
inferring anchor links
(uniCOAT here includes
both two steps of uniCOAT)

(a) (b)

(c)(d)

6.2 Link Transfer Across Aligned Networks

To investigate users’ social activities and the propagation of information across dif-
ferent social platforms, several application problems will also be introduce in this
chapter after aligning the networks. One important work will be the link prediction
problems, which aims at infer potential connections among the information entities
in the networks. Link prediction across the multiple aligned social networks is not
an easy task, and the heterogeneity of the social networks renders the problem more
challenging to solve.

6.2.1 Overview

Link prediction in social networks first proposed by Liben-Nowell [18] has been a
hot research topic and many different methods have been proposed. Liben-Nowell
[18] proposes many unsupervised link predicators to predict the social connections
among users. Later, Hasan [1] proposes to predict links by using supervised learning
methods. An extensive survey of link prediction works is available in [7, 8]. Most
existing link prediction works are based on one single network but many researchers
start to shift their attention to multiple networks. Dong et al. [5] propose to do link
prediction with multiple information sources. Zhang et al. introduce the link pre-
diction problem across aligned networks for new users [42] and emerging networks
[43, 44] based on supervised classification models [42] and PU classification models
[43, 44], respectively. Depending on the specific application settings, the links to be
predicted are usually subject to different cardinality constraints, like one-to-one [12],
one-to-many [49], and many-to-many [50]. For links with each type of the cardinality
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constraints, different link prediction models have been proposed already. Zhang et
al. propose to unify these different link prediction tasks into a general link prediction
problem and introduce a general model for the problem [41].

In this chapter, we will briefly introduce the multinetwork synergistic PU link pre-
diction framework Mli as follows. Given a network screenshot, Mli labels the exist-
ing and non-existing social links among users as positive and unlabeled instances,
respectively, where the unlabeled links involve both positive and negative links at the
same time. Therefore, the link prediction task can be transferred into a PU learning
task.

6.2.2 Cross-Network Link Prediction

Formally, given multiple aligned networks G = ({G1,G2, · · · ,Gn}, {A(1,2),A(1,3),

· · · ,A(n−1,n)}), the objective of the cross-network link prediction problem is to infer
the potential social connections which will be formed in the near future in networks
G1,G2, · · · ,Gn , respectively.

6.2.2.1 PU Link Prediction Feature Extraction

Meta paths introduced in the previous sections can actually cover a large number
of path instances connecting users across the network. Formally, we denote that
node n (or link l) is an instance of node type T (or link type R) in the network as

n ∈ T (or l ∈ R). Identity function I (a, A) =
{

1, if a ∈ A

0, otherwise,
can check whether

node/link a is an instance of node/link type A in the network. To consider the effect
of the unconnected links when extracting features for social links in the network, we
formally define the Social Meta Path-based Features to be:

Definition 6.7 (SocialMeta Path-based Features) For a given link (u, v), the feature

extracted for it based on meta path P = T1
R1−→ T2

R2−→ · · · Rk−1−−→ Tk from the networks
is defined to be the expected number of formed path instances between u and v across
the networks:

x(u, v) = I (u, T1)I (v, Tk)
∑

n1∈{u},n2∈T2,··· ,nk∈{v}

k−1∏

i=1

p(ni , ni+1)I ((ni , ni+1), Ri ),

(6.7)

where p(ni , ni+1) = 1.0 if (ni , ni+1) ∈ Eu,u and otherwise, p(ni , ni+1) denotes the
formation probability of link (ni , ni+1) to be introduced in Sect. 6.2.2.3.
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Based on the above social meta path-based feature definition and the extracted
intra-network and inter-network meta paths, a set of features can be extracted for
user pairs with the information across the aligned networks.

6.2.2.2 Meta Path-Based Feature Selection

Meanwhile, information transferred from aligned networks via the features extracted
based on the inter-network social meta path can be helpful for improving link predic-
tion performance in a given network but can be misleading as well, which is called
the network difference problem. To solve the network difference problem, we pro-
pose to rank and select top K features from the feature vector extracted based on
the intra-network and inter-network social meta paths, x, from the multiple partially
aligned heterogeneous networks.

Let variable Xi ∈ x be a feature extracted based on meta paths #i and variable
Y be the label. P(Y = y) denotes the prior probability that links in the training set
having label y and P(Xi = x) represents the frequency that feature Xi has value x .
Information theory related measure mutual information (mi) is used as the ranking
criteria:

mi(Xi ) =
∑

x

∑

y

P(Xi = x,Y = y) log
P(Xi = x,Y = y)

P(Xi = x)P(Y = y)
(6.8)

Let x̄ be the features of the top K mi score selected from x. In the next subsection,
we will use the selected feature vector x̄ to build a novel PU link prediction model.

6.2.2.3 PU Link Prediction Method

As introduced at the beginning of this section, from a given network, e.g., G, we
can get two disjoint sets of links: connected (i.e., formed) links P and unconnected
links U. To differentiate these links, we define a new concept “connection state”, z, to
show whether a link is connected (i.e., formed) or unconnected in network G. For a
given link l, if l is connected in the network, then z(l) = +1; otherwise, z(l) = −1.
As a result, we can have the “connection states” of links in P and U to be: z(P) = +1
and z(U) = −1.

Besides the “connection state,” links in the network can also have their own
“labels,” y, which can represent whether a link is to be formed or will never be
formed in the network. For a given link l, if l has been formed or to be formed, then
y(l) = +1; otherwise, y(l) = −1. Similarly, we can have the “ labels” of links in
P and U to be: y(P) = +1 but y(U) can be either +1 or −1, as U can contain both
links to be formed and links that will never be formed.

By using P and U as the positive and negative training sets, we can build a link
connection prediction model Mc, which can be applied to predict whether a link



6.2 Link Transfer Across Aligned Networks 157

exists in the original network, i.e., the connection state of a link. Let l be a link to be
predicted, by applying Mc to classify l, we can get the connection probability of l to
be:

Definition 6.8 (Connection Probability) The probability that link l’s connection
states is predicted to be connected (i.e., z(l) = +1) is formally defined as the
connection probability of link l: p(z(l) = +1|x̄(l)).

Meanwhile, if we can obtain a set of links that “will never be formed”, i.e., “−1”
links, from the network, which together withP (“+1” links) can be used to build a link
formation prediction model, M f , which can be used to get the formation probability
of l to be:

Definition 6.9 (Formation Probability) The probability that link l’s label is pre-
dicted to be formed or will be formed (i.e., y(l) = +1) is formally defined as the
formation probability of link l: p(y(l) = +1|x̄(l)).

However, from the network, we have no information about “links that will never
be formed” (i.e., “−1” links). As a result, the formation probabilities of potential
links that we aim to obtain can be very challenging to calculate. Meanwhile, the
correlation between link l’s connection probability and formation probability has
been proved in existing works [6] to be:

p(y(l) = +1|x̄(l)) ∝ p(z(l) = +1|x̄(l)). (6.9)

In other words, for links whose connection probabilities are low, their formation
probabilities will be relatively low as well. This rule can be utilized to extract links
which can be more likely to be the reliable “−1” links from the network. We propose
to apply the link connection prediction model Mc built with P and U to classify links
in U to extract the reliable negative link set. Formally, such a kind of negative link
extraction method is called the spy technique-based reliable negative link extraction.
For more detailed information about method, please refer to [50].

With the extracted reliable negative link setRN, we can solve the PU link prediction
problem with classification-based link prediction methods, where P and RN are used
as the positive and negative training sets, respectively. Meanwhile, when applying
the built model to predict links in Li , the optimal labels, Ŷi , of Li , should be those
which can maximize the following formation probabilities:

Ŷi = arg max
Yi

p(y(Li ) = Yi |G1,G2, · · · ,Gk)

= arg max
Yi

p(y(Li ) = Yi |x̄(Li )) (6.10)

where y(Li ) = Yi represents that links in Li have labels Yi .
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Fig. 6.4 PU link prediction framework across multiple aligned networks

6.2.2.4 Multinetwork Link Prediction Framework

Method proposed in [50] is a general link prediction framework and can be applied
to predict social links in n partially aligned networks simultaneously. When it comes
to n partially aligned network, the optimal labels of potential links {L1,L2, · · · ,Ln}
of networks G1,G2, · · · ,Gn will be:

Ŷ1, Ŷ2, · · · , Ŷn

= arg maxY1,Y2,··· ,Yn p(y(L1) = Y1, y(L2) = Y2, · · · , y(Ln) = Yn |G1,G2, · · · ,Gn)

(6.11)

The above target function is very complex to solve and we propose to obtain the
solution by updating one variable, e.g., Y1, and fix other variables, e.g., Y2, · · · ,Yn ,
alternatively with the following equation [43]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Ŷ1)(τ) = arg maxY1 p(y(L1) = Y1|G1, · · · ,Gn, (Ŷ2)(τ−1), (Ŷ3)(τ−1), · · · , (Ŷn)(τ−1))

(Ŷ2)(τ) = arg maxY2 p(y(L2) = Y2|G1, · · · ,Gn, (Ŷ1)(τ), (Ŷ3)(τ−1), · · · , (Ŷn)(τ−1))

· · · · · ·
(Ŷn)(τ) = arg maxYn p(y(Ln) = Yn |G1, · · · ,Gn, (Ŷ1)(τ), (Ŷ2)(τ), · · · , (Ŷ(n−1))(τ ))

(6.12)

The structure of the link prediction framework is shown in Fig. 6.4a. When pre-
dicting social links in network Gi , we can extract features based on the intra-network
social meta path extracted from Gi and those extracted based on the inter-network
social meta path across G1, G2, · · · , Gi−1, Gi+1, · · · , Gn for links in Pi , Ui and Li .
Feature vectors x(P) and x(P) as well as the labels, y(P), y(U), of links in P and
U are passed to the PU link prediction model Mi and the meta path selection model
MSi . The formation probabilities of links in Li predicted by model Mi will be used to
update the network by replace the weights of Li with the newly predicted formation
probabilities. The initial weights of these potential links in Li are set as 0 (i.e., the
formation probability of links mentioned in Definition 11). After finishing these steps
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on Gi , we will move to conduct similar operations on Gi+1. We iteratively predict
links in G1 to Gn alternatively in a sequence until the results in all of these networks
converge.

6.2.3 Experiments

To test the effectiveness of the proposed Mli framework, in this section, extensive
experiments have been done on two real-world partially co-aligned online social
networks dataset introduced in the previous section.

6.2.3.1 Performance Evaluation Results

To show the advantages of Mli, we compare Mli with many other baseline methods,
which include:

• Mli: MethodMli is the multinetwork link prediction framework, which can predict
social links in multiple online social networks simultaneously. The features used
byMli are extracted based on the meta paths selected from � and � across aligned
networks.

• LI: Method LI (Link Identifier) is identical to Mli except that LI predict the
formation of social links in each network independently.

• SCAN: Method SCAN (Cross Aligned Network link prediction) proposed in [42,
43] is similar to Mli except that (1) SCAN predicts social links in each network
independently; (2) features used by SCAN are those extracted based on meta paths
� and �1 without meta path selection.

• SCAN- s: Method SCAN- s (SCAN with Source Network) proposed in [42, 43]
is identical to SCAN except that the features used by SCAN- s are those extracted
based on �1 without meta path selection.

• SCAN- t: Method SCAN- t (SCAN with Target Network) proposed in [42, 43])
is identical to SCAN except that the features used by SCAN- s are those extracted
based on � without meta path selection.

The social links in both Foursquare and Twitter are used as the ground truth to
evaluate the prediction results. SVM [4] with linear kernel and optimal parameters is
used as the base classifier of all comparison methods. Accuracy, AUC, and F1 score
are used as the evaluation metrics in the experiments.

To denote different degrees of network newness, in Table 6.5, we fix ρT as 0.8
but changes ρF within {0.1, 0.2, · · · , 0.8}. Table 6.5 has two parts: the upper part
is the link prediction results in Foursquare and the lower part is that in Twitter, as
Mli is an integrated PU link prediction framework. The link prediction results in
each part are evaluated by different metrics: AUC, Accuracy, and F1. As shown
in Table 6.5, Mli can outperform all other comparison methods consistently for
ρF ∈ {0.1, 0.2, · · · , 0.8} in both Foursquare network and Twitter network. For
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example, in Foursquare when ρF = 0.5, the AUC achieved by Mli is about 5%
better than LI, 15% better than SCAN, 19% better than SCAN- t and 73% better
than SCAN- s; the Accuracy achieved by Mli is about 2.3% better than LI, 8% better
than SCAN, 9.1% higher than SCAN- t and over 40% higher than SCAN- s; the F1
of Mli is 6.4% higher than LI, 18% higher than SCAN and SCAN- t and 36% higher
than SCAN- s. When ρF = 0.5, the link prediction results of Mli in Twitter are also
much better than all other baseline methods. For instances, in Twitter the AUC of
Mli is 0.923±0.002, which is about 6% better than LI, over 13% better than SCAN,
SCAN- t and over 40% better than SCAN- s. Similar results can be obtained when
evaluated by Accuracy and F1.

In Table 6.6, we fix ρF = 0.8 but change ρT with values in {0.1, 0.2, · · · , 0.8}.
Similar to the results obtained in Table 6.5 where ρF varies, Mli can beat all other
methods in both Twitter and Foursquare when the degree of newness of the Twitter
network changes.

Mli can perform better than LI in both Foursquare and Twitter, which shows
that predicting social links in multiple networks simultaneously in Mli framework
can do enhance the results in both networks; the fact that LI can beat SCAN shows
that features extracted based on cross network meta paths can do transfer useful
information for both anchor and non-anchor users; SCAN works better than both
SCAN- t and SCAN- s denotes that link prediction with information in two networks
simultaneously is better than that with information in one single network.

6.2.3.2 Parameter Analysis

An important parameter that can affect the performance of all these methods is the
rate of anchor links existing across networks. In this part, we will analyze the effects
of the anchor link rate, ρ A ∈ [0, 1.0]. To exclude other parameters’ interference, we
fix ρF and ρT as 0.8 but change ρ A with values in {0.1, 0.2, · · · , 1.0} and study the
link prediction results in both Foursquare and Twitter under the evaluation of AUC,
Accuracy, and F1. The results are shown in Fig. 6.5.

As shown in Fig. 6.5, where Fig. 6.5a–c are the link prediction results in Foursquare
and the Fig. 6.5d–f are those in Twitter, almost all the methods can perform better
as ρ A increases, except SCAN- t as it only utilizes information in the target net-
work only. It shows that with more anchor links, Mli, LI, SCAN and SCAN- s can
transfer much more information from other aligned source networks to the target
network to enhance the results. In addition, Mli can work better than LI consistently
as ρ A varies, which can show the effectiveness of Mli in dealing with networks with
different ratios of anchor links

6.2.3.3 Convergence Analysis

Mli need to predict the links in all the aligned networks alternatively and iteratively
until convergence. In this part, we will analyze whether Mli can converge as this
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(b) (b) (c)

(f)(e)(d)

Fig. 6.5 Effects of anchor link ratio ρA on prediction results in different networks evaluated by
different metrics

(a) Foursquare-AUC (b) Foursquare-Acc. (c) Foursquare-F1

(d) Twitter-AUC (e) Twitter-Acc. (f) Twitter-F1

Fig. 6.6 Convergence analysis in different networks under the evaluation of different metrics

process continues. We show the link prediction results achieved by Mli in both
Foursquare and Twitter under the evaluation of AUC, Accuracy and F1 when ρF ,
ρT and ρ A are all set as 0.8 in Fig. 6.6. Figure 6.6a–c are the results in Foursquare
network from iteration 1 to iteration 30 and Fig. 6.6d–f are those in Twitter network.
As shown in these figures, results achieved by Mli can converge in less than 10
iterations in both Foursquare and Twitter evaluated by all these three metrics.
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6.3 Synergistic Network Community Detection

6.3.1 Overview

Clustering is a very broad research area, which includes various types of clustering
problems, e.g., consensus clustering [20, 21], multiview clustering [2, 3], multirela-
tional clustering [35], co-training-based clustering [15], at the same time. Clustering-
based community detection in online social networks is a hot research topic and many
different models have already been proposed to optimizing certain evaluation met-
rics, e.g., modularity function [25] and normalized cut [29]. A detailed survey about
existing community detection works is available in [23, 24]. Meanwhile, based on
the information available in multiple aligned networks, Jin [9], Zhang et al. [36]
and Shao et al. [28] propose to do synergistic community detection across multiple
aligned social networks. Via the anchor links, Zhang et al. also propose to trans-
fer information from developed networks to detect social community structures in
emerging networks in [48].

The goal of cross-network community detection is to distill relevant information
from another social network to compliment knowledge directly derivable from each
network to improve the clustering or community detection, while preserving the dis-
tinct characteristics of each individual network. To solve the mutual clustering prob-
lem, a novel community detection method, MCD, is proposed in [36]. By mapping
the social network relations into a heterogeneous information, the proposed method
in [36] uses the concept of social meta path to define closeness measure among
users. Based on this similarity measure, the proposed method [36] can preserve the
network characteristics and utilize the information in other networks to refine com-
munity structures mutually at the same time. In this section, we will introduce the
mutual community detection framework proposed in [36] briefly.

6.3.2 Cross-Network Community Detection

Given multiple aligned networks G = ({G1,G2, · · · ,Gn}, {A(1,2),A(1,3), · · · ,

A(n−1,n)}), the cross-network community detection problem aims at detecting the
community structures of networks G1,G2, · · · ,Gn , respectively.

6.3.2.1 Network Characteristic Preservation Clustering

Clustering each network independently can preserve each networks characteristics
effectively as no information from external networks will interfere with the clus-
tering results. Partitioning users of a certain network into several clusters will cut
connections in the network and lead to some costs inevitably. Optimal clustering
results can be achieved by minimizing the clustering costs.
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Let Ai be the adjacency matrix corresponding to the intra-network meta path # i
among users in the network and Ai (m, n) = k iff there exist k different path instances
of intra-network meta path # i from user m to n in the network. Furthermore, the
similarity score matrix among users of meta path # i can be represented as Si =
(
Di + D̄i

)−1 (
Ai + AT

i

)
, where AT

i denotes the transpose of Ai , diagonal matrices
Di and D̄i have values Di (l, l) = ∑

m Ai (l,m) and D̄i (l, l) = ∑
m(AT

i )(l,m) on
their diagonals, respectively. The meta path-based similarity matrix of the network
which can capture all possible connections among users is represented as follows:

S =
∑

i

ωiSi =
∑

i

ωi

((
Di + D̄i

)−1 (
Ai + AT

i

))
. (6.13)

For a given network G, let C = {U1,U2, . . . ,Uk} be the community structures
detected from G. Term Ui = U−Ui is defined to be the complement of set Ui in G.
Various cost measure of partition C can be used, e.g., cut and normalized cut:

cut (C) = 1

2

k∑

i=1

S(Ui ,Ui ) = 1

2

k∑

i=1

∑

u∈Ui ,v∈Ui

S(u, v), (6.14)

Ncut (C) = 1

2

k∑

i=1

S(Ui ,Ui )

S(Ui , ·) =
k∑

i=1

cut (Ui ,Ui )

S(Ui , ·) , (6.15)

where S(u, v) denotes the similarity between u, v and S(Ui , ·) = S(Ui ,U) =
S(Ui ,Ui ) + S(Ui ,Ui ).

For all users in U, their clustering result can be represented in the result confidence
matrix H, where H = [h1, h2, . . . , hn]T, n = |U|, hi = (hi,1, hi,2, . . . , hi,k) and
hi, j denotes the confidence that ui ∈ U is in cluster Uj ∈ C. The optimal H that can
minimize the normalized-cut cost can be obtained by solving the following objective
function:

min
H

Tr(HT LH),

s.t.HT DH = I. (6.16)

where L = D − S, diagonal matrix D has D(i, i) = ∑
j S(i, j) on its diagonal, and

I is an identity matrix.

6.3.2.2 Clustering of Multiple Aligned Networks

Besides the shared information due to common network construction purposes
and similar network features [48], anchor users can also have unique information
(e.g., social structures) across aligned networks, which can provide us with a more
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comprehensive knowledge about the community structures formed by these users.
Meanwhile, by maximizing the consensus (i.e., minimizing the “discrepancy”) of
the clustering results about the anchor users in multiple partially aligned networks,
we refine the clustering results of the anchor users with information in other aligned
networks mutually. We can represent the clustering results achieved in Gi and G j as
Ci = {Ui

1,U
i
2, · · · , Ui

ki } and C j = {U j
1 ,U j

2 , · · · ,U j
k j }, respectively.

Let u p and uq be two anchor users in the network, whose accounts in Gi and G j

are uip, u j
p, uiq and u j

q , respectively. If users uip and uiq are partitioned into the same

cluster in Gi but their corresponding accounts u j
p and u j

q are partitioned into different
clusters in G j , then it will lead to a discrepancy between the clustering results of uip,

u j
p, uiq and u j

q in aligned networks Gi and G j .

Definition 6.10 (Discrepancy) The discrepancy between the clustering results of u p

and uq across aligned networks Gi and G j is defined as the difference of confidence
scores of u p and uq being partitioned in the same cluster across aligned networks.
Considering that in the clustering results, the confidence scores of uip and uiq (u j

p and

u j
q ) being partitioned into ki (k j ) clusters can be represented as vectors hi

p and hi
q (h j

p

and h j
q ), respectively, while the confidences thatu p anduq are in the same cluster inGi

andG j can be denoted as hi
p(h

i
q)

T and h j
p(h

j
q)

T . Formally, the discrepancy of the clus-

tering results about u p and uq is defined to be dp,q(Ci ,C j ) =
(

hi
p(h

i
q)

T − h j
p(h

j
q)

T
)2

if u p, uq are both anchor users; and dp,q(Ci ,C j ) = 0 otherwise. Furthermore, the
discrepancy of Ci and C j will be:

d(Ci ,C j ) =
ni∑

p

n j
∑

q

dp,q(C
i ,C j ), (6.17)

where ni = |Ui | and n j = |U j |.
However, considering that d(Ci ,C j ) is highly dependent on the number of anchor

users and anchor links between Gi and G j , minimizing d(Ci ,C j ) can favor highly
consented clustering results when the anchor users are abundant but have no signif-
icant effects when the anchor users are very rare. To solve this problem, we propose
to minimize the normalized discrepancy instead.

Definition 6.11 (Normalized Discrepancy) The normalized discrepancy measure
computes the differences of clustering results in two aligned networks as a fraction
of the discrepancy with regard to the number of anchor users across partially aligned
networks:

Nd(Ci ,C j ) = d(Ci ,C j )
(∣
∣A(i, j)

∣
∣
) (∣

∣A(i, j)
∣
∣ − 1

) . (6.18)



6.3 Synergistic Network Community Detection 169

Optimal consensus clustering results of Gi and G j will be Ĉi , Ĉ j :

Ĉi , Ĉ j = arg min
Ci ,C j

Nd(Ci ,C j ). (6.19)

Similarly, the normalized-discrepancy objective function can also be represented
with the clustering results confidence matrices Hi and H j as well. Meanwhile, con-
sidering that the networks studied in this chapter are partially aligned, matrices Hi

and H j contain the results of both anchor users and non-anchor users, while non-
anchor users should not be involved in the discrepancy calculation according to the
definition of discrepancy. After pruning the non-anchor users from the confidence
matrices, we can represent the pruned confidence matrices as H̄i and H̄ j .

Furthermore, the objective function of inferring clustering confidence matrices,
which can minimize the normalized discrepancy can be represented as follows

min
Hi ,H j

∥
∥
∥H̄i

(
H̄i

)T − H̄ j
(
H̄ j

)T
∥
∥
∥

2

F
∥
∥T(i, j)

∥
∥2
F

(∥
∥T(i, j)

∥
∥2
F − 1

) ,

s.t.(Hi )T DiHi = I, (H j )T D jH j = I. (6.20)

where Di , D j are the corresponding diagonal matrices of similarity matrices of net-
works Gi and G j , respectively.

6.3.2.3 Joint Optimization Objective Function

Taking both of these two issues into considerations, the optimal mutual clustering
results Ĉi and Ĉ j of aligned networks Gi and G j can be achieved as follows:

arg min
Ci ,C j

α · Ncut (Ci ) + β · Ncut (C j ) + θ · Nd(Ci ,C j ) (6.21)

where α, β, and θ represent the weights of these terms and, for simplicity, α and β

are both set as 1.
By replacing Ncut (Ci ), Ncut (C j ), Nd(Ci ,C j ) with the objective equations

derived above, we can rewrite the joint objective function as follows:

min
Hi ,H j

α·Tr((Hi )T LiHi ) + β · Tr((H j )T L jH j ) + θ ·
∥
∥
∥H̄i

(
H̄i

)T − H̄ j
(
H̄ j

)T
∥
∥
∥

2

F
∥
∥T(i, j)

∥
∥2
F

(∥
∥T(i, j)

∥
∥2
F − 1

) ,

s.t.(Hi )T DiHi = I, (H j )T D jH j = I, (6.22)

where Li = Di − Si , L j = D j − S j and matrices Si , S j and Di , D j are the similarity
matrices and their corresponding diagonal matrices defined before.
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The objective function is a complex optimization problem with orthogonality
constraints, which can be very difficult to solve because the constraints are not only
non-convex, but also numerically expensive to preserve during iterations. Please refer
to [36] for more information about the solution to the objective function.

6.3.3 Experiments

To test the performance of the MCD model in detecting the communities across mul-
tiple aligned social networks, extensive experiments have been done on the aligned
social networks dataset: Foursquare and Twitter. The experimental results will be
illustrated as follows.

6.3.3.1 Performance Evaluation Results

The comparison methods used in the experiments can be divided into three categories,
Mutual Clustering Methods

• MCD: MCD is the mutual community detection method, which can detect the
communities of multiple aligned networks with consideration of the connections
and characteristics of different networks. Heterogeneous information in multiple
aligned networks are applied in building MCD.

Multinetwork Clustering Methods

• SIclus: the clustering method proposed in [38, 48] can calculate the sim-
ilarity scores among users by propagating heterogeneous information across
views/networks. We extend the method proposed in [38, 48] and propose SIclus
to calculate the intimacy scores among users in multiple networks simultaneously,
based on which, users can be grouped into different clusters with clustering mod-
els based on intimacy matrix factorization as introduced in [48]. Heterogeneous
information across networks is used to build SIclus.

Isolated Clustering Methods, which can detect communities in each isolated net-
work:

• Ncut: Ncut is the clustering method based on normalized cut proposed in [29].
Method Ncut can detect the communities in each social network merely based
on the social connections in each network in the experiments.

• Kmeans: Kmeans is a traditional clustering method, which can be used to detect
communities [27] in social networks based on the social connections only in the
experiments.

The evaluation metrics applied can be divided into two categories: Quality Metrics
and Consensus Metrics.
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Quality Metrics: The four widely and commonly used quality metrics are applied
to measure the clustering result, e.g., C = {Ui }Ki=1, of each network.

• normalized-dbi [38]:

ndbi(C) = 1

K

∑

i

min
j �=i

d(ci , c j ) + d(c j , ci )

σi + σ j + d(ci , c j ) + d(c j , ci )
, (6.23)

where ci is the centroid of community Ui ∈ C, d(ci , c j ) denotes the distance
between centroids ci and c j and σi represents the average distance between ele-
ments in Ui and centroid ci . (Higher ndbi corresponds to better performance).

• entropy [38]: H(C) = −∑K
i=1 P(i) log P(i), where P(i) = |Ui |∑K

i=1 |Ui | . (Lower

entropy corresponds to better performance).
• density [38]: dens(C) = ∑K

i=1
|Ei |
|E | , where E and Ei are the edge sets in the

network and Ui . (Higher density corresponds to better performance).
• silhouette [19]:

sil(C) = 1

K

K∑

i=1

(
1

|Ui |
∑

u∈Ui

b(u) − a(u)

max{a(u), b(u)} ), (6.24)

where a(u)= 1
|Ui |−1

∑
v∈Ui ,u �=v d(u, v) and b(u)= min j, j �=i

(
1

|Uj |
∑

v∈Uj
d(u, v)

)
.

(Higher silhouette corresponds to better performance).

Consensus Metrics: Given the clustering results C(1) = {U (1)
i }K (1)

i=1 and C(2) =
{U (2)

i }K (2)

i=1 , the consensus metrics measuring the how similar or dissimilar the anchor
users are clustered in C(1) and C(2) include:

• rand [26]: rand(C(1),C(2)) = N01+N10
N00+N01+N10+N11

, where N11(N00) is the numbers of
pairwise anchor users who are clustered in the same (different) community(ies) in
both C(1) and C(2), N01(N10) is that of anchor users who are clustered in the same
community (different communities) in C(1) but in different communities (the same
communities) in C(2). (Lower rand corresponds to better performance).

• variation of information (vi) [26]: vi(C(1),C(2)) = H(C(1)) + H(C(2)) −
2mi(C(1),C(2)). (Lower vi corresponds to better performance).

• mutual information [26]:mi(C(1),C(2))= ∑K (1)

i=1

∑K (2)

j=1 P(i, j) log P(i, j)
P(i)P( j) , where

P(i, j) = |U (1)
i ∩AU

(2)
j |

|A| and |U (1)
i ∩A U (2)

j | =
∣
∣
∣{u|u ∈ U (1)

i , ∃v ∈ U (2)
i , (u, v) ∈ A}

∣
∣
∣

[12]. (Higher mi corresponds to better performance).
• normalized mutual information [26]: nmi(C(1),C(2)) = mi(C(1),C(2))√

H(C(1))H(C(2))
. (Higher

nmi corresponds to better performance).

The experiment results are available in Tables 6.7 and 6.8. To show the effects
of the anchor links, we use the same networks but randomly sample a propor-
tion of anchor links from the networks, whose number is controlled by σ ∈
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{0.1, 0.2, · · · , 1.0}, where σ = 0.1 means that 10% of all the anchor links are
preserved and σ = 1.0 means that all the anchor links are preserved.

Table 6.7 displays the clustering results of different methods in Foursquare and
Twitter, respectively, under the evaluation of ndbi, entropy, density, and silhouette. As
shown in these two tables,MCD can achieve the highest ndbi score in both Foursquare
and Twitter for different sample rate of anchor links consistently. The entropy of
the clustering results achieved by MCD is the lowest among all other comparison
methods and is about 70% lower than SIclus, 40% lower than Ncut and Kmeans
in both Foursquare and Twitter. In each community detected by MCD, the social
connections are denser than that of SIclus, Ncut, and Kmeans. Similar results
can be obtained under the evaluation of silhouette, the silhouette score achieved by
MCD is the highest among all comparison methods. So, MCD can achieve better
results than modified multiview and isolated clustering methods under the evaluation
of quality metrics.

Table 6.8 shows the clustering results on the aligned networks under the evaluation
of consensus metrics, which include rand, vi, nmi, and mi. As shown in Table 6.8,
MCD can perform the best among all the comparison methods under the evaluation
of consensus metrics. For example, the rand score of MCD is the lowest among
all other methods and when σ = 0.5, the rand score of MCD is 20% lower than
SIclus, 72% lower than Ncut and Kmeans. Similar results can be obtained for
other evaluation metrics, like when σ = 0.5, the vi score of MCD is about half of
the score of SIclus; the nmi and mi score of MCD is the triple of that ofKmeans.
As a result, MCD can achieve better performance than both modified multiview and
isolated clustering methods under the evaluation of consensus metrics.

According to the results shown in Tables 6.7 and 6.8, we observe that the perfor-
mance of MCD does not varies much as σ changes. The possible reason can be that,
in method MCD, normalized clustering discrepancy is applied to infer the clustering
confidence matrices. As σ increases in the experiments, more anchor links are added
between networks, part of whose effects will be neutralized by the normalization of
clustering discrepancy and does not affect the performance of MCD much.

6.3.3.2 Convergence Analysis

MCD can compute the solution of the optimization function with Curvilinear Search
method, which can update matrices X(1) and X(2) alternatively. This process will
continue until convergence. To check whether this process can stop or not, in this
part, we will analyze the convergence of X(1) and X(2). In Fig. 6.7, we show the L1

norm of matrices X(1) and X(2),
∥
∥X(1)

∥
∥

1 and
∥
∥X(2)

∥
∥

1, in each iteration of the updating

algorithm, where the L p norm of matrix X is ‖X‖p = (
∑

i

∑
i Xi j

p)
1
p . As shown in

Fig. 6.7, both
∥
∥X(1)

∥
∥

1 and
∥
∥X(2)

∥
∥

1 can converge in less than 200 iterations.
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(a) k(1)-ndbi (Foursquare) (b) k(1)-ndbi (Twitter) (c) k(1)-rand

(d) k(2)-ndbi (Foursquare) (e) k(2)-ndbi (Twitter) (f) k(2)-rand

Fig. 6.8 Analysis of parameters k(1) and k(2)

6.3.3.3 Parameter Analysis

In method MCD, we have three parameters: k(1), k(2), and θ , where k(1) and k(2) are
the numbers of clusters in Foursquare and Twitter networks, respectively, while θ is
the weight of the normalized discrepancy term in the object function. In the pervious
experiment, we set k(1) = 50, k(2) = 50 and θ = 1.0. Here, we will analyze the
sensitivity of these parameters in details.

To analyze k(1), we fix k(2) = 50 and θ = 1.0 but assign k(1) with values in
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The clustering results of MCD with differ-
ent k(1) evaluated by ndbi and rand metrics are given in Fig. 6.8a–c. As shown in the
figures, the results achieved by MCD are very stable for k(1) with in range [40, 100]
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(a) θ -ndbi (Foursquare) (b) θ -ndbi (Twitter) (c) θ -rand

Fig. 6.9 Analysis of parameter θ

under the evaluation of ndbi in both Foursquare and Twitter. Similar results can be
obtained in Fig. 6.8c, where the performance of MCD on aligned networks is not
sensitive to the choice of k(1) for k(1) in range [40, 100] under the evaluation of both
rand. In a similar way, we can study the sensitivity of parameter k(2), the results
about which are shown in Fig. 6.8d–f.

To analyze the parameter θ , we set both k(1) and k(2) as 50 but assign θ with values
in {0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}. The results are shown in Fig. 6.9, where
when θ is small, e.g., 0.001, the ndbi scores achieved by MCD in both Foursquare
and Twitter are high but the rand score is not good (rand is inversely proportional).
On the other hand, large θ can lead to good rand score but bad ndbi scores in both
Foursquare and Twitter. As a result, (1) large θ prefers consensus results, (2) small
θ can preserve network characteristics and prefers high quality results.

6.4 Conclusions

In this chapter, we have introduced several research works across multiple aligned
social networks, including the network alignment problem, link transfer problem,
and community detection problem. The problems introduced in this chapter are
all very important for many concrete real-world social network applications and
services. Several nontrivial algorithms have been proposed to resolve these problems,
respectively, whose performance are evaluated with several real-world datasets.

Besides the works introduced in this chapters, many other research problems have
been studied across the aligned social networks, like network embedding, informa-
tion diffusion, viral marketing, and tipping user detection. There are also several
interesting directions for further research in the domain of social network fusion
learning studies:

• Multiple Aligned Social Sites: Existing aligned network studies mainly focus on
studying two aligned networks. Meanwhile, when it comes to multiple aligned
networks (more than two), many of the studied problems will encounter many
new challenges, e.g., the balance of information from different sites, constraints
introduced by the multiple sources (e.g., on anchor links).
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• Large Scale Networks: Most of the introduced methods and models work very
well for small-sized social networks, but when it comes to the large scale net-
works they will suffer from the high time complexity problem a lot. Extending
and generalize the existing models to the scalable version will be an interesting
direction.

• Domain Difference Problem: Many of the existing cross-network studies tackle
the domain difference problem in a very simple way, e.g., the meta path selection in
link prediction, and meta path weighting in community detection and information
diffusion. A more general and effective method to handle the domain difference
problem is still an open problem so far.
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Chapter 7
Schema-Rich Heterogeneous Network
Mining

Abstract Traditional heterogeneous information network usually has simple
network schema, where there are a small number of types of nodes and links and
meta paths are easily enumerated. However, in many real applications, some het-
erogeneous information networks have a huge number of types of nodes and links,
and it is hard to depict their network schema. We call this kind of networks as
schema-rich heterogeneous information network. For example, knowledge graph,
constructed with< object, relation, object > tuples, can be considered as a schema-
rich heterogeneous network, where there are usually tens of thousands of types of
nodes and links. In this chapter, we introduce two data mining tasks on schema-rich
heterogeneous network: link prediction and entity set expansion. Through these two
tasks, we illustrate the challenges and potential solutions onmining this kind of more
complex and popular heterogeneous networks.

7.1 Link Prediction in Schema-Rich Heterogeneous
Network

7.1.1 Overview

Link prediction is a fundamental data mining problem that attempts to estimate
the likelihood of the existence of a link between two nodes, based on observed
links and the attributes of nodes. Link prediction is the base of many data mining
tasks, such as data clearness and recommendation. Some works have been done to
predict link existence in heterogeneous information network (HIN). As a unique
semantic characteristic of HIN, meta path [24], a sequence of relations connecting
two nodes, is widely used for link prediction. Utilizing the meta path, these works
usually employ a two-step process to solve link prediction problem in HIN. The first
step is to extract meta path-based feature vectors, and the second step is to train a
regression or classification model to compute the existence probability of a link [4,
21, 23, 28]. For example, Sun et al. [21] proposed PathPredict to solve the problem
of co-author relationship prediction, Cao et al. [4] proposed an iterative framework
to predict multiple types of links collectively in HIN, and Sun et al. [23] modeled
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Fig. 7.1 A snapshot of the RDF structure extracted from DBpedia

the distribution of relationship building time to predict when a certain relationship
will be formed. These works usually have a basic assumption: the meta paths can be
predefined or enumerated in a simple HIN. When the HIN is simple, we can easily
and manually enumerate some meaningful and short meta paths [24]. For example,
a bibliographic network with star schema is used in [21, 23, 28] and only several
meta paths are enumerated.

However, in many real networked data, the network structures are more com-
plex, and meta paths cannot be enumerated. Knowledge graph is the base of the
contemporary search engine [19], where its resource description framework (RDF)
[25] < object, relation, object > naturally constructs an HIN. In such an HIN,
the types of nodes and relations are huge. For example, DBpedia [2], a kind of
knowledge graph, has recorded more than 38 million entities and 3 billion facts.
In this kind of networks, it is hard to describe them with simple schema, so we
call them schema-rich HIN. Figure7.1 shows a snapshot of the RDF structure
extracted from DBpedia. You can find that there are many types of objects and
links in such a small network, e.g., Person, City, and Country. Moreover, there
are many meta paths to connect two object types. For example, for Person and

Country types, there are two meta paths: Person
bornin−−−→ City

locatedIn−−−−→ Country and

Person
Diedin−−−→ City

hasCapital−1

−−−−−−→ Country. Note that Fig. 7.1 is one extreme little part
of the whole DBpedia network, and there will be huge number of meta paths that can
connect Person and Country in a real network. So that the meta paths in this kind of
schema-rich HIN are too many to enumerate and it is hard to analyze them.

To be specific, the challenges of link prediction in schema-rich HIN are mainly
from two aspects. (1) The meta path cannot be enumerated. As mentioned above,
there are tens of thousands of nodes and links in such schema-rich HIN and the meta
paths in the network have the same order of magnitude. It is impossible to enumerate
meta paths between two node types. (2) It is also not easy to effectively integrate
these meta paths. Even though masses of meta paths can be found between target
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nodes, most of them are meaningless or less important for link prediction. So that we
need to learn weight for each meta path, where the weight represents the importance
of paths for link prediction.

In this chapter, we study the link prediction in schema-rich HIN and propose the
Link Prediction with automatic meta Paths method (LiPaP). The LiPaP designs a
novel algorithm, called Automatic Meta Path Generation (AMPG), to automatically
extract meta paths from schema-rich HIN. And then, we design a supervised method
with likelihood function to learn the weights of meta paths. On a real knowledge
base Yago, we do extensive experiments to validate the performances of LiPaP.
Experiments show that LiPaP can effectively solve link prediction in schema-rich
HIN through automatically extracting important meta paths and learning the weights
of paths.

7.1.2 The LiPaP Method

In this section, we firstly define the link prediction in schema-rich HIN problem and
then present a novel link prediction method named LiPaP. This method includes two
steps: Firstly, we design an algorithm called AMPG to discover useful meta paths
with training pairs automatically. Secondly, we use a supervised method to integrate
meta paths to form a model for further prediction.

7.1.2.1 Problem Definition

Heterogeneous information network [10] is a kind of information network that
includes different types of nodes and links. Traditional HIN usually has a simple
network schema, such as bipartite [29] and star schema [17]. However, in some com-
plex HINs, there are so many node types or link types that are hard to describe their
network schema. We call the HIN with many types of nodes and links as schema-
rich HIN. In simple HIN, the meta paths can be easily enumerated, but it is difficult
to do the same in the schema-rich HIN. Data mining in schema-rich HIN will face
new challenges. Specifically, we define a new task as follows:

Link prediction in schema-richHIN. Given a schema-rich HING and a training
set of entity node pairs φ = {(si, ti)|1 ≤ i ≤ k}, search a set of meta paths Υ =
{∏i |1 ≤ i ≤ e} which can exactly describe the pairs. With these meta paths, we
design amodel η(s, t|Υ ) to do link prediction on the test setψ = {(ui, vi)|1 ≤ i ≤ r}.

7.1.2.2 Automatic Meta Path Generation

In order to extract the appropriate and relevant meta paths as model features for link
prediction, we would like to show the AMPG algorithm, which can generate useful
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Fig. 7.2 Subgraph example of schema-rich HIN

meta paths smartly in schema-rich HIN. We would illustrate AMPG through a toy
example in Fig. 7.2, where the training pairs are {(1, 8), (2, 8), (3, 9), (4, 9)}.

The main goal of AMPG is, given the training set of entity pairs, to find all the
useful and relevant meta paths connecting them. These paths which to be found
would not only connect more training pairs, but also show much closer relationship

to present implicit features of the training set. For example,
isCitizenOf−−−−−→ is the meta

path initially found by our method in Fig. 7.3, and it is not only the shortest relation
but also the one connecting most training pairs. Besides, the meta paths to be found
are still most relevant in the candidate paths. Basically, we start to search from the
source nodes step by step to find out the useful meta paths greedily. At each step,
we select the meta path that is most relevant and maybe reaching more target nodes.
Then we check whether the path connects the training pairs or not. If so, we pick out
the meta path, otherwise make a move forward until the unchecked meta paths are
irrelevant enough. It guarantees that the generated meta paths all well describe the
relationship between each training pair and the selected paths are not too many to
add noise paths.

The AMPG method is a greedy algorithm that heuristically chooses the optimal
paths at each step. For judging the priority of meta paths for selection, AMPG utilizes
a similarity score S as a selection criterion based on a similarity measurement Path-
ConstrainedRandomWalk (PCRW) [11], which is to calculate the relevance between
the given entity pairs in the meta paths. A meta path with the higher the similarity
score S is more likely to be chosen.

Specifically, in AMPG, we use a data structure to record the situation of each
step. The structure records a meta path passed by, a set of entity pairs reached and
their PCRW values, and the similarity score S of the current structure, as shown in
Fig. 7.3. Besides, we create a candidate set to record the structure to be handled.

The similarity score S of the structure mentioned above is for judging the priority
of the structure. S measures the similarity of the whole arrival pairs in the structure.
The highest S means the most relevant relationship and the most promising meta
paths, so we get the structure with the highest S at every step. The definition of
similarity score S is as follows:

S =
∑

s

1

T

∑

t

[σ(s, t|
∏

) • r(s)], (7.1)
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Fig. 7.3 An example of meta-path automatic generation

where s and t are source and reaching entity node, respectively, on meta path
∏
, T

is the number of reaching entity nodes, and σ(s, t|∏) is the PCRW value. r(s) =
1 − α • N is the contribution of s to the current structure for training pairs selection
balance, where α is the decreasing coefficient of the contribution as 0.1 because of
the good performance on it, andN is the number of the target nodes that s has reached
through other selected paths. It means, if one of source nodes in

∑
s has more target

nodes matched before, N will be larger and S will be reduced due to the smaller r(s).
So that the structure with other source nodes which have fewer matches will get high
priority to be traversed greedily.

In order to get rid of the unimportant or the low-pair-matched meta paths, we set
a threshold value l to judge the structures whether being put to the candidate set or
not.

l = ε • |A|, (7.2)

where ε is a limited coefficient and |A| is the number of entity pairs in the structure.
If S is no less than l, add this structure into the candidate set, otherwise delete it.

Furthermore, we explain AMPGwith a case study shown in Fig. 7.3. The training
pairs are (1, 8), (2, 8), (3, 9), and (4, 9) and sources nodes are 1, 2, 3, and 4. The case
starts with creating an initial structure No.1 and inserts it into the candidate set as
shown in Fig. 7.3a. The entity pair is composed of the source node and itself and no
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meta path is generated at this step. Our algorithm will read candidate set iteratively
and choose the structure with highest S at each step. For each selected structure, it
will be checked if any training pairs are matched. If not, we move one step in HIN,

as shown in Fig. 7.3b. We can pass by three edge types
isCitizenOf−−−−−→,

wasBornIn−−−−−→, and
WorkAt−−−−→. For each passed edge type, we create new structures such as No.2 and No.4.
Then, we check the new structures whether fit the conditions of expanding further
and insert them into the candidate set. Remove the used structure No.1 and read next
structure. Otherwise, as shown in Fig. 7.3c, four pairs are matched, so a new relevant

meta path
isCitizenOf−−−−−→ is generated and its similarity value vector is recorded. Remove

the used structure No.2 and continue to read next. The algorithm terminates when
the candidate set is empty. The detail process of AMPG is found in [6].

7.1.2.3 Integration of Meta Paths

Eachmeta path found byAMPG is important but has different importances for further
link prediction. It is necessary to find a solution of measuring the importance for each
meta path and integrating them into a link prediction model.

The link prediction can be considered as a classification problem. So we use the
positive and negative samples to train a model to predict whether the link exists
between the given pairs or not. Positive samples are the training pairs, while negative
samples are generated by replacing the target nodes of the training pairs with the
same-typed nodes without the same relations. Thus, a positive value is the similarity
value vector of each positive pair on all selected meta paths, while a negative value
is the vector of negative pair.

For training model, we assume that the weight of each meta path
∏

i is 	i(i =
1, · · · ,N), 	i ≥ 0, and

∑N
i=1 	i = 1. In order to train the appropriate path weights,

we use the log-likelihood function. The specific formula is as follows:

max h =
∑

x+∈q+

ln(t(	, x+))

|q+| +
∑

x−∈q−

ln(1 − t(	, x−))

|q−| − ||	 ||2
2

, (7.3)

where t(	, x) is the Sigmoid function (i.e., t(	, x) = e	 T x

e	 T x + 1
). x is similarity value

vector of sample pair in all selected paths, x+ is positive sample, and x− is negative
sample. q+ is similarity matrix of positive pairs made of x+. And q− is similarity

matrix of negative pairs made of x−.
||	 ||2

2
is the regularizer to avoid overfitting.

After learning weights of relevant meta paths Υ , we use a logistic regression
model to integrate meta paths for link prediction.

η(s, t|Υ ) = (1 + e−(
∑

x∈Υ 	x•σ(s,t| ∏x)+	0))−1, (7.4)

where (s, t) is the pair we should do link prediction, and x is each selected meta path
feature, while	x is the weight of x we learn above. And Υ is the set of selected meta
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paths. If η(s, t|Υ ) is larger than a specific value, we judge they would be connected
by the link predicted.

7.1.3 Experiments

In order to verify the superiority of our designedmethod of link prediction in schema-
rich HIN, we conduct a series of relevant experiments and validate the effectiveness
of LiPaP from four aspects.

7.1.3.1 Experiment Settings

In our experiments, we use Yago to conduct relevant experiments and it is a large-
scale knowledge graph, which is derived fromWikipedia, WordNet, and GeoNames
[20]. The dataset includes more than ten million entities and 120 million facts made
from these entities. We only adopt “COREFact” of this dataset, which contains
4484914 facts, 35 relationships, and 1369931 entities of 3455 types. A fact is a
triple: < entity, relationship, entity >, e.g., < NewYork, locatedin,UnitedStates >.

We use receiver operating characteristic curve known as ROC curve to evaluate
the performance of different methods. It is defined as a plot of true positive rate
(TPR), as the y coordinate versus false positive rate (FPR), and as the x coordinate.
TPR is the ratio of the number of true positive decisions and actual positive cases
while FPR is the ratio of the number of false positive decisions and actual negative
cases. The area under the curve is referred to the AUC. The larger the area is, the
larger the accuracy in prediction is.

7.1.3.2 Effectiveness Experiments

This section will validate the effectiveness of our prediction method LiPaP on accu-
rately predicting links existing in entity pairs. Since there are no existing solutions
for this problem, as a baseline (called PCRW [11]), we enumerate all meta paths,
and the same weight learning method with LiPaP is employed. Because meta paths
with length more than 4 are most irrelevant, the PCRW enumerates the meta paths
with the length no more than 1, 2, 3, and 4, and the corresponding methods are called
PCRW-1, PCRW-2, PCRW-3, and PCRW-4, respectively. Based on Yago dataset, we

randomly and, respectively, select 200 entity pairs from two relations
isLocatedIn−−−−−→ and

isCitizenOf−−−−−→. Note that, we assume that these two types of links are not available in the
prediction task. In this experiment, 100 entity pairs of them are used as the training
set; the others are used as the test set. In LiPaP, we set ε in Eq.7.2 as 0.005 and the
max path length is also limited to 4.
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Fig. 7.4 Prediction accuracy of different methods on two link prediction tasks

Table 7.1 Most relevant 4 meta paths for isCitizenOf

Meta path Weight

Person
wasBornIn−−−−−−→ City

islocatedIn−−−−−−→ County 0.1425

Person
livesIn−−−→ County 0.0819

Person
livesIn−−−→ City

islocatedIn−−−−−−→ County 0.0744

Person
wasBornIn−−−−−−→ City

isLeaderOf←−−−−−−Person
graduatedFrom−−−−−−−−→ university

islocatedIn−−−−−−→ County 0.0609

The results of two link prediction tasks are shown in Fig. 7.4. It is clear that
LiPaP has better performances than all PCRW methods, which implies that LiPaP
can effectively generate useful meta paths. Moreover, the PCRWgenerally has better
performance when the path length is longer, since it can exploit more useful meta
paths. However, it will take more cost to search more meta paths, most of which
are irrelevant. For example, PCRW-3 generates more than 80 paths and PCRW-4
finds more than 600 paths with lots of irrelevant paths. On the contrary, LiPaP only

generates 30 meta paths for the
isCitizenOf−−−−−→ task.

In order to intuitively observe the effectiveness of meta paths found, Table7.1
shows the top four generated meta paths and the corresponding training weights

for the
isCitizenOf−−−−−→ task. It is obvious that four meta paths are all relevant to the link

isCitizenOf−−−−−→. The most relevant one is the first meta path which shows the fact that a
person is born in a city and the city is located in a country. It describes the citizen
relationship in fact. The last one with length 4 seems not to be close, but actually has

certain logistic relation with the link
isCitizenOf−−−−−→. However, these long and important

meta paths can be missed if the maximum length of meta path was limited too short,
as PCRWdoes.While our method can automatically find these paths and assign them
a high importance.
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Fig. 7.5 Influence of different sizes of training set

7.1.3.3 Influence of the Size of Training Set

In this section, we evaluate the influence of the size of training set on the prediction
performances. The sizes of training set are set with {2, 6, 10, 20, 40, 60, 80, 100}.
Besides our LiPaP, we choose PCRW-2 as baseline, since it can generate most of
usefulmeta paths and achieve good performances compared to other PCRWmethods.
As illustrated in Fig. 7.5, when the number of training pairs is smaller than 10,
the performances of both methods improve rapidly with the size of pairs growing.
However, when the size is more than 10, the size of training set has little effect on the
performances of both methods. We think the reason lies in that too small training set
cannot discover all useful meta paths, while large training set may introduce much
noise. When the size of training set is from 10 to 20 in this dataset, it is good enough
to discover all useful meta paths and avoid much noise. Furthermore, it can save
space and time to learn model and make the performance of our method better.

7.1.3.4 Impact of Weight Learning

To illustrate the benefit of weight learning, we redone the experiments on the
isCitizenOf−−−−−→ task mentioned above. We run LiPaP with the weight learning or ran-
dom weights, and with average weights. Figure7.6 shows the performances of these
methods. It is obvious that the weight learning can improve prediction performances.
The model with random weight performs worst, owing to giving the more relevant
paths low weights. The model with weight just has a little better performance than
the model with average weight, because the meta path features generated by AMPG
are all relevant and important, the most important feature also has not got a very
low weight in the model with average weight. So the performance of the model with
average weight is also not poor in spite of being inferior to the model with weight.
Therefore, the weight learning can adjust the importance of different meta paths so
as to integrate them well and make the model better.
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Fig. 7.6 Effectiveness of
weight learning
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7.1.3.5 Efficiency Experiments

In this section,we choose five different sizes of training set, i.e., {20, 40, 60, 80, 100},
to validate the efficiency of finding meta paths of different methods. Figure7.7

demonstrates the running time on different models for the
isLocatedIn−−−−−→ task. It is obvi-

ous that the running times of these models approximate an linear increase with the
increase in the size of the training set. In spite of the small running time, the short
meta paths found by PCRW-1 and PCRW-2 restrict their prediction performances.
Our LiPaP has smaller running time than PCRW-3 and PCRW-4, since it only finds
a small number of important meta paths. In this way, LiPaP has a better balance on
effectiveness and efficiency.

7.2 Entity Set Expansion with Meta Path in Knowledge
Graph

7.2.1 Overview

Entity Set Expansion (ESE) refers to the problem of expanding a small set with a few
seed entities into a more complete set, entities of which belong to a particular class.
For example, given a few seeds like “China,” “America,” and “Russia” of country
class, ESE will leverage data sources (e.g., text or Web information) to obtain other
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country instances, such as Japan and Korea. ESE has been used inmany applications,
e.g., dictionary construction [7], query refinement [9], and query suggestion [5].

Amounts of methods have been proposed for ESE and most of them are based
on the text or Web environment [8, 12, 16, 26, 27]. These methods utilize distribu-
tion information or context pattern of seeds to expand entities. For instance, Wang
and Cohen [26] propose a novel approach that can be applied to semi-structured
documents written in any markup language and in any human language. Recently,
knowledge graph has become a popular tool to store and retrieve fact information
with graph structure, such as Wikipedia and Yago. Among those texts or Web based
methods, some ones also began to leverage knowledge graph as auxiliary for the
performance improvement of ESE. For example, Qi et al. [15] useWikipedia seman-
tic knowledge to choose better seeds for ESE. However, seldom work only utilizes
knowledge graph as an individual data source for ESE.

In this chapter, we firstly study the entity set expansion with knowledge graph.
Since knowledge graph is usually constituted by< object, relation, object > tuples,
we can consider it as a heterogeneous information network (HIN) [18], which
contains different types of objects and relations. Based on this HIN, we design a
Meta Path based Entity Set Expansion approach (called MP_ESE). Specifically, the
MP_ESE employs the meta path [22], a relation sequence connecting entities, to cap-
ture the implicit common feature of seed entities, and designs a Seed-basedMeta Path
Generation method, called SMPG, to exploit the potential relations among entities.
In addition, a heuristic weight learningmethod is adopted to assign the importance of
meta paths.With the help of weightedmeta paths,MP_ESE can automatically extend
entity set. Based on the Yago knowledge graph, we generate four different types of
entity set expansion tasks. On almost all tasks, the proposed method outperforms
other baselines.

7.2.2 The MP_ESE Method

In order to solve the problem of ESE with knowledge graph, we propose a novel
approach calledMP_ESE. As we have said, KG is a natural HIN, we employ the
widely used meta path in HIN to exploit the potential common feature of seeds.
The MP_ESE includes the following three steps. Firstly, we design a strategy of
extracting candidate entities. Secondly, we develop an algorithm, called SMPG, to
automatically discover important meta paths between seeds. Finally, we get a ranking
model through combining the meta paths with a heuristic strategy.

7.2.2.1 Knowledge Graph as a HIN

Knowledge graph (KG) [19] is a large and complex graph dataset, which consists
of triples of the form < Subject,Property,Object >, such as < StevenSpielberg,
directed,War Horse(film) > shown in Fig. 7.8.Yago [20],DBpedia [1] andFreebase
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Fig. 7.8 An example of Yago with concept hierarchy structure

[3] are prime examples of KG. The types of entities or relations in KG are often
organized as concept hierarchy structure, which describes the subclass relationship
among entity types or relations. Figure7.8b is a toy example and we can see that
actor is subclass of person. All the types share a common root called thing.

Heterogeneous information network (HIN) [22] is a network including different
types of nodes or links. In HIN, meta path [22], a sequence of relations between
objects, is widely used to capture the rich semantic meaning. Since KG contains
different types of objects (i.e., subject and object) and links (i.e., property), KG is a
natural HIN. In Fig. 7.8, actedIn and directed are two kinds of link types and actor and

film director are different object types. Person
actedIn−−−→ Movie

directed−1−−−−−→ Person is a
meta path between Toby Kebbell and Steven Spielberg and directed−1 is the opposite
direction of the edge directed. In addition, Toby Kebbell andMartin McCann belong
to the actor class. Toby Kebbell and Nigel Havers are not only the instances of actor
class but also included in the actors who acted in movies Steven Spielberg directed.
In order to distinguish the two kinds of sets, we call the latter as the fine-grained set
and the former as the coarse grained set.

7.2.2.2 Candidate Entities Extraction

Because the number of entities in knowledge graph is extremely huge, it is unprac-
tical and unreasonable to compute the similarity of each entity and seed. In order to
reduce the number of candidate entities, we design a strategy, which leverages con-
cept hierarchy structure introduced above, to get a proper set of candidate entities
from knowledge graph. Specifically, it includes the following four steps as shown in
Fig. 7.9. Step 1 obtains entity types of each seed. Step 2 generates the initial candi-
dates types by the intersection operation. Step 3 filters the initial candidates types
with the concept hierarchy structure. Step 4 extracts candidate entities of satisfying
the ultimate candidates types.

In order to clearly illustrate the process of candidate entities extraction, we take
Fig. 7.8 as an example and choose Toby Kebbell and Nigel Havers as the seeds.
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Fig. 7.9 The procedure of candidate entities extraction

Fig. 7.10 Notation of data structure and seed combination pairs

Their entity types set is {person, actor} and {son, person, actor}, respectively. And
the intersection of them is {person, actor} called the initial candidates types. These
candidates types may be noisy, which makes the number of candidate entities large.
Therefore,wefilter some candidates types using concept hierarchy structure as shown
inFig. 7.8b.We choose the class closest to the bottomas the ultimate candidates types.
Here, we choose actor class. According to the ultimate types, we extract the candidate
entities from Yago.

7.2.2.3 Seed-Based Meta Path Generation

In order to automatically discover meta paths between seeds, we design the Seed-
based Meta Path Generation (SMPG) algorithm. The basic idea is that SMPG begins
to search the KG from all seeds and finds important meta paths that connect certain
number of seed pairs, and the meta paths can reveal the implicit common character
of seeds.

The process of meta path generation is traversing the KG indeed, and thus a tree
structure is introduced in SMPG. SMPG works by expanding the tree structure and
Fig. 7.10a shows the data structure of each tree node, which stores a tuple list of entity
pairs with similarity value and the set of being visited entities. The tuple form of
the list is 〈(s, t),σ (s,t|∏),(s, · · · , t)〉, where (s, t) denotes the source node and target
node of the current path

∏
. Each tree edge denotes the link type between entities.

The root node of the tree contains all entity pairs composed of each seed and itself.
SMPG starts to expand from the root node step by step to discover important meta
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Fig. 7.11 Seed-based meta path generation method

paths. At each step, we check whether the score SC of the tree node is larger than
the predefined threshold value ν, which guarantees that the meta path is important
enough to reveal the character of seeds. If so, we pick out the corresponding meta
path, otherwisemake amove forward until the tree can not be further expanded.When
moving forward, we choose the tree node with the maximum number of different
source nodes as well as the minimum number of tuples to expand, which indicates
that the path of the tree node covers more seeds and has a better discriminability.

Specifically, in SMPG, we use a source set in the tree node to record the
source nodes of all entity pairs in the tuple list. In order to prevent the circle, we
record the nodes having been visited along the path

∏
in (s, · · · , t) of the tuple

〈(s, t),σ (s,t|∏),(s, · · · , t)〉. Here, σ (s,t|∏) is the similarity that represents whether
node t is in the target node set of source node s, it is 1 if so and 0 otherwise. The target
node set of each source node can be found in seed combination pairs as shown in
Fig. 7.10b and each seed can be combined with the other seeds. σ (s,t|∏) also means
that whether the meta path connects the seed pair. And seed pairs that each meta path
connects are also recorded. In addition, LP is the passing link path and the score SC
of the tree node is the sum of all tuples similarity, which measures the importance of
the tree node or path.

Let us elaborate the process with an example shown in Fig. 7.11, where the set of
seeds is {Toby Kebbell, Nigel Havers, Harrison Ford} marked as {1, 2, 3}. The set
of seed combination pairs is {[1, (2, 3)], [2, (1, 3)], [3, (1, 2)]} shown in Fig. 7.11.
The root node of the tree contains all entity pairs composed of each seed and itself,
and has SC = 0. The first expansion passes through two types of links: actedIn and
wasBornIn, and gets two new tree nodes. For each new tree node, SMPG records
each tuple, P and SC as well as source set. At the moment, all paths do not connect
any seed pairs, so we choose the tree node with the maximum number of source
set as well as the minimum number of tuples to expand. Here, we choose the tree
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node with link actedIn to expand and then get five new tree nodes. Figure7.11
only demonstrates two of them. After the second expansion, there is not still path
connecting seed pairs. Then we continue to choose the tree node with the maximum
number of source set and the minimum number of tuples to expand, and we update

the corresponding values. After several expansions, a length-4 path Actor
actedIn−−−→

Movie
directed−1−−−−−→ Person

created−−−→ Movie
actedIn−1−−−−−→ Actor is found shown by the dash

line in Fig. 7.11. And we continue to repeat the process until the condition is satisfied
or the tree can not be further expanded.

7.2.2.4 Expanding Entities with Meta Paths

SMPG discovers the important meta paths P, but the importance of each meta path
is different for the further entity set expansion, and it is related to the number of seed
pairs that meta path connects. Intuitively, the more seed pairs the meta path connects,
the more important it is. Thus, we consider the ratio of SPk and m ∗ (m − 1) to be
the weight w′

k of meta path pk(pk ∈ P), where SPk is the number of seed pairs that
meta path Pk connects, m ∗ (m − 1) denotes the total number of seed pairs, and m is
the number of seeds. In order to normalize w′

k , we define the final weight as follows:

wk = w′
k

∑l
k=1 w

′
k

(7.5)

where l is the number of meta paths P.
With the wk , we can combine meta paths to get the following ranking model:

R(ci, S) = 1

m

m∑

j=1

l∑

k=1

wk · r{(ci, sj)|pk} sj ∈ S, i ∈ {1, 2, · · · , n} (7.6)

where ci denotes the ith candidate entity and n is the number of candidates. S =
{s1, s2, · · · , sm} is the set of seeds and l is the number of meta paths. r{(ci, sj)|pk}
denotes whether the path pk connects ci and sj; it is 1 if connected and 0 otherwise.

We can compute relevance between each candidate entity and each seed using the
ranking model in Eq.7.6, and then rank all candidate entities.

7.2.3 Experiments

7.2.3.1 Experiment Settings

As a typical KG, Yago [20] has knowledge about more than ten million entities and
contains more than 120 million facts. We adopt “yagoFacts,” “yagoSimpleTypes,”
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Table 7.2 Description of the data

Data Template of triples # triples

yagoFacts < entity relatinship entity > 4,484,914

yagoSimpleTypes < entity rdf:type wordnet_type > 5,437,179

yagoTaxonomy < wordnet_type rdfs:subclassof wordnet_type > 69,826

and “yagoTaxonomy” parts of this dataset to conduct experiments, which contain 35
relationships, more than 1.3 million entities of 3455 instance classes. Table7.2 is the
description of the relevant data.

We choose four representative expansion tasks to evaluate the performance of
MP_ESE. The classes used in these tasks are summarized as follows: Actors of the
movies Steven Spielberg directed, softwares of the companies located in Mountain
View of California, movies whose director won National Film Award, and scientists
of the universities located in Cambridge of Massachusetts. Four classes are written
as Actor∗, Software∗, Movie∗, and Scientist∗, the real number of instances in these
four classes are 112, 98, 653, and 202, respectively.

We employ two popular criteria of precision-at-k (p@k) and mean average pre-
cision (MAP) to evaluate the performance of our approach. p@k is the percentage
of top k results that belong to correct instances. Here, they are p@30, p@60, and
p@90. MAP is the mean of the average precision (AP) of the p@30, p@60, and

p@90. AP =
∑k

i=1 p@i×reli
# of correct instances , where reli equals 1 if the result at rank i is correct

instance and 0 otherwise.

7.2.3.2 Effectiveness Experiments

In this section, we will validate the effectiveness ofMP_ESE on entity set expansion.
Since there are no direct solutions for ESE on KG, we design the following three
baselines:

• Link-Based. According to the pattern-based methods in text or Web environment,
we only consider 1-hop link of an entity, denoted as Link-Based.

• Nearest-Neighbor. Inspired by QBEES [13, 14], we consider 1-hop link and 1-hop
entity at the same time, called Nearest-Neighbor.

• PCRW. Based on the path-constrained random walk [11], we only compare with
length-2 path, denoted as PCRW. The reason is that the longer path needs more
running time.

For each class introduced above, we randomly take three seeds from the instance
set to conduct an experiment. We run algorithms 30 times and record the average
results. InMP_ESE,we set the predefined threshold value ν to bem ∗ (m − 1)/2 + 1,
which can guarantee that the path connects half number of seeds or more, m is the
number of seeds. And the max length of path is set to be 4 since meta paths with
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Fig. 7.12 The result of entity set expansion

length more than 4 are almost irrelevant. The optimal parameters are set for other
baselines.

The overall results of entity set expansion are given in Fig. 7.12. From Fig. 7.12,
we can see that our MP_ESE approach achieves better performances than other
methods on almost all conditions, especially on the Actor∗ and Movie∗ tasks.
All baselines have very bad performances on Actor∗ and Movie∗. We think the
reason is that the 1-hop link or 1-hop entity cannot further distinguish the char-
acter of the fine-grained class but MP_ESE can distinguish them well. On the
Software∗ task, MP_ESE and PCRW have close performance. The reason is that
Software∗ is an overlapping class and has another class label depicted by length-2

path Software
created−1−−−−−→ Company

created−−−→ Software. Due to the fact that it has few
semantic meaning, Link-Based has very bad performance. In all, MP_ESE has the
best performances because it employs the important meta paths between seeds and
can capture the subtle semantic meaning.

In order to intuitively observe the effectiveness of discoveredmeta paths, Table7.3
depicts the top three meta paths returned by SMPG for Actor∗. We observe that these
meta paths reveal some common traits of Actor∗. The first meta path indicates that
actors act in movies directed by the same director, which shows that SMPG can
effectively mine the most important semantic meaning of Actor∗. The second and
the third meta paths imply that some actors act in movies edited or composed by the
same person. Through leveraging the important meta paths discovered by SMPG,
we can find other entities belonging to the same class with seeds.
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Table 7.3 Most relevant 3 meta paths for Actor∗

Meta path w

Person
actedIn−−−−→ Movie

directed−1−−−−−−→ Person
directed−−−−→ Movie

actedIn−1−−−−−→Person 0.2180

Person
actedIn−−−−→ Movie

writeMusicFor−1−−−−−−−−−→ Person
writeMusicFor−−−−−−−−→ Movie

actedIn−1−−−−−→Person 0.1495

Person
actedIn−−−−→ Movie

edited−1−−−−→ Person
edited−−−→ Movie

actedIn−1−−−−−→Person 0.1476

7.3 Conclusions

In this chapter, we extend the traditional heterogenous network to the schema-rich
heterogeneous network where there are a huge number of types of nodes and links,
such as knowledge graph. In this kind of networks, it is difficult to depict the net-
work schema and impossible to enumerate the potential meta paths. We study two
data mining tasks in schema-rich heterogeneous networks. In the link prediction
task, we design the LiPaP to predict potential links among nodes, and we also pro-
pose the MP_ESE to automatically extend entity set with knowledge graph. In these
methods, it is critical to efficiently and effectively discover meta paths and learning
their weights. Since the knowledge graph is widely used in text analysis and search
engine, when we consider the knowledge graph as heterogenous network, it will
tremendously extend the study of heterogeneous network. Simultaneously, it also
provides a new way for knowledge graph mining.
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Chapter 8
Prototype System Based on Heterogeneous
Network

Abstract Because of significant advantages of heterogeneous information network,
it is widely used to model networked data, and many data mining tasks have been
exploited on it. Besides that, many prototype systems, even real systems, have been
built based on heterogeneous networks. In these systems, heterogeneous networks
are constructed, stored, and operated based on real networked data, and many novel
applications are designed based on heterogeneous networks. In this chapter, we intro-
duce two prototype systems for recommendation and further give a brief review on
other systems based on heterogeneous networks.

8.1 Semantic Recommender System

8.1.1 Overview

Many recommendationmethods have been proposed,which can be roughly classified
into two categories: content-based filtering (CB) and collaborative filtering (CF). CB
analyzes correlations between the content of the items and the user’s preferences
[1]. CF analyzes the similarity between users or items [2]. These methods have
been applied to recommender systems and achieved great success. However, these
recommender systems may have the following disadvantages.

• Conventional recommender systems usually recommend similar products to users
without exploring the semantics of different similarity measures. However, the
similar products are often different based on similarity semantics. For example,
in the movie recommendation, the similar movies based on the same actors are
different from those based on the same directors. Conventional systems usually
give a recommendation without considering the subtle implications of similarity
semantics. The proposed system is more appealing to provide a semantic recom-
mendation function, which will give more accurate recommendation when users
know their intents.

• Conventional systems only recommend same-typed objects. However, a system
may be more useful if it simultaneously recommends more related objects under
different semantics. For example, when users select movies, the system not only
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Fig. 8.1 An example of
heterogeneous information
network and its schema

(a) Heterogeneous network
of movie data

(b) Network schema

recommends the similarmovies, but also suggests some related actors and directors
(note that they are not limited to the actors and directors of this movie). The user
may find an interesting actor and then search themovies of the actor. The relevance
recommendation will provide richer information and enhance user experience.

Nowadays, social networks consisting of different types of information become
popular. Particularly, the advent of the Heterogeneous Information Network (HIN)
[4] provides a new perspective to design the recommended system. HINs are the
logical networks involving multiple-typed objects and multiple-typed links denoting
different relations. It is clear that HINs are ubiquitous and form a critical compo-
nent of modern information infrastructure [4]. Although the bipartite network [8] has
been applied to organize components of recommended system,HIN is amore general
model which contains more comprehensive relations among objects and much richer
semantic information. Figure8.1a shows an HIN example on the movie recommen-
dation data. The network includes the richer objects (e.g., movie, actor, director) and
their relations. The network structure can be represented with the star schema as
shown in Fig. 8.1b. HIN has an unique property [10, 14]: the different paths connect-
ing two objects have different meanings. For example, in Fig. 8.1b, movies can be
connected via “Movie–Actor–Movie” (MAM) path, “Movie–Type–Movie” (MTM)
path, and so on. It is clear that the semantics underneath these paths is different. The
MAM path means that movies have the same actors, while theMTM path means that
movies of the same type. Here, the meta path connecting two-typed objects is defined
as relevance path [10]. Obviously, the distinct semantics under different relevance
paths will lead to different relatedness and recommendation.

Focusing on non-personalized recommendation, this chapter demonstrates a
semantic recommended system, called HeteRecom. Different from conventional rec-
ommended systems, it is based on HIN. Generally, HeteRecom has the following
unique features. (1) Semantic recommendation: The system can recommend objects
of the designated type based on the relevance path specified by users. (2) Relevance
recommendation: Besides the same-typed objects recommendation, the system can
recommend other related objects.

The implementation of HeteRecom faces the following challenges. (1) Relevance
measure of heterogeneous objects: In order to recommend the different type objects,
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Fig. 8.2 The architecture of
HeteRecom system

the system needs to measure the relatedness of different type objects. (2) The weight
learning method: It is a key issue for an integrated recommendation to automatically
determine the weights of different relevance paths. (3) Efficient computing strate-
gies: In order to provide online service, the recommended system needs to efficiently
compute the relevance measure. In order to solve these challenges, the HeteRecom
system first applies a path-based relevance measure, which can not only effectively
measure the relatedness of any-typed objects but also subtly capture the semantics
containing in the relevance path. Besides, a heuristic weight learning method can
automatically determine the weights of different paths. Moreover, many computing
strategies are designed to handle huge graph data. This paper demonstrates the effec-
tiveness of HeteRecom on the real movie data through providing online semantic
and relevance recommendation services.

8.1.2 System Architecture

Figure8.2 shows the architecture of HeteRecom, which mainly consists of four com-
ponents:

• Data extraction: It extracts data from different data source (e.g., database andWeb)
to construct the network.

• Networkmodeling: It constructs the HINwith a given network schema. According
to the structure of data, users can specify the network schema (e.g., bipartite, star,
or arbitrary schema) to construct the HIN database. The database provides the
store and index functions of the node table and edge table of the HIN.

• Network analysis: It analyzes the HIN and provides the recommendation ser-
vices. It first computes and stores the relevance matrix of object pairs by the path-
based relevance measure. Based on the relevance matrix and efficient computing
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strategies, the system can provide the online semantic recommendation service.
Through the weight learning method, it can combine the relevance informa-
tion from different semantic paths and provide online relevance recommendation
service.

• Recommendation service: It provides the succinct and friendly interface of rec-
ommendation services.

8.1.3 System Implementation

It is challenging in many ways to implement these components. First, it is difficult
to measure the relatedness of any-typed objects in a HIN. Second, It is not easy
to combine those recommendation information on different semantic paths. Third,
there are many challenges in the computation and storage of huge relevance matrix.
In the following section, we will present the solutions to these challenges.

8.1.3.1 A Path-Based Relevance Measure

We apply the HeteSim [10], a path-based relevance measure, to do semantic rec-
ommendation. The basic idea behind HeteSim is that similar objects are related to
similar objects. The HeteSim is defined as follows:

Definition 8.1 (HeteSim [10]) Given a relevance pathP = R1◦R2◦· · ·◦Rl, HeteSim
between two objects s and t (s ∈ R1.S and t ∈ Rl.T ) is:

HeteSim(s, t|R1 ◦ R2 ◦ · · · ◦ Rl) = 1
|O(s|R1)||I(t|Rl)||O(s|R1)|∑

i=1

|I(t|Rl)|∑

j=1
HeteSim(Oi(s|R1), Ij(t|Rl)|R2 ◦ · · · ◦ Rl−1)

(8.1)

where O(s|R1) is the out-neighbors of s based on relation R1, I(t|Rl) is the in-
neighbors of t based on relation Rl, and R.S (R.T ) represents the source (target)
object of relation R, respectively.

Essentially, HeteSim(s, t|P) is a pairwise random walk-based measure, which
evaluates how likely s and t will meet at the same node when s follows along the path
and t goes against the path. The path implies the semantic information and HeteSim
evaluates the relatedness of any-typed object pairs according to the given path. The
HeteSim measure has shown its potential in object profiling, experts finding, and
relevance search. The detailed information can be seen in [10].

Since relevance paths embody different semantics, users can specify the path
according to their intents. The semantic recommendation calculates the relevance
matrix with HeteSim and recommends the top k objects.
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8.1.3.2 Weight Learning Method

There are many relevance paths connecting the query object and related objects,
so the relevance recommendation should comprehensively consider the relevance
measures based on all relevance paths. It can be depicted as follows:

Sim(A,B) =
N∑

i=1

wi ∗ HeteSim(A,B|Pi) (8.2)

whereN is the number of relevance paths,Pi is a relevance path connecting the object
types A and B, wi is the weight of path Pi. Although there can be infinite relevance
paths connecting two objects, we only need to consider those short paths, since the
long paths are usually less important [14].

The next question is how to determine the weight wi. The supervised learning [7]
can be used to estimate these parameters. However, it is impractical for an online
system: (1) It is time-consuming, even impractical, to learn these parameters on an
online system. (2) It is a very labor-intensive and subjective work to label those
learning instances. Here, we propose a heuristic weight learning method.

The importance (I) of a path P = R1 ◦ R2 ◦ · · · ◦ Rl is determined by its strength
(S) and length (l). Obviously, the path strength is decided by the strength of relations
constructing the path, which can be defined as follows:

S(P) =
l∏

i=1

S(Ri) (8.3)

The strength of a relation A
R−→ B is related to the degree of A and B based on

R. Intuitively, if the mutual connective links between A and B are smaller, they are
more important to each other, so their relation strength is stronger. For example, the
relation strength between movie and director (MD) is stronger than that between
movie and type (MT ). So we can define the relation strength as follows:

S(R) = (O(A|R)I(B|R))−α(α ∈ [0, 1]) (8.4)

whereO(A|R) is the average out-degree of type A and I(B|R) is the average in-degree
of type B based on relation R.

The importance (I) of the path P is positively correlative to the path strength (S)
and negatively correlative to the path length (l). Here, we define it as follows:

I(P) = f (S, l) = eS−l (8.5)

For multiple paths (P1,P2, · · · ,PN ), the weight wi of path Pi is
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wi = Ii
∑N

i=1 Ii
(8.6)

In HeteRecom, we consider all relevance paths whose length is smaller than
a threshold Len. The relevance recommendation combines the relevance measure
results of all these paths with the weight learning method and makes an integrated
recommendation.

8.1.3.3 Efficient Computing Strategies

As an online recommended system, HeteRecom needs to do a real-time recommen-
dation for user’s query. However, an HIN is usually huge and the computation of
HeteSim is time-consuming. So the system employed many efficient computing
strategies. Three basic strategies are depicted as follows:

Off-line computation: The primary strategy is to compute relevance matrix
offline and make recommendations online. For frequently used relevance paths, the
relevance matrix HeteSim(A,B|P) can be calculated ahead of time. The online rec-
ommendation on HeteSim(a,B|P) will be very fast, since it only needs to locate the
position in the matrix.

Fast matrix multiplications: The most time-consuming component in the sys-
tem is the matrix multiplications in HeteSim. There are many frequent patterns in
relevance paths. Since the matrix multiplications satisfy the associative law, we can
precede to compute the product of frequent patterns iteratively. Moreover, those
frequent patterns only need to be computed once. For example, we only need to
compute the frequent pattern AMA once for the symmetric path AMAMA. Since the
short pattern is more frequent, we only find the most frequent relation pair in each
iteration.

Matrix sparsification: The relevance matrix often becomes denser along the
matrix multiplications [7]. The dense matrix may cause two difficulties. (1) Matrix
multiplications cost a lot of time and space. (2) It costs a lot of time and huge
memory to load and search these dense relevance matrix. As a consequence, we
need to sparsify the reachable probability matrix along the matrix multiplications
without much loss of accuracy. The basic idea is to truncate those less important
nodes whose relevance value is smaller than a threshold ε. The static threshold [7] is
not suitable, since it may truncate some important nodes with small relevance values
and keep those unimportant nodes with large relevance values. Since we usually pay
close attention to the top k recommendation, we set the threshold ε as the top k
relevance value of the matrix. The k is dynamically adjusted as follows:

k =
{
L if L ≤ W
�(L − W )β� + W (β ∈ [0, 1]) others

where L is the vector length.W is the threshold which determines the size of nonzero
elements. The largerW or β may lead to the denser matrix with less loss. In order to
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(a) Semantic recommendation based on MAM path

(b) Relevance recommendation

Fig. 8.3 The HeteRecom prototype system
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quickly determine the top k relevance value, it is approximately computed with the
sample data from the raw matrix.

8.1.4 System Demonstration

We showcase the HeteRecom prototype system using IMDBmovie data as the exam-
ple application. The IMDB movie data was downloaded from The Internet Movie
Database.1 The IMDB movie data collects 1591 movies before 2010. The related
objects include actors, directors, and types, which are organized as a star schema
shown in Fig. 8.1b.

Figure8.3 demonstrates the interface of the HeteRecom system, which is devel-
oped with Java. The left part of interface shows the basic information of the dataset.
The right part shows the recommendation results. In the semantic recommendation,
users specify the key words and semantic path, the recommendation results will be
exhibited in the panel. Figure8.3a shows the movies with the same actors of “Iron
Man” by specified the “MAM” path. The HeteRecom can make many recommenda-
tions that conventional systems cannot do. For example, recommending the movies
that have the same style with the movies of “Arnold Schwarzenegger” can be done by
the path AMTM. In the relevance recommendation, the system can simultaneously
recommend different-typed objects. Figure8.3b shows the recommendation results
of the movie “Iron Man,” which include the similar movies and related actors, direc-
tors, and types. We can make many interesting recommendations onHeteRecom. For
example, if we want to know the information about the action movie, we can search
“action.” The system will recommend related action movies, actors, and directors.

8.2 Explainable Recommender System

8.2.1 Overview

In order to tackle the information overload problem on WWW, many recommenda-
tion techniques have been proposed to build recommender systems. These recom-
mended systems have been widely applied to e-commerce companies and achieved
great success, for example, the book recommendation in Amazon and movie recom-
mendation in Netflix. However, the explanation of recommendation results is a very
important but seldom exploited problem. Good explanations could help inspire user
trust and loyalty and increase satisfaction. Recommendation explanation makes it
quicker and easier for users to find what they want and persuade them to try or pur-
chase a recommended item [20]. Contemporary explanations of recommendations

1www.imdb.com/.

www.imdb.com/
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Fig. 8.4 Network schema of
HIN constituted by Douban
movie recommendation

usually use features or characteristics of users or the recommended item as inter-
mediary entities. For example, the MoviExplain system employs movie features to
justify recommendations [15], and Vig et al. [21] design Tagsplanations to provide
explanation based on community tags. With the surge of social recommendation,
there are some works on social explanation. Wang et al. [22] propose an algorithm to
generate the most persuasive social explanation; Sharma et al. [9] present a study of
the effects of social explanations in a music recommendation context. These meth-
ods try to explain recommendation through one type of information (e.g., features or
social relations), while the recommendation results may stem from complex hetero-
geneous information and various factors. The recommended system needs to explain
these factors more clearly.

In this chapter, we develop a Recommender system with Explanation (called
RecExp). Inspired by the recent surge of heterogeneous information network [11],
we organize the objects and relations in a recommended system as anHIN. Figure8.4
shows such an example in movie recommendation. The HIN not only contains dif-
ferent types of objects in movie recommendation (e.g., users and movies) but also
illustrates all kinds of relations among objects, such as viewing information, social
relations, and attribute information. Moreover, two objects in an HIN can be con-
nected via different paths, called meta path, and different meta paths have different
meanings. So we can find the similar users of a user through different meta paths
connecting these two users, and then we can combine the recommendation results of
different similar users under different meta paths. Based on this idea, we design the
semantic recommended system, RecExp, with explanation, which has the following
two significant features:

• Semantic recommendation: Utilizing different meta paths, RecExp can find differ-
ent similar users, and thus generate different recommendation results according
to these similar users. Moreover, these meta paths correspond to different rec-
ommendation models, so RecExp can realize semantic recommendation through
selecting proper meta paths.

• Recommendation explanation: RecExp utilizes semantics and weights of meta
paths to present personalized recommendation explanation, which can reveal user
preferences and make explanation more persuasive.



210 8 Prototype System Based on Heterogeneous Network

8.2.2 Heterogeneous Network-Based Recommendation

In this section,wewill briefly introduce thebasic concept andmethodused inRecExp.
HIN [11] is a special type of information network with the underneath data structure
as a directed graph, which contains either multiple types of objects or multiple types
of links. Objects and their relations in recommended system constitute an HIN.
Figure8.4 shows the network schema of the movie-recommended system in Douban,
a well-known social media network in China. This movie network includes objects
from six types of entities (e.g., users, movies, groups, actors) and relations between
them. Links between objects represent different semantics. For example, links exist
between users and users denoting the friendship relations, between users and movies
denoting rating and rated relations.

8.2.2.1 Recommendation on Heterogeneous Network

For a target user, recommended systems usually recommend items according to users
similar to his/her. In HIN, there are a number of meta paths [13] connecting users,
such as “User–User” (UU) and “User–Movie–User” (UMU). Based on these paths,
users have different types of similarities. After obtaining the path-based similarity
of users, we can recommend items according to the similar users of the target user.
More importantly, the meta paths connecting users have different semantics, which
can represent different recommendation models. As an example shown in Fig. 8.4,
the UMU path means users who view the same movies with the target user. It will
recommend movies viewed by users having similar viewing records with the target
user. It is collaborative recommendation in essential. Based on the HIN framework,
we can flexibly represent different recommendation models through properly setting
meta paths. In the following section, we will specifically introduce the semantic
recommendation method, where technique details can be found in [12].

8.2.2.2 Semantic Recommendation with Single Path

Based on the path-based similarity of users, we find the similar users of a target
user under a given path, and then the rating score of the target user on an item can
be inferred according to the rating scores of his similar users on the item. Assume
that the range of rating scores is form 1 to N (e.g., 5); P is a set of meta paths;
R ∈ R|U |×|I| is the rating matrix, where Ru,i denotes the rating score of user u on
item i; and S ∈ R|U |×|U | is the path-based similarity matrix of users, where S(l)

u,v is
the similarity of users u and v under path Pl. Note that the similarity matrix can be
calculated offline with some path-based similarity measures [13]. Under a meta path
Pl, the predicted rating score of a user u on an item i denoted as R̂(l)

u,i is:
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R̂(l)
u,i =

∑|U |
v=1 S

(l)
u,v × Rv,i

∑|U |
v=1 S

(l)
u,v

. (8.7)

According to Eq.8.7, we can predict the rating score of a user on an item under a
given path, and then recommend the item with the high score for a target user.

8.2.2.3 Hybrid Recommendation with Multiple Paths

Under different meta paths, there are different predicted rating scores. In order to
calculate the composite score, we employ a personalized weight learning method
with weight regularization [12]. As we know, many users have the similar interest
preferences, that is, we assume that two similar users have consistent weight prefer-
ences on meta paths. For users with little rating information, their path weights can
be learnt from the weights of their similar users, since the similarity information of
users are more available through meta paths. So we design a weight regularization
term, which compels the weights of a user to be consistent to the average of weights
of his similar users. The weight matrix is denoted as W ∈ R|U |×|P|, in which each
entry, denoted asW (l)

u , means the preference weight of user u on path Pl. The column
vector Wl ∈ R|U |×1 means the weight vector of all users on path Pl. The following
optimization function can learn users’ preference weight W .

min
W

L(W ) = 1
2 ||I 	 (R −

|P|∑

l=1
diag(W (l))R̂(l))||22

+ λ1
2

|P|∑

l=1
||W (l) − S̄(l)W (l)||22 + λ0

2 ||W ||22

s.t. W ≥ 0.

(8.8)

where S̄(l)
u,v = S(l)

u,v
∑

v S
(l)
u,v

is the normalized user similarity based on path Pl, I is an

indicator matrix with Iu,i = 1 if user u rated item i, and otherwise Iu,i = 0, the
notation 	 is the Hadamard product between matrices, and diag(W (l)) means the
diagonal matrix transformed from a vector W (l).

And thus, the predicted rating R̂u,i of user u rating item i under all paths is as
follows:

R̂u,i =
|P|∑

l=1

W (l)
u × R̂(l)

u,i. (8.9)

The hybrid recommendation results combine the recommendation from multiple
meta paths, and the weight matrixW records the user preferences on these paths. So
we can explain the recommendation results according to user path preferences and
semantics containing in each path.
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Fig. 8.5 The architecture of RecExp system

8.2.3 System Framework

According to the HIN-based recommendation method introduced above, we design
the RecExp system. Figure8.5 shows the system architecture. The three main com-
ponents are detailed as follows:

• Data layer: It extracts data from different data sources (e.g., database and Web)
to construct an HIN. Figure8.4 shows the network schema of HIN in our movie-
recommended system demo.

• Network analysis layer: It analyzes the HIN and provides the recommendation
services. As we have illustrated in the above section, it first computes the similar-
ities between users along different meta paths, such as “User–Movie–User.” And
then, based on similarity of users, we find the similar users of a target user under
a given path, and the predicted rating score of the target user on a movie can be
inferred from the rating scores of these similar users on the movie. Under different
meta paths, there are different predicted rating scores. Through theweight learning
method, we assign each meta path with a preference weight for each user, and the
final predicted rating under all meta paths can be the weighted average of predicted
rating under each meta path.

• Recommendation service layer: It provides the succinct and friendlyWeb interface
of recommendation services. The recommendation services include five kinds of
semantic recommendations through setting different meta paths, hybrid recom-
mendation with explanation, and the view record for the searched user.

8.2.4 System Demonstration

Figure8.6 demonstrates the interface of the RecExp system. It consists of five major
components:

• Search box: Users can input a certain user ID in the search box.



8.2 Explainable Recommender System 213

Fig. 8.6 The RecExp system
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Table 8.1 The recommendation results of different recommendation functions

Recommendation model Top five recommendation results

Collaborative recommendation Sherlock, 127 Hours, Game of Thrones, Taxi Driver, The
Crucible

Content recommendation The Big Bang Theory 2, Once a Thief, The Big Bang
Theory 4, 2 Broke Girls, The Monkey King

Member recommendation The cove, Detachment, Inglorious Basterds, The Lives of
Others, All About Lily

Location-based recommendation Farewell My Concubine, Nuovo Cinema Paradise, The
Cove, Saving Private Ryan, Sherlock

Social recommendation Spirited Away, The Pursuit of Happiness, Edward, Scissor
Hands

• Recommendation functions. There are six recommendation function buttons.
Each function button represents a typical recommendationmodel through selecting
a meta path. For example, the collaborative filtering corresponds to the UMU path,
and the social recommendation corresponds to the UU path. The description of the
selected recommendation model is detailed under the button box. For example,
if you press the “Hybrid recommendation” button, the below panel will show
“Recommendation based on hybrid information, such as movie content and social
relation.”

• Recommendation list. It shows the top 10 results recommended by the recom-
mendation method you select.

• Recommendation explanation: The function will be invoked when the “Hybrid
recommendation” function is selected. Since the hybrid recommendation generates
the results through multiple meta paths, the fan chart shows the weights of each
meta path which can represent the user preference on these paths. The larger the
weight is, themore the user prefers to get recommendation from the corresponding
meta path. On the right of the fan chart, it shows three most important meta paths
and corresponding explanations. In each explanation, we display the three most
similar users with the target user based on corresponding meta path.

• View records: It displays the view records of a certain user.

We showcase theRecExp prototype system usingDoubanmovie data as the exam-
ple application. The Douban movie data was downloaded from Douban Web site.2

The dataset includes 13,367 users and 12,677 movies with 1,068,278 movie ratings
ranging from 1 to 5, which are organized as a star-schema HIN shown in Fig. 8.4.
The dataset includes the social relations among users and the attribute information of
users and movies. With this dataset, we will illustrate two major functions: semantic
recommendation and hybrid recommendation with explanation.

In the semantic recommendation, users can specify a user ID and the recommen-
dation model such as collaborative recommendation, the recommendation results

2www.douban.com/.

www.douban.com/
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will be exhibited in the below panel. For example, we specify user 25 and select five
different recommendation functions, whose recommendation results are shown in
Table8.1. We can see that the recommendation results are different based on differ-
ent meta paths. Different users have their personalized preferences. Through setting
proper recommendation model, users can find their own favorite movies. For exam-
ple, if a user prefers to get new movies by friends’ recommendations, he can choose
the social recommendation.

When we select the “Hybrid recommendation” function, the system will recom-
mend a composite results stemming from five semantic recommendation models
and display top 10 recommendation. Moreover, the recommendation explanation
box will explain the recommendation reasons.

For example,we search user 25 and select the “Hybrid recommendation” function,
the system will show the recommendation results and give the recommendation
explanation shown in Fig. 8.6. In this case, the UMTMU path has the largest weight
which means this user has the preference on a certain film type. Among movies that
this user has seen, the drama and love movies are his favorite. So these types of
movies make the largest proportion in his recommendation list. The system captures
this user’s preference for film type and displays it in the fan chart. In addition, the
system displays three explanations corresponding to the three most important meta
paths. For example, the system will list three most similar users with the same file
type taste under the UMTMU path, if they are willing to be shown under privacy
agreement.

8.3 Other Prototype Systems on Heterogeneous Network

In the section above, we have introduced two prototype systems for recommendation
based on HIN. Besides that, many demo systems have also designed prototype appli-
cations on HIN. Yu et al. [23] demonstrate a prototype system on query-driven dis-
covery of semantically similar substructures in heterogeneous networks. Danilevsky
et al. [3] present the AMETHYST system for exploring and analyzing a topical
hierarchy constructed from an HIN. In LikeMiner system, Jin et al. [6] introduce
a heterogeneous network model for social media with “likes,” and propose “like”
mining algorithms to estimate representativeness and influence of objects. Mean-
while, they design SocialSpamGuard [5], a scalable and online social media spam
detection system for social network security. Taking DBLP as an example, Tao et
al. [18] construct a Research-Insight system to demonstrate the power of database-
oriented information network analysis, including ranking, clustering, classification,
recommendation, and prediction. Furthermore, they construct a semi-structured news
information network NewsNet and develop a NewsNetExplorer system [19] to pro-
vide a set of news information network exploration and mining functions.
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Some real application systems have also been designed. One of the most famous
works is ArnetMiner 3 [16], which offers comprehensive search and mining services
for academic community. ArnetMiner not only provides abundant online academic
services but also offers ideal test platform for heterogeneous information network
analysis. PatentMiner 4 [17] is another application which is a general topic-driven
framework for analyzing and mining heterogeneous patent networks.

8.4 Conclusions

With the surge of heterogeneous information network analysis, many prototype sys-
tems, even real systems, have been built based on heterogeneous networks. In this
chapter, we introduce two prototype systems for recommendations. These prototype
systems illustrate the advantages of heterogeneous information on semantics capture
and information integration. However, compared to the boom of research on het-
erogeneous information network, the real applications are relatively insufficient. In
the future, we need to solve practical problems in system construction, such as net-
work construction with noise data, large-scale data processing, and scenario design
of novel applications.
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Chapter 9
Future Research Directions

Abstract Although many data mining tasks have been exploited in heterogeneous
information network, it is still a young and promising research field. Here, we illus-
trate some advanced topics, including challenging research issues and unexplored
tasks, and point out some potential future research directions.

9.1 More Complex Network Construction

There is a basic assumption in contemporary researches that a heterogeneous infor-
mation network to be investigated is well defined, and objects and links in the net-
work are clean and unambiguous. However, it is not the case in real applications.
In fact, constructing heterogeneous information network from real data often faces
challenges.

If the networked data are structured data, like relational database, it may be easy
to construct a heterogeneous information network with well-defined schema, such
as DBLP network [36] and Movie network [28, 52]. However, even in this kind of
heterogeneous networks, objects and links can still be noisy. (1) Objects in a network
may not exactly correspond to entities in real world, such as duplication of name [47]
in bibliography data. That is, one object in a networkmay refer tomultiple entities, or
different objects may refer to the same entity. We can integrate entity resolution [1]
with network mining to clean objects or links beforehand. For example, Shen et al.
[27] propose a probabilistic model SHINE to link named entity mentions detected
from the unstructuredWeb text with their corresponding entities existing in a hetero-
geneous information network. Ren et al. [26] propose a relation phrase-based entity
recognition framework, called ClusType. The framework runs data-driven phrase
mining to generate entity mention candidates and relation phrases, and enforces
the principle that relation phrases should be softly clustered when propagating type
information in a heterogeneous network constructed by argument entities. (2) Rela-
tions among objects may not be explicitly given or not complete sometimes, e.g., the
advisor–advisee relationship in the DBLP network [38]. Link prediction [18] can be
employed to fill out the missing relations for comprehensive networks. (3) Objects
and links may not be reliable or trustable, e.g., the inaccurate item information in an
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E-commerce Web site and conflicting information of certain objects from multiple
Web sites. However, an HIN can be built to capture the dependency relations among
the node entities to clean up and integrate the data, such as trustworthiness modeling
[48, 59], spam detection [45], and co-ranking of questions, answers, and users in a
Q&A system.

If the networked data are unstructured data, such as text data, multimedia data,
and multilingual data, it becomes more challenging to construct qualified heteroge-
neous information networks. In order to construct high-quality HINs, information
extraction, natural language processing, and many other techniques should be inte-
grated with network construction. Mining quality phrases is a critical step to form
entities of networks from text data. Kishky et al. [6] propose a computationally
efficient and effective model ToPMine, which first executes a phrase mining frame-
work to segment a document into single and multiword phrases, and then employs
a new topic model that operates on the induced document partition. Furthermore,
Liu et al. [21] propose an effective and scalable method SegPhrase+ that integrates
quality phrases extraction with phrasal segmentation. Beyond the bag-of-word rep-
resentation of text data, some researchers try to represent a document with the help
of heterogeneous information network. Wang et al. [41] firstly map entities in doc-
uments into a knowledge base (e.g., Freebase), and then consider the knowledge
base as an HIN to mine internal relations among entities. Furthermore, Wang et al.
[40, 43] employ world knowledge as indirect supervision to improve the document
clustering results. More recently, Wang et al. [42] propose the HIN-kernel concept
for classification through representing a text as an HIN. Relationship extraction is
another important step to form links among the objects in network. Wang et al. [38]
mine hidden advisor–advisee relationships from bibliographic data, and they further
infer hierarchical relationships among partially ordered objects with heterogeneous
attributes and links [39]. Broadly speaking,we can also extract entity and relationship
to construct heterogeneous network from multimedia data and multilingual data, as
we have done on text data.

9.2 More Powerful Mining Methods

For ubiquitous heterogeneous information networks, numbers of mining methods
have been proposed on many data mining tasks. As we have mentioned, heteroge-
neous information networks have two important characteristics: complex structure
and rich semantics. According to these two characteristics, we summarize the con-
temporary works and point out future directions.
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9.2.1 Network Structure

In heterogeneous network, objects can be organized in different forms. Bipartite
graph is widely used to organize two types of objects and the relations between
them [10, 23]. As an extension of bipartite graphs, K -partite graphs [22] are able
to represent multiple types of objects. Recently, heterogeneous networks are usually
organized as star-schema networks, such as bibliographic data [29, 34, 36] andmovie
data [28, 52]. To combine the heterogeneous and homogeneous information, star-
schema with self loop is also proposed [46]. Different from only one hub object
type existing in star-schema network, some networked data have multiple hub object
types, e.g., the bioinformatics data [31]. For this kind of networks, Shi et al. [31]
propose a HeProjI method which projects a general heterogeneous network into a
sequence of subnetworks with bipartite or star-schema structure.

In applications, the networked data are usually more complex and irregular. Some
real networks may contain attribute values on links, and these attribute values may
contain important information. For example, users usually rate movies with a score
from 1 to 5 in movie recommended system, where the rating scores represent users’
attitudes to movies, and the “author of” relation between authors and papers in bibli-
ographic networks can take values (e.g., 1, 2, 3) which represents the order of authors
in the paper. In this kind of applications, we need to consider the effect of attribute
values on the weighted heterogeneous information network [32]. There are some
time series data, for example, a period of biographic data and rating information of
users and movies. For this kind of data, we need to construct dynamic heterogeneous
network [35] and consider the effect of the time factor. In some applications, one
kind of objects may exist in multiple heterogeneous networks [12, 54]. For example,
users usually co-exist in multiple social networks, such as Facebook, Google+, and
Twitter. In this kind of applications, we need to align users in different networks and
effectively fuse information from different networks [55–57]. More broadly, many
networked data are difficult to bemodeled with heterogeneous network with a simple
network schema. For example, in RDF data, there are so many types of objects and
relations, which cannot be described with network schema [25, 40]. Many research
problems arise with this kind of schema-rich HINs [3, 44], for example, management
of objects and relations with so many types and automatic generation of meta paths.
As the real networked data become more complex, we need to design more powerful
and flexible heterogeneous networks, which also provides more challenges for data
mining.

9.2.2 Semantic Mining

As the unique characteristic, objects and links in HIN contain rich semantics. Meta
path can effectively capture subtle semantics among objects, and many works have
made use of the meta path-based mining tasks. For example, in similarity measure
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task, object pairs have different similarities under different meta paths [29, 36];
in recommendation task, different items will be recommended under different paths
[32]. In addition,meta path is alsowidely used for feature extraction.Object similarity
can be measured under different meta paths, which can be used as feature vectors for
many tasks, such as clustering [37], link prediction [2], and recommendation [53].

However, some researchers have noticed the shortcomings of meta path. Since
meta path fails to capture more microsemantics. In some applications, some
researchers consider to refine meta path with some constraints. For example, the
“Author-Paper-Author” path describes the collaboration relation among authors.
However, it cannot depict the fact that Philip S. Yu and Jiawei Han have many col-
laborations in data mining field but they seldom collaborate in information retrieval
field. In order to overcome the shortcoming existing in meta path, Shi et al. [16]
propose the constrained meta path concept, which can confine some constraints
on objects. Taking Fig. 1.3c in Chap.1 as an example, the constrained meta path
APA|P.L = “Data Mining” represents the co-author relation of authors in data
mining field through constraining the label of papers with “DataMining.” Moreover,
Liu et al. [20] propose the concept “restricted meta-path” which enables in-depth
knowledge mining on the heterogeneous bibliographic networks by allowing restric-
tions on the node set. In addition, traditional HIN and meta path do not consider the
attribute values on links, while weighted links are very common in practical appli-
cations. Examples include rating scores between users and items in recommended
system and the order of authors in papers in bibliographic network. Taking Fig. 5.2 in
Chap.5 as an example, the rating relation between users and movies can take scores
from 1 to 5. Shi et al. [32] propose weighted meta path to consider attribute values on
links and more subtly capture path semantics through distinguishing different link
attribute values.

On the other hand, some researchers consider to capture more macro semantics
through combining multiple-related meta paths. For example, two authors write two
different papers that both mention the mining term and are published in the same
venue, while another two authors also write two different papers that are published
in the same venue and have not the same terms. Therefore, these two authors in the
first case should have a higher relevance score than those two authors in the second
case. However, the single meta path either APV PA or APT P A fails to discover
this factor. In order to solve this shortcoming, Huang et al. [9] propose the relevance
measure based on metastructure which is a combination of meta paths. Similarly,
Fang et al. [7] propose the metagraph which is a subgraph defined on a graph schema
and can measure the semantic proximity between objects. As an effective semantic
capture tool, meta path has shown its power in semantic capture and feature selection.
However, it may be coarse in some applications, so we need to extend traditional
meta path for more subtle semantic capture. Broadly speaking, we can also design
new and more powerful semantic capture tools.

More importantly, the meta path approach faces challenges on path selection
and their weight importances. How can we select meta paths in real applications?
Theoretically, there are infinite meta paths in an HIN. In contemporary works, the
network schema of HIN is usually small and simple, so we can assign some short

http://dx.doi.org/10.1007/978-3-319-56212-4_1
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Fig. 9.1 Summarization of typical works on HIN according to network structure and semantic
exploration. ‘∗’ in a citation means this citation is from Chap.2

and meaningful meta paths according to domain knowledge and experiences. Sun
et al. [36] have validated that the long meta paths are not meaningful and they fail to
produce good similarity measures. However, there is no work to study the effect of
longmeta paths on other mining tasks. In addition, there are somanymeta paths even
for short paths in some complex networks, like RDF network. It is a critical task to
extract meta paths automatically in this condition. Recently, Meng et al. [25] study
how to discover meta paths automatically which can best explain the relationship
between node pairs. Another important issue is to determine the weights of meta
paths automatically. Some methods have been proposed to explore this issue. For
example, Lao et al. [14] employ a supervised method to learn weights, and Sun et al.
[37] combinemeta-path selection and user-guided information for clustering. In addi-
tion, Liang et al. [17] seek to find the K, most interesting path instances matching the
preferred relationship type. Some interesting works are still worth doing. The ideal
path weights learned should embody the importance of paths and reflect users’ pref-
erences. However, the similarity evaluations based on different paths have significant
bias, which may make path weights hard to reflect path importances. So prioritized
path weights are needed. In addition, if there are numerous meta paths in real appli-
cations (e.g., RDF network), the path weight learning will be more important and
challenging.

In Fig. 9.1, we summarize some typical works in the HIN field from two perspec-
tives: network structure and semantic exploration. We respectively select several
typical works from six mining tasks mentioned above and put these works in a coor-
dinate according to network structure and semantics exploration in these works. Note
that we denominate those un-named methods with the first letter of keywords in the
title, such as UGES [51] and CPIH [50]. Along the X-axis, the network structure
becomes more complex, and semantics information becomes richer along the Y-axis.
For example, RankClus [33] is designed for bi-type networks and only captures link
semantics (different-typed links contain different semantics), while PathSim [36]
can deal with more complex star-schema networks and use meta path to capture

http://dx.doi.org/10.1007/978-3-319-56212-4_2
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deeper semantics. Further, SemRec [32] adds constraints to links to explore more
subtle semantic information in a weighted HIN. From the figure, we can also find
that most contemporary works focus on simple network structures (e.g., bipartite
or star-schema networks) and primary semantic exploration (e.g., meta path). In the
future, we can exploit more complex heterogeneous networks with more powerful
semantics capture tools.

9.3 Bigger Networked Data

In order to illustrate the benefits of HIN, we need to design data mining algorithms
on big-networked data in wider domains. This variety is an important characteris-
tic of big data. HIN is a powerful tool to handle the diversity of big data, since it
can flexibly and effectively integrate varied objects and heterogeneous information.
However, it is non-trivial work to build a real HIN-based analysis system. Besides
research challengesmentioned above, such as network construction, it will facemany
practical technique challenges. A real HIN is huge, even dynamic, so it usually can-
not be contained in memory and cannot be handled directly. We know that a user
at a time could be only interested in a tiny portion of nodes, links, or subnetworks.
Instead of directly mining the whole network, we can mine hidden but small net-
works “extracted” dynamically from some existing networks, based on user-specified
constraints or expected node/link behaviors. How to discover such hidden networks
and mine knowledge (e.g., clusters, behaviors, and anomalies) from such hidden but
non-isolated networks could be an interesting but challenging problem.

Most of contemporary data mining tasks on HIN only work on small dataset and
fail to consider the quick and parallel process on big data. Some research works have
begun to consider the quick computation of mining algorithms on HIN. For example,
Sun et al. [36] design a co-clustering-based pruning strategy to fasten the processing
speed of PathSim. Lao et al. [13] propose the quick computation strategies of PCRW,
and Shi et al. [24, 30] also consider the quick/parallel computation of HeteSim. In
addition, cloud computing also provides an option to handle big-networked data.
Although parallel graph mining algorithms [4] and platforms [11] have been pro-
posed, parallel HIN analysis methods face some unique challenges. For example,
the partition of HIN needs to consider the overload balances of computing nodes, as
well as balances of different-typed nodes. Moreover, it is also challenging to mine
integrated path semantics in partitioned subgraphs.

9.4 More Applications

Due to unique characteristics of HIN, many data mining tasks have been explored on
HIN, which are summarized as above. In fact, more data mining tasks can be studied
on HIN. Here, we introduce two potential applications.
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The online analytical processing (OLAP) has shown its power inmultidimensional
analysis of structured relational data [5]. The similar analysis can also be done, when
we view a heterogeneous information network from different angles and at different
levels of granularity. Taking a bibliographic network as an example, we can observe
the change of published papers on a conference in the time or district dimension,
whenwe designate papers and conferences as the object types and publish relations as
the link type. Some preliminary studies have been done on this issue. Zhao et al. [58]
introduce graph cube to support OLAP queries effectively on large multidimensional
networks; Li et al. [15] design InfoNetOLAPer to provide topic-oriented, integrated,
and multidimensional organizational solutions for information networks. Yin et al.
[49] have developed a novel HMGraph OLAP framework to mine multidimensional
heterogeneous information networks with more dimensions and operations. These
works consider link relation as a measure. However, they usually ignore semantic
information in heterogeneous networks determined by multiple nodes and links. So
the study of online analytical processing of heterogeneous information networks is
still worth exploring.

Information diffusion is a vast research domain and has attracted research interests
from many fields, such as physics and biology. Traditional information diffusion
is studied on homogeneous networks [8], where information is propagated in one
single channel. However, in many applications, pieces of information or diseases are
propagated among different types of objects. For example, diseases could propagate
among people, different kinds of animals, and food, via different channels. Few
works explore this issue. Liu et al. [19] propose a generative graphical model which
utilizes the heterogeneous link information and the textual content associated with
each node to mine topic-level direct influence. In order to capture better spreading
models that represent the real-world patterns, it is desirable to pay more attention to
the study of information diffusion in heterogeneous information networks.
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