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Thou wilt set forth at once because the journey is far and lasts for many hours; but
the hours on the velvet spaces are the hours of the gods, and we may not say what
time such an hour may be if reckoned in mortal years.

Lord Dunsany, Anglo-Irish writer and dramatist

Preface

In science, technology, and mathematics, a network is a system of intercon-
nected objects. Complex network analysis (CNA) is a discipline of exploring
quantitative relationships in the networks with non-trivial, irregular structure.
The actual nature of the networks (social, semantic, transportation, commu-
nication, economic, and the like) doesn’t matter, as long as their organization
doesn’t reveal any specific patterns. This book was inspired by a decade of
CNA practice and research.

Being a professor of mathematics and computer science at Suffolk University
in Boston, I have experimented with complex networks of various sizes, pur-
poses, and origins. I developed my first CNA software in an ad hoc manner
in the C language—the language venerable yet ill-suited for CNA projects.
The price of explicit memory management, cumbersome file input/output,
and lack of advanced built-in data structures (such as maps and lists) was
simply too high to justify a further commitment to C. At the moment I realized
that there were affordable alternatives to C that did not require low-level
programming (such as Pajek [NMB11] and Mathematical), off I went.

Both systems that I mentioned had significant restrictions. Mathematica was
proprietary (and, frankly, quite costly). My inner open source advocate
demanded that I cease and desist using it, especially given that earlier versions
of Mathematica didn’t provide dedicated CNA support and failed to handle
big networks. Pajek was proprietary, too, and not programmable. It took a
joint effort of my inner open source advocate and inner programmer to push
it to the periphery. (I still occasionally use Pajek, and I believe it’s a great
system for solving non-recurring problems.)

I felt delighted when, in search of open source, free, scalable, reliable, and
programmable CNA software, I ran into NetworkX, a Python library still in its
infancy. For the next several years, it became my tool of choice when it came
to CNA simulation, analysis, or visualization.

1. www.wolfram.com/mathematica
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About the Reader

This book is intended for graduate and undergraduate students, complex
data analysis (CNA) or social network analysis (SNA) instructors, and CNA/SNA
researchers and practitioners. The book assumes that you have some back-
ground in computer programming—namely, in Python programming. It expects
from you no more than common sense knowledge of complex networks. The
intention is to build up your CNA programming skills and at the same time
educate you about the elements of CNA itself. If you're an experienced Python
programmer, you can devote more attention to the CNA techniques. On the
contrary, if you're a network analyst with less than an excellent background
in Python programming, your plan should be to move slowly through the dark
woods of data frames and list comprehensions and use your CNA intuition
to grasp programming concepts.

About the Book

This book covers construction, exploration, analysis, and visualization of
complex networks using NetworkX (a Python library), as well as several other
Python modules, and Gephi, an interactive environment for network analysts.
The book is not an introduction to Python. I assume that you already know
the language, at least at the level of a freshman programming course.

The book consists of five parts, each covering specific aspects of complex
networks. Each part comes with one or more detailed case studies.

Part I presents an overview of the main Python CNA modules: NetworkX, iGraph,
graph-tool, and networkit. It then goes over the construction of very simple net-
works both programmatically (using NetworkX) and interactively (in Gephi), and
it concludes by presenting a network of Wikipedia pages related to complex
networks.

In Part II, you’ll look into networks based on explicit relationships (such as
social networks and communication networks). This part addresses advanced
network construction and measurement techniques. The capstone case study
—a network of “Panama papers”—illustrates possible money-laundering pat-
terns in Central Asia.

Networks based on spatial and temporal co-occurrences—such as semantic
and product networks—are the subject of Part III. The third part also explores
macroscopic and mesoscopic complex network structure. It paves the way to
network-based cultural domain analysis and a marketing study of Sephora
cosmetic products.
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If you cannot find any direct or indirect relationships between the items, but
still would like to build a network of them, the contents of Part IV come to
the rescue. You will learn how to find out if items are similar, and you will
convert quantitative similarities into network edges. A network of psycholog-
ical trauma types is one of the outcomes of the fourth part.

The book concludes with Part V: directed networks with plenty of examples,
including a network of qualitative adjectives that you could use in computer
games or fiction.

When you finish your journey, you'll be able to identify, sketch (both by hand,
in Gephi, and programmatically), transform, analyze, and visualize several
types of complex networks. You'll be able to interpret network measures and
structure. The book doesn’t aim to be a comprehensive CNA reference. Many
discipline-specific aspects, such as triadic census, exponential random graph
models (ERGMs), and network flows, as well as the whole story of network
dynamics (evolution and contagion), have been intentionally left uncharted.
The bibliography on page 215 will take you to more destinations of your choice,

whether they be economic networks, web scrapping, or classical social network
analysis.

About the Software

This book uses Python 3.x and networkx 1.11. All Python examples in this book
are known to work for the modules mentioned in the following table. All of these
modules are included in the Anaconda distribution, with the exception of commu-
nity,” toposort,” wikipedia,* and generalized,” which must be installed separately.
Anaconda is provided by Continuum Analytics and is available for free.’

Package Usedversion Package Used version

python 3.4.5 networkx 1.11
matplotlib  1.5.1 community 0.9
nltk 3.2.2 numpy 1.11.3
pandas 0.19.2 pygraphviz 1.3.1
wikipedia 1.4 scipy 0.18.1

toposort 1.5

pypi.python.org/pypi/python-louvain

ook wN
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The easiest way to install the missing modules is by running pip on your
operating system shell command line.

pip install toposort

pip install wikipedia

pip install python-louvain

pip install pygraphviz

If you want to use module pygraphviz to layout networks, you first need to install
Graphviz (including the developers add-on graphviz-dev).”

In September 2017, a new version of NetworkX was released, NetworkX 2.0.
Appendix 2, NetworkX 2.0, on page 213 provides useful information about

converting your CNA scripts to the new version.

About the Notation

The following covers the specific notation used in this book.

Program Output

The book uses a left-pointed gray arrow in the left margin of a page to indicate
program outputs. In the following scenario, print(1 + 2) is a Python statement,
and 3 is the visual output of the statement.

print(1 + 2)

3

“This Chapter Uses X”

“This chapter/section uses X” informs you that the material
in the chapter or section goes beyond the core Python and
NetworkX. If you're unfamiliar with X, you’ll probably understand the content
but may experience difficulties with comprehending the included code snip-
pets. You're advised to refresh your knowledge of the listed modules.

Directed Edges

NetworkX uses module Matplotlib for network visualization. You would expect
directed edges to have an arrow at the head end, and Matplotlib fully supports
arrows. However, NetworkX draws thick rectangular stubs instead. This is just
something you’ll have to get used to. If you need a publication-quality network
image with arrows, consider using Gephi.

7. www.graphviz.org/

This chapter uses X


http://www.graphviz.org/
http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Online Resources

This book has its own web page® where you can find all the code for this book.
There you’'ll also find the community forum, where you can ask questions,
post comments, and submit errata.

Two other great community-operated resources for questions and answers
are the Stack Overflow forum® and NetworkX Google discussion group.'®

Now, let’s get started!
Dmitry Zinoviev

dzinoviev@gmail.com
January 2018

8.  pragprog.com/book/dzcnapy
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When all you have is a hammer, everything looks like a nail.

Proverb

CHAPTER 1

The Art of Seeing Networks

Complex network analysis (CNA) is a rapidly expanding discipline that studies
how to recognize, describe, analyze, and visualize complex networks. The
Python library NetworkX provides a collection of functions for constructing,
measuring, and drawing complex networks. We’'ll see in this book how CNA
and NetworkX work together to automate mundane and tedious CNA tasks and
make it possible to study complex networks of varying sizes and at varying
levels of detail.

At this point, you may be wondering what a network is, why some networks
are complex, why it is important to recognize, describe, analyze, and visualize
them, and why the discipline is expanding right now instead of having
expanded, say, a hundred years ago. If you're not, then you're probably a
seasoned complex network researcher, and you may want to skip the rest of
this chapter and proceed to the CNA and Python technicalities (Chapter 2,

Complex networks, like mathematics, physics, and biology, have been in exis-
tence for at least as long as we humans have. Biological complex networks, in
fact, predate humankind. However, intensive studies of complex networks did
not start until the late 1800s to early 1900s, mostly because of the lack of
proper mathematical apparatus (graph theory, in the first place) and adequate
computational tools. The reason for the explosion of CNA research and applica-
tions in the late 1900s-early 2000s is two-fold. On the “supply” side, it is the
availability of cheap and powerful computers and the abundance of researchers
with advanced training in mathematics, physics, and social sciences. On the
“demand” side, it is the ever increasing complexity of social, behavioral, biolog-
ical, financial, and technological (to name a few) aspects of humanity.

In this chapter, you will see different types and kinds of networks (including
complex networks) and learn why networks are important and why it is worth
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seeing them around. You will be able to spot complex networks, capture them
—so far, without any software—and get some sense about their useful prop-
erties (again, with no software necessary). When you see the limitations of
the paper-and-pencil method, you will be ready to dive into the computerized
proper complex network analysis.

Know Thy Networks

In general, a network is yet another—relational—form of organization and
representation of discrete data. (The other one being tabular, with the data
organized in rows and columns.) Two important network concepts are entities
and the relationships between them. Depending on a researcher’s background,
entities are known as nodes (the term we’ll use in this book), actors, or ver-
tices. Relationships are known as edges (preferred in this book), links, arcs,
or connections. We will casually refer to networks as “graphs” (in the graph-
theoretical meaning of the word), even though graphs are not the only way
to describe networks.

Graphs and Graphs
When it comes to mathematics, the word “graph” has at least two
different meanings. In algebra and calculus, a graph of a function
is a continuous line chart or surface plot. In graph theory, a graph
is a set of discrete objects (vertices, depicted diagrammatically as
dots), possibly joined by edges (depicted as lines or arcs). We will
always use the latter definition unless explicitly stated.

Network nodes and edges are high-level abstractions. For many types of net-
work analysis, their true nature is not essential. (When it is, we decorate
nodes and edges by adding properties, also known as attributes.) What matters
is the discreteness of the entities and the binarity of the relationships. A dis-
crete entity must be separable from all other entities—otherwise, it is not
clear how to represent it as a node. A relationship typically involves two dis-
crete entities; in other words, any two entities either are in a relationship or
not. (An entity can be in a relationship with itself. Such a relationship is called
reflexive.) It is not directly possible to use networks to model relationships
that involve more than two entities, but if such modeling is really necessary,
then you can use hypergraphs, which are beyond the scope of this book.

Once all of the above conditions are met, you can graphically represent and
visualize a node as a point or circle and an edge as a line or arc segment. You
can further express node and edge attributes by adding line thickness, color,
different shapes and sizes, and the like.
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Let’s have a look at some really basic—so-called “classic’—networks.

In a checkerboard, each field is an entity (node) with three attributes: “color”
(“black” or white”), “column” (“A” through “H”), and “row” (1 through 8).
“Being next to” is the relationship between two entities. There is an edge
connecting two nodes if the nodes “are next to” each other. As a matter
of fact, “being next to” is one of the foundational relationships that leads
to spatial networks. You can see a “checkerboard” network, also known
as a mesh or grid, in the following figure.

In a timeline of our life, each life event (such as “birth,” “high school graduation,”
“marriage,” and eventually “death”) is an entity with at least one attribute:
“time.” “Happening immediately after” is the relationship: an edge connects
two events if one event occurs immediately after the other, leading to a
network of events. Unlike “being next to,” “happening immediately after”
is not symmetric: if A happened immediately after B (there is an edge from

A to B), then B did not happen after A (there is no reverse edge).

In a family tree, each person in the tree is an entity, and the relationship could
be either being “a descendant of” or “an ancestor of” (asymmetric). A
family tree network is neither spatial nor strictly temporal: the nodes are
not intrinsically arranged in space or time.
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In a hierarchical system that consists of parts, sub-parts, and sub-sub-parts
(such as this book), a part at any level of the hierarchy is an entity. The
relationship between the entities is “a part of”: a paragraph is “a part of”
a subsection, which is “a part of” a section, which is “a part of” a chapter,
which is “a part of” a book.

All the networks listed previously are simple because they have a regular or
almost regular structure. A checkerboard is a rectangular grid. A timeline is a
linear network. A family tree is a tree, and such is a network of a hierarchical
system (a special case of a tree with just one level of branches is called a star).
The following figure shows more simple networks: a linear timeline of Abraham
Lincoln (A.L.), his family tree, and a ring of months in a year. (A ring is another
simple network, which is essentially a linear network, wrapped around.)

Make no mistake: a simple network is simple not because it is small, but
because it is regular. For example, any ring node always has two neighbors;
any tree node (except for the root) has exactly one antecedent; any inner grid
node has exactly four neighbors, two of which are in the same row and the
other two in the same column. The complete world timeline has billions of
events. The humankind “family tree” has billions of individuals. We still con-
sider these networks simple.

What is a complex network, then?
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A complex network has a non-trivial structure. It is not a grid, not a tree, not a
ring—but it is not entirely random, either. Complex networks emerge in nature
and the man-made world as a result of decentralized processes with no global
control. One of the most common mechanisms is the preferential attachment
(Emergence of Scaling in Random Networks [BA99)), whereby nodes with more
edges get even more edges, forming gigantic hubs in the core, surrounded by
the poorly connected periphery. Another evolutionary mechanism is transitive
closure, which connects two nodes together if they are already connected to a

common neighbor, leading to densely interconnected network neighborhoods.

Let’s glance at some complex networks. The following table shows the major
classes of complex networks and some representatives from each class.

Technological networks Communication systems; transportation; the
Internet; electric grid; water mains

Biological/ecological Food webs; gene/protein interactions; neural
networks system; disease epidemics
Economic networks Financial transactions; corporate partnerships;

international trade; market basket analysis
Social networks Families and friends; email/SMS exchanges;
professional groups
Cultural networks Language families; semantic networks; literature,
art, history, religion networks (emerging fields)

The networks in the table pertain to diverse physical, social, and informational
aspects of human life. They consist of various nodes and edges, some material
and some purely abstract. However, all of them have common properties and
behaviors that can be found in complex networks and only in complex net-
works, such as community structure, evolution by preferential attachment,
and power law degree distribution.

Enter Complex Network Analysis

Complex network analysis (CNA), which is the study of complex networks—
their structure, properties, and dynamics—is a relatively new discipline, but
with a rich history.

You can think of CNA as a generalization of social network analysis (SNA) to
include non-social networks.

Social networks—descriptors of social structures through interactions—have
been known as “social groups” since the late 1890s. Their systematic explo-
ration began in the 1930s. In 1934, J.L. Moreno (Who Shall Survive? [Mor34])
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developed sociograms—graph drawings of social networks. Eventually,
sociograms became the de facto standard of complex network visualization.

John Barnes coined the term “SNA” in 1954 (Class and Committees in a

of mathematical methods into social sciences began, leading to the emergence
of SNA as one of the leading paradigms in contemporary sociology.

Social network analysis addresses social networks at three levels: microscopic,
mesoscopic, and macroscopic. At the microscopic level, we view a network as
an assembly of individual nodes, dyads (pairs of connected nodes; essentially,
edges), triads (triples of nodes, connected in a triangular way), and subsets
(tightly knit groups of nodes). A mesoscopic view focuses on exponential random
graph models (ERGMs), scale-free and small-world networks, and network
evolution. Finally, at the macroscopic level, the more general complex network
analysis fully absorbs SNA, abstracting from the social origins of social networks
and concentrating on the properties of very large real-world graphs, such as
degree distribution, assortativity, and hierarchical structure (Exploring Complex

these properties and the Python ways of calculating them later in the book.

But first, let’s get your hands dirty (possibly physically dirty) and sketch a
real complex network on a sheet of paper.

Draw Your First Network with Paper and Pencil

Just like networks with regular topology, complex networks are not necessar-
ily large. In fact, they are not even “complex” in the colloquial meaning of the
word. We can easily spot them without any specialized hardware or software;
a pair of inquisitive eyes, a sheet of paper, and a pencil often suffice.

As a proof of concept, let's do an exercise in network construction (just con-
struction, no analysis so far!). We are deeply convinced that complex networks
are everywhere; rephrasing the quote, incorrectly attributed to Michelangelo,
“all we have to do is to chip away everything that is not a complex network.”

All people on Earth, including current and prospective complex network
analysts, deserve healthy nutrition. To help them build a balanced diet in
an utterly networked way, you will use a list of foods that provide naturally
occurring nutrients.' The data on the website is somewhat contradictory,

1. The document was originally found at www.sharecare.com/health/nutrition-diet/which-foods-naturally-
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as is often the case with real-world data. For example, in one list item, the
authors refer to “shellfish,” and in another, to “seafood.” It is not clear if
freshwater crayfish is meant to be “seafood” or not, but let us not worry about
the strict biological taxonomy and make reasonable assumptions, whenever
necessary.

Your first step is to identify discrete entities. The dataset has two potential
candidates for entities (and, therefore, network nodes): foods (such as fish
and eggs) and nutrients (such as vitamins A and C). You could construct a
network of foods or a network of nutrients. However, you can shoot two birds
with one stone and create a network of both nutrients and foods (a so-called
bipartite network—more on them in Chapter 15, Harnessing Bipartite Net-

heterogeneity now.

The relationship between digestive items is described by the verb “provides”
or “is provided”: certain food X provides nutrients Y1, Y2, and so on, and
certain nutrient Y is provided by certain foods X1, X2, and so on.

Now, take a sheet of paper and a pencil and transcribe the list of food and
nutrient items into a network, as follows:

1. Choose the first nutrient from the list—say, it is vitamin D. Draw a circle
that represents vitamin D and label it “D.”

2. Vitamin D is provided by fatty fish; draw a circle that represents fatty
fish, label it “fatty fish,” and connect to the “D” node.

3. Vitamin D is also provided by mushrooms; draw a circle that represents
mushrooms, label it “mushrooms,” and connect to the “D” node.

4. Repeat the previous steps for each combination of food types and nutri-
ents. Do not duplicate nodes! If a nutrient is provided by the food type
that already has a node, connect the nutrient to the existing node.

The method of starting with a “seed” node and following the edges to discover
other nodes is called snowball sampling (“snowballing”). Your network starts
as a single snowflake and grows over time until either you are happy with its
size or there is no more “snow” to add. Beware: snowballing may overlook
small and medium-size network chunks if you choose an improper seed. To
mitigate potential problems in networks that consist of several disjointed
parts (so-called unconnected graphs), it might be best to select several seeds
and follow all edges originating from them.
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By the way, congratulations! You just created your first complex network!
(Apologies if it was not your first.) Does it look like the following figure?

S/?L.Y\a(,{f\

Loloden

kins

pump
@E\ ®

Is the paper and pencil method tedious? You bet!
Is it error prone? Absolutely!
Is the network drawing ugly? Most likely!

But don’t worry. You will see how to automate the network construction
process soon (in Construct a Simple Network with NetworkX, on page 17 and

you learned the simple theory of complex networks and quick-and-dirty paper
and pencil network construction tricks. Let’s proceed to the overview of Python
and non-Python power tools for network construction and analysis.
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Part I

Elementary Networks and Tools

Even rudimentary automation of complex networl
analysis leads to significant performance improve-
ment. The results are even more impressive when
you deal with many similar networks that have to
be analyzed in a similar way. In this part, you will
acquire elementary CNA automation skills.



M. Worsaae of Copenhagen, who has been followed by other anti-
quaries, has even gone so far as to divide the natural history of civi-
lization into three epochs, according to the character of the tools
used in each.

Samuel Smiles, Scottish author and government reformer

CHAPTER 2

Surveying the Tools of the Craft

The most common Python tools for manipulating and processing networks
are NetworkX, iGraph, graph-tool, and networkit. The modules make it possible to
construct complex networks from non-network data, analyze and visualize
the networks, and convert the analysis results into non-network data struc-
tures (such as dictionaries, lists, and Pandas DataFrames)—in other words, embed
CNA into the general-purpose software development workflow. In this chapter,
you will look at the four modules and compare their strong and weak points.
You will be able to decide if NetworkX, the module that we use in the rest of the
book, is right for your problem. (If not, you can still read the coding-agnostic
part of the book!) You will be ready to tackle NetworkX and write code to con-
struct “simple” complex networks.

Do Not Weave Your Own Networks

Being a Python programmer, it's often tempting to disregard existing CNA
modules (especially since they're not part of the language core) and produce
roll-your-own CNA code. For example, you could represent a network as a
list of edges (an edge list) or as a dictionary with nodes and edges. You could
spend a fortune designing an efficient data structure for the internal network
representation. But then the real job begins: implementing dozens of network
construction, serialization, deserialization, and analysis algorithms, followed
by aesthetically appealing, presentation-quality network visualization.

Even if you're the right person for this task, as a complex network analyst, you
want the tools of the craft now, not in weeks or months. You want tools that
are bug-free, efficient, and well-documented. You want tools with a broad user
base from whom you can seek support and consolation. That is why I encourage
you to give up your ambitious plans of building your own CNA suite (if you ever
had such plans, of course) and consider one of the existing libraries.
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Where to Get Help

Speaking of support and consolation, the primary source of it for a desperate program-
mer is the Q&A site StackOverflow.? The number of individual tags on it attests to the
popularity of a library. At the time this book was written, iGraph had 1,940 posts (but
only 411 for the Python version); NetworkX was not too far behind with 1,711 posts. The
two libraries that support distributed processing via OpenMP—graph-tool and NetworKit—
were trailing with 151 and 21 posts. The latter one does not even have a specific tag!
Looks like people who work with huge networks know their way around.

a. stackoverflow.com

to know next.

Glance at iGraph

The library iGraph (properly spelled as iGraph, but imported as igraph) is an open
source and free “collection of network analysis tools with the emphasis on
efficiency, portability, and ease of use”." NetworkX (the tool of choice in the
book) and iGraph are structurally similar, yet have their unique features and
algorithms.

One of the most notable features of iGraph is its availability as a C language
library with the bindings in C, Python, and R. The R application programming
interface (API) makes the package a better alternative for the network analysts
who have been trained as R programmers. The choice of C as the implemen-
tation language also makes the package two orders of magnitude faster than
the comparable Python-only packages.

Let’s go over the list of iGraph’s other niceties. To begin with, the module pro-
vides a convenient way to instantiate a network from an edge list—something
not critical for most projects, but still nice icing on the cake.

iGraph natively supports node clustering (community detection), which is
essential for complex network analysis. While community detection is available
for NetworkX through a third-party module (see Outline Modularity-Based

part of your tool chest.

1. igraph.org
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iGraph has a smart built-in search mechanism. A programmer can call methods
select() and .find() with complex queries as parameters to locate nodes and
edges, based on their attribute values.

The iGraph drawing subsystem supports a variety of graph layout algorithms that
broadly expand presentational opportunities. Once again, NetworkX is capable of
similarly complex and perhaps even better charting, but it relies on graphviz
(Harness Graphviz, on page 28) or similar external programs for node placement.

You must install the programs separately, and their versions must match the
version of NetworkX. iGraph spares you from the version-matching misery.

Last but not least, iGraph is 10-50 times faster than NetworkX. We already men-
tioned this fact before, but it is worth mentioning again. The success or failure
of your large CNA project may depend on whether you can finish the analysis
by the deadline (if at all). If you have a network of more than a hundred thousand
nodes, NetworkX may not be your best friend. (Hint: you can still try Networkit!)

The benefits of iGraph far outweigh its flaws, but it is not flawless. First and fore-
most, installing the package requires a C compiler and takes considerable time.

Another downside of iGraph is the way it handles nodes (iGraph developers refer
to nodes as “vertices”) and edges. You can add an edge to a network only if
both edge ends have already been added, which is not always desirable.
Internally, iGraph stores edges in an indexed list. Any addition or removal of
an edge triggers a costly reindexing; for instance, adding a hundred edges
one at a time takes roughly a hundred times longer than adding the same
edges from a list. What is worse, the removal of edges and nodes changes
their indexes. If network elements are removed in a loop, node and edge
indexes may be invalidated by prior removals.

Appreciate the Power of graph-tool

graph-tool developers position the module as having “a level of performance
that is comparable (both in memory usage and computation time) to that of
a pure C/C++ library.”” Just like in the case of iGraph, the performance boost
comes from implementing the whole module in C/C++.

Once successfully installed, graph-tool shines. For starters, it is based on the
OpenMP protocol that supports shared memory multiprocessing program-
ming.® A graph-tool program is capable of using all CPUs and cores available
to your system. Many CNA tasks (such as PageRank and betweenness

2. graph-tool.skewed.de

3.  www.openmp.org/
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calculation) are easily parallelizable: they can be split into N subtasks, so that
each one is executed by a CPU or core, reducing the total running time by
the factor of up to N. (Note that even without OpenMP, graph-tool is still the
fastest Python CNA library of the four libraries considered.) If you feel your
network is too large and CNA jobs take too much time to run, adding another
CPU may help.

Here’s a list of some of graph-tool's most prominent features:

e Excellent support for drawing. graph-tool supports a variety of layouts and
output formats. It can use its built-in layout and visualization engines or
rely on the external graphviz package (you will meet it in Harness Graphviz,
on page 28).

e Extended graph statistics calculation tools that spare you from relying
on other statistical modules.

¢ Built-in community detection and improved blockmodeling (see Perform

allelization, this feature makes graph-tool a really serious community
detection engine.

e Graph filtering and graph views. Slicing (Slice Weighted Networks, on page

to keep or discard an edge is made based on its weight. graph-tool allows
you to imitate a sliced network graph without really removing the
unworthy edges, but by temporarily hiding (“filtering”) them, based on
their attributes and other properties. The new virtual graphs can be saved
as “views” and later analyzed and visualized as if they were genuine net-
works of their own.

graph-tool’'s superb performance comes at the cost of increased time and
memory required during installation and compilation. My experience shows
that installing graph-tool is not even always feasible. If you happen to run Linux
and you have not updated it for a while (because “if it ain’t broke, don’t fix
it”), then chances are you will have to compile the module from the C/C++
source code. Some Python programmers hate challenges like that.

graph-tool’s other major deficiency is in how it handles nodes (graph-tool calls
nodes “vertices.”). Unlike other network analysis libraries, graph-tool nodes do
not have names. Instead, they have contiguous indexes. (Presumably because
graph-tool makes little effort to disguise its C/C++ heritage!) Adding a node to
a graph does not affect existing indexes. However, removing a node (unless
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it is the node with the largest index) invalidates some or all existing indexes
and may cause mysterious errors, especially in loops.

Another inconvenience of graph-tool is related to the separation of nodes and
edges and their attributes, including node names/labels. The attributes are
stored in dictionary-style data structures called property maps. The node
name is just one of the attributes. The programmer is responsible for keeping
the node list and the attribute lists in a consistent state. This second-class
treatment of node labels makes graph-tool more suitable for general graph
analysis, rather than for the analysis of real world-inspired complex networks.

To summarize: graph-tool is a terrific module, though not without issues.
Someone should write a book about it, too.

Accept NetworkX

NetworkX is indeed the tool of the craft, at least for this book, and I would like
to justify my choice.

The main winning points of NetworkX are fourfold:

¢ NetworkX is painless to install. Since it is written in pure Python, it requires
no compilation.

¢ NetworkX has excellent online documentation, far superior to that of iGraph
and graph-tool. Besides, it has an active community of supporters on
StackOverflow."

e NetworkX’s structure (functions, algorithms, and attributes) are in good
agreement with CNA tasks.

* NetworkX’s performance is acceptable up to about 100,000 nodes.

While it is true that NetworkX lacks some essential features (such as community
detection and advanced visualization layouts), you can easily add these fea-
tures by installing Python-only third-party modules. We will use some of these
modules in this book.

Keep in Mind NetworKit

NetworKit is another great library that supports parallelized network process-
ing. NetworkX and NetworKit are compatible at the graph level. If you are in a
rush, construct a network in NetworkX and convert it to NetworKit for further
analysis.

4. stackoverflow.com/questions/tagged/networkx
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Compare the Toolkits

The following table contains a side-by-side comparison of the toolkits men-
tioned in the previous sections. The relative slowdown value shows how much
slower the tool is compared to the fastest tool in the collection (which, inci-
dentally, is graph-tool).

graph-tool iGraph NetworkX NetworKit
Implementation language C/C++ C/C++ Python C/C++
Language bindings Python C, Python, R Python C++, Python
Installation effort Hard Medium Easy Medium
OpenMP support Yes No No Yes
Relative slowdown® 1 1-4 40-135 N/A
Built-in community Yes Yes No Yes
detection
Built-in advanced Yes Yes No Yes
layouts

In this chapter, we compared four of the most popular CNA tools written in
Python and available for free. You've got to admit that NetworkX does not nec-
essarily look like the best tool. However, it is the most easily installable, the
most robust, and the most well documented. It is still a noble and venerable
toolset, and we will stick with it. Turn to the next chapter—and you will find
out how to create your first NetworkX-based complex network.

5. graph-tool.skewed.de/performance
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The result is a most extraordinary looking creature, a network of
worms with numerous heads, each branch being eventually provided
with one of its own.

B. Lindsay, American biologist and writer

CHAPTER 3

Introducing NetworkX

Any network starts with one node, and we can add more nodes and edges to
it, as needed. The attributes of those nodes and edges describe their properties.
The node, edge, and attribute data come from other data structures or files.

In this chapter, you will learn NetworkX functions for starting a new network,
populating it with nodes and edges, and decorating them with attributes. You
will also learn how to create a “quick and dirty” visualization of the constructed
network (we will give you more powerful visualization tools later in Chapter
4, Introducing Gephi, on page 31).

In many cases, complex network analysis is an iterative process, whereby the
network grows, shrinks, or undergoes other transformations over time. You
will learn how to preserve a complex network as a disk file in a variety of
popular formats (some of which you can later import into Gephi, an interactive
network analysis tool) and how to read data from appropriate files into the
NetworkX representation.

We will use the following terminology throughout the book to refer to the
relationships between nodes and edges:

¢ A node is incident to an edge if it is the start or end of the edge. The edge,
respectively, is incident to its end nodes.

e Two nodes are adjacent if they are incident to the same edge.

e Two edges are adjacent if they are incident to the same node.

Construct a Simple Network with NetworkX

A NetworkX project begins with importing module networkx (usually under the
name nx).

import networkx as nx


http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Chapter 3. Introducing NetworkX * 18

Create a Graph

A NetworkX network is a collection of edges and labeled nodes. The library
allows you to use any hashable Python data as a node label (different labels
within the same graph may belong to different data types). To create a new
network graph, you must choose an appropriate graph type and call the
respective constructor; pass either no parameters (for an empty graph) or a
list of edges as node pairs (lists or tuples). NetworkX supports four graph types:

e Undirected graphs consist only of undirected edges—edges that can be
traversed in either direction so that an edge from A to B is the same as
an edge from B to A. Mathematically, undirected graphs represent sym-
metric relationships: if A is in a relationship with B, then B is also in a
relationship with A. For example, sistership and companionship are
symmetric relationships, but “being in love with” is not (at least, not
always). Create an empty undirected graph with the constructor nx.Graph():

G = nx.Graph()

Undirected graphs can have self-loops—edges that start and end at the
same node. Mathematically, self-loops represent a reflexive relationship:
A is in a relationship with itself. If an undirected graph does not have
self-loops, it is called a simple graph. A graph that is not simple is called
a pseudograph.

e Directed graphs, also known as digraphs, have at least one directed edge.
“Being the father of” is a symmetric relationship and would be represented
by a directed edge. You would use a directed graph for a family network
that shows fathership and mothership. Create an empty directed graph
with the constructor nx.DiGraph():

G = nx.DiGraph()

Many NetworkX algorithms refuse to calculate with digraphs. You can con-
vert a digraph into an undirected graph. All directed edges become undi-
rected, and all pairs of two reciprocal edges become single edges. However,
remember that the original digraph and the derived undirected graph are
different.

F = nx.Graph(G) # F is undirected

e Multigraphs are like undirected graphs, but they can have parallel edges
—multiple edges between the same nodes. Parallel edges may represent
different types of relationships between the nodes. For example, Alice may
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be a classmate of Bob, but she also may be his friend. Create an empty
multigraph with the constructor nx.MultiGraph():

G = nx.MultiGraph()

e Finally, directed multigraphs are what they say they are: directed graphs
with parallel edges. Create an empty directed multigraph with the con-
structor nx.MultiDiGraph():

G = nx.MultiDiGraph()

Chapter 17, Directed Networks, on page 197 in this book is dedicated to
directed networks. Until we get there, unless said otherwise, let's assume
that all our networks are undirected and don’t have parallel edges, but possibly

have self-loops.

Add and Remove Nodes and Edges

NetworkX provides several mechanisms for adding nodes and edges to an
existing graph: one by one, from a list or another graph. Likewise, you can
remove nodes or edges one by one or by using a list. Node and edge manipu-
lations are subject to the following rules:

¢ Adding an edge to a graph also ensures that its ends are added if they
did not exist before.

e Adding a duplicate node or edge is silently ignored unless the graph is a
multigraph; in the latter case, an additional parallel edge is created.

* Removing an edge does not remove its end nodes.
¢ Removing a node removes all incident edges.

¢ Removing a single non-existent node or edge raises a NetworkXError exception,
but if the node or edge is a part of a list, then an error is silently ignored.

Let’s use the data collected in Draw Your First Network with Paper and Pencil,

using all node addition techniques mentioned previously:

= nx.Graph([("A", "eggs"),])

.add _node("spinach") # Add a single node

.add node("Hg") # Add a single node by mistake

.add nodes from(["folates", "asparagus", "liver"]) # Add a list of nodes
.add_edge("spinach", "folates") # Add one edge, both ends exist
.add_edge("spinach", "heating oil") # Add one edge by mistake
.add_edge("liver", "Se") # Add one edge, one end does not exist

G
G
G
G
G
G
G
G.add edges from([("folates", "liver"), ("folates", "asparagus")])
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We intentionally added several inedible nodes—just to illustrate how one can
remove unwanted fragments:

G.remove node("Hg")

G.remove nodes from(["Hg",]) # Safe to remove a missing node using a list
G.remove edge("spinach", "heating oil")

G.remove edges from([("spinach", "heating oil"), 1) # See above

G

.remove_node("heating oil") # Not removed yet

You can use the method G.clear() to delete all graph nodes and edges at once
but keep the graph shell.

Look at Edge and Node Lists

NetworkX provides several options for exploring the node and edge lists. Graph
object attributes (not to be confused with network attributes in Add Attributes,

form of dictionaries. Node labels are the keys of G.node. Node attributes, in the
form of nested dictionaries, are the values. Since we did not assign any
attributes to the nodes yet, the dictionaries are empty.

print(G.node)

{'Se': {}, 'eggs': {}, 'asparagus': {}, 'A': {}, 'liver': {}, 'spinach': {},
'folates': {}}

Start node labels are the keys of G.edge, too. Each dictionary value corresponds
to one edge (also in the form of a dictionary), where the keys are end node
labels, and the values are edge attribute dictionaries.
print(G.edge)
{'Se': {'liver': {}}, 'eggs': {'A': {}}, 'asparagus': {'folates': {}},

'"A': {'eggs': {}}, 'liver': {'Se': {}, 'folates': {}},

'spinach': {'folates': {}},

'folates': {'asparagus': {}, 'liver': {}, 'spinach': {}}}

The second option is to call methods G.nodes() and G.edges(). (Mind the s at the
end!) If called without any parameters, the methods return node and edge lists.

print(G.nodes())
['Se', 'eggs', 'asparagus', 'A', 'liver', 'spinach', 'folates']
print(G.edges())

[('Se', 'liver'), ('eggs', 'A'), ('asparagus', 'folates'),
('liver', 'folates'), ('spinach', 'folates')]

Note NetworkX created edge attribute accessors G.edge['Se']['liver'l and G.edgel['liver']['Se'],
but the edge ('Se', 'liver') does not have the reverse counterpart ('liver', 'Se').
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If called with the optional parameter data=True, the methods return the lists
with the additional attribute dictionaries.

print(G.nodes(data=True))

[('se', {}), ('eggs', {}), (‘asparagus', {}), ('A', {}), ('liver', {}),
('spinach', {}), ('folates', {})1]

print(G.edges(data=True))

[('Se', 'liver', {}), ('eggs', 'A', {}), ('asparagus', 'folates',6 {}),
('liver', 'folates', {}), ('spinach', 'folates', {})]

You can measure the length of the returned lists or dictionaries to find out
the number of nodes and edges. Additionally, function len(G) returns the
number of nodes in G.

Read a Network from a CSV File

The toy code fragment on page 19 has at least three problems. First, it is a

toy. Second, it is incomplete. Third, it is not flexible: any change in the original
network requires that you rewrite the code.

Ideally, you would record a network in a file (using some popular data format,
such as comma-separated values, or CSV). You would then write a program
that reads the network data from the file and constructs a Graph object. NetworkX
has an excellent collection of file readers and writers, but let’s pretend it does
not and implement a CSV edge list reader. Our nutrients and foods are in the
file nutrients.csv.' The first ten and the last five lines of the file are shown below:

A,carrots

A,eqggs

A,"fatty fish"
A,"green leafy vegs"
A,liver

A,milk

A, tomatoes

B12,milk
B6,asparagus
B6,beans

<more pairs>
shellfish,Se
thiamin, "whole grains"
tomatoes, tomatoes
"veg oils",E
yogurt,Ca

1. pragprog.com/titles/dzcnapy/source_code
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Now, watch the magic of Python. It takes only three lines of code to open the
edge list file, create a CSV reader for the file, and “suck” the list of pairs into
the Graph constructor.

nutrients.py

import networkx as nx

import matplotlib.pyplot as plt
import dzcnapy plotlib as dzcnapy
import csv

with open("nutrients.csv") as infile:
csv_reader = csv.reader(infile)
G = nx.Graph(csv_reader)
print(G.nodes())

['B6', 'wheat', 'nuts', 'beef', 'cheese', 'milk', 'B12', 'E', 'thiamin',

'liver', 'legumes', 'broccoli', 'C', 'folates', 'yogurt', 'tomatoes',

'veg oils', 'riboflavin', 'beans', 'mushrooms', 'D', 'spinach', 'shellfish',
'niacin', 'A', 'fatty fish', 'Se', 'Mn', 'green leafy vegs', 'poultry',
"pumpkins', 'Cu', 'whole grains', 'Zn', 'eggs', 'carrots', ‘'asparagus',
'potatoes', 'Ca', 'kidneys', 'seeds']

The provided edge list in the file nutrients.csv has an intentional inconsistency:
an edge that connects the node “tomatoes” with itself, a self-loop. You can
remove the self-loops by first identifying them with G.selfloop_edges() and then
passing the loop edges to G.remove_edges_from():

nutrients.py

loops = G.selfloop edges()

G.remove edges from(loops)
print(loops)

[('tomatoes', 'tomatoes')]

loops = G.selfloop edges()
print(loops) # No more loops

[l

Relabel Nodes

The network looks magnificent, but there is one more thing we can do to make
it better: capitalize all node names. NetworkX provides method nx.relabel_nodes()
that takes a graph and a dictionary of old and new labels and either creates
arelabeled copy of the graph (copy=True, default) or modifies the graph in place
(use the latter option if the graph is large and you don’t plan to keep the
original graph). Each dictionary key must be an existing node label, but some
labels may be missing. The respective nodes will not be relabeled.
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We will use dictionary comprehension to walk through all network nodes and
convert those labeled with strings to the title case (capitalize the first letter
of each word).

nutrients.py

mapping = {node: node.title() for node in G if isinstance(node, str)}
nx.relabel nodes(G, mapping, copy=False)

print(G.nodes())

['B6', 'Yogurt', 'Legumes', 'Tomatoes', 'Potatoes', 'Wheat', 'Eggs',
'Veg 0ils', 'D', 'Pumpkins', 'Poultry', 'Kidneys', 'Liver', 'Broccoli',
'Zn', 'Carrots', 'Whole Grains', 'Folates', 'Niacin', 'Nuts', 'Seeds',
'Mn', 'C', 'Mushrooms', 'Shellfish', 'B12', 'Cheese', 'Fatty Fish', 'E',
'Thiamin', 'Riboflavin', 'A', 'Green Leafy Vegs', 'Se', 'Beef',
'Asparagus', 'Milk', 'Cu', 'Spinach', 'Beans', 'Ca'l
Note that G in the previous code fragment acts as a node iterator. In fact, G
has some other dict() features. For example, you can use selection operator []
to access the edges incident to the node, and their attributes:

print(G["Zn"])

{'Liver': {}, 'Nuts': {}, 'Beef': {}, 'Beans': {}, 'Poultry': {},

'Potatoes': {}, 'Kidneys': {}}
But wait, the network does not have any attributes yet. You may want to add
them now.

Add Attributes

A node or edge attribute describes its non-structural properties. For example,
edge attributes may represent weight, strength, or throughput. Node attributes
may represent edge, color, size, or gender. NetworkX provides mechanisms for
setting, changing, and comparing attributes.

An attribute is implemented as a dictionary associated with the node or edge.
The dictionary keys are attribute names. As such, they must be immutable:
int(), float(), bool(), str(), and so on. There are no limitations on the values. You
can create a node whose attribute is the node itself, except that this exercise
is utterly pointless.

NetworkX offers three options for setting node and edge attributes.

e Define attributes at the time of adding nodes or edges:

.add_node("Honey", edible=True)

.add nodes from([("Steel", {"edible" : False}), 1)
.add_edge("Honey", "Steel", weight=0.0)
.add_edges from([("Honey", "Zn"),]1, related=False)

[N Nn)
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NetworkX and other CNA libraries consistently use edge attribute "weight" to
denote edge strength (as in Distinguish Strong and Weak Ties, on page

There is a method G.add_weighted_edges_from() for adding weighted edges.

G.add weighted edges from([("Honey", "Zn", 0.01),
("Honey", "Sugar", 0.99)1])

Note that when you add several edges with G.add_edges_from(), you can
specify only one set of attributes for all of them. If that’s not what you
want, use the next option.

e Define or change an attribute of existing nodes and edges by calling
nx.set_node_attributes() or nx.set edge_attributes():

nx.set_node_attributes(G, att_name, node_dict)
nx.set edge attributes(G, att name, edge dict)

Here, att_name is the name of the affected attribute, node_dict/edge_dict is a dic-
tionary whose keys are existing node labels or edge pairs, and values are
attribute values for the respective nodes/edges. If the attribute doesn’t exist
yet, it's created; otherwise, the value of the existing attribute is changed. If
a key isn’t a node label or edge pair, the methods raise a KeyError exception.

e Define or change an attribute of individual existing nodes and edges
directly through the dictionary interfaces G.node (indexed by node labels)
and G.edge (double indexed by start and end node labels):

G.node["Zn"]["nutrient"] = True # Zinc is a nutrient
G.edge["Zn"]1["Beef"]1["weight"] = 0.95 # Zinc and beef are well connected

The dictionary interface allows you to remove unwanted attributes:

del G.node["Zn"]["nutrient"]
del G.edge["Zn"]["Beef"]["weight"]

Regardless of how you create an attribute, it can be modified using any of
the three options listed previously.

In our little food and nutrition exercise, we have nodes of two types: foods
and nutrients. Labeling them for future analysis would be helpful. Let’s create
a boolean attribute "nutrient" that is true for nutrients and false for foods. The
information about node type was not in the original dataset.

nutrients.py

nutrients = Set((“BlZ“, “Zn", "D", “B6", "A", nseu' “CU", "Folates",
"Cca", "Mn", "Thiamin", "Riboflavin", "C", "E", "Niacin"))

nutrient dict = {node: (node in nutrients) for node in G}

nx.set node attributes(G, "nutrient", nutrient dict)
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Ready, Set(), Go
Python programmers often use collections of items solely for
lookup. They are interested in whether an item is in the collection
or not, not in where in the collection it is. Python lists have noto-
riously slow (linear) lookup performance. Whenever possible,
convert them into sets that have constant lookup time.

All nodes have been successfully labeled:
print(G.nodes(data=True))

€ [('Seeds', {'nutrient': False}), ('B12', {'nutrient': True}),

('86' { nutrient': True}), ('Se', {'nutrient': True}),

('Cu', {'nutrient': True}), ('Asparagus', {'nutrient': False}),

(' Broccoll , {'nutrient': False}), ('Poultry', {'nutrient': False}),

('Eggs , {! nutrlent' False}), ('D', {'nutrient': True}),
('Ca', {'nutrient': True}), ('Whole Grains', {'nutrient': False}),
('Beef' {'nutrient': False}), ('Thiamin', {'nutrient': True}),
('Shellfish', {'nutrient': False}), ('Kidneys', {'nutrient': False}),
('Riboflavin', {'nutrient': True}), ('Spinach', {'nutrient': False}),
('Cheese', {'nutrient': False}), ('Beans', {'nutrient': False}),
('c, {' nutrient' True}), ('Veg 0ils', {'nutrient': False}),
('Tomatoes , {'nutrient': False}), ('E', {'nutrient': True}),
('Mushrooms', {'nutrient': False}), ('Liver', {'nutrient': False}),
('Zn', {'nutrient': True}), ('Niacin', {'nutrient': True}),
('A', {'nutrient': True}), ('Folates', {'nutrient': True}),
('Legumes', {'nutrient': False}), ('Yogurt', {'nutrient': False}),
('Nuts', {'nutrient': False}), ('Mn', {'nutrient': True}),
('Milk', {'nutrient': False}), ('Wheat', {'nutrient': False}),
('Green Leafy Vegs', {'nutrient': False}),
('Pumpkins', {'nutrient': False}), ('Carrots', {'nutrient': False}),
(

'Potatoes', {'nutrient': False}), ('Fatty Fish', {'nutrient': False})]

We will get back to the node attributes in Estimate Network Uniformity Through

Visualize a Network with Matplotlib

NetworkX is not aesthetically the best library for network

This section uses . L. . . . ,
visualization. In fact, it does not even do visualization on its

Matplotlib. own but uses services rendered by Matplotlib, a multipurpose

graphics library. Luckily, the team of NetworkX and Matplotlib
is fast and easy to understand, and the interaction with Matplotlib is well hidden
from the network analyst; you do not need to learn yet another library—but
still, you need to import it.

import matplotlib.pyplot as plt
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Note that you typically do not need the whole library, but just the submodule
matplotlib.pyplot.

The process of network visualization consists of two phases: layout and ren-
dering. At the layout phase, the software selects geometric positions of each
node according to a layout algorithm.

NetworkX supports a variety of layout algorithms. You can choose one of them,
based on your aesthetic preferences and your network’s aesthetic propensity.
For each algorithm, NetworkX has a proper layout function that takes the graph
to plot and returns a dictionary of node positions (to be used at the rendering
phase), and an all-in-one function that does both layout and rendering. The
following table shows the most useful layout and drawing functions. The figure
on page 28 shows some actual layouts.

All-in-one
Layout Arrange node... Layout function function
Random Randomly (this layout pos=nx.random_layout() nx.draw_random()
requires NumPy)
Circular On a circle pos=nx.circular_layout()  nx.draw_circular()
Shell On concentric circles, pos=nx.shell_ nx.draw_shell()
as defined by nlist layout(G,nlist=None)
Spectral Based on their eigenvec- pos=nx.spectral_layout() nx.draw_spectral()
tor centrality values
(see Eigenvector Central-
ity, onpage94)
Force- As if they were physical pos=nx.fruchterman_
directed Dballs that repel one reingold_layout()
another, connected
with springs
Same as Same as above nx.draw_networkx()
above
Same as Same as above pos=nx.spring_layout() ~ nx.draw_spring()
above

At the rendering phase, NetworkX draws the nodes, labels, and edges at the
prescribed positions, using the default or specified shapes, fonts, and colors.
You can see the graphical output on the screen, save it into a file (supported
formats include PNG, PDF, PostScript, EPS, and SVG), or both. In the latter
case, you must first save the image and only then display it.
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The following code fragment prepares a color sequence (pink vs. yellow,
depending on the node type) for the nodes.

nutrients.py

# Prepare for drawing

colors = ["yellow" if n[l]l["nutrient"] else "pink" for n in
G.nodes (data=True) ]

dzcnapy.medium_attrs["node color"] = colors

For each of the four layouts (specified by the subplot axes, layout method,
and human-readable title), we calculate the node positions and call
nx.draw_networkx(), the generic drawing method.

nutrients.py
# Draw four layouts in four subplots
_, plot = plt.subplots(2, 2)

subplots = plot.reshape(1l, 4)[0]
layouts = (nx.random_layout, nx.circular layout, nx.spring layout,
nx.spectral layout)
titles = ("Random", "Circular", "Force-Directed", "Spectral")
for plot, layout, title in zip(subplots, layouts, titles):
pos = layout(G)
nx.draw_networkx(G, pos=pos, ax=plot, with labels=False,
**dzcnapy.medium attrs)
plot.set_title(title)
dzcnapy.set extent(pos, plot)

NetworkX doesn’t take very good care of scaling network charts. You can do
better by manually calculating the extent of each layout and reserving enough
space. The highlighted code calls function dzcnapy_plotlib.set_extent(pos, plot) from
the module dzcnapy_plotlib.”> The function fits a network with the nodes at the
positions pos into the drawable plot.

Finally, tell Matplotlib to pack the subplots as tight as possible and save and
display the images by calling the auxiliary function dzcnapy_plotlib.plot().

nutrients.py
dzcnapy.plot("nutrients")

The figure on page 28 shows four different drawings of the same network of
foods and nutrients. Remember that most of the layout procedures are
probabilistic. If you run the code yourself, you will likely get a somewhat dif-

ferent layout.

2. Available from pragprog.com/book/dzcnapy
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Random Circular

For most complex networks, the spring layout (the default layout for
nx.draw_networkx()) produces the most pleasing output. Note that Matplotlib does
not accurately place node labels (to the extent that I preferred not to show
them in the figure at all). Some of them badly overlap. If you think this is a
problem (and yes, it is!), switch to Gephi—it is described in Chapter 4, Introduc-
ing Gephi, on page 31. But try graphviz firstt

Harness Graphviz

graphviz is an open source graph visualization tool written in C, with bindings
available in C, Tcl/Tk, guile, Java, Perl, PHP, Ruby, and, most importantly,
Python. Among other things, it provides yet another layout engine, which is
typically better than any of the engines mentioned previously.

Using graphviz in your code is trivial. The only two lines affected by the switch
from, say, nx.draw_networkx() to graphviz are highlighted in the following code
fragment. Due to the better overall layout quality, the node labels have better
chances of not overlapping and should not be disabled.

nutrients.py
from networkx.drawing.nx agraph import graphviz layout

_, plot = plt.subplots()

pos = graphviz layout(G)

nx.draw _networkx(G, pos, **dzcnapy.attrs)
dzcnapy.set _extent(pos, plot)
dzcnapy.plot("nutrients-graphviz")

report erratum - discuss


http://media.pragprog.com/titles/dzcnapy/code/nutrients.py
http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Share and Preserve Networks ® 29

The following figure shows the output of graphviz. Compare it to the figure on

As you are getting ready to save your network into a file, here’s some food for
thought: why do all pink nodes have yellow neighbors and the other way
around?

Share and Preserve Networks

At this point, you must be very proud of the job well done. The network of
foods and nutrients has been extracted, constructed, and visualized. It’s time
to save it into a file, and there are several compelling reasons for doing so:

1.

You never analyzed the network, because you don’t know how. When you
read through Chapter 8, Measuring Networks, on page 83 and Chapter 11,

various network measures and extract network structure. You'll need the
network when you get there, but you won't have it unless you save it now.

You may want to get a better network visualization of the network with
Gephi. The only way for NetworkX to pass the network to Gephi is via a file.

Sharing the network with the fellow researchers is priceless, but they
want a file with the live network edges and nodes, not a still image.

NetworkX supports many popular file formats suitable for interchanging network
data with other software.
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Export and Import Networks

Any NetworkX network can be exported to or imported from files (serialized and
de-serialized) in the formats shown in the following table. All nx.read__ () func-
tions take the name of an existing file or an open file handle and return a
Graph object. All nx.write__ () functions take a Graph object and the name of an
existing file or an open file handle. Files with names ending in .gz or .bz2 are
automatically compressed or uncompressed. Some functions require that the
files be opened in the binary mode.

Supported

Format Attributes Reader Writer by Gephi?
Adjacency list Not stored nx.read_adjlist() nx.write_adjlist() ~ Yes
Edge list Not stored nx.read_edgelist() nx.write_edgelist() Yes
Graph exchange Stored nx.read_gexf() nx.write_gexf() Yes
XML format
Graph modeling Stored nx.read_gmi() nx.write_gmi() W/o
language attributes
GraphML Stored nx.read_graphml() nx.write_graphml() Yes
Pajek NET Not stored nx.read_pajek() nx.write_pajek() Yes
Pickle Stored nx.read_gpickle()  nx.write_gpickle() No
YAML Stored nx.read_yaml() nx.write_yami() No

As an example, let’s export the G network as a GraphML file. In my experience,
GraphML is the best interchange format between NetworkX and Gephi.

nx.write graphml(G, "nutrients.graphml")
Or:

with open("nutrients.graphml", "wb") as ofile:
nx.write graphml(G, ofile)

You learned about the foundations of NetworkX—a powerful Python library for
network analysis and visualization. You know how to construct a simple
graph incrementally, add node attributes, do some simple visualization, and
save the networks to and restore from files. Of these tasks, it is visualization
that NetworkX does not handle well.

You've heard so much about Gephi so far that you should not be surprised
that it is hiding around the corner [of this page]. Just for one chapter, let’s
set NetworkX aside and look into this interactive CNA tool. Sometimes, Gephi is
the quickest way to analyze a not-so-large network once or twice.
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Visual signaling is and always will be a most valuable means of
transmitting information in peace and war, and it is not to be imagined
that it will ever be supplanted in its particular function by the introduction
of other methods.

Signal Corps United States Army

CHAPTER4

Introducing Gephi

When you explore an unfamiliar complex network for the first time, it often
helps to perform a quick visual check of its structure before engaging in
expensive code writing. Sometimes, you can semi-automate even the network
construction itself (we are talking about small networks, with fewer than a
couple dozen nodes).

You can perform many one-time construction, analysis, and conversion tasks
with Gephi. Gephi is a free, Java-based, interactive CNA environment that runs
on all mainstream operating systems. In this chapter, you will learn how to
use Gephi and the data from Draw Your First Network with Paper and Pencil,

attributes to its nodes and edges, and save the network as a presentation-
quality image. You will also learn how to interchange network files between
Gephi and NetworkX.

Worth 1,000 Words

Gephi' is not a part of NetworkX, and you must install it separately. Luckily, the
installation process is straightforward.”

Here’s a summary of Gephi’s capabilities:
e Import existing networks in a variety of formats or create a new network.
e Edit a new or existing network by adding or removing nodes or edges.

e Change the size and color of node icons, the size and color of label font,
and the color and thickness of edges based on node and edge attributes.

gephi.org

N =

users/install/
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e Calculate basic network measures: centralities, clustering coefficients,
path length distributions, connectedness, and modularity.

e Apply various layout engines to the network graph.

¢ Execute additional plug-ins.

e Export modified networks in a variety of formats.

e Save network visualization as a PNG, PDF, or SVG file.

If it looks like everything you ever wanted to do as a network analyst is already
on the list, do not get overexcited. Gephi is an excellent network construction
and analysis tool, but it is interactive. The human user is its slowest component
(yes, this means you are slowing things down). Gephi cannot be programmed to
execute batches of tedious analysis tasks, vary parameters automatically, or
integrate with machine learning or predictive analytics software.

Nonetheless, Gephi is a great lightweight “Paintbrush”-style application and
NetworkX companion. Let’s use it to play with the nutrients network acquired
in Chapter 3, Introducing NetworkX, on page 17.

Import and Modify a Simple Network with Gephi

The following figure shows the standard main window of Gephi without any
loaded graphs.

(/] Gephi 0.5.1 - Project 2 = - e - d ->- - e - > >

Ovenview [CDataLaboratory |[®  Preview —

Workspace 1 X

Appearance x & Graph x <I[»|[7) | context x [=)
INodes| Edges (@@ A T (G orassing (Confiee) Nodes: 0

Edges: 0

Directed Graph

Statistics x| Filters MultiMode =

|Uniqde | Partition Ranking 3

&

ings

File Workspace Tools Window Help etwnékoverview .
I@ Ovenview H [|Data Laboratory || = Preview ri}ghi;;m RZ: -
Workspace 1 X work Diameter Run
= > Apply =raph Density Run @
Layout x ol ¥ HITS Run @
---Choose alayout Modularity Run
o » PageRank Run

onnected Components Run

The main window contains three tabs: Overview (for interactive network creation
and exploration), Data Laboratory (for text and numeric editing and research),
and Preview (for presentation-quality visualization). We will start in the Overview
tab, then briefly stop at the Data Laboratory, and finish in the Preview.

The default Overview tab has four empty windows. The upper-left window,
Appearance, is in charge of rendering. You will use it to control node and edge
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presentation properties. The lower-left window, Layout, is behind the graph
layout. The central window, Graph, shows the sketch of the network. The
window on the right, with the tabs Statistics and Filters, is for network analysis
and filtering (more about filtering on page 14). You can freely move the windows

around, remove them, and add more windows from the Window menu.

To import an existing network file prepared by NetworkX or any other CNA
software—in our case, nutrients.csv—open it with File > Open (Gephi displays
only the file that it “knows” how to interpret.) Choose the Undirected graph
type. Check if the number of detected edges and nodes makes sense. If the
import is successful, you will see an ugly black-and-white sketch of your
network in the Graph window. Don’t worry: we will make it look awesome by
the end of this chapter.

By default, Gephi treats networks as mathematical graphs and does not display
node labels. Click the fat T button at the bottom of the Graph window, and
the labels will show up, making the ugly sketch even uglier.

The original black color of the nodes is depressing. Before we go any further,
click the artist’s palette icon in the Appearance window, select the Unique
tab, and choose a fun color—say, light blue—for all the nodes. (Don’t forget
to click Apply!)

Suppose that at this point you realize that eggs are a valuable source of
selenium (they are) and you would like to add a connection between the
respective nodes. You remember that eggs are already on the network, but
you’re not sure about selenium, so you add it to the network, just in case. (It
is a mistake, but you will be able to correct it later.) Choose the Node Pencil
tool in the Graph window, adjust the color and size of the new node, if desired,
and click anywhere in the window. The position of the new node doesn’t
matter; the node will be moved around by the layout procedure.

Now, choose the Edge Pencil tool in the same window. Click the “eggs” node
and then the new nameless one. Congratulations, you added a new edge!

Finally, take care of the anonymous node. It deserves a name, so you're going
to name it “Se” for “selenium.” Click the Edit tab of the Appearance window,
then the node of interest. Edit the label name (the default value is “<null
value>")—and realize that now you have two selenium nodes!

Visit Data Laboratory

Data Laboratory (in addition to the Edit tab) is another place to look at the edges
and nodes under a microscope and inspect and modify their properties. The
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operation that you’re looking for—detection of duplicate nodes—is hidden in
the pull-down menu “More actions” at the top of the Data Table window. It is
called “Detect and merge node duplicates.” When you invoke the operation, Gephi
reports that it found one pair of duplicates, and offers to merge them into one
node. This procedure preserves all edges incident to the nodes. In particular, if
there is an edge connecting the duplicates, it becomes a self-loop edge.

Unfortunately, Gephi does not tell you which nodes are duplicates. You can
either trust the tool or manually find the duplicates in the table, select both
nodes, open the pop-up menu, and select “Merge nodes...” in it. Either way,
you can go back to the Overview window, and you’ll see that there is now only
one Se node, and it is properly connected to the eggs. The network now looks
like the following figure. Node positions and fonts may differ, but surely the
new image is a vast improvement over the black-and-white sketch.

Gephi 0.9.1 - nutrients.gephi
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Explore the Network

Network exploration in Gephi goes hand in hand with selecting visual properties.
Let’s paint and resize the graph nodes based on some of their measures.

report erratum -
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You will learn about network measures in Chapter 8, Measuring Networks,

For now, it suffices to know several basic facts about two of them, as detailed
in the following table:

Measure Meaning

Degree The number of immediate neighbors—adjacent nodes. The
degree is a non-negative integer number. The larger the
degree of a food item is, the more nutrients it provides.
The larger the degree of a nutrient is, the more food items
provide it.

Community Nodes form tightly knit groups called communities. All

structure foods and nutrients within a community serve some com-
mon purpose. Each community has a unique integer
identifier called modularity class.

Node degree is the simplest possible node measure. There is no need to cal-
culate it explicitly. To make node size proportional to the degree, click the
icon with concentric circles in the Appearance window, then on the Ranking
button. Select Degree from the “—Choose an attribute” pull-down menu.
Select node sizes that correspond to the smallest and largest degrees (10 and
40 are good choices). And don't forget to click Apply. Can you see which nodes
have the highest degrees?

Playing with size is fun; playing with color is more fun. Let’s paint the nodes
according to their modularity classes, as I've done in the figure on page 36.
To partition a network into communities, click the Run button next to the
Modularity command in the Network Overview section of the Statistics window.
Proceed by clicking OK and Close in the next two dialogs. In the end, you will
see a floating-point number next to Modularity. The number is a measure of

the quality of the decomposition from Outline Modularity-Based Communities,

Select Modularity Class from the “—Choose an attribute” pull-down menu.
Don't forget to click Apply. If you feel artistic, like me, play with the node
colors. Painting the beef group pink and the vegetable group green is a no-
brainer, but can you choose a good color for the vitamins?

If you plan to use Gephi for more sophisticated CNA jobs, the table on page 36

will help you find which sections of this book match the items in the Statistics
window.
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Sketch the Network

You're done with rough rendering, but the layout is still awful. Let’s turn
our attention to the lower-left corner of Gephi. Select your favorite layout from
the “Choose a layout” pull-down menu. When a network is large (500 or more
nodes), the Fruchterman-Reingold layout is usually the most efficient. For
smaller networks, the ForceAtlas 2 layout, with some tweaking, works mar-
vels. To make things easier, here’s a tip: set the scaling to 100.0 (to place
nodes reasonably far apart) and check the Prevent Overlap box. Run the tool
for a while. You'll notice that after a couple of seconds, the nodes settle at
their new positions, but the graph as a whole may continue drifting, rotating,
or both.

The last step is to adjust the labels, because surely some of them don’t mind
their manners and sit on top of each other. Select Label Adjust from the
“Choose a layout” pull-down menu and run the tool for a couple of seconds.
This layout engine distorts the original Fruchterman-Reingold but makes
sure that neither nodes nor labels overlap. Hopefully, your network layout
resembles the following figure.
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The Graph window still shows a sketch, but this is a high-quality sketch
that nicely displays the structure of the network of foods and nutrients.
There are five compact groups in the network that could be tentatively called
Veggies, Cereals, Meats, Proteins, and Folates. You can explore each group’s
internal composition, as well as connections to the other groups. You can
even show this sketch to your boss or customer. But it would look much
better when rendered at high resolution and converted to a presentation-
quality image. (Save the project via File > Save As... into a .gephi file to avoid
data loss if Gephi crashes!)

Prepare a Presentation-Quality Image

The final painting of the network takes place in the Preview tab. The tab has
two windows: Preview Settings (to control the fine-level rendering engine)
and Preview (to see the rendering results). When you switch to this tab, the
Preview window will be empty. Click the Refresh button. Your network will
be drawn using the default settings, with curved edges and no node labels
(see the following figure). Don’t worry—the labels have not been lost; they
have been turned off.
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Gephi supports a variety of preset renderers. The default one is usually not
the best one. I recommend using the “Text outline” preset configuration with

some extra tweaking:

¢ Unclick “Proportional size.”

¢ Increase the Font size (in this chapter, I used Comfortaa 24pt).

¢ Increase edge Thickness (I used 2.0).

¢ Set edge Opacity at 75.0.

e Optionally, unclick the Curved box.
Click the Refresh button again.

If you're not happy with what you see, you can make more changes. You can
zoom into the network and zoom out of it, pan the image, control how many
edges and nodes are rendered, and so on. You can go back and forth between
the Preview and Overview to adjust layout and node and edge visualization
properties. Eventually, your network will look similar to the following figure.
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Once you like the rendering results, you can export the graph into a graphics
file. Gephi provides exporters to SVG (editable vector format), PDF (editable
vector format), and PNG (non-editable raster format). The final version of the

network of foods and nutrients is in the figure

40.
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A4 vs. Letter

The default page format for the Gephi PDF exporter is European A4 (also known as
DIN A4 in Germany; it measures 210 by 297 millimeters, or 8.27” x 11.7”). A4
paper is slimmer and taller than the letter-size paper (at 8.5” x 11”) used in the
United States, Canada, Chile, Colombia, Venezuela, the Philippines, and most
Central American countries. If you live in one of the “letter” countries, make sure
to change the paper size.

Once again, you are invited to compare this figure with the hand-drawn network
on page 8!

Combine Gephi and NetworkX

There is no implicit integration between Gephi and NetworkX. However, you can use
Gephi graph file exporter (File > Export > Graph file...) to save your network into
a file that could be imported by NetworkX. GraphML is the preferred interchange
format because it preserves all calculated measures (such as centralities and
modularity classes) as node attributes. This way you could use Gephi to perform
a quick-and-dirty interactive analysis of a network and save it into a .graphml file
for further processing.

You just learned one more way to build and analyze networks by hand, and you
now understand that analyzing one not-so-large, pre-packaged complex network
with Gephi is a pleasure. You also understand that constructing and analyzing
many large networks by hand is hard, error-prone, and most of the time infeasible.
You are now ready for the first full-Python case study.
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Looking down, he surveyed the rest of his clothes, which in parts
resembled the child’s definition of a net as a lot of holes tied
together with string. ..

Morley Roberts, English novelist and short story writer

CHAPTER 5

Case Study: Constructing a Network
of Wikipedia Pages

So far you have learned two ways of constructing a complex network: a hard
one (from a CSV file and further in Gephi, Construct a Simple Network with

works may be impossible for medium-to-large scale networks; it may be
impossible even for small networks if you must repeat the analysis many
times. The case study in this chapter shows you how to construct a large
network in an easy way: by automatically collecting node and edge data from
the Internet.

The other goal of this study (aside from mastering new network construction
techniques) is quite pragmatic. Wouldn’t you want to know where the complex
network analysis fits in the context of other subjects and disciplines? An
answer to this question is near at hand: on Wikipedia.'

Let’s start with the Wikipedia page about complex networks—the seed page.
(Unfortunately, there is no page on complex network analysis itself.) The page
body has external links and links to other Wikipedia pages. Those other pages
presumably are somewhat related to complex networks, or else why would
the Wikipedia editors provide them?

To build a network out of the seed page and other relevant pages, let’s treat
the pages (and the respective Wikipedia subjects) as the network nodes and
the links between the pages as the network edges. You will use snowball
sampling (explained on page 7) to discover all the nodes and edges of interest.

1. en.wikipedia.org/wiki/Complex_network
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As a result, you will have a network of all pages related to complex networks
and hopefully, you will make some conclusions about it.

Get the Data, Build the Network

The first half of the project script consists of the initialization
prologue and a heavy-duty loop that retrieves the Wikipedia
pages and simultaneously builds the network of nodes and
edges.

This section uses
Wikipedia.

Let’s first import all necessary modules. We will need the module wikipedia for
fetching and exploring Wikipedia pages, the operator itemgetter for sorting a
list of tuples, and, naturally, networkx itself.

To target the snowballing process, define the constant SEED, the name of the
starting page. As a side note, by changing the name of the seed page, you can
apply this analysis to any other subject on Wikipedia.

Last but not least, when you start the snowballing, you will eventually (and
quite soon) bump into the pages describing ISBN and ISSN numbers, the
arXiv, PubMed, and the like. Almost all other Wikipedia pages refer to one or
more of those pages. This hyper-connectedness transforms any network into
a collection of almost perfect gigantic stars, making all Wikipedia-based net-
works look similar. To avoid the stardom syndrome, treat the known “star”
pages as stop words in information retrieval—in other words, ignore any links
to them. Constructing the black list of stop words, STOPS, is a matter of trial
and error. I put twelve subjects on it; you may want to add more when you
come across other “stars.” I also excluded pages whose names begin with
"List of", because they are simply lists of other subjects.

wiki2net.py

from operator import itemgetter
import networkx as nx

import wikipedia

SEED = "Complex network".title()

STOPS = ("International Standard Serial Number",
"International Standard Book Number",
"National Diet Library",
"International Standard Name Identifier",
"International Standard Book Number (Identifier)",
"Pubmed Identifier", "Pubmed Central",
"Digital Object Identifier", "Arxiv",
"Proc Natl Acad Sci Usa", "Bibcode",
"Library Of Congress Control Number", "Jstor")
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The next code fragment deals with setting up the snowballing process. A
breadth-first search, or BFS (sometimes known to computer programmers
as a snowballing algorithm), must remember which pages have been already
processed and which have been discovered but not yet processed. The former
are stored in the set done_set; the latter, in the list todo_Ist and set todo_set. You
need two data structures for the unprocessed pages because you want to
know whether a page has been already recorded (an unordered lookup) and
which page is the next to be processed (an ordered lookup). The Aside titled
“Ready, Set(), Go” on page 25 explains why the two operations favor different
data structures.

Snowballing an extensive network—and Wikipedia with 5,452,810 articles in
the English segment alone can produce a huge network!—takes considerable
time. Suppose you start with one seed node, and let’s say it has N~100 neigh-
bors. Each of them has N neighbors, too, to the total of ~N+NxN nodes. The
third round of discovery adds *NxNxN more nodes. The time to shave each
next layer of nodes grows exponentially. For this exercise, let’'s process only
the seed node itself and its immediate neighbors (layers O and 1). Processing
layer 2 is still feasible, but layer 3 requires NxNxNxN~10® page downloads—
close to one year of your machine time. To keep track of the distance from
the currently processed node to the seed, store both the layer to which a node
belongs and the node name together as a tuple on the todo_lIst list.

wiki2net.py

todo lst = [(0, SEED)] # The SEED is in the layer 0
todo set = set(SEED) # The SEED itself

done_set = set() # Nothing is done yet

The output of the exercise is a NetworkX graph. The next fragment will create
an empty directed graph that will later absorb discovered nodes and edges.
We choose a directed graph because the edges that represent HTML links
are naturally directed: a link from page A to page B does not imply a recip-
rocal link.

The same fragment primes the algorithm by extracting the first “to-do” item
(both its layer and page name) from the namesake list.
wiki2net.py

F = nx.DiGraph()
layer, page = todo lst[0]

It may take a fraction of a second to execute the first five lines of the script.
It may take the whole next year or longer to finish the next twenty lines
because they contain the main collection/construction loop of the project.
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wiki2net.py
while layer < 2:
del todo 1st[0]
done set.add(page)
print(layer, page) # Show progress
try:
wiki = wikipedia.page(page)
except:
layer, page = todo 1lst[0]
print("Could not load", page)
continue

for link in wiki.links:
link = link.title()
if link not in STOPS and not link.startswith("List O0f"):
if link not in todo_set and link not in done_set:
todo lst.append((layer + 1, link))
todo_set.add(link)
F.add edge(page, link)

layer, page = todo 1lst[0]
print("{} nodes, {} edges".format(len(F), nx.number of edges(F)))
# 11597 nodes, 21331 edges

The loop is programmed to collect all nodes that are at most two steps away
from the seed node. They are reachable from the nodes in layer 1, and all
those nodes will have been harvested when the loop terminates. The loop
body consists of the following four blocks:

©® Remove the name page of the current page from the todo_Ist, and add it to
the set of processed pages. If the script encounters this page again, it will
skip over it.

© Attempt to download the selected page. If the attempt is unsuccessful
(things happen!), proceed to the next page from the “to-do” list.

© Evaluate each link. If the subject is not blacklisted and not a list itself,
the script adds an edge to the graph between the current node and the
linked page. If the script did not process the linked page before and it is
not on the “to-do” list, add it to the list and corresponding set. Note that
the highlighted code line is involved in the network construction—the
only line in the script!

O Take the next page name from the “to-do” list. Hopefully, the list is not
empty. If it is—congratulations, you just downloaded the complete
Wikipedia!

The network of interest is now in the variable F. But it is “dirty”: inaccurate,
incomplete, and erroneous.
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Eliminate Duplicates

Many Wikipedia pages exist under two or more names. For example, there
are pages about Complex Network and Complex Networlks. The latter redirects
to the former, but NetworkX does not know about the redirection.

Accurately merging all duplicate nodes involves natural language processing
(NLP) tools that are outside of the scope of this book. It may suffice to join
only those nodes that differ by the presence/absence of the letter s at the end
or a hyphen in the middle.

Start removing self-loops (pages referring to themselves). The loops don’t change
the network properties but affect the correctness of duplicate node elimination.

Now, you need a list of at least some duplicate nodes. You can build it by
looking at each node in F and checking if a node with the same name, but
with an s at the end, is also in F. Pass each pair of duplicated node names to
the function nx.contracted_nodes(F,u,v) that merges node v into node u in the graph
F. The function reassigns all edges previously incident to v, to u. If you don’t
pass the option self loops=False, the function converts an edge from v to u (if
any) to a self-loop.

wiki2net.py
F.remove edges from(F.selfloop edges())
duplicates = [(node, node + "s") for node in F if node + "s" in F]
for dup in duplicates:
F = nx.contracted nodes(F, *dup, self loops=False)
duplicates = [(x, y) for x, y
in [(node, node.replace("-", " ")) for node in F]
if x !=y and y in F]
for dup in duplicates:
F = nx.contracted nodes(F, *dup, self loops=False)
» nx.set node attributes(F, "contraction", 0)

Thou Shall Not Contract Self-Loops

Due to a bug in the implementation of nx.contracted_nodes() in NetworkX
1.11 and earlier versions, the function fails to merge duplicates if
one of them has a self-loop. Hopefully, this bug will be fixed in the
future. For now, either permanently delete all self-loop edges before
eliminating duplicates, or compose a list of the self-loop edges,
remove them, eliminate the duplicates, and add the self-loop edges
back to the network graph.

As a side effect, nx.contracted nodes() creates a new node attribute (see Add

tionary, but GraphML does not support dictionary attributes. The highlighted
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code line sets the contraction property to O for all nodes to avoid further
troubles with exporting the graph. You could also delete the attribute for each
node n with del n["contraction"] in a loop.

Truncate the Network

Why did you go through all those Wikipedia troubles? First, to construct a
network of subjects related to complex networks—and here it is. Second, to
find other significant topics related to complex networks. But what is the
measure of significance?

You will discover a variety of network measures in Chapter 8, Measuring

For now, let’s concentrate on a node indegree—the number of edges directed
into the node. (In the same spirit, the number of edges directed out of the
node is called outdegree.) The indegree of a node equals the number of HTML
links pointing to the respective page. If a page has a lot of links to it, the
topic of the page must be significant.

The choice of indegree as a yardstick of significance incidentally makes it
possible to shrink the graph size by almost 75 percent. The extracted graph
has 11,390 nodes and 20,392 edges—an average of 1.8 edges per node. Most
of the nodes have only one connection. (Interestingly, there are no isolated
nodes with no connection in the graph. Even if they exist, you will not find
them because of the way snowballing works.) You can remove all nodes with
only one incident edge to make the network more compact and less hairy
without hurting the final results. Why?

¢ If a node has one incoming edge, then removing the node affects the out-
degree of some other node, but you do not care about outdegrees.

¢ If a node has one outgoing edge (and the node is not the seed), you could
not have found it, at least not with snowballing.

As you can see, the following code fragment safely removes 75 percent of the
nodes and 45 percent of the edges, raising the average number of edges per
node to 3.9.

wiki2net.py

core = [node for node, deg in F.degree().items() if deg >= 2]

G = nx.subgraph(F, core)

print("{} nodes, {} edges".format(len(G), nx.number of edges(G)))
# 2995 nodes, 11817 edges

nx.write graphml(G, "cna.graphml")
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Start by calling Fdegree(). The method returns a dictionary with nodes as keys and
degree as values. Note that at this point, you don’t need to distinguish indegrees
and outdegrees (for the reasons explained previously). Expand the dictionary into
a list of key/value tuples and select the nodes whose degree is at least 2—the
“dense core” of the network.

Function nx.subgraph(F, core) collects all core nodes from F and all edges connecting
them and builds a new graph G—a subgraph of F. (Naturally, F has a lot of different
subgraphs. Even F itself is a subgraph of F.) G is a truncated version of F. Write it to
a GraphML file so that you don’'t have to rebuild it if you need it later again.

Explore the Network

The following figure is a Gephi rendering of G. The “Complex Network” node is
barely visible right in the middle of the image denoted with a darker color. Node
and label font sizes represent the indegrees. The most in-connected, most signif-
icant nodes are in the upper-left corner of the network. What are they?
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The last code fragment of the exercise efficiently calculates the answer by
calling the method G.in_degree(). The method (and its sister method G.out_degree())
are very similar to G.degree() except that they report different edge counts.

wiki2net.py
top _indegree = sorted(G.in degree().items(),

reverse=True, key=itemgetter(l))[:100]
print("\n".join(map(lambda t: "{} {}".format(*reversed(t)), top indegree)))

Sort the list of item tuples in the order of decreasing indegrees, pick the top
one hundred items, and print their indegrees and names. These are the one
hundred most significant subjects that, according to Wikipedia, go along
with complex networks. The first twenty-five of them are listed in the table
onpage49.

It appears almost magical that this book covers the majority of these and the
remaining seventy-five automatically extracted most significant topics. On
second thought, the outcome of the experiment merely confirms that the
Wikipedia link structure reflects the structure of the complex networks
analysis field. I encourage you to use the code from this case study to explore
other Wikipedia subjects that may be of interest to you.

This chapter presented a complete complex network construction case study,
starting from the raw data in the form of HTML pages, all the way to an ana-
lyzable annotated network graph and a simple exploratory exercise. This is
a good foundation for more systematic complex network studies.

In the Next Part

You are about to move away from simple networks of nutrients and Wikipedia
pages to the vast and venerable realm of social networks. In fact, as you
learned in the introduction, social network analysis predates complex network
analysis and serves as one of the cornerstones of the CNA. In the next part,
you will learn how to construct, measure, interpret, and understand complex
social networks, as well as the networks that resemble them.
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61
54
49
48
44
44
44
39
39
39
38
37
37
36
36
36
36
36
36
36
35
35
35
35
35
35

Subject
Graph (Discrete Mathematics)
Vertex (Graph Theory)
Directed Graph
Social Network
Graph Theory
Degree (Graph Theory)
Network Theory
Edge (Graph Theory)
Adjacency Matrix
Complete Graph
Bipartite Graph
Scale Free Network
Graph (Abstract Data Type)
Social Capital
Network Science
Small World Network
Incidence Matrix
Social Network Analysis Software
Centrality
Loop (Graph Theory)
Complex Contagion
Complex Network
Random Graph
Path (Graph Theory)
Distance (Graph Theory)
Graph Drawing
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Part II

Networks Based on Explicit
Relationships

Social networks—the networks of individuals,
groups, or organizations—are historically the
longest-studied complex networks. They are based
on explicit relationships between the nodes, such
as friendship, kinship, membership, and interaction.



If dogs could reason and criticize us they’d be sure to find just as
much that would be funny to them, if not far more, in the social
relations of men, their masters—far more, indeed.

Fyodor Dostoyevsky, Russian writer

CHAPTER 6

Understanding Social Networks

Individuals, groups, and organizations also form networks. Such networks
are called social networks. They are historically the longest-studied and
probably the most familiar and intuitive complex networks. Social network
nodes are explicitly related through friendship, kinship, and membership.

In this chapter, you will learn the taxonomy of social networks and their
edges. You will understand the role of weak and strong edges in information
dissemination and preservation, and the importance of centrality measures.
In the end, you will have a glance at synthetic networks and learn why one
needs them.

Understand Egocentric and Sociocentric Networks

Personal social networks are complex networks of persons or social animals.
(No, whales and elephants do not have their own Facebook, but if you are
intrigued, look at Animal Social Networks [KJFC15]!) Respectively, nodes rep-
resent people, andedgesrepresents1gn1flcantsoc1al relationships between
people: kinship (remember the family tree on page 3?), friendship, acquain-
tanceship, subordination, and the like. Some of .fh-é"félationships are typically
directed (subordination, some subtypes of kinship), and others are undirected
(friendship, acquaintanceship), giving rise to the namesake graphs. They may
have different weight (Distinguish Strong and Weak Ties, on page 66), leading
to weighted graphs. One can include any or all of these relationships in one
network, ending up with multigraphs and other pseudographs. A social net-

work is truly a complex one!

And the simplest form of a complex social network is an egocentric network.
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Egocentric Networks

An egocentric network (or ego network, for short) is the social network of a
particular individual. An ego network includes all the individual’s contacts
and all the relationships among them. Using the terminology from Chapter

ego network includes the nodes from level 1, and the network of subjects
related to complex networks is the ego network of the subject “complex
networks.”

Egocentric networks are used to understand the structure, function, and
composition of connections around a single person. Unlike sociocentric net-
works, they are bounded and focus on individuals (rather than groups).

The central node of an ego network is referred to as ego (as in egoism and
alter ego); all the other nodes are called alter (as in alternative and alter ego,
again).

To construct a social ego network, start with an ego—say, yourself. Obtain
the list of the ego’s contacts—the alters. If you explore a social networking
website, the list of alters is often called “friends list,
“list of followers.” You can download it by using the site API, by scraping and

”

list of subscribers,” or

parsing the site’s HTML code, or, if nothing else works, by copying and pasting
the data by hand.

When a Social Network Is Not a Social Network

When your friends say “social network,” chances are they are using the words wrong.
For example, Facebook is not a social network.

Facebook is a social networking website (SNS)—a website that facilitates social net-
working by augmenting traditional offline, face-to-face communications with instant
online communications. The difference between a social network and a social network-
ing website is like the difference between club members and the club building: while
it is easier for the club members to meet in the club building, the building is not
strictly necessary for the club to function.

Your mom is still your mom and belongs to your ego network, whether she is on
Facebook or not.

If you are a sociologist, anthropologist, or another researcher in the field of
social sciences, you may need to deal with real people rather than digital lists.
Your principle inquiry tool is probably a name generator (they are described
in detail in Social Network Analysis [KYOS8] and other SNA-related books). A

name generator is a list of contacts—alters—prepared on your request by the
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ego person—the person who will be the center of the network. (If you're
working on your ego network, you have to make the list yourself.) Often name
generators have restricted length to facilitate recollection, but ego networks
derived from shortened lists have less elaborate structure.

One way or another, digitally or by hand, you will get a list of some or all
alters. You can arrange them into a star network with the ego at the center
because all of them are connected to the ego. But that’s not enough. Now you
have to repeat the contact collection procedure for each of the alters: either
by calling the APIs/scraping/copying/pasting or by soliciting names through
name generator surveys. With the median number of friends on Facebook
being between 155 and 500, depending on whom you trust, the process of
data collection may become quite daunting, unless properly automated. One
may only wonder how people researched ego networks before Facebook. (Hint:
Before Facebook, there was MySpace.')

Ego network construction significantly differs from the snowballing process
on page 7 in the way you treat newly discovered nodes. An ego network does
not extend beyond the alters. You're supposed to discard any detected node
that is not an alter (which is inefficient, but you can save the unwanted nodes

for the future—say, for a full social network analysis).

You Could Have Had Your Facebook Ego Network

The official Facebook application programming interface (API) v1.0 allowed Facebook
apps to download your friends’ friend lists. That’s all you needed to construct your
ego network programmatically. Lada Adamic, a prominent complex network researcher,
wrote a program called GetNet that used the Facebook APIs to build ego networks. The
program worked well until May 1, 2015, when Facebook retired v1.0 due to privacy
concerns. Luckily, I collected my Facebook ego network back in 2013 (see the figure
on page 56). It is four years old but better old than nothing.

Once you harvest the ego and all the alters, remove the ego from the network.
It is the center of the giant star with the highest connectivity. It dominates
the network. It is the tree that makes it hard to see the forest. Removing the
ego does not cause any information loss: if needed, just put it back and con-
nect to each existing node.

As an example of a real ego network, let’s have a look at my Facebook ego
network constructed in 2013. The graph, anonymized for privacy reasons, is
shown in the figure on page 56.

1. myspace.com
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Here are some facts about it:

e Each node represents one of my friends, relatives, colleagues or
acquaintances.

e Each edge represents what Facebook calls a “friendship,” but in reality
can stand for anything from “she is my sweetheart” to “what’s-his-name.”

e The network does not have “my” node because each shown node is
implicitly connected to me.

¢ Some nodes look completely isolated. They are not: each node is connected
to me, and there may be other contacts to the nodes that are not my direct
contacts.

e Pink and blue nodes represent female and male contacts.

e Some nodes congregate and form dense subgraphs. Some of these sub-
graphs are all-male, some are almost all-female, and some have mixed
gender population. The subgraphs represent different aspects of my social

report erratum « discuss
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life: family, close friend circle, current and past jobs, and hobbies. An ego
network is like a spectroscope that separates your alters into a social
spectrum.

¢ Node size represents betweenness centrality (a measure of node impor-
tance; see Betweenness Centrality, on page 93).

This fact goes with a tricky question: which node most likely represents
my spouse?

Most of these facts are true about most of the human ego networks, but
beware: an ego network is only a subgraph of a bigger social network. Anything
you measure in an ego network—diameter, centralities, clustering coefficients
(Chapter 8, Measuring Networks, on page 83)—is an approximation of the

same measure for the same node in the bigger graph. Let’s next have a look
at sociocentric networks, where everyone is an ego and alter at the same time.

Sociocentric Networks

A sociocentric network, or just a social network, is any social network that
is not egocentric. Ideally, a sociocentric network is a combination of the ego
networks of all egos and includes all relevant (whatever it means to you as a
researcher) alters. For example, a social network of all active Facebook users
includes all »2.01 billion nodes representing active Facebook members (in
2017) and ~0.25 trillion edges representing their friendships.”> A complete
social network of all living human beings has ~7.44 billion nodes; the number
of edges must be no more than 0.66 trillion if we believe in Dunbar’s number

stable relationships.

A sociocentric network is the prime focus of attention of social network ana-
lysts. It reveals all significant relationships of each actor in the network,
exposes hierarchical groups of actors, and provides a framework for explaining
the structure and evolution of individual edges and node groups.

A non-trivial social network, regardless of its size, is a complex network. What
makes it distinctive is not the size but the interpretation: the social theories
that stand behind the degree distributions, centralities, local network topology,
community structure, and network evolution. The table on page 58 lists some
examples of possible social interpretation of complex ..ﬂé-f\xr.afl.{"})roperties.
Some of them will be covered in this book. In this table, I call nodes “actors”

to emphasize their human nature.

2.  bigthink.com/praxis/do-you-have-too-many-facebook-friends
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Examples of social interpretation
Structural equivalence: if two actors have similar connec-
tions to other actors, they are similar or equivalent.

Triadic closure: two friends of an actor eventually become
friends.

Balance theory: a friend of friend is a friend, a friend of a
foe is a foe, and so on.

Social capital: an actor produces common good for the
friends.

Influence: an actor causes a change in behavior in the friends.

Influence: see above.

Information dissemination/diffusion: how good are actors
in broadcasting or sharing information?

Information dissemination: see above.

Brokerage: how good are actors in serving as “go-betweens”?

Homophily (cognitive balance): “birds of a feather flock
together.”

Knowledge preservation: actors in tightly knit communities
preserve knowledge.

Complex contagion: a gang of interconnected infected actors
is a source of contagion.

Small world (six degrees of separation): any two actors on
average are connected by six “handshakes.”

Friendship paradox: “my friends have more friends thanIdo.”

Preferential attachment (Pareto principle): “the [actors] rich
[in friends] get richer.”

The table is not complete by any means, but it gives you a sample of social
research questions and SNA/CNA machinery typically associated with them.
If interested, see Social Networlk Analysis: A Handbook [Sco00] and Exploratory

emphasis on the social aspects.
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Acquisition of Social Networks

Practically, you almost never get a complete social network of interest for
several reasons.

1. Real social networks, especially those implemented through social net-
working websites (see the Aside titled “When a Social Network Is Not a
Social Network” on page 54), are often huge. Obtaining them may take

more time than you can afford.

2. Real social networks are dynamic. Nodes and edges are added and removed
as you construct the network. By the time you fetch the last node and edge,
the rest of the graph may already be out of sync with the real network.

However, you can still get a decent approximation of a social network using
either snowball sampling or random node sampling.

The principal difference between two sampling approaches is the source of
the nodes to process. A snowballing algorithm maintains a list of nodes that
have been discovered but not visited yet (in other words, the nodes “at the
other end” of the edges incident to the already visited nodes). The algorithm
adds newly discovered nodes to the list and removes the discovered nodes
after visiting them.

A random sampling algorithm needs an exogenous list of the seed nodes, like:

1. Actors interested in a particular event or subject (say, the 122,079,386
Facebook users who like the page of Cristiano Ronaldo, a Portuguese-
born soccer megastar)

2. SNS users who are currently online (as once implemented on Odnoklass-
niki,® the second-largest Russian language SNS)

3. Persons with randomly chosen numerical SNS user IDs (say,
112424342928081542774 on Google+*)

4. Persons randomly chosen from a telephone book

Randomness is the key to successful sampling. If the choice of the seed nodes
is not random, then a sampling algorithm may go astray and collect an
unrepresentative part of the network. Frankly speaking, examples 1 and 2
from the previous list are not entirely random. The first is biased toward the
actors with particular interests; the second favors the population in a given
time zone and with a particular online activity pattern.
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Once you have a list of seed nodes, you can obtain their ego network graphs,
combine them into one large graph, and enjoy a sampled sociocentered net-
work. As an example of what you may end up with, the following figure shows
165,795 nodes and 434,118 edges of MoiKrug® (a Russian-language counter-
part of LinkedIn®) that I collected in 2009. Different colors in the figure denote
different tight network neighborhoods.

And just to remind you: what you see in the figure is 0.012 percent of the current
Facebook population. Some social networks are complex by all measures.

Signed Networks

Some social (and not only social) networks belong to a class of signed (as opposed
to unsigned) networks. There is not much special about them—except that they
are weighted, and the weights can take negative values. This feature allows
using the same type of ties to represent both positive and negative aspects of
relationships. For example, a negatively weighed friendship tie between Alice
and Chuck may signify that the folks are foes rather than friends.

5. moikrug.ru

6.  www.linkedin.com

report erratum - discuss
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Signed networks are dangerous because their visual inspection does not reveal
the true meaning of signed ties. Any network analysis algorithm that disre-
gards weights would be fooled into believing that a tie is an indicator of
proximity, while in the case of Alice and Chuck, it is just the opposite.

Nonetheless, some social theories (including the balance theory mentioned
in the table on page 58) make heavy use of signedness. As a professional, you

should be ready to handle it.

Prepared Social Networks

If you're not in the mood to crawl a social network yourself or need a typical
(but not any particular) network for your experiment, you have two more
options. You can either generate a synthetic network with preset properties
(Appreciate Synthetic Networks, on page 63) or download an empiric network

from the Stanford Large Network Dataset Collection compiled by Jure Leskovec
and Andrej Krevl in 2014."

The collection provides free access to ninety snapshots of various complex
networks grouped into seventeen categories. At least thirty-three of them
describe social and communication networks obtained from Facebook,
Google+, Twitter, LiveJournal, Slashdot,® and similar sites. We will use one
of the networks from the collection—Enron email communication network—
in the next section.

Another source of publicly available empiric networks is the Koblenz Network
Collection (KONECT) by Jérome Kunegis, featuring 261 datasets.’

Recognize Communication Networks

For most of the world, a communication network is an electrical (digital or
analog) circuitry that connects terminal communication equipment, such as
wired and cellular phones, computers, modems, TV sets and cable boxes,
and the like. Not so in social network analysis.

A social communication network is a social network where the edges represent
a communication relation: “channels through which messages may be

communicate or have a propensity for direct communication. The communi-
cation medium is not of our concern: it could be face-to-face, verbal over a

7. snap.stanford.edu/data/

8. slashdot.org

9.  konect.uni-koblenz.de
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phone, email, Internet chat, prison tap code, paper “snail mail,” or even car-
rier pigeons. As long as an archetypal Alice can reliably send a message to
an archetypal Bob, anything goes. (If you haven’t met Alice and Bob yet, meet
them in The Tale of Alice, Bob, and Chuck, on page 62.)

Communication networks still connect people or social animals, but the
connectedness is derived not from a relatively stable relationship (friendship,
kinship, or membership), but from short, often instantaneous interactions.
The interactions may be one-way or two-way; frequent, occasional, or even
isolated. It is up to you to decide what communication pattern constitutes
an edge. (I will help you in Distinguish Strong and Wealk Ties, on page 66.)

The most friendly communication medium is corporate emails. In a case of
major conundrums, corporate email archives may become public. The largest
public corpus is the Enron email communication network published by the
Federal Energy Regulatory Commission during the investigation of the com-
pany’s criminal activity in 2008.'° The network has 36,692 nodes correspond-
ing to 150 Enron employees and other addressees, and 183,831 edges—direct
node-to-node email communications. The edges (and the network) are
directed. An edge connects the sender and the recipient. The researchers who
constructed the communication network did not incorporate the intensity of
interactions in the published dataset. We cannot tell which edges represent
strong and weak message exchanges.

There are some unique issues associated with communication networks. First,
some communication media allow information broadcast. For example, a
speaker at a convention addresses all attendees at once. An email message can
be sent to many recipients. A public Internet forum post is usually read by
more than one reader. Assuming that each attendee/reader/recipient is not a
random passerby, you can model group communications as a star by connecting
the speaker/poster/sender to each addressee with a separate edge.

The Tale of Alice, Bob, and Chuck

Alice and Bob are fictional characters frequently used in cryptology and communication
theory to represent communicating parties. They were invented in 1978 and lived
happily ever after. Alice usually is the sender: she initiates the conversation by
sending a message to Bob, who is the recipient. Sometimes, the communication is
marred by Chuck the Bad Guy whose goal is to intercept, interrupt, modify, or fabri-
cate the message.

10. snap.stanford.edu/data/email-Enron.html
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The second issue is that communication networks are often less rigorously
documented than other types of social networks, or it takes more effort to access
documentation. Verbal communications are almost never recorded. Telephone
billing records may be available if requested by law enforcement officers, but
not by social network analysts. Internet chat sessions are compulsorily
recorded in some countries (such as Russia) but, again, not by “us” but by
“them.” And the free-flying carrier pigeons are provably the worst to track.

Appreciate Synthetic Networks

Synthetic networks are a cheap alternative to real-world, empiric networks.
Unlike empiric networks that have to be scrupulously collected, either auto-
matically or by hand, synthetic networks are generated by computer software
(in our case, NetworkX). With proper adjustment through the right choice of
the parameters of synthetic graph generators, you can produce networks of
almost any type, resembling empiric networks to the point of confusion.

The following figure shows six generated “classic” networks. You saw almost
all of them (except for the complete graph) in Know Thy Networks, on page
2. However, that figure was hand—programmedbutthefollowmgonels
f).roduced by the NetworkX graph generator functions. You will learn how to use

them in Generate Synthetic Networks, on page 78.
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It is worth remembering that these six networks are not complex because
they have a predictable, regular, and easily describable structure. But the
networks in the following figure are random, though defined by four different
random models. (The models are properly described in Network Analysis:
Methodological Foundations [BEO5])

Erdds-Rényi (p=0.05) Watts-Strogatz (k=4, p=0.5)
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An undirected Erd6s—-Rényi graph, also known as a binomial graph, contains
N nodes. It could have up to Nx(N-1)/2 edges, but each edge is instantiated with
the probability of p. As a result, the expected number of edges is pxNx(N-1)/2.
If p==0, then the network falls apart into isolated nodes. If p==1, the network
becomes a complete graph. Note that in general, a node is not connected to
its geometric neighbors.

If you have no definite idea about what kind of network you want, use the
Erdés-Rényi model. However, a Watts—-Strogatz graph is a much more realistic
approximation of a real-world social network. The model arranges N nodes in
a ring, connects each node to k ring neighbors, and then “rewires” any edge
—reconnects one of its ends to a randomly chosen node—with the probability
of p. The rewired edges typically go across the ring. They create an illusion of a
“small world,” where geometrically remote nodes may be connected with a short
path. The model explains the phenomenon of “six degrees of separation,” which
claims that, on average, any two people on Earth are only six handshakes apart
from each other WatO3].
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Unfortunately, no matter how you twist them, nodes in Watts-Strogatz net-
works do not form tight communities, and this makes “small-world” networks
somewhat unrealistic, too. The Barabdsi-Albert preferential attachment model

is about to join an existing network, it is likely to make k connections to the
nodes with the highest degree. The model stimulates the emergence of hubs
—*“celebrity” nodes with disproportionately many connections.

The Holme-Kim model goes one step further. After adding k edges, it also adds
triads (introduced on page 6) with the probability of p, making the synthetic

network even more clustered and lifelike.

Over the long history of social network analysis, several empiric networks
were so frequently used in case studies that they became the “gold standard”
of a small social network, very much like the “Hello, world!” programs in
computer programming. For any practical purpose, they are almost as good
as synthetic networks, except that they are really tiny. (But you cannot blame
the researchers who constructed them! It was the time before NetworkX and
even before personal computers.) The following figure shows three famous
social networks: Zachary’s Karate Club, Davis Southern women and the events
they attend, and marriages in Florentine families.

Zachary's Karate Club Florentine families
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Whether you assembled a social network by hand, by running a program, or
by downloading a publicly available network graph from SNAP or another
depository, remember: no two friendships, no two kinships, and no two human
interactions are the same. That is to say, no two links in a social network are
the same, but some are weak, and some are strong. Why does it matter?

Distinguish Strong and Weak Ties

Hardcore social network researchers call social network graph edges “ties.”
In this section, I will sometimes refer to edges as ties—mostly out of respect
to Mark Granovetter who introduced [Gra73] and elaborated [Gra83] the concept

of weak and strong ties and later showed that weak ties are “strong.” In a
sense, he was the first social researcher to consider weighted social networks.

Granovetter did not propose a mechanism for quantifying the strength of a
tie, but offered four criteria to consider:

e The amount of time spent in the tie
¢ Emotional intensity

e Intimacy (mutual trust)

¢ Reciprocity

You may be able to evaluate the first and the last criteria, but the middle two
require looking into the contents of the messages, which cannot be done if
only message signatures are available. Nonetheless, combined with sentiment
analysis and other natural language processing techniques (see, for example,
Natural Language Processing with Python [BKLO9]), it may be possible to

develop a formal mechanism for assessing tie strength.

Granovetter argues that weak and strong ties have different vocations in social
networks. Strong ties (such as those between spouses and close friends) tend
to draw nodes together into tight, densely interconnected clusters—cliques
(Extract Cliques, on page 131). Cliques often act as “knowledge reservoirs”:
anythmgsaldbyanyactorma clique is overheard and presumably remem-
bered by all other clique members. If any clique member forgets anything,

the clique as a whole can easily reconstruct the missing knowledge.

Cliques are great at knowledge preservation but not good at knowledge gen-
eration. Since different cliques preserve different types of knowledge, connec-
tions between the “reservoirs” enable sharing. Such links are called bridges.
You will learn how to detect bridges in Betweenness Centrality, on page 93.

Not surprisingly, weak ties often serve as bridges, and that's why they are
“strong.” And, regardless of their function in a social network, from complex
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network analysis’ perspective, both weak and strong ties are just weighted
edges with appropriately selected weights.

Social networks are a special breed of complex networks, limited to individuals
(humans and animals) and organizations. They have been extensively studied
in social and behavioral sciences. Social network analysis served as a precur-
sor to complex network analysis. Complex networks often have thousands
and millions of nodes, and depend on edges having different weights. In the
next chapter, you will unlock NetworkX tools for the efficient construction of
massive networks, including synthetic and weighted networks.
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Here you see we have a very advanced form of drawing, and a
form I should not advise you to employ in your early efforts to do
professional work.

Ernest Knaufft, American editor and director of the
Chautauqua Society of Fine Arts

CHAPTER 7

Mastering Advanced Network Construction

Complex networks are rarely constructed one node and one edge at a time.
Instead, they are generated from matrix data, edge lists, node dictionaries,
probability distributions, and other native Python and third-party data
structures. As a complex network analyst, you need to be familiar with the
NetworkX interfaces to the real world.

In this chapter, you will learn how to convert Python and third-party data
structures (namely, Pandas DataFrames and Pandas NumPy matrices) into NetworkX
graphs and back, and how to generate synthetic networks.

Create Networks from Adjacency and Incidence Matrices

Mathematical graphs as collections of nodes and edges are
not the only way to represent complex networks. Researchers
and practitioners often use tabular (matrix) data to describe
networks. The two most popular matrix-based descriptions
are adjacency and incidence matrices. (You may want to remind yourself of
the definitions of adjacency and incidence on the bulleted list on page 17.)

This section uses
Pandas, NumPy.

Adjacency Matrix, the Python Way

An adjacency matrix A is a square NxN matrix, where N is the size of the graph
to be defined. The row and column indexes indicate the source and target
nodes, respectively. Depending on the network type, the acceptable range,
properties, and interpretation of the matrix elements differ. If a network
belongs to more than one type (say, weighted and directed), consider all rele-
vant properties and interpretations (see table on page 70).
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Network type Adjacency matrix Interpretation
Simple Only Os or 1s, and no 1s on  Absence/presence of an
the main diagonal edge
Weighted At least one floating-point Numbers are edge weights.
number

With self-loops At least one non-zero on the Same as above
main diagonal

Signed At least one negative number Same as above
Undirected Symmetric Same as above
Multigraph Not possible Cannot be represented as

an adjacency matrix

As an example, here’s an adjacency matrix for the linear timeline of Abraham
Lincoln from the figure_ggnpggg_{% (left) and another very similar network
(right):

01000 01000
060100 00100
060010 00010
00001 00001
060000 10000

The networks have five nodes each (the matrices are 5x5). The left network
has four edges (the matrix has four 1s), and the right network has an extra
edge. The networks are simple (the matrices have only Os and 1s, and no 1s
are on the main diagonal), unweighted, and unsigned. The networks are
directed (the matrices are not symmetric). The additional 1 in the lower-left
corner of the matrix on the right converts the linear network into a ring by
connecting the last event (death) to the first event (birth). If Abe Lincoln had
believed in reincarnations, he would have chosen the right matrix.

As a side note, the sum of all 1s in any column or row of an adjacency matrix
equals the indegree or outdegree, respectively, of the corresponding node.

The most common way of representing matrices in pure Python is in the form
of a list of lists. The right previous matrix is a list of five lists, one list per row.
Suppose it is given to us (say, produced by another function elsewhere in our
program):

A=1[[o, 1, 0, 0, 0],
[6, o0, 1, o, 0],
[6, o, 0, 1, 0],
[, o0, 0, 0, 1],
[.1, 0, 6, 0, O]]
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Note that since the reincarnation is not inevitable at all, not even in the case
of Honest Abe, we set the weight of the death-to-birth edge to 0.1.

How can we convert this matrix to a graph? There are at least three ways:
one uses pure Python and NetworkX, and the other two rely on NumPy (When

When Python Goes Numerical

Surely, Python, just like all other computer software, internally works with numbers,
only numbers, and nothing but numbers. However, when there are too many numbers
to work with, Python performance significantly degrades. NumPy (“Numerical Python”)
is a package for scientific computing that accelerates fundamental numerical opera-
tions. It provides support for multidimensional objects (such as vectors and matrices),
vectorized arithmetic and algebraic operations, and other goodies. NumPy is a part of
the SciPy (“Scientific Python”) ecosystem that also includes Pandas for data science,
Matplotlib for plotting, Sympy for symbolic computations, and [Python for interactive
development.

If performance is not an issue (if your network has fewer than a couple of
thousand nodes), the pure Python solution may make you feel more comfort-
able, especially if you have never used NumPy. Remember that any non-zero
element in the adjacency matrix represents an edge from the “row node” to
the “column node.” Create an empty directed graph, enumerate each matrix
element twice (by rows and then by columns), and extract non-zero elements.
Their indexes represent network edges, which you can add to the graph by
calling G.add_edges_from().

from itertools import chain # For flattening the list of edges
G = nx.DiGraph()
edges = chain.from iterable([(i, j)
for j, column in enumerate(row)
if A[i][j]1] for i, row in enumerate(A))
G.add edges from(edges)
print(G.edges(data=True))

[, 1, {H, (1, 2, {}), (2, 3, {}), (3, 4, {}), (4, 0, {})]

By default, NetworkX assumes that all edges have the weight of 1, and does not
display weights as edge attributes. If the matrix represents signed or unsigned
weights (rather than absence/presence), you can modify the code to incorpo-
rate the “weight” attribute:
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from itertools import chain # For flattening the list of edges
G = nx.DiGraph()
edges = chain.from iterable([(i, j, {"weight": A[i]1[j1})
for j, column in enumerate(row)
if A[i]1[j]] for i, row in enumerate(A))
G.add edges from(edges)
print(G.edges(data=True))

[(0, 1, {'weight': 1}), (1, 2, {'weight': 1}), (2, 3, {'weight': 1}),
(3, 4, {'weight': 1}), (4, 0, {'weight': 0.1})]
Adjacency Matrix, the NumPy Way

The NumPy way is somewhat more concise, but you must convert the list of
lists to a 2D matrix and give NetworkX a hint about the network type.

import numpy as np

A mtx = np.matrix(A)

G = nx.from numpy matrix(A mtx, create using=nx.DiGraph())
print(G.edges(data=True))

[(0, 1, {'weight': 1}), (1, 2, {'weight': 1}), (2, 3, {'weight': 1}),
(3, 4, {'weight': 1}), (4, 0, {'weight': 0.1})]

As a bonus, the NumPy way is significantly faster for large networks. Also, note
how NumPy intelligently treated matrix elements as edge weights!

You can program the reverse transformation with nx.to_numpy_matrix(G):

B_mtx = nx.to_numpy matrix(G) # Produces a NumPy 2D matrix
print (B _mtx)

[

coooo
eeeer
eeerme
eeree
ereeee

.1 1

To convert the matrix back to a list of lists, call method tolist():

B 1st = B mtx.tolist()
print(B 1st)

[[o.0,
.0,
.1

’ ’

.0
.0,
.0

’

’ ’ [
, ) [

© © o
o O
(el ool
o © o
o = O
o © o
(oo ol
[clcN ol

[ .0]
[ .01,
[ , , 0.0]11]

By the way, you may have just learned how to program with NumPy.
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Adjacency Matrix, the Pandas Way

The most versatile connection to date is between NetworkX and Pandas. If you
consider integrating CNA with general data scientific methods—regression,
prediction, and classification—you must be aware of the interface between
NetworkX and Pandas.

Another Kind of Pandas

Pandas are cute. Pandas is also yet another component of the SciPy (“Scientific Python”)
ecosystem. Its main application is data science, and it provides a basketful of data
structures and algorithms for storing and processing labeled rectangular data. The
most famous Pandas data structures are a Series (a labeled vector) and a DataFrame (a
labeled table). You can read more about Pandas and NumPy in Data Science Essentials
in Python [Zinl6].

Converting a NetworkX graph to a Pandas adjacency matrix costs one function
call, just like almost any other popular operation in Pandas. Before we do
so, let’s first relabel the graph nodes to allow at least some meaningful
interpretation:

labels = "Born", "Married", "Elected Rep", "Elected Pres", "Died"

nx.relabel nodes(G, dict(enumerate(labels)), copy=False)
df = nx.to _pandas dataframe(G)

print(df)
print(type(df))

Died Elected Rep Married Born Elected Pres
Died 0.0 0.0 0.6 0.1 0.0
Elected Rep 0.0 0.0 0.0 0.0 1.0
Married 0.0 1.0 0.0 0.0 0.0
Born 0.0 0.0 1.0 0.0 0.0
Elected Pres 1.0 0. 0.0 0.0 0.0

<class 'pandas.core.frame.DataFrame'>

Discussing the uses of Dataframe objects is beyond the scope of this book; try
this adventure on your own!

Suddenly, function nx.from_pandas_dataframe(df,source,target) is not a counterpart
of nx.to_pandas_dataframe() in the same sense as nx.from_numpy_matrix(df) is a coun-
terpart of nx.to_numpy_matrix(). The first parameter of nx.from_numpy_matrix() is a
Dataframe that represents the adjacency matrix. The first parameter of
nx.from_pandas_dataframe() is a DataFrame, too, but each row defines one edge, and
two of the columns, source and target, designate the start and end nodes of the
edge. (You can convert the remaining columns into edge attributes.) This
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approach is more flexible than the adjacency matrix. For example, it easily
allows parallel edges.

Let’s build Honest Abe’s lifetime network from a data frame. First, create a
data frame—in the real world, it would be an output of another part of the
same program. Second, call nx.from_pandas_dataframe(). No magic involved.

import pandas as pd
df = pd.DataFrame({
"from": {0: "Died", 1: "Elected Rep", 2: "Married", 3: "Born",
4: "Elected Pres"},
"to": {0: "Born", 1: "Elected Pres", 2: "Elected Rep", 3: "Married",

4: "Died"},

"weight": {0: 0.1, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0},

1)
print(df)

from to weight

0 Died Born 0.1
1 Elected Rep Elected Pres 1.0
2 Married Elected Rep 1.0
3 Born Married 1.0
4 Elected Pres Died 1.0

G = nx.from pandas dataframe(df, "from", "to", edge attr=["weight"])
print(G.edges(data=True))

[('Born', 'Married', {'weight': 1.0}), ('Born', 'Died', {'weight': 0.1}),
'Married', 'Elected Rep', {'weight': 1.0}),
'Elected Pres', 'Died', {'weight': 1.0}),

'Elected Pres', 'Elected Rep', {'weight': 1.0})]

—_~ e~~~

By the way, you may have just learned how to program with Pandas.

Handling Node Attributes, the Pandas Way

Another case of collaboration between Pandas and NetworkX is importing node
attributes into a Dataframe. In the course of CNA, you often decorate network
nodes with various attributes: labels, weights, centralities, demographics
(age, gender), and the like. For the sake of experimentation, let’s add a "date"
parameter to Lincoln’s timeline:

events = {"Died": 1865, "Born": 1809, "Elected Rep": 1847,
"Elected Pres": 1861, "Married": 1842}

nx.set node attributes(G, "date", events)

node data = G.nodes(data=True)

print(node data)

[('Died', {'date': 1865}), ('Elected Rep', {'date': 1847}),
('Married', {'date': 1842}), ('Born', {'date': 1809}),
('Elected Pres', {'date': 1861})]
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The values of node attributes, especially those calculated by the analysis
program, may become inputs to further data analysis steps, as mentioned in
Adjacency Matrix, the Pandas Way, on page 73. If you're a Pandas person, you
should move the node attributes from NetworkX to a Dataframe. Luckily, one of
the DataFrame constructors builds a Dataframe from a list of tuples, and node_data

is a list of tuples.

lincoln_ser = pd.DataFrame(node data).set index(0)[1]
print(lincoln_ser)

0

Died {'date': 1865}
Elected Rep {'date': 1847}
Married {'date': 1842}
Born {'date': 1809}

Elected Pres {'date': 1861}
Name: 1, dtype: object

After converting the node labels to the row index, the resulting Dataframe has
only one column named 1 (which, naturally, is a Series). The values in the
column are node attribute dictionaries, and one of the Series constructors
builds a Series from a dictionary. Let’s apply the constructor to each row.

df = lincoln ser.apply(pd.Series)

print(df)

date
0
Died 1865
Elected Rep 1847
Married 1842
Born 1809

Elected Pres 1861

The result is a Dataframe suitable for further processing. For example, you can
calculate the duration, in years, of each span of Lincoln’s biography:

spans = df.sort values('date').diff()
print(spand)

date
0
Born
Married
Elected Rep
Elected Pres 1
Died

w

S~ bhUw=2
o oo o0 =2

(NaN, “not a number,” is a Pandas way of reporting a missing or otherwise
unavailable value.)
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Incidence Matrix

An incidence matrix | is a rectangular NxM matrix, where N is the number of
nodes and M is the number of edges. A 1 at J[i,j]l means that the node i is inci-
dent to the edge j. All other elements of | are Os. If the represented graph is
directed, the start node is designated with 1 and the end node with -1.

Unlike an adjacency matrix, an incidence matrix easily allows parallel edges.
However, it has its weak points: weighted networks cannot be represented,
and an incidence matrix of a typical complex network has a larger memory
footprint than the adjacency matrix of the same network.

Function nx.incidence_matrix(G) returns the incidence matrix of G as a so-called
sparse matrix. (Pass the optional parameter oriented=True to distinguish start
and end nodes.) You can convert a sparse matrix to a dense one with G.todense():

J = nx.incidence_matrix(G, oriented=True).todense()

print(J)

[[-1. 0. 0 0. 1.]
[ 1. -1. O 0. 0.]
[ 6. 1. -1 0. 0.]
[ 6. 0. 1. -1. 0.]
[ 0. 0. 0. 1. -1.1]

Here’s how we read the results: edge number O starts at node 1 (because
J[1,0]==1) and ends at node O (because J[0,0]==-1); edge number 1 starts at node
2 (because J[2,1]==1) and ends at node 1 (because J[1,1]==-1), and so on.

Work with Edge Lists and Node Dictionaries

You do not have to mess with matrices, NumPy, and Pandas to bulk move data
between your code and NetworkX networks. You can use edge lists and node
dictionaries.

Edge Lists

An edge list is a list of 3-tuples containing the start node, end node, and a
dictionary of edge attributes for each edge. You can obtain it from an existing
network by calling nx.to_edgelist() or construct it yourself and feed as the
parameter to nx.from_edgelist() to produce a new network.

edges = nx.to edgelist(G)

F = nx.from edgelist(edges, create using=G)
print(F.edges(data=True))
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[('Born', 'Married', {'weight': 1}), ('Married', 'Elected Rep',
{'weight': 1}), ('Elected Pres', 'Died', {'weight': 1}),

('Died', 'Born', {'weight': 0.1}), ('Elected Rep', 'Elected Pres',
{'weight': 1})]

Incidentally (or not), the value returned by G.edges(data=True) ("_(_)__r.l"_P.a__g.(?_MZ._l_) is

equivalent to the value returned by nx.to_edgelist(). That is to say, one of the
two functions are redundant.

The pair of the edge list-related functions is reversible: a graph A, created from
an edge list extracted from another graph B, is equal to B. Equality of graphs
in mathematical graph theory is called isomorphism. Two graphs are isomor-
phic if you align all of the nodes of one graph with all of the nodes of the
other graph, and all of their edges will align, too. This property is good enough
for the graphs with unlabeled nodes but too weak for real-world labeled
graphs. Yet, for the lack of a better tool, let’s use the function nx.is_isomorphic():

print(nx.is_isomorphic(F, G))

True

Dictionary of Lists

A dictionary of lists of nodes is what it says it is. All nodes in a graph are the
keys, and lists of adjacent nodes are values. You can get a dictionary of lists
with nx.to_dict_of lists():

dict_list = nx.to_dict_of lists(G)
print(dict list)

{'Born': ['Married'], 'Married': ['Elected Rep'], 'Elected Pres': ['Died'],
'Died': ['Born'], 'Elected Rep': ['Elected Pres']}

nx.to_dict_of lists() does not externalize edge attributes, including width, and this
makes the resulting dictionary unsuitable for recreating the original graph
with nx.from_dict_of lists(). It is true that the new graph is isomorphic to the
source, but the function nx.is_isomorphic() looks only at the topology of the graphs
and does not compare the attributes.

F = nx.from dict of lists(dict list, create using=G)
nx.is isomorphic(F, G)

True

The dictionary-of-lists mechanism does not appear to be well thought out.
You may be better off with accessing the network edge dictionary (which is a
dictionary of dictionaries) directly:
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print(G.edge)

{'Born': {'Married': {'weight': 1}}, 'Married': {'Elected Rep':
{'weight': 1}}, 'Elected Pres': {'Died': {'weight': 1}},

'Died': {'Born': {'weight': 0.1}}, 'Elected Rep': {'Elected Pres':
{'weight': 1}}}

Generate Synthetic Networks

You have read in Appreciate Synthetic Networks, on page 63, that not only
can networks be built from experimental, real-world data, but they can also
be synthesized. Synthetic networks can be regular (constructed by executing
deterministic algorithms) or complex (emerge from probability distributions).
NetworkX functions that build synthetic network graphs are called graph gen-

erators (not to be confused with Python generator objects).

In 1999, Ronald C. Read and Robin J. Wilson published a collection of 10,000

—and about 110 more regular (“classic”) and complex networks. At the
moment, it suffices to look only at the graph generators whose output is
shown in the figures on page 63, on page 64, and on page 65. Let’s start with

the “classic” networks: paths, cycles, stars, complete graphs, trees, and grids.

generators.py
# Generate and draw classic networks

GO = nx. path graph(20)
Gl = nx. cycle graph(20)
G4 = nx. star _graph(20)

G5 = nx.complete graph(20)

G2 = nx. balanced tree(2, 5)

G3 = nx. grid 2d graph(5, 4)

names = ("Linear (Path)", "Ring (Cycle)", "Balanced Tree", "Mesh (Grid)",
"Star", "Complete")

The first four functions need to know the total number of nodes. There is only
one way to generate the edges for these types of graphs. For a balanced tree,
you must provide the branching factor r (the number of children of a non-leaf
node) and the height h (the height does not include the root node of the tree).
A balanced tree has r**!-1 nodes. In our example, G2 is a five-level binary tree
with 2°*1-1=63 nodes. To build a two-dimensional grid (mesh) like G3, specify
the number of rows n and columns m, and get a graph with mxn nodes.

The next example shows the use of generators for Erdés-Rényi (really random),
Watts-Strogatz (small world), Barabasi-Albert (preferential attachment), and
Holme-Kim (enhanced preferential attachment) random graphs.
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generators.py
# Generate and draw random networks

GO = nx. erdos_renyi graph(50, 0.05)
Gl = nx.connected_watts_strogatz_graph(50, 4, 0.5 )
G2 = nx. barabasi albert graph(50, 4 )
G3 = nx. powerlaw cluster graph(50, 4, 0.5 )
names = ("Erdds-Rényi (p=0.05)", "Watts-Strogatz (k=4, p=0.5)",

"Barabdsi-Albert (k=4)", "Holme-Kim (k=4, p=0.5)")

All four functions need to know the total graph size. The remaining parameters
characterize the random nature of the interconnecting edges:

e For Erdés-Rényi: the probability of edge creation. Incidentally, it equals
the graph density (Start with Global Measures, on page 83).

e For Watts-Strogatz: the initial number of neighbors and the probability
of edge rewiring

e For Barabdsi-Albert: the number of edges to attach from a new node

e For Holme-Kim: the same as above, plus the probability of adding a triangle
for each added edge

The remaining three generators produce “famous” social networks that were
initially constructed by field sociologists based on experimental data, but
eventually became “gold standards” of social network research.

generators.py

# Generate and draw famous social networks

GO = nx.karate club graph()

Gl = nx.davis southern women graph()

G2 = nx.florentine families graph()

names = ("Zachary's Karate Club", "Davis Southern women",
"Florentine families")

The networks, though formerly random, are stored by NetworkX in the form of
fixed edge lists. Their generators need no parameters.

Slice Weighted Networks

Lucky network analysts work with unweighted networks. In an unweighted
network, all edges are equal. You consider either all of them, and get what
you get—or none of them, and get a network with no edges.

Unlucky network analysts work with weighted (and possibly signed) networks.
In a weighted network, some edges are strong, and some are weak. If you
keep all edges, you will have a distorted view of the network because there
are algorithms that do not discriminate edges by weight. For them, an edge
with a weight of 1.00 (to your best life-long friend) has the same importance
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as another edge with a weight of 0.01 (to the guy who takes the same 7:00 a.m.
bus, always sits in the back, and reads Alaska Dispatch News).

Most network analysts are unlucky and have to slice their networks.

Slicing is the process of eliminating low-strength edges (weak ties). In the
simplest form, you choose a cut-off threshold T that controls the density of
the resulting network. Each edge’s weight is compared to the threshold. If
the weight is at or above the threshold, the edge remains in the network;
otherwise, it is erased.

NetworkX does not provide a standard slicing routine, but you can quickly
implement yours (will do later). However, first, you should decide on the value
of T. If the cut-off is too high, the network falls apart into tiny disjoint frag-
ments; if it is too low, the network becomes a hairball with no analyzable
structure. The trial-and-error approach may be the best:

1. Select a T based, say, on the edge weight distribution.

2. Slice the network.

3. Get some measurements (the number of fragments, density, and so on).
4. If the results do not suit you, go back to square one.

The following figure shows the same Erdés-Rényi random network with one
hundred nodes, sliced with six different thresholds.
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The final value of T depends on the network topology and weight distribution.

Our new function, slice_network(G, T, copy=True), retrieves all weighted edges from
the network G, identifies “underweighted” edges, and removes them. The
function by default operates on the copy of G, allowing us to step back and
give another try without rebuilding G.

slicing.py
def slice network(G, T, copy=True):

Remove all edges with weight<T from G or its copy.

F = G.copy() if copy else G

F.remove edges from((nl, n2) for nl, n2, w in F.edges(data="weight")
if w<T)

return F

F = slice network(G, 0.9)
print(F.edges())

[('Elected Rep', 'Elected Pres'), ('Married', 'Elected Rep'),
('Born', 'Married'), ('Elected Pres', 'Died')]

The possibility of reincarnation is no more.

Now you know how to create a complex network of any size from any dataset
and how to convert the network structure to the most popular pure Python and
third-party data structures. We will next look into network measuring tools.
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Considering the value for clearness of thought of counting, measuring and
weighing, it is not surprising to find that in the seventeenth century, and
even atthe end of the sixteenth, the advance of the sciences was accompa-
nied by increased exactness of measurement and by the invention of
instruments of precision.

Walter Libby, American writer CHAPTER 8

Measuring Networks

Almost everything you have seen so far in this book has been about construct-
ing complex networks, not about analyzing them. In other words, it was CN,
but not CNA. This chapter delves into CNA and introduces some important
CNA toolsets. You will learn how to measure dyadic, triadic, and global
properties of network nodes: distances, loops, clustering coefficient, assorta-
tivity, and a variety of centralities. You will be able to identify the most central
nodes and interpret their importance. You will be able to locate network
regions that differ in local density and attribute uniformity.

Start with Global Measures

Let’s start with a “black box” view of a complex network. Let’s pretend we are
at a distance and instead of nodes, edges, and their attributes, we see a fuzzy
grayish cloud. What can we tell about that cloud? Not much: only its size and
density.

To be specific, in this chapter, we will experiment with the network of CNA-
related Wikipedia pages constructed in Chapter 5, Case Study: Constructing

The size of a network is either its node count or edge count. You can measure
both using the standard Python len() function and other specialized functions.

len(G) # Number of nodes
len(G.node)
len(G.nodes())
nx.number of nodes(G)
len(G.edge())

< 2988

1. pragprog.com/titles/dzcnapy/source_code
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len(G.edges()) # Number of edges
nx.number of edges(G)

11545

Note that len(G.edge()) returns the number of nodes, not edges, because G.edge()
returns a dictionary of neighbors with one entry per node.

If you're curious, you can also get the number of non-existent edges—the
edges that could connect two nodes but don’t. The function nx.non_edges()
returns a Python generator of missing edges. Before measuring it, you must
convert it to a list. Beware: most real-life graphs have orders of magnitude
more missing edges than present edges. Your computer may quickly run out
of memory if you attempt to make a list out of them.

len(list(nx.non_edges(G)))

8913611

Graph density measures the fraction of existing edges out of all potentially
possible edges. Density is a number between O and 1, inclusive. A network
with density O has no edges whatsoever. A network with density 1 is a complete
graph. For a directed network with n nodes and m edges, density is calculated
as m/(n(n-1)); for undirected networks, it is calculated as 2m/(n(n-1)), because,
compared to directed networks, they have only half of potentially possible
edges. You can measure density by calling a namesake function.

nx.density(G)

0.0012935348132850563

The density of the Wikipedia network is low—only about 0.1 percent. Only
one out of about 1,000 possible edges exists in the graph. This value is not
unusual: most complex networks have similarly low density.

Explore Neighborhoods

Node and edge counts and density are some of the macroscopic network
properties. Let us now zoom into a network and look at it at the microscopic
level—at the level of individual nodes and their neighbors.

The network neighborhood of a node is the set of all nodes adjacent to that
node. Social network analysis pays particular attention to neighborhoods
because that is where we find the relatives, close friends, and colleagues of
the actor represented by the central node—in other words, the most socially
significant alters of the ego. (Check Egocentric Networls, on page 54, to refresh
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the meaning of the emphasized words.) Neighborhoods are responsible for
the local properties of network graphs.

NetworkX offers two mechanisms for calculating neighborhoods. (To be specific,
let’s compute the neighborhood of the node ego="Neighbourhood (Graph Theory)".)

e Use the implicit dictionary representation of the graph. Node names are
keys, and adjacent node dictionaries are values.

altersl = G[ego]
print(altersl)
print(len(altersl))

< {'Turédn Graph': {}, 'Isolated Vertex': {}, 'Adjacency List': {},
'Graph (Discrete Mathematics)': {}, 'Complement Graph': {},
'Journal Of The Acm': {}, 'Triangle Free Graph': {}, 'Dense Graph': {},
'Vertex (Graph Theory)': {}, 'Loop (Graph Theory)': {},
'Linear Time': {}, 'Planar Graph': {}, 'Vertex Figure': {},
K...»

'Independent Set (Graph Theory)': {}, 'Claw Free Graph': {},
'Discrete Mathematics (Journal)': {}, 'Cycle Graph': {}}
35

The empty dictionaries {} would hold edge attributes if the network had
edge attributes.

e Call the function nx.all_neighbors(). The function returns a generator object
that you can convert to a list. However, if you expect a node to have too
many neighbors and you do need all of them at once, keep the neighbor-
hood in the generator form until later.

alters2 = list(nx.all neighbors(G, ego))
print(alters2)
print(len(alters2))

¢ ['Watts And Strogatz Model', 'Network Science', 'Spatial Network',

'Scientific Collaboration Network', 'Semantic Network',
'Barabdsi—Albert Model', 'Reciprocity (Network Science)',
'Biological Network', 'Clustering Coefficient', 'Pavol Hell',
K,.,.»
'Graph Isomorphism', 'Modular Decomposition', 'Planar Graph',
'Vertex Figure', 'Independent Set (Graph Theory)', 'Cycle Graph',
'Discrete Mathematics (Journal)', 'Claw Free Graph']
65

Neither neighborhood contains the ego node itself. Such neighborhoods are
called “open.” The figure on page 86 shows the out-neighborhood of ego: yet

another star. Don’t forget that the gray rectangles are Matplotlib’s idea of arrows.
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Note that the two methods report a different number of nodes in the neighbor-
hoods alters1 and alters2: 35 and 65, respectively. Recall that the network G is
directed. The first method returns only the neighbors reachable by the outgoing
edges—the out-neighborhood. The second method returns all adjacent nodes,
regardless of the direction of adjacency. Which method to use depends on
which result you're looking for.

A neighborhood is a dyadic structure. It's defined in terms of connections
between two nodes: the ego and an alter. Aside from serving as a reference
to the ego's inner circle, it conveys little information. For example, it doesn’t
tell if and how its members are interconnected. Adding the chord edges
transforms the sparse neighborhood into an egocentric network (Egocentric

network graph.
egonet = nx.ego graph(G, ego)

The figure on page 87 shows the egocentric network of ego. The network is
much denser. You can see that some nodes are connected only to the hub
(and possibly to some more remote nodes), while others form triangles that

involve more neighborhood members.
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Some social theories consider triads essential units of social network analysis.
Function nx.clustering(G, nodes=None) calculates the clustering coefficient—a
measure of the prevalence of triangles in an egocentric network. The clustering
coefficient is the fraction of possible triangles that contain the ego node and
exist. This measure is undefined for directed graphs; you must coerce a
digraph to an undirected graph before calculating the clustering coefficient.
The following code fragment shows how to call the function:

cc = nx.clustering(nx.Graph(G), ego)
print(cc)

0.36251920122887865

If the clustering coefficient of a node is 1, the node participates in every
possible triangle involving any pair of its neighbors; the egocentric network
of such a node is a complete graph. If the clustering coefficient of a node is
0, no two nodes in the neighborhood are connected; the egocentric network
of such node is a star. Think of the clustering coefficient as a measure of
“stardom.”
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Cluster Clusteri Lupus Est
Just like some other terms, the term “clustering” refers to at least
three different concepts: the separation of a network into compact,
tightly knit communities (Outline Modularity-Based Communities,

and the task of grouping relational data objects into subsets with
similar properties.

Function nx.average_clustering() calculates the mean clustering coefficient for all
nodes of a simple network (no loops, no directed or parallel edges).

acc = nx.average clustering(nx.Graph(G))
print(acc)

0.7266398872539529

The average clustering coefficient is not to be confused with the clustering
coefficient of the whole network—the fraction of all possible triangles that
exist in the network. The latter is known as transitivity, a measure of transitive
closure (explained_g_qﬂgggg?). NetworkX has a namesake function to calculate
it, too:

trans = nx.transitivity(G)
print(trans)

0.03412721874374035

You can see the discrepancy between the two alternative measures of the
“stardom.” The source of the discrepancy is a considerable proportion of
nodes with few neighbors. For such nodes, the local clustering coefficient
is traditionally high, as shown in the figure on page 89, and it inflates the

mean value.

By the way, the figure presents the results of a real, though so far concealed,
exploratory complex network experiment. You will see the mechanics of sim-
ilar experiments in Choose the Right Centralities, on page 92.

Think in Terms of Paths

Both dyadic and triadic relationships are local and never go farther than one
edge (or one “hop,” as network researchers say) from any of the involved
nodes. The purpose of the functions in this section is to take you far away—
as far as your network can afford.

For that, you need definitions of a walk, trail, and path.
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e A walk in a network is any sequence of edges such that the end of one
edge is always the beginning of another edge, except possibly for the first
and last edges that may be connected only at one end.

e A trail is a walk that never uses the same edge twice. A trail that does not
intersect itself, but starts and ends at the same node, is called a cycle (a
self-loop edge explained on page 18 is a cycle).

e A path is a trail that never visits the same node twice (in other words, it
does not intersect itself; NetworkX refers to paths as “simple paths”).

Any of these walks is directed if any of its constituent edges is directed. For
the rest of the book, we will use only paths.

A path has the length. The length of a path in an unweighted network is the
number of edges in the path. When it comes to weighted paths, it is up to
you to decide how to calculate the length. Possible metrics include the number
of edges, the sum of the weights, the harmonic average of the weights, and
the largest or the smallest weight.
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A path is a highway across the network that indirectly connects the nodes
that are not adjacent to each other, and allows them to interact. The meaning
of the remote interaction is specific to each class of complex networks. In a
social network, a path of length 3 connects the ego to the friend-of-a-friend-
of-a-friend. In the network of Wikipedia pages, a path of length 3 connects
the page about neighborhoods to a page that is similar to a similar page. In
a transportation network, a node three hops away is the destination you can
get to by changing trains twice. In some networks (like the network of foods
and nutrients), long paths make no sense at all.

Two nodes in a network are often connected with more than one path. If paths
matter at all, the shortest of them matters the most. (Again, there may be
more than one shortest path between two nodes.) The shortest paths are
called geodesics.

Not only does NetworkX provide a set of tools for computing with paths, but it
also uses them for component detection and centrality calculation, to name
a few applications. Function nx.shortest_simple_paths(G,u,v) returns a generator of
all shortest paths between the nodes u and v. You can expand the generator
into a list, but beware: it may take the program hours and even days to elicit
all shortest paths in a large graph. Use this function with care! For example,
you can get one path at a time by calling next().

path gen = nx.shortest simple paths(G, ego, "Agent Based Model")
next(path_gen)

[ 'Neighbourhood (Graph Theory)', 'Clustering Coefficient',
'Social Network', 'Agent Based Model']

next(path_gen)

['Neighbourhood (Graph Theory)', 'Edge (Graph Theory)',
'Small World Network', 'Agent Based Model']

next(path _gen)

[ 'Neighbourhood (Graph Theory)', 'Vertex (Graph Theory)',
'Semantic Network', 'Agent Based Model']

Function nx.shortest_path(G,source=None,target=None) returns only one of the shortest
paths between source and target, but if you omit either or both of the parameters,
it returns either all shortest paths starting at source, all shortest paths ending
at target, or all shortest paths in the network.

path = nx.shortest path(G, ego, "Agent Based Model")

[ 'Neighbourhood (Graph Theory)', 'Clustering Coefficient',
'Social Network', 'Agent Based Model']
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Networks as Circles

Reportedly, people used to believe that the Earth was flat and round, but
later changed their mind and settled on the geoid—an ellipsoid-like, but not
exactly ellipsoidal body. We are going the opposite way: our complex networks
started as shapeless clouds, but at this point let’s try to treat them as flat
and round.

CNA offers a concept of node eccentricity—a measure of how far from (or close
to) the center a node is, wherever the center is. The eccentricity is the maxi-
mum distance from a node to all other nodes in the network. The distance
between two nodes is naturally defined as the length of the geodesic between
the two nodes. Function nx.eccentricity(G,v=Node) returns the eccentricity for one
node v or the whole graph. Note that in a directed graph, there may be no
directed geodesics for some pairs of nodes. You must decide if it is appropriate
to coerce the digraph to an undirected graph.

ecc = nx.eccentricity(nx.Graph(G))
print(eccl[ego])

3

The remaining “circular” network properties are defined through the eccen-
tricity. If you already calculated it, do not throw it away, but pass to the fol-
lowing functions for the sake of performance.

e The diameter of a network is the maximum eccentricity. If two nodes are
as far apart as possible, they must be at the diametrically opposite ends
of the network, right?

e The radius of a network is the minimum eccentricity. This definition is
not intuitive, but it is what it is. What’s more counterintuitive, in general,
is that the radius is not a half of the diameter.

* The center of a network is a set of all nodes whose eccentricity equals the
radius. Another not very intuitive definition—but it yields a surprisingly
accurate result (see the following example).

¢ The periphery of a network is a set of all nodes whose eccentricity equals
the diameter. The set of peripheral nodes in a complex network is usually
large.

In the following examples, all circular measures are calculated based on the
precomputed eccentricity. There is no need to transform the digraph into a
directed graph anymore.
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print(nx.diameter(G, ecc))
4

print(nx.radius(G, ecc))
2

nx.center (G, e=ecc)
# Bingo!

['Complex Network']

nx.periphery(G, e=ecc)

['Glossary Of Areas Of Mathematics', 'Nutrition', 'Domestic Technology',
«,..», # 2,869 nodes!
'Pierre Bourdieu', 'Sociology Of Law', 'Network Scheduler']

The eccentricity is a special case of path-based centralities: measures that dis-
criminate nodes by their position in the network. Centralities are quintessential
for social network analysis and most types of CNA in general.

Choose the Right Centralities

One of the goals of social network analysis is to identify
actors with outstanding properties: the most influential, the
most efficient, the most irreplaceable—in other words, the
most important. CNA, in general, is also looking at the most
important nodes: key products in product networks; key
words in semantic networks; key events in the networks of events, and the
like. One of the central premises of CNA is that the importance of a node
depends on the structural position of the node in the network and can be
calculated from neighborhoods, geodesics, or some other structural elements.
Let’s go over some of the most common centrality measures, without going
deep into the theory. (If you're a curious reader, treat yourself with Social and

This section uses
Matplotlib, Pandas,
NumpPy.

other CNA topics!)

Degree Centrality

The simplest centrality measure is a node degree (also indegree and outdegree,
whenever necessary). Intuitively, a node with more edges, representing, say,
an actor with more ties, is more important than a node with only one edge.
Degree centrality is local and depends only on the node neighborhood. You
saw this centrality in disguise in Truncate the Network, on page 46.

You may argue that the node with the largest degree in a small network may
have fewer edges than the node with the smallest degree in a huge network. To


http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Choose the Right Centralities ® 93

level the playing field, divide the number of edges by the maximal possible
number of incident edges. Remember that in a network with a simple graph (no
loops, no parallel edges), anode can have at most len(G)-1 neighbors. The redefined
degree centrality is always in the range from O (the node has no neighbors) to
1 (the node is the hub of the global star). The normalization makes it possible
to compare nodes from different networks. The subject with the highest degree
centrality in our Wikipedia network is Computer Network (0.227988).

A node with a high degree centrality may be capable of affecting a lot of
neighbors in its neighborhood at once, but we cannot say anything about the
opportunities for global outreach.

Closeness and Harmonic Closeness Centrality

The closeness centrality is defined as the reciprocal mean distance (length of
the geodesics) from a node to all other reachable nodes in the network. It
shows how close the node is to the rest of the graph. This centrality is also
in the range from O (the node has no neighbors; it is severed from the rest of
the network) to 1 (the node is the hub of the global star and is one hop away
from any other node).

Another way to quantify the sense of closeness is to look at the mean reciprocal
distance (as opposed to the reciprocal mean distance; the order of the sum
and reciprocal operations reverses). Such measure is called harmonic central-
ity. Regrettably, the NetworkX function for calculating harmonic centrality does
not normalize the result. Make sure you divide it by len(G)-1 to obtain compa-
rable measures.

When the closeness of a node is equal to O or 1, the harmonic closeness of
the same node is O or 1, too. However, the two centralities in general differ
and in the case of our Wikipedia network are not even strongly correlated.
The subject with the highest closeness centrality is Computer Network
(0.517678); Graph (Discrete Mathematics) performs best in terms of harmonic
closeness (0.027257).

A node with a high degree centrality may be capable of affecting the entire
network, but how about controlling it?

Betweenness Centrality

The betweenness centrality is for control freaks. It measures the fraction of
all possible geodesics that pass through a node. If the betweenness is high,
the node is potentially a crucial go-between (thus the name) and has a bro-
kerage capability. The removal of such a node would disrupt communications


http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Chapter 8. Measuring Networks ® 94

in communication networks, lengthen geodesics, lower closeness centralities,
and possibly split the network into disconnected components.

The subject with the highest betweenness centrality in our Wikipedia network
is Computer Science (0.005515).

You can often find high-betweenness nodes in the vicinity of bridges. A
bridge is an edge whose removal would disconnect the network or signifi-
cantly increase the length of the geodesics. The latter kind of bridge is called
a local bridge. Pure bridges are rare in complex networks, but local bridges
are not.

Eigenvector Centrality

Unlike the previously introduced centrality measures that rely on the neigh-
borhoods and geodesics to calculate the importance, the eigenvector central-
ity uses a recursive definition of it: “Tell me who your friends are, and I will
tell you who you are.” (Incidentally, the saying can be traced back to Proverbs
13:20: “He that walketh with wise men shall be wise: but a companion of
fools shall be destroyed.”) Mathematically, the eigenvector centrality of a node
is the sum of the neighbors’ eigenvector centralities divided by »—the largest
eigenvalue of the adjacency matrix of the network.

High eigenvector centrality identifies nodes that are surrounded by other
nodes with high eigenvector centrality. You can use this measure to locate
groups of interconnected nodes with high prestige.

The subject with the highest eigenvector centrality in our Wikipedia network
is Graph (Discrete Mathematics) (0.183307).

PageRank

At least two more types of centralities are based on recursive principles similar
to the eigenvector centrality: PageRank and HITS [PBMW99].

PageRank was developed by Google (and named after Google’s Larry Page) to
rank web pages. The web pages are represented by nodes in a directed graph.
The graph edges correspond to hyperlinks. The rank of a node (and the corre-
sponding page) in the network is calculated as the probability that a person
randomly traversing the edges (clicking on links) will arrive at the node (page).
The algorithm is parametrized by the damping factor alpha=0.85, which is the
probability that the user will continue clicking. The page with the highest
PageRank is the most attractive: no matter where the person starts, this page
is the most likely final destination.
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Markov Page
If you're familiar with Markov chains, you may have noticed that
PageRank with alpha=1 treats the network as a Markov chain and
calculates its stationary distribution. The damping factor intro-
duces an element of realism in the computation: the Web is
dynamic and does not have a stationary state.

PageRank thrives on the concept of link traversing and makes sense only in
directed networks. If you pass an undirected graph to nx.pagerank(), the function
will first convert it into a directed graph by replacing each undirected edge
with a pair of directed edges. The subject with the highest PageRank in our
Wikipedia network is Graph (Discrete Mathematics) (0.000836).

HITS Hubs and Authorities

The HITS (Hyperlink-Induced Topic Search) algorithm is an extended version
of PageRank. PageRank considers all graph nodes as potential terminals, or
“sinks.” Once you get into a sink, you likely get sunk. “Sink-style” networks
include the Web, trust networks (social networks built on the “A-trusts-B”
relationship), and organizational networks (“A-is-a-subordinate-of-B”).

You want to study a network from the opposite perspective: what is the
probability that a person randomly traversing the edges has started at the
node? You can either reverse the graph by calling G.reverse() and then calculate
the PageRanks—or execute the HITS algorithm and get both hubs and
authorities values. Authorities are a loose counterpart of the PageRank. Hubs
considers outgoing links instead of incoming links. They serve as entry points
into your network so that you (or the fictitious randomly traversing person)
could get to the authorities most efficiently.

The subjects with the highest hubs and authorities in our Wikipedia network
are Social Network (0.037699) and Graph (Discrete Mathematics) (0.005213),
respectively.

Comparing the Centralities

As Ulrik Brandes from University of Konstanz mentioned in his keynote address
at the International Conference on Computational Social Science in July 2017,
“There are several hundred centrality indexes.” You just learned about seven
or eight centrality measures (depending on whether to count the HITS as one
or two), which may be 1 percent of all possible ways to establish a numeric
order in a network. Do you have to learn about the remaining 99 percent?
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No, you don’t. First, those eight centralities adequately rank the nodes in any
complex network. Second, even some of those eight centralities are strongly
correlated. Let’s find out which.

This next code calculates eight types of centralities for each node in the Wikipedia
page network. Each function (except for nx.hits()) returns a dictionary with nodes
as keys and centralities as values. nx.hits() returns a list of two dictionaries.

measuring.py

dgr = nx.degree centrality(G)

clo = nx.closeness centrality(G)
har = nx.harmonic centrality(G)
eig = nx.eigenvector centrality(G)
bet = nx.betweenness centrality(G)
pgr = nx.pagerank(G)

hits = nx.hits(G)

centralities = pd.concat(
[pd.Series(c) for c in (hits[1], eig, pgr, har, clo, hits[0], dgr, bet)],
axis=1)

centralities.columns = ("Authorities", "Eigenvector", "PageRank",
"Harmonic Closeness", "Closeness", "Hubs",
"Degree", "Betweenness")

centralities["Harmonic Closeness"] /= centralities.shape[0]

Then comes Pandas (check Another Kind of Pandas, on page 73). Let’s convert
each dictionary into a pdSerles—a labeledvectorthen ‘concatenate all vectors
into a pd.Dataframe—a labeled matrix. Finally, relabel the columns to reflect
their true nature and normalize the harmonic closeness centrality, because
it is the only centrality on the list that is not automatically normalized. The

DataFrame centralities is ready for analysis.

centralities.corr() calculates all pairwise correlations between the centralities and
returns an 8x8 symmetric Dataframe. More than half of the values in the
Dataframe are redundant. Use np.tri() from NumPy to generate a lower-left trian-
gular unit matrix of the proper size and mask the duplicates by multiplying
the Dataframe and the mask matrix element-wise.

Locating the strongest correlations in the table may be hard. Let’s reorganize it
into a tall pd.Series, sort by the values, and display the “tail’—the last five rows.

measuring.py

# Calculate the correlations for each pair of centralities
c df = centralities.corr()

1l triangle = np.tri(c_df.shape[0], k=-1)

c df *= 11 triangle

c series = c df.stack().sort values()

c_series.tail()
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¢ Harmonic Closeness Eigenvector 0.826834
Closeness Authorities 0.828464
Betweenness Degree 0.849580
PageRank Eigenvector 0.882332
Eigenvector Authorities 0.939547

dtype: float64

The complete analysis of all correlations (which you can do on your own,
especially after reading Outline Modularity-Based Communities, on page 136)
reveals that the centrality measures form two groups. The first group consists
of eigenvector and harmonic closeness centralities, PageRank, and authorities.
The second group has two subgroups: degree and betweenness centralities
in one, and closeness and hubs in the other. I am almost saying that knowing
one representative measure from each group—say, closeness, betweenness,
and eigenvector centralities—probably will suffice for all practical purposes.
But the final choice is yours.

To add another dimension to our story of centralities, let’s plot one of them
against another. Pandas Dataframes are elegantly integrated with Matplotlib. It
takes just a couple of function calls to plot two columns.

measuring.py
X = "Harmonic Closeness"
Y = "Eigenvector"
limits = pd.concat([centralities[[X, Y]].min(),
centralities[[X, Y]].max()], axis=1).values
centralities.plot(kind="scatter", x=X, y=Y, xlim=limits[0], ylim=limits[1],
s=75, logy=True, alpha=0.6)

The figure on page 98 shows the scatter plot of harmonic closeness and
eigenvector centrality for our network of Wikipedia pages. Note that the vertical
axis has a logarithmic scale to accommodate small eigenvector centralities.

Judging by the plot, the correlation of 0.826834 is entirely justifiable.

Estimate Network Uniformity Through Assortativity

In the last section of the chapter, let’s look at node attributes
we have completely ignored so far. As an example, I'll use a
snapshot of Odnoklassniki,” the second-largest Russian language social net-
working site, harvested in February 2009. The snapshot has 408,715 nodes
and 4,482,086 edges. Each node has attributes age and gender (self-reported).

This section uses NumPy.

Attribute analysis looks into assortativity: correlation between the values of
a node attribute across edges. A network with positively correlated attributes
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is called assortative; in an assortative network, nodes tend to connect to nodes
with similar attribute values. This tendency is called assortative mixing. A dis-
sortative (negatively correlated) network is the opposite of an assortative one.

The simplest form of assortativity is degree (indegree, outdegree) assortativity:
the correlation between the degree of a node and the average degree of its
neighbors. Function nx.average_degree_connectivity(G) returns a dictionary with
unique node degrees as keys and matching average neighbors’ degrees as
values. The following code fragment calculates the dictionary and separates
the keys and values into two lists (my_degree and their_degree):

my degree, their degree = zip(*nx.average degree connectivity(G).items())

The figure on page 99 shows the scatter plot of the two lists for the Odnoklass-
niki network. If the network were uniform, all points would align along the
dashed line. In reality, we observe the uniformity only around the nodes with
about seventy neighbors. Nonetheless, the network is in general assortative
because the slope of the curve is positive. The only dissortative part of the

network is the one that contains the nodes with fewer than ten edges.

Degree assortativity may be somewhat hard to interpret, but when it comes
to other attributes, especially related to human demographics, there are certain
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expectations—and a social theory that explains them: homophily. Homophily
is the propensity of actors to associate with somewhat similar actors. Let’s
check if our fragment of the social network is assortative with respect to age
and gender.

NetworkX provides two functions for assessing attribute assortativity. The first
function nx.attribute_mixing_matrix() takes a graph, an attribute name, and an
optional mapping dictionary, and returns a two-dimensional NumPy array.

nx.attribute mixing matrix(G, "gender", mapping={"M": 0, "F": 1})

array([[ 0.22771058, 0.24064205],
[ 0.24064205, 0.29100532]1])

The ith row and jth column of the array contain the fraction of adjacent nodes
that have the ith and jth values of the attribute, respectively. The mapping
links non-numeric attribute values with row and column indexes. In the
previous matrix, 0.22771058 (=23%) of edges connect male actors, and
0.29100532 (=29%) of edges connect female actors. The fraction of same-
gender edges is just above 50 percent, which suggests that the members of
the network do not prefer same-gender connections. The network is not
homophilic from the gender point of view.
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The second function, nx.attribute_assortativity coefficient(), confirms the previous
result. The function returns the assortativity coefficient—the correlation
between the values of an attribute across edges.

nx.attribute assortativity coefficient(G, "gender")

0.03356000539110733

The self-reported genders of the Odnoklassniki members are not correlated.
However, their ages are in a better agreement:

nx.attribute assortativity coefficient(G, "age")

0.14409535867553133

The last result is not surprising at all if we recall that odnoklassnilkiin Russian
means classmates and it is natural for classmates to be of the same age.

You learned how to measure a complex network by calculating its microscopic,
mesoscopic, and macroscopic properties, such as size, density, clustering
coefficient, centralities, and assortativities. The measured properties identify
the most important or unusual nodes and network neighborhoods. With a
couple dozen network measuring algorithms in your toolbox, you are ready
for a complete network analysis experiment. In the next chapter, you will go
through the first complete CNA case study.
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This good luck of those of Chagre caused Captain Morgan to stay longer
at Panama, ordering several new excursions into the country round
about; and while the pirates at Panama were upon these expeditions,
those at Chagre were busy in piracies on the North Sea.

Alexandre Olivier Exquemelin, French, Dutch or Flemish writer

CHAPTER 9

Case Study: Panama Papers

. The Panama Papers' represent a massive leak of offshore
This chapter uses

Matplotlib, NumPy,
Pandas.

corporate entity information (several hundred thousand
entities) from the Panamanian law firm Mossack Fonseca.
The papers unveil a never-before-seen network of money-
laundering connections.

In this chapter, you will learn how to convert a huge CSV file describing
connections between entities and officials into a social network. You will do
it two ways: with and without Pandas. You will also learn how to make simple
conclusions about the resulting network.

Create a Network of Entities and Officers

The “Panama” network is a social network that describes relationships
between organizations and individuals traced through electronic documenta-
tion. The network is available in five CSV files that is summarized in the table
onpage 102.

Let’s first partially build this vast network and analyze some of its aspects
without using Python’s “heavy artillery,” Pandas, and later attempt a similar
analysis with Pandas. For the construction, let’s select only the edges that refer
to the “beneficiary-of” relationship (there are 19,194 edges labeled Beneficiary
of and beneficiary of). We will go through the files Entities.csv, Officers.csv, and
Intermediaries.csv in search of incident nodes. For each node, we will store its
name, type, and a three-letter country code. The first code block imports all
the necessary modules and defines the constants.

1. www.occrp.org/en/panamapapers/database
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Columns of
Name Type Purpose # of rows interest
all_edges.csv Edges FEach edge hasatype 1,269,796 node_1,
of the represented rel_type,
relationship. node_2
Addresses.csv Nodes Legal addresses of 151,127 n/a
officers and entities
Entities.csv Nodes Legal entities (corpo- 319,421 name,
rations, firms, and Jurisdiction
SO on)
Intermediaries.csv  Nodes Persons and organiza- 23,642 name,
tions that act as country_code
links between other
organizations
Officers.csv Nodes Persons (directors, 345,645 name,
shareholders, and country_code
S0 on)

panama.py

import csv

import pickle

import itertools

from collections import Counter

import networkx as nx

from networkx.drawing.nx_agraph import graphviz layout
import matplotlib.pyplot as plt

import dzcnapy plotlib as dzcnapy

EDGES = "beneficiary"

NODES = (("Entities.csv", "jurisdiction", "name"),
("Officers.csv", "country codes", "name"),
("Intermediaries.csv", "country codes", "name"))

Where to Import?
According to PEP 8, Style Guide for Python Code, “imports are always put at the
top of the file, just after any module comments and docstrings, and before module
globals and constants.”? Some developers argue that importing a module immedi-
ately before its first use saves a nanosecond or so. It might, but it sure makes
tracking code dependencies on other libraries a nightmare.

2. www.python.org/dev/peps/pep-0008/#imports
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Now, it’s time to build a network graph. Start with an empty nx.Graph object and
read all rows from all_edges.csv with a CSV dictionary reader. (But keep only
those future edges that are marked as beneficiary of in any character case.)

panama.py
panama = nx.Graph()

with open("all edges.csv") as infile:
data = csv.DictReader(infile)
panama.add edges from((link["node 1"], link["node 2"1])
for link in data
if link["rel type"].lower().startswith(EDGES))

Remember that when you add an edge to a network, NetworkX also adds both
incident nodes. However, at the moment, the nodes have only more or less
randomly chosen labels—and no attributes. Let’s import the attributes and
true names from the other three files.

The purpose of the dictionary nodes is to facilitate future lookup. (Python lists
have linear lookup time.) Read each of the files with a CSV dictionary reader
and extract and collect the desired attributes. Note that there is no need to
process rows that do not match any existing node (because your network
does not include all nodes and edges) and add any nodes to the graph (because
they have been already added by way of the incident edges). When done,
update the node attributes country and kind, and relabel the nodes to match
persons and organizations names.

panama.py
nodes = set(panama.nodes())
relabel = {}

for f, cc, name in NODES:
with open(f) as infile:

kind = f.split(".")[0]

data = csv.DictReader(infile)

names countries = {node["node id"]
(node[name].strip().upper(), node[cc])
for node in data
if node["node_id"] in nodes}

names = {nid: values[0] for nid, values in names_countries.items()}
countries = {nid: values[1l] for nid, values in names countries.items()}
kinds = {nid: kind for nid, in names countries.items()}

nx.set node attributes(panama, "country", countries)
nx.set node attributes(panama, "kind", kinds)
relabel.update(names)

nx.relabel nodes(panama, relabel, copy=False)

if "ISSUES OF:" in panama:
panama.remove node("ISSUES OF:")
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if "" in panama:
panama.remove node("")

print(nx.number_of nodes(panama), nx.number of edges(panama))

Finally, remove the phony node ISSUES OF: (there is no explanation of its
purpose in the dataset documentation) and a mysterious node with no name
at all. The complete network panama has 27,930 (3.3%) nodes and 19,137
(1.5%) edges. The density of the network is 0.000049.

As it turns out, the newly minted network consists of several thousand dis-
connected fragments called components, most of which have only two to three
nodes. You will learn how to work with components in Split Networks into

function nx.connected_component_subgraphs() to elicit each component’s graph and
keep it only if it has at least twenty edges or twenty nodes. The choice of
numbers is somewhat arbitrary; you may want to play with them to wipe off
as much of the “network dust” as you wish. In fact, you are under no obligation
to do any filtering at all—or you can select only the biggest component.

panama.py

components = [p.nodes() for p in nx.connected component subgraphs(panama)
if nx.number of nodes(p) >= 20
or nx.number of edges(p) >= 20]

panama® = panama.subgraph(itertools.chain.from iterable(components))

print(nx.number_of nodes(panama@), nx.number of edges(panama0))

with open("panama-beneficiary.pickle", "wb") as outfile:
pickle.dump(panama®@, outfile)

The refined network panama0 has 1,393 nodes and 1,926 edges. Pickle it for
future use!

Draw the Network

The size of the network generated in the previous section makes its visualization
almost useless. However, the plotting fragment is still included in the case study.
Nodes are painted by their kind: Entities are lightly colored, and Officers are dark.

panama.py
cdict = {"Entities": "pink", "Officers": "blue",
"Intermediaries" : "green"}
c = [cdict[panama®.node[n]["kind"]] for n in panama0]
dzcnapy.small attrs["node color"] = c
pos = graphviz_ layout(panama0)
nx.draw _networkx(panama@, pos=pos, with labels=False, **dzcnapy.small attrs)
dzcnapy.set extent(pos, plt)
dzcnapy.plot("panama0")
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The following figure shows the sketch of the network (naturally, without the
labels). You can see with a naked eye that some components have an Officer
in the center, surrounded by Entities; in some other components, conversely,
Officers surround an Entity in the center.

We can learn more about the network by applying numerical analytical
methods to it.

Analyze the Network

Out of so many ways to analyze a network, let’s focus on degree and assorta-
tivity analysis. All network nodes have two attributes: kind (with three possible
values Entities, Officers, or Intermediaries) and country. Let’s have a look at
each of the assortativities, both directly and through the attribute mixing
matrix (only for the kind).

panama.py
nx.attribute assortativity coefficient(panama®, "kind")
nx.attribute mixing matrix(panama®@, "kind",
mapping={"Entities": 0, "Officers": 1,
"Intermediaries" : 2})
nx.attribute assortativity coefficient(panama®@, "country")
nx.degree assortativity coefficient(panama0)
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-0.9896603076687625

array([[ ©0.00000000e+00, 4.97403946e-01, 2.59605400e-04],
[ 4.97403946e-01, 4.67289720e-03, 0.00000000e+00],
[ 2.59605400e-04, 0.00000000e+00, 0.00000000e+00]1)

0.07539400284377736

-0.39717073403670283

The network is almost perfectly dissortative with respect to the node kinds.
The matrix explains the details: an Entity node (column 0) is almost always
connected to an Officer node (column 1) because Officers are “beneficiaries-
of” Entities. Very few Entities are linked to each other through Intermediaries.
The most obscure edges connect Officers to Officers. Without fully understand-
ing the semantics of the relationship “beneficiary-of,” you cannot judge whether
these edges are legitimate or not. Nonetheless, the matrix gives you a gener-
alized snapshot of how a typical network fragment would look.

The “Panama” network is rooted in corporate offshoring. You would expect
that the country codes associated with network nodes are quite diverse
because that is what offshoring is all about. And indeed they are: a correlation
close to 0 (0.075) is no correlation. The network of country codes is neither
assortative nor dissortative. It has random connectivity, totally appropriate
for offshoring-based money laundering.

The last number in the output is the degree assortativity coefficient. It is
negative, suggesting that the nodes with a higher degree are surrounded, on
average, by nodes with a smaller degree, and the other way around.

An essential output of complex network analysis is a node degree distribution.
According to Barabasi and Albert [BA99], if a network is a result of preferential

attachment, then the degrees d in the network are distributed by the power
law: p(d)=d®. The converse, in general, is not true. (See a brief overview on

apply log() to the equation, you will get a linear dependency: log(p(d))=-a log(d).

Let’s check if the network has at least a chance of being a Barabasi-Albert
network. The next code fragment calculates the degrees of all nodes, and
counts and plots the frequency of each degree.

panama.py
deg = nx.degree(panama0)
X, y = zip(*Counter(deg.values()).items())

The degree distribution in the log-log scale is in the figure on page 107. The
dots align along a noisy but clearly visible straight line, signaling you that
the “Panama” network, like many other social networks, may have been put

in order by the forces of preferential attachment.
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One peculiarity of a power law distribution is its “long tail” that, at least the-
oretically, tolerates nodes with arbitrary high degrees, limited only by the
total graph size. Your degree distribution has a long tail, too. So, who are
they, the nodes at the tail? Let’s run the final lines of the analysis script that
reports the top ten nodes with the highest degree, nicely formatted.

panama.py

topl0® = sorted([(n, panama@.node[n]["kind"], v) for n, v in deg.items()],
key=lambda x: x[2], reverse=True)[:10]

print("\n".join(["{} ({}): {}".format(*t) for t in toplO]))

HELITING S.A. (Officers): 80

T.K.B.K. INTERNATIONAL TRUST (Entities): 39

WORLDWIDE COM-NET INTERNATIONAL TRUST (Entities): 37

THE CLAUDIUS TRUST (Entities): 36

GUANGZHOU CONSTRUCTION & DEVELOPMENT HOLDINGS (CHINA)LIMITED (Officers): 29
RICARDO CAMPOLLO CODINA (Officers): 27

ISLANDS INTERNATIONAL TRUST (Entities): 27

ZEN TRUST (Entities): 26

FRIENDS OF ASSISI TRUST (Entities): 26

MR. OLEKSII MYKOLAYOVYCH AZAROV (Officers): 26

Four of the tail nodes are Officers; the other five are Entities. The Intermedi-
aries node did not make it to the top list. I don’t know who these individuals
and organizations are. Chances are, you don’t know, either. In that case, just
include the results into your final report and deliver to your data sponsor—
someone who ordered the analysis of this complex network.
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Build a “Panama” Network with Pandas

Pandas is a library that is known to make hard tasks of reading tabular files
and manipulating tabular data easy. Pandas takes care of parsing an edge list
from a CSV file into a DataFrame; nx.from_pandas_dataframe() converts a DataFrame
into a graph, making network construction all but trivial.

Now let’s take care of the nodes. Read the three node attribute files into their
Dataframes, mark properly (so that you would know later which nodes come
from each file), and merge the parts into one Dataframe named all_nodes.

panama-ca.py
import networkx as nx
import pandas as pd
import numpy as np

# Read the edge list and convert it to a network

edges = pd.read csv("all edges.csv")

edges = edges[edges["rel type"] != "registered address"]
F = nx.from pandas dataframe(edges, "node 1", "node 2")

# Read node lists

officers = pd.read csv("Officers.csv", index col="node id")
intermediaries = pd.read csv("Intermediaries.csv", index col="node id")
entities = pd.read csv("Entities.csv", index _col="node id")

# Combine the node lists into one dataframe
officers["type"] = "officer"
intermediaries["type"] = "intermediary"
entities["type"] = "entity"

all_nodes = pd.concat([officers, intermediaries, entities])

Just like any other real-life data, the “Panama papers” dataset is “dirty”: it
has duplicates, omissions, typos, and so on. With the following code fragment,
you can partially unify the duplicated names by removing all leading and
trailing whitespaces, merging all inner whitespaces, converting all characters
to the uppercase, converting LIMITED to LTD, and removing some honorifics.

panama-ca.py
# Do some cleanup of names
all nodes["name"] = all nodes|["name"].str.upper().str.strip()

# Ensure that all "Bearers" do not become a single node
all nodes["name"].replace(

to replace=[r"MRS?\.\s+", r"\.", r"\s+", "LIMITED", "THE BEARER",
"BEARER", "BEARER 1", "EL PORTADOR", "AL PORTADOR"],
value=["", "", " ", "LTD", np.nan, np.nan, np.nan, np.nan, np.nan],

inplace=True, regex=True)
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A lot of “Panama” officials go under the nicknames “THE BEARER” and “EL
PORTADOR.” If left unchanged, they may be later lumped into a single network
node. Rename them to a NumPy value np.nan to keep them anonymous but
distinct.

The network is structurally ready, but the nodes do not have attributes—the
attributes are stored in a separate Dataframe. Attaching them to the nodes now
is impractical. It is highly unlikely that you will analyze the whole network
at once, so it makes no sense to invest into decorating all the nodes. Let’s
first identify the area of interest, extract it from the network, and then assign
the attributes and new labels to the surviving nodes. This order of network
construction is contrary to anything you've seen so far, but for a big network,
it saves you a lot of CPU time and computer memory.

As an exercise, extract a network of officers, entities, and intermediaries
related to the economically, politically, and geographically compact region—
Central Asia (Kazakhstan, Kyrgyzstan, Uzbekistan, Turkmenistan, and
Tajikistan). Offshoring, especially fraudulent offshoring, is not very widespread
in this area, and we can hope to obtain a reasonably small subnetwork.

Start with a list of seed nodes seeds—all nodes that are known to belong to
the Central Asian region because their country codes are in the set of wanted
country codes CCODES.

In reality, some nodes have more than one country code, in which case the
codes are separated by a semicolon. Can you modify the code to select the
nodes that are associated with Central Asia through at least one of their
country codes?

What you will do next is essentially construct a joint ego network of the seed
nodes expanding two hops away from the seeds. The function nx.single_source_short-
est_path_length(F,seed,cutoff=None) computes the shortest paths from the node seed
to all reachable nodes that are cutoff hops away and closer. The function returns
a dictionary with the target nodes as keys, so the keys are the cutoff-neighborhood
of the seed. Extract a subgraph that contains all the keys for all the dictionaries
with all the connecting edges. It is the network that you want.

panama-ca.py

CCODES = "UzB", "TKM", "KAZ", "KGZ", "TJK"

seeds = all nodes[all nodes["country codes"].isin(CCODES)].index

nodes of interest = set.union(*[\
set(nx.single source shortest path length(F, seed, cutoff=2).keys())
for seed in seeds])

# Extract the subgraph and relabel it
ego = nx.subgraph(F, nodes of interest)
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nodes = all nodes.ix[ego]

nodes = nodes[~nodes.index.duplicated()]

nx.set node attributes(ego, "cc", nodes["country codes"])
valid names = nodes[nodes["name"].notnull()]["name"].to dict()
nx.relabel nodes(ego, valid names, copy=False)

# Save and proceed to Gephi
with open("panama-ca.graphml", "wb") as ofile:
nx.write graphml(ego, ofile)

The subnetwork has 3,848 nodes and 8,643 edges—quite modest, by the CNA
standards. Because of the imperfection of the dataset, some nodes may have
identical identifiers—remove them (see the highlighted line). Finally, set the
cc (country code) attribute and relabel the nodes that can be relabeled.

You can save the resulting network into a .graphml file for future use. For
instance, you can sketch the network in Gephi, as shown in the following figure.
(NetworkX itself is not powerful enough to produce images of big networks.)
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The dark (blue) nodes represent the officers, entities, and intermediaries
related to the Central Asian countries. The gray nodes are in their 2-neighbor-
hood. The node size represents degree. You can see that the dark nodes
congregate on the periphery of the network, despite formally being its seeds!
The major offshoring companies—ShareCorp Ltd., Portcullis Trustnet (BVI)
Ltd., and Execorp Ltd. (the three largest circles in the chart)—do not seem to
be very interested in Central Asia.

You can apply the method presented in the case study to any network of
organizations (entities) and members (officials). Beware that if the network is
large, it is better to avoid NetworkX for its visualization and use Gephi.

In the Next Part

It is exciting to analyze networks with explicitly connected nodes. It is even
more exciting to analyze networks with no immediate connections. The next
part of the book looks into co-occurrence networks.
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Part III

Networks Based on Co-Occurrences

An interesting, relatively understudied (compared
to social networks), and crucial class of complex
networlks is networks based on item co-occurrence
—items being in the same place (or close enough)
at the same time. In this part, you will learn how
to construct “unorthodox” networks and analyze
their structure.



Life is, of course, a series of coincidences, but we never cease to
besurprised as each new one happens, and nothing can destroy
their recurring freshness.

Robert Lynd, Irish writer

cHAPTER 10

Constructing Semantic and
Product Networks

An interesting, novel, and relatively understudied class of complex networks
is networks based on co-occurrence, or coincidence—the property of items
being in the same place (or close enough) at the same time. The edges in co-
occurrence networks are implicit: they are not given (and often not even
obvious); you have to deduce, extract, and calculate them from other data,
and this is a significant departure from the relatively intuitive way you build
social networks. Co-occurrence networks are living proof that you can connect
anything to anything and make sense of the connections.

In this chapter, you will learn how to start with a seemingly odd collection of
material or immaterial items, examine temporal and spatial connections
between them, identify significant relationships, and convert your observations
into a network graph. Just like social network graphs, these graphs have
nodes and edges with respective attributes, but this time you will go one step
further and explore their complex internal structure. You will be able to divide
and conquer a complex network: decompose it into components, cores, coro-
nas, communities, and similar structural elements; assign proper names to
the extracted parts; understand their purpose and importance; and put them
together again.

We will start by looking at two examples of co-occurrence networks: semantic
networks and product networks. In the next chapters, we’ll go over definition,
extraction, naming, and use of complex network constituents.
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Semantic Networks

A semantic network is a network of nodes that represent terms—words, word
stems, word groups, or concepts—connected based on the similarity or dis-
similarity of their usage or meanings. Link terms that:

e Are commonly used together in the same place in text: same sentence,
paragraph, chapter, scene, act, list of keywords, list of interests in a social
network, and so on (“semantic” < “network”)

¢ Describe the same property (“red” < “blue”)

¢ Occupy the same semantic niche (synonyms: “program” < “application”;
hypernyms: “pet” < “cat”; antonyms: “erase” < “restore”)

In the latter case, you may want to assign negative weights to some edges,
which would make many network processing algorithms heartbroken. If your
network has negatively weighted edges by construction, be prepared to remove
them before analyzing the network.

Knowledge specialists use semantic networks for graphical (and machine-read-
able) knowledge representation, and social and behavioral researchers and
anthropologists use semantic networks for semantic domain analysis. Let’s
have a look at two not-so-typical semantic networks: a network of keywords
for fraud-related research papers and a network of characters from Othello.

Detect Food Fraud

Semantic networks often reveal surprising facts about texts and other term
collections (corpora). Suppose you do research in accounting—namely, in fraud
—and want to know everything about fraud types. You understand that nobody
knows fraud better than other fraud researchers and fraudsters themselves.
The latter are typically off limits, but the former are well represented in numerous
databases of academic research papers. You could collect all research papers
that mention “fraud,” extract subject tags assigned to them by database edi-
tors, and create a semantic network of the tags, based on their co-occurrence.
The subject tags (such as DNA and meat industry) are the nodes of the net-
work. Two tag nodes are adjacent if the tags are frequently assigned together
to the same paper. For example, the nodes food fraud and food safety are
adjacent because many research papers focus on food fraud and food safety.

The original network (adapted from Conceptual Structure of Fraud Research

tell us many an exciting story. However, we will look only at the circled frag-
ment in the bottom left corner.
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The most striking conclusion from the figure is that the selected fragment is
almost entirely removed from the rest of the network. It is connected to the
bulk of the network with only one edge.

The figure on page 118 depicts the close-up view of the fragment. Remember
that as a rule, node size represents node importance (in our case, the number
of tags), and edge width represents edge weight. The nodes are colored based

on their membership in network communities (Outline Modularity-Based

Just by glancing through the node labels, you can see that the topic of the
fragment is food fraud, also known as adulteration (no connection to adultery,
adult stores, or any other “adult” business). Apparently, there is “fraud,” and
there is “food fraud!” Within the “food fraud” fragment, you can see tags
related to fraud objects (“milk,” “olive oil,” “meat”); fraud detection methods
(“spectroscopy,” “DNA,” “principal component analysis”); fraud prevention

”

” s

mechanisms (“food labeling,” “identification”), and so on. If you are a PhD
student or young postdoc looking for a future fraud-related research direction,
you may be excited to have come across this semantic network fragment.
Judging by its secluded position, few “hardcore” fraud analysts know or care
about food! Why not become one of those who do?

report erratum
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By the way, we will show you how to construct a similar network step-by-step
in Chapter 12, Case Study: Performing Cultural Domain Analysis, on page 141.

Expose a Protagonist

Who is the protagonist (or the main character, if you prefer less academic
speak) of Othello? Be careful with what you answer because a trivial question
like this must be tricky. Hint: No, Othello is not a protagonist. At least not
by the standards of semantic networks.

The emerging field of digital humanities uses co-occurrence semantic networks
to analyze texts: plays, scripts, and other forms of prose and poetry. The
method allows us to identify the main and peripheral characters (see core-
periphery analysis on page 129); group characters and places (see Outline

storyline into scenes suitable, say, for film or stage adaptation.

Let’s outline a semantic network construction from the text of Othello. After
you read the next chapter and the case studies, you will be able to implement
the algorithm in Python. This exercise is inspired by Measuring Tie Strength
in Implicit Social Network [EG12].

1. You need a list of all characters. Othello is a short text; you can compose
the list by hand. Alternatively, find all references to Enter and Exit remarks;
or collect references to all characters as they speak if there is a property

report erratum -

discuss
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in the text that identifies the characters. For example, a character may
be marked with an HTML tag, as in <A NAME=speech1><b>RODERIGO</b></a>."

You need a definition of co-occurrence. Play scripts are perfect from this
point of view: two characters co-occur if they occur in the same scene! In
a general text, co-occurrence may be based on paragraphs, sections,
chapters, pages, and so on.

Now that you have characters (nodes) and their co-occurrences (edges),
you can build a network. Remarkably, once constructed, this network is
a social network, of which you heard so much in Chapter 6, Understanding
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Finally, you need a measure of importance. How do you know, indeed,
who is the protagonist of the story? Luckily, you have the whole box of
network centralities (Choose the Right Centralities, on page 92) that you
can apply to each node. When you work with a social network, and the
network in the figure is a social one, the best importance measures are
betweenness and eigenvector centralities. The eigenvector centrality is
proportional to the graph node sizes, and the betweenness centrality is
reflected by the node color (the darker, the more central). Both centralities

seem to be in good agreement: Iago is the protagonist. Not Othello.

shakespeare.mit.edu/othello/full.html

report erratum -

discuss
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So, is Iago indeed the protagonist of Othello? Some researchers strongly believe
that he is!” Welcome to digital humanities!

Product Networks

A product network is a network of retail items. Network nodes in a product
network represent items purchased by individuals and co-occurring in their
shopping baskets or carts. You can connect two product nodes if customers
often or always buy the respective products together. We call such products
complements. Left and right shoes (if sold separately), nuts and bolts, nails
and hammers, and one-way airline tickets from Boston to Seattle and from
Seattle to Boston are good examples of complements: when you buy one, you
almost always buy the other as well.

Product networks can (but do not have to) be weighted: you can define the
weight of the edge as the frequency of co-purchasing. You can slice (Slice

edges, if you want.

Sometimes product networks allow negatively weighted edges. If one of the
products in a pair is a reasonable replacement for the other—in some sense!
—we call them substitutes. If you live in Alaska and buy a husky to pull your
sled, then you probably won't buy a reindeer for the same purpose, at least
not at the same time. (You can still get a reindeer as a pet.) A husky and
reindeer are substitutes; you can connect the respective nodes with a nega-
tively weighted edge to represent their substitutive nature.

Here are two product networks for you, as a warm-up: a network of common
cooked food ingredients and a network of tools and materials for a painting
do-it-yourself project.

Explore Your Pantry
To find a product network, look no further than your pantry.

When you buy prepared food (say, a can of baked beans), you buy an elaborate
concoction of ingredients: prepared beans, water, sugar, applewood smoked
bacon, molasses, textured vegetable protein, and many others. You can think
of the ingredients as separate products that happen to be packed together in
the can. They occur in the same place at the same time—therefore, they are
excellent candidates for becoming product network nodes. By constructing
a product network, you can learn which ingredient combinations are most

2.  http://www.shmoop.com/othello/antagonist.html
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common, whether and how the ingredients group, and which ingredients are
central to our food.

You can collect data for a network of ingredients from the website of the
United States Department of Agriculture (USDA?). There is no need to down-
load all several hundred thousand product descriptions. For starters, we
suggest crawling a couple of thousand pages—for example, 925 products with
356 distinct ingredients.

In the following figure, two ingredient nodes are connected if they happen
together in more than five food items (the threshold of five was chosen to keep
the network connected but not too hairy).
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For each node, we calculate its betweenness (color) and eigenvector (size)
centralities. The most central nodes represent the core ingredients. Not sur-
prisingly, the top three ingredients are salt, sugar, and water: they go almost
into any food item, and they almost always go side by side. The composition
of the second ring is less predictable. The next ten most central ingredients
are: citric acid (acidifier), maltodextrin (sweetener), xanthan gum (thickener),
enzymes (catalysts), natural flavors, wheat flour, niacin (vitamin B), riboflavin
(another kind of vitamin B), folic acid (yet another kind of vitamin B), and
lecithin (emulsifier). Most of these ingredients are responsible for foundational
taste and texture food properties, which explains their position in the network.

Design a Do-It-Yourself Store

Networks of products are common in marketing analysis. Marketing specialists
construct product networks to reveal tightly coupled groups of products fre-
quently purchased together. Retailers may compactly stock the products in
a group in stores for the ease of shopping. If someone buys a product from a
group, they may be reminded to buy other products from the same group.
Finally, a group of products may be a stepping stone in a long-term customer
project (for example, someone purchasing masonry products may be building
a garage and would later need carpentry tools and materials, followed by
brushes and paints).

The following figure shows a product network for a pre-painting project,
derived from the sales data collected and provided by a Fortune 500 specialty
retailer (adapted from Building MiniCategories in Product Networles [Z1.Z15]).

The network has only nine nodes, four of which are isolated from the other
five (we call them isolates—you will learn more about them in Locate Isolates,

to their neighbors, and the network analyst decided to drop the thin edges.
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If you were to design an ideal do-it-yourself store, you would put water
applicators, tack cloths, sanding sheets, sanders, and mineral spirits on the
same shelf, and the other four products on the next shelf. If your customers
bought a sanding sheet, but no sander, you (or your recommendation system)
would remind them to purchase the sander and another seven items as well.

You learned about two uncommon types of complex networks—semantic
networks of words and concepts and co-purchasing-based product networks.
The latter can be found in marketing research; the former apply to text anal-
ysis and knowledge representation. You will see a complete example of a
product network construction and analysis in Chapter 13, Case Study: Going

big, you will learn how to deconstruct a network into compact blocks. In the
world of large complex networks, dividing and conquering is the only way to
manage complexity. The next chapter will show you how to unearth the net-
work structure.
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Divide et impera.

Attributed to Philip Il, King of Macedon

CHAPTER 11

Unearthing the Network Structure

You're probably not going to be surprised that complex networks have...a
complex structure. From the ancient times to modern days, researchers and
practitioners have confronted complexity by dividing a complex system into
smaller parts—constituents—and then taking a closer look at the parts and
making sense out of them. A part could be as small as a single network node
or as large as a so-called giant connected component (GCC). (You will meet
a GCC later_ on pagel28 for now, it suffices to know that it is giant.) You need

a “network-o-scope” to zoom in and out—and you're going to build it in this
chapter.

You will learn how to dissect an original complex network into constituents
of various sizes, shapes, and types: isolates, connected components, cliques,
communities, and k-cores, to mention but a few. You will understand the
function and place of each type of constituent in the network analysis work-
flow. At the end, you will get some suggestions about naming the extracted
parts, because, as a rule of thumb, you cannot successfully use something
that does not have a name. In other words, you will be ready to divide and
conquer complex networks. (Which, sadly, did not save the author of these
words, King Philip II of Macedon, from an assassination.)

Locate Isolates

The smallest distinct element of any network is an isolate: a node that is not
connected to any other node (an isolate can still be connected to itself with
a loop edge). Though isolates belong to a bigger network, their very existence
is against the networking spirit, because the whole idea of networking is that
of connectedness. An example of an isolate in a semantic network is a word
that has no synonyms, no homonyms, no antonyms, and no other relation-
ships to any other word (say, “sphygmomanometer” in a network of simple
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synonyms—because it has none). An example of an isolate in a product net-
work is an item that nobody ever buys together with any other item. The last
meal comes to mind, but then, again, nobody pays for the last meal, so
technically it is not even a purchase.

As a network analyst, you want to identify isolates and research the reasons
for their isolation. Have you overlooked an edge while constructing the net-
work? (Go over the network construction process one more time.) Have you
replaced negative ties in a signed graph with zero-weight positive ties and
later discarded them? (Check if there is a better way to preserve negative ties.)
Have you sliced a weighted network too aggressively? (Slice Weighted Networks,

to be valid, there is no more need to keep the isolates in the network. Locate
them with nx.isolates(G), include their names or count into the final report, and
chop the isolates off:

G = nx.Graph()
G.add nodes from("ABCD") # No edges -- all nodes are isolates
my isolates = nx.isolates(G)

[IDI, |c|, IBI, |A|]

G.remove nodes from(my isolates) # No more isolates!
my_isolates = nx.isolates(G)

[1

Split Networks into Connected Components

A connected component is a subset of network nodes such that there exists
a path (Think in Terms of Paths, on page 88) from each node in the subset to
any other node in the same subset. An isolate is a special case of a connected
component: there is only one node in the subset, so no path is even needed!
The figure on page 127 shows a network with three connected components: a

larger component A, smaller component B, and isolate C. A fictitious network
traveler can get from any node in A to any node in A, but not to any node in B.

If a network is directed, it may have weakly and strongly connected compo-
nents. In a strongly connected component, there is always a directed path
from any node of the component to any other node of the same component.
In a weakly connected component, you are allowed to travel one-way streets
in the wrong direction (drive responsibly!), if this is what it takes to get from
the source to the destination. Both components A and B in the figure are
weakly connected, but B is also strongly connected. (No nodes are reachable
from a2!)
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NetworkX provides two families of functions for component analysis. Let’s
experiment with the network from the previous figure:

make-figures.py

F = nx.DiGraph()
F.add node("C")
F.add edges from(
F.add edges from(

[("B", "b0"), ("bO", "b1"), ("b1", "B")])
[("A", "a0"), (*a0", "a1"), (*al", "a2"), ("al", "a3"),
("a3", "A")1)

Functions nx.connected_components(G) (implemented only for undirected net-
works), nx.strongly_connected_components(F), and nx.weakly_connected_components(F) (both
implemented only for directed networks) take a network of the appropriate
type as the parameter and return a generator of sets of nodes that belong to
the namesake components. You can coerce the generator to a list, if necessary:

list(nx.weakly connected components(F))

[{'A*, 'a0', 'a2', 'al', 'a3'}, {'B', 'b6', 'bl'}, {'C'}]
list(nx.strongly connected components(F))

[{'a2'}, {"A', 'a@®', 'al', 'a3'}, {'B', 'bO', 'bl'}, {'C'}]

G = nx.Graph(F)
list(nx.connected components(G))

[{'A", 'a0’, 'a2’, 'al’, 'a3'}, {'B', 'b0’, 'bl'}, {'C'}]
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Note how we convert the directed graph F into an undirected graph G in the last
expression. The connected components of the converted graphs are the same
as the weakly connected components of the original graph. You can use the
obtained node sets to extract the respective subgraphs from the original graph:

wcc = nx.subgraph(F, list(nx.weakly connected components(F))[1])
len(wcc)

2
Alternatively, you can use the other family of functions:

¢ nx.connected_component_subgraphs(G) (implemented only for undirected networks)

e nx.strongly_connected_component_subgraphs(F)

¢ nx.weakly_connected_component_subgraphs(F) (the latter two functions are imple-
mented only for directed networks)

These functions take a network as the parameter and return a generator of
Graph of DiGraph objects, depending on the original network type. So, if you only
want to know which nodes belong to what component, the functions without
the subgraphs suffix may save you some time. If you have further operations
in mind, go with the second family.

Most co-occurrence networks, by construction, are undirected. Indeed, the
fact that items A and B are in the same place at the same time implies that
A is in the same place with B and the other way around. That’s why for the
rest of the chapter, let’s assume that all networks are undirected and all
connected components are just connected components, without any references
to their strength or weakness.

One of the components in a complex network often dominates the others: not
so much because it is strong, but because it is giant. The giant connected
component (GCC) is simply the largest component by the node count. NetworkX
does not provide a function for extracting the GCC, but you can still find it
by calling one of the functions mentioned previously, reverse sorting the
generated list by size, and taking the first element:

comp_gen = nx.connected components(G)
gcc = sorted(comp gen, key=len, reverse=True)[0]

The size of a GCC in complex networks typically ranges between 80 and 100
percent of the full network size. You may want to treat each smaller component
as an indivisible structural unit of the network and focus your attention on
the GCC. As a bonus, you will spare yourself from remembering which algo-
rithms and functions apply to disconnected networks and which do not.
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What Makes Components Giant?

According to Albert-Laszl6 Barabasi, prominent complex network researcher, most
complex networks evolve as a result of preferential attachment. Preferential attachment
(also known as the “rich get richer,” “80/20,” or the Pareto principle) suggests that
when a new node joins a network, it is likely to attach itself to a node with the highest
degree. Thus, the degree of the node with the highest degree becomes even higher,
and the connected component that contains that node grows faster than all other
connected components, leading to the emergence of the GCC. The converse is also
true: if a network has a GCC, it is likely a result of preferential attachment.

Separate Cores, Shells, Coronas, and Crusts

The only valuable property of a connected component is its connectedness.
There is always a way to get from any node A in a component to any other
node B in the same component. The property of connectedness is global and,
while important for social and communication networks (where paths are
responsible for information diffusion), may not be adequate for semantic,
product, and other types of networks, where direct or short-haul connections
are more essential. Consider a network of synonyms: “emerald” is a synonym
of “green,” and “green” is a synonym of “ecological,” but “ecological” is hardly
a synonym of “emerald.”

Let’s zoom into a connected component (say, in the GCC) and try to find more
elements inside.

One of the fundamental tools in modern sociology is core-peripheral analysis.
A social network, thereby, consists of two sets of nodes: the core (the nodes
that are more or less tightly interconnected) and the periphery (the nodes
that are tightly connected to the core, but only weakly, if at all, connected to
the other peripheral nodes). The graphs of core-peripheral networks often
have a “hairy” appearance: their dense “body” is adorned with “pendulums,”
multi-edge self-loops, and so on.

Social networks are not the only networks known to have the core-periphery
structure. As another example, networks of journal citations reveal the same
pattern, where the core consists of papers published in prominent journals
in the field, and papers published in marginal journals populate the periphery.

Traditional social network analysis attacks the core-periphery decomposition
via fuzzily defined blockmodeling. We, on the other hand, will start by intro-
ducing a more mathematically rigid classification of nodes into four categories:
cores, shells, coronas, and crusts.
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A core or, more accurately, a k-core (where k could be any non-negative integer
number) is a subgraph of the original network graph such that each node in
the subgraph has at least k neighbors. A O-core is, naturally, the whole graph.
A 1-core is a graph with no isolates. A 2-core is a graph where no node has
fewer than two neighbors (no node is a part of a pendulum). Any graph usu-
ally has more than one core; the core with the largest possible k is called the
main core. A k-core construction process is iterative:

1. Start with the original graph and remove all nodes that have a degree
smaller than k and all the incident edges; this will probably result in some
of the remaining nodes losing their neighbors and their degree decreasing.

2. Some nodes that have k neighbors or more may have fewer than k neigh-
bors after trimming; remove them, too, and iterate until no remaining
node has fewer than k neighbors.

3. The remaining nodes form the k-core.

A k-crust is what is left of the original network when we remove the k-core.
In other words, the crust is the periphery.

A core has its internal structure. The subgraph of the k-core in which all
nodes have exactly k neighbors in the core is called a k-corona. Unlike crusts,
coronas are not necessarily connected and may consist of unconnected
components—that is, unconnected within the corona.

Finally, a subset of nodes in k-core but not in (k+1)-core, is called a k-shell.
Just like a corona, a shell may consist of components that are not connected
within the shell. Let’s experiment with the graph from the following figure.
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make-figures.py
G = nx.Graph(

(("Alpha", "Bravo"), ("Bravo", "Charlie"), ("Charlie", "Delta"),
("Charlie", "Echo"), ("Charlie", "Foxtrot"), ("Delta", "Echo"),
("Delta", "Foxtrot"), ("Echo", "Foxtrot"), ("Echo", "Golf"),
("Echo", "Hotel"), ("Foxtrot", "Golf"), ("Foxtrot", "Hotel"),
("Delta", "Hotel"), ("Golf", "Hotel"), ("Delta", "India"),
("Charlie", "India"), ("India", "Juliet"), ("Golf", "Kilo"),

("Alpha", "Kilo"), ("Bravo", "Lima")))

NetworkX provides a useful collection of functions for calculating all k things.
Each of them takes a graph and k as the parameters and returns the namesake
core-periphery element (k is optional for nx.k_shell(), nx.k_crust(), and nx.k_core():

they return the main shell, crust, and core by default):

nx.k core(G).nodes() # Round and square nodes and shaded edges
['Golf', 'Charlie', 'Delta', 'Hotel', 'Foxtrot', 'Echo']

nx.k crust(G).nodes() # Triangular nodes and shaded edges
['Lima', 'Bravo', 'Kilo', 'Juliet', 'Alpha', 'India']

nx.k shell(G).nodes() # Round and square nodes and shaded edges
['Golf', 'Charlie', 'Delta', 'Hotel', 'Foxtrot', 'Echo']

nx.k corona(G, k=3).nodes() # Square nodes

['Golf', 'Charlie']

Extract Cliques

Unlike the smaller components, the GCC and the k-cores are usually too large
to be considered a single structural element. Depending on your interpretation
of the nodes and edges, you should zoom in even further in a search for
smaller network building blocks, such as cliques.

A clique, or, more accurately, a k-clique is a subset of k nodes such that each
node is directly connected to each other node in the clique. (We distinguish
weak and strong cliques in directed graphs.) Cliques are also known as
complete subgraphs. The nodes in a clique may be connected to other nodes
as well, but they do not have to—that is, the degree of a node in a k-clique is
at least k-1. The principal difference between cliques and connected compo-
nents is that the path between any two nodes in a clique must have the length
of 1, while in a component, the path length is limited only by the graph
diameter (Think in Terms of Paths, on page 88).
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Any single node is a 1-clique, a monad. Any two connected nodes form a 2-
clique, a dyad. A triangle of nodes—the result of transitive closure—is a 3-
clique, a triad (Explore Neighborhoods, on page 84). Monads, dyads, and triads

are very common in complex networks.

A maximal clique is a k-clique that cannot be made a (k+1)-clique by adding
another node to it. For example, clique (Alpha, Bravo, ..., Echo) in the following
figure is a maximal clique, because including any other node (Foxtrot, Golf,
or Hotel) into it invalidates the complete connectedness property. For example,
if Foxtrot is included, then (Alpha, Bravo, ..., Foxtrot) is not a clique anymore.
The largest maximal clique in a network graph is called the maximum clique.
(No, I did not invent this terminology!)

Let’s experiment with the graph from the following figure:

make-figures.py

# Generate a 5-clique

G = nx.complete graph(5, nx.Graph())

nx.relabel nodes(G,
dict(enumerate(("Alpha", "Bravo", "Charlie", "Delta", "Echo"))),

copy=False)

# Attach a pigtail to it

G.add_edges from([
("Echo", "Foxtrot"), ("Foxtrot", "Golf"), ("Foxtrot", "Hotel"),
("Golf", "Hotel")1)

NetworkX provides function nx.find_cliques() for finding all maximal cliques in a
graph (the largest of which is the maximum clique). The function returns a
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list generator, and this time, the use of a generator is not a tribute to
Pythonic programming style, but a dire necessity. As a matter of fact, larger
cliques, especially maximal and maximum cliques, are rare and hard to
find. Finding large cliques is a computationally very hard problem (known
as an NP-complete problem) and listing all large cliques requires exponential
time. Unfortunately, function nx.find_cliques() generates cliques in a random
order, but if you want to get only some maximal cliques, not all of them,
then you can stop the generator whenever you want. The following code
finds all three maximal cliques from the figure (I highlighted the larger two
in the figure):

list(nx.find cliques(G))

[['Golf', 'Hotel', 'Foxtrot'l], ['Echo', 'Alpha', 'Bravo',
'Charlie', 'Delta'], ['Echo', 'Foxtrot']]

You have at least two good reasons to search a network for k-cliques: a the-
oretical and an empirical one. In the theoretical case, you may already have
some prior knowledge about the network structure. For example, a marketing
specialist may define a project basket in a product network as a collection
of products such that they are always purchased together (and, therefore,
form a clique when represented as a network). Recognizing k-cliques in a
product network almost instantly leads you to the discovery of project bas-
kets. Closely cooperating teams in social and organizational networks are
k-cliques, and such are collections of complete synonyms in semantics
networks.

In the empirical case, you use cliques as opaque network atoms. If you
assume that an edge between two nodes is an indication of their significant
similarity, then a complete connectedness within a clique implies overall
significant similarity of the member nodes. Thus, you can replace all k nodes
with one node that represents the entire clique, or with a newly minted
“clique-node,” potentially significantly simplifying the network topology.
Function nx.make_max_clique_graph() generates a new graph by replacing each
maximal clique with a new synthetic node:

synthetic = nx.make max clique graph(G)
synthetic.edges()

[(1, 3), (2, 3)]

Naturally, you can replace cliques with synthetic nodes in the a priori case,
too! Just be aware that this function first finds all maximal cliques, with all
the NP-completeness implications of finding all maximal cliques.
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Recognize Clique Communities

By definition, a clique is a very rigid and sensitive network structure. Removing
an edge from a k-clique transforms it into two interwound, partially overlap-
ping, adjacent (k-1)-cliques. In the figure on page 135, subgraphs Alpha—Delta

and Alpha—Charlie, Echo are 4-cliques each, but the whole network is not a 5-
clique, because the edge Delta—Echo is missing (I show it as a dashed line).

Intuitively, you may feel that all k nodes somehow belong together and the
missing edge could have been a victim of a measurement or data entry error
or improper slicing (Slice Weighted Networks, on page 79) or conversion from
a directed graph. Nonetheless, nx.find_cliques() will not recognize your k nodes
as a clique (because they are not). Instead, it will report two smaller cliques,
leaving it up to you to notice that they actually share k-1 nodes and their

separation may have been caused by a missing edge.

Luckily, NetworkX supports k-clique communities. A k-clique community is a
union of all k-cliques that can be reached through adjacent k-cliques. The
process of reaching all cliques in the union is called clique percolation [PDFVO5].

When a Community Is Not a Community and a Cluster Is Not a Cluster
Anthropologists and social scientists have a different idea of a
community and may get easily confused at this point. For them,
a community is a tightly knit group of people, not a group of
abstract nodes. To avoid getting into pointless terminological fights,
I will sometimes refer to communities as clusters. Unfortunately,
data scientists who may be reading this book, too, have a different
definition of a cluster. Apparently, when it comes to network
analysis, terminological fights are unavoidable.

K-clique communities in complex networks are a curse and a blessing. Why
are clique communities a blessing?

They provide a flexible substitute for inflexible proper cliques. True, the nodes
in a community are not in general directly interconnected; however, if the
relationship represented by the edges is actually transitive (if A is adjacent
to B, and B is adjacent to C, then A is supposed to be adjacent to C—as it
would be in the case of two products always purchased together) and the
missing edges result from network construction imperfection, then the
length of the path between any two nodes in a clique community does not
really matter.

Why are they a curse, then?
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Just like strict cliques, clique communities do not necessarily partition the
network and can overlap with other clique communities. In other words, the
same node may belong to more than one clique or clique community. This
may or may not be what you want.

What's worse, if the relationship represented by the edges is only approximate-
ly transient (if A is adjacent to B, and B is adjacent to C, then A is not neces-
sarily adjacent to C—as it would be in the case of personal friendship), then
two nodes separated by a multi-edge path may actually have little or nothing
shared, and their membership in the same clique community would be
questionable.

Only you can determine whether clique communities are appropriate for your
network. But once you do, here’s the function for doing the dirty job:

list(nx.k clique communities(G, k=3))

[frozenset({'Golf', 'Hotel', 'Foxtrot'}),
frozenset({'Alpha', 'Charlie', 'Bravo', 'Echo', 'Delta'})]

Note that a k-clique community always has at least k nodes!

Frozen Sets
A frozenset is an immutable version of a Python set. Because of its
immutability, it can be used as key in a dictionary, but it can be
cast to a set, if any modifications are necessary.
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Outline Modularity-Based Communities

The fuzziest and most flexible form of node organization in
a complex network is network communities based on modu-
larity. They are sometimes also called clusters or groups,
and are not to be confused with clique communities (Recog-
nize Clique Communities, on page 134).

This section uses
community.

Let’s start with modularity first, and assume that the network has been
already partitioned into non-overlapping communities (later you’ll figure out
how). According to Newman’s definition [NewO06], modularity m is the fraction
of the edges that fall within the glven communities minus the expected fraction
if edges were distributed at random, while conserving the nodes degrees. The
value of m is in the range from -0.5 (inclusive) to 1 (exclusive). If most of the
edges are incident to the nodes within the same community, the modularity
is very high, close (but not equal) to 1, and the proposed partition describes
a very good community structure. The modularity of -0.5 means that the
nodes within the same community are not adjacent at all—the proposed
community structure is worse than random; in fact, you are probably dealing
with anti-communities that induce bi- and multi-partite networks (as in Project

Bipartite Networks, on page 178).

Ideally, you want to partition a network in such a way that the modularity is
as high as possible. The modularity of 0.6 and above corresponds to networks
that have a clearly visible community structure. Unfortunately, getting the
largest modularity is hard for at least three reasons:

e The problem of optimal partitioning is NP-complete with respect to the
network size. To find the best partition, you should calculate modularity
for every possible partition and then select the best one. The number of
partitions is simply too large, and the problem does not have a feasible
exact solution for any non-trivial graph.

e Approximate solutions (for example, the most popular Louvain algorithm

means every time you run them, you may end up having slightly different
partitions.

e The resolution of modularity-based methods scales poorly, and they
overlook small communities in large networks. A plausible solution is to
partition the network recursively into smaller and smaller communities.

Anaconda, the most popular Python distribution, does not currently include
tools for modularity-based community detection. Fortunately, the tool exists
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and can be easily installed via pip. It is called python-louvain. The externally vis-
ible name of the module is community, and you import it under this name.

Module community uses the louvain algorithm that optimizes network modular-
ity. The discovered communities are represented as a partition: a dictionary
with node labels as keys and integer community identifiers as values. The
module also calculates the modularity of the partition with respect to the
original network.

part = community.best partition(G)

{'Golf': O, 'Bravo': 1, 'Delta': 1, 'Hotel': 0, 'Foxtrot': 0O,
'Charlie': 1, 'Alpha': 1, 'Echo': 1}
community.modularity(part, G)

0.3035714285714286

A Faster Way
There is a faster implementation of the louvain algorithm provided
through the module louvain (must be installed separately, too).
However, it works only with graphs constructed in iGraph, not in
NetworkX.

Just as with cliques and clique communities, you may want to replace the
smaller structural elements of a large network with synthetic nodes and build
an induced graph:

induced = community.induced graph(part, G)
induced.nodes ()

[0, 1]

induced.edges()

[(0, 6, {'weight': 10}), (0, 1, {'weight': 1}), (1, 1, {'weight': 3})]

Note that the induced graph is weighted and has loops. The weight of an
induced edge incident to the synthetic community nodes is the number of

edges in the original network that are incident to the nodes in the respective
communities.

Explore Modularity-Based Communities with Pandas

If you're familiar with Pandas, you can convert a network partition part (a dictio-
nary) into a Series for the ease of further processing. You can see the total
number of communities, their sizes, and which nodes belong to which
community:
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part_as_series = pd.Series(part)
part _as series.sort values()

Foxtrot
Golf
Hotel
Alpha
Bravo
Charlie
Delta
Echo
dtype: int64

el el X}

How big are the communities?
part _as series.value counts()

0 5
1 3
dtype: int64

Perform Blockmodeling

The construction of the graph of maximal cliques or communities is a special
case of blockmodeling—grouping network nodes according to some meaningful
definition of equivalence and replacing them with synthetic “supernodes.” A
more general function nx.blockmodel(G,part) takes a graph G and its partition part as
a list of node collections (lists or sets), and creates an induced graph. Unlike
nx.make_max_clique_graph() and community.induced_graph(), nx.blockmodel() requires the
partition includes every node in the original graph exactly once. You can manu-
ally remove the offending overlapping clique from a clique partition, if you want:

cliques = list(nx.find cliques(G))

[['Golf', 'Hotel', 'Foxtrot'l, ['Echo', 'Alpha', 'Bravo',
'Charlie', 'Delta'l], ['Echo', 'Foxtrot']]---not good!

synthetic = nx.blockmodel(G, [cliques[@], cliques[1]])
synthetic.edges()

[(0, 1)]

Not All Blockmodeling Leads to the Same Rome
For social scientists, “blockmodeling” often means a very different
thing: separating a network into the core and periphery by way of
rearranging rows and columns of the incidence matrix. Blockmod-
eling as understood by complex network analysts is a generaliza-
tion of the core-periphery decomposition.
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Name Extracted Blocks

From the data scientific point of view, network analysis at the macroscopic level
(extraction of communities, cliques, and other structural blocks) is an example
of unsupervised machine learning. The goal of unsupervised machine learning is
to infer a network’s hidden structure in the absence of “labels”: node and edge
attributes (except, perhaps, the edge weights).

The unearthed blocks suffer from two major interrelated problems:

e It is not clear what they mean.
e They are nameless.

In fact, if you knew the purpose or nature of a block, you would give it a name,
and if you knew the name, you would guess what its purpose or nature is.

Selecting a good name for a block can be done in at least three ways.

¢ You can use your intelligence: look at the individual node labels and gener-
alize. A block that has labels “car,” “truck,” “train,” and “sled” probably
deserves to be called “land transportation,” and “hand,” “arm,” “leg,” “head,”
and “chest” belong to the block “body parts.” If unsure or confused, hire a
subject matter expert (SME) whose job is to know why nodes X and Y ended
up in the same block.

e Better yet, hire a lot of subject-matter experts—or sort-of-experts. Amazon

thousands of people (“workers,” in the AMT terminology) for a very modest
price. Ask 10,000 AMT workers what “foos,” “bars,” and “foobars” have in
common. If the terms have anything in common at all, you will most probably
get an answer supported by a solid majority of workers.

¢ Finally, if you cannot hire an SME and would rather not mess with AMT, you
can still generate block labels from its data. If the nodes in a block differ—for
example, in size or weight—take the largest of them (say, “head”) and use its
label to synthesize the block label (for example, “the ‘head’ group”; see Interpret

attributes or have no attributes at all, choose the first node in the alphabetic
order (“the ‘arm’ group”).

In this chapter, you learned how to dissect a complex network and explore its
anatomy. You know how to locate isolated nodes and components; identify cores,
shells, coronas, and crusts; and compute node cliques, clique communities, and
modularity-based communities (sometimes referred to as clusters). Now, it is time
to apply the freshly minted “network-o-scope” to a couple of real-world semantic
and product networks.


http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

...Culture opens the sense of beauty.

Ralph Waldo Emerson, American essayist, lecturer,
and poet

CHAPTER 12

Case Study: Performing Cultural
Domain Analysis

Cultural domain analysis (CDA, Analyzing Qualitative Data.
Thls Chapter uses NLTK, y ( ........... y ....... g Q ..................................

Pandas, NUMPY. 1" oine think about lists of terms that somehow go

together and how this thinking differs between groups. Some
people associate “candle” with “Christmas,” others with “hurricane” and
“blackout,” and yet others with a “self-injury” (cutting/burning their skin)
toolset. Anthropologists, ethnographers, psychologists, and sociologists use
CDA to understand semantic mindscapes of social, ethnic, religious, profes-
sional, and other groups. Before personal computers and specialized CDA
software became available, social scientists used to do CDA essentially by
hand. But not anymore! Python comes to rescue.

You don’t have to be an anthropologist, ethnographer, psychologist, or sociol-
ogist to read this chapter. Regardless of your background, you will learn how
to harvest semantic data from a popular blogging website and cache it locally
for further efficient access. You will see how to convert natural language units
into terms and build, analyze, and interpret a semantic network reflecting
the interests of the fans of The Good Wife, a CBS TV show. Hopefully, you will
be able to extend the same approach to other shows, other websites, and
other tag corpora.

The complete code for this case study is available in the file Ij.py."

1. pragprog.com/titles/dzcnapy/source_code
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Get the Terms

Start by importing all necessary modules and defining the domain (LJ com-
munity) of interest. We suggest using Pandas and NumPy, the power tools of data
science, and NLTK—the Natural Language Toolkit—in this project, as well as
some other libraries, so you need to import them. (If you last used them a
while ago, you might want to blow the dust off your skill set [Zin16].)

lj.py

import urllib.request, os.path, pickle # Download and cache
import nltk # Convert text to terms

import networkx as nx, community # Build and analyze the network
import pandas as pd, numpy as np # Data science power tools

Your next step is to get and cache term lists. A term is a unit of CDA. It can
be a word, a word group, a word stem, or even an emoticon (emoji). CDA looks
into similarities between terms that are shared among a reasonably homoge-
neous group of people. So, you need to find a reasonably homogeneous group
of individuals, a list of terms, and a way to assess their similarity.

A great source of semantic data is LiveJournal (LJ)—a collection of individual
and communal blogs with elements of a massive online social network.”
LiveJournal has an open, easily accessible API, and encourages the use of
public data for research. Unfortunately, LJ membership and activity peaked
in the early 2000s, but the site still hosts some lively blogging communities
(such as the celebrity gossip blog “Oh No They Didn’t!” ), and it serves rich
layers of historical data.

LJ communities consist of individual members that have their private blogs,
profiles, friend lists, and interests (online identity markers). In fact, LJ treats
communities and users as same-class citizens: communities, like individuals,
have their profiles, interests, and even “friends.” The URLs of user/commu-
nity profiles, interest lists, and friend lists have a regular structure. If the-
gooduwife_cbs is the name of a community (you will use it in the rest of the

For the purpose of this mini-study, let’s define two terms to be similar from
the perspective of an LJ community if they are consistently listed together on

2.  www.livejournal.com
3.

urnal.com
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different interest lists of the community members. Your first job is to obtain
and process the community membership list. A typical list looks like this:

# Note: Polite data miners cache on their end. Impolite ones get banned.
# Note: thegoodwife cbs is a community account

P> emploding

P> poocat

«..more members..>

P< brooketiffany

P< harperjohnson

The first line of the document makes a significant point: if you download
something once, you should not download it again. Create the directory cache
and store all downloaded data into it. If you run CDA on the same data again,
it will hopefully still be in the cache, assuming that interest lists and commu-
nity membership are reasonably stable.

lj-py

L] BASE = "http://www. livejournal.com/misc"
DOMAIN_NAME = "thegoodwife cbs"

cache d = "cache/" + DOMAIN NAME + ".pickle"
if not os.path.isfile(cache d):
domain = download(LJ BASE, DOMAIN NAME)
if not path.os.isdir("cache"):
os.mkdir("cache")
with open(cache d, "wb") as ofile:
pickle.dump(domain, ofile)
else:
with open(cache d, "rb") as ifile:
domain = pickle.load(ifile)

This code fragment uses the module pickle—native Python data serializer
(Export and Import Networks, on page 30). If the cache directory and file exist,
function pickle.load() deserializes the data object. Otherwise, create the directory
and file and call function pickle.dump() to serialize the data object domain and
save it into the file. Note that you must open the file in the binary mode. The

compressed cached pickle file is available as thegoodwife_cbs.pickle.zip.*

The rest of the community membership list on page 143 is a two-column table.
The first column represents some subtle aspects of membership types (“P”
for individual users, “C” for communities, “<” for “friends,” “>” for “friends-
of”); the second column has usernames. To keep your code modular, write a

function download(domain_name) that takes care of this and similar tables.

4. pragprog.com/titles/dzcnapy/source_code
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lj.py

def download(base, domain name):
Download interest data from the domain name community on
LiveJournal, convert interests to tags, create a domain DataFrame

members url = "{}/fdata.bml?user={}&comm=1".format(base, domain name)
members = pd.read table(members url, sep=" ",
comment="#", names=("direction", "uid"))

wnl = nltk.WordNetLemmatizer()
stop = set(nltk.corpus.stopwords.words('english')) | set(('&"'))
term vectors = []
for user in members.uid.unique():
print("Loading {}".format(user)) # Progress indicator
user url = "{}/interestdata.bml?user={}".format(base, user)

try:
with urllib.request.urlopen(user url) as source:
raw_interests = [line.decode().lower().strip()
for line in source.readlines()]

except:
print("Could not open {}".format(user url)) # Error message
continue

if raw_interests[0] == '! invalid user, or no interests':
continue

interests = [" ".join(wnl.lemmatize(w)

for w in nltk.wordpunct tokenize(line)[2:]
if w not in stop)

for line in raw _interests

if line and line[0] != "#"]

interests = set(interest for interest in interests if interest)
term vectors.append(pd.Series(index=interests, name=user).fillna(1l))

return pd.DataFrame().join(term vectors, how="outer").fillna(0)\
.astype(int)

Convert the interest table into a two-column DataFrame.

Prepare a WordNet lemmatizer wnl—a tool for converting words into lemmas
—and a list of stopwords stop, extended to include “&.” You will need this
list to eliminate too frequent words. Coerce the standard list of stopwords
into a set for faster lookup, because the list lookups in Python are notori-
ously slow.

Your next step is to download all interest lists, convert interests into terms
(they are not always the same!), and combine all term lists into a term matrix
—a matrix whose columns are term lists. An interest list looks very similar
to the membership list—even the call to caching is the same:
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# Note: Polite data miners cache on their end. Impolite ones get banned.
# <intid> <intcount> <interest ..>

18576742 1 +5 sexterity

624552 7 a beautiful mess

18576716 1 any more hot chicks?

44870 28 seriously?

1638195 94 shiny!

«.more interests..»

This is still a table (showing interest ID, the system-wide rank of the interest,
and the actual interest), but the number of columns differs, depending on
how many words are in the interest description. Pandas DataFrames are poor
parsers for irregular texts; tackle the columns by hand, using low-level Python
tools. Note that if the username is not found or the user has not declared any
interests, the content is entirely different:

! invalid user, or no interests
So, let’s continue the function code inspection:

© Set up an empty list accumulator term_vectors. At the end of the loop, it
becomes a list of term vectors—raw material for the term matrix.

O Loop through all unique usernames in the community, because you need
the URLs of their interest lists.

© Obtain an interest list raw_interests as a Python list of strings for each distinct
community member in the try-except block. If the URL fails to open (for any
reason beyond your control), the script does not crash but politely informs
the programmer of the failure and proceeds to the next user. The same thing
happens when the user has no interests or does not exist at all. If everything
goes fine, decode and strip each string of trailing whitespaces. LJ interest
lists are always in lowercase, but if they are not, a call to lower() ensures that
in the rest of the script you compare apples to apples.

0O Split each non-empty, non-commented interest into individual words with
nltk.wordpunct_tokenize(). There may be more than one word in an interest
description, and some or all of these words may be forms of other words
(as in “chicks”—*“chick”). Text analysis practitioners preach different ways
of handling word forms. Some suggest to leave the forms alone and treat
them as words on their own. Some advocate lemmatizing or stemming;:
reducing a form to its lemma (the standard representation of the word)
or to the stem (the smallest meaningful part of the word to which affixes
can be attached). A lemmatizer reduces “programmers” to one “program-
mer,” and a stemmer, depending on its zeal, yields a “programm” or even
a “program.” Let’s follow the lemmatizing crowd. Furthermore, almost
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everyone agrees that certain words (such as “a,” “the,” and “and”) should
never be counted at all. Remove them.

@ As aresult of lemmatization, stemming, and stopword elimination, a term
list may end up having duplicates (for example, “the chicks” and “a chick”
may both become “chick”). Convert each term list into a set. Surely, sets
have no duplicates.

O Your goal is to produce a term vector model (TVM)—a table where rows
are terms and columns are community members.’ In the Pandas language,
this table is known as DataFrame, and its columns are known as Series.
Transform a term list to a Series, where the individual terms become the
Series index, and all values are set to 1s, like this:

print(term vectors)

shiny! 1
+5 sexterity 1
big damn hero 1

«..more terms..»
Name: twentyplanes, dtype: float64

© Finally, join all Series into a DataFrame. This operation involves the mystery
of data alignment, whereby all participating Series are stretched vertically
to have their row labels (terms!) aligned. Such stretching almost inevitably
produces empty cells in the frame. Fill them up with zeros: an empty cell
in row A and column B signals that the term A was not on the list B. The
resulting variable Dataframe has 12,437 rows and adequately represents
the cultural domain of LiveJournal users interested in the CBS show The
Good Wife.

Build the Term Network

The next CDA step requires that you build a network of terms: a graph where
nodes represent terms, and (weighted) edges represent their similarities.

You could have included all 12,437 discovered terms in the graph, but some
of them are mentioned only once or twice (which is expected, given Zipf's
law®). Rather than wondering why the less frequently used words are in fact
less frequently used, remove all rows with fewer than ten occurrences, but
provide an option of changing the cut-off value MIN_SUPPORT in the future. At
this point, you might wish that Python had first-class constants, but
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nonetheless spell MIN_SUPPORT in all capital letters. DataFrame limited is a truncated
version of domain: it has only 319 rows.

Zipf's Law

Zipf's law states that given some corpus of terms drawn from a natural language, the
frequency of any word is inversely proportional to its rank by frequency. In other
words, if the frequency of the most frequent term is f;,, then the frequency of the next
most frequent term is f,/2, and so on, and the frequency of the nth term is f,/na. The
same law (with the slightly different exponent «) applies to population ranks of cities,
corporation sizes, income rankings, and more. The continuous form of the discrete
Zipf law is known as Pareto distribution, and Zipf’s law is a special case of the power
law (mentioned on page 106).

lj.py

MIN SUPPORT = 10

sums = domain.sum(axis=1)

limited = domain[sums >= MIN SUPPORT]

Since you want to build a network based on co-occurrences, you can consider
two terms as similar if different community members frequently use them
together. Calculate the matrix of co-occurrence by matrix-multiplying the
limited DataFrame by itself.

The resulting square Dataframe cooc contains the total counts of all terms on
the main diagonal (suppress them by multiplying the matrix by an inverted
identity matrix) and the counts of co-occurrences elsewhere (they will eventu-
ally become weighted network edges).

lj.py
cooc = limited.dot(limited.T) * (1 - np.eye(limited.shape[0]))

Slice the Network

Now, you must make another painful decision: which matrix elements become
edges and which get discarded? Slice Weighted Networks, on page 79, explains
the slicing philosophy. Choose theshcmg threshold, SLICING, to be six. Higher
SLICING results in many small communities. Lower SLICING results in few large

communities. Six seems to be a good compromise between count and size.

The resulting matrix is very sparse (every cell represent an edge, but we agreed
to have as few edges as possible!). Stack and normalize it—essentially convert
into a sparse matrix, where each row represents a significant edge and its
weight. Since NetworkX prefers to deal with Python (rather than Pandas) data
structures, convert the weights to a dictionary:
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lj.py

SLICING = 6

weights = cooc[cooc >= SLICING]

weights = weights.stack()

weights = weights / weights.max()

cd network = weights.to dict()

cd network = {key:float(value) for key,value in cd network.items()}

You are just one step away from having an amazingly structured network.
Let’s create a new empty graph, populate it with the edges from the dictionary,
and update the “weight” edge attributes:

lj.py

tag network = nx.Graph()

tag network.add edges from(cd network)

nx.set edge attributes(tag network, "weight", cd network)

The constructed network with the added attributes is your first fascinating
result; save it without hesitation into a GraphML file in a specially created
directory results (Share and Preserve Networks, on page 29).

lj.py
if not os.path.isdir("results"):
os.mkdir("results")

with open("results/" + DOMAIN NAME + ".graphml", "wb") as ofile:
nx.write graphml(tag network, ofile)

If you had no access to non-Anaconda modules, you would abandon Python
at this point and switch to interactive software like Pajek,7 UCINET® (which
are outside the scope of this book), or Gephi (Chapter 4, Introducing Gephi, on

stay in the same program for the entire analysis cycle.

Extract and Name Term Communities

The modularity of the new network is quite poor (we suggested on page 136

that a network is definitely modular only when the modularity is 0.6 or above):

lj.py

partition = community.best partition(tag network)

print("Modularity: {}".format(community.modularity(partition,
tag network)))

nx.set node attributes(tag network, "part", partition)

¢ Modularity: 0.15815567681142356

7. vlado.fmf.uni-lj.si/pub/networks/pajek/

8. sites.google.com/site/ucinetsoftware/home
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Apparently, counting raw co-occurrences is not the best way to describe
similarities—indeed, correlation-based networks are much more flexible, and
you will learn about them later (Chapter 14, Similarity-Based Networks, on

page 163). However, even the coarse network that you have allows some
meaningful interpretation.

The partition that you extracted precisely defines the term communities. (Add
them as an attribute part to the network nodes.) The following figure shows
the whole network of tags. The node diameter represents the number of times
the corresponding tag was mentioned in the corpus, and the node colors
match the term communities.
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So, you extracted the communities, but they are nameless. You could have
explored them with your bare eyes and come up with some proper names,
but then you would not be a hardcore Python programmer after that, would
you? Instead, add a cherry on the cake and write another seven lines of code
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that locate the five most frequently used terms per cluster. Hopefully, they
indeed describe the content.

You need a little helper function describe_cluster(terms_df). The function takes a
Dataframe of terms in one community, extracts the namesake rows from the
original domain, calculates their use frequency, and returns the top HOW_MANY
performers.
lj.py
HOW_MANY = 5
def describe cluster(terms_df):

# terms df is a DataFrame; select the matching rows from "domain"

rows = domain.join(terms df, how="inner")

# Calculate row sums, sort them, get the last HOW MANY

top N = rows.sum(axis=1).sort values(ascending=False)[:HOW MANY]

# What labels do they have?

return top N.index.values

Finally, convert the partition into a DataFrame, group the rows by their partition
ID, and beg the helper to come up with a name for each community.

lj.py

tag clusters = pd.DataFrame({"part id" : pd.Series(partition)})

results = tag clusters.groupby("part id").apply(describe cluster)

for r in results:
print("-- {}".format("; ".join(r.tolist())))

Surprisingly, it works!

-- good wife; harry potter; game throne; misfit; skin

-- music; reading; movie; writing; book

-- bone; grey ' anatomy; gilmore girl; house; friend

-- battlestar galactica; west wing; x - file; hugh laurie; house md
-- lost; glee; fringe; vampire diary; 30 rock

-- doctor; veronica mar; firefly; supernatural; buffy vampire slayer

Each line shows up to five most frequently mentioned terms per cluster (the
terms are separated by semicolons). Some terms look strange and barely
recognizable (“x - file”)—but remember all those rigorous transformations that
they had to go through, such as lemmatizing! Some terms are duplicates
(“house md”—"house”), but this simply means that the transformations were
not rigorous enough.

Interpret the Results

There are two levels of interpretation of the CDA results.

At the lower level, you can conclude that all 319 terms selected for analysis
are important for The Good Wife viewers—otherwise, the viewers would not
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have selected them. Moreover, some of the terms go together more often than
the others. You can see that “bone[s],” “grey ’[s] anatomy,” and “gilmore girl[s]”
have something to do with each other (hint: Sean Gunn starred in all three
series); “veronica mar][s]” and “firefly” are TV shows that were both prematurely
canceled; “music,” "reading,” and “writing” are popular activities... You can
make these mechanistic conclusions without having the slightest idea about

” 9

the cultural domain.

At the higher level, you might be an ethnographer, anthropologist, psycholo-
gist, or sociologist interested in the mindscape of The Good Wife fans. In
particular, you might want to compare their mindscape to the mindscapes
of, say, Harry Potter or House, M.D. fans. However, since you are a humble
computer programmer or data scientist, you shall entrust the higher level
interpretation to the SMEs.

This case study guided you from selecting an online blogging (or, rather, gossip-
ing) community to constructing and partially interpreting a cultural domain—
a semantic network of terms partitioned into six term collections. The method
is fairly extensible and can be applied to other topical communities.

You have seen a network of words, but you have not seen it all. In the next
chapter, we will show you a network of cosmetics!
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In Constantinople there are some persons, particularly Armenians,
who devote themselves to the preparation of cosmetics, and obtain
large sums of money from those desirous of learning this art.

G. W. Septimus Piesse, British perfumer

CHAPTER 13

Case Study: Going from
Products to Projects

One of the goals of product network analysis is to identi
This chapter uses g P Y iy

) ] nontrivial collections of co-purchased or co-recommended
Matplotlib, community.

products. We can treat such collections as “customer
projects” or “toolsets.” You can find these networks of prod-
ucts frequently purchased together or recommended to be used together in
marketing, advertising, and similar business disciplines.

As an example of product network analysis, let’'s have a look at cosmetics
sold by Sephora®. In this case study, you will learn how to convert a CSV
data file with cosmetics co-purchasing data into a complex network with
the help of csv, itertools, and collections libraries. You will calculate attribute
assortativity of the complex network and blockmodel it—construct its
higher-level representation as an induced graph. Finally, you will use
graphviz_layout() to produce a picture of the network without invoking any non-
Python software.

Read Data

Most products on Sephora’s website have “Use With” recommendations: one
or more other products that the Sephora staff recommends customers pur-
chase in conjunction with the original product.' For each product, the website
contains plenty of characterizing information, such as brand, category, price,
volume, and star rating. Each product is uniquely identified by the store SKU
number and an alphanumeric ID. We will build a network of “Use With”

1.  www.sephora.com
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products created from previously acquired data and explore its structure
concerning the product categories.

Crawling Sephora

If you want to download information about a specific product, you can program a
crawling procedure using modules urllib.request for the actual download, and BeautifulSoup
(bs4) for parsing the HTML response. (Both modules are outside of the scope of this
book.) Sephora’s website has a straightforward organization. Once you extract the
IDs of the recommended products, you can repeat the download/parse cycle until
your script finds no more new products. Since the “Use With” network is disconnected,
you will need to run the crawling procedure more than once, starting from randomly
selected products, to harvest all or at least the largest components.

For your convenience, we provide the raw data for the network construction
in two CSV files. File use-with.csv has 3,943 rows: the first row is the header;
the remaining rows contain network edges as edge ID (not needed in this case
study), start product node, and end product node. We assume that the network
is undirected (in reality it is not). File product.csv has 2,976 rows: the first row
is the header; the remaining rows describe product nodes (one node per row)
and contain product attributes as product ID, brand, star rating, and category.
The latter two attributes may be empty.

As always, we start by importing all the necessary modules (the Aside titled
“Where to Import?” on page 102 explains why):

products.py

import csv

from collections import Counter

from operator import itemgetter

from itertools import chain, groupby

import networkx as nx

from networkx.drawing.nx_agraph import graphviz layout
import community

import matplotlib.pyplot as plt

import dzcnapy plotlib as dzcnapy

Our next step is to read the edges and product attributes from the files, con-
struct a vanilla network, and decorate its nodes with attributes (Add Attrlbutes
on page 23):

products.py
with open("use-with.csv") as usewith_file:
reader = csv.reader(usewith file)
next (reader)
G = nx.from edgelist((nl, n2) for , nl, n2 in reader)
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with open("products.csv") as product file:
reader = csv.reader(product file)
next(reader)

brands = {}
cats = {}
star _ratings = {}

for ppid, brand, star rating, category in reader:
brands[ppid] = brand
cats[ppid] = category
star ratings[ppid] = float(star rating if star rating else 0)

# Set node attributes, based on product attributes
attributes = {"brand" : brands, "category" : cats, "star" : star ratings}
for att name, att value in attributes.items():

nx.set node attributes(G, att name, att value)

Note how we use next(reader) to skip the header rows in the first two highlighted
lines, and how we impute zero star rating for the rows that do not have the
star rating field in the last highlighted line.

Analyze the Networks

The resulting graph G has 2,975 nodes and 3,162 edges. It is very sparse:
print(nx.density(G))
0.0007147660678259198

It also has a lot of small connected components with two to four nodes, as
shown in the figg;q__gp_g_qgg}?@. (You can call nx.connected components(G) and

measure the size and count of them on your own.)

To keep the case simple, we consider only the largest component (the GCC).
We sort all components of G by size, select the last one (the largest!), join the
respective label lists into one with chain.from_iterable(), and extract the subgraph
induced by these nodes. We store the resulting subgraph in the variable
called gccs:

products.py

TOP_HOWMANY = 1

gccs nodes = chain.from iterable(sorted(nx.connected components(G),
key=1len) [-TOP_HOWMANY: 1)

gccs = nx.subgraph(G, gccs nodes)

The subgraph contains 25 percent of nodes and 36 percent of edges from the
original graph, and it also has the most interesting structural elements. If
you don’t fancy these numbers, simply change TOP_HOWMANY.
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So, what can we say about the distribution of the graph attributes? Do
neighbors tend to be assortative or disassortative (Estimate Networlk Uniformity

products.py
for att_name in attributes:
print("Assortativity by {}: {}"\
.format(att name,
nx.attribute assortativity coefficient(gccs, att name)))

Assortativity by category: 0.03577904976206569
Assortativity by brand: 0.8687551723142831
Assortativity by star: -0.0058012311220827645

The news is mixed. On the one hand, connected products are very likely sold
under the same brand—because cosmetic brands provide comprehensive
toolkits! On the other hand, connected products belong to different categories
—indeed, why would one buy two tools from the same category together? On
the third hand (yes, computer scientists can have as many hands as it takes
to describe the problem, as long as all hands, except for the first two, are
virtual), connected products have unrelated star ratings. The last result is
confusing, and you can leave the question open until you can afford to hire
a subject-matter expert.
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Because of the poor node assortativity by category, we expect a weird mixture
of categories within any structural element—for example, within modularity-
defined communities. Let’s partition the network into communities and see
how they are connected and named.

products.py
part = community.best partition(gccs)
print("Modularity: {}".format(community.modularity(part, gccs)))

Modularity: 0.8241527716500038

The following statements create a list of lists of nodes in each community by
collecting the nodes with the same partition ID. Function itertools.groupby()
demands that the sequence is already sorted by the same key as would be
used for grouping. In our case, the key is the partition ID, the second element
of each tuple on the list returned by parts.items(), thus itemgetter(1). We will need
the list later to auto-generate community labels.

products.py

groups = groupby(sorted(part.items(), key=itemgetter(1l)), itemgetter(1l))
community labels = [list(map(itemgetter(0), group)) for _, group in groups]
subgraphs = [nx.subgraph(gccs, labels) for labels in community labels]

We could use the previously constructed list of lists as a partition in nx.block-
model(), but instead, we will utilize community.induced graph(partition, graph), the
blockmodeling tool from the community library:

products.py
induced = community.induced graph(part, gccs)
induced.remove edges from(induced.selfloop edges())

The induced graph usually has many self-loops because of copious connections
between the nodes in the original network that belong to the same community.
We remove the loops (on the highlighted line) to avoid clutter in the future
network printout.

Name the Components

The new induced graph nicely reflects the macroscopic structure of the original
product network. It has only eighteen nodes and twenty-nine edges. The nodes
are nameless so far, and we need to give them names. Having no better source
of labels than the product categories, we select the most popular category
within each induced node as the node label. We need an auxiliary function
to obtain the name of the dominant category in a community. The Sephora
website reports category names as colon-separated hierarchical paths. To
save space in the future printout, we keep only the last path component:
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products.py
def top cat label(community subgraph):
items = [atts["category"] for , atts
in community subgraph.nodes(data=True)]
top category = Counter(items).most common(1)[0]
top label path = top category[0]
return top label path.split(":")[-1]

Function collections.Counter(sequence) is an indispensable tool for counting
occurrences of unique items in a sequence. It returns a dictionary-style Counter
object with the method Counter.most_common(n) that reports a list of the n most
popular items as (label,count) tuples (we only need the item label).

There may be several communities with the same dominant category in the
network. If we blindly relabel them, their respective induced nodes will have
the same label, and NetworkX will combine them into one node. To avoid
unnecessary node merging, let’s append the community ID to each label. The
new labels look somewhat odd, but at least they are unique:

products.py

mapping = {comm id: "{}/{}".format(top cat label(subgraph), comm id)
for comm _id, subgraph in enumerate(subgraphs)}

induced = nx.relabel nodes(induced, mapping, copy=True)

At this point, our analysis is complete, but the data sponsor (the person or
organization who ordered us the study) would rather see a nice picture than
read a thousand barely decipherable labels. It's time to produce a picture.
Function graphviz_layout() (Harness Graphviz, on page 28) attempts to find
appropriate positions forthegraphnodesandnxdraw_networkx() draws the
graph. The last function takes tons of parameters: you can customize edge
and node colors, sizes, labels, and so on. You can save the resulting picture

into a file, or display it on the screen, or both.

products.py

attrs = {"edge color" : "gray", "font size" : 12, "font weight" : "bold",
"node size" : 700, "node color" : "pink", "width" : 2,
"font family" : "Liberation Sans Narrow"}

# Calculate best node positions
pos = graphviz layout(induced)

# Draw the network
nx.draw networkx(induced, pos, **dzcnapy.attrs)

# Adjust the extents
dzcnapy.set extent(pos, plt)

# Save and show
dzcnapy.plot("ProductNetwork")
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The output of the script is in the following figure. Since graphviz_layout() uses
random numbers to calculate the best network layout, you will probably see
a different picture when you execute the same code.

To understand the figure better, let’s explore the degrees of the induced nodes
with nx.degree(induced). The results are shown in the following table.

Node(s) Degree
Foundation/ 14, Face Brushes/3 8
Makeup & Travel Cases/8
Blush/9
Eyeliner/13
Makeup Palettes/11
Eye Palettes/10, Eyebrow/16
Contour/17, Face Brushes/0, Foundation/15, Foundation/4

Moisturizers/7, Highlighter/5, Lipstick/1, Mascara/2, Mascara/6,
Nail Care/12

= N W s 0 O N

At the top of the table, you can see the cosmetics essentials that are required
for makeup but are not visible—namely, foundations and tools (brushes,
cases, palettes). The most eye-catching tools are at the bottom of the table:
mascaras, lipsticks, nail care tools, and highlighters. We can hypothesize
that if a node is connected to (recommended to be “used-with”) fewer neigh-
bors, it is more specialized. The specialized nodes are at the periphery of the
product network and depend on the more general nodes in the core.
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Just like some other case studies presented in the book, the “products to
projects” case is not limited only to the Sephora products. Given sufficient
co-purchasing data, you can build a network of products, identify dense
product communities, name them, and argue about possible reasons for their
existence.

In the Next Part

The complex networks you have seen so far had a reasonably crisp structure.
For any two nodes, you could say, with a fair degree of confidence, whether
there was an edge incident to them or not. That is not how things work in
real life.

In real life, there is almost always a degree of uncertainty involved in binary
relationships. Alice, Bob, and Chuck may be friends, but Alice and Bob may
be better friends than Alice and Chuck. A husky and a reindeer may be less
likely to be bought together than a husky and a penguin. The uncertainty is
a fact, and we need to know how to deal with it. In the next part, you will
learn how to connect nodes in a fuzzy way based on potential similarity.
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Part IV

Unleashing Similarity

Complex networks rarely have a crisp structure,
whereby two nodes are unquestionably connected
or not. The nodes are not always homogeneous,
either. In this part, you will learn different ways of
quantifying potential similarity between nodes and
analyzing networks consisting of more than one
class of nodes.



With these | have found nothing identical in any of the various books
of Emblems which | have examined; indeed, | cannot say that | have
met with anything similar.

Henry Green, English author

CHAPTER 14

Similarity-Based Networks

Complex networks rarely have a crisp structure that shows
This chapter uses Pandas, p Y P

] whether two nodes are unquestionably connected. The nodes
NumPy, SciPy.

are not always homogeneous, either. However, sometimes
two items are similar, and as a complex network analyst,
you need a toolset for quantifying their similarity and converting similarities
into network edges.

In this chapter, you will learn (or refresh your knowledge of) several similarity
measures: Hamming distance, Manhattan distance, Pearson correlation,
cosine distance, and generalized similarity. You will familiarize yourself with
several real-world networks based on similarity.

Understand Similarity

Similarity-based networks emerge from the similarity of one or more attributes
of objects represented by the network nodes. The type of objects and the
number of attributes are limited only by the creativity of the network
researchers. (This is not to say that your limitless imagination, rather than
your experience, should guide your research.) The nodes may represent people
(age, gender, language, skin color), products (price, color, shape, material),
companies (industry, size, country, the form of ownership), and so on. It is
your job to choose the “right” definition of similarity that at least does not
contradict common sense.

Any quantitative measure of similarity has two aspects: what to measure and
how to measure. In the case of similarity-based networks, the first aspect
addresses the choice of significant nodes attributes, and the second aspect
refers to transforming the attributes into distances.
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Let’s start with the first issue by looking at two very different similarity-based
networks—an event network and a food network—and their node attributes
(or the lack of them).

Creating New Attributes

When it comes to similarity-based networks, the most frustrating situation
is when you want to use node attributes to calculate similarity, but the
nodes have no attributes at all. The situation is not entirely desperate. Let’s
have a look at a dataset that furnishes no attributes, and build them from
the ground up.

An event network is a similarity-based network where nodes represent formal
or informal social events (book club meetings, political rallies, academic
conferences, rock concerts, and the like) and edges depict their similarities.
The nodes in an event network are usually not hard to identify, but the simi-
larities may be subtle. Let’s find out how to build an event network in five
ways. (Incidentally, this chapter covers five types of similarity, dismisses one,
and makes a promise to cover one more later.)

In the 1930s, five American ethnographers (Allison Davis and his colleagues)
assembled a dataset of eighteen women in Natchez, Mississippi who attended
fourteen social events over a nine-month period. Once published (Deep South

“Southern Women” network. In fact, it is so respected in social network analysis
that NetworkX has a special function nx.davis_southern_women_graph() for generating it.
The figure on page 165 shows the network chart.

Suppose your goal is to transform the network of women and events into a
network of events. Such transformations are called projections. You will learn
more about projections in Project Bipartite Networls, on page 178; now, we will

approach them informally.

Each event node in the original network is also a node in the event network.
To calculate similarity, you must select relevant node attributes. Formally,
the nodes have no attributes, aside from their arbitrarily assigned numerical
labels. So, why not treat the identities of the women who attended an event
as that event’s attributes?

After you obtain the synthetic graph of the Southern women and the
attended events G1, you should separate the nodes into the “women” and
“events” subsets. In general, this operation may be hard, but in the Davis
network, all event labels start with the capital letter E, followed by one or
more decimal digits. If a node matches the regular expression “E\d+”, it
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represents an event. All network neighbors of an event node (for example,
E1) must be “women nodes,” whose labels are accessible as the keys of the
dictionary of neighbors. You can create a Pandas Dataframe that has only one
column of ones, named after the event (E1) and indexed by the names of
the attending women (in the case of E1: Brenda Rogers, Laura Mandeville,
and Evelyn Jefferson).

southern_women.py
Gl = nx.davis_southern women graph()
attendees = [pd.DataFrame({event: 1}, index=list(women.keys()))
for event, women in Gl.edge.items() if re.match("E\d+", event)]
att mtx = pd.concat(attendees, axis=1).fillna(0).astype(int)
print(att_mtx)

When you concatenate all fourteen DataFrames, Pandas performs the index
alignment: each DataFrame is expanded as needed to place all data items with
the same index in the same row. If the expansion results in gaps, the gaps
are filled with a NaN—the NumPy designator for missing data. Replace the NaNs
with zeros to complement the ones—and you’ve got a binary attribute set for
each event node.
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E9 E7 E1 E2 E10 E5 E3 E12 E13 E1l E6 E14 E8 E4
Brenda Rogers 0 1 1 0 0 1 1 0 0 0 1 0 1 1
Charlotte Mc... 0 1 0 0 0 1 1 0 0 0o 0 o 0 1
Dorothy Murc... 1 06 0 ©0 0 0 0 0 0 0 0 0 1 ©0
Eleanor Nye o 1 0 0 0 1 0 0 0 0 1 0 1 ©
Evelyn Jeffe... 1 0 1 1 0 1 1 0 0 0 1 0 1 1
Flora Price 1 0 0 0 o 0 0 0 0 1 0 o 0 0
Frances Ande... o 0 0 0 0 1 1 0 0 0 1 0 1 0
Helen Lloyd e 1 0 0 1 0 0 1 0 1 0 0 1 ©0
Katherina Ro... 1 0 0 0 1 0 0 1 1 o 0 1 1 0
Laura Mandev... 0 1 1 1 0 1 1 0 0 0 1 0 1 0
Myra Liddel 1 0 0 o 1 0 0o 1 0 0o 0 0 1 0
Nora Fayette 1 1 0 0 1 0 0 1 1 1 1 1 0 0
Olivia Carleton 1 0 0 0 0 0 0 0 0 1 0 0 0 0
Pearl Ogleth... 1 0 0 0 o 0 0 0 0 0 1 0 1 0
Ruth DeSand 1 1 0 0 0 1 0 0 0 0 0 0 1 0
Sylvia Avondale 1 1 0 0 1 0 0 1 1 0 0 1 1 0
Theresa Ande. .. 1 1 0 1 0 1 1 0 0 0 1 0 1 1
Verne Sanderson 1 1 0 0 0 0 0 1 0 0 0 0 1 0

Each column in the resulting matrix represents an event, each row accounts
for a woman, and the number at an intersection is one of the eighteen event
attributes—it indicates the presence (one) or absence (zero) of the woman at
the event. You will learn in Choose the Right Distance, on page 167, how to

connect the nodes to construct a similarity network.

Binarizing Existing Attributes

Dealing with node items that do not have attributes is tough. Items that do
have attributes are much easier to handle. Just choose the attributes that
are essential for your future network (you may want to use all available
attributes or eliminate the insignificant features).

Do you remember the network of products in your pantry (Explore Your Pantry,

different kind of network.' For most food items, USDA provides the amounts
of energy (in kcal), proteins, lipids, carbohydrates, fibers, and sugars (as well
as minerals and vitamins) per serving. Each of the values is a potential con-
tinuous attribute of a future network node.

If the similarity measure you plan to use works only with binary attributes,
you must first dichotomize (binarize) the attributes that don't fit. (In the case
of the pantry project, all the attributes are in the wrong form.) Dichotomization
can be accomplished either in plain Python or Pandas by comparing the value
of an attribute with the mean or median value of the same attribute. Let’s

1. ndb.nal.usda.gov/ndb/search
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say the list protein contains the amounts of proteins in each food item. Then
protein_bin is the dichotomized list:

import statistics

threshold = statistics.mean(protein)

# The choice of median ensures a balanced split!

# threshold = statistics.median(protein)
protein bin = [p >= threshold for p in protein]

The Pandas solution involves converting the list to a Series unless the original
data were in a Pandas format:
protein ser = pd.Series(protein)

protein bin = protein ser >= protein ser.mean()
# protein bin = protein ser >= protein ser.median()

Whether you used original node attributes, dichotomized them, or inferred
them from structural or other data, the next step in constructing a similarity-
based network is to calculate distances between the nodes and convert them
into weighted edges.

Choose the Right Distance

All similarity measures are numeric (usually on the scale from -1 to 1 or O to
1), so you must quantify any qualitative attributes before calculating simi-
larities. Once quantified, the attributes can be thought of as coordinates of
the object in a multidimensional coordinate space, where the number of
dimensions equals the number of attributes. You can treat an object as a
point in space, whose position is defined by the attributes. The similarity
between two objects and the distance between the points representing the
objects are complementary; the higher the distance, the smaller the similarity
and vice versa.

Let’s now have a look at some typical distance and similarity measures.

Hamming Distance

Let’s suppose we want to build a network of objects that may have some
binary features. A feature is either present or not, and if it is present, then
the magnitude of the feature (if applicable) does not matter. The Hamming
distance between two objects is the number of features that are present in
one object, but not in the other, divided by the maximal number of features.
The similarity, conversely, is the number of features jointly present or absent
in both objects (again, divided by the maximal number of features). If two
objects have an identical set of features, they are more similar than two objects
whose features differ.
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The Hamming distance definition can be extended to include categorical
attributes. In this case, the distance between two objects is the number of
attributes that are equal in both objects. The attributes do not even have to
be quantitative.

Consider several vegetables with three attributes: shape, color, and starchi-
ness. Some attributes are binary (for example, starchy) and some are qualita-
tive (color).

Vegetable Shape Color Starchy
Carrot  Conic Orange False
Corn Conic Yellowish True

Potato Round Yellowish True
Turnip Round Yellowish False

Note that some attributes are binary and some are qualitative. Potatoes and
turnips have two equal attributes (shape and color). The distance between
them is 1/3, the similarity 2/3. Turnips and carrots are 1/3 similar, and
potatoes and carrots are not similar at all (zero similarity), and so on. The
following code fragment calculates Hamming similarity (complementary to
the Hamming distance). The dataset for it has the same structure as G.node:

data = {
"carrot" : {"shape": "conic", "color": "orange", "starchy": False},
"corn" : {"shape": "conic", "color": "yellowish", "starchy": True},
"potato" : {"shape": "round", "color": "yellowish", "starchy": True},
"turnip" : {"shape": "round", "color": "yellowish", "starchy": False}
}

# Collect attribute names for all vegetables
atts = set.union(*[set(x.keys()) for x in data.values()])

# Assume that each node has each attribute, but the values may differ
sim 2dlist = [[sum(data[vl][att] == data[v2][att] for att in atts)\
/ len(atts) for vl in datal
for v2 in data]

[[1.0, 0.3333333333333333, 0.0, 0.3333333333333333],
[0.3333333333333333, 1.0, 0.6666666666666666, 0.3333333333333333],
[0.0, 0.6666666666666666, 1.0, 0.6666666666666666],
[0.3333333333333333, 0.3333333333333333, 0.6666666666666666, 1.0]]

The similarity between an item and itself is 1.

Python offers another way to calculate the Hamming distance: by calling the
namesake function hamming() from the module scipy.spatial.distance. The benefit
of using hamming() is the abstraction that the function creates: you or your
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code reader do not need to understand exactly how the Hamming distance
is calculated to benefit from it.

import scipy.spatial.distance as dist
sim 2dlist = [[1 - dist.hamming(list(data[vl].values()),
list(data[v2].values())) for vl in datal
for v2 in data]

Note that we subtract the distance from one to convert it to similarity. Inci-
dentally, the module has another four dozen functions for similarity measure-
ments, some of which you will see later.

The printout of sim_2dlist looks quite horrible and almost useless. Convert it
to a NumPy array to add some order and enable vectorized operations:

sim array = np.array(sim 2dlist)

array([[ 1. , 0.33333333, 0. , 0.33333333],
[ 0.33333333, 1. , 0.66666667, 0.33333333],
[ 0. , 0.66666667, 1. , 0.66666667],
[ 0.33333333, 0.33333333, 0.66666667, 1. 11

You still won’t remember which column and row represent which vegetable,
unless you convert the array to a Pandas Dataframe and supply human-readable
labels:

sim dataframe = pd.DataFrame(sim array, columns=data, index=data)

carrot corn potato turnip
carrot 1.000000 0.333333 0.000000 0.333333
corn 0.333333 1.000000 0.666667 ©0.333333
potato 0.000000 0.666667 1.000000 0.666667
turnip 0.333333 0.333333 0.666667 1.000000

You can use this data to construct a weighted network and slice it if necessary,
as explained in Slice Weighted Networks, on page 79.

The Hamming distance/similarity works best when future network nodes
have many almost equally significant binary attributes whose pres-
ence/absence is roughly equally probable—such as the network of event
nodes in Creating New Attributes, on page 164.

Manhattan Distance

If your objects have non-binary or non-categorical attributes, the Hamming
distance is not applicable. The Manhattan distance is an extension of the
Hamming distance for continuous attributes. It is defined mathematically as
d=|Ax; | +|Axq | +...+ | Axy |, where d is the distance between two nodes A and
B, and Ax;=x,;-Xg; is the difference between the values of their ith attribute.
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In a human language, this means that the Manhattan distance between two
objects is the sum of the differences of their attributes. For example, the dis-
tance between Pennsylvania station (x,,=7th Avenue, x,,=33rd Street) and
the Metropolitan Opera (xg;=Columbus Avenue, xg,=64th Street) in Manhattan,
New York, is |7-9|+|33-64|=2+31=33 blocks. (If you're not familiar with Manhattan,
Columbus Avenue is another name for 9th Avenue. In either case, you also
know now why the measure is called “Manhattan.”)

To observe the Manhattan distance in action, let’s have a look at the first five
humans’ heights and weights from the SOCR Data Dinov 020108
HeightsWeights dataset.”

hwdata = [[65.78, 112.99],
[71.52, 136.49],
[69.40, 153.03],
[68.22, 142.34],
[67.79, 144.30]]

SciPy provides function dist.cityblock(u,v) (because Manhattan is not the only city
with blocks!) that takes two attribute vectors u and v and returns the Manhat-
tan distance between them.

hw_array = np.array(hwdata)
five ppl = np.array([[dist.cityblock(x, y) for x in hw array]
for y in hw _array])

array([[ ©. , 29.24, 43.66, 31.79, 33.32],
[ 29.24, 0. , 18.66, 9.15, 11.54],
[ 43.66, 18.66, 6. , 11.87, 10.34],
[ 31.79, 9.15, 11.87, 0. , 2.39],
[

33.32, 11.54, 10.34, 2.39, 0. 11

You can define similarity as 1/five_ppl, max_distance-five_ppl, or in any other com-
plementary or reciprocal way.

One major problem with the function dist.cityblock() is that it assumes that all
attributes are comparable in range. This assumption does not hold in general,
and it does not hold in the case of our five people in particular. Comparing
weight to height is worse than comparing the proverbial apples to oranges!
A workaround is to normalize each attribute by subtracting the smallest value
and dividing by the range:

hw_range = hw array.max(axis=0) - hw array.min(axis=0)
hw norm = (hw_array - hw array.min(axis=0)) / hw _range
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< array([[ 0. , 0. 1,

[ 1. , 0.58691309],

[ 0.63066202, 1. 1,

[ 0.42508711, ©0.73301698],

[ 0.35017422, 0.78196803]1])

five ppl norm = np.array([[dist.cityblock(x, y) for x in hw norm]
for y in hw_norm])

< array([[ o. , 1.58691309, 1.63066202, 1.15810409, 1.13214225],
[ 1.58691309, ©O. , 0.78242489, 0.72101679, 0.84488073],
[ 1.63066202, 0.78242489, 0. , 0.47255793, 0.49851977],
[ 1.15810409, 0.72101679, 0.47255793, 0. , 0.12386394],
[ 1.13214225, 0.84488073, 0.49851977, 0.12386394, O. 11

In a normalized vector, the smallest attribute always has the value of 0 and
the largest is always 1. The Manhattan distance between two normalized
attribute vectors takes equal care of each attribute and is guaranteed to not
be greater than 2xN. Treat the numbers in the array as edge weights—and
you are one step away from a similarity network of persons based on their
weight and height.

Euclidean Distance

In case you thought you did not know what the Euclidean distance was, here
is a hint: it is the famous, though heavily tailored, Pythagoras’ Trousers
d2=Ax12+Ax22+...+AxN2. The Euclidean distance is not particularly useful in
CNA (except, perhaps, in geospacial networks) and is mentioned here simply
because it is probably the most well-known distance measure.

Cosine Distance

The previous three distance/similarity measures treat nodes with N attributes
as points in an N-dimensional space. Sometimes, it makes sense to treat
attributes as directions—"lengthless” vectors. Consider a wind rose—a polar
plot showing typical wind speed and direction distributions for a particular
location. You can think of a wind rose as a set of sixteen floating point
attributes representing the average wind speed in each direction with the
22.5° angular step (N, NNE, NE, ENE, E, and so on). The figure on page 172
shows the wind roses for four cornerstone American cities: AnchorageBoston
Chicago, and San Francisco. The radius is the number of hours a year that
the wind blows at speed from 7 to 12 mph from that direction.® So, who is
the real Windy City?

3.  www.meteoblue.com/en/weather/forecast/modelclimate/
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In general, you can calculate the similarity between two geographical locations
as some inverse distance between the attribute vectors. However, when it
comes to winds, it may be more important to know where they blow from
rather than how strong they are. In other words, the angle (angular distance)
between the attribute vectors may be more useful than the linear distance.

The cosine distance is a measure of angular distance. It is defined as a com-
plementary cosine of the angle between two attribute vectors x, and xg:
d=1-x,xp/ (x| % Ixgl)=1-cos(xs,xg). The cosine similarity is the cosine itself.
Naturally, it ranges from 1 (the angle is 0°, the vectors are parallel) through
0 (90°, the vectors are orthogonal and independent) to -1 (180°, the vectors
are antiparallel).

The cosine distance emphasizes the similarity of shapes, spikes, and other
patterns, rather than actual values. You can calculate it directly from the
equation mentioned previously. (Remember that Ix,l is the Euclidean length
of x,, and x,xg is the scalar product of the two vectors.) Call the SciPy function
cosine(u,v) to simplify your code and make it more abstract. The following code
measures the cosine similarity (thus the 1-...) between the four cities, and it
uses Pandas without further ado:
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winds = {
"Anchorage": (58,60,132,552,291,180,88,62,58,36,20,4,3,16,119,81),
"Boston": (93,104,106,101,80,82,82,110,216,292,281,205,246,204,159,86),
"Chicago": (115,195,122,109,86,120,157,210,273,196,139,101,113,106,

107,115),

"San Francisco": (35,67,156,616,1208,894,268,67,2,0,0,0,2,9,22,35)
}

wind_cities_cosine = pd.DataFrame({y: [1 - dist.cosine(winds[x], winds[y])

for x in winds] for y in winds},
index=winds.keys())

Anchorage Boston Chicago San Francisco
Boston 0.408479 1.000000 0.884222 0.264567
Chicago 0.523189 0.884222 1.000000 0.381017
Anchorage 1.000000 0.408479 0.523189 0.791712
San Francisco 0.791712 0.264567 0.381017 1.000000

According to the printout, the two pairs of the most similar cities are Anchorage
and San Francisco (on the West) and Boston and Chicago (on the East).

Pearson Correlation

One of the complications with the cosine similarity is that it is not invariant
to shifts: it fails to detect small variations of attributes. Using the wind rose
example, if you add another thousand hours a year to each direction in each
considered city, the cosine similarities of each pair of cities will approach 1.0,
making them all look the same. In other words, the cosine similarity formula
overestimates similarity, which is not necessarily desirable.

Another angular similarity measure is the Pearson correlation, which some
of you may know from statistics. It often goes by the name “correlation”
without the reference to Karl Pearson. It is not affected by shifts.

The Pearson correlation is calculated using the same formula as for the cosine
similarity, except that the attribute vectors are first translated by subtracting
the mean m(x): s=(x,-m(x,)) x (xg-m(xg))/ (x,-mx,)l x Ixg-m(xg)l).

SciPy provides the function stats.pearsonr(), which calculates both the correlation
and its p-value as a tuple. If you're not sure what the p-value is, think of it
as the measure of credibility of the reported correlation. If the p-value is less
than 0.01, the correlation can be trusted. If the p-value is above 0.01, you
should not take the correlation seriously even if it is high. The following code
calculates the correlation-based similarities for the “wind cities.”

wind cities pearson = pd.DataFrame({y: [stats.pearsonr(winds[x],
winds[y])[0]
for x in winds] for y in winds},
index=winds.keys())
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Anchorage Boston Chicago San Francisco
Boston -0.482339 1.000000 0.234174 -0.524232
Chicago -0.288015 0.234174 1.000000 -0.352705
Anchorage 1.000000 -0.482339 -0.288015 0.704106
San Francisco 0.704106 -0.524232 -0.352705 1.000000

An even more efficient solution is to convert the attribute dictionary winds into
a Pandas DataFrame directly and then use the built-in method .corr(). The results
are numerically the same, but the rows and columns are nicely sorted by the
city names.

pd.DataFrame(winds).corr()

Anchorage Boston Chicago San Francisco
Anchorage 1.000000 -0.482339 -0.288015 0.704106
Boston -0.482339 1.000000 0.234174 -0.524232
Chicago -0.288015 0.234174 1.000000 -0.352705
San Francisco 0.704106 -0.524232 -0.352705 1.000000

You'll see an efficient application of Pearson correlation similarity in Chapter
16, Case Study: Building a Network of Trauma Types, on page 185.

Generalized Similarity

The generalized similarity is a powerful recursive technique for measuring
node similarities in bipartite networks. You need to learn more about bipartite
networks to appreciate it. Let’s postpone its introduction until Compute Gen-
eralized Similarity, on page 181.

In this chapter, you learned that if two items are not explicitly connected and
don’t happen to be at the same place at the same time, you can still connect
them with a network edge if they are sufficiently similar. You learned about
different types of similarity and how to calculate similarity based on node
attributes. Very often, similarity-based networks are derived from bipartite
networks—the networks that can be separated in two subnetworks in such
a way that no two nodes in the same subnetwork are adjacent. You’ll meet
the bipartite networks in the next chapter.


http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Friendship is a single soul dwelling in two bodies.

Aristotle, Greek philosopher

CHAPTER 15

Harnessing Bipartite Networks

Bipartite networks, also known as two-mode networks, are a mechanism for
representing relationships between items that belong to two or more classes
or parts (such as students and professors or airlines and airports). Many
networks previously seen in this book are bipartite.

In this chapter, you will learn how to check if a network is bipartite, assign
the nodes to the respective parts, and convert weighted or unweighted
bipartite networks into weighted one-part networks (the latter operation is
called “projection”).

You Don’t Have to Be Bipartite—Even If You Can

Being bipartite is both a topological property of a network and the
way the part attributes are assigned to the nodes. Some networks
—such as a ring with an odd number of nodes—cannot possibly
be treated as bipartite. No matter how you label the nodes, there
will always be two adjacent nodes that belong to the same part.
Conversely, a ring with an even number of nodes can be bipartite
—but only if odd and even nodes belong to different parts.

It may be hard to believe, but you already built your first bipartite network—
it was the network of food items and nutrients in Draw Your First Networlk

nodes: food items (beef, spinach, and so on) and nutrients (vitamin C, magne-
sium, and so on). Each food item node is adjacent only to nutrient nodes,
and each nutrient node is adjacent only to food item nodes. An edge always
connects nodes that belong to different parts.
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Work with Bipartite Networks Directly

Many networks you met in the book are bipartite. Before we look into the
NetworkX functions and tools for the bipartite networks, let’s first revisit them.
Examples of Bipartite Networks

The following table contains the list of the some bipartite networks mentioned
in this book so far.

Name Location Part 1 Part 2
Introductory toy on page 6, Food items Nutrients
network on page 21
“Panama papers” on page 101 Entities and Officers

intermediaries
Products in your on page 120, Food items Ingredients
pATITY on page 166
LiveJournal on page 141 Users Interest terms
Southern women on page 164 Women Events

Except for the “Panama papers,” each network has nodes of two types. (You
can conditionally put the “Panama” entities and intermediaries in one part,
but the resulting network is still not strictly bipartite. It is tripartite, as
explained in the following sidebar.)

How About More Parts?

You have seen unipartite networks where any node can be connected to any node.
You have seen bipartite networks where nodes link only to nodes from the other part.
The concept of network parts can be readily extended to the case of k-partite networks
with k parts, as long as two adjacent nodes do not belong to the same part. An
example of a tripartite network is a network of LiveJournal users (part 1), communities
(part 2), and interest terms (part 3). A user belongs to a community (a 1«2 type edge);
a user is interested in a term (a 1«3 type edge); and a community declares a term as
an interest (a 23 type edge).

You can build bipartite networks naturally because quite often real-world
datasets already include nodes of more than one type. However, they are not
easy to analyze and interpret. For starters, even such a basic measure as
node degree may be of questionable use in a bipartite network. Indeed, does
a company node with one hundred adjacent employee nodes have the same
degree as an employee node with one hundred adjacent company nodes? In
the former case, we are talking about a typical medium-size business. In the
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latter case, the employee is probably a freelancer trying to make their one
hundred clients happy. Different types of centralities, paths, cores, cliques,
modularity-based communities, and other measures and structural elements
of bipartite networks may be similarly incomparable and even meaningless.

Basic Bipartite Functions

To check whether network G is bipartite, call the predicate function nx.is_bipartite(G).
If the function returns False, skip the rest of the chapter. Wait, don’t. We will
use the pickled network of foods and nutrients nutrients.pickle (created in Read

bipartite.py

from networkx.algorithms import bipartite

N = pickle.load(open("nutrients.pickle", "rb"))
print(bipartite.is bipartite(N))

True

Note most of the bipartite functions come from the module nx.algorithm.bipartite,
which you must correctly import.

Function bipartite.sets() splits the nodes of a bipartite network into two parts (and
returns two node sets). The function does not look at the node attributes. The
separation it performs is based purely on the network topology. It is your
responsibility to recognize the meaning of each part. For example, you can check
which set contains the vitamin C. The same set must contain all other nutrients.

bipartite.py
bipl, bip2 = bipartite.sets(N)
print("C" in bipl, "C" in bip2)

False True

You can use the following code fragment to initialize the two sets without
second-guessing which part contains which nodes:
bipartite.py

foods, nutrients = (bip2, bipl) if "C" in bipl else (bipl, bip2)
print(foods, nutrients)

¢ {'Spinach', 'Beans', 'Poultry', 'Veg 0ils', 'Green Leafy Vegs', 'Cheese',

'Asparagus', 'Potatoes', 'Fatty Fish', 'Carrots', 'Beef', 'Liver',
'Seeds', 'Mushrooms', 'Eggs', 'Broccoli', 'Wheat', 'Whole Grains',
'"Pumpkins', 'Tomatoes', 'Kidneys', 'Legumes', 'Yogurt', 'Milk', 'Nuts',
'Shellfish'} {'Thiamin', 'Folates', 'B6', 'E', 'Mn', 'Se', 'B12', 'D',
'A', 'Riboflavin', 'C', 'Zn', 'Cu', 'Niacin', 'Ca'}

1. pragprog.com/titles/dzcnapy/source_code
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It is possible to analyze two-mode networks directly (Networks: An Introduction

workx.algorithms.bipartite provides a variety of functions for such analysis. The
functions are mostly direct counterparts of the unipartite namesake brethren:
bipartite.density(), bipartite.degrees() (cf. nx.degree()), bipartite.clustering(), bipartite.close-
ness_centrality(), bipartite.degree_centrality(), bipartite.betweenness_centrality(), and some
generator functions, including bipartite.random_graph(). It is also customary to
convert bipartite networks into unipartite networks by projecting on one of
the constituent parts.

Project Bipartite Networks

You can project a bipartite network two ways: by keeping
the nodes of part 1 and removing the nodes of part 2, and
the other way around. The nodes that survive the projection
are called the “bottom” nodes; the nodes that are removed
are known as the “top” nodes.

This section uses SciPy,
Pandas.

The projection operation transforms the original bipartite graph G into an
induced graph F by projecting G onto the bottom nodes. Graph F contains only
the bottom nodes, and two bottom nodes in F are adjacent to each other if
and only if they are adjacent to the same top node in G.

The following figure shows a fragment of the bipartite network of foods and
nutrients before (left) and after the projection. The nodes C and Ca represent
nutrients; they are the top nodes. All other nodes represent foods; they are
the bottom nodes. Note that all food nodes connected to the same nutrient
node in the original network form a clique in the induced network—the clique
of foods providing that nutrient.
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Function bipartite.projected_graph((G,nodeset)) projects a bipartite graph G onto the
nodes nodeset (the nodes must exist in G and belong to the same part).

bipartite.py
n_graph = bipartite.projected graph(N, nutrients)
f graph = bipartite.projected graph(N, foods)

The resulting network is undirected, unweighted, and unipartite. (And, by
the way, it is a product network.) You can calculate degrees, centralities, and
path lengths; extract cliques, cores, and communities; and perform any other
complex network analysis of it. The network still contains some knowledge
of the connecting nutrients, but the knowledge is implicit. Just like a geometric
projection, a network projection is lossy and irreversible (one cannot recon-
struct the original bipartite network from one of its projections).

There may be more than one top node connecting a pair of bottom nodes in the
same network. You can assign weights to the induced edges to reflect the con-
nection strength by calling the function bipartite.weighted_projected_graph(G,nodeset,ratio).
(The last parameter controls whether the weights are absolute or relative.)

bipartite.py
fw_graph = bipartite.weighted projected graph(N, foods, True)

The following figure shows the weighted induced network of food items con-
nected by the similarity in terms of provided nutrients. It is still undirected
and unipartite.
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Edge width in the figure represents the weights, and the weights represent
the similarity between the nodes. (The more shared nutrients they had in the
original network, the higher the similarity.) The induced network is a similarity-
based network, and everything you read about such networks in Chapter 14,

definitions. Yes, you can—but on your own, without much help from NetworkX.

As an exercise, let’s build a network based on the Pearson Correlation. Start

bottom nodes, respectively. (You have to tell NetworkX which nodes are top and
which are bottom by passing the list of bottom nodes as the second parameter.)
For each pair of rows, compute the Pearson correlation and arrange the results
into a square Pandas DataFrame food.

bipartite.py
adj = bipartite.biadjacency matrix(N, f graph).toarray()
foods = pd.DataFrame([[stats.pearsonr(x, y)[0] for x in adj]
for y in adj], columns=f graph, index=f graph)

SLICING THRESHOLD = 0.375

stacked = foods.stack()

edges = stacked[stacked >= SLICING THRESHOLD].index.tolist()
f pearson = nx.Graph(edges)

The matrix contains the similarities between the bottom nodes with respect
to the connectivity to the top nodes. Some similarities are negative; at the
very least, you must not convert them into edges. In fact, let’s discard as
many potential edges as possible, as long as the network remains connected.
In this example, the slicing threshold of 0.375 was chosen by trial and error
(see details on page 80). Note that this value is still statistically low: one would

hardly consider 0.375 a significant correlation!

After slicing, arrange the surviving edges into a network and plot it. (Call function
nx.from_pandas_dataframe(df,source target) from Adjacency Matrix, the Pandas Way, on

the correlation-based network of foods. Compared to the previous figure, the
network has the same nodes (and in the same locations), but fewer edges.

You can extend the proposed algorithm to project bipartite networks using
Euclidean, cosine, and any other reasonably defined distance measure. All
of them have a subtle problem: they assume that all the top nodes are inde-
pendent, and adjacency to each of them is equally important. Sometimes this
assumption is correct; sometimes it is not. Consider the nutrients from our
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dataset. It includes vitamins B6 and B12, niacin (also a vitamin B), and
riboflavin (yet another kind of vitamin B). All projection algorithms considered
so far treat these four nutrient nodes separately. If a food item provides B6
but not B12 and another item provides B12 but not B6, they are not consid-
ered similar. But they would be—if you merged the four specific vitamin B
nodes into one umbrella node.

If you have a strong reason to believe that some top nodes are more similar
to each other than the others, you may want to compute the so-called gener-
alized similarity.

Compute Generalized Similarity

. . Traditionally, two bottom nodes are considered similar if
This section uses

. they are adjacent to the same top node or to a set of same
generalized.

top nodes, even though the sameness may be too strict a
requirement. Kovacs [Kov10] proposed to weaken the defini-
tion of similarity. The new meééﬁi‘.é.,m(.:.lﬁbgéa.“generalized similarity,” treats
two bottom nodes as similar if they are adjacent to similar top nodes. But
who decides whether two top nodes are similar? It is the reflexive definition
of generalized similarity itself: two top nodes are similar if they are adjacent

to similar bottom nodes. In fact, the algorithm for calculating the generalized
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similarity does not care whether a node is top or bottom. It splits a bipartite
network into two parts and reports the similarities for each node pair in each
class with respect to the nodes in the other class.

The generalized similarity is computed iteratively. The algorithm repeatedly
calculates the pairwise Pearson correlations of the nodes in each part of the
network, gradually transforming the original Euclidean coordinate system
into an affine coordinate system. (The angles between the affine coordinate
axes, in general, are not right.) The angles between the axes that represent
similar items become more acute; the angles between dissimilar items become
more obtuse. (Remember that originally all items are considered independent,
that’s why all angles were right.) The Pearson correlation calculated in the
new deformed coordinate system better reflects the similarities of the nodes
in each network part.

The process is repeated until the affine coordinate system stabilizes and stops
morphing. The iterations may take considerable time. You can put a cap
either on the maximal number of iterations or the minimal deformation
magnitude at each iteration. A perfect solution for a large network (1,000 or
more nodes) is usually infeasible, anyway.

Module generalized implements the Kovacs algorithm. You can download the
module from GitHub? or the book’s website® as generalized.py.

Module generalized provides only one function generalized_similarity(G, min_eps=0.01,
max_iter=50). The function takes a bipartite network and up to two loop termi-
nation hints and returns a tuple of four values: two unipartite, undirected,
weighted similarity networks; the attained precision; and the number of
completed iterations. Start the analysis by calling the function:

bipartite.py

from generalized import generalized similarity

bipl, bip2, eps, n_iter = generalized similarity(N, min_eps=0.001,

max_iter=100)

foods, nutrients = (bipl, bip2) if "C" in bip2 else (bip2, bipl)

SLICING THRESHOLD = 0.9

foods.remove edges from((nl, n2) for nl, n2, d in foods.edges(data=True)
if d['weight'] < SLICING THRESHOLD)

The rest of the script identifies and slices the network of interest, then trun-
cates the “weak” edges. The figure on page 183 shows the network of food items

based on the generalized similarities.

2. github.com/dzinoviev/generalizedsimilarity
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The most prominent difference between the latter network and the previous
two attempts is the redistribution of graph density from the “center” (OK, we
know that networks do not have centers!) to the “periphery”—to the extent
that Fatty Fish became an isolate. You can merge it back into the giant com-
ponent by playing with the SLICING_THRESHOLD at the expense of having less
structure in the other parts of the network if you want.

As a free byproduct of the projection, you got a network of the nutrients,
nutrients. The twin networks in the generalized similarity analysis problems
may have considerable size and waste the precious memory of your computer.
If you don’t plan to use them, tell Python: del nutrients.

Bipartite network and networks that consist of more than two parts are much
more common in life than one may be inclined to think. Treating a network
as bipartite gives you additional CNA tools (various types of projections), adds
another dimension to your projects, and empowers you to discover unexpected
dependencies between the nodes.

In the next chapter, you will see how to build a network of something seem-
ingly totally unrelated to networks—psychological trauma types. Not only is
it cool, but it also helps to diagnose psychiatric disorders!
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Sometimes, as she sat alone in the arm-chair in her room, she would
begin laughing and crying at the same time, with a sort of tearless
grief, or else relapse into convulsions, and scream out dreadful,
incoherent words in a horrible voice. It was the first dire sorrow which
she had known in her life, and it reduced her almost to distraction.

Leo Tolstoy, Russian writer CHAPTER 1 6

Case Study: Building a Network
of Trauma Types

A typical dataset for bipartite network construction consists
of objects and their properties, such that each object has
several properties and each property is found in several
objects. In this case study, objects are subjects of a mental
trauma study (suitably anonymized), and properties are their
trauma types. You will learn how to derive a network of trauma type (or other
properties) based on the subjects’ experience.

This chapter uses Pandas,
NumPy, community,
generalized.

Embark on Psychological Trauma

Exposure to traumatic events is quite common among children and adoles-
cents. One notable challenge facing trauma researchers is understanding the
nature and importance of the co-occurrence of exposure to different types of
psychological trauma. You may wonder if complex network analysis is the
right (or a right) tool for this task.

CNA has been indeed widely used in medical and public health research in
the last decade (see, for example, work by Nicholas Christalis [CFO9] and A.-L.

those studies was mainly on social networks or gene networks. We can go
the extra mile and look at the network of diagnoses—the trauma types—
defined by their similarity with respect to exposure. Such a network, if con-
structed, could be used to classify trauma types, which would hopefully
improve the quality of trauma diagnostics and treatment. In fact, the network


http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Chapter 16. Case Study: Building a Network of Trauma Types ® 186

has been constructed, and it indeed substantially improved the quality of
diagnostics (Network Analysis of Exposure to Trauma and Adverse Events in

necessary skills not only to reproduce the process but also to look at several
possible trauma networks.

The goal of this case study is not just to show you how to read CSV files or
construct similarity-based networks. After all, you have been reading about
that stuff for almost two hundred pages. You will see that, given the same
data, you can transform it into different networks and perhaps even come to
different conclusions.

Read the Data, Build a Bipartite Network

As always, the script starts with a fat chunk of import statements.

jri_code.py

import pandas as pd

import numpy as np

import networkx as nx

from networkx.algorithms.bipartite import sets, weighted projected graph
from networkx.drawing.nx_agraph import graphviz layout
import scipy.spatial.distance as dist

from scipy.stats import pearsonr

import community

import generalized

import dzcnapy plotlib as dzcnapy

import matplotlib.pyplot as plt

Boston’s Justice Resource Institute generously provided the dataset for this
project.' You can find it in the file jri_data.csv. The file is a correctly formatted
CSV table with standard delimiters and a header row at the top. Each of the
nineteen columns represents a trauma type.

jri_code.py
matrix = pd.read_csv("jri_data.csv")
print(matrix.columns, matrix.shape)

{ Index(['SEXUAL_ABUSE', 'SEXUAL_ASSAULT', 'PHYSICAL ABUSE', 'PHYSICAL ASSAULT',
"PSYC_MALTX', 'NEGLECT', 'DOMESTIC VIOLENCE', 'WAR', 'WAR NOT US',
'"MEDICAL TRAUMA', 'INJURY_ACCIDENT', 'NATURAL DISASTER', 'KIDNAP',
'TRAUMATIC LOSS', 'FORCED DISPLACEMENT', 'IMPAIRED CAREGIVER',
"EXT _INTERPER VIOLENCE', 'COMMUNITY VIOLENCE', 'SCHOOL VIOLENCE'],
dtype='object') (618, 19)

1. jri.org
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The trauma names are reasonably self-explanatory, except for PSYC_MALTX
(“physical maltreatment”), WAR NOT US (“war outside the USA”), and
EXT_INTERPER_VIOLENCE (“extended interpersonal violence”).

Each row represents one patient (or subject, as they used to refer to partici-
pants in social and behavior studies not so long ago). The original dataset
has been already anonymized to preserve the patients’ privacy. The JRI staff
replaced each patient’'s name with a unique integer number. Since in this
study we do not care about the patients’ identity at all, the JRI identifiers
have been removed altogether. All we know is that a patient of an unknown
age and gender has been exposed to a set of psychological traumas at an
unknown time. Respectively, the values of the Dataframe matrix are zeros and
ones (in the floating-point format), depending on whether the patient in a row
was diagnosed with the trauma in a column or not.

Let’s build the network of the trauma types four different ways: from Hamming
similarity, cosine similarity, Pearson correlation, and generalized similarity.
At the moment, you know that each method evaluates similarity in its way
and none of the four methods seems to have a clear advantage over the other
three. If you randomly commit yourself to one of the methods, you may end
up with an inaccurate, distorted, or even incorrect network. You will be able
to select the most efficient analysis tool by the end of this chapter.

The first and last networks are induced, so we need a bipartite network
patients_traumas of patients and trauma types first. We will construct the other
two networks directly from the matrix. The next code fragment prepares the
bipartite network and double checks if it is indeed bipartite. Note that the
matrix is the bi-adjacency matrix of the network of interest (explained on
page 180).

jri_code.py

# Make a multi-index of patients+traumas
stacked = matrix.stack()

# Select the patients who have traumas
edges = stacked[stacked > 0].index.tolist()
patients traumas = nx.Graph(edges)
print(nx.is bipartite(patients traumas))

True

The bipartite network is just an intermediate milestone for this project. There
is no point in visualizing or analyzing it.
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Build Four Weighted Networks

Now that you have all the preprocessed data (DataFrame matrix and network
patients_traumas), you can transform it into four weighted networks.

Each column in the matrix is a 618-dimensional vector of binary properties of
the future trauma node: the property of being diagnosed in patient O; the
property of being diagnosed in patient 1; and so on. Surely, two trauma types
are similar if the vectors are similar in some sense. Once the similarities of
each pair of vectors are known, the process of network construction is
straightforward and can be implemented as a set of functions—at least for
the cosine and Pearson distances.

jri_code.py
def similarity mtx(biadj_mtx, similarity f):
Convert a bi-adjacency matrix to a similarity matrix,
based on the distance measure
similarity = [[similarity f(biadj mtx[x], biadj mtx[y])
for x in biadj mtx] for y in biadj mtx]
# Discard the main diagonal of ones
similarity nodiag = similarity * (1 - np.eye(biadj mtx.shape[l]))
similarity df = pd.DataFrame(similarity nodiag,
index=biadj mtx.columns,
columns=biadj mtx.columns)
return similarity df

The function similarity_mtx(biadj_mtx, similarity_f) takes the bi-adjacency matrix and
a similarity measure (a two-argument function that returns the similarity of
its parameters) and returns the similarity matrix. The matrix always has ones
on the main diagonal because each node is similar to itself. The function
removes the main diagonal, which otherwise would result in a bunch of self-
loop edges.

jri_code.py
def similarity net(sim mtx, threshold=None, density=None):

Convert a similarity to a sliced similarity network

stacked = sim_mtx.stack()

if threshold is not None:
stacked = stacked[stacked >= threshold]

else:
count = int(sim mtx.shape[0®] * (sim mtx.shape[0@] - 1) * density)
stacked = stacked.sort values(ascending=False)[:count]

edges = stacked.reset_index()

edges.columns = "source", "target", "weight"


http://media.pragprog.com/titles/dzcnapy/code/jri_code.py
http://media.pragprog.com/titles/dzcnapy/code/jri_code.py
http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Build Four Weighted Networks ¢ 189

network = nx.from pandas dataframe(edges, "source", "target",
edge attr=["weight"])

# Some nodes may be isolated; they have no incident edges

network.add nodes from(sim mtx.columns)

return network

DENSITY = 0.35

The function similarity_net(sim_mtx, threshold=None, density=None) slices the similarity
matrix and converts the surviving entries into the edges of the induced net-
work. Depending on the chosen similarity measure, the interpretation of the
edge weight differs. It is not fair to use the same slicing threshold for two
similarity matrices computed with different distances and expect them to be
comparable. That’s why the function performs slicing based either on the
slicing threshold (for the networks that are based on the same distance) or
desired network density. Considering that your four networks emerge from
four different distance measures, you must use the density-based mechanism.
The density of 0.35 seems to produce a nice collection of networks, but you
are encouraged to experiment with it.

Two trauma nodes are cosine similar if the angle between their vectors (Cosine
Distance, on page 171) is small and the cosine of the angle is large.

jri_code.py
def cosine sim(x, y):
return 1 - dist.cosine(x, y)

cosine mtx = similarity mtx(matrix, cosine_sim)
cosine network = similarity net(cosine mtx, density=DENSITY)

Two trauma nodes are Pearson similar if their vectors are positively correlated
(Pearson Correlation, on page 173). An added benefit of Pearson correlation is

that it comes with a p-value. If you want to consider only statistically signifi-
cant correlations (say, with the p-value<0.01), you can modify the similarity
function appropriately.

jri_code.py
def pearson sim(x, y):
return pearsonr(x, y)[0]

pearson mtx = similarity mtx(matrix, pearson sim)
pearson network = similarity net(pearson mtx, density=DENSITY)

# Shall we discard the statistically insignificant ties?
def pearson sim sign(x, y):

r, pvalue = pearsonr(x, y)

return r if pvalue < 0.01 else 0

pearson mtx sign = similarity mtx(matrix, pearson sim sign)
pearson _network sign = similarity net(pearson mtx sign, density=DENSITY)
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The Hamming and generalized similarity networks are weighted and complete
projections of the patients_traumas bipartite network. They already contain all
edges, and your job is to remove the “weak” edges. The function slice_projected(net,
threshold=None, density=None) is an equivalent of similarity_net(sim_mtx, threshold=None,
density=None) and removes the edges that have small weight or make the network
too dense.

jri_code.py
def slice projected(net, threshold=None, density=None):

Slice a projected similarity network by threshold or density
if threshold is not None:
weak edges = [(nl, n2) for nl, n2, w in net.edges(data=True)
if w["weight"] < threshold]
else:
count = int(len(net) * (len(net) - 1) / 2 * density)
weak edges = [(nl, n2) for nl, n2, w in
sorted(net.edges(data=True),
key=lambda x: x[2]["weight"],
reverse=True) [count:]]
net.remove edges from(weak edges)

Two trauma nodes are Hamming similar if the trauma types have been frequent-
ly observed together in the same patients (Hamming Distance, on page 167).

jri_code.py

netl, net2 = sets(patients traumas)

_, traumas = (netl, net2) if "WAR" in net2 else (net2, netl)

hamming network = weighted projected graph(patients traumas,
traumas, ratio=True)

slice projected(hamming network, density=DENSITY)

Two trauma nodes are generally similar if the trauma types have frequently
been observed in similar patients (Generalized Similarity, on page 174). This

piece of code incidentally also generates a similarity network of the patients,
which you do not need for this project.

jri_code.py

netl, net2, eps, n = generalized.generalized similarity(patients traumas)
_, generalized network = (netl, net2) if "WAR" in net2 else (net2, netl)
slice projected(generalized network, density=DENSITY)

generalized network.remove edges from(generalized network.selfloop edges())

Congratulations! You aspired to compute a network of trauma types. Instead,
you got four (or five, if you count two versions of the Pearson network as
two networks). But which one is the best and which are on the chopping
block?
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Plot and Compare the Networks

All four networks have the same number of nodes and similar density (and
a similar number of edges), which makes them very easy to compare. The
following picture shows the charts of all four networks.
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The difference between the tidy generalized similarity network cleanly sepa-
rated into two components, and its brethren, is striking. You can still see
some structure in the Pearson network, but the other two graphs are nearly
random.

The numerical experiment with community structure extraction (see Outline

an acceptable modularity of 0.47 and three network communities. The other
networks are not very modular.

jri_code.py
networks = {
"generalized" : generalized network,

"pearson" : pearson network sign,
"cosine" : cosine network,
"hamming" : hamming network,

}
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partitions = [community.best partition(x) for x in networks.values()]
statistics = sorted([
(name,

community.modularity(best part, netw),

len(set(best part.values())),

len(nx.isolates(netw))

) for (name, netw), best part in zip(networks.items(), partitions)],
key=lambda x: x[1], reverse=True)

The following table shows the modularity-related statistics of the four networks.

Number of Number of
Similarity type isolates Modularity communities
Generalized 0] 0.47 4
Pearson 0 0.20 4
Cosine 4 0.04 6
Hamming 6 0.00 7

The generalized similarity network has no isolated nodes, the highest modu-
larity, and the smallest number of detected communities. Its community
structure partitions the trauma types into the smallest number of well-defined
groups of similar size. These groups are compact and homogeneous, and with
some insignificant effort can be labeled, as shown in the following table.

Group label Trauma types
Personal violence SEXUAL ASSAULT, SEXUAL ABUSE, KIDNAP, PSYC MALTX, WAR,
PHYSICAL_ABUSE, PHYSICAL_ASSAULT

Medical traumas WAR_NOT_US, TRAUMATIC_LOSS, INJURY_ACCIDENT, MEDICAL_TRAUMA
Societal traumas SCHOOL_VIOLENCE, COMMUNITY_VIOLENCE, EXT_INTERPER_VIOLENCE

Neglect and IMPAIRED_CAREGIVER, FORCED_DISPLACEMENT, DOMESTIC_VIOLENCE,
relocation NATURAL_DISASTER, NEGLECT

This impressive summary completes your analysis of the bipartite network
of patients diagnosed with psychological traumas. You started with tabular
clinical data pertaining to the trauma cases, and explored four ways of con-
verting the data to a weighted network. You compared the networks, selected
the one with the highest modularity, and identified four trauma clusters. (The
number of discovered clusters is unrelated to the number of weighted net-
works.) The results of the study could be even more descriptive if you consid-
ered the temporal sequences of traumatic events.
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In the Next Part

Your common sense may have suggested that some traumas happen only in
a particular order. For example, SCHOOL_VIOLENCE does not happen until a child
goes to school. The constructed network of traumas cannot reflect the
sequencing because it is undirected. The best it can do is to mark two trauma
types as similar (if they are). You will work with directed networks in the next
part of the book.
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Part V

When Order Makes a Difference

Even in the simplest social ego-networlk, the edges
often have directions: their start and end nodes
have different semantics. In this part, you will fa-
miliarize yourself with directed networls, in partic-
ular with directed acyclic graphs, and partitioning
them into equivalence classes.



You can't get there from here.

Stereotypically attributed to people from Maine

CHAPTER 17

Directed Networks

Are you a robber or being robbed? Did the Yankees win over the Red Sox or lose
to them? Does fish oil provide omega acids or the other way around? Some
networks are inherently asymmetric, but we never talk about them—until now.

In this chapter, you will learn how to identify asymmetric relationships
between items and build and handle directed networks. In the end, you will
be able to check if a directed network is a directed acyclic graph, and if it is,
establish a partial order of the nodes by performing a topological sort.

Discover Asymmetric Relationships

A directed network is a network that has at least one directed edge. Naturally,
a directed edge is an edge that has a direction: it connects node X to node Y,
but not the other way around. Mathematically, the relationship represented
by a directed edge is asymmetric.

Many real-world relationships are asymmetric and, ideally, must be modeled
as directed networks. Here are some examples of asymmetric or possibly
asymmetric relationships:

In social networks:
¢ Friendship: Alice may believe she is a friend of Bob, but Bob may have
a different opinion. In the not-so-rare case when Alice and Bob are
mutual friends, you can either model their friendship as an undirected
edge or create two anti-parallel directed edges: one from Alice to Bob
and the other from Bob to Alice.

e Subordination: if Alice is a subordinate of Bob, then Bob is not a
subordinate of Alice.

e Some family relationships, such as parenthood: if Alice is a parent of
Bob, then Bob is not a parent of Alice.
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In semantic networks:
e Being a hypernym (a more general word) or a hyponym (a more specific
word): color is a hypernym of red because red is always a color, but
the converse is not true.

In other networks:
e Membership: Alice can be a member of an organization, but the
organization cannot be a member of Alice.

* Sequencing: if A happens after B, then B does not happen after A.

e WWW links: a link from one web page to another does not imply a
reciprocal link.

e Flow: any flow from one node to another (including flows of goods,
people, money, and information) is asymmetric and must be modeled
as a directed edge. In particular, one-way streets in a transportation
network are directed edges.

Even forward and backward references in a book establish an asymmetric
relationship between the book units (such as chapters). The figure shows the
network of chapters of this book. An edge in the figure connects a chapter to
another chapter if there is at least one reference in the former chapter to the
latter chapter.

Codples
Case@Wiki Directorks
Intré on Tools@Craﬁ

~Introduefiony oGephi
AdvancedNe.(:onstructllt\gm"\"a@Pucture
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Remember that NetworkX draws rectangles to represent edge arrows. If this
unusual notation is difficult to get used to, switch to Gephi for visualization.
A chapter whose node has more incident rectangles has more external refer-
ences and should be an earlier chapter in the book if the goal is to avoid the
forward references that some editors consider harmful.

Directed or Signed?

You may feel that the asymmetry of directed networks has something in
common with the asymmetry of signed networks (Signed Networlks, on page

they do not. Signed edges (just like all other weighted edges) represent the
intensity of the relationship. Directed edges represent its reciprocity. An edge
can be (and often is) directed and weighted/signed at the same time. The
following table shows how directedness and weight capture different aspects
of a simple interpersonal relationship.

Signed (-) Unsigned Signed (+)
Directed Alice hates Bob Alice knows Bob Alice likes Bob
(but Bob does not (but Bob does not (but Bob does not
hate Alice). know Alice). like Alice).
Undirected Alice and Bob Alice and Bob are Alice and Bob
are foes. acquaintances. are friends.

If yourepresented the same relationship with a “vanilla” unweighted, undirected
edge, all the nuances of the Alice and Bob affinity would be irrecoverably lost.

Explore Directed Networks

The directedness of edges dramatically affects almost all network measures and
structural elements. Let’s have a look at some affected properties. As an example,
let’s use a directed network of the top three preferred migration destinations for
each state in 2015, constructed from the United States Census Bureau State-
to-State Migration Flows dataset.' You can find the Python code for the network
construction in the file migrations.py. The picture on page 200 shows the network

Degree

Each node in a directed graph G has three degrees: G.in_degree() (the number
of incoming incident edges), G.out degree() (the number of outgoing incident

1. www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html
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edges), and the total G.degree() (the number of all edges). Note that the total
degree is the sum of the indegree and outdegree.

The indegree and total degrees of the migration graph designate the most
attractive destinations (which are, not surprisingly, sunny California, Florida,
and Texas). By construction, all nodes have the same outdegree of 3.

sorted(G.in degree().items(), key=lambda x: x[1], reverse=True)[:3]
sorted(G.out degree().items(),key=lambda x: x[1], reverse=True)[:3]
sorted(G.degree().items(), key=lambda x: x[1], reverse=True)|[:3]

[('CA", 21), ('FL', 17), ('TX', 16)]
[('KY', 3), ('MT', 3), ('MS', 3)]
[("CA*, 24), ('FL', 20), ('TX', 19)]

Neighbors

A node in a directed graph has two types of neighbors: G.successors() (reachable
through the outgoing edges) and G.predecessors() (reachable through the
incoming edges). The method G.neighbors() is another name of G.successors(). In
the migration network, the successors of the final_destination (CA) are the pre-
ferred destinations of the outgoing migration. The successors are the states
from which migrants come to California.

final destination = sorted(G.in degree().items(), key=lambda x: x[1],
reverse=True) [0][0]
coming from = G.predecessors(final destination)
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['LA", 'TX', 'UT', 'ND', 'NY', 'NM', 'NV', 'VA', 'WA', 'ID', 'AK', 'MO',
‘co', 'OR', 'MT', 'HI', 'KS', 'AZ', 'IL', 'MA', 'OK']

going to = G.successors(final destination)
['NY"', 'TX', 'AZ']

Walks, Trails, and Paths

A walk in a network is still any sequence of edges such that the end of one
edge is the beginning of another edge (see Think in Terms of Paths, on page

undirected edge may begin at any of its incident nodes. Some undirected
walks may become broken as a result of this additional restriction (think of
encountering a one-way street going in the “wrong” direction).

Centralities and Other Distances

Each node in a directed graph has three degree centralities (G.in_degree_centrality(),
G.out_degree_centrality(), and G.degree_centrality()), based on the namesake degrees.
The other types of centralities—closeness, betweenness, and eigenvector—are
calculated the same way for directed and undirected networks, but the results,
in general, differ because of the different neighborhoods and paths. The latter
is also true about the center, diameter, radius, eccentricity, and the periphery
of a graph (Networks as Circles, on page 91).

Components

A directed network has two types of components, as explained in Split Net-

component, any member node is reachable from any other member node.
(There is a migration flow from any state to any state, perhaps through some
intermediate states in the same component.) In a weakly connected compo-
nent, any member node would be reachable from any other member node
if all edges were converted to undirected. (There is a migration flow either
Jrom or to any state, perhaps through some intermediate states in the same
component.)

sorted(nx.weakly connected components(G), key=len, reverse=True) # Only one!
sorted(nx.strongly connected components(G), key=len, reverse=True)

[{'np*, 'mp', 'IL', 'CA‘, ‘'FL', 'NE', '"IN', 'NH', 'GA', 'ME', 'UT', 'PA',
‘AZ', 'PR', 'VT', 'MT', 'NJ', 'MA', 'WV', 'AK', 'DC', 'MN', 'TX', 'AL',
‘NM', 'MO', 'WI', 'WA', 'OR', 'LA', 'NV', 'IA', 'NC', 'MS', 'CO"', 'WY',
‘W', 'sc+, ‘'TN+, ‘ct', ‘RI', 'DE', 'AR', 'OK', 'NY', 'KY', 'OH', 'KS',
‘MI', 'ID', 'VA', 'SD'}]
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[{'MD', 'IL', 'CA', 'FL', 'IN', 'GA', 'PA', 'UT', 'AZ', 'NJ', 'DC', 'TX',
‘MO', 'WA', 'LA', 'OR', 'NC', 'MS', 'SC', 'TN', 'OH', 'NY', 'KY', 'KS',
‘MI', 'ibp', ‘'vA'}, {'NE', 'WI', 'ND', 'MN', 'IA'}, {'NH', 'ME'}, {'MA'},
{'vr'}y, {"PR'}, {'MT'}, {'AL'}, {'Nv'}, {'CO'}, {'Wwy'}, {'CT'}, {'RI'},
{'DE'}, {'0K'}, {'AR'}, {'SD'}, {'NM'}, {'Wv'}, {'AK'}, {'HI'}]

Function nx.condensation(G) calculates the condensation of G. A condensation

is an induced directed graph whose nodes represent strongly connected

components of G, and edges represent bundles of the original edges, in the
same spirit as explained on page 133. All original graph nodes within an
induced node of the cond.éﬁé-é.t"igr“l-.éi“‘éudefinitely reachable from each other.

If your goal is to study graph reachability, replacing a strongly connected

component with one node does not affect your findings, but makes the

problem simpler.

A strongly connected component is called attracting if it has no outgoing edges
whatsoever. NetworkX offers functions nx.attracting_components(G) and nx.attracting_com-
ponent_subgraphs(G) to obtain the attracting components. The figure_g_r}"pgggggg

shows the nodes in the attracting component in green. Once you move into
a “green” state, you will likely stay in the “green” state for good.

sorted(nx.attracting components(G), key=len, reverse=True)
[{'MD', 'IL', 'CA', 'FL', 'IN', 'GA', 'PA', 'UT', 'AZ', 'NJ', 'DC', 'TX',

‘MO', 'WA', 'LA', 'OR', 'NC', 'MS', 'SC', 'TN', 'OH', 'NY', 'KY', 'KS',
'‘MI', 'ID', 'VA'}]

Reversal and Flattening

You cannot live your life backward or gather spilled milk, but you can reverse
a directed graph with the method G.reverse(). The function returns a copy of
the original graph with each edge reversed. The indegrees, outdegrees, suc-
cessors, and predecessors in the new graph are the outdegrees, indegrees,
predecessors, and successors of the original graph, respectively. Both graphs
have the same weakly and strongly connected components. If your graph
represents consequences for each cause, the reversed one shows all the
causes for each consequence.

Finally, NetworkX provides a tool for getting rid of directedness altogether.
Method G.to_undirected(reciprocal=False) returns an undirected copy of a directed
graph. If the parameter reciprocal is True, then the function connects two nodes
with an undirected edge only if they are already connected by a pair of
antiparallel directed edges. Otherwise, directed edges are demoted to undirect-
ed edges, and any possible resulting pairs of parallel edges are merged.
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Apply Topological Sort to Directed Acyclic Graphs

A directed acyclic graph (DAG) is a special type of directed network. As the
name suggests, it is an acyclic network—a network that does not contain any
cycles (cycles are explained on page 89). Visually, a DAG is a tree, a forest, a

star, or a linear graph—for example, the linear graph and the tree in the figure
on page 4 are DAGs.

Directed acyclic graphs describe hierarchies—systems in which their compo-
nents are ranked one above the other according to some property. (A hierarchy
is often informally referred to as a “pecking order”: who pecks whom?) In a
hierarchy, any two components A and B are either unrelated, or A is unambigu-
ously subordinated to B, or B is unambiguously subordinated to A, either
directly or indirectly. On the contrary, subordination is ambiguous in directed
graphs with cycles. For example, in a two-node ring consisting only of A and
B, both nodes can claim that they supervise the other node.

Pecking Order

The edges of a directed acyclic graph often represent a dominance hierarchy or sub-
ordination. The source node of an edge is the “boss,” and the target node is a “subor-
dinate.” Incidentally, dominance in chickens is asserted by pecking. The “top”
chicken pecks a more inferior chicken, which, in turn, pecks an even more inferior
chicken, all the way down to the “bottom” chicken. Pecking order effectively executes
a topological sort and leads to social stratification.

All NetworkX functions and techniques for directed networks naturally work
for DAGs, but several functions are intended solely for DAGs. Function
nx.is_directed acyclic_graph(G) checks if G is a DAG or not. Function nx.transitive _clo-
sure(G) calculates a transitive closure T of G: a graph that has the same nodes
as G such that two nodes in T are adjacent if and only if there is a path between
the two nodes in G. Think of a transitive closure as a graph of all possible
subordination relationships, both direct and indirect.

You can serialize a DAG and arrange all nodes in a linear order, so that the
next node may be a subordinate of the previous node, but the previous node
is never a subordinate of the next node. The result of the serialization is a
ranking of all nodes, with the source nodes at the beginning and target nodes
at the end. This operation is called topological sort. You can sort a DAG in
many different ways, resulting in different “pecking” rankings. Function
nx.topological_sort(G) returns one randomly chosen ranking as a list of node labels.
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nx.topological sort(G)
['NM', 'DC', 'AR', 'HI', 'MI', 'SC', 'PR', 'MS', 'TN', 'CT', 'AL', 'ME',

'OR', 'vT', 'UT', 'DE', 'NC', 'NH', 'WY', 'CO', 'OK', 'IN', 'AK', 'WA"',

'‘sb', 'Az', 'KS', 'MO', 'RI', 'MA', 'LA', 'TX', 'MD', 'NE', 'IA', 'NV',

‘MT', 'ID', 'WV', 'VA', 'KY', 'OH', 'PA', 'NJ', 'ND', 'MN', 'WI', 'IL',

'"CA', 'GA', 'FL', 'NY']
A topological sort order is not too useful because it focuses on what is
impossible rather than on what is definite. You can tell from the order that
New Mexico (NM) is not one of the top five destinations for the residents of
New York (NY), but you cannot claim that New York is one of the top five
destinations for the inhabitants of New Mexico.

Master “toposort”

Directed network analysis has an unexpected connection to

. - This section uses Pandas,
creative writing and computer game development.

community, toposort.
Game developers and creative writers are often in need of a

collection of adjectives that characterize a particular property and range from
“very bad” to “very good.” Directed network analysis (via the module toposort)
makes it possible to design such a scale in any natural language.

Obtain and Extract Survey Data

You can start this mini case study by defining a list of candidate adjectives;
in our case, the list consists of thirty-four words: “alpha plus,” “average,”
“bad,” “crappy,” “disgusting,” “excellent,” “exciting,” “f*cking good,” “fantastic,”
“filthy,” “first-class,” “good,” “great,” “horrible,” “lousy,” “magical,” “mediocre,”
“pathetic,” “nice,” “none of a,” “normal,” “not bad,” “phenomenal,” “premium,”
“repugnant,” “shitty,” “so-so,” “solid,” “strong,” “superb,
“weak,” and “worthless.”

”

” ” ”

superior,” “unfit,”

“Babushka,” “Sputnik,” “Balalaika”...

The original data for this case study was collected by me in 2016
in the Russian language and later translated into English. You
may argue that the perception and interpretation of qualitative
adjectives in the two languages differ, and you are probably right.
However, the goal of the project is to introduce and illustrate the
technique, rather than produce an actual highly reliable line of
adjectives.
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Post the list as a survey to Qualtrics,” SurveyMonkey,® or your other favorite
survey-taking site. You have to design the questionnaire in such a way that
the takers either rank all words in the order from the “best” to the “worst” or
assign a numerical measure of “goodness” to each word. The survey design
is outside the scope of this book, but keep in mind that asking survey takers
to arrange thirty-four words on a cellphone screen may be more than an
average person is ready to commit to.

Once you collect enough samples, download the results as a CSV file (say,
Adjectives_by_the_rank.csv). Depending on the surveying site, the file may need a
lot of cleanup before becoming useful. The following code fragment imports
a CSV file produced by Qualtrics, extracts the thirty-four columns that corre-
spond to the word ranks, and removes the survey question from the column
names.

adjectives.py
ranks = pd.read_csv("Adjectives_by the_rank.csv",

header=1).set _index("ResponseID").fillna(0)
Q1 = "Rank the words from the most positive to the most negative-"
ranks = ranks.loc[:, ranks.columns.str.startswith(Ql)].astype(int)
ranks.columns = ranks.columns.str.replace(Ql, "")

Let’s now build a network of words. Each column of the DataFrame ranks repre-
sents the ranks of a word from each participant. Connect the word i to
another word j with a directed edge if the participants agree, to some extent,
that i is “better” than j. The definition of what constitutes the agreement may
be stringent (by consensus), weak (when at least two participants agree), or
somewhere in the middle (say, at least 115 of 158 participants agree). The
consensus-based network would have very few, if any, edges. The network
based on the weak criterion may have too many edges and contain cycles.
We want to construct a network that is dense but still has no cycles, because
if it is not a DAG, then it cannot be topologically sorted.

adjectives.py
dominance = pd.DataFrame([[(ranks[j] > ranks[i]).sum()
for i in ranks] for j in ranks],
columns=ranks.columns, index=ranks.columns)

QUORUM = 115
edges = sorted(dominance[dominance >= QUORUM].stack().index.tolist())
G = nx.DiGraph(edges)

2.  www.qualtrics.com
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The resulting network G has thirty-four nodes (one node per qualitative word)
and 497 edges. It consists of one dense weakly connected component shown
in the following figure.

Amazingly, the graph is a DAG.
nx.is directed acyclic graph(G)
{ True

Unfortunately, it looks incomprehensible.

Execute Topological Sort

You can try to bring some order by topologically sorting the network (Apply
Topological Sort to Directed Acyclic Graphs, on page 203):

adjectives.py
# Sort in the reverse order
print(nx.topological sort(G)[::-11)

{ ['exciting', 'fantastic', 'phenomenal', 'superior', 'first-class', 'magical’,
'f*cking good', 'superb', 'premium', 'alpha plus', 'great', ‘'excellent',
'strong', 'good', 'solid', 'not bad', 'nice', 'normal', 'average',
'mediocre', 'none of a', 'so-so', 'weak', 'bad', 'unfit', 'worthless',

'pathetic', 'lousy', 'shitty', 'horrible', 'filthy', 'repugnant',
'disgusting', ‘'crappy'l

report erratum « discuss
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The output of the function is unbelievably realistic. “Fantastic” is undeniably
better than “great,” which is better than “lousy,” which is better than “disgust-
ing.” The only problem with the function nx.topological_sort(G) is that it returns
only one possible topological sort order. It forcefully ranks the nodes that are
otherwise topologically equivalent, adding unnecessary constraints to the way
the node labels can be used. There is no way to obtain another order with
nx.topological_sort().

The module toposort” provides the function toposort.toposort(edge dict) that does
not have the limitations of the function nx.topological_sort(). This function returns
a generator of sets of topologically equivalent nodes. A node in a set does not
dominate and is not dominated by any node in the same set. Game developers
and creative writers, the prospective users of the word sets, would treat all
words in one set as having the same sentiment (but not necessarily the same
valence).

The function toposort.toposort(edge_dict) is not integrated with NetworkX. Before
using the function, transform a NetworkX edge list G.edges() into a dictionary
where nodes are keys, and sets of their neighbors are values.

adjectives.py

edge dict = {nl: set(ns) for nl, ns in nx.to dict of lists(G).items()}
topo order = list(toposort.toposort(edge dict))

print(topo order)

[{'phenomenal', 'exciting', 'fantastic'}, {'f*cking good', 'magical',
'first-class', 'great', 'superb', ‘'superior'}, {'alpha plus',6 'excellent',
"premium'}, {'solid', 'strong', 'good'}, {'normal', 'nice', 'not bad'},
{'average'}, {'none of a', 'mediocre', 'so-so'}, {'weak'}, {'worthless',

‘unfit', 'pathetic', 'bad'}, {'lousy'}, {'shitty', 'filthy', 'horrible’,

'crappy'}, {'repugnant', 'disgusting'}]
The new output is “phenomenal,” “exciting,” and “fantastic.” It consists of
twelve equivalence classes of word, each class being “worse” than the prede-
cessor and “better” than the successor. Despite being based only on 158
responses, the result does not look unexpected. The toposort algorithm is
even “smart” enough to put the unappetizing adjectives in the second set from
the end together.

In this chapter, you learned how to identify, capture, and explore (with topo-
logical sort) any asymmetric relationships between network nodes. Incidentally,
this chapter concludes the main body of the book. Whether or not you were
a seasoned complex network analyst and Python programmer at the beginning
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of the book, now you are. You will never see the world around you the same
way, because when all you know is CNA, everything looks like a networlk.

In the Appendix

Just like almost everything, NetworkX evolves. The second major version of the
library has been released as this manuscript was in preparation. You will
read about the new NetworkX 2.0 in Appendix 2, NetworkX 2.0, on page 213.
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Network Construction, Five Ways

This appendix compares the ways of constructing the Lincoln family tree
network on page 4 (shown in the following figure) in pure Python and using

Robert To Beckwith

Pure Python

The most natural way to describe a network in pure Python is to represent
each edge as a tuple or list of two nodes and collect all edge tuples or list in
another list—the edge list.


http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

Appendix 1. Network Construction, Five Ways ® 210

make-network-type-figures.py
lincoln list = [

("A.L.", "Edward Baker L."), ("A.L.", "Robert Todd L."),

("A.L.", "William Wallace L."), ("A.L.", “"Thomas L. III"),
("Jessie Harlan L.", "Mary L. Beckwith"),

("Jessie Harlan L.", "Robert Todd L. Beckwith"),

("Mary L.", "L. Isham"), ("Robert Todd L.", "A.L. II"),

("Robert Todd L.", "Jessie Harlan L."),

("Robert Todd L.", "Mary L."), ("Thomas L.", "A.L."),

("Thomas L.", "Sarah L. Grigsby"), ("Thomas L.", "Thomas L. Jr."),

The previous example has at least three major issues:

¢ Isolated nodes (nodes without edges) cannot be represented because they are
not incident to any edges (correctness issue).

¢ Lists have linear search time (performance issue).
¢ Node labels are replicated for each incident edge (memory footprint issue).

You could mitigate the first two issues by representing the network as a dictionary,
where the keys are node labels, and the values are sets of the adjacent nodes:
lincoln dict = {

"A.L.": {"Thomas L. III", "Edward Baker L.", "William Wallace L.",

"Robert Todd L."},

"Jessie Harlan L.": {"Robert Todd L. Beckwith", "Mary L. Beckwith"},

"Mary L.": {"L. Isham"},

"Robert Todd L.": {"Mary L.", "A.L. II", "Jessie Harlan L."},

"Thomas L.": {"Sarah L. Grigsby", "A.L.", "Thomas L. Jr."},

"George W.": set()},

Note how we incorporated George Wlashington] into the network, despite his not
having incident edges yet. (This network representation in used in Apply Topolog-

its own problems:

e Some nodes that have only incoming links (such as “Thomas L. III") are now
on the second level of the hierarchy and hard to find.

¢ You cannot have parallel edges that connect the same two nodes more than
once.

¢ Node labels are still replicated for each incoming incident edge.

iGraph

Here’s how iGraph deals with the Lincoln graph. The edge list contains numerical
node identifiers rather than labels, but you can add the labels later as node
attributes.


http://media.pragprog.com/titles/dzcnapy/code/make-network-type-figures.py
http://pragprog.com/titles/dzcnapy/errata/add
http://forums.pragprog.com/forums/dzcnapy

graph-tool ® 211

import igraph
edges = [(1, 6), (1, 7), (1, 5), (1, 12), (2, 4), (2, 9), (3, 13), (7, 0),
(7, 2), (7, 3), (8, 1), (8, 10), (8, 11)]

labels = [
"A.L. II", "A.L.", "Thomas L.", "Jessie Harlan L.", "Mary L. Beckwith",
"Sarah L. Grigsby", "Edward Baker L.", "Mary L.", "William Wallace L.",
"Robert Todd L.", "Robert Todd L. Beckwith", "Thomas L. Jr.",

"Thomas L. III", "L. Isham", "George W."]
G = igraph.Graph(edges, directed=True)
G.add vertex(14)
G.vs["name"] = labels
print(G)

IGRAPH DN-- 15 13 --

+ attr: name (v)

+ edges (vertex names):

A.L.->Edward Baker L., A.L.->Mary L., A.L.->Sarah

L. Grigsby, A.L.->Thomas L. III, Thomas L.->Mary L. Beckwith,

Thomas L.->Robert Todd L., Jessie Harlan L.->L. Isham, Mary

L.->A.L. II, Mary L.->Thomas L., Mary L.->Jessie

Harlan L., William Wallace L.->A.L., William Wallace L.->Robert Todd L.
Beckwith, William Wallace L.->Thomas L. Jr.

Alas, the unconnected nodes are not shown on the printout! Poor George W.

graph-tool

The graph-tool version of the Lincoln graph starts with the same edge list and
a list of labels. All vertices are added at once, followed by all edges. graph-tool
treats labels as vertex properties.

import graph tool

edges = [(1, 6), (1, 7), (1, 5), (1, 12), (2, 4), (2, 9), (3, 13), (7, 0),
(7, 2), (7, 3), (8, 1), (8, 10), (8, 11)]

labels = [
"A.L. II", "A.L.", "Thomas L.", "Jessie Harlan L.", "Mary L. Beckwith",
"Sarah L. Grigsby", "Edward Baker L.", "Mary L.", "William Wallace L.",
"Robert Todd L.", "Robert Todd L. Beckwith", "Thomas L. Jr.",

"Thomas L. III", "L. Isham", "George W."]

G = graph_tool.Graph() # Directed by default
nodes = G.add vertex(len(labels))
G.add edge list(edges)

# Add node labels ("vertex properties")

names = G.new vertex property("string")

for node,label in zip(nodes, labels):
names[node] = label
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NetworkX

The striking difference between the NetworkX code and the other previously
shown code fragments is the ability to add named edges and nodes directly
to the graph, which is a natural way of building a real-world complex network.

make-network-type-figures.py
lincoln list = [

("A.L.", "Edward Baker L."), ("A.L.", "Robert Todd L."),

("A.L.", "William Wallace L."), ("A.L.", “"Thomas L. III"),
("Jessie Harlan L.", "Mary L. Beckwith"),

("Jessie Harlan L.", "Robert Todd L. Beckwith"),

("Mary L.", "L. Isham"), ("Robert Todd L.", "A.L. II"),

("Robert Todd L.", "Jessie Harlan L."),

("Robert Todd L.", "Mary L."), ("Thomas L.", "A.L."),

("Thomas L.", "Sarah L. Grigsby"), ("Thomas L.", "Thomas L. Jr."),

]

import networkx as nx
G = nx.DiGraph(lincoln_list) # Directed!
G.add node("George W.")

NetworKit

You can convert a previously constructed NetworkX graph G into a Networkit graph
nkG with a call to one function.
import networkit.nxadapter

G = ... # Construct a NetworkX graph
nkG = networkit.nxadapter.nx2nk(G)
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We cannot be certain of being right about the future; but we can be almost
certain of being wrong about the future, if we are wrong about the past.

Gilbert Keith Chesterton, English writer, poet, philosopher,
dramatist, journalist, orator, lay theologian, biographer, and literary
and art critic

APPENDIX 2

NetworkX 2.0

A new version of NetworkX—2.0—was released in September 2017. The new
version is only partially compatible with the stable version used in the book.
The book describes over one hundred NetworkX functions. Some of them have
been affected by the transition.

Surely, the new version does not instantly make version 1.11 obsolete. 2.0
will be gradually phased in, while 1.11 will be phased out. In this appendix,
you will read about the most striking differences between the old and the new
versions, which will help you to adjust your CNA scripts to work with the
most recent version of NetworkX. A complete migration guide is available online."

From Containers to Views
e Function nx.subgraph() and methods G.subgraph(), G.neighbors(), G.reverse(),
G.to_directed(), and G.to_undirected(), to name a few, return View objects
instead of graphs. A view refers to the underlying graph. Any node,
edge, or attribute change in the underlying graph affects all of the
associated views.

e New attributes G.nodes and G.edges contain dict()-like NodeView and EdgeView
objects, respectively. Methods G.nodes() and G.edges() return the name-
sake views, too.

e New attributes G.degree, G.in_degree, and G.out degree contain dict()-like
DegreeView objects.

Usage Change
¢ Function bipartite.sets() raises an AmbiguousSolution exception if the input
bipartite graph is disconnected, because it is not possible to separate
bipartite sets in a disconnected graph unambiguously.

1. networkx.github.io/documentation/stable/release/migration_guide_from_1.x to_2.0.html
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* The order of parameters changed for the functions nx.set_edge_attributes()
and nx.set_node_attributes(). The list of attribute values is now the second
parameter, and the attribute name is the third parameter.

¢ Method G.selfloop() became function nx.selfloop().

Deprecation
e Function nx.blockmodel() deprecated in favor of nx.quotient_graph() with
relabel=True.

¢ Functions nx.from_pandas_dataframe() and nx.to_pandas_dataframe() deprecated
in favor of nx.to_pandas_adjacency(), nx.from_pandas_adjacency(), nx.to_pandas_edge-
list(), and nx.from_pandas_edgelist().
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SYMBOLS

[1 (selection operator), 23

A
A4 page format, 40
Abraham Lincoln timeline
converting adjacency ma-
trix, 70-75
with graph-tool, 211
with iGraph, 210
moving data with edge
lists and node dictionar-
ies, 76-77
with Networkit, 212
with networkx, 212
with pure Python, 209
slicing, 80
visualizations, 4
actors, see nodes
acyclic graphs, directed, 203-
208
Adamic, Lada, 55
add_edge(), 19, 23
add_edges_from(), 19, 23, 71
add_node(), 19, 23
add_nodes_from(), 19, 23
add_weighted_edges_from(), 24
adjacency
bipartite networks, 180-
181, 187
clique communities, 134
creating networks from
adjacency matrices,
69-75
defined, 17
importing and exporting
adjacency lists, 30

Index

adjectives for game developers
example, 204-208
algorithm.bipartite module, 177
Alice, 62
all_neighbors(), 85
alter nodes, 54-57, 84-86
Amazon’s Mechanical Turk,
139
Anaconda, xv, 136
angular distance and cosine
distance, 172
Animal Social Networks, 53
anti-communities, 136
anti-parallel directed edges,
197
assortative mixing, 97, 105
assortativity
coefficient, 100, 105
cosmetics case study,
156
defined, 97
estimating uniformity,
97-100
Panama Papers case
study, 105-107
in social network analy-
sis, 6
asymmetry
directed graphs, 197-199
examples, 197
family trees, 3
signed networks, 199
timelines, 3
attracting components, 202
attracting_components(), 202
attracting_components_subgraphs(),
202

attribute_assortativity_coefficient(),
100, 105
attribute_mixing_matrix(), 99, 105
attributes, see also similarity
Abraham Lincoln time-
line, 210
adding, 23-25
assortativity, 97-100,
105-107
binarizing, 166
changing, 24
co-occurrence, 115
contractions, 45
defined, 2
editing appearance, 31
in graph-tool, 15
Hamming distance, 168
handling with Pandas, 74
Manhattan distance, 169
networkx 2.0, 213
normalizing for Manhat-
tan distance, 170
processing selectively,
109
removing, 24
selecting incident edges,
23
storage in networkx, 20
authorities, 35, 95-96
average_clustering(), 88

average_degree_connectivity(), 98

B

balance theory, 57
balanced_tree(), 78
barabasi_albert_graph(), 78
Barabasi, Albert-Laszlo, 129



Barabasi-Albert graphs
about, 65
generating synthetic net-
works, 78
Panama Papers case
study, 106
Barnes, John, 6
BeautifulSoup, 154
best-partition(), 191
betweenness centrality
bipartite networks, 178
defined, 93
directed graphs, 201
ego networks, 57
measuring, 35, 96, 201
Othello semantic network,
119
product networks, 122
social networks, 57
betweenness_centrality(), 96, 178
BFS (breadth-first search), 43
bi-adjacency matrix, 180, 187
binomial graphs,
see Erdos-Rényi graphs
biological networks, exam-
ples, 5
bipartite networks, 175-183
anti-communities, 136
checking for, 177, 187
defined, 175
disadvantages, 176
examples, 176
functions, 177-178
networkx 2.0, 213
projecting, 178-183, 190
sketching by hand exam-
ple, 7
trauma types case study,
185-192

bipartite.sets(), 177, 213
blockmodel(), 138

blockmodeling

core-peripheral analysis,
129

cosmetics case study,
157

defined, 138

deprecation in networkx
2.0, 214

with graph-tool, 14

naming extracted blocks,
139

performing, 138

term, 138

Bob, 62

bottom nodes, bipartite net-
works, 178-183

branching factor, 78

Brandes, Ulrik, 95

breadth-first search (BFS), 43

bridges, 66, 94

broadcasting and communica-
tion networks, 62

brokerage, 57, 93
Building Mini-Categories in
Product Networks, 122

C

C
graph-tool, 13, 16
iGraph support, 12, 16
limitations for CNA, xiii

C++, 13, 16

caching, data for cultural do-
main analysis, 143

case, lowering, 145

case studies, see al-
so Wikipedia pages case
study
cosmetic products, 153—
160
cultural domain analysis,
141-151
Panama Papers, 101-
111, 176
trauma types network,
185-192
CDA, see cultural domain
analysis
center, measuring, 91, 201
center() method, 91

centrality, see also between-
ness centrality; eccentricity;
eigenvector centrality
closeness centrality, 35,
93, 96, 178, 201
degree centrality, 35, 92,
201
directed graphs, 201
harmonic centrality, 93,
96
HITS (Hyperlink-Induced
Topic Search), 35, 95—
96
measuring, 32, 35, 90,
92-97, 201
measuring correlation of,
96
Othello semantic network,
119

Index ® 220

PageRank, 35, 94-96
social network examples,
57
chain.from_iterable(), 155
chat sessions, recording, 63
checkerboard networks,
see grids
Chuck, 62
circles, networks as, 91
circular layout, 26-28
circular_layout(), 26
cityblock(), 170
classic networks, see also sim-
ple networks
generating synthetic net-
works, 78

types, 2-4, 63
clear(), 20
clique percolation, 134
clique-node, 133

cliques
bipartite networks, 178
clique-node, 133
defined, 131
extracting, 131-134
maximal, 132-133, 138
maximum, 132
percolation, 134
recognizing clique commu-

nities, 134-135

cliques, social, 66

closeness centrality
bipartite networks, 178
defined, 93
directed graphs, 201
measuring, 35, 96, 201

closeness_centrality(), 96, 178

clustering, see clustering coef-
ficients; community detec-
tion; modularity

clustering coefficients
bipartite networks, 178
clustering as term, 88
clusters as term, 134
measuring, 32, 35, 87

clustering(), 87, 178

CNA, see complex network

analysis

co-occurrence
component analysis, 128
cultural domain analysis

case study, 147

defined, 115
defining for analysis, 119



product networks, 120—
123

semantic networks, 116-
120

code for this book
cosmetics case study da-
ta, 154
cultural domain analysis
case study data, 141
dzcnapy_plotlib module, 27
migration distribution
data, 199
modules needed, xv
notation, xvi
online files, xvii
trauma types case study
data, 186
cognitive balance, see ho-
mophily
coincidence, see co-occur-
rence
collections, cosmetics case
study, 153-160
communication networks,
understanding, 61
communities, see also cliques
anti-communities, 136
blockmodeling, 138
community detection,

12, 14, 16
cosmetics case study,
157

cultural domain analysis
case study, 148-150

defined, 35

modularity-based, 136—
138, 191

partitioning into, 35, 88,
148-150, 157, 191

social network examples,
57

term, 134

trauma types case study,
191

community

cultural domain analysis
case study, 148-150

managing modularity-
based communities,
136

trauma types case study,
191

version, xv

community detection
graph-tool, 14, 16
iGraph, 12, 16
networkx, 12, 16

complements in product net-
works, defined, 120

complete graphs
about, 64
clustering coefficient, 87
generating, 78

complete subgraphs,
see cliques

complete_graph(), 78
complex contagion, 57

complex network analysis,
see also case studies; net-
works
bipartite networks, 178
cautions about building
own modules, 11
defined, xiii, 1
with Gephi, 32, 34-37
history, 1, 5
as iterative process, 17
use in medical and public
health, 185

complex networks, see al-
so cliques; networks; simi-
larity
defined, 4
major classes, 5
separating cores, shells,
coronas, and crusts,
129-131
sketching by hand, 6-8
splitting into connected
components, 126-128
structural elements, 125-
139
synthetic networks, 78

components

attracting components,
202

condensation, 202

cosmetics case study,
155-160

detection, 90

directed acyclic graphs,
203

directed graphs, 201

filtering, 104

giant connected compo-
nent (GCC), 125, 128-
129, 155

measuring connectedness
with Gephi, 32, 35

naming, 157-160

Panama Papers case
study, 104
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reversal, 202
splitting networks into,
126-128
components, connected
compared to cliques, 131
cosmetics case study,
155
defined, 126
filtering, 104
separating cores, shells,
coronas, and crusts,
129-131
splitting networks into,
126-128
Conceptual Structure of Fraud
Research and Its Dynamics,
116
condensation, 202
condensation() method, 202
connected_component_subgraphs(),
104, 128
connected_components(), 127, 155
connected_watts_strogatz_graph(),
78
connectedness, see also assor-
tativity
measuring, 32, 35
Panama Papers case
study, 104
splitting networks into
connected components,
126-128
consequences, reversal, 202
contagion, xv, 57
Continuum Analytics, xv
contracted_nodes(), 45
contractions, 45
core
defined, 129-130
main, 130
separating, 129-130
core nodes, collecting, 47
core-peripheral analysis, 129
corona
defined, 130
separating, 129-130
corr(), 96, 174
correlation, see Pearson corre-
lation
cosine similarity, 171-173,
187-192
cosine(), 172

cosmetic products case study,
153-160



Counter(), 158

coupling, product networks,
122
crust
defined, 130
separating, 129-130
CSV files
adjectives for game devel-
opers example, 205
cosmetics case study,
153-160
dictionary reader, 103
food and nutrient exam-
ple, 21
Panama Papers case
study conversion, 101-
111
trauma types case study,
186
cultural domain analysis
case study, 141-151
defined, 141
cultural networks, examples,
5

cycle networks, see rings
cycle_graph(), 78
cycles, trails as, 89

D

DAGs, see directed acyclic
graphs
data alignment, 146, 165

Data Laboratory tab in Gephi,
32-33

Data Science Essentials in
Python, 73

DataFrame

converting adjacency ma-
trices, 73-75

cultural domain analysis
case study, 144, 146,
150

data alignment, 146, 165

defined, 73

importing node at-
tributes, 74

naming communities
helper, 150

networkx 2.0, 214

parsing Panama Papers
CSV file, 108-111

parsing irregular texts,
145

Pearson correlation, 174,
180

similarity, 164
as term vector model, 146
Davis Southern women syn-
thetic network
about, 65
bipartite networks, 176
generating, 79, 164
simplicity in, 164-166
Davis, Allison, 164
davis_southern_women_graph(), 79,
164

degree, see also degree cen-
trality; indegree; outdegree
assortativity, 98, 106
bipartite networks, 176,
178
defined, 35
directed graphs, 199
giant connected compo-
nent (GCC), 129
induced nodes, 159
networkx 2.0, 213
Panama Papers case
study, 105-107
in social network analy-
sis, 6
social network examples,
57
Wikipedia pages case
study, 46
degree assortativity coeffi-
cient, 106
degree attribute, 213

degree centrality
bipartite networks, 178
defined, 92
measuring, 35, 92, 96,
201
degree() method, 47, 199
degree(induced) method, 159
degree_assortativity_coefficient(),
105
degree_centrality(), 92, 96, 178,
201

degrees(), 178
DegreeView, 213

deleting

all nodes and edges while
keeping shell, 20

attributes, 24

duplicates, 45, 110

isolates, 126

nodes and edges with
Gephi, 31

nodes and edges with net-
workx, 19, 45, 110
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nodes from ego networks,
55
self-loops, 22, 45
density
bipartite networks, 178,
189
converting sparse matrix
to dense, 76
defined, 84
measuring, 35, 84
density() method, 84, 178
describe_cluster(), 150
deserialization, with pickle,
143, see also serialization
diameter
defined, 91
directed graphs, 201
measuring, 35, 91, 201
diameter() method, 91
dichotomization, 166
dictionaries
attributes, 23
converting weight to, 147
CSV dictionary reader,
103
of dictionaries, 77
of lists, 77
measuring length, 21
moving data with node,
76-77
node and edge storage,
20
relabeling nodes, 22
to mitigate issues with
edge lists, 210
digital humanities, 118
DiGraph(), 18
digraphs, see directed graphs

directed acyclic graphs, 203-
208

directed edges
about, 18
anti-parallel, 197
asymmetric relationships,

197-199

defined, 197
networkx visualization, xvi
social networks, 53

directed graphs, 197-208

asymmetric relationships,
197-199

clique strength, 131

clustering coefficient, 87

condensation, 202

connected components,
126



converting to undirected,
18, 128, 202

creating, 18

defined, 18, 197

degree, 199

density, 84

directed acyclic graphs,
203-208

directed multigraphs, 19

eccentricity, 91, 201

flattening, 202

measurement, 199-208

networkx 2.0, 213

PageRank, 95

reversal, 202, 213

vs. signed networks, 199

social networks, 53

visualizations with Gephi,
199

weight, 199

Wikipedia pages case
study, 43

directed multigraphs, 19

directed network analysis,
game developer example,
204-208
discreteness, 2
dissortative networks, 97
distance, see also similarity
angular distance, 172
bipartite networks, 180-
181
cosine distance, 171-
173, 187-192
directed graphs, 201
Euclidean distance, 171
Hamming distance, 167-
169, 180, 187-192
Manhattan distance,
169-171
understanding, 163, 167-
173
documentation and communi-
cation networks, 63
draw_circular(), 26
draw_networkx(), 26-28, 158
draw_random(), 26
draw_shell(), 26
draw_spectral(), 26
draw_spring(), 26
dump(), 143
Dunbar’s number, 57
duplicate nodes
deleting, 45, 110
detecting, 33
merging, 33, 108

dyads

cliques, 132

defined, 6

neighborhoods as, 86
dynamics, xv, 57
dzcnapy_plotlib module, 27

E
eccentricity, 35, 91, 201
eccentricity() method, 91

ecological networks, exam-
ples, 5
economic networks, exam-
ples, 5
edge
accessing directly, 77
defining or changing at-
tributes, 24
storing nodes with, 20
edge lists
food and nutrient exam-
ple, 22
support for, 30
using, 20, 76, 209
edges, see also adjacency; at-
tributes; centrality; commu-
nities; directed edges; edge
lists; incident edges; labels;
preferential attachment;
weight
adding duplicate, 19
adding or removing with
Gephi, 31, 33
adding or removing with
graph-tool, 14
adding or removing with
iGraph, 13
adding or removing with
networkx, 19, 23, 46, 103
assortativity, 97-100
Barabasi-Albert graphs,
65, 79
in classic networks, 2-4
co-occurrence, 115, 119
communication networks,
61
converting similarities to,
163
core-peripheral analysis,
130
defined, 2
density, 84
directed graphs, 18, 199
distinguishing strong and
weak in social net-
works, 66
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Erdoés-Rényi graphs, 64,
79

event networks, 164

gathering for Wikipedia
pages case study, 41-
44

Holme-Kim graphs, 65,
79

incidence matrices, 76

induced, 137

isolates, 125

measuring network size,
83

merging duplicates, 45

negatively weighted, 116,
120, 126

networkx 2.0, 213

non-existent, 84, 134

parallel edges and multi-
graphs, 18-19

path length, 89

product networks, 120-
123

reversing, 202

selecting, 23

self-loops, 18, 33, 45, 89

semantic networks, 116-
117, 119

signed, 199

social networks, 53, 57—
60, 66

storing in networkx, 20

synthetic networks, 63—
66, 78

trails, 89

truncating networks, 46

undirected graphs, 18

walks, 89

Watts-Strogatz graphs,
64, 79

edges attribute, 213

edges() method, 20, 77, 84,
213

EdgeView, 213

ego networks
clustering coefficient, 87
defined, 54
Facebook example, 55-57
neighborhood, 84-86
Panama Papers case

study, 109

understanding, 54-57

ego nodes, 54-57, 84-87, 89

ego_graph(), 86

egocentric networks, see ego
networks



eigenvector centrality
defined, 94
directed graphs, 201
measuring, 35, 96, 201
Othello semantic network,
119
product networks, 122
social networks, 57
spectral layout, 26
eigenvector_centrality(), 96
email as communication net-
work, 62
empiric networks, 61
empty graphs, 18
Enron, 62
entities, see nodes
erdos_renyi_graph(), 78
Erdés-Rényi graphs
about, 64
generating synthetic net-
works, 78
sliced example, 80
ERGMs (exponential random
graph models), xv, 6
Euclidean distance, 171
event networks, example of
similarity, 164-166
evolution, xv, 6
Exploratory Social Network
Analysis with Pajek, 58
exponential random graph
models (ERGMs), xv, 6
exporting, networks, 30, 32,
39

F
Facebook
ego network, 55-57
empiric networks, 61
median number of
friends, 55
size of social network, 57
as social networking
website, 54
family networks, see al-
so Abraham Lincoln time-
line
directed graphs, 18
Florentine families syn-
thetic network, 65, 79
family trees, defined, 3

Federal Energy Regulatory
Commission, 62

files, see also CSV files
formats for saving visual-
izations, 32, 39
importing and exporting
networks, 30

filtering
components, 104
with Gephi, 32
with graph-tool, 14
find(), 13

find_cliques(), 132, 134
flattening, 202

Florentine families synthetic
network, 65, 79
florentine_families_graph(), 79
flows, xv, 198
food and nutrient examples
adding and removing
nodes and edges, 19-
23
adding attributes, 23-25
bipartite networks, 175-
183
building programmatical-
ly, 19-30
with Gephi, 32-40
reading CSV file, 21
saving network, 29-30
sketching by hand, 6-8
visualization with Gephi,
37-40
visualization with mat-
plotlib, 25-28
food fraud semantic network
example, 116-118

food pantry examples
binarizing attributes, 166
as product network, 120
distance, 167-171
similarity, 166-171
force-directed layout,
see Fruchterman-Reingold
layout
ForceAtlas2 layout, 37
friendship paradox, 57
from_dict_of lists(), 77
from_edgelist(), 76
from_numpy_matrix(), 72-73
from_pandas_adjacency(), 214
from_pandas_dataframe(), 73, 180,
214
from_pandas_edgelist(), 214
frozenset(), 135
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Fruchterman-Reingold layout,
26-28, 37

fruchterman_reingold_layout(), 26

G

game developer language
toposort example, 204-208

GCC (giant connected compo-
nent), 125, 128-129, 155

generalized module, xv, 182

generalized similarity, 174,
181, 187-192

generalized_similarity module, 182

geodesics
betweenness centrality,
93
closeness centrality, 93
defined, 90
eccentricity, 91
Gephi
about, xiv, 31
arrows in, xvi
capabilities, 31
creating networks, 31
cultural domain analysis,
148
directed graphs, 199
installing, 31
integrating with networkx,
40
limitations, 32
main window and tabs,
32
measuring connected-
ness, 32, 35
network analysis with,
32, 34-37
Panama Papers case
study, 110
passing and saving net-
works, 29, 31-33, 39
saving visualizations, 32,
38-39
using, 31-40
GetNet, 55
giant connected component
(GCQ), 125, 128-129, 155
The Good Wife case study,
141-151, 176

Google+, empiric network, 61
Granovetter, Mark, 66
graph exchange XML format,
importing and exporting, 30
graph modeling language,
importing and exporting, 30
Graph(), 18



graph-tool, 11-13, 16, 211
GraphML
dictionary attributes, 45
importing and exporting,
30, 40
graphs, see also directed
graphs; induced graphs;
multigraphs; networks;
undirected graphs
defined, 2
empty, 18
pseudographs, 18, 53
relabeling nodes, 22
simple network example,
18
types, 18
graphviz
about, 28
cosmetics case study,
158
food and nutrient exam-
ple, 28
with graph-tool, 14
installing, xvi
node placement in net-
workx, 13
graphviz-dev, xvi
grid_2d_graph(), 78
grids
defined, 3
synthetic networks, 64,
78
groupby(), 157
groups, see modularity

H
Hamming distance, 167-169,
180, 187-192

hamming(), 168
harmonic centrality, 93, 96
harmonic_centrality(), 96
height, specifying for trees,
78
HeightsWeights dataset, 170
hierarchical networks
defined, 4
directed acyclic graphs,
203
in social network analy-
sis, 6
HITS (Hyperlink-Induced
Topic Search), 35, 95-96
hits(), 96
Holme-Kim graphs, 65, 78
homophily, 57, 98

hubs, 35, 95-96
hypergraphs, 2
Hyperlink-Induced Topic
Search (HITS), 35, 95-96
hypernyms, 198
hyponyms, 198

I
Iago, 119
icons, changing size and color
with Gephi, 31
iGraph, 11-12, 15, 137, 210
importing
location for imports, 102
networks, 30-33
node attributes into
DataFrame, 74

in_degree attribute, 213
in_degree() method, 48, 199
in_degree_centrality(), 201

incidence matrices, creating
networks from, 69, 76
incidence_matrix(), 76
incident edges
defined, 17
directed graphs, 199
removing nodes and, 19
selecting, 23
incident nodes
adding edges with net-
workx, 103
defined, 17
incidence matrices, 76
indegree
adjacency matrices, 70
centrality, 92, 201
defined, 46
directed graphs, 199
networkx 2.0, 213
reversing, 202
Wikipedia pages case
study, 46
indexes
contiguous indexes in
graph-tool, 14
Series index, 146
induced edges, 137

induced graphs
bipartite networks, 178
condensation, 202
creating, 137
self-loops, 157
induced nodes, degree, 159
induced_edges(), 137
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induced_graph(), 137, 157
influence, 57
information, see knowledge
iPython, 71
is_bipartite(), 177, 187
is_directed_acyclic_graph(), 203
is_isomorphic(), 77
isolates
defined, 125
deleting, 126
locating, 125
problems representing in
pure Python, 210
product networks, 122,
125

isolates() method, 126
isomorphism, edge lists, 77
itemgetter, 42, 157

items(), 157
itertools, 153, 157
J

Justice Resource Institute,
186

K

k-clique, see cliques
k-core, see core
k-corona, see corona
k-crust, see crust

k-partite networks, see bipar-
tite networks; multi-partite
networks

k-shell, see shell
k_cligue_communities(), 135
k_core(), 131
k_corona(), 131
k_crust(), 131
k_shell(), 131
Karate Club synthetic net-
work, 65, 79
karate_club_graph(), 79
KeyError, 24
knowledge
information dissemina-
tion/diffusion, 57, 62
preservation and social
networks, 57, 66
representation, 116

Koblenz Network Collection
(KONECT), 61

Kovacs algorithm, 181



Krevl, Andrej, 61
Kunegis, Jérome, 61

L
labels
Abraham Lincoln time-
line, 210
auto-generating commu-
nity labels, 157-160
editing with Gephi, 31, 33,
37
enabling in Gephi, 33
food and nutrient exam-
ple, 24, 28
in graph-tool, 15
in graphviz, 28
issues with pure Python,
210
matplotlib and, 28
naming extracted blocks,
139
in networkx, 18
processing attributes se-
lectively, 109
relabeling nodes, 22, 103
layout
cosmetics case study,
158

Gephi, 32, 37-40
graphviz, 28, 158
networkx, 26-28
lemmatization, 144-145
len(), 21, 83, 85
Leskovec, Jure, 61
letter format, 40
linear networks, see paths

links and asymmetric relation-
ships, 198
lists, see also edge lists

cliques, 132

connected components,
127

empty list accumulator,
145

importing and exporting,
30

list of lists, converting to,
72

list of lists, to represent
matrices, 70

measuring length, 21

neighborhood measure-
ment, 85

node dictionaries, 76-77

removing non-existent
nodes or edges, 19

speed, 25

term lists in cultural do-
main analysis, 142,
144

term vectors, 145

LiveJournal
about, 142
case study, 141-151, 176
empiric network, 61
local bridges, 94
local topology, examples, 57
log(), 106
long tail in power law distribu-
tion, 107
louvain algorithm, 136-137
lower(), 145

M

machine learning and naming
extracted blocks, 139

main core, 130
make_max_clique_graph(), 133
Manhattan distance, 169-171
marketing analysis, 122
Markov chains, 95
Mathematica, xiii

matplotlib

about, 71

food and nutrient exam-
ple, 25-28

importing, 26

integration with networkx,
25

Panama Papers case
study, 101

plotting centralities, 97

version, xXv

matrices

attribute mixing, 105-
107

bi-adjacency matrix,
180, 187

creating networks from
adjacency and inci-
dence matrices, 69-76

dense, 76

event networks, 166

list of lists to represent,
70

list of lists, converting to,
72

matrix-multiplying, 147

similarity matrix, 188

sparse, 76, 147

term matrix in cultural
domain analysis, 144

unit, 96
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matrix-multiplying, 147
maximal cliques, 132-133,
138

maximum cliques, 132

mean reciprocal distance and
closeness centrality, 93

measurement, 83-100, see
also degree; distance
centrality, 32, 35, 90, 92—
97, 201
clustering coefficients,
32, 35, 87
degree centrality, 35, 92,
96, 201
directed graphs, 199-208
eccentricity, 35, 91, 201
estimating uniformity
through assortativity,
97-100
with Gephi, 32, 34-37
global measures, 83
neighborhoods, 84-88
paths, 32, 35, 88-92, 131
similarity, 163-164, 167—
173
size, 83
Wikipedia pages case
study, 46, 83-100
Measuring Tie Strength in Im-
plicit Social Networlk, 118

membership and asymmetric
relationships, 198

memory
graph-tool, 14
incidence matrices, 76
measuring non-existent
edges, 84
merging, duplicate nodes, 33,
108

meshes, see grids

migration distribution exam-
ple of directed graphs, 199-
204

modularity

cosmetics case study,
157

cultural domain analysis
case study, 148

defined, 136

measuring, 32, 35

modularity classes, 35

outlining modularity-
based communities,
136-138



partitioning networks in-
to communities, 35
trauma types case study,
191
modularity() method, 137
modules
installing, xvi
versions used in this
book, xv
MoiKrug, 60
monads, cliques, 132
Moreno, J.L., 5
Mossack Fonseca, 101
most_common(), 158
multi-partite networks
about, 176

anti-communities, 136
examples, 176
MultiDiGraph(), 19
MultiGraph(), 18
multigraphs
adding duplicate nodes
or edges, 19
adjacency matrices, 69
creating, 18
defined, 18
directed, 19
social networks, 53

MySpace, 55
N

names
cosmetics case study,
157-160
extracted blocks, 139
merging duplicate, 108
name generators, 54
term communities, 148
150
NaN (not a number), 75, 109,
165

natural language processing
cultural domain analysis
case study, 142-151
distinguishing strong and
weak edges in social
networks, 66
lemmatizing, 144-145
stemming, 145
stop words, 42, 144-145
toposort example, 204-208
Zipf's law, 147
Natural Language Toolkit
cultural domain analysis
case study, 142-151
version, xv

neighborhoods
assortativity, 98
defined, 84
directed graphs, 200
as dyadic, 86
measurement, 84-88
in networkx 2.0, 213
open, 85
path length, 89
transitive closure, 5
neighbors() method, 200, 213
Network Analysis, 64
Network Analysis of Exposure
to Trauma and Adverse
Events in a Clinical Sample
of Children and Adoles-
cents, 185
network dynamics, xv
network flows, xv
Networl Science, 185
Networkit, 11-13, 15, 212
networks, see also assortativ-
ity; bipartite networks;
classic networks; clustering
coefficient; complex net-
works; eccentricity; ego
networks; graphs; measure-
ment; neighborhoods; se-
mantic networks; signed
networks; similarity; simple
networks; social networks;
synthetic networks
as circles, 91
communication, 61
creating from adjacency
and incidence matrices,
69-76
creating with Gephi, 31
defined, 2-4
dissortative, 97
editing with Gephi, 31
empiric, 61
event networks, 164-166
flows, 198
hierarchical, 4, 6, 203
importing and exporting,
30-33, 39
saving, 29-30
scale-free, 6
separating cores, shells,
coronas, and crusts,
129-131
small-world, 6, 57, 64, 78
splitting into connected
components, 126-128
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structural elements, 125—
139
truncating, 46

Networks, Crowds, and Mar-
Iets, 185

networkx

about, xiii, 1, 11

Abraham Lincoln timeline
example, 212

adding attributes, 23-25

adding or removing nodes
and edges, 19, 23, 46,
103

advantages, 15

bipartite networks, 177-
178, 180

building food and nutri-
ent example program-
matically, 19-30

centrality measurement,
92-97

cliques, 132-135

clustering coefficient
measurement, 87

community detection, 12

component analysis, 127

converting Panama Pa-
pers CSV file with Pan-
das, 108-111

converting Panama Pa-
pers CSV file without
Pandas, 101-107

converting adjacency ma-
trices, 71-75

core-peripheral analysis,
131

cosmetics case study,
153-160

cultural domain analysis
case study, 147

density measurement, 84

directed acyclic graphs,
203-208

directed graphs, 199-208

eccentricity measure-
ments, 91

edge lists and node dictio-
naries, 76-77

estimating uniformity
through assortativity,
97-100

generating synthetic net-
works, 78

global measures, 83

graph creation, 18

graphviz and node place-
ment, 13

importing, 17



importing and exporting
networks, 30
integration with Gephi, 40
integration with matplotlib,
25
isolates, 126
layout options, 26-28
modularity-based commu-
nities, 136-138
neighborhood measure-
ment, 85
node and edge lists, 20
path measurements, 88—
92
reading CSV file, 21
relabeling nodes, 22
resources on, 12, 15, 213
saving and sharing net-
works, 29-30
saving visualizations, 26
similarity, 164
simple network with, 17—
30
size measurement, 83
slicing weighted net-
works, 79-81
speed, 13, 15
stubs for directed edges
visualization, xvi
version 1.11, xv
version 2.0, 208, 213
visualization size limita-
tions, 110
visualization with mat-
plotlib, 25-28
weight assumptions, 71
NetworkX Google discussion
group, xvii
NetworkXError, 19
Newman’s definition, 136
next(), 90, 155

nitk
cultural domain analysis
case study, 142-151
version, xv
node
defining or changing at-
tributes, 24
degree, 35
storing nodes with, 20
node dictionaries
CSV lookup, 103
moving data with, 76-77

nodes, see also adjacency;
attributes; centrality;
cliques; communities; de-
gree; incident nodes; iso-
lates; labels; neighbor-
hoods; preferential attach-
ment; snowballing
adding duplicate, 19
adding or removing with
Gephi, 31, 33
adding or removing with
graph-tool, 14
adding or removing with
iGraph, 13
adding or removing with
networkx, 19, 23, 46,
103, 110
alter nodes, 54-57, 84-86
assortativity, 97-100
avoiding merging, 158
Barabasi-Albert graphs,
65, 79
bipartite networks, 177-
183
in classic networks, 2-4
core, 47
core-peripheral analysis,
130
defined, 2
detecting duplicate
nodes, 33
directed graphs, 199
discovering new nodes in
ego networks, 55
discreteness, 2
dyadic, 6
editing in Gephi, 33-37
ego nodes, 54-57, 84-87,
89
Erd6s-Rényi graphs, 64,
79
gathering for Wikipedia
pages case study, 41-
44
Holme-Kim graphs, 65,
79
identifying, 7
induced, 159
measuring network size,
83
measuring number of, 21
merging duplicate, 33,
108
naming in cosmetics case
study, 157-160
networkx 2.0, 213
path length, 89
product networks, 120-
123
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random node sampling,
59
reflexive, 2
removing duplicate, 110
removing from ego net-
works, 55
seed, 7, 41, 59, 109
self-loops, 18
semantic networks, 117,
119
similarity-based net-
works, 163-174
social networks, 53, 57—
60
source nodes, 69, 90
splitting in bipartite net-
works, 177
storing in networkx, 20
supernodes, 138
synthetic, 133, 137-138
synthetic networks, 61,
63-66, 78
target nodes, 69, 90
transitive closure, 5
triadic, 6
truncating networks, 46
Watts-Strogatz graphs,
64, 79
nodes attribute, 213
nodes() method, 20, 213
NodeView, 213
non-existent edges, 84, 134
non_edges() method, 84
number_of_edges(), 83
number_of nodes(), 83
NumPy
about, 71
assortativity, 99
converting adjacency ma-
trices, 71
cultural domain analysis
case study, 142-151
generating unit matrix,

Hamming distance conver-
sion, 169

random layout and, 26

version, xv

nutrient examples, see food
and nutrient examples

(@)

Odnoklassniki, 59, 97-100
Oh No They Didn’t! (blog), 142
open neighborhoods, 85
OpenMP, 13, 16



ordering
asymmetric relationships,
198
lookup, 43
in networkx 2.0, 214
selecting attributes by
area of interest, 109
Othello, 118
out_degree attribute, 213
out_degree() method, 48, 199
out_degree _centrality(), 201
outdegree
adjacency matrices, 70
centrality, 92, 201
defined, 46
directed graphs, 199
networkx 2.0, 213
reversing, 202
Overview tab in Gephi, 32

P
p-value, 173, 189
PageRank, 35, 94-96
pagerank(), 95-96
painting project example, 122
Pajek, xiii, 30, 148
Panama Papers case study,
101-111, 176
Pandas
about, 71, 73
binarizing attributes, 166
centrality measurements,
96
converting Panama Pa-
pers CSV file, 108-111
converting adjacency ma-
trices, 71, 73-75
cosine similarity, 172
cultural domain analysis
case study, 142-151
modularity-based commu-
nities, 137
networkx 2.0, 214
Pearson correlation, 174,
180
similarity, 164
version, xv
paper and pencil sketching
networks, 6-8

parallel edges, 18-19

parallelism
with graph-tool, 13
with Networkit, 15
Pareto principle, 57, 129, 147

partitioning
clique communities and,
135
cosmetics case study,
157
modularity-based commu-
nities, 136-138, 191
networks into communi-
ties, 35, 88, 148-150,
157
networks into connected
components, 126-128
nodes in bipartite net-
works, 177
term communities, 148
150
trauma types case study,
191
path length
cliques, 131
components, 131
measuring, 32, 35, 88-92
path_graph(), 78
paths
connected components,
126
cutoff for shortest, 109
directed graphs, 201
geodesics, 90
measuring, 32, 35, 88—
92, 131
synthetic networks, 64,
78
as trails, 89
PDF files, saving as, 32, 39
Pearson correlation, 173,
180, 182, 187-192
pearsonr(), 173
pecking order, 203
periphery
core-peripheral analysis,
129
crust as, 130
defined, 91, 129
directed graphs, 201
eccentricity, 91
measuring, 91, 201
periphery() method, 91
pickle
cultural domain analysis
case study, 143
importing and exporting
networks, 30
plot(), 27
plug-ins and Gephi, 32
PNG files, saving as, 32, 39
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power law distribution, 106,
147
powerlaw_cluster_graph(), 78
pre-painting project example,
122
predecessors, 200, 202
predecessors() method, 200
preferential attachment
Barabasi-Albert graphs,
65, 78, 106
defined, 5
giant connected compo-
nent (GCC), 129
network dynamics, 57
Preview tab in Gephi, 32, 38
product networks
bipartite network exam-
ple, 179
cliques, 133
cosmetics case study,
153-160
defined, 120
food pantry example, 120
isolates, 125
understanding, 120-123
projected_graph(), 179
projections
bipartite networks, 178-
183, 190
event networks, 164
properties, node, see at-
tributes
property maps, 15
pseudographs, 18, 53
pure bridges, 94
pygraphviz, version, xv
pyplot submodule, 26
Pythagoras’ Trousers, 171
Python, version, xv
python-louvain, 136

Q

Qualtrics, 205
quotient_graph(), 214
R

R, iGraph support, 12
radius, 91, 201

radius() method, 91
random layout, 26-28

random node sampling, social
networks, 59

random_graph(), 178



random_layout(), 26
Read, Ronald C., 78
read_adjlist(), 30
read_edgelist(), 30
read_gexf(), 30
read_gml(), 30
read_graphml(), 30
read_pajek(), 30
read_pickle(), 30
read_yaml(), 30
reciprocal mean distance and
closeness centrality, 93
reflexive nodes, 2
regularity and simple net-
works, 4
relabel_nodes(), 22
relationships, see edges
remove_edge(), 20
remove_edges_from(), 20, 22
remove_node(), 20
remove_nodes_from(), 20
renderers, Gephi, 39-40
replace(), 108
resources for this book
code files, xvii
networkx, 12, 15, 213
online communities, xvii,
12, 15
reversal, 95, 202, 213
reverse(), 95, 202, 213
rings
as bipartite network, 175
defined, 4
synthetic networks, 64,
78

S
sampling
random node sampling,
59
snowballing, 7, 41-44, 59
saving
networks, 29-30
unwanted nodes in ego
networks, 55
visualizations in Gephi,
32, 38-39
visualizations in networkx,
26
scale-free networks, 6

scaling
Fruchterman-Reingold
layout in Gephi, 37

networkx issues, 27
scale-free networks, 6
SciPy
about, 71, 73
cosine similarity, 172
Hamming distance, 168
Manhattan distance, 170
Pearson correlation, 173,
180
version, xXv
search
breadth-first search, 43
iGraph, 13
seed nodes
Panama Papers case
study, 109
random sampling with,
59
snowballing with, 7, 41
select(), 13
selection operator ([]), 23
self-loops
adjacency matrices, 69
as cycle, 89
deleting edges, 45
identifying, 22
induced graphs, 137, 157
merging duplicates and,
33, 45
networkx 2.0, 214
removing, 22, 45
undirected graphs, 18
selfloop(), 214
selfloop_edges(), 22

semantic domain analysis,
116
semantic networks
asymmetric, 198
cliques, 133
defined, 116
food fraud example, 116—
118
isolates, 125
Othello example, 118
understanding, 116-120
sentiment analysis, 66

Sephora cosmetics case
study, 153-160

serialization

directed acyclic graphs,

203

with pickle, 143
Series

building, 75

defined, 73
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importing node at-
tributes, 75
index, 146
joining in DataFrame, 146
modularity-based commu-
nities, 137
term vector model, 146
Series index, 146
set_edge_attributes(), 24, 214
set_extent(), 27
set_node_attributes(), 24, 214
sets
bipartite networks, 177,
213
frozen sets, 135
speed and, 25
shared memory multiprocess-
ing, 13
shell
defined, 130
deleting all nodes and
edges while keeping, 20
separating, 129-130
shell layout, 26
shell_layout(), 26
shortest_path(), 90
shortest_simple_paths(), 90
signed edges, 199
signed networks
adjacency matrices, 69
defined, 60
vs. directed networks,
199
weight, 60, 71, 199
similarity, 163-174, see al-
so distance
bipartite networks, 180-
183
converting similarities to
edges, 163
cosine, 171-173, 187-
192
generalized, 174, 181,
187-192
local topology and, 57
matrix, 188
measuring, 163-164,
167-173
Pearson correlation, 173,
180, 182, 187-192
trauma types case study,
185-192
understanding, 163-167
similarity matrix, 188
similarity_mtx(), 188



similarity_net(), 189
simple networks, see also clas-
sic networks
adjacency matrices, 69
clustering coefficient, 88
with networkx, 17-30
regularity and, 4
single_source_shortest_path_length(),
109

sinks, 95
six degrees of separation,
see small-world networks
sketching networks by hand,
6-8
SlashDot, empiric network,
61
slice_projected(), 190
slicing
bipartite networks, 180,
183, 189
cultural domain analysis
case study, 147
defined, 80
with graph-tool, 14
Hamming distance, 169
isolates and, 126
with networkx, 79-81
product networks, 120
similarity matrix, 189
threshold, 80, 126, 147,
180, 183, 189
small-world networks, 6, 57,
64, 78
SNA, see social network
analysis
snowballing
defined, 7
food and nutrient sketch
example, 7
social networks, 59
Wikipedia pages case
study, 41-44
Social and Economic Net-
worlks, 92

social capital, 57

Social Network Analysis, 54,
58
social network analysis, see
also social networks
clustering coefficient, 87
core-peripheral analysis,
129
eccentricity, 92
history, 5
neighbors, 84-88

social networking websites
empiric networks, 61
vs. social networks, 54
social networks
acquiring, 59-60
asymmetric, 197
communication networks,
61
core-peripheral analysis,
129
defined, 5, 53, 57
distinguishing strong and
weak edges, 66
examples, 5
neighborhoods measure-
ment, 84-88
Othello semantic network,
119
path length, 89
prepared, 61
properties table, 57
signed networks, 60
vs. social networking
websites, 54
synthetic networks, 63—
66
understanding, 53-67
sociocentric networks,
see social networks

sociograms, 5
SOCR Data Dinov 020108

HeightsWeights dataset,
170

sorting, tuples, 42
source nodes, 69, 90

Southern women synthetic
network, see Davis South-
ern women synthetic net-
work

sparse matrices, 76, 147

spectral layout, 26-28

spectral_layout(), 26

speed

calculating generalized
similarity in bipartite
networks, 182-183

cliques, 132

component analysis, 128

converting adjacency ma-
trices, 71-72

graph-tool, 13-14, 16

iGraph, 12, 16

lists, 25, 132

NetworKit, 13, 16

networkx, 13, 15
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problems with pure
Python, 210
snowballing, 43
spring layout, 26-28
spring_layout(), 26
Stack Overflow forums, xvii,
12, 15
Stanford Large Network
Dataset Collection, 61
star_graph(), 78
stars
clustering coefficient, 87
defined, 4
preventing with stop
words, 42
synthetic networks, 64,
78
statistics
calculation tools with
graph-tool, 14
with Gephi, 32, 35
stemming, 145
stop words
cultural domain analysis
case study, 144-145
preventing stars when
snowballing, 42
strongly_connected_component_sub-
graphs(), 128
strongly_connected_components(),
127
subgraph(), 46, 128, 213
subgraphs
connected components,
128
ego networks, 56
in networkx 2.0, 213
truncating network, 46
subgraphs, complete,
see cliques
subordination, 197, 203
subsets
clustering, 88
defined, 6
substitutes, product net-
works, 120
successors, 200, 202
successors() method, 200
supernodes, synthetic, 138
SurveyMonkey, 205
SVG files, saving as, 32, 39
symmetry, 18
SymPy, 71



synthetic networks
complex, 78
generating, 61, 78
regular, 78
understanding, 63-66
synthetic nodes
blockmodeling with syn-
thetic supernodes, 138
modularity-based commu-
nities, 137
replacing maximal
cliques with, 133

T

target nodes, 69, 90

technological networks, exam-
ples, 5

term communities, portioning
and naming, 148-150

term matrices, cultural do-
main analysis, 144

term vector model (TVM), 146
term vectors, 145

terms
cultural domain analysis,
142, 144
extracting and naming
term communities,
148-150
term lists in cultural do-
main analysis, 142
term vector model (TVM),
146
term vectors, 145
ties, see edges

timelines, defined, 3, see al-
so Abraham Lincoln time-
line

to_dict_of lists(), 77

to_directed(), 213

to_edgelist(), 76

to_numpy_matrix(), 72-73

to_pandas_adjacency(), 214

to_pandas_dataframe(), 73, 214

to_pandas_edgelist(), 214

to_undirected(), 202, 213

todense(), 76

tolist(), 72

top nodes, bipartite networks,
178-183

topological_sort(), 203, 206

topology
directed acyclic graphs,
203-208
examples, 57
toposort module, xv, 204-208
toposort() method, 207
trails, 88, 201
transitive closure, 5, 88, 203
transitive_closure(), 203
transitivity(), 88
trauma types case study,
185-192
trees
branching factor, 78
defined, 3
stars, 4
synthetic networks, 64,
78
tri(), 96
triadic census, xv
triadic closure, 57
triads
cliques, 132
clustering coefficient

measurement, 87
defined, 6

tripartite networks, examples,
176

truncating networks, 46

tuples, sorting, 42

TVM (term vector model), 146

Twitter, empiric network, 61

two-mode networks, see bipar-
tite networks

U
UCINET, 148

unconnected graphs and
snowballing, 7
undirected graphs
adjacency matrices, 69
converting directed
graphs to, 18, 128, 202
creating, 18
defined, 18
density, 84
networkx 2.0, 213
social networks, 53

unit matrices, generating, 96

United States Census Bureau
State-to-State Migration
Flows dataset, 199
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United States Department of
Agriculture (USDA), 121,
166

urllib.request module, 154
USDA (United States Depart-
ment of Agriculture), 121,

166

\%

versions
charting with networkx, 13
modules used in this
book, xv
networkx, xv, 208, 213
Python, xv
views
with graph-tool, 14
networkx 2.0, 213
visualizations
classic networks, 2-4
directed graphs, 199
with Gephi, 31-40, 199
graphviz, 28
layout options, 26-29,
32, 37-40
layout phase, 26
with matplotlib, 25-28
rendering phase, 26
saving in Gephi, 32, 38-39
saving in networkx, 26
scaling, 27
size limits of networkx, 110
sketching by hand, 6-8
tools, 11-16

\W%

walks, 88, 201

Watts-Strogatz graphs, 64,
78

weakly_connected_component_sub-
graphs(), 128
weakly_connected_components(),
127
weight
adding weighted edges,
24
adjacency matrices, 69
assumptions in networkx,
71
bipartite networks, 179-
180, 189
bridges, 66
cliques, 66
converting to dictionary,
147
defined, 24
directed networks, 199



distinguishing strong and
weak edges in social
networks, 66
Hamming distance, 169
incidence matrices, 76
induced graphs, 137
negative, 116, 120, 126
path length measure-
ment, 89
product networks, 120
signed networks, 60, 71,
199
slicing weighted net-
works, 79-81
social networks, 53
weighted_projected_graph(), 179
whitespace and unifying du-
plicate names, 108

wikipedia module
importing, 42
version, xXv
Wikipedia pages case study
analysis, 47-48
centrality measurement,
93-97
clustering coefficient, 87
constructing network,
41-48
density, 84
measurement, 46, 83—
100
neighborhoods, 85
path measurements, 88—
92
Wilson, Robin J., 78

wind rose example of cosine
distance, 171-174

WordNet, 144
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wordpunct_tokenize(), 145
write_adjlist(), 30
write_edgelist(), 30
write_gexf(), 30
write_gml(), 30
write_graphml(), 30
write_pajek(), 30
write_pickle(), 30
write_yaml(), 30

Y
YAML, importing and export-
ing, 30

Z

Zachary’s Karate Club syn-
thetic network, 65, 79

Zipf's law, 146-147
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