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Preface to the second edition

There is no place for ugly mathematics (G. H. Hardy)

After more than a decade, a new edition was felt needed. The interest in and
the role of networks is still increasing, although the landscape of graph spectra
is not dramatically changed, but is slowly evolving. New theory or theory that I
have missed in the first edition is added. For example, I include the matrix theory
of linear processes on a graph, whose dynamics is proportional to the underlying
topology, such as fluids flowing in a network of pipes or electrical current in a resistor
network. The vector of the injected current at nodes is connected to the vector
of potentials at those nodes by a weighted Laplacian as explained in art. 14, from
which the pseudoinverse of the Laplacian naturally arises. The physics and meaning
of the diagonal elements of the pseudoinverse as well as the effective resistance
matrix of a graph are treated in Chapter 5.

The computation of graph spectra, eigenvalues and eigenvectors requires the
theory of linear algebra and polynomials. In the first edition, the book was divided
into two parts, where the second part originated from exploded appendices. This
second edition consists of three parts. The core of the book is Part I on Spectra of
Graphs, which consumes more than half of the pages and seven chapters. The main
theory on the eigenvalue equation (1.3), that comprises matrix and determinant
operations in linear algebra, is summarized in the Eigensystem in Part II. The
theory of polynomials, which also belongs to function theory, is contained in Part
ITI. Those two last parts contain the general theory, which is applied to graphs in
Part I. The reason for the separation is the inclusion of many nice results that make
those two last parts self-contained. Parts IT and III can be read independently of
Part 1.

Apart from the correction of errors and the deletion of a few articles (art.) in
the first edition, many additions have been included in this second edition. Some
additions are new and not published before. The list of new material in this second
edition is:

in Chapter 2: art. 12, 13, 14 to 16, 28, 29, 33, 35, 38 to 40, 17, 19, 21 to 24;

in Chapter 3: art. 43, 44, 52 to 58, 61, 64, 70, 71, 81, 87 to 91, 93 98;

in Chapter 4: art. 118, 120, 128 to 132, 139, 160, 161;

Chapter 5 on the effective resistance matrix;

in Chapter 6: Sections 6.4.3, 6.11 and 6.12;

in Chapter 7: art. 172, 182 and Section 7.5.3;

in Chapter 8: Sections 8.8 to 8.11;

Chapter 9 contains matrix transformations and properties of the determinant;

xi


https://doi.org/10.1017/9781009366793.001
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.001
https://www.cambridge.org/core

xii Preface to the second edition

in Chapter 10: art. 240, 241, 248, 249, 253, 256, 257, 258, 259, 271, 281 and
Sections 10.2, 10.7 and 10.10;

in Chapter 11: art. 293, 304, 305, 308, 312, 334, 336 and Section 11.6;

and in Chapter 12: Section 12.7.

Just as in the first edition, the main focus is on undirected graphs, whose graph-
related matrices as the adjacency matrix and Laplacian are symmetric. For sym-
metric matrices, the eigenvalue decomposition is effective, simple and beautiful.
Asymmetic matrices such as the non-backtracking matrix and the Markovian tran-
sition probability matrix specifying the directed Markov graph are not treated. An-
other omission concerns eigenvectors of graph-related matrices. Apart from their
computation, relatively little is understood about eigenvectors, although we expect
that progress will occur in the near future. A reason for this belief is the discovery
of the geometric simplex representation of an undirected graph, which is a third
equivalent representation besides the topology and the spectral domain, explained
in the Preface to the first edition below. Any undirected graph, possibly weighted,
on N nodes is a simplex — a generalization of a triangle in higher dimensions than
two — in the N — 1 dimensional Euclidean space, as first deduced by Fiedler (2009)
and rediscovered by us (Devriendt and Van Mieghem, 2019a) while studying elec-
trical resistor networks. That simplex is intimately related to eigenvectors of the
Laplacian matrix, but we omit the simplex geometry of a graph and simplicial com-
plexes. A last omission is specific topics in the relatively new field of graph signal
processing, for which we refer to the recent book by Ortega (2022) and Section 8.11
for the concepts of graph neural networks. Graph signal processing analyzes data
generated by processes on graphs and its aim is similar to that of Network Science;
roughly the same topics are treated, only the approach and nomenclature differs
somewhat. Here, we follow the network science terminology. While this book con-
tains inequalities for eigenvalues of graph-related matrices, Stani¢ (2015) devotes
an entire book on eigenvalue inequalities, which complements ours.

Finally, I hope that this new edition is easier to read: cross-referencing between
articles art. is greatly improved and I have tried to fabricate many art.’s as more
independent blocks that can stand on their own. To increase the readability, the
equation labels in Part IT and III contain as first indicator A and B, respectively,
instead of the chapter number that is maintained in the core Part L.

July 2023 PiET VAN MIEGHEM
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Preface to the first edition

During the first years of the third millennium, considerable interest arose in com-
plex networks such as the Internet, the world-wide web, biological networks, utility
infrastructures (for transport of energy, waste, water, trains, cars and aircrafts),
social networks, human brain networks, and so on. It was realized that complex
networks are omnipresent and of crucial importance to humanity, whose still aug-
menting living standards increasingly depend on complex networks. Around the
beginning of the new era, general laws such as “preferential attachment” and the
“power law of the degree” were observed in many, totally different complex net-
works. This fascinating coincidence gave birth to an area of new research that is
still continuing today. But, as is often the case in science, deeper investigations
lead to more questions and to the conclusion that so little is understood of (large)
networks. For example, the rather simple but highly relevant question “What is
a robust network?” seems beyond the realm of present understanding. The most
natural way to embark on solving the question consists of proposing a set of metrics
that tend to specify and quantify “robustness”. Soon one discovers that there is
no universal set of metrics, and that the metrics of any set are dependent on each
other and on the structure of the network.

Any complex network can be represented by a graph. Any graph can be repre-
sented by an adjacency matrix, from which other matrices such as the Laplacian
are derived. These graph related matrices are defined in Chapter 2. One of the
most beautiful aspects of linear algebra is the notion that, to each matrix, a set of
eigenvalues with corresponding eigenvectors can be associated. The physical mean-
ing of an “eigen” system is best understood by regarding the matrix as a geometric
transformation of “points” in a space. Those “points” define a vector: a line seg-
ment from an origin that ends in the particular point and that is directed from
origin to end. The transformation (rotation, translation, scaling) of the vector is
again a vector in the same space, but generally different from the original vector.
The vector that after the transformation turns out to be proportional with itself is
called an eigenvector and the proportionality strength or the scaling factor is the
eigenvalue. The Dutch and German adjective “eigen” means something that is in-
herent to itself, a characteristic or fundamental property. Thus, knowing that each
graph is represented by a matrix, it is natural to investigate the “eigensystem”, the
set of all eigenvalues with corresponding eigenvectors because the “eigensystem”
characterizes the graph. Stronger even, since both the adjacency and Laplacian
matrix are symmetric, there is a one-to-one correspondence between the matrix
and the “eigensystem”, established in art. 247.

In a broader context, transformations have proved very fruitful in science. The

xiii
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xiv Preface to the first edition

most prominent is undoubtedly the Fourier (or Laplace) transform. Many branches
of science ranging from mathematics, physics and engineering abound with exam-
ples that show the power and beauty of the Fourier transform. The general principle
of such transforms is that one may study the problem in either of two domains:
in the original one and in the domain after transformation, and that there exists
a one-to-one correspondence between both domains. For example, a signal is a
continuous function of time that may represent a message or some information pro-
duced over time. Some properties of the signal are more appropriately studied in
the time-domain, while others are in the transformed domain, the frequency do-
main. This analogy motivates us to investigate some properties of a graph in the
topology domain, represented by a graph consisting of a set of nodes connected by
a set of links, while other properties may be more conveniently dealt with in the
spectral domain, specified by the set of eigenvalues and eigenvectors.

The duality between topology and spectral domain is, of course, not new and
has been studied in the field of mathematics called algebraic graph theory. Several
books on the topic, for example by Cvetkovi¢ et al. (1995); Biggs (1996); Godsil
and Royle (2001) and recently by Cvetkovié¢ et al. (2009), have already appeared.
Notwithstanding these books, the present one is different in a few aspects. First, I
have tried to build-up the theory as a connected set of basic building blocks, called
articles, which are abbreviated by art. The presentation in article-style was inspired
by great scholars in past, such as Gauss (1801) in his great treatise Disquisitiones
Arithmeticae, Titchmarsh (1964) in his Theory of Functions, and Hardy and Wright
(2008) in their splendid Introduction to the Theory of Numbers, and many others
that cannot be mentioned all. To some extent, it is a turning back to the past,
where books were written for peers, and without exercise sections, which currently
seem standard in almost all books. Thus, this book does not contain exercises.
Second, the book focuses on general theory that applies to all graphs, and much
less to particular graphs with special properties, of which the Petersen graph, shown
in Fig. 2.3, is perhaps the champion among all. In that aspect, the book does not
deal with a zoo of special graphs and their properties, but confines itself to a few
classes of graphs that depend at least on a single parameter, such as the number
of nodes, that can be varied. Complex networks all differ and vary in at least some
parameters. Less justifiable is the omission of multigraphs, directed graphs and
weighted graphs. Third, I have attempted to make the book as self-contained as
possible and, as a peculiar consequence, the original appendices consumed about
half of the book! Thus, I decided to create two parts, the main Part I on the
spectra, while Part IT overviews interesting results in linear algebra and the theory
of polynomials that are used in Part I. Since each chapter in Part II discusses a
wide area in mathematics, in fact, separate books on each topic are required. Hence,
only the basic theory is discussed, while advanced topics are not covered, because
the goal to include Part II was to support Part 1. Beside being supportive, Part II
contains interesting theory that opens possibilities to advance spectral results. For
example, Laguerre’s beautiful Theorem 91 may once be applied to the characteristic
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Preface to the first edition XV

polynomials of a class of graphs with the same number of negative, positive and
zero eigenvalues of the adjacency matrix.

A drawback is that the book does not contain a detailed list of references point-
ing to the original, first published papers: it was not my intention to survey the
literature on the spectra of graphs, but rather to write a cohesive manuscript on
results and on methodology. Sometimes, different methods or new proofs of a same
result are presented. The monograph by Cvetkovié¢ et al. (1995), complemented by
Cvetkovi¢ et al. (2009), still remains the invaluable source for references and tables
of graph spectra.

I would like to thank Huijuan Wang, for her general interest, input and help
in pointing me to interesting articles. Further, I am most grateful to Fernando
Kuipers for proofreading the first version of the manuscript, to Roeloef Koekoek
for reviewing Chapter 12 on orthogonal polynomials, and to Jasmina Omic for the
numerical evaluation of bounds on the largest eigenvalue of the adjacency matrix.
Javier Martin Hernandez, Dajie Liu and Xin Ge have provided me with many
nice pictures of graphs and plots of spectra. Stojan Trajanovski has helped me
with the m-dimensional lattice and art. 153. Wynand Winterbach showed that
the assortativity of regular graphs is not necessarily equal to one, by pointing to
the example of the complete graph minus one link (Section 8.5.1.1). Rob Kooij
has constructed Fig. 4.1 as a counter example for the common belief that Fiedler’s
algebraic connectivity is always an adequate metric for network robustness with
respect to graph disconnectivity. As in my previous book (Van Mieghem, 2006),
David Hemsley has suggested a number of valuable textual improvements.

The book is a temporal reflection of the current state of the art: during the
process of writing, progress is being made. In particular, the many bounds that
typify the field are continuously improved. The obvious expectation is that future
progress will increasingly shape and fine-tune the field into — hopefully — maturity.
Hence, the book will surely need to be updated and all input is most welcome.
Finally, I hope that the book may be of use to others and that it may stimulate
and excite people to dive into the fascinating world of complex networks with the
rigorous devices of algebraic graph theory offered here.

Ars mathematicae

October 2010 PIET VAN MIEGHEM
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Symbols

Only when explicitly mentioned, will we deviate from the standard notation and
symbols outlined here.

Random variables and matrices are written with capital letters, while complex,

real, integer, etc., variables are in lower case. For example, X refers to a random

variable, A to a matrix, whereas x is a real number and z is a complex number. Also

the element a;; of a matrix A is written with a small letter. Usually, 4,7, k,{,m,n
are integers. Operations on random variables are denoted by [.], whereas (.) is used
for real or complex variables. A set of elements is embraced by {.}. The largest
integer smaller than or equal to z is denoted by |z |, whereas [x] equals the smallest
integer larger than or equal to x.

det A

trace(A)
diag(a)

AT
A*

AH
ca (x)
adjA

Linear Algebra

aix G1m
n X m matrix
an1 cero OGpm
a1 e A1n

=] : determinant of a square matrix A

an1 cee Qpp
= Z?Zl a;;: sum of diagonal elements of A
= diag(ay, ag, . ..,ay): diagonal matrix with diagonal elements
equal to the components of the vector a = (a1, az,...,a,)

while all off-diagonal elements are zero

transpose of a matrix, the rows of A are the columns of AT
matrix in which each element is the complex conjugate of the
corresponding element in A

= (A*)": Hermitian of matrix A

= det (A — zI): characteristic polynomial of A

= A~ 'det A: adjugate of A
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Symbols

matrix product of n x m matrix A and m x [ matrix B
with element (AB),; = "% aixby;

Hadamard product of n x n matrix A and n x n matrix B
with element (Ao B),;; = a;;b;;

all-one matrix

all-one vector

diag(u), identity matrix

= 2 adjoint of A

basic vector: all components are zero, except component j is 1

Kronecker delta, d,; = 1if k = j, else 6x; =0
Probability theory

probability of the event X

= u: expectation of the random variable X

= 0% variance of the random variable X

= %I(I): probability density function of X
probability distribution function of X
probability generating function of X

¢x (z) = E [z*] when X is a discrete r.v.

¢x (z) = E [e7**] when X is a continuous r.v.

={X1,Xo,..., Xn}

k-th order statistics, k-th smallest value in the set {Xi}, 1<,

transition probability matrix (Markov process)

indicator function: 1¢,y = 1 if the event or condition {z} is true,

else 1¢,) = 0. For example, d; = 1ip—jy
Graph theory

set of links in graph G

set of nodes in graph G

= |£|: number of links in graph G

= |N|: number of nodes in graph G

adjacency matrix of graph G

incidence matrix of graph G

= BBT Laplacian matrix of graph G
pseudoinverse of the Laplacian matrix of graph G
effective resistance matrix of graph G

hopcount in a graph (random variable) or hopcount matrix
line graph of graph G

= diag(d): diagonal matrix of the nodal degrees
degree vector of a graph G

degree of node j

the j-th largest degree of node in graph G
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Symbols

maximum degree in graph G
minimum degree in graph G

degree (random variable) in graph G
vertex (node) connectivity of graph G
edge (link) connectivity of graph G
effective graph resistance

the number of triangles in graph G

set of eigenvalues of A ordered as A\; > Ao >
set of eigenvalues of ) ordered as py > o >

total number of walks with length k
number of closed walks with length &
diameter of graph G

degree assortativity of graph G
clique number of graph G

the complete graph with N nodes

the complete bi-partite graph with N =n +m

path on N nodes
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1

Introduction

Despite the fact that complex networks are the driving force behind the investi-
gation of the spectra of graphs, it is not the purpose of this book to dwell on
complex networks. A generally accepted, all-encompassing definition of a complex
network does not seem to be available. Instead, complex networks are understood
by instantiation: the Internet, transportation (car, train, airplane) and infrastruc-
tural (electricity, gas, water, sewer) networks, biological molecules, the human brain
network, social networks, software dependency networks, are examples of complex
networks. There is such a large literature about complex networks, predominantly
in the physics community, that providing a detailed survey is a daunting task. We
content ourselves here with referring to some review articles by Strogatz (2001);
Newman et al. (2001); Albert and Barabasi (2002); Newman (2003b), and to books
in the field by Watts (1999); Barabdsi (2002); Dorogovtsev and Mendes (2003);
Barrat et al. (2008); Dehmer and Emmert-Streib (2009); Newman (2010), and to
references in these works. Application of spectral graph theory to chemistry and
physics are found in Cvetkovi¢ et al. (1995, Chapter 8).

A few years ago, the study of complex networks has been called Network Science
Barabési (2016); Newman (2018). Networks consists of two main ingredients: (a)
a dynamic process, such as transport of items from node a to node b and (b) an
underlying topology or graph, over which the process evolves over time. In general,
the graph of the network is not fixed, but can change over time steered by some
second process. In time-varying networks, there are thus at least two processes,
which may be either independent or coupled by a third interaction process. The
best example, as experienced during the Covid pandemic, is epidemic spread on
a human contact graph: (a) the epidemic is governed by a viral infection process
and (b) the human mobility process creates the contact graph. Both processes may
be coupled by a third process, when viral awareness information is distributed and
humans can change contacts depending on whether people in their surrounding are
infected or not. Usually, the process on a graph specifies the directions of links,
while the graph itself reflects only link existence and is undirected.

In summary, most networks contain dynamic processes beside the graph. Net-
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work science studies the duality between process and graph and thus encompasses
graph theory.

1.1 Graph of a network

The graph of a network, denoted by G, consists of a set N' of N nodes connected
by a set £ of L links. Sometimes, nodes and links are called vertices and edges,
respectively, and are correspondingly denoted by the set V and E. Here and in
my book on Performance Analysis (Van Mieghem, 2014), a graph is denoted by
G (N, L) or G(N, L) to avoid conflicts with the expectation operator E in proba-
bility theory. There is no universal notation of a graph, although in graph theory
G = (V, E) often occurs, while in network theory and other applied fields, nodes
and links are used and the notation G (N, L) or G (N, L) appears. None of these
notations is ideal nor optimized, but fortunately in most cases, the notation G for
a graph seems sufficient. As explained in Devriendt and Van Mieghem (2019a)
and mentioned in the preface, any undirected, possibly weighted graph on N nodes
can be represented in the N — 1-dimensional Euclidean space by a simplex, whose
vertices represent the nodes of the graph G, but the edges of the simplex differ from
the links! Therefore, we adhere to nodes and link in the topology domain and we
talk about vertices, edges, angles and faces in the geometric domain. Besides the
graph and geometric domain, the third domain is the spectral domain, which is the
main focus of this book. Between these three different representations of a graph
G, there is a one-to-one correspondence for undirected graphs, implying that all
information about the graph in one domain is preserved in another domain.

Graphs, in turn, can be represented by a matrix (art. 1). The simplest among
these graph-related matrices is the adjacency matrix A, whose entries or elements
are

Qi = 1{node ¢ is connected to node j} (11)

where 1, is the indicator function and equal to one if the event or condition x is true,
else it is zero. All elements a;; of the adjacency matrix are thus either 1 or 0 and A
is symmetric for undirected graphs. Unless mentioned otherwise, we assume in this
book that the graph is undirected and that A and other graph-related matrices are
symmetric.

1.2 Eigenvalues and eigenvectors of a graph
If the graph consists of N nodes and L links, then art. 247 demonstrates that the
N x N symmetric adjacency matrix can be written as

A=XAXT (1.2)

where the N x N orthogonal matrix X contains as columns the normalized eigen-
vectors x1,Ta,..., xy of A belonging to the real eigenvalues \; > Ao > ... > Ay,
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1.8 Interpretation and contemplation 3

represented by the eigenvalue vector A = (A1, Ag,...,Ay), and where the matrix
A = diag()). The basic relation (1.2) is an instance of the general eigenvalue prob-
lem (art. 235) for an arbitrary square matrix A with eigenvalue £, where A is not
necessarily an adjacency matrix,

Az =& (1.3)

Assuming that the matrix A has N linearly independent eigenvectors, which implies
that the matrix A is not defective nor has a Jordan form (Meyer, 2000), then the
eigenvalue equation (1.3) can be written for each solution Azy = Az in terms of
the orthogonal matrix X = [ Ty Xo - TN ] as

AX = XA

The assumption of N linearly independent eigenvectors also means that rank(X) =
N and that the inverse matrix X ~! exists. Right-multiplying both sides by X!
yields

A=XAX"!

Art. 247 shows that symmetric matrices possess orthogonal eigenvectors, implying
that X! = X7, which brings us to (1.2). The eigenvalue equation (1.3) and
its specific form for symmetric matrices (1.2) form the cornerstone of this book.
Usually, although other definitions occur, the spectrum of a graph refers to the
set of eigenvalues {\;}, <i<N of a graph-related matrix and an eigenmode of an
operator or matrix is the eigenvector belonging to an eigenvalue.

This basic relation (1.2) equates the topology domain, represented by the adja-
cency matrix, to the spectral domain of the graph, represented by the eigensystem
in terms of the orthogonal matrix X of eigenvectors and the diagonal matrix A with
corresponding eigenvalues. The major difficulty lies in the map from topology to
spectral domain, A — XAXT, because the inverse map from spectral to topology
domain, XAXT — A, consists of straightforward matrix multiplications. Thus,
most of the efforts in this book lie in computing or deducing properties of X and A,
given A. Even more confining, most endeavors are devoted to the diagonal matrix
A of eigenvalues and the distribution and properties of the eigenvalues {\;}, <j<N
of A and of other graph-related matrices. It is fair to say that not too much is
known about the eigenvectors and the distribution and properties of eigenvector
components. A state of the current art is presented by Cvetkovi¢ et al. (1997).

1.3 Interpretation and contemplation

One of the most studied eigenvalue problems is the stationary Schrédinger equation
in quantum mechanics (see, e.g., Cohen-Tannoudji et al. (1977)),

Ho(r) = Ep(r)
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4 Introduction

where ¢ (1) is the wave function, E is the energy eigenvalue of the Hamiltonian
(linear) differential operator

ﬁ2
H= ——A—I-V(r)

in which the Laplacian operator is A = 31:2 —|— 22 T 8z2’ h = E and h ~ 6.62 X
10734Js is Planck’s constant, m is the mass of an object subject to a potential
field V (r) and r is a three-dimensional location vector. The wave function ¢ (r)
is generally complex, but |¢ (r)|2 represents the density function of the probability
that the object is found at position r. The mathematical theory of second-order
linear differential operators is treated, for instance, by Titchmarsh (1962, 1958).

While the interpretation of the eigenfunction ¢ (r) of the Hamiltonian H, the
continuous counterpart of an eigenvector with discrete components, and its corre-
sponding energy eigenvalue F is well understood, the meaning of an eigenvector of
a graph is rather vague and not satisfactory. An attempt is as follows. The basic
equation (1.3) of the eigenvalue problem, combined with the zero-one nature of the
adjacency matrix A, states that the j-th component of the eigenvector x; belonging
to eigenvalue \; can be written as

M (1) = (Amy), Zaﬂ 1), S (), (1.4)
1€ neighbors(j)

where neighbors(j) = {l € N : aj; = 1} denotes the set of all direct neighbors of
node j. In a simple graph (art. 1), there are no self-loops, i.e. a;; = 0, and the
eigenvector component (xy) j multiplied by the eigenvalue A equals the sum of the
other eigenvector components (zy), over all direct neighbors [ of node j. Since all
eigenvectors of the adjacency matrix A are orthogonal! (art. 247), each eigenvector
can be interpreted as describing a different inherent property of the graph. The
precise meaning of that property depends upon the graph-related matrix viewed
as an operator that acts upon a vector or points in the N-dimensional space. The
eigenvalue basic equation (1.2) says that there are only N such inherent properties
and the orthogonality of X or of the eigenvectors tells us that these inherent proper-
ties are independent. The above component equation (1.4) then expresses that the
value (xk) of the inherent property k, belonging to the eigenvalue Ay and specified
by the elgenvector xy, at each node j equals a weighted sum of those values (zy),
over all its direct neighbors [ and each such sum has a same weight )\,;1 (provided
Ak # 0, else the average over all direct neighbors of those values (x1), is zero).
Since both sides of the basic equation (1.3) can be multiplied by some non-zero
number or quantity, we may interpret that the value of property k is expressed in
own “physical” units. Perhaps, depending on the nature of the complex network,
some of these units can be determined or discovered, but the pure mathematical

I Mathematically, the eigenvectors form an orthogonal basis that spans the entire N-dimensional
space. Each eigenvector “adds” or specifies one dimension or one axis (orthogonal to all others)
in that N-dimensional coordinate frame.
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1.8 Interpretation and contemplation 5

description (1.3) of the eigenvalue problem does not contain this information. Al-
though the focus here is on eigenvectors, equation (1.4) also provides interesting
information about the eigenvalues, for which we refer to art. 273.

Equation (1.4) reflects a local property with value (z); that only depends on
the corresponding values (x), of direct neighbors. But this local property for node
j holds globally for any node j, with a same strength or factor A;. This local
and global aspect of the eigenstructure is another fascinating observation, that is
conserved after “self-replication”. Indeed, using (1.4) with index j = [ into (1.4)
yields

N N N
M)y =D aj Y ans (@), = Y (A7), (@),
lo=1

1=1 2=1

dj (zx); + > (@),

lo is a second hop neighbor of j

because art. 19 shows that (A2)jj = dj, where d; is the degree, i.e. the number of
neighbors, of node j. The idea can be continued and a subsequent substitution of
(1.4) leads to an expression that involves a sum over all three hops nodes away from
node j. Subsequent iterations relate the expansion of the graph around node j in
the number m of hops, further elaborated in art. 6 and art. 65, to the eigenvalue
structure as

[ = am, )@, = > (2, (L)
Iy is an m-th hop neighbor of j
The larger m, the more globally the environment around node j is extended.
The alternative representation (A.138) of A = XAX7T,

N
A= E )\kl‘kl‘g
k=1

shows that there is a hierarchy in importance of the properties, specified by the
absolute value of the eigenvalues, because all eigenvectors are scaled to have equal
unit norm. In particular, possible zero eigenvalues contain properties that the graph
does not possess, because the corresponding eigenvectors do not contribute to the
structure — the adjacency matrix A — of the graph. In contrast, the properties
belonging to the largest (in absolute value) eigenvalues have a definite and strong
influence on the graph structure.

Another observation? is that the definition of the adjacency matrix A is somewhat
arbitrary. Indeed, we may agree to assign the value « to the existence of a link and
[ otherwise, where o and 8 # « can be any complex number. Clearly, the graph is
then equally well described by a new adjacency matrix A («, 8) = (« — 8) A+ BJ,
where J is the all-one matrix. Unless o = 1 and f = 0, the eigenvalues and
eigenvectors of A (a, ) are different from those of A. This implies that an entirely

2 Communicated to me by Dajie Liu.
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different, but still consistent theory of the spectra of graphs can be built. We have
not pursued this track here, although we believe that for certain problems a more
appropriate choice of @ and 8 than a = 1 and 8 = 0 may simplify the solution.

Fig. 1.1. A realization of an Erdés-Rényi random graph G (N) with N = 400 nodes,

L = 793 links and average degree % of about 4. The link density p ~ 1072 equals the

probability to have a link between two arbitrary chosen nodes in Gy, (N). The size of a
node is drawn proportional to its degree.

When encountering the subject for the first time, one may be wondering where all
the energy is spent, because the problem of finding the eigenvalues of A, reviewed in
Chapter 10, basically boils down to solving the zeros of the associated characteristic
polynomial (art. 235). In addition, we know (art. 1), due to symmetry of A, that
all zeros are real (art. 247), a fact that considerably simplifies matters as shown
in Chapter 11. For, nearly all of the polynomials with real coefficients possess
complex zeros and only a very small subset has zeros that are all real. This suggests
that there must be something special about these eigenvalues and characteristic
polynomials of A. Orthogonal polynomials form a fascinating class of polynomials
with real coefficients whose zeros are all real, which are studied in Chapter 12 and
which are related to orthogonal eigenvectors.

Much of the research in the spectral analysis of graphs is devoted to understand
properties of the graph by inspecting the spectra of mainly two matrices, the ad-
jacency matrix A and the Laplacian @, defined in art. 4. For example, how does
the spectrum, the set of all eigenvalues, show that a graph is connected? What
is the physical meaning of the largest and smallest eigenvalue, how large or small
can they be? How are eigenvalues changing when nodes and/or links are added
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Fig. 1.2. An instance of a Barabdsi-Albert graph with N = 400 nodes and L = 780 links,
which is about the same as in Fig. 1.1. The size of a node is drawn proportional to its
degree.

to the graph? Deeper questions are, “Is A alone, without X in (1.2), sufficient to
characterize a graph?”’, “How are the spacings, the differences between consecu-
tive eigenvalues, distributed and what do spacings physically mean?”, or, extremal
problems as “What is the class of graphs on N nodes and L links that achieves the
largest second smallest eigenvalue of the Laplacian?”, and so on.

1.4 Outline of the book

Chapter 2 introduces some definitions and concepts of algebraic graph theory, which
are needed in Part I. We embark on the spectrum in Chapter 3, that focuses on
the eigenvalues of the adjacency matrix A. In Chapter 4, we continue with the
investigation of the spectrum of the Laplacian Q). As argued by Mohar, the theory
of the Laplacian spectrum is richer and contains more beautiful achievements than
that of the adjacency matrix. Mohar’s view is supported by the effective resistance
matrix {2 in Chapter 5, that is closely related to the Laplacian matrix (). In Chapter
6, we compute the entire adjacency spectrum and sometimes also the Laplacian
spectrum of special types of classes containing at least one variable parameter
such as the number of nodes N or/and the number of links L. Chapter 6 thus
illustrates the theory of Chapter 3 and Chapter 4 by useful examples. In fact,
the book originated from Chapter 6 and it was a goal to collect all spectra of
graphs (with at least one parameter) that can be computed analytically. The
underlying thought was to explain the spectrum of a complex network by features
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Fig. 1.3. The Watts-Strogatz small-world graph on N = 100 nodes and with nodal degree

D =4 (or k =2 as explained in Section 6.2) and rewiring probability p, = Wlo'

appearing in “known spectra”’. Chapter 7 complements Chapter 6 asymptotically
when graphs grow large, N — oo. For large graphs, the density or distribution of
the eigenvalues (as nearly continuous variables) is more appealing and informative
than the long list of eigenvalues. Apart from the three marvelous scaling laws by
Wigner, Marcenko-Pastur and McKay, we did not find many explicit results on
densities of eigenvalues of graphs. Finally, Chapter 8, the last chapter of Part I,
applies the spectral knowledge of the previous chapters to gain physical insight into
the nature of complex networks.

As mentioned in the Preface (first edition), the results derived in Part I have
been built on the general theory of linear algebra and of polynomials with real
coefficients, summarized in Part IT and Part III, respectively.

1.5 Classes of graphs

The main classes of graphs in the study of complex networks are: the class of
Erd6s-Rényi random graphs (Fig. 1.1), whose fascinating properties are derived
in Bollobds (2001); the class of Watts-Strogatz small-world graphs (Fig. 1.3) first
explored in Watts (1999); the class of Barabdsi-Albert power law graphs (Fig. 1.2
and Fig. 1.4) introduced by Barabdsi and Albert (1999); and the regular hyper-
lattices in several dimensions.

The Erdés-Rényi random graph is the simplest random model for a network. Its
analytic tractability in a wide range of graph problems has resulted in the richest
and most beautiful theory among classes of graphs. In many cases, the Erdés-Rényi
random graph serves as a basic model that provides a fast benchmark for first order
estimates and behaviors in real networks. Usually, if a graph problem cannot be
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Fig. 1.4. A Barabdsi “fractal-like” tree with N = 1000 nodes, grown by adding at each
step one new node to nodes already in the tree and proportional to their degree.

solved analytically for the Erdés-Rényi random graph or for hyper-lattices, little
hope exists that other classes of (random) graphs may have a solution. However,
in particular the degree distribution of complex networks does not match well with
the binomial degree distribution of Erdés-Rényi random graphs (drawn in Fig. 1.5)
and this observation has spurred the search for “more realistic models”.

After random rewiring of links, the Watts-Strogatz small-world graphs in Section
6.2 possess a relatively high clustering and short hopcount. The probability p, that
a link is rewired is a powerful tool in Watts-Strogatz small-world graphs to balance
between “long hopcounts” (p, is small) and “small-worlds” (p, — 1).

The most distinguishing property of large Barabdsi-Albert power law graphs is

—1
the power law degree distribution, Pr [D = k] & ¢k~ where® ¢ = ( kN:_ll k‘T) ~

1
<)
complex networks. Fig. 1.5 compares the degree distribution of the Erdés-Rényi

random graph shown in Fig. 1.1 and of the Barabdsi-Albert power law graph in
Fig. 1.2, both with the same number of nodes (N = 400) and almost the same
average degree (F [D] =4). The insert illustrates the characteristic power law of
the Barabdsi-Albert graph, recognized by a straight line in a log-log plot. Most
nodes in the Barabdsi-Albert power law graph have small degree, while a few nodes
have degree larger than 10 (which is the maximum degree in the realization here of

for large N, which is observed as a major characteristic in many real-world

3 The Dirichlet series ¢ (s) = 352, k% defines the Riemann-Zeta function (Titchmarsh and
Heath-Brown, 1986) for complex numbers s with Re (s) > 1.
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Fig. 1.5. The probability density function (pdf) of the nodal degree in the Erdds-Rényi
random graph shown in Fig. 1.1 and in the Barabdsi-Albert power law graph in Fig. 1.2.

the Erdés-Reényi random graph with the same number of nodes and links), and even
one node has 36 neighbors. A power law graph is often called a “scale-free graph”,
meaning that there is no typical scale for the degree. Thus, the standard deviation
op = y/Var [D] is usually larger than the average F [D], such that the latter is not
a good estimate for the random variable D of the degree, in contrast to Gaussian
or binomial distributions, where the bell-shape is centered around the mean with,
usually, small variance. Physically, power law behavior can be explained by the
notion of long-range dependence, heavy correlations over large spacial or temporal
intervals and of self-similarity. A property is self-similar if on various scales in time
or space or aggregation levels (e.g., hierarchical structuring of nodes in a network)
about the same behavior is observed. The result is that a local property is magnified
or scaled-up towards a global extent. Mathematically, if Pr[D = ak] = ca™"k™",
then Pr [ole = k] = o~ 7 Pr[D = kJ]: scaling a property — here, the degree D — by
a factor o~ ! leads to precisely the same distribution, apart from a proportionality
constant a~7. Thus, on different scales, the behavior “looks” similar.

There is also a large number of more dedicated classes, such as Ramanujan
graphs and the Kautz graphs, shown in Fig. 1.6, that possess interesting extremal
properties. We will not further elaborate on the different properties of these classes;
we have merely included some of them here to illustrate that complex networks are
studied by comparing observed characteristics to those of “classes of graphs with
known properties”.
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Fig. 1.6. The Kautz graph of degree d = 3 and of dimension n = 3 has (d 4+ 1) d" nodes and
(d+1)d™*" links. The Kautz graph has the smallest diameter of any, possibly directed,
graph with NV nodes and degree d.

1.6 Outlook

I believe that we still do not understand “networks” sufficiently well. For example,
if the adjacency matrix of a large graph is given, it seems quite complex to tell
without visualization of the graph by computing graph metrics only, what the
properties of the network are. A large number of topological metrics may be listed
such as hopcount, eccentricity, diameter, girth, expansion, betweenness, distortion,
degree, assortativity, coreness, clique number, clustering coefficient, vertex and edge
connectivity and others. We humans see a pile of numbers, but often miss the overall
picture and understanding.

The spectrum, that is for a sufficiently large graph a unique fingerprint as con-
jectured in van Dam and Haemers (2003), may reveal much more. First, graph
or topology metrics are generally correlated and dependent. In contrast, eigen-
values weigh the importance of eigenvectors, that are all orthogonal, which makes
the spectrum a more desirable device. Second, earlier research on photolumines-
cence spectra (Borghs et al., 1989) provided useful and precise information about
the structural properties of doped GaAs substrates. By inspecting carefully the
differences in peaks and valleys, in gaps and in the broadness of the distribution
of eigenvalues, that physically represented energy levels in the solid described by
Schrodinger’s equation in Section 1.3, insight gradually arose. A similar track may
be followed to understand real-world networks. We hope that the mathematical
properties of spectra, presented here, may help in achieving this goal.
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Part 1
Spectra of graphs
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2
Algebraic graph theory

The elementary basics of the matrix theory for graphs G (N, L) is outlined. The
books by Cvetkovi¢ et al. (1995) and Biggs (1996) are standard works on algebraic
graph theory.

2.1 Graph related matrices

1. Adjacency matriz A. The adjacency matrix A of a graph G with N nodes is
an N x N matrix with elements a;; = 1 only if the pair of nodes (¢, j) is connected
by a link ! of G, otherwise a;; = 0. If the graph is undirected, the existence of
the link / implies that a;; = aj; and the adjacency matrix A = A” is a symmetric,
zero-one matrix. It is assumed further in this book that the graph G does not
contain self-loops (a;; = 0) nor multiple links between two nodes. Graphs without
self-loops and without multiple links between two nodes are called simple.

The complement G¢ of the graph G consists of the same set of nodes but with
a link ! between (4,7) if there is no link [ = (4,5) in G and vice versa. Thus,
(G9)° = G and the adjacency matrix A° of the complement G¢ is A° = J — [ — A,
where J is the all-one matrix ((J),; = 1) and I is the identity matrix. The links in

Fig. 2.1. A directed graph with N = 6 and L = 9. The links are lexicographically ordered,
lh=1—2la=1—-3,l3=1+—6,l4 =2 — 3, etc.

a graph can be numbered in some way, for example, lexicographically as illustrated

in Fig. 2.1. Due to different node labeling, the same graph structure can possess
many different adjacency matrices (see Section 2.5 below).

15
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16 Algebraic graph theory

2. Incidence matriz B. Information about the direction of the links is specified by
the incidence matriz B, an N X L matrix with elements
1 iflinkl=4—j
by=4¢ —1 iflinkl=¢+«—3
0 otherwise

If ek is the k-th N x 1 basic vector of the N-dimensional space with (ey); = 1 if
k = j and otherwise (ex); = 0, then the I-th column vector of B, associated to link

l =1 — j, equals e; — ¢;. Each column in B has only two non-zero elements. The
adjacency matrix and incidence matrix of the graph in Fig. 2.1 are

01 1 0 01 1 1 -1 0 0 0 0 0 0

1 01 0 1 1 -1 0 0 1 -1 1 0 0 0

A— 1 1.0 1 0 0 B— 0 -1 0 -1 0 0 1 0 0
10 0O 1 0 1 0] " 0 0 0 0 0 0 -1 -1 0
01 0 1 01 0 0 0 0 1 0 0 1 -1

1 1.0 0 1 0 0 0 1 0 0 -1 0 0 1

An important property of the incidence matrix B is that the sum of each column
equals zero,

u'B=0 (2.1)

where u = (1,1,...,1) is the all-one vector, also written as an N x 1 matrix u =
(11 - 1]

An undirected graph can be represented by an N x (2L) incidence matrix B,
where each link (4, 7) is counted twice, once for the direction ¢ — j and once for
the direction 5 — 4. In that case, the degree of each node is just doubled. A link
I = (4,7) between node ¢ and j in an undirected graph is also denoted as | =i ~ j
or I =1 j. Instead of using the incidence matrix, the unsigned incidence matrix
R, defined in art. 25, is more appropriate for an undirected graph.

3. Degree of a node. By the definition of the adjacency matrix A, the row sum ¢
of A equals the degree d; of node i,

N
d,‘ = Zaik (2.2)
k=1

A neighbor j of a node i is a node in the graph G connected by a link to node
i, thus obeying a;; = 1. The degree d; is the number of neighbors of node i and
0 <d; < N —1. However, only N — 1 degree values are possible in a simple graph,
because the existence of dy = 0 for some node k excludes the existence of a degree
equal to N — 1 and vice versa. Consequently, in any graph G with N nodes, there
are at least two nodes with the same degree.

Since Zf;l Zgzl a; = 2L, where L is the number of links in the graph G, the
basic law for the degree follows as

> di=2L (2.3)
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2.1 Graph related matrices 17

Probabilistically, when considering an arbitrary nodal degree! D, the basic law for
the degree becomes

B[D] = =

meaning that the average degree or expectation of D in a graph G is twice the ratio
of the number L of links over the number N of nodes. Especially in large real-world
networks, a probabilistic approach is adequate as illustrated in Chapter 8.

The basic law of the degree (2.3) implies that any graph G possesses an even
(possibly zero) number of nodes with odd degree. Indeed, the sum in (2.3) can be
split over nodes with even and odd degree so that

N N
Sdi? =203 d

i=1 i=1

where dgo) is an odd integer if the degree of node i is odd, otherwise dgo) =0
(and similarly for the even degree dge)). The right-hand side is always even, which
implies that each simple graph must contain an even number of odd degree nodes.

Let us define the degree vector d = [ dy dy -+ dy }T, then both (2.2) and
(2.3) have a compact vector presentation as
Au=d (2.4)
and
u' Au=u"d = d"u = 2L (2.5)

For a directed graph, the in-degree di* and out-degree d"* of node i are defined
as the number of links entering and leaving, respectively, node ¢. From the incidence
matrix B, the number of “1” elements in row ¢ equals d?"*, while the number of
“—1” elements in row i equals di*. From an asymmetric adjacency matrix A (where
a;; = 1 only if there is link from node ¢ — j, otherwise a;; = 0), we find that

Au = d°"" and uTA = (di“)T
If A is symmetric, then u”A = uT AT = (Au)" and d°" = d =d.

4. Laplacian matriz Q. The relation between adjacency and incidence matrix is
given by the admittance matrix or Laplacian Q,

Q=BB"=A-A (2.6)

where A = diag(dy,ds,...,dy) is the degree matrix. Indeed, if ¢ # j and recalling
that each column in the incidence matrix B has precisely two non-zero elements,

—1 if (¢,7) are linked
T b
gij = BB szkbjk = { 0 if (4,4) are not linked

1 The random variable D of the degree in a graph G is equal to one of the possible realizations
or outcomes di,dsg,...,dyN of the degrees in G.
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18 Algebraic graph theory

from which the “link decomposition” of the Laplacian, derived in (4.5), follows as

Q= > (ei—ej)(ei—ep)”

(i,9)€L

If ¢ = j, then Zézl b?, = d; in (2.6) is the number of links that have node i in
common. If self-loops are allowed in a graph, then the right-hand side of definition
(2.6) shows that self-loops do not influence the Laplacian Q.

The basic property u’ B = 0 in (2.1) of the incidence matrix B leads in (2.6) to

Qu=20

Consequently, each row sum Z;\le gi; = 0, which shows that @ is singular, implying
that det Q = 0.

Since BBT is symmetric, so is Q and A. Hence, although the incidence matrix B
specifies the direction of links in the graph, (2.6) loses information about directions
and A in (2.6) only reflects the existence of links between a pair of nodes, corre-
sponding to an undirected graph. Consequently, if A is asymmetric and specifies,
just like B, the direction of links in a directed graph, then (2.6) does not hold.
Moreover, the asymmetric matrix A — A does not define an asymmetric Laplacian,
because the row sum of A — A is not everywhere zero. By replacing the degree in
A by the in-degree or out-degree, either the column sum or the row sum of A — A
is zero, so that we may define two different asymmetric “Laplacian” matrices. The
arguments illustrate that, generally, directed graphs possess less elegant properties?
than undirected graphs and give rise to a more complicated analysis.

The Laplace matrix ) can be viewed as a discrete operator acting on a vector.
The relation with its continuous counterpart, the Laplacian differential operator, is
explained by Merris (1994) for a lattice graph.

5. Matrices of weighted graphs. Weighted graphs often appear in practice, where
a link between node 7 and node j in the graph G is specified by one or more real
numbers that reflect e.g. a delay, a monetary cost when using the link, the energy
needed when traveling over that link, a performance loss, a geographic distance,
a quality of service metric in telecommunication networks, like packet loss, jitter,
etc.. We call any such real number, that specifies a link characteristic, a weight w;;
of the link between node 7 and j and the N x N weighted matrix W represents the
weights between all pairs (4, j) of adjacent nodes. In most cases, analyses are limited

2 Perhaps the major disadvantage of directed graphs is that the eigenvalues are not necessarily

real (since art. 247 does not apply). Even worse, the asymmetric adjacency matrix A may not
be diagonalizable and may possess a Jordan canonical form (art. 239).
From a physical point of view, flows in networks (art. 14) can propagate in either direction,
depending on the driving force or potential difference; the incidence matrix B specifies the
direction of the flow in the link, while the adjacency matrix A = AT determines the existence
of a link. If the adjaceny matrix is asymmetric, then some links only allow propagation of flows
in one direction and forbid the flow in the other direction. Physically, such an asymmetric
situation requires non-linear elements (such as diodes in an electrical network or water tubes
with directional shutters), which seriously complicate “linear” theory. Nevertheless, asymmetry
naturally occurs in www-links, social relations and the Markov graph of a Markov process.
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2.1 Graph related matrices 19

to one link weight, but multiple-parameter routing explained in Van Mieghem and
Kuipers (2004) is an example where each entry in the matrix W is a vector, rather
than a single real number. The link weight structure, the set of all link weights of
graph G, is usually specified by a process or a function on the network, so that link
weight w;; may depend upon link weight wy;. Since a process on a graph typically
introduces directions, W is generally not a symmetric matrix.

We will denote graph matrices of a weighted graph by a tilde to distinguish them
from graph matrices of the unweighted graph. For example, the element a;; of the
weighted adjacency matrix A represents the weight w;; of a link between node %
and j and a;; = 0 forall 1 < J < N. Using the Hadamard? product o, the weighted
adjacency matrix A equals A=Wo A, where a;; = w;ja;; and a;; is an element of
the adjacency matrix A. Hence, the unweighted case can be regarded as a special
case where the weighted matrix W = J is the all-one matrix.

A particular class of weighted graphs are undirected weighted graphs, where the
corresponding weighted adjacency matrix is symmetric, A = AT. The weighted
degree of node 7 is d; = Zjv 1 @ij, while the degree vector is d= Au. Similarly, the

corresponding weighted Laplacian can be defined as Q = diag (J) —A=A- A,
thus ¢;; = —a;; if i # 7, else, gj; = — Zf;l;i#j ;i and Q=0qQ".

6. Walk, path and cycle. A walk of length k from node i to node j is a succession
of k links (arcs) or k hops of the form (rg — 71)(r1 — r2) -+ (Tk—1 — Tk), Where
node label 7o = 4 and 1, = j. A closed walk of length k is a walk that starts in
node rg = ¢ and returns, after k£ hops, to that same node r, = i. A path is a walk
in which all nodes are different, i.e. r; # r,, for all 0 <1 # m < k. A cycle of
length k is a closed walk with different intermediate nodes, i.e. r; # r,, for all
0 <1 # m < k. For an undirected walk, path or cycle, we replace the directed link
r; — r; by the undirected link r; ~ r;. An Eulerian walk (circuit) is a closed walk
containing each link of the graph G once, while a Hamiltonian cycle contains each
node of G exactly once.

7. A shortest path. We consider only additive link weights such that the weight
of a path P is w(P) = > ,cpwi, ie., w(P) equals the sum of the weights of the
constituent links of the path P. The shortest path P’_, from node a to node b is
the path with minimal weight, thus, w (P}_ ;) < w (P,—s) for all paths P,_p. The
shortest path weight matrix S has elements s;; = w (’Pi’;j). If all link weights are
equal to w;; = 1 as in an unweighted graph, shortest paths are shortest hop paths
and w (P7,*—>]) = h;; is the hopcount, i.e. the length in hops or links of the shortest
path between node i and node j, also called the distance between nodes i and j, or
sometimes, the length of P}, ;. In weighted graphs, the hopcount h;; is generally
different from the weight s;; = w (’PZ*]) of a shortest path.

In man-made infrastructures, two major types of transport exist: either a packet

3 The Hadamard product (Horn and Johnson, 1991) is the entrywise product of two matrices:
(Ao B);; = AijB;j. If A and B are both diagonal matrices, then A.B = Ao B.
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20 Algebraic graph theory

(e.g. car, parcel, IP-packet, container) or a flow (e.g. electric current, water, gas).
Transport is either flow-based or path-based. Packets follow a single path from
source to destination, whereas a flow spreads over all possible paths. Generally,
packets in a weighted network follow shortest paths. The flow analogon of the
shortest path weight matrix S is the effective resistance matrix {2 in Chapter 5.

There exist many routing algorithms to compute shortest paths in networks.
The most important of these routing algorithms are explained, for example, in
Van Mieghem (2010) and Cormen et al. (1991).

8. Graph matrices and distance matrices. Many other graph-related matrices, in
short graph matrices, can be defined and we mention only a few. The effective
resistance matrix {2 is studied in Chapter 5. The modularity matrix M is defined
and discussed in art. 151. The probability transfer matrix P = A=A of a random
walk on a graph is a stochastic matrix, because all elements of P lie in the interval
[0,1] and each row sum is 1. Graph matrices can be scaled or normalized, e.g.,
normalized Laplacians are A=1Q or A=3QA~%.

A distance matriz D is a non-negative matrix, where element d;; specifies a
distance measure between node i and j in a graph. For example, if the distance
measure is equal to the hopcount h;;, then h;; = 0. Thus, distance matrices possess
a zero diagonal and contain the distances between each pair (,7) of nodes in a
graph. Any element of a distance matrix obeys the triangle inequality (art. 201):
0 < dij < diy+di;. The spectrum of distance matrices is reviewed by Aouchiche
and Hansen (2014). Both H, S and 2 are distance matrices.

The hopcount matrix H of the directed graph in Fig. 2.1,

= w X X N O
N = X X O =
NN X O~ =
N~ O~ NN
= O X X N W
O N X X =N

illustrates asymmetry in directed graphs as well as the possibility of the non-
existence, marked by x in the above matrix, of a path between two nodes, although
the graph is connected. For these reasons, we usually confine to undirected, con-
nected graphs. Since h;; = hj; in an undirected, connected graph, the correspond-
ing distance matrix H is symmetric, with positive integer off-diagonal elements and
with zero elements on the diagonal.

2.2 The incidence matrix B

The N x L incidence matrix B in art. 2 transforms an L x 1 vector y of the “link”-
space to an N x 1 vector x of the “nodal” space by x = By. Physically, this
transformation is best understood when y is a flow or current vector through links
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2.2 The incidence matriz B 21

in a network, while z is the externally injected current in nodes of the graph G as
discussed in art. 14 below. We first concentrate on mathematical properties of the
incidence matrix B.

9. Rank of the incidence matriz B.

Theorem 1 If the graph G is connected, then rank(B) = N — 1.

Proof: The basic property u’ B = 0 in (2.1) implies that rank(B) < N — 1.
Suppose that there exists a non-zero vector x # au for any real number « such
that 7B = 0. Under that assumption, the vector u and x are independent and
the kernel (or zero space of B) consisting of all vectors v such that vI'B = 0 has
at least rank 2, and consequently rank(B) < N — 2. We will show that « is not
independent, but proportional to u. Consider row j in B corresponding to the non-
zero component z;. All non-zero elements in the row vector (B); are links incident
to node j. Since each column of B only consists of two elements (with opposite
signs), for each link [ incident to node j, there is precisely one other row k in B with
a non-zero element in column . In order for the linear relation 7 B = 0 to hold,
we thus conclude that z; = z, and this observation holds for all nodal indices j
and k because G is connected. This implies that 7 B = au” B, which shows that
the rank of the incidence matrix cannot be lower than N — 1. O

An immediate consequence is that rank(B) = N — k if the graph has k disjoint
but connected components, because then (see also art. 116) there exists a relabeling
of the nodes such that B can be partitioned as

B, O ... O
B_ O By
0] ... By

10. The cycle-space and cut-space of a graph G. The cycle-space of a graph G
consists of all possible cycles in that graph. A cycle (art. 6) can have two cycle
orientations. This means that the orientation of links in a cycle either coincides with
the cycle orientation or that it is the reverse of the cycle orientation. For example,
the cycle (1 —2) (2 —6) (6 — 1) in Fig. 2.1 corresponds to the links (columns in B)
1,6 and 3 and all links are oriented in the same direction along the cycle. When
adding columns 1,3 and 6, the sum is zero, which is equivalent to By = 0 with
y = (1,0,1,0,0,1,0,0,0). On the other hand, the triplet (1 —2)(2 —3) (3 —1),
corresponding to the links 1,4 and 2, is not a cycle, because not all links are oriented
in the same direction such that y = (1,—1,0,1,0,0,0,0,0) has now negative sign
components.

In general, if By = 0, then the non-zero components of the vector y are links of
a cycle. Indeed, consider the j-th row (By) ;=T If node j is not incident with


https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core

22 Algebraic graph theory

links of the cycle, then z; = 0. If node j is incident with some links of the cycle,
then it is incident with precisely two links, with opposite sign such that z; is again
ZErO.

Since the rank of B is N — k, where k is the number of connected components,
the rank of the kernel (or null space) of B is L— N +k. Hence, the dimension of the
cycle-space of a graph equals the rank of the kernel of B, which is L — N 4+ k. The
orthogonal complement of the cycle-space is called the cut-space, with dimension
N — k. Thus, the cut-space is the space consisting of all vectors y for which By =
x # 0. Since uTz = 0 by (2.1), the non-negative components of x are the nodes
belonging to one partition and the negative components define the other partition.
These two disjoint sets of nodes thus define a cut in the graph, a set of links whose
removal separates the graph G in two disjoint subgraphs. For example in Fig. 2.1,
By=[1 0 —1 =2 1 1] defines a cut that separates nodes 3 and 4 from
the rest. Section 4.4 further investigates the partitioning of a graph.

11. Cycles and cuts in a connected graph G. A spanning tree T in the graph G is a
connected subgraph of G that contains all NV nodes of G. Any tree on N nodes has
N — 1 links, whose set is denoted by 7 C L, and a tree does not contain a cycle.

The definition of a spanning tree 7 of the graph G leads to an interesting prop-
erty: If alink [ € £, but [ ¢ T, is added to the spanning tree T, then there is a
unique cycle in the graph 7U{l}. Indeed, let I be a link between node i and j.
Since [ does not belong to the spanning tree 7', the nodes i and j are not directly
connected, but there is a path from node 7 to node j in spanning tree T', because
T is connected. The addition of [ to T results in two different paths from node i to
node j. By the definition of a cycle, the graph 7U{l} contains one cycle cyc (T, 1),
which is unique by construction and to which we can associate a vector y; obeying
By; = 0 by art. 10. The length of that cycle contains at most N links, because the
longest shortest path in the spanning tree has at most IV — 1 links.

The companion property is: if a link h € 7 (clearly, h € £) is removed, then
there is a unique cut cut (T, h), that contains link h and links e € £, but e ¢ 7.
Similarly, we can associate a vector y, to the cut cut (T, h) that obeys By # 0.

Since there are L — N + 1 links of G that do not belong to the spanning tree T,
we can construct L — N + 1 cycles and the set of cycles {cyc (T, l)}leL\T forms an
independent set, because a link ! belongs to a cycle cyc(T,1), but not to another
cycle cyc (T, g) for g # 1. Moreover, L — N + 1 is the dimension of the cycle-space
of G (art. 10) and the set of vectors y;, obeying By, = 0, for | € £\T represents a
basis for the cycle-subspace of Gi. Analogously, the set of cuts {cut (T, h)}, ., with
associated set of vectors yy, obeying By, # 0, for h € T represents a basis for the
cut-subspace of G.

12. Spanning trees and the incidence matrix B. Consider the incidence matrix B
of a graph G and remove an arbitrary row in B, corresponding to a node n. Let
M, be one of the (NL—1) square (N — 1) x (N — 1) submatrices of B without row
n and let G,, denote the subgraph of G on N — 1 nodes formed by the links in
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the columns of M,,. Since there are N — 1 columns in M,,, the subgraph G,, has
precisely N — 1 links, where some links may start or end at node n, outside the
node set of G,,. We will now investigate det M,,.

(a) Suppose first that there is no node with degree 1 in G, except possibly for n,
in which case G, is not a tree spanning N — 1 nodes. Since the number of links is
L(G,) = N —1, the basic law of the degree (2.3) shows that there must be a zero
degree node in G,,. If the zero degree node is not n, then G,, has a zero row and
det M,, = 0. If n is the zero degree node, then each column of M,, contains a 1 and
—1. Thus, each row sum of M, is zero and det M,, = 0.

(b) In the other case, G,, has a node ¢ with degree 1. Then, the i-th row in G,
only has one non-zero element, either 1 or —1. After expanding det M,, by this
i-th row, we obtain a new (N — 2) x (N — 2) determinant M,,; corresponding to
the graph G, formed by the links in the columns of M,,;. For det M,,;, we can
repeat the analysis: either G,,.; is not a tree spanning the N — 2 nodes of G except
for nodes n and ¢, in which case det M,,;; = 0 or det M,,;; = = det M,,.;..

Iterating this process shows that the determinant of any square submatrix M of
B is either 0, when the corresponding graph formed by the links, corresponding to
the columns in M is not a spanning tree, or =1, when that corresponding graph is
a spanning tree. Thus, we have shown:

Theorem 2 (Poincaré) The determinant of any square submatriz of the incidence
matriz B is either 0, 1, or —1.

If the determinant of any square submatrix of a matrix is 0, 1, or —1, then that
matrix is said to be totally unimodular. Hence, the incidence matrix B is totally
unimodular.

13. The matriz C representing cycles in G. Art. 11 suggests to write the incidence
matrix B of the graph G as

B_ { Br bfG\T ] (2.7)

where the (N — 1) x (N — 1) square matrix By has as columns the (partial*) links
of the spanning tree T' of G, the (N —1) x (L — N + 1) matrix Bg\r contains
the remaining links of G not belonging to 7" and the 1 x L vector by is linearly
dependent on the N — 1 first rows of B, because rank(B) = N — 1 by Theorem 1.
The L x (L — N + 1) cycle matrix C, in which a column represents a cycle of G, is

defined by
Cr
C =
[ It N1 }

where the (N —1) x (L — N + 1) matrix Cr contains elements of the vectors y;,
obeying By; = 0, for | € £\7. The basic property By; = 0 of a cycle y; translates to

4 The row N, corresponding to node N, is not included in By and links to or from node N in
the columns of Br only contain a 1 or —1.
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24 Algebraic graph theory

the matrix equation BC = 0, from which BrCr+ Bg\r = 0. Art. 12 demonstrates
that det By = 41, implying that the inverse of Br exists, thus

Cr = —B7'Ba\r (2.8)

Analogously for the cut-subspace of G, the L x (N — 1) matrix F' whose columns
contain the N — 1 vectors yy,, obeying By, # 0, for h € T,

| Inaa
F_{ Fr ]

Since each column of F belongs to the orthogonal complement of the cycle-subspace
of G, it holds that CTF = 0, from which CL + Fr = 0 and, with (2.8),

Fr=—CF = (Bi'Bayr)" (2.9)

In summary, the basic cycle matrix Cr in (2.8) and the basic cut matrix Fr in
(2.9) can be expressed in terms of the incidence matrix B for each spanning tree T
in GG. The idea to concentrate on a spanning tree 1" of G originates from Kirchhoff
(1847), who found the solution of the current-voltage relations in a resistor network
in terms of T

14. Electrical resistor network. The importance of the incidence matrix B and
the Laplacian matrix @ of a graph G is nicely illustrated by the current-voltage
relations in a resistor network. The flows of currents in a network, steered by forces
created by potential differences between nodes, is an example of a linear process,
where the dynamic process is proportional to the network’s graph. Other examples
of processes, that are “linear” in the graph, are water (or fluid or gas) networks,
where water flows through pipes and the potential of a node corresponds with its
height, heat diffusion in a network, where the nodal potential is its temperature,
and mechanical networks where springs connect nodes and nodal displacements are
related to potentials.

The L x 1 flow vector y possesses a component y; = ¥;; = —¥;;, which denotes
the electrical current flowing through the link [ = ¢ ~ j from node ¢ to node j.
Kirchhoff’s current law

x = By (2.10)
is a conservation law. The j-th row in (2.10), z; = (By); = Zle Bjiyy, states
that, at each node j in the network G, the current z; leaving (z; < 0) or entering

(z; > 0) must equal the sum of currents over links incident to j. If current z; > 0
is injected at node j, the flow conservation at node j is also written as

N
D R D I (211)
i€ neighbors(j) i=1

Thus, if no current (x; = 0) is injected nor leaving the node j, then the net current
flow, the sum of the flows over links incident at node j, is zero. If By = 0, then
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art. 10 shows that the non-zero components of y form a cycle. Left-multiplying
both sides of # = By in Kirchhoff’s current law (2.10) by u” and using (2.1) yields
uTz = 0, which means that the net flow, influx plus outflow, in the network is zero.
Thus, By = z reflects a conservation law: the demand z; offered at node j in the
network is balanced by the sum of currents or flows at node j and the net demand
of influx and outflow to the network is zero.

FEach link [ = i ~ j between node 7 and node j contains a resistor with resistance
r; =rij. A flow y;; is said to be physical if there is an associated potential function
v on the nodes of the network such that

Vi — U5 = TijYij (212)

In electrical networks, the potential function is called the “voltage”, whereas in
hydraulic networks, it is called the “pressure”. The relation (2.12), known as the
law of Ohm, reflects that the potential difference v; — v; generates a force that
drives the current y;; from node 4 to node j (if v; —v; > 0, else in the opposite
direction) and that the potential difference is proportional to the current y;;. The
proportionality constant equals the resistance® r;; > 0 between node i and j. For
other electrical network elements such as capacitors and inductances, the relations
between potential and current are more complicated than Ohm’s law (2.12) and
can be derived from the laws of Maxwell (see e.g. Feynman et al. (1963)). We
rewrite Ohm’s law (2.12) in terms of the current y;; = % (v; — v;) flowing through
the link [ = (7, 5), which becomes in matrix form

. 1
yrx1 = diag (r_> (BT)LxNUNm (2.13)
LXxL

where the NV x 1 vector v contains as elements the voltage v; at each node j in G and

1 1
AR R

of link l = (4,7). Substituting Ohm’s law (2.13) into Kirchhoff’s conservation law

(2.10) yields
r = Bdiag ( ) BTy
Tij

Similar to the unweighted Laplacian decomposition @ = BBT in (2.6), we define
the N x N weighted, symmetric Laplacian matrix5

Q = Bdiag (T )BT (2.14)

dlag( ) has diagonal elements ( ) where ; = 7;; is the resistance

5 If r;; = 0, then the potential v; of node i and v; of node j are the same by Ohm’s law (2.12).
From an electrical point of view, both nodes cannot be differentiated and we can merge node
i and j in the graph to one node. Therefore, we further assume that r;; > 0 in the graph G.

6 Since rij > 0, we can write Q Bdlag( > BT = Bdlag(\/_> (Bdlag (\/_]>> and may
consider the N x L matrix B = Bdlag(\/—_> as a “weighted incidence” matrix and the unit
of the element B;; is \/? The law of Ohm in (2.13) transforms to y = dlag( \/_]) BT, so

that B apparently lacks a physical interpretation.
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26 Algebraic graph theory

The weighted Laplacian é also generalizes the definition (2.6) of the Laplacian
Q=A—-AtoQ = A—A, where the N x N weighted, symmetric adjacency matrix A
with elements a;; = %L possesses a corresponding weighted degree diagonal matrix

A = diag(c%,gg, .. .,JN) with Jj = (gu) _introduced in art. 8. Alternatively,
J

substitution of Ohm’s law y;; = - (v; — v;) into the nodal conservation law (2.11)
ij
for node j yields

N, a N N N
_Zﬂ ) = 2:& }:& §:~_§:~ .
Tj = ~ (v; —vi) =v; ” =Y Qij QiU
. i=1 i=1

which is, in matrix form, z = ( A - ﬁ) v = @v, where the weighted degree is

Jj = Zjvzl a;j. While link [ = ¢ ~ j contains a resistor with resistance r; = 7y, the
link weight is w; = w;; = T—ll

In summary, we arrive at the fundamental relation between the N x 1 injected
current flow vector x into nodes of the network and the N x 1 voltage vector v at

the nodes
z=Qu (2.15)

Clearly, if all resistances equal r;; = 1 Ohm, then the unweighted case with the
standard matrices A, B and @ is retrieved. Most properties transfer to the weighted
graph related matrices: the weighted Laplacian Q Bdl&g(—) BT = BBT is pos-
itive semidefinite (as follows from art. 101) and the conservation of total injected
Ty = uTQu = 0, due to the basic property (2.1) of the incidence matrix B.
The power, the energy per unit time (in watts), dissipated in a resistor network is

flows u

the sum of power dissipated in each resistor, which equals P = vTz. The funda-

~ ot \2
mental relation (2.15) leads to the quadratic form P = v"Quv =3, ( l+\/ﬁl ) ,
which will allow us in art. 103 to relate the power P to eigenvalues of the weighted

Laplacian @

15. Harmonic functions. The continuous description of z = Qu in (2.15) is the
Poisson equation V2¢ (r) = (T) , where the potential ¢ (r) is a continuous function
of the position r = g’ﬁ, 7‘2, .. rm) of a point in an m-dimensional space, the Laplace
operator is V2 = o7 T arg +-+ d BT the charge density p (r) specifies the location
of electrical Charges and the perm1tt1v1ty constant ey balances the physical units at
the left- and right-hand side. The Poisson equation is related to Gauss’s divergence
law of the electrical field, that appears as the first Maxwell equation (see, e.g.,
Feynman et al. (1963), Morse and Feshbach (1978)). If the potential ¢ (r) is defined
at some boundary or surface S that encloses a volume without charges inside, then
V24 (r) =0 for r ¢ S and the solution ¢ (r) of the Laplace differential equation is
called a harmonic function. Harmonic functions possess many nice properties and
are the fundamental corner stone, via the Riemann-Cauchy equations, of analytic
functions in the complex plane (Titchmarsh, 1964). In the discrete setting, the
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2.2 The incidence matriz B 27

Laplace operator V2 in a continuous space is replaced by a Laplacian matrix @
on a graph and this powerful association results in more properties of and deeper
insight in the Laplacian than the adjacency matrix.
If the current « is injected in some nodes S C ./\/ equivalent with the boundary .S,
while z; =01if j ¢ S, then (év) =0andv; = = Z _1 Gi;v; is a weighted average
J

of the potential of its direct neighbors. The Voltage vector v in © = Qv is called

a harmonic at node j if (@'v) = 0. Similar to the continuous setting, known

as Dirichlet’s boundary problem, Doyle and Snell (1984) prove that a harmonic
function v (), defined on the nodes j € N of the graph, achieves its maximum and
minimum value at the boundary S. This important property of harmonic functions
follows physically from the voltages as potentials in electrical networks (see also
Section 5.3.2).

If x = 0, then (2.15) indicates that év = 0, which is an eigenvalue equation.
If the graph G is connected (see art. 116), the (weighted) Laplacian has one zero
eigenvalue belonging to eigenvector proportional to the all-one vector u, so that
the potential or voltage vector v = au, for a non-zero real o. The law of Ohm
(2.13) and the basic property (2.1) of the incidence matrix B then show that y = 0,
thus all currents are zero. Another consequence of the basic property (2.1) of the
incidence matrix B is that det@ = 0 and that the general relation (2.15) cannot
be directly inverted as v = Q z. In Section 4.2, the inversion problem is analyzed
and a general method based on the pseudoinverse QT of the Laplacian matrix Q is
presented.

16. FElectrical resistor network revisited. Kirchhoft (1847) considered a variant of
the setting in art. 14, where the external current vector x is replaced by an external
voltage difference vector dvey; over links of G. The law of Ohm in (2.13) becomes
dv = diag(ri;) y + Ovext, where the link potential difference vector is du = BTv.
If By = 0, then art. 10 shows that the non-zero components of y form a cycle.
Kirchhoff (1847) demonstrated” that C7§v = 0: the sum of the voltage differences
over a cycle is zero, which is Kirchhoff’s voltage law.

Considering a spanning tree T as explained in art. 10 and 13, we write the link
current vector y and potential difference vector dv as

Y= [ T } and v = [ ovr }
Ye\T 5UG\T
Since there are no external currents, i.e. x = 0 and By = 0, the link current vector

y with (2.7) obeys

{ Br Bar H yr

=B + B =0
by verr } TYT G\TYG\T

7 More generally, if the magnetic field is time-invariant (see, e.g., Feynman et al. (1963)), the
—
Maxwell equation V x E = 0, where E is the electric field vector, and Stokes’ theorem then
——
state that § Eds = 0, implying that any closed contour over the electric field is zero.
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28 Algebraic graph theory
and, invoking (2.8),

yr = —Br'Ba\rye\r = Crye\r
Thus,

YT Cr
= = = C
Y { yer } { I N+t ]ZJG\T Yo\T

illustrating that the whole current vector only depends on those current vector
components, associated with links that are not in the spanning tree 7. Similar,
CTov = 0 leads to CTdiag(ri;j) y = —CT dvext. Substituting y = Cye\r then yields

(C"diag (rij) C) yerr = —C* (6v)

Finally, the (L — N + 1) x (L — N + 1) matrix CTdiag(r;;) C has rank L — N + 1
and is invertible,

ext

yeorr = — (CTdiag (rij) C) ' C7 Sty

which is Kirchhoff’s solution. In fact, Kirchhoff (1847) evaluates the solution further
in terms of all spanning trees, reviewed without proof by Schnakenberg (1976).
Section 5.6 expresses the effective resistance in terms of spanning trees.

2.3 Connectivity, walks and paths

17. Connectivity of a graph. A graph G is connected if there exists a walk (art. 6)
between each pair of nodes in G.

Theorem 3 If a graph G is disconnected, then its complement G is connected.

Proof: Since a graph G is disconnected, G possesses at least two connected
components G and G3. There are two situations: (a) If node ¢ € G; and node
j € G, then no link in G connects them. By the definition of the complement
of a graph (art. 1), there will be a link ¢ ~ j in G°. (b) If node ¢ and j are
in the same connected component in G, then consider any node m in a different
connected component. The argument in situation (a) shows that the link ¢ ~ m
and the link j ~ m exist in G°. Consequently, ¢ and j are connected by the path
P =i~ m ~ j. Combining the two possible situations demonstrates that any two
nodes are reachable in G¢, implying that the graph G° is connected. O

The converse of Theorem 3, “If G is connected, then its complement G¢ is discon-
nected” is not always true. For example, if G is a tree (except for the star K71 y_1),
then G° is connected. Section 4.1.1 gives additional properties of a graph’s connec-
tivity.

18. The number of k-hops walks. Art. 6 has defined a walk. Due to its importance,
Lemma 1 is proved in two ways.
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2.8 Connectivity, walks and paths 29

Lemma 1 The number of walks of length k from node i to node j is equal to the
element (Ak)ij.

Proof by induction: For k£ = 1, the number of walks of length 1 between
node ¢ and node j equals the number of direct links between ¢ and j, which is by
definition the element a;; in the adjacency matrix A. Suppose the lemma holds
for E — 1. A walk of length k consists of a walk of length £ — 1 from i to some
node r which is adjacent to j. By the induction hypothesis, the number of walks
of length k£ — 1 from ¢ to r is (Ak_l)ir and the number of walks with length 1 from
T to j equals a,;. The total number of walks from 7 to j with length k then equals
Z,f_vzl (Akfl)ir apj = (Ak)ij (by the rules of matrix multiplication). O

Proof by direct computation: After ¢ iterations in &k of the matrix multipli-

cation rule (Mk)u = Zi\iqzl (]\41671)147%71 my,_,; for any matrix M, we obtain

N N N

(Mk)ij _ Z Z Z (Mk—Q)mﬁq Mo tgety = Mooy My j

Te—1=17r_o=1 rqu::[

When g =k — 1, then (Mk_q) = m;r, and it holds for any matrix M that

iTh_q

N N N
(M )ij - T My Mepyrg =" My _or 1My _1j5
7‘1:1 7‘2:1

rr—1=1

and applied to the adjacency matrix A,

N N N
(Ak)ij = Z Z Z Qiry Qryrg " " Qry_orp 1Ay 1 (2'16)

T1:1 T2:1 ’I‘k_1:1

With the convention 1o = ¢ and r;, = j, (2.16) can be written as

(4%, = i XN: XN: k]:[lam (2.17)

r1=1ry=1 re_1=11=0

where the indicator function H;:Ol Qryrpyy = Qiry Qpyrg * Qg oy Gy _yj 18 one if
and only if all links in the walk (i = rg — r1)(rg — 73) - (rg—1 — 1 = j) exist
(i.e. appy, = 1 for all values of I in [0,k — 1]), otherwise it is zero. The (k —1)-
fold multiple summation in the explicit expressions (2.16) and (2.17) ranges over
all possible, directed walks (i = r9 — r1)(r2 — r3)---(rk—1 — 1% = J) with k
hops (art. 6) between node ¢ and j and enumerates, out of all possible walks, the
existing walks in the graph, reflected by H;:Ol Aryryyy = 1 0

The maximum possible number of walks with k& hops between two nodes in a
graph with IV nodes is attained in the complete graph Ky, whose adjacency matrix
is Axy = J — I, and equals (J — I)Z—. Invoking Newton’s binomium, which is
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30 Algebraic graph theory

allowed because J and I commute, we have

k

(J-0F=3" (Z) Jm (=)

m=0

Since J™ = N™=1J form > 0, then (J — I)"=(-1)* I—I—Zm L(FYNm(—1 HFm
The binomium gives (J — I)" = (—=1)* I+ ((N -1 —(-1) ) J, from which the
maximum possible number of walks with &£ hops between node i and node j in any
graph follows as

(v -1f = (=) for i # j

k. _
U=Dy=9 1 (V=1 = (-1)F) + (1) fori=

(2.18)

19. Lower bounds for (Ak)ij. For any integer 0 < n < k, the matrix multiplication
form ‘
N
k—
A ” Zq A”)qj (2.19)
q=1

reduces, for n = 1 and taking into account the absence of self-loops, i.e. a;; = 0, to

N

(Ak)jj = Z (Akil)jq Qqj
q=1;q#]
illustrating for each node j that (Ak)jj does not depend on (Ak_l)jj. For n = 2,

symmetry in the adjacency matrix, A = A7, yields

N N N
2)JJ - Zajkakj = Za?k = Zajk =d; (2.20)
k=1 k=1 k=1

The off-diagonal element (AZ)ij = Zivzl aira;, counts the number of nodes % that
have a link to both node ¢ and j; i.e. the number of joint neighbors of node i
and node 7, so that 0 < (AQ)Z.j < min (d;,d;). Hence, (AQ)Z.j obeys both (A.185)
and (A.186) in art. 279, because of the basic inequality between the arithmetic and
geometric mean of two non-negative real numbers z and y: min (z,y) < /7y < %ﬂ
For n =2 and k > 2 in (2.19), we find

(49, = (A472), (49), (A7), + 50y (44, (42, Bori 2
(Ak) (Ak 2)13 d; +Zq Lig#j (Ak 2)3(1 (AQ)qj for i = j

The last equation leads to the recursion inequality (Ak)jj > (Ak_2)jj d; for
k > 2, that, after iteration, results for even k = 2m into

(A7) >dy (2.21)

Jji =
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2.8 Connectivity, walks and paths 31

but, for odd k£ = 2m + 1, we can only deduce (AQ’”H)J,]. > 0 and equality can
occur, e.g. in the path graph, studied in Section 6.4. Similarly, the first equation
for i # j when n = 2 leads, for £ > 2, to the recursion inequality

(Ak) (Ak 2) i (AQ)ij +d; (AIFQ)U‘
After p iterations, we have

(0, (40, {3 (am200) by (atoso),

q=0

Zj_

For odd k =2m + 1 and p = m — 1, we can conclude from the lower bound

m—1
(A2m+1)ij 2 (A2)ij {Z (A2(m—(q4r1)+1))ii d?} + d;‘naij

q=0
that

(A2m+1) Z d;nau

ij
3 m 1 m—

Even k = 2m and p = m — 1 give us (A? )ij (AQ) Sy di (Ammima)

Invoking the lower bound (2.21) yields

"

dm _ dm
2m 2 m—1—q __ 2 J ?
(A (4%),; Z dldr T = (A2) T

In conclusion, the properties in the number (Ak)ij of walks from node 7 to node
j with odd and even length k differ quite significantly, as will be supported by the
spectral investigations in art. 58. The reason is that A%?™ is a positive semidefinite
matrix (art. 278), while A2 *! is not.

20. The number of k-hops paths. The number of paths with k hops between node
¢ and node j follows from (2.16) by excluding possible same nodes in the walk,

Xk Z Iy N Z Z T Z Qipy Qpyrg " Ay 5
ri#A{i,g} re#A{ir1,3} AL T, re—2,5}
valid for k > 1 and N > 2, while the number of paths with & = 1 hop between the
node pair (¢,7) is X3 (4,5; N) = a;;. Symmetry of the adjacency matrix A implies
that Xy (4,7; N) = Xi (4,4; N). The definition of a path restricts the first index
r1 to N — 2 possible values, the second r5 to N — 3, etc., such that the maximum
number of k-hop paths, which is attained in the complete graph Ky, where a;; = 1
for each link (7, 5), equals
k-1

(N —-2)!
N-1-l)=—"-—"—
11;[1 ( ) (N —Fk-1)!
whereas the total possible number of walks with & hops is given in (2.18). If we
allow self-loops (a;; # 0), then (2.16) with H;:OI arry, = 1 leads to the total
possible number of walks with & hops equal to N*~1.
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The total number My of paths between two nodes in the complete graph is

N—-1
My =3 ~————=(N-2) =(N-2)le—R

vt T
, N—-1) N-=2
j=1

implying that for V > 3, the remainder R < 1. But My is an integer. Hence, the
total number of paths in K is exactly equal to

My = [e(N - 2))] (2.22)

where e = 2.718 281... and [z] denotes the largest integer smaller than or equal to z.
Since any graph is a subgraph of the complete graph, the maximum total number
of paths between two nodes in any graph is upper bounded by [e(N — 2)!].

21. Hopcount h;; in a connected graph. A graph G is connected if there exists
a walk between each pair of nodes in G. Lemma 1 shows that connectivity is
equivalent to the existence of some integer £ > 0 for which (Ak)ij # 0 for each
nodal pair (¢,7). The lowest integer k = h;;, where ¢ # j, for which (Ak)ij # 0,
but (Am)ij = 0, for all 0 < m < k, equals the number of hops in the shortest
walk — which is then a path — from node ¢ to node j. Thus, for i # j, the vec-
tor (Aij, (A2)z.j e (Akfl)ij , (Ak)ij) with & = h;; components equals (Ak)ij €k,
where ey, is the k-th basic vector of the k-th dimensional space. If i = j, then we
define the hopcount of the shortest path to be h;; = 0. Hence, the element h;; in
the distance matrix H, defined in art. 8, equals h;; = kl{mink:(Ak)ij#O } for i # j
and hy; = 0. The hopcount h;; of the shortest path Pfj between node ¢ and node j
is a unique integer, although there can be multiple shortest paths between node 4
and node j, so that (A’“J’)ij > 1.
Each off-diagonal (i # j) element in the hopcount matrix H obeys

1

Indeed, if node r is a direct neighbor of node ¢, then a;, = 1 and the hopcount of the
remaining path from node 7 to node j equals h,;. The minimum-hop (or shortest)
path travels over that neighbor r of node ¢ with the minimum remaining hops to
the destination node j. If r = j and a;; = 1, then we find, with h;; = 0, hopcount

1 for the direct neighbor path. If r is not a neighbor of 4, then GL = 00, which
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removes the index ¢ = r entry aL + hyj from the minimal set {ﬁ + hqj}1gq§N

in (2.23). Since G is connected, thus excluding isolated nodes, there is at least one
element a; = 1 in that minimal set. The non-linear recursion (2.23) can also be
written as

hij =1+ min hrj
r€ neighbors(z)

22. Diameter of a graph. The diameter of the graph GG, denoted by p and sometimes
by pg or p(G), is the number of hops in the longest shortest path in G' and equals
p = Maxi<;<n;1<;j<n hij. In a connected graph, the diameter is upper bounded
by p < N — 1, the hopcount N — 1 of the longest possible shortest path in any
connected graph on N nodes. The maximal diameter p = N — 1 occurs in a path
on N nodes. The diameter of a connected graph G is lower bounded by p > 1
and the minimal diameter p = 1 only occurs in the complete graph Ky. If G is
disconnected, the diameter is not defined, but sometimes put as p > N or p — c©
or, even p = 0; in principle, any integer outside the interval [1, N — 1] can serve as
an indication of the non-existence of the diameter. We remark that A” — J is not
necessarily a non-negative matrix, because (Ahifﬂ)ij can be zero®, even though

(Ah”)ij > 1.

Lemma 2 Let f, > 0 for any k > 0 and A be the adjacency matriz of a connected
m

graph G, then all elements of the matriz ), frAF are positive for m > p. If
m < p, the non-negative matriz Y ;. frAE contains at least one zero element.

Proof: The definition of the diameter implies that, for each node pair (7, j) in
a connected graph G, there exists a path with hopcount at most equal to p. This
means that (Ak)ij is non-zero for at least one integer k € [0, p]. In addition, there

exists a pair (r, ¢), separated by the longest shortest path in G, for which (Ak)T_q =0

for all k& < p. Since each coefficient fi, > 0, it follows that Y7 _ fr (Ak)z.j > 0 for

each node pair (i, j), but Y-, fxA* with m < p contains at least one zero element,
namely Y, fi (4%) =0. d

rq

When fp = o”7%(f) with a > 0, then Y}_o firdAF = >0 o (P)ar—Far =
(ol + A)”, which leads to the known result that the diameter p is the smallest
integer for which the matrix (I + A)” has positive elements. Since (Ak)ij are inte-
gers, it also follows that (I + A)” — J is a non-negative matrix (see Section 10.6).

We infer from Lemma 2 that, for each node pair (i, 7), at least one of the matrices
in the sequence {Am}ogmgp = {I, A A% ... ,AP} contains a non-zero (i, j) element,

8 For example, in a path graph, studied in Section 6.4, with N = 3 and adjacency matrix

0 1 0
A= 1 0 1 [, thereis nota walk with length 2 (nor any even number) between node 1
0 1 0

and node 2 (i.e. (A2%),, = 0for k > 1), while there is a walk of odd length, thus (AZ*+1) _ >0
for k > 0. The diameter p = 2, but A2 — J contains negative elements.
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while there is at least one node pair (r,q), corresponding to the longest shortest
path in G with p hops, whose entries in the sequence {A™} . _ , are zero. The
next Lemma generalizes this observation.

Lemma 3 For any diagonal matriz M and for each node pair (i,7), at least one of
the matrices in the sequence {(A + M)m}0<m<p contains a non-zero (i,7) element.

Proof: Let G and G’ denote the graph represented by the adjacency matrix
A without self-loops (aj; = 0 for any node j) and the same graph with weighted
self-loops (equal to m;; for node j), respectively. As explained in art. 21, the
smallest integer k = h;;, where 7 # j, for which (Ak)ij # 0, but (Am)ij = 0, for
all 0 < m < k, is the hopcount of the shortest path in G from node i to node j.
The expression (2.16) indicates that (Ah”)z.j # 0 does not depend on any diagonal
element of A, because a path is a walk with all nodes different. This means that
((A + M)’H) = (Ahij)ij # 0. In addition, for m < h;j, there is no path in G

ij

from ¢ to j with m hops. Since a diagonal element, associated to a self-loop in G’,
cannot help to reach node j from i if there is no path from ¢ to j in the graph G and
thus also not in G’, there also holds that ((4+ M)™),; = (A™),; = 0 for m < hy;.
These facts demonstrate Lemma 3. Only when m > h;, then (A + M);; can differ
from (A””)ij. O

An interesting consequence of Lemma 3 is that, also for the Laplacian Q = A— A,
one of the matrices in the sequence {Q™},,<, contains a non-zero (i, j) element.
Finally, combining Lemma 2 and 3 leads to the statement that there exists a matrix
polynomial p,, (A + M) of degree m € [0, p|, whose (i, j)-th element is non-zero.

23. h-hops adjacency matriz. Analogous to Estrada (2012), who defines a path-
Laplacian, we define the h-hops graph ,G on N nodes as the graph that contains
a link between ¢ and j if their distance in an original graph G is h hops. The
corresponding h-hops adjacency matrix , A has elements

(hA)ij = L(n;=n) (2.24)

We define ¢A = I and, clearly, 1A = A. Art. 21 shows that a walk with h =
miny, {(Ak)ij £ 0} is also the shortest path between i and j and that, for 7 # 7,

(nA)ij = Lf fvmeft,ny:(am), =0} {(ar),, >0} } (2:25)
while the diagonal elements (,A);; in (2.24) are zero for h > 0. Art. 22 il-
lustrates that the composed event {Vm €[1,h): (AM),; = 0} is also equal to the
event {Zz;:ll (Am)ij = 0}, because all elements in A¥ are non-negative. For the

same reason, the last event is also equal to the event {Zz;ll em ( Am)ij = 0}, where

¢m > 0 for each index m. Hence, the number of conditions to be checked in (2.25)
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is reduced to two in

(hA)is = Lzt enam), =0} {40, >0} = Lzt en(am), =0} {(am),, >0}
(2.26)

Finally, we can choose ¢, = (:1) so that ZZTZI Cm, (Am)ij = ((A + I)h> fori#j
ij
and (2.26) simplifies to
(hA)ij = 1{((A+I)h—1)ij:0}1 {cam),;>0}

Lemma 2 states that anzo ¢m (A™);; > 0 for all h > p and, consequently, (2.26)
implies that ,A = O for all h > p as well as

N—-1 P
S A=) wA=1J
h=0 h=0

The relation with the distance matrix H in art. 8 and art. 21 is
P
H=>Y hjA
h=1

The number of links %uT rAu in the graph ;G equals the number of node pairs
connected by an h-hop shortest path.

The sequence of h-hops adjacency matrices {, A}, = {14,24,...,, A} de-
fines a multi-layer network where, in each zy-plane, the graph ;G is depicted and
along the z-axis, the number h of hops is varied. Such multi-layer network may
visualize how the links (,A);; around node 7 to any other node j in G vary with
hop h and it allows to construct the levelset (Van Mieghem, 2014, Sec. 16.2.2), the
set containing the number of nodes (,Au), at each level h in a shortest path tree
rooted at node ¢ of G and depicted in Fig. 6.4.

24. Effects of link removals on the diameter. Schoone et al. (1987) have derived
bounds for the maximum diameter of a still connected graph Gy, obtained from
an original graph G with diameter p after the removal of k£ links. For undirected
graphs G, Schoone et al. (1987) prove an upper bound for the diameter in G}, of
(k4 1)p and a lower bound of (k 4+ 1)p — k, for even p, and of (k+ 1)p — 2k + 2,
for odd p > 3. For the special cases of k = 2 and k = 3, the exact bounds are
p(G2) <3p—1and p(Gs) < 4p—2, respectively. In addition, Schoone et al. (1987)
prove that the problem of finding G by removing k links in G so that p (Gy) is at
least m as well as the related problem of finding the graph G; by adding [ links to
G so that p (G;) < m is NP-complete.

2.4 The line graph

25. The line graph [ (G) of the graph G (N, L) has as set of nodes the links of G
and two nodes in the line graph [ (G) are adjacent if and only if they have, as links
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36 Algebraic graph theory

in G, one node of G in common. Given the graph G, the definition thus specifies the
line graph operator [ (.). The line graph I (G) of G is sometimes called the “dual”
or “interchanged” or “derived” graph of GG. For example, the line graph of the star
K, is the complete graph K, and the line graph of the example graph in Fig. 2.1
is drawn in Fig. 2.2. When G is connected, then also [ (G) is connected as follows
from the definition® of the line graph [ (G).

Fig. 2.2. The line graph of the undirected variant of the graph drawn in Fig. 2.1.

We denote by R the absolute value of the incidence matrix B, i.e., R;; = |b;;|. In
other words, R;; = 1 if node 7 and link j are incident, otherwise R;; = 0. Hence, the
unsigned incidence matrix R ignores the direction of links in the graph, in contrast
to the incidence matrix B. Analogously to the definition of the Laplacian in art. 4,
we may verify that the N x N adjacency matrix A of the graph G is written in
terms of the unsigned N x L node-link incidence matrix R as

A=RRT - A (2.27)
The L x L adjacency matrix of the line graph [ (G) is similarly written in terms of
R as
Aygy=R"R-2I (2.28)
The matrix BT B is generally a (—1,0, 1)-matrix. Taking the absolute value of its
entries equals RT R, whereas the Laplacian matrix Q = 2A — RRT = BBT.

In a graph G, where multiple links with the same direction between two nodes
are excluded, we consider

N 1 if both link 4 and j either start or end in node n
(BTB) = Z bnibn; = —1 if either link ¢ or j starts or ends in node n
n=1 —2 if link 4 and j have two nodes in common
The latter case, where (BTB)Z.j = —2, occurs for a bidirectional link between two

nodes. If the links at each node of the graph G either all start or all end, then

9 In a connected graph G, each node is reachable from any other node via a path (a sequence of
adjacent links, art. 6). Similarly, in the dual setting corresponding to the line graph, each link
in G is reachable from any other link via a path (a sequence of adjacent nodes or neighbors).
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we observe that (BTB) = 1 for all links ¢ and j and, in that case, it holds that

BTB = RTR. An interesting example of such a graph is the general bipartite
graph, studied in Section 6.8, where the direction of the links is the same for each
node in the set M to each node in the other set N\ M.

26. Basic properties of the line graph. The number of nodes in the line graph [ (G)
equals the number L of links in G. The number of links in the line graph I (G) is
computed from the basic law of the degree (2.5) and (2.28) with the L x 1 all-one
vector u as

1 1
Ly = Tk Al(G = §uTRTRu—uTu
2
= S IRul3 -

It follows from the definition of the unsigned incidence matrix R that uf, yR =
2uT | or

RTu =2u (2.29)
which is the companion of (2.1), and that
Ru=d (2.30)

because the row sum of ZlL:l R;; = d;, the number of links in G incident to node
i. Hence, we find that the number of links in the line graph [ (G) equals

N
1 1
L) = 5chz ~L=3 > d-L (2.31)
=1

Alternatively, each node ¢ in G with degree d; generates in the line graph [ (G)
precisely d; nodes that are all connected to each other as a clique, corresponding
0 (1121) links. The number of links in [ (G) is thus also

N d;
Licy=>_ |
i=1

Art. 4 indicates that the average degree of a node in the line graph [ (G) is

Zd2—2

The degree vector of the line graph [ (G) follows from (2.4) as

E [Dyg)] =

dl(g) = Al(G)ULxl = RTRU —2u
=R"d —2u

Each column of R (as in the incidence matrix B) contains only two non-zero ele-
ments and the vector component (RTd)l = d;+ + d;-, where [ denotes the node
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38 Algebraic graph theory

at the start and [_ the node at the end of the link /. Hence, the maximum (and
similarly minimum) degree of the line graph [ (G) equals

max dl(G) = 1I?[l (dﬁ— + dl— - 2) < d(l) + d(g) -2

ax
<I<L

where d() denotes the k-th largest degree in G and d,_1) > d) for 2 <k < N.

Example The degree vector of a regular graph with degree r is d = ruyx1. The
degree vector of the corresponding line graph is djq) = RTd —2u = rRTu — 2u
and with (2.29), we find djg) = 2 (7 — 1) upx1. The line graph of a regular graph
with degree r is also a regular graph with degree 2 (r — 1). The total number of
links follows from L) = Zfil (d2) = NZ=D o1 from the basic law of the degree

2
(25), Lye) = 3djgu=(r—1) L= (r—1)§N.

The sum of all off-diagonal elements in A2 equals

N N N N N N N N
Z Z (A2)ij - Z Z Aikkj = ZZ“’“’ Z Ak
i=1 j=1;j#i i=1 j=1;j%i k=1 k=1i=1  j=l;j#i
N N N N
= aki(dp —ar) = (dk > agi — Zakz>
k=11=1 k=1 i=1 i=1
and, thus
N N N
Z Z (A2>ij = de (de — 1) = 2Lyc) (2.32)
i=1 j=lij#i k=1

where the last equality follows from (2.31) and Zf\il Z;V:h joti (AQ)ij equals twice
the total number of two-hop walks with different source and destination nodes. In
other words, the total number of connected triplets of nodes in G, which is half of
(2.32), equals the number of links in the line graph I (G) .

The L x L Laplacian matrix Q) of the line graph I (G) is, by definition (2.6),

Que) = diag (dya)) — Aue)
= diag (R"d) — R"R

which illustrates that the relation between the Laplacian @ of the graph GG and the
Laplacian Q) of its line graph I (G) is less obvious.

27. Since RTR is a Gram matrix (art. 280), all eigenvalues of RTR are non-
negative. Hence, it follows from (2.28) that the eigenvalues of the adjacency matrix
of the line graph [ (G) are not smaller than —2.

The adjacency spectra of the line graph [ (G) and of G are related by Lemma 11
in art. 284 since

det ((RTR),, , = M) = o=V det ((RRT) ., v = A1)


https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core

2.4 The line graph 39
Using the definitions (2.28) and (2.27) in art. 25 yields
det (Ayg) — (A—2)1) = "Ndet (A + A — )
or
det (Ayay) — M) = (A +2)" Ndet (A+A—(A+2)1) (2.33)

The eigenvalues of the adjacency matrix of the line graph [ (G) are those of the
unsigned Laplacian A + A in art. 30 shifted over —2 and an eigenvalue at —2 with
multiplicity L — N.

If BB = RTR, then Lemma 11 indicates that

det ((B"B),,, = M) = A det ((BBT) . = M)
from which
det (Q — M) = AN~ det (Ayq) — (A —2) 1)
or
det (A — M) = (A+2)"Ndet (Q — (A +2) 1) (2.34)

In graphs G, where BTB = RT R, the eigenvalues of the adjacency matrix of the
line graph [ (G) are those of the Laplacian @ = A — A shifted over —2 and an
eigenvalue at —2 with multiplicity L — N.

The restriction, that all eigenvalues of an adjacency matrix are not less than —2,
is not sufficient to characterize line graphs (Biggs, 1996, p. 18). The state-of-the-art
knowledge about line graphs is reviewed by Cvetkovi¢ et al. (2004), who treat the
characterization of line graphs in detail. Referring for proofs to Cvetkovi¢ et al.
(1995, 2004), we mention here only:

Theorem 4 (Krausz) A graph is a line graph if and only if its set of links can
be partitioned into “non-trivial” cliques, namely (i) two cliques have at most one
node in common and (i) each node belongs to at most two cliques.

Theorem 5 (Van Rooij and Wilf) A graph is a line graph if and only if (i) it
does not contain the star K13 as an induced subgraph and (i) the remaining (or
opposite) nodes in any two triangles with a common link must be adjacent and each
of such triangles must be connected to at least one other node in the graph by an
odd number of links.

28. Inverse line graph. Given a line graph [ (G), it is possible to reconstruct the
original graph G by the inverse line graph operation [=! (.), so that ! (1(G)) = G
returns the original graph G.

Each link [ in G connects two nodes ¢ and j and is transformed in the line graph
l (G) to a node [ that belongs to two cliques Kd and Kd , where a clique, denoted
by K n, contains the complete graph K,, and additional links to other nodes outside


https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core

40 Algebraic graph theory

the complete graph K,,. If a line graph [ (G) can be partitioned into cliques (Krausz’
Theorem 4), then the number of those cliques equals the number N of nodes in G
and each node [ in [ (G), belonging to two cliques ¢ and j, corresponds to a link { in
G between two nodes ¢ and j. Apart from the line graph [ (G) = K3, that has two
original graphs, the triangle K5 and the star K 3 on four nodes, the reconstruction
or inverse line graph {~! (G) is unique by a theorem of Whitney (1932).

Algorithms to compute the original graph G from the line graph [ (G) are pre-
sented by Lehot (1974) and Roussopoulos (1973). Our inverse line graph algorithm
ILIGRA complements and has advantages over Lehot’s and Roussopoulos’ algo-
rithm, as explained in Liu et al. (2015).

29. Repeated line graph transformations. The Cauchy-Schwarz inequality (A.72),

(sz\; d; ) <N Z ieq d; 2 with equality only for regular graphs where d; = r for
each node j, the basic law of the degree (2.3) and (2.31) indicate that

2L
Lygy > L <W - 1> (2.35)

The number L) of links in the line graph can only be equal to the number
L of links in the original graph if the average degree 2L — 9 and the graph is
regular. Hence, the line graph of a cycle Cy on N nodes is again the cycle Cy, i.e.
1(Cn) =Ch.

For k > 1, van Rooij and Wilf (1965) have constructed the sequence Go, Gy, ..., Gy,
of graphs, where the graph G, = [ (Gk—1) has Ny nodes and Ly, links and where the
original graph Gy is possibly the only non-line graph. The k-th line graph iterate
1.l...1(Gp) is denoted by Gy, = I* (Gy). The line graph of the path Py on N nodes

k times
is [ (Py) = Py_1. Hence, the k-th iterate [¥ (Py) = Py_j becomes the empty
graph for k = N — 1, while the cycle, obeying ¥ (Cy) = Cy, is invariant under a
line graph transformation.

The basic property (art. 26) of the line graph shows that Ny = Li_; and (2.35)
becomes

Let vy, =
p iterations, we obtain

—1>2(vp — 1) and after

Vk—122(vk_1—1)ZQQ(Vk_Q—l)Z...ZQP(Vk_p—l)

If k —p =0, then, with vy = £, we find that v, = “& > 2 (£ — 1) + 1. With
€= % — 1, iterating Ny 1 = v N}, downwards yields

_ k—1
H (1+276) = Ne2" 5 [ (1 + i) (2.36)

=0
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2.4 The line graph 41

If G, is regular, then all G, with k& > j are also regular graphs (art. 26), in which
case the equality sign in (2.36) holds. Hence, if Gy is a regular graph with degree 7,

then £ = £ —1 and equality holds in (2.36) so that N, = NH (1+27(5-1)).

Since the degree of a node in any graph with N > 3 is smaller than or equal to
r = N — 1 in the complete graph, we find an upper bound

NkSNkf[l<1+2j (%-1))

=0

In summary, for any graph with £ = % —1>0, N > 3 (but excluding the star
K 3, because [ (K7 3) = K3) and at least one nodal degree d; > 3, the number Ny,

of nodes in G}, is increasing in k rapidly'® as (Ngk e

Xiong (2001) has shown for a connected graph Gy different from a path that
I" (Go) is Hamiltonian if n < p — 1, where p is the diameter (art. 22) of Gy, while
Harary and Nash-Williams (1965) prove that, if Gg is Eulerian (art. 6), then [? (Gp)
is Hamiltonian and conversely.

30. Unsigned Laplacian. The unsigned or signless Laplacian Q = A+ A, studied by
Cvetkovi¢ et al. (2007), possesses a number of interesting properties. The definition
(2.27) shows that @ = RRT is a positive semidefinite matrix and all its eigenvalues
are non-negative (art. 27). The smallest eigenvalue of Q of a connected graph is
only equal to zero if the graph is bipartite. Indeed, Qx = 0 implies that Rz = 0,
which is only possible if z; = —z; for every link [ = ¢ ~ j in the graph, i.e. only
if G is bipartite (art. 25). Cvetkovi¢ et al. (2007) show that this zero eigenvalue is
simple in a connected graph and that the multiplicity of the zero eigenvalue of Q
in any graph equals the number of bipartite components. The smallest eigenvalue
of the signless Laplacian can be regarded as a measure of the non-bipartiteness of
a graph. Stani¢ (2015) devotes a chapter on inequalities of the signless Laplacian.

10 The fundamental cornerstone in the theory of Gaussian polynomials, defined as

k 3 I1)_. (1 —q) o (A—ghity
o= Mo0-0) 00 1 0 230
® k—1 k k
e = [l =3 | b [@anemvzamatom )
m=0 m=0

which bears a striking resemblance to Newton’s binomium (Rademacher, 1973; Goulden and
Jackson, 1983) for ¢ = 1 so that [ ]; (1) = (]lc) We define Q. (—z, z) = dgk in correspondence

to the first factor for m = 0 in the product. The so-called g-analog (2.38) of Newton’s binomium
is derived via induction from the recursion Qx(z,z) = (z + ¢*~ 1 2) Qrp_1(z,2) for k > 0 and
Qo(z,z) = 1. When k tends to infinity, (2.38) leads for |¢| < 1 to

qm(mfl)/Q

o= 3 e @39

m=0
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42 Algebraic graph theory

2.5 Permutations, partitions and the quotient graph

31. Permutation matriz P. Consider the set N = {nq,ns,...,ny} of nodes of G,
where n; is the label of node j. The most straightforward way is the labeling n; = j.
Suppose that the nodes in G are relabeled. This means that there is a permutation,
often denoted by 7, that rearranges the node identifiers n; as n; = w(n;). The
corresponding permutation matrix P has, on row ¢, element p;; = 1 if n; = 7 (n;),
and p;; = 0 otherwise. Thus, in each row there is precisely one non-zero element
equal to 1 and, consequently, it holds that

Pu=u

For example, the set of nodes {1,2, 3,4} is permuted to the set {2,4,1,3} by the
permutation matrix

o = O O
o O O
_= O O O
O O = O

If the vector v = (1,2,3,4), then the permuted vector w = Pv = (2,4, 1,3). Next,
2z = Pw = P?v = (4,3,2,1), then y = Pz = P3v = (3,1,4,2), and, finally, Py =
P*y =v. Thus, P* = I. The observation PV = I holds in general for each N x N
permutation matrix P: each node can be relabeled to one of the {ni,na,...,ny}
possible labels and the permutation matrix maps each time a label n; — 7 (n;) =
n;, where, generally, n; # n;, else certain elements are not permuted!'!’. After N
relabelings, we arrive again at the initial labeling and PV = I. The definition
(A.27) of the determinant shows that det P = =£1, because in each row there is
precisely one non-zero element equal to 1.

Another example of a permutation matrix is the unit-shift relabeling transfor-
mation in Section 6.2.1.

32. A permutation matrix P is an orthogonal matriz. Since a permutation matrix
P relabels a vector v to a vector w = Pwv, both vectors v and w contain the same
components, but in a different order (provided P # I), such that their norms
(art. 201) are equal, ||v]| = ||w||. Using the Euclidean norm ||x||§ = 27z, the
equality vTv = wTw implies that PTP = I, such that P is an orthogonal matrix
(art. 247).

If G; and G2 are two directed graphs on the same set of nodes, then they
are called isomorphic'? if and only if there is a permutation matrix P such that
PTAg, P = Ag,. Since permutation matrices are orthogonal, P~! = PT the spec-
tra of G1 and Go are identical (art. 247) : the spectrum (set of eigenvalues) is
an invariant of the isomorphism class of a graph. However, the converse “if the
spectrum (set of eigenvalues) is the same, then the graph is isomorphic” is not true

11 The special permutation P = I does not, in fact, relabel nodes.
12 The word “isomorphism” stems from toos (isos: same) and popen (morphei: form).
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2.5 Permutations, partitions and the quotient graph 43

in general. There exist nonisomorphic graphs that have precisely the same set of
eigenvalues and such graphs are called cospectral graphs.

33. A permutation matrix P is a doubly-stochastic matriz. Left-multiplying both
sides of Pu = u with PT and using PTP = I in art. 32 leads to PTu = u. Since
each element p;; € [0,1] and the row sum of P equals 1, i.e. Pu = u, we conclude
that P is a stochastic matrix and property PTu = u makes P a doubly-stochastic
matrix.

34. Automorphism. We investigate the effect of a permutation 7 of the nodal set
N of a graph on the structure of the adjacency matrix A. Suppose that n; = 7 (n;)
and ny = 7 (n;), then we have with the definition of P in art. 31,

N
(PA>zl = Z PimGmi = Gji

m=1
N

(AP>Z‘1 = Z AimPml = Gk
m=1

In order for A and P to commute, i.e. PA = AP, we observe that, between each
node pair (n;,n;) and its permutation (7 (n;) , 7 (n;)) there must be a link such that
aji = 1 = a;;. An automorphism of a graph is a permutation 7 of the nodal set A/
such that (n;,n;) is a link of G if and only if (7 (n;), 7 (n;)) is a link of G. Hence,
if the permutation 7 is an automorphism, then A and P commute. In fact, an
automorphism is an isomorphism of the graph G to itself and represents a form of
symmetry that maps the graph onto itself. A classical example is the Peterson graph
in Fig. 2.3: by rotating the five nodes (both inner as outer ring) over 72 degrees,
we obtain again a Peterson graph. All possible such permutations, that preserve all
details of its structure, constitute the automorphism group of a graph G, denoted
by Aut(G). A graph is called symmetric if there are non-trivial, i.e. excluding
P = I, automorphisms (|[Aut(G)| > 1), and asymmetric if the trivial permutation
P =T is the only automorphism (|Aut(G)| = 1). Determining Aut(G) or testing
whether a graph has a non-trivial automorphism is a “hard” problem, likely NP-
complete, but its hardness class is still unknown, just as the graph isomorphism
problem (art. 38).

The consequences of the commutation PA = AP for the spectrum of the adja-
cency matrix A are interesting. Suppose that x is an eigenvector of A belonging to
the eigenvalue A, then

APx = PAx = P)\x = \Px

which implies that Pz is also an eigenvector of A belonging to eigenvalue A. If x
and Pz are linearly independent, then A cannot be a simple eigenvalue. Thus, an
automorphism produces multiple eigenvectors belonging to a same eigenvalue.

35. Enumeration of graphs. The total number of undirected graphs G (N, L) with
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N nodes and L links equals
(%)
naw.rn) =\ (2.40)

which is the number of ways that we can distribute the L ones, corresponding to the
L links, in the upper (or lower) triangular part of an N x N symmetric adjacency
matrix, containing (g ) possible positions. The total number of undirected graphs
with N nodes then follows by summing (2.40) over all possible number of links,
0<L< (g), as

naq) = 2(2) (2.41)

The enumeration has implicitly assumed that all nodes are distinguishable. For
example, each node has a certain characteristic property (i.e. a label, a color,
a size, etc.). In many cases, the nodes of a graph are all of the same type and
indistinguishable, which means that, if we relabel two nodes, the resulting graph
is still the same or isomorphic to the former. The number of ways in which we
can relabel the N nodes is N!. However, the number of graphs isomorphic to a
given graph G is N!/|Aut(G)|. Therefore, for any class C' of graphs closed under
isomorphism (e.g. all graphs, or all regular graphs), the number of isomorphism
classes is |Aut(C)|/N!, where |Aut(G)| is the average size of the automorphism
group of a graph in G. Hence, the total number of undirected, nonisomorphic
graphs is

o)
Nnonisomorphic G(N) = N! |AU’t(G (N>)| (242)

where |Aut(G (N))] is the average number of automorphisms among all graphs on
N nodes and the complicating factor in (2.42).

In some cases, the enumeration of graph properties (such as the number of walks
(art. 59), the number triangles in (3.8) and spanning trees (art. 117)) can be
efficiently computed from the spectrum of the graph, while in other cases, enumer-
ation leads to a challenging combinatorial problem (such as the number of regular
or cospectral graphs (art. 40)). Techniques for enumeration of graph properties,
including a proof of (2.42), are discussed in depth in the book by Harary and Palmer
(1973).

36. Partitions. A generalization of a permutation is a partition that separates
the nodal set A of a graph in disjoint, non-empty subsets of A/, whose union is
N. The k € {1,2,..., N} disjoint, non-empty subsets generated by a partition are
sometimes called cells, and denoted by {C1,Cs,...,Cx}. If k = N, the partition
reduces to a permutation. We also denote a partition by 7.

Let {C1,Cs,...,Ck} be a partition of the set N'={1,2,..., N} of nodes and let
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2.5 Permutations, partitions and the quotient graph 45

A be a symmetric matrix, that is partitioned as

A o Ay
A= : :
Apa o Apg

) s

where the block matrix A; ; is the submatrix of A formed by the rows in C; and the
columns in C;. For example, the partition Cy = {1,3}, C> = {2,4,6} and C5 = {5}
of the nodes in Fig. 2.1 leads to the partitioned adjacency matrix

0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 0 1 1
nA = 0 1 0 0 O 1
1 0 1 0 O 1
[ foo] [111] o |

which is obtained from the matrix A on p. 16 by relabeling nodes according to
1=7(1),2=n(3),3=7(2),4=n(4),5=m(6),6 =7(5). The characteristic
matrix S of the partition, also called the community matrix S, is the N x k matrix
whose columns are the vectors C} labeled in accordance with ;A. Thus, in the
example, the partition C; = {1,3}, Co = {2,4,6} and C3 = {5}, translates after
relabeling into ,C; = {7 (1) = 1,7(3) =2}, ,C2 = {7 (2) =3,7(4) = 4,7 (6) = 5}
and .C3 = {7 (5) = 6}, respectively, with corresponding matrix S

1 00
1
00 UQOO
01 0

S = :0U30
01 0 0 0w
01 0 !
|0 0 1

where u; is the all one vector of dimension j. Clearly, STS = diag(2, 3,1).

In general, STS = diag(|C1],|C2],...,|Ck|), where |Cy| equals the number of
elements in the set Cj. Each row of S only contains one non-zero element, which
follows from the definition of a partition: a node can only belong to one cell or
community of the partition and the union of all cells is again the complete set A
of nodes. Thus, the elements of the N x k community matrix S after relabeling are

g - 1 if node ¢ belongs to the community ,.C}
¢ 0 otherwise

or compactly, Si; = 1z-1(;)ec;}- The columns of S are orthogonal and trace(STS) =
N.

37. Quotient matriz. The quotient matrix corresponding to the partition specified
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46 Algebraic graph theory
by {Cy,Cs,...,Ck} is defined as the k x k matrix

AT = (878) 7 ST (-A) S (2.43)
where (STS)f1 = diag(w—lﬂ, |c%2| e |C_1k|) The quotient matrix of the matrix A
of the example in art. 36 is
1 2 0
AT=13 2 1
0 30

We can verify that (A™),; denotes the average row sum of the block matrix (rA), ;.
An example of the quotient matrix Q™ of a Laplacian @ is given in Section 6.13.
If the row sum of each block matrix A;; is equal to the same constant, then

the partition 7 is called equitable or regular. In that case, A; ju = (rA), ;u or

2,
~AS = SA™. Also, a partition 7 is equitable if, for any ¢ and j, the numlj)er of
neighbors that a node in C; has in the cell C; does not depend on the choice of a
node in C;.

For example, consider a node v in the Petersen graph shown in Fig. 2.3 and
construct the three cell partitions as C; = {v}, C5 is the set of the neighbors of v

and Cj is the set of nodes two hops away from v. The number of neighbors of v in

Fig. 2.3. The Petersen graph.

C} is three and zero in C3, while the number of neighbors of a node in Cs with C5
is two such that

0 3 0
AT=11 0 2
0 1 2

A distance partition with respect to node v is the partition of N into the sets of
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2.6 Cospectral graphs 47

nodes in G at distance r from a node v. A distance partition is, in general, not
equitable.

If v is an eigenvector of A™ belonging to the eigenvalue A, then Sv is an eigen-
vector of ;A belonging to the same eigenvalue A. Indeed, left-multiplication of the
eigenvalue equation A™v = Av by S yields

ASv = SATv = (A) Sv

This property makes equitable partitions powerful.
For example, the adjacency matrix of the complete bipartite graph K, , (see
Section 6.7) has an equitable partition with & = 2. The corresponding quotient
0 m

matrix is AT = 0 whose eigenvalues are ++/mn, which are the non-zero
n

eigenvalues of K, ,. The quotient matrix of the complete multipartite graph is
derived in Section 6.9. Exact solutions of the epidemic mean-field equations in
Prasse et al. (2021) rely on equitable partitions.

The quotient graph of an equitable partition, denoted by G7, is the directed
graph with the cells of the partition 7w as its nodes and with (A”)ij links going
from cell/node C; to node C;. Thus, (A™),; equals the number of links that join a
node in the cell C; to the nodes in cell C;. In general, the quotient graph contains
multiple links and self-loops. The subgraph induced by each cell in an equitable
partition is necessarily a regular graph because each node in cell C; has the same
number of neighbors in cell Cj.

2.6 Cospectral graphs

Cospectral graphs are nonisomorphic graphs that possess the same set of eigenval-
ues, as earlier defined in art. 32. Since the spectrum of graphs is the main theme
in this book, we cannot avoid devoting some attention to cospectral graphs.

38. Checking whether two graphs have the same adjacency eigenvalues is a poly-
nomial, thus “easy” problem. However, determining whether two cospectral graphs
are isomorphic can be non-polynomial, thus “hard”, but it is currently unknown
(McKay and Piperno, 2014) whether the graph isomorphism problem is NP-hard.

Almost all non-star-like trees are mot determined by the spectrum of the ad-
jacency matrix (van Dam and Haemers, 2003). Godsil and Royle (2001) start
by the remark that the spectrum of a graph does not determine the degrees, nor
whether the graph is planar and that there are many graphs that are cospectral,
i.e., although graphs are different (nonisomorphic), their spectrum is the same.
Cvetkovi¢ et al. (2009) devote a whole chapter on the characterization of graphs
by their spectrum. They list theorems on graphs that are determined by their
spectrum such as regular graphs with degree r = 2 and complete bipartite graphs,
but they also present counter examples. Finally, van Dam and Haemers (2003)
conjecture that sufficiently large graphs are determined by their spectrum, roughly
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48 Algebraic graph theory

speaking because the probability of having cospectral graphs becomes vanishingly
small when the number of nodes NV increases. A major tool to construct cospectral
graphs is Godsil-McKay switching.

39. Godsil-McKay switching for cospectral graph construction. Godsil and McKay
(1982) have invented an ingenious way to construct cospectral graphs by using a
certain partitioning w of a graph and by rewiring a specific set of links, which is
called “switching”. They start by proposing the partition 7 = {C4,Cy,...,Cy, F'},
where (a) any two nodes in C; have the same number of neighors in C;, for 1 <
1,7 < k and ¢ can be the same as j; (b) a node v € F has either zero, n;/2 or n;
neighbors in C;, where the number of nodes in C; is n; = |C;|. Any graph G with
N nodes can be partitioned in this way, in particular, if C; = {j} and F' = {N}.
Of course, the interest lies in finding non-trivial partitions where n; > 1, for at
least some i. The adjacency matrix corresponding to this partition 7 is denoted as
a block matrix

Ap A - A Ap
Afy Asy -+ Agp Ap,
A= : : . : :
A1T,k AQT,k o Apr Ap,
Agl Agz .. Agk Ap

where A;; is the n; x n; adjacency matrix of the set of nodes belonging to C}
and the adjacency matrix A;; and A, describe the interlinking between the sets
C; and C; and between the sets C; and F, respectively. By construction, the row
sum of each block matrix A;; is constant, thus A; ju = d;ju, where d;; denotes
the number of neighbors in C; that each node in C; has. The row sum of Ag,,
ie. Apu = fju, where f; is either 0, n;/2 or n;. Since all block matrices of
~A are adjacency matrices and symmetric, the column sums are constant as well.
Next, Godsil and McKay (1982) introduce the m x m matrix V,, = %Jme — I,
where the all-one 7 x m matrix J,«,, = u,.ul . The matrix V,, features interesting
properties, because V,, is a Householder reflection (see art. 197). First, using

Jixgdgxk = ulunuqu;{ and uguq = ¢ so that JixqJgxk = qJixk, we find that
V=1, (2.44)

Next, for an m x n matrix X with constant row sum r and column sum ¢, it holds
that

Vin XV, = X (2.45)

Indeed, V,, X = %umuﬁX - X = %umug — X from which

2 2
Vin XV, = <_Cumuz: - X> <_unu;1; - In)
m n

2 2
= <_C__T) Umuz;‘i‘X
m n
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2.6 Cospectral graphs 49

The sum of all elements in X equals rm = cn, from which -= = =, demonstrating
(2.45). Finally, if the 2m x 1 vector x contains m zero elements and m one elements,

then the definition V,,, = %umu% — I, directly shows that

Vorm® = Ugm — T (2.46)

This last property (2.46) motivates the Godsil-McKay construction of the graph
G* obtained from G with adjacency matrix A as follows. For all those sets C;
where each node v € F is connected to m;/2 nodes in C;, these n;/2 links are
deleted and each node v € F is reconnected to the other n;/2 nodes in the set
C;. The fascinating relation between G and G* is that G* and G, as well as their
complements G*¢ and G¢, have the same adjacency eigenvalues. Hence, G and
G* are cospectral with cospectral complement. The proof is surprisingly easy, the
adjacency matrix of G* satisfies

A=V (GAV (2.47)

where the block-diagonal matrix V' = diag(an s Vigs ooy I‘F|). Property (2.45) illus-
trates that A* is the same as A, except for the last block row and block column.
Property (2.46) switches in Ap; all zero entries into one and vice versa. Finally,
left-multiplying both sides of (2.47) by V and invoking property (2.44) shows that
the eigenvalue equation A*y = Ay is equivalent to A (Vy) = A (Vy). Hence,
~A* and ;A possess the same eigenvalues with the corresponding eigenvectors y
and Vy. Since the adjacency matrix of the complement G¢ is also a block matrix
with constant row and column sums and of similar block structure as A, the same
arguments also demonstrate that G*¢ and G¢ are cospectral.

The Godsil-McKay construction of the cospectral graph G* illustrates that the
main difficulty lies in finding a non-trivial Godsil-MacKay partition 7 with corre-
sponding adjacency matrix A. The useful properties of V,,, for cospectral graph
constructions result from the fact that the labeling of nodes in any cell C; and
F does not influence a sum as ul z, = Y j* | 2k, so that only constant row (and
column) sums are required in the Godsil-McKay construction.

40. Although cospectral graphs are not easy to construct, they should not be ig-
nored. The following theorem, due to Brendan McKay, implies that the probability
to draw a regular graph (art. 55) out of the set of all nonisomorphic graphs with
N nodes is substantially lower than randomly choosing a cospectral graph.

Theorem 6 (McKay) For sufficiently large N, the number of cospectral graphs
exceeds the number of reqular graphs.

Proof'®: The number of pairs of cospectral graphs, conjectured by Godsil and
McKay (1982) and proved by Haemers and Spence (2004, Theorem 3), is at least
(i — 0(1)) N3gn_1, where gn = Tponisomorphic c(ny in (2.42) is the number of

13 Private communication with Brendan McKay.
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50 Algebraic graph theory

nonisomorphic graphs with NV nodes (art. 35). Since pairs of cospectral graphs are

a subset of all cospectral graphs and since most graphs are asymmetric (art. 34), we

find with (2.42), for large N, that the number of cospectral graphs is lower bounded
N-—-1

by Ncospectral graph = cN* 2(Nz! ) , where c is a constant. The total number of regular

graphs was determined, for large N, by McKay and Wormald (1990, Corollary 1),

N2

2%
TNregular graphs ™~ 266N N
()3

where Sy, specified in McKay and Wormald (1990, Corollary 1), has a different
value depending on whether N is even, 1mod4 or 3mod4. Let the constant b =
max v/2efx so that b ~ 4.2. Most regular graphs are shown in Krivelevich et al.
(2001) to be asymmetric. The total number of nonisomorphic regular graphs is, for
large IV, at most

N2

272
(TN)% NI

/
NMnonisomorphic regular graphs S b

where the constant b’ is slightly larger than b. The ratio

= N
Ncospectral graph c (7'('N)7 N42_%N+1

/
Mnonisomorphic regular graphs < b_ 1 0
N4

e~ J(In N+In7—31n2) >

rapidly tends to zero with N. O
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3

Figenvalues of the adjacency matrix

Only general results of the adjacency eigenvalue spectrum of an undirected graph
G are treated. The spectrum of special types of graphs is computed in Chapter 6.

3.1 General properties

41. For an N x N symmetric, possibly weighted, adjacency matrix A, art. 247

shows that A has N real eigenvalues, which we order as Ay < Ay_1 < --- < Aq.
Apart from a similarity transform (art. 239), the set of eigenvalues {1, Az, ..., An}
with corresponding set of eigenvectors {z1,Zs,...,2x} is unique. A relabeling of

the nodes in the graph, which is a permutation discussed in Section 2.5 and a special
type of similarity transform, obviously does not alter the structure of the graph,
but merely expresses the eigenvectors in a different base.

The classical Perron-Frobenius Theorem 75 in art. 269 for non-negative, irre-
ducible matrices states that the largest eigenvalue A; is a simple and non-negative
root of the characteristic polynomial in (A.95) possessing the only eigenvector of A
with non-negative components. The largest eigenvalue \; is also called the spectral
radius of the graph.

42. Range of eigenvalues of the adjacency matriz. Gerschgorin’s Theorem 65
applied to the adjacency matrix states that any eigenvalue of A lies in the interval
[—dmax, dmax|, where dpax is the maximum degree in the graph G. Hence, A; <
N — 1 and this maximum is attained in the complete graph (see Section 6.1).
Theorem 109, with m = 1 and using (3.7) below, indicates that all the eigenvalues

of A are contained in the interval {— \/% (N —1),,/3 (N - 1)] In terms of the

average degree dg, = % and combining both Theorems 65 and 109, any adjacency
eigenvalue of an undirected graph obeys

A € [— min (dmax, dav (N — 1)) , min (dmax, dav (N — 1))}

43. Fundamental weights. Left-multiplying the eigenvalue equation Axy = Agxy in

o1
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52 Eigenvalues of the adjacency matriz

(1.3) by the all-one vector u and invoking u?Z' A = d* in (2.4) yields

i 3.1
Z Zm 1(wk)m (1)

which expresses the k-th eigenvalue as a weighted sum of the nodal degrees. Due

to its appearance in many spectral relations,

N

wy, = ulzy = Z (zk); (3.2)

J=1

is called the k-th fundamental weight of the graph G. Fundamental weights are
related to graph angles (3.31) and can be regarded as graph metrics.

44. Let ) denote the eigenvector of A belonging to the eigenvalue Ay that satisfies
the normalization azgazk = 1. Art. 251 shows that \, = :EfAzk. Writing out the
quadratic form yields

N
)\kfzkAxkuZaw Tr), azk =2 Z aij (z1); (xk)J

i=1 j=1 i=1 j=i+1

which can be written as
L
=2 (a1)+ (z1), (3.3)
=1

where a link [ € £ joins the nodes [ and [~. The expression (3.3) shows that any
eigenvalue )\ of the adjacency matrix A can be written as a sum of products of
eigenvector components over all links in the graph G. An analogous representation
for the Laplacian is given in art. 103. In particular, for the largest eigenvalue Ay,
all terms in (3.3) are non-negative (art. 41).

By invoking 0 < (z; — zj)Q, we observe that 2zjz; < 27 4 27 < Zfil 22 =
2T2. Hence, when considering normalized vectors such that zFa), = ||lzx|5 = 1,
any term in (3.3) is bounded by one, 2 (zy),+ (zx),- < 1. Moreover, the equality
2(xx);+ (xx),- = 1 is only possible if and only if (fﬂk)12+ + (:ck)l2+ = 1, in which
case (zp),+ = (x1),- = % and all the other eigenvector components are zero. For
the largest eigenvector z, this situation can only occur for a graph G consisting
of K3 and N — 2 disjoint nodes and (3.3) indicates that A\; = 1. In summary, for
any connected graph G, the Perron-Frobenius Theorem 75 in art. 269 shows, for
N > 2, that 0 < 2 (21),4 (z1),- < L.

3.2 Characteristic polynomial c4()\) of the adjacency matrix A

This section applies the general theory in Chapter 10 to the adjacency matrix A and
mainly investigates the coefficients ¢ (A) of the characteristic polynomial c4 ().
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3.2 Characteristic polynomial co(\) of the adjacency matriz A 53

45. Figenvalues are either integer or irrational. The characteristic polynomial
ca(A) =det (A= AI) = ¢ (A) N (3.4)

defined in art. 235, has integer coefficients ¢y, (4) and cy (A) = (=1)". Art. 292
demonstrates that the only rational zeros of c4()), i.e., zeros belonging to Q, are
integers. This property also holds for the Laplacian matrix ). For example, % is
never an eigenvalue of A nor Q.

Art. 293 gives additional methods to check from the integer coefficients ¢, (A4) in
(3.4) whether c4(X) can be factored into two lower degree polynomials with integer

coefficients.

46. Since a;; = 0, we have that trace(A) = 0. From (A.99), the coefficient cy_1 (4)
of the characteristic polynomial c4 () is

en1(A) = XM=0 (3.5)
k=1

47. Newton identities. Applying the Newton identities (B.4) or (B.8) in art. 294
to the characteristic polynomial (A.95) and (A.97) of the adjacency matrix with
Zk = Ak, ar = ¢k (A) and using cy—1 (A) = 0 from (3.5) yields for the first few
values,

| X
(_1) CN-2 (A> = —5 ZA%
1 k]\71
(1)  en—3(A) = -3 Z ¥
k=1
(/& N\ X
(—1)N en_a(4) = 3 Z}%) _ 22)\%
k=1 k=1

48. The coefficient ¢o (A) follows from (A.98) as ¢y (A) = det A = ijvzl Ai- Ap-
plying the Hadamard inequality (A.78) for the determinant of a matrix yields, with
(2.2),

N /N N /N 5 N
waai< [T (X)) ~T1(Ze) ~11vE
j=1 \i=1 j=1 \i=1 j=1

Hence, with det A = Hivzl Ak in (A.98), we find

(det A)? ]:[ ﬂ (3.6)
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54 Eigenvalues of the adjacency matriz

49. The coefficient cy_ (A) follows from (A.96) as cy_o (A) = (1) > an M2 and
is explicitly given as cy_g (A) = (=1) ZZV:I Zj.\[:iﬂ (aia5; — aija4;) in art. 210.
Since a;; = 0, the double sum is —3u” Au and (2.5) leads to

(—1)N CN—2 (A) =—-L

The Newton identities in art. 47 show that the number of links L equals
| N
L=3 PR (3.7)
k=1

Since E[\] = 4 32, A, = Oin art. 46, the variance Var[\] = & S0 | (A, — E[N])?
of the adjacency eigenvalues equals, invoking the basic law of the degree (2.3),

N
_1 2_2L_
Var[)\]—N :)\k—N—E[D]

This stochastic interpretation is helpful to understand the density function of the
adjacency eigenvalues in Section 8.

50. Each principal submatrix M3x3 of the adjacency matrix A is of the form

0 = =z
M3xz= |2 0 y
z y 0

and the corresponding minor M3 = det M3y3 = 2xyz is only non-zero for z =y =
z = 1. That form of Mj3«3 corresponds with a subgraph of three different nodes
that are fully connected in a triangle. Since (A.96) reduces to (—=1)" cy_3(A) =
— > au M3 and cy_3(A) = —2x the number Ag of triangles in G. From art. 47,
it follows that the number of triangles in G is

1
Ao =g PR (3.8)

51. Coefficient cj, of the characteristic polynomial ca (N) = Y p_,ckA*. From
(A.96) and by identifying the structure of a minor M}, of the adjacency matrix A
of an undirected graph, any coefficient cy_j, (A) can be expressed in terms of graph
characteristics,

(~DNew—i (A) = Y (-1 (3.9

GeGy

where Gy, is the set of all subgraphs of G with exactly k¥ nodes and cycles (G) is
the number of cycles in a subgraph G € GGj,. The minor Mj, is a determinant of the
My, submatrix of A and defined (see art. 208) as

My = Z(il)a(p)alpl A2py * * * Akpy,

p
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3.2 Characteristic polynomial co(\) of the adjacency matriz A 55

where the sum is over all k! permutations p = (p1,p2,...,pr) of (1,2,...,k) and
o(p) is the number of interchanges of (1,2,...,k) to obtain (p1,ps,...,pxr). Only
if all the links (1,p1), (2,p2) ;.. ., (k, pr) are contained in G, then a1, azyp, - . - Akp, i8
non-zero. Since a;; = 0, the sequence of contributing links (1,p1), (2, p2), - .., (k, px)
is a set of disjoint cycles such that each node in G, belongs to exactly one of these
cycles and o(p) depends on the number of those disjoint cycles. The minor My is
constructed from a specific set G € Gy, of k out of N nodes and in total there are
(YY) such sets in Gy, which is rewritten as (3.9).

Directed graphs. Harary (1962) discusses the determinant det A of a directed
graph, from which another expression than (3.9) for the coefficients ¢ (A) of the
characteristic polynomial c4 (A) can be derived. An elementary subgraph H of G
on k nodes is a graph in which each component is either a link between two distinct
nodes or a cycle. Here, a cycle is thus of at least length 3, possessing at least three
nodes or links. Harary observes that, in the determinant of the adjacency matrix
A (or in each of its minors) of a directed graph, each directed cycle of even (odd)
length contributes negatively (positively) to det A. Let e. denote the number of
even components in an elementary subgraph, i.e. containing an even number of
nodes. Each cycle in an undirected graph corresponds to the two directions in its
directed companion. Harary (1962) shows that the coefficient of the characteristic
polynomial ¢4 (M) of the adjacency matrix of a directed graph can be written as

(—1)Nen_i (A) = Z (—1)c<(M) gle®)

HEeH}

where ¢ (H) is the set of components that are cycles in H and Hj, denotes the set
of all elementary subgraphs H of G with k nodes.

Undirected trees. Confining to trees, where the only cycles are directed cycles
of length 2 corresponding to the links of the tree, Mowshowitz (1972) further ex-
plores (3.9) and shows for the characteristic polynomial ¢4, (A) = det (Ar — A\I) =
Zi\;o cx (A7) A¥ of a tree T that the coefficient aj, = (—1)kcy_x (A7) = (=1)" h, (T)
if kK = 2r is even, a = 0 if k is odd and ag = 1, where h,. (T') obeys the recursion,
as a special case of (3.106) below,

hy (T + luv) =hr—1 (T) + hr1 (T\{u})

where T + [,,,, is the tree T to which a link [, with end point v is added at node u
and T3 {,} is the tree from which a node u is removed. Mowshowitz (1972) mentions
that |ag| is the number of sets consisting of k pairwise non-incident links of T' (i.e.
links that do not share common nodes), which equals the number of independent
sets of links of size k in T, also called the number of matchings of size k in tree T

52. Characteristic polynomials of graphs with one node removed. If G\y;; is the
graph obtained from the graph G after the removal of node j, then its adjacency
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characteristic polynomial (art. 45) is

N
k
Caygy (V) = det (Aygy = M) =D e (Ayy) A
k=0
After equating corresponding powers in A in formula dc;‘—f\)‘) =— Zjvzl cAy (A) in
(A.46) in art. 213, we obtain, for 0 <k < N — 1,
[N
cr1 (A) = == z:l cr (A\s) (3.10)
j=

The case Kk = N — 1 and N — 2 are identities. For k = N — 3, we obtain with
¢n—2 (A) = —L in art. 49 the relation Lg = ﬁ Zjvzl Lg, (,, between the number
of links in G' and G\ (5. Similarly, for k = N —4 and invoking art. 50, we find that
the corresponding relation Ag = ﬁ Zjvzl Ag,;, for the number of triangles.
Hence, the average number of links % Zjvzl Lg,,,;, and of triangles % Z;\;l Ac
is always smaller than the number of links L and triangles Ag in G, respectively.

The relation (3.10) can be understood by considering two ensembles of graphs.
The first S1 = {G,G,...,G} contains N times the original graph G, while the
second ensemble is Sy = {G\{l},G\{Q},...,G\{N}}. An enumeration, such as
the number of links or triangles, in S7 simply equals N times that enumeration,
while in Sy each link is affected twice, a triangle three times, etc. by removing in
total N (different) nodes. Hence, we find that NLg — Zjvzl Lg,;, = 2Lg and

N
Nag - Zj:l Ag ;, = 3Ac.

53. Newton’s inequalities. Since the characteristic polynomial c4 () has real
coefficients and real zeros, Newton’s Theorem 97 in art. 327 provides the inequality,
for 1<k <N -1,
kK+1N-—-k+1
2
A) > Aecp 1 (A) ————
R (4) > cxpr (A) ey (4) 2 22
Because cy—_1 (A) = 0 in art. 46, the Newton inequality (3.11) for k = N — 1 and
N — 2 does not yield a useful bound. For £k = N — 3, on the other hand, we have,
using c¢y—_o2 (A) = —L in art. 49 and cy_3 (A) = —2 A¢ in art. 50, that

(3.11)

(A)® = —cn—4a (A)

Finally, with cy_4 (A) = % (41}2 - 2227 1 )\i) from art. 47 and art. 49, we find
the inequality

N
S < % (Ag)® +2L2 (3.12)

54. FEigenvalue bounds for triangles. From the inequality (A.14) for Holder ¢-
norms, we find for p > ¢ > 0 that, if Z,ivzl [Ak|? < A9, then Z,ivzl IAk|P < AP.
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8.8 Regular graphs 57
Since Zszl Ar = 0, not all Ay can be positive and combined with ‘Zgzl X <

ZkN:1 [Ak|”, we also have that (fo:l hYs

< AP. Applied to the case where ¢ = 2

and p = 3 gives the following implication: if 22\22 A7 < A? then ‘Zszz /\i‘ < A3

In that case, the number of triangles given in (3.8) is
N

3
>N
k=2

Invoking (3.7) to the implication: if 2L = 22[22 A7 + A2 < 2)%, then the number
of triangles Ag in G is at least one. In summary', if A\; > +/L, then the graph G
contains at least one triangle.

1 1N
_ 3 E 3

k=2

23—

| =
| =

Theorem 7 (Mantel) A graph G with N nodes and more than {%2} links contains

at least one triangle.

Proof: If L > NT2 > [NTQ], which is equivalent to N < 2v/L, then the classical

lower bound on the largest eigenvalue (3.63) in art. 72 is A; > 2& > % =L
and A\; > /L is precisely the condition above to have at least one triangle. O

Mantel’s Theorem 7 is best possible, because the complete bipartite graph K N N,

with N even, contains L = NTQ links, but no triangle. Its generalization due to
Turan for any clique size is stated in Section 6.9, where the Turdn graph is studied.
Nikiforov (2021) proves a related, but more complicated result: if A; > VL, then
the maximum number of triangles with a common edge in the graph G, called the
booksize bk (G) of G, is bk (G) > 1—12%, unless G is a complete bipartite graph
with possibly some isolated nodes. Nikiforov (2021) also proves the instance r = 2
of his conjecture with Bollobds: If a graph G with L links and N > r 4+ 1 nodes
does not contain a clique K, 1, then )\f + )\% <2 (1 — %) L.

3.3 Regular graphs

The class of regular graphs possesses a lot of specific and remarkable properties
that justify the discussion of some spectrum related properties here.

55. Regular graphs. Every node j in a regular graph has the same degree d; = r
and relation (2.2) indicates that each row sum of A equals r. The basic law of the
degree (2.3) reduces for regular graphs to 2L = Nr, implying that, if the degree r
is odd, then the number of nodes N must be even.

L Nikiforov (2021) remarks that Eva Nosal in her master thesis at the University of Calgary in
1970 has proved this elegant result. Mantel’s Theorem 7 of 1907 has been greatly extended by
Turdn in 1941 as mentioned in Bollobds (1998, p. 6), who gives a non-spectral proof.
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58 Eigenvalues of the adjacency matriz

Theorem 8 The mazimum degree dmax = maxi<;j<n d; is the largest eigenvalue
of the adjacency matriz A of a connected graph G if and only if the corresponding
graph is regular, i.e. dj = dmax =1 for all j.

Proof: If z is an eigenvector of A belonging to eigenvalue A = dp,.x SO is each
vector kx for each complex k (art. 235). Thus, we can scale the eigenvector x such
that the maximum component, say x,, = 1, and xp < 1 for all k. The eigenvalue
equation Az = dyax for that maximum component x,, is

N
AmaxTm = dmax = E AmjjTj = g Zj
j=1 J€ neighbor(m)

which implies that all ; = 1 whenever a,,; = 1, i.e., when the node j is adjacent
to node m. Hence, the degree of node m is d,, = dmax. For any node j adjacent
to m for which the component z; = 1, a same eigenvalue relation holds and thus
dj = dmax. Proceeding with this process shows that every node k € G has same
degree dj; = diax because G is connected. Hence, © = u where u” = 1 1---1]
and the Perron-Frobenius Theorem 75 shows that u is the eigenvector belonging
to the largest eigenvalue of A. Conversely, if G is connected and regular, then

Z;-V:l @mj = dmax = 7 for each m such that u is the eigenvector belonging to
eigenvalue A = dyax, and the only possible eigenvector (art. 41). Hence, there is
only one eigenvalue dpax = 7. O

Theorem 8 shows that, for a regular graph, Au = ru, and, thus, AJ = rJ. After
taking the transpose, (AJ)T = JA = rJ, we see that AJ = JA. Thus, A and J
commute if G is regular.

Theorem 9 (Hoffman) A graph G is regular and connected if and only if there
exists a polynomial p such that J = p(A).

Proof: (a) If J = p(A), then J and A commute and, hence, G is regular. (b)
Since the largest eigenvalue r is simple (art. 41), the Laplacian Q = rI — A has a
zero eigenvalue with multiplicity 1. Theorem 21 then states that a regular graph G
is connected. Conversely, let G be connected and regular. We can diagonalize the
adjacency matrix A of G by using an orthogonal matrix formed by its eigenvectors
(art. 247). This basis of eigenvectors of A also diagonalizes J as diag(N,0,...,0),
because J and A commute (art. 284). Consider the polynomial

xT

0(e) = 2~ [T o (4) - 2)

where cy4 () is the characteristic polynomial of A, then J = N Lf)), because the

projections on the basis vectors are ¢ (A)z; = 0 if z; # w and ¢(A)u = ¢q(r)wu,

while Ju = Nu. Thus, the polynomial p (z) = N % satisfies the requirement. [
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8.8 Regular graphs 59

The proof shows that, if m., (z) is the minimal polynomial (art. 228) associ-
Mey (2)
r—r

ated to the characteristic polynomial c4 (z) and g, (z) = the polynomial

P, () = N% of possibly lower degree can be found (see art. 229).

56. Strongly regular graphs. Following Cvetkovi¢ et al. (1995), we first define
w (v, w) as the number of nodes adjacent to both node v and node w # v. In other
words, w (v, w) is the number of common neighbors of both v and w. A regular
graph G of degree r > 0, different from the complete graph Ky, is called strongly
regular if w (v, w) = n; for each pair (v, w) of adjacent nodes and w (v, w) = na
for each pair (v, w) of non-adjacent nodes. A strongly regular graph is completely
defined by the parameters (N, r,ny,ns).

Examples The Petersen graph in Fig. 2.3 is a strongly regular graph with para-
meters (10, 3,0, 1). Cvetkovi¢ et al. (2009) show how many strongly regular graphs
can be constructed from line graphs. The line graph [ (K ) of the complete graph is

strongly regular with parameters (w, 2N —4,N — 2, 4) for N > 3. The cor-

responding eigenvalues of the (];7) X (g) adjacency matrix of [ (K ) are r = 2N —4,

[(—2)]<N;1)_1 and [(N —4)]V ™!, for N > 3. Another example is the class of Paley
graphs P, whose nodes belong to the finite field I, of order ¢, where ¢ is a prime
power congruent to 1 modulo 4, and whose links (i,j) are present if and only if
i — j is a quadratic residue (see Hardy and Wright (2008)). The Paley graph P,
is strongly regular with parameters (|IFq| , q%l, ‘%5, ‘%1) Bollobds (2001, Chap-
ter 13) discusses properties of the Paley graph and its generalizations, the Cayley
graphs and conference graphs.

The number of common neighbors of two different nodes ¢ and j is equal to the
number of 2-hop walks between ¢ and j. Thus, Lemma 1 states that w (i,7) =
(AQ)M if i # j. Art. 19 shows that (AZ)“, = d; = r. The condition for strong
regulérity states that, for different nodes ¢ and j, (A2)z.. = nia;; + ng (1 — a;5),
because w (i, ) = n; if node ¢ and j are neighbors, hence, a;; = 1 and @ (4, j) = no,
if they are not, i.e. a;; = 0. Adding the two mutual exclusive conditions together
with w (3,5) = (A2)l,j demonstrates the relation. Combining all entries into a
matrix form yields

A% =ni A+ ng A + 7l

Finally, using A = J — I — A in art. 1, we obtain the matrix relation that charac-
terizes strong regularity,

A% = (ng —n2) A+ nad + (r—mng) I

from which J = n% (A% + (ng —nm) A+ (ng —7)I). Hence, the polynomial J =
p (A) in Hoffman’s Theorem 9 is the quadratic polynomial

o () = n% (22 + (n2 — 1) 2+ (nz — 1))
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60 Eigenvalues of the adjacency matriz

from which we deduce that the minimal polynomial m.., () = qﬂj"v(—r) (x — 1) ps (2)
is of degree 3. The definition of a minimal polynomial in art. 310 implies that
the adjacency matrix A of G possesses precisely three distinct eigenvalues A\ = r,
A2 and A3, where Ay and A3 are zeros of ps (z), related by ny — nao = Ay + A3
and ne —r = A2 \3. The property that strongly regular graphs have three different
eigenvalues explains why the complete graph K must be excluded in the definition

above. In summary, we have proved:

Theorem 10 A connected graph G is strongly reqular with degree r > 0 if and only
if its adjacency matriz A has three distinct eigenvalues A1 = r, Ay and Az, which
satisfy

ny =7+ X2+ A3+ daAs
712:7'+)\2)\3

where ny and ny are the number of common neighbors of adjacent and non-adjacent
nodes, respectively.

3.4 Powers of the adjacency matrix

Before concentrating on the total number of walks in a graph in Section 3.5, we
review the eigenvalue equation A*2z = AFz in Section 1.1, which reads in matrix
form, A*X = XAF, where the orthogonal matrix X, satisfying X7 X = XX7T = I,
contains the eigenvectors in its columns.

57. FEigenvalue relation A* = XTA*X. Formula A¥F = XTAFX allows us to
express the eigenvalue A\F, in terms of the elements of the matrix A* as

b = D3 (AF) (@), (1), (3.13)

i=1 j=1

which is equivalent to

)‘fn = sz\il Zjvzl (Ak)ij (l'm)i (:Em)j
0= sz\il Zjvzl (Ak)z—j (xm)l (xl)j if m 7é l

Only if node ¢ and j are connected by a k-hop walk (art. 18) and (Ak)ij > 0,
then (3.13) shows that their corresponding components of the m-th eigenvector
(m = 1) contribute in (3.13) to Ak Thus, (3.13) is another representation of
(1.5). For m = 1, we directly find (3.3) again in art. 44. We rewrite (3.13) as
NSt = Y0ty Yoioy (AR), (@) (@0); 4+ sy Xl (%), (@), (1), reverse
the summations in the first term and split off the i = j terms for a symmetric
matrix A = AT to obtain
N N

Z (Ak)ii (:Em)f = Afﬂ - 22 Z (Ak)ij (xm)j (xm)z (3'14)

i=1 i=1 j=i+1
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3.4 Powers of the adjacency matrix 61

and for m # 1
N
S (), (o) )=~ 50 3 (49) ; { ) (@) + (o), (), }
=1 i=1 j=i+1

These relations reduce for k = 0 with A = I to the orthogonality conditions of
eigenvectors in (A.124). For m = 1, the Perron-Frobenius Theorem 75 tells us that
(z1); > 0 and (3.14) leads, for all integer k > 0, to the bound

N
Z (A%);; (22)7 < AY
i=1
2,32\ (o 1N\2
(a) Substituting ab = M in (3.13) and, denoting Zf\;l (A");; =
(A"u);, gives us

N

A = 37 (4k). ()2 %ii )y () (xm)j)2 (3.15)

Jj=1 i=1 j=1

(a+b)2 — (a2+b2)
2

N
k
A = E E A Zj ( xm (Tm) ) g xm

lel Jj=1

where each term in a sum is non-negative, while (b) ab = results in

which reduces for k =1 to
N
Am = Z ((x’m)pr + (xm)l—)Q - Z dj (xm)? (316)
leL =1

Relation (3.16) is also obtained from the unsigned incidence matrix R in art. 25,
that obeys A = RRT — A,

A = mﬁAwm = ;UZIRRTxm — xﬁAmm = HRT:cmHz — leAxm

(c) Invoking ab = M in (3.13) yields

4)"731 = ii (Ak)ij ((xm)z' + (xm)j)Q - i i (Ak)z'j ((xm)z - (xm)j)Q

i=1 j=1 i—

—

<.
Il

—

which reduces for £ =1 to
1 1
Am = 5 Z ((@m)p+ + (xm)lf)Q ~3 Z ((Tm)+ — (xm)zf)Q (3.17)
lel lel

and expresses an eigenvalue of the adjacency matrix as a difference of two sums of
squares.

58. Figenvalue relation AF = XA*XT. The reverse A¥ = XAFXT of AF =
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62 Eigenvalues of the adjacency matriz

XTA*X in art. 57 expresses the number of walks (Ak)ij with & hops (art. 18) in

terms of the eigenvalues ¥, A5 ... Ak of AF as
N
(A%), = D An (@m); (zm) (3.18)
m=1

whose matrix form is
N
AF =" N (3.19)
m=1

The expression (3.18) can be generalized to a function f of the matrix A, via
Taylor series in art. 231, resulting in (f (4));; = Z,ivzl f (W) (k) (z) ;- When
applying art. 257 to f (z) = ¥, then (A.142), (A.143) and (A.144) translate to,
respectively,

1 2 (AF), +(4%);
T L (o R i e

2 =1
AF) .+ (AF) N

k 1 al k k 2
(A )ij 1 Z A ((xm)l + (Tm), ) Z Am ( - (xm)j)

m=1 m=1

The corresponding bounds (A.145) and (A.146) are

k (Ak)u + (Ak)jj k
(1+(5”)1<m11<1N)\ er(A) < (1+6i;)  nax AE o (3.21)

(1—46;;) min A < (Ak) (Ak)

k 5. k
m<N m — (A ) (1 61]) 1%93%(]\, )"rn (322)

while (A.147) leads to the bound

i 1
‘(Ak).. _ i < min_ \F + max )\]fn)’ - ( max A" — min AF > (3.23)
v 2 \1<m<N 1<m 2 \1<m<N 1<m<N
Since the row vectors (A.125) in X are orthogonal (A.126) and excluding the
empty graph, (3.20) for k = 2n and i # j leads to the strict inequality

2n 2n
(4m),, + (a2
ij 2
which is a general property of positive semidefinite and symmetric matrix (art. 279).
The bound (3.23) indicates that each non-diagonal element is bounded by

1
k k k
0= (A )ij = 2 (Al 1<Ian<1N)\ >

(4*")
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3.5 The number of walks 63

while each diagonal element is bounded by
max <O min /\lfn> (Ak) < Ak
1<m<N

Alternatively, the Perron-Frobenius theorem, as explained in art. 41, states that all
eigenvector components are non-negative, which leads in (1.5) to the same bound

(AF) < ¥ (3.24)

Jji —

(z1);(z1)
for large k and provided A\; > |Ay|, thus excluding bipartite graphs in Section 6.7,
to the asymptotic form

Writing (3.18) as (Ak)ij = A (21), (z 1); (1 +Zm 2( ’”) ML) leads,

(Ak)ij ~ M (1), (z1); for k — o0 (3.25)
(4%),,

which also means limy_.oc ~——= = (21); (¥1);. The diagonal elements of AF for
1

even k = 2n follow from (3.18) as
N
A2n Z an )\Zn

consists of all non-negative terms, illustrating that (AQ") .. is always positive in a
connected graph because (z1); > 0, in agreement with art. 19. Art. 257 indicates
that (Ak)ij < % ()\’f —minj<m<n /\,’fn) for i # j, illustrating sharper upper bounds
for even k = 2n, (AQ") 1)\2" than for odd & = 2n + 1, (A2”+1) " < )\2”“,
but diagonal elements are bounded by (Ak) < Ak, Thus, apart from (AQ") o~

Ji
A (xl)f in (3.25) for large n, it follows for any finite n that

(z1)5 A" < (A%1) < AT

For k =2n+1, (3.18) is

N N
(A2n+1)jj = Z (xm) A?r:Hl Z (xl)? ‘)‘l2”+1‘
m=1;\,,,>0 I=1;2<0

which can be zero as demonstrated in art. 19.

3.5 The number of walks

59. The total number Ny of walks of length k in a graph follows from Lemma 1 as

Nj, = Z Z (AF);; = uT AF (3.26)

=1 j=1
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64 Eigenvalues of the adjacency matriz

where u is the all-one vector. For example, Ny = N and N; = 2L. If the graph is
undirected, i.e. A = AT, each walk (A¥);; with i # j is counted twice in (3.26).
Invoking (2.4) and AT = A, we can write

N, = uT AT A2 Ay = dT AF24

If K =2, we obtain
N
Ny=d"d=3d =N ((E (D)) + Var [D}) (3.27)
k=1

The number of walks { Ny, N1, ..., N1} in the graph of Fig. 2.1 ignoring directions
and up to k = 10 is {6, 18, 56, 174, 542, 1688, 5258, 16378, 51016, 158910, 404990}.

Substituting A* = 27]:[:1 Mez,zT in (3.19) into (3.26) expresses the total number
N, = uT A*y of walks of length & in terms of the eigenvalues of A as

N
Ne=" (@lu)* Ak (3.28)

n=1

where Ty = Z;VZI (zn); is the n-th fundamental weight in art. 43. When the

normalized eigenvector x; = —~ as in regular graphs (art. 55) of degree r, where
A1 = r, the number of all walks with k hops in (3.28) simplifies to

Nk;regular graph — Nrk (329)

due to orthogonality (A.124) of eigenvectors.
Since Ny, = uTA™Ak=my = (Amu)” (Ak=™y), the Cauchy-Schwarz inequality
(A.12) shows that

2
’(Amu)T (Ak:—mu)‘ < (UTA2mU) (uTAQ(k_m)U)
from which we obtain, for integers 0 < m < k, the inequality
N]? S NQTVLN2]€—2’HL (330)

Equality only holds for regular graphs. In particular for m = 0, it holds that
N2 < NNoy.

60. Graph angles. Geometrically, the scalar product zlu = Z;V:l (zn); is the
projection of the eigenvector x,, onto the vector u,

2T = [l ully cosym = VA cos v (3.31)

where 7, is the angle between the eigenvector x, and the all-one vector u. The
total number Ny of walks of length k, written in terms of the “graph angles” as
coined by Cvetkovi¢ et al. (1997), is

N
N, =N Z A cos? v, (3.32)

n=1
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3.5 The number of walks 65

Since Ny = N, (3.28) becomes in terms of fundamental weights wy = u'zy in
(3.2)

N N
N=Y(alu)’ =3 w? (3.33)
n=1 n=1

which is equivalent with (3.32) for graph angles to

N
Z cos? Yn =1
n=1

61. Probabilistic interpretation. Besides graph angles in art. 60, we add a proba-
bilistic approach, based on the general property (see e.g. Van Mieghem (2014, p.
13)) of the expectation operator E [.] on a function g of a discrete random variable

A, that can have N possible outcomes A1, Aa, ..., AN,
N
Elg(M)] =Y g(\)Pr[A =)
j=1

el (xgu)Q Ak in (3.28) and (3.33) then suggest us to de-

IT’U. 2
fine Pr{A = \;] = % so that E [AF] = Zk. The corresponding probability
generating function is

Comparison of N = ZN

N
oa(z)=FE [ZA] = ZPr A=) Py
j=1

which holds for any symmetric matrix M, where A reflects an arbitrary eigenvalue
of M.

If the function g is convex, then Jensen’s inequality (see e.g. Van Mieghem (2014,
Section 5.2)) tells us that

g(E[A]) < Efg(A)] (3.34)

Since g (x) = 2% is convex for any real z and real p, whereas g (x) = zP is convex
for non-negative real z, Jensen’s inequality (3.34) translates to

(E[A)* = (NW) = b < p[A] = 22

Only for a positive semidefinite matrix M (see Section 10.8), it holds for any integer
k that
N

Nk 2 357

= Nd!,

For even k = 2m number of hops, equality in d?™ < N% is reached for regular
graphs with average degree dg, = r as shown in (3.29). Thus, the total number Ny
of walks with even length & = 2m in any graph is at least as large as in a regular
graph with the same (integer) average degree.
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62. The generating function Ng (z). The generating function of the total number
of walks in a graph G is defined as

Ng (2) = i Ny 2" (3.35)
k=0

The two different expressions in art. 59 result in two different expressions for
Ng (z). First, substituting the definition (3.26) into (3.35) yields

Ng (2) =u” (i Akzk> w=u"(I—24)"u (3.36)

k=0

where |z| < /\% in order for the infinite series to converge (art. 231). Since A is
symmetric, there holds for any analytic function f (z), possessing a power series
expansion around some point, that f (A4) = (f (4))". Thus, we have that

ul (I —zA) " u=u" ((I - zA)fé)T (I- zA)fé u = H(I — zA)fé qu

which shows that
12
N (2) = H(I _A)E uH >0
2
for all real z obeying |z| < A% The zeros of Ng (z) are simple and lie in between
two consecutive eigenvalues of A as follows from interlacing in art. 263.

Second, invoking (3.28) gives, for |z| < )\%,

a T2 kL a (zZU)Q
No(2) = (afu)" > Al =>" o (3.37)
n=1 k=0 n=1 n

For regular graphs (art. 55), where 21 = “N is the eigenvector belonging to A\ = 7,

the generating function (3.37) of the total number of walks simplifies to

_ N
T 1l—rz

Nrcgular graph (Z) (338)

Cvetkovié et al. (1995, p. 45) have found an elegant formula? for Ng (2) by rewrit-
ing u” (I — 2A) ™" u using (A.65). Indeed, for k = 1 in (A.65) and Cx 1 = zu and

2 The characteristic polynomial of the complement G¢ is
det (A — M) =det(J—A—(A+1)I)
= (—=1)V det <(A +(A+1)1) (1 —(A+O+1) D) J))
= (=) det (A + (A + 1) I)) det (1 —(A+AN+1) D! u.uT>
where we have used that J = w.u”. Using the “rank 1 update” formula (A.66), we find
det (A° — \I) = (—1)N (1 —uT(A+ A+~ u) det (A+ (A +1) 1) (3.39)

With the definition Ng (z) = u? (I — zA) " w in (3.36) of the generating function Ng (z), we
arrive again at Cvetkovic’s formula (3.40).
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3.5 The number of walks 67

Dpnx1 = u, we obtain with J = w.u”,

det (A + 2J) = det Adet (1 + zu" A™'u) = (1 + zu” A7 u) det A
Replacing A — I — zA results in
_ 1 (det(I+2z(J—A))
T(I—zA) " u== -1
v (I—2A) z det (I — zA)

The right-hand side can be written in terms of the complement A° =J — [ — A as

1 ~ det (A° + 2HT)

Finally, using the characteristic polynomial c4 (z) = det (A — 2I) of a matrix A,
we arrive at Cvetkovic’s formula, for |z| < )\—11,

No(2) = - ((—DN e (25 21) 1) (3.40)

z ca(3)
which shows that zNg (z) + 1 is a ratio of two real polynomials, both with real

zeros and of degree at most V.
Combining (3.37) and (3.40) yields, with A = 1,

ca(N) A— A

The right-hand side can be written as a fraction of two polynomials, in which the
denominator polynomial has only simple zeros. From this observation, Cvetkovi¢
et al. (1995) deduced that, if c4 (A) has an eigenvalue A with multiplicity p > 1,
then the characteristic polynomial of the complement ¢4 (A) contains an eigenvalue
—A — 1 with multiplicity p—1 < g <p+ 1.

(=N cac (A —1) — Z (zTu)

63. The total number of walks Ny and the sum of degree powers. Fiol and Garriga
(2009) have proven the inequality

N
Ny <> db (3.41)

Equality in (3.41) for all & > 0 is only achieved for regular graphs, because
Niregular graph = N7% in (3.29). For k < 2, equality in (3.41) holds in general,
because Ng = N = 271 d}, Ny =2L = Z ,dj and Ny =d7d = ZJ L
Proof of (3.41): For k > 2, the total number Ny of walks of length & is
N N
Ny =u"ATAR 2 Ay = dTAR2d =) 0N " di (AF?), d

1] J
i=1 j=1

N N N
Z Ak 2 it d?_’_QZ Z (AkiQ)ij did;

i=1 i=1 j=i+1
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68 Eigenvalues of the adjacency matriz

where the last sum holds by symmetry of A = AT. From 0 < (a — b)2 = a%+b*—2ab,
_ N N _
we bound as QZZ 1 Zj i1 (AF 2)Z.j didj <350 j—iva (A* Q)ij {d? +d3} and

N
Z:Akzu 74+ZZ Alej{d2+d2} ZZ Aszjdi

i=1 j=i+1 =1 j=1
uTAk—2d2
where the vector &/ = (d‘{,d%, .. .,d'}'\,>. This derivation suggests the induction
argument
Nk: S uTAk—m,dm, S uTAk—m—ldnL+1 (342)
which has been demonstrated already for m = 0,1 and 2. Assume now that it holds

for m = v > 0, then the induction inequality (3.42) is proved when we can show
that it also holds for m = v + 1. Using Au = d in (2.4) and A = AT,

N N
WP AR = qT AT AR g = qT AR = 30N (AR, Y

7 J
i=1j=1
N
S Y Y (A, (et )
i=1 i=1 j=i+1
Fiol and Garriga (2009) cleverly use the inequality for positive numbers a and b,
akb—l—abk _ ak+1 + bk+1 _ (ak _ bk) (a _ b) S ak?+1 +bk+1

with equality if and only if @ = b, and obtain

N
uTAk—udv < Z(Ak'—l/ 1 ; df+1+z Z Ak v— 1 ” du+1 du+1)

i=1 i=1 j=i+1

N
Z Ak: v— 1 dl/+1 TAk—(u+1)dy+1

zy J
1j5=1

Mz

which establishes the induction inequality (3.42) and proves (3.41). O

The fundamental form of the Laplacian (4.3) in art. 101, applied to x = d,
d'Qd =" " (di+ —d;-)?
lel

and dTQd = dT (A — A)d = Z , d? —d" Ad lead to

Z d? - N3 = Z (dl+ - dl Z Z i aij (343)

leL lljl

where the right-hand side sums, over all links [ in the graph, the square of the
difference between the degrees at both sides of the link [. Section 8.5 relates this


https://doi.org/10.1017/9781009366793.006
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.006
https://www.cambridge.org/core

3.5 The number of walks 69

expression to the linear correlation coefficient of the degrees in a graph and to the
(dis)assortative property of a graph.

64. Inequalities for the sum of degree powers. Cioabd (2006) writes the sum of
degree powers in terms of a node m of the graph G as

N N N
Sodr=di + Y amd] +Y(A%),,;dF
j=1 Jj=1 Jj=1

where  is a real number and where (A°),, ; is the element (m, j) of the complement
A¢ = J — I — A of the adjacency matrix A. The first sum contains the x-th powers
of the degrees of direct neighbors of node m, while the second sum contains the z-th
powers of the degrees of nodes that are not adjacent to m. With the definitions of
the averages

N
1 " "
= d_ Za'rnjdj < (dmax) (344)
m j=1
and
1 N
Re (m) = g D (A% 4 2 ()" (3.45)
m J:I

where the inequalities hold for > 0 and imply the bound
M-’L' (m) - R.L (m) S (dmax)w - (dmin)w

and F [D*] = + ZJ 1 dj, the above relation can be recast as

dfn—i_(N_ 1)Mm(m) :NE[DQT} +(N_1_dm)(Mm<m> _Rw(m>>
SNED*]+ (N —1—dp) ((dmaX)m - (dmin)z)
and produces for > 0 the bound of Cioab4 (2006)

Nd% 1 + M, (m) < Nj\i 1E [D*] + <1 - NdT 1) ((dmax)z - (dmin)i)

Furthermore, summing d,,, M, (m) in (3.44) over all m yields

Z dy M, Z Zaw = Z (Z amj> dy = ditt (3.46)

m=1 j=1 j=1 \m=1 j=1

Multiplying both sides in Cioabd’s bound by d,,, and denoting y = ((dmax)” — (dmin)"),

At -+ dy M, () < d Zdu -
N _ m m _1 ) —_1'm

and summing over all nodes m yields for > 0, after invoking (3.46) and (2.3) and
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after multiplying both sides by £=2, Cioabd’s recursive inequality in Z =1 d7 s

N N x x N
Zd$+1 < % Zd:]n + ((dmax) ]:[ (dmin) ) 2L, (N _ 1) _ de (347)

If x < 0 and the graph is connected (i.e. dyin > 1), then M, (m) — R, (m) >
(dmax)aC - (drnin)x and

N N x x N

2L min - max
> ditt > ~ > dy - (i) N(d R PY) (N-1)=> d (3.48)
j=1 =1 j=1

Cioabd (2006) shows that equality in (3.47) is obtained for regular graphs and for
connected graphs with exactly ¢ nodes of degree NV — 1 and the remaining N — ¢
nodes form an independent set? for 1 <t < N.

If two sequences are non-increasing, 1 > oo > -+ > Tp and Y1 > Yo > -+ > Y,
then the Chebyshev’s sum inequality, proved in Van Mieghem (2014), is

1 n 1 n 1 n
-~ z:l vy = | 2:1 zj | |- Z:l Yj (3.49)
Jj= Ji= Jj=

If one sequence is non-increasing and the other is non-decreasing, then the opposite
inequality sign holds. Application of Chebyshev’s sum inequality (3.49) results in
the lower bound

N 27, N
z; it > = Z (3.50)
= p

Comparing the Chebyshev lower bound (3.50) with Cioab#’s upper bound (3.47),
indeed, illustrates that equality holds for regular graphs.
When z =1 in (3.47) and in (3.50), we find the bounds

2L + (dmax — dmin) (N — 1)
9 N + dmax - dmin

For z = —1 in (3.48), we obtain

N N 2
1 N? 1 1 i1 d5

Z — <4 _ (N—-1)— @
d] 2L drnin dmax 2L

Jj=1
N? 1 1 2L
_ N—-1)—- —
2 (dmin dmax) {( ) N}

3 There are no links between the nodes of an independent set.

IN
|
+
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3.5 The number of walks 71

while the Chebyshev lower bound? (3.50) yields

N
N? 1
— — 3.51
s a
Hence, the harmonic mean F [%] = % Zj\]: dl is bounded by
1 1 1 1 1 1
—  <FE|l=| < ——+ = - E[D¢
E[D] — {D} — E[D] +N (dmin dmax) (D]
where E[D] = N — 1 — E[D] is the average degree in the complementary graph.
The bound (3.51) is generallzed for graphs with degree d; > 1, by the Holder
inequality (A.10), for z; = d}, y; = d,_., p>1andr >0, to the lower bound

65. Number of closed walks Wy. The number of closed walks W}, of length k in
graph G is defined in art. 6; Lemma 1 and art. 243 show that

N
Wi, = (A%);; = trace (AF) ZA’f (3.52)
j=1
Art. 46 shows that the mean E [\] = + Z;V:1 Aj = 0. The definition (3.52) demon-
strates that all centered moments of the adjacency eigenvalues are non-negative and
equal to
Wi,
Bl -EN)"] = 5
(- B =
Hence, the centered k-th moment is equal to the number of closed walks of length
k per node. The special case for k = 2 is Var[\] = %, which is deduced in art. 49.
If k = 3, then (3.8) indicates that
OAg
B[ - BN = =22
(- B = 2%

The skewness sy, that measures the lack of symmetry of the distribution around
the mean, is defined as the normalized third moment,

B[\ - BN 3ac
S\ = =

(E [(A _E [A])ﬂ )3/2 L\ED]

Since a tree does not have triangles, Ag¢ = 0, the minimum possible skewness,
sy = 0, in the distribution of adjacency eigenvalues is achieved for a tree. In

4 Similarly, (3.51) follows from the Cauchy-Schwarz inequality (A.72) with z; = \/d; and y; =
1

NG
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72 Eigenvalues of the adjacency matriz

Section 6.8, we will indeed show that only the adjacency spectrum of a tree is
symmetric around the mean (or origin A = 0). For k& = 4, the inequality (3.12)
bounds the number W, of closed walks of length 4.

66. Generating function of the number of closed walks Wy. The number of closed
walks Wp, of length k in graph G has a nice generating function, which is derived
from Jacobi’s general identity (art. 215). Using the Taylor series (art. 231) of
(I — 2zA)™", convergent for |z| < )\%, into Jacobi’s trace formula (A.53) yields

k k
— E t e — 1 et —
= rac (A ) z Og d (I ZA)

With W, = trace(Ak) and Wy = N, the generating function of the number of
closed walks W}, in G and convergent for |z| < A% is

Wa (2) = Z Wit = N + Zc% logdet (I — zA) (3.53)
k=0

Substitution of the last equality in (3.52) into the generating function (3.53)
yields, for |z]| < /\%,

N oo N
1
Wa(2) =) D M=) +—— (3.54)
j=1k=0 j=1 J

In terms of the characteristic polynomial c4 (\) = Zfﬂvzo cxA¥ of A, which is
ca (N) =det (A —XI) = (=A)" det (I — $+A), we have

det (I —zA) = (—2)Y ca (z71) = Z(—l)NcN,kzk
k=0

with (—1)" ¢y = 1. Then, we deduce from (3.53) that

N o0 Lk
Z(—l)NCN—kzk = exp (Z Wk?)

k=0 k=1
from which, by Taylor’s theorem,
1 dF > We .
(=D en—k = 37w P ( 7")

k=1

(3.55)

z=0

Relation (3.55) is equivalent to the Newton identities (art. 47). By applying our
characteristic coefficients defined in (B.10) in art. 47 or in Van Mieghem (2007),
the above derivatives can be explicitly computed for any finite k.

67. The generating function of the number of closed walks of length k that start
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3.5 The number of walks 73

and terminate at node j (art. 6), is defined as

o0

Wa () =Y (A%), 2" (3.56)

k=0

Substituting the j-th diagonal element of (3.19) into (3.56) yields, for |z| < 3~

.IZ,L.Z‘

D=3 ), Skt = 3

n=1 k=0

2
Art. 255 indicates that (azkxk) = ((azk)]) , such that

We (z5) = XN: M (3.57)

By definition, we have that Wg (2) = Zj\il We (23 9)-
Combining (A.52) and (A.162) in art. 262 yields

det (ZI — A\{J}) _ i (anxg;)jj
det (21 — A) — 2=

n=1

where A\ ;3 is the (N — 1) x (N — 1) adjacency matrix obtained from A by deleting

the j-th row and column. Thus, A\ (;} is the adjacency matrix of the subgraph

G\ {j} of G obtained from the graph G by deleting node j and all its incident links.

Hence,
det (21 — A
et (2l —Avyy) _ Ly, (1
det (21 — A) z z

and written in terms of the characteristic polynomial of a matrix A, c4 (z) =
det (A — 2T), we obtain
1
Ay (2)
zea (3)
The relation between the characteristic polynomials c4, (;, (2) and ca (z) is further
studied in art. 85.

Wa (27) =

68. Relations between Nj, and Wy,. Let m be the maximizer of the fundamental
weights wy, = 1 u in art. 43 over all 1 < k < N eigenvectors such that 22 u > zlu
for any 1 <k # m < N. Geometrically, the “graph angle” representation in (3.31),
mfﬁ = cos (yx), reflects that all orthogonal eigenvectors xy, o, ...,z start at
the origin and end on an N-dimensional unit sphere centered at the origin. The
graph angle between x; and % is largest for x1, by the Perron-Frobenius Theorem
75 in art. 269, because z; and \/— lie in the same N-dimensional “quadrant” as
both their components are non-negative. Any other vector x; must be orthogonal to

x1, implying that zj cannot lie in the “opposite” N-dimensional “quadrant”, where
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74 Eigenvalues of the adjacency matriz

all components or coordinates are negative, and in which the resulting cos (ay) also
can be large. Another, though less transparent, argument follows from the Cauchy
identity (A.71),

j—1

Wl = (uTap)’ = 7522((%)‘747( ) =N=33 (@) l)2

j=11=1 j=11=1

which illustrates that the maximizer over all w,% = (uT:rk)Q has minimum difference
between its components. Thus, it is the eigenvector x,, that is as close as possible
to the vector LNu with all components exactly the same. In conclusion, m = 1 and
wi > wg for all 1 < £ < N. Art. 60 demonstrates that w; > 1. This result also
follows from art. 203, because wy; = zfu = Z;\;l (z1); = Zj\;l ‘(xl)J‘ = ||z1]|;
and ||z1]l; > ||z1]l; = 1. A much sharper lower bound (3.114) for w, is derived in
art. 93 as a consequence of the Motzkin-Straus Theorem 17.

Likewise, let ¢ be the index that minimizes (azgu)Q > (x?;u)Q for any 1 < k #
q < N. Recall that quu = 0 for a regular graph. Then, the total number of walks
Ny, in (3.28) is lower and upper bounded for even k as

N
(quu)2Z/\ Z /\ < a:lu Z)\
n=1

Invoking the number of closed walks W, of length &k in graph G (art. 65), W}, =
Zn L AF. and the total number Nj of walks (3.28), leads to the inequality (only
for even k)

(xgu)Q Wi, < Ni, < (5(51 u) Wi < NW,
where the last inequality follows from (3.33), with equality for regular graphs.

The N x 1 total walk vector N = (N, Ny, Na,..., Ny_1) can be written with
(3.28) as

N 1 1 1 1 (uTx1>2
. T \2
Ny A1 Ao : AN—1 AN (u :Eg)
Nn—2 MDD SV S Vi (uTxN,1)2
NN*I Aiv_l )\é\/—l )\%:1 )\N 1 (UT:L'N)

and, in matrix notation,
N=Vy(Nt,

where V (1)) is the Vandermonde matrix (A.75) in art. 224 and where the N x 1

vector ¢, has w,% = (uTxk)Q as its k-th component. Similarly, the closed walk vector
W = (Wo, W1, Wa,...,Wx_1) is written as

W:VN<)\>U
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3.6 Diameter of a graph

Lemma 1 implies that (Ak)i, is non-zero if and only if node ¢ and j can be joined
in the graph by a walk of length k. Thus, if the shortest path from node ¢ to j
consists of h hops or links, then (Ah)z.j # 0, while (Ak)ij =0for 1 <k <h. Art.
22 defines the diameter p of the graph G as the number of hops h = p in the longest

Il e e

between node ¢ and j in a connected graph (art. 21).

69. Diameter of a graph.

Theorem 11 The number of distinct eigenvalues of the adjacency matriz A is at
least equal to p+ 1, where p is the diameter of the graph.

First proof: Art. 21 and 22 indicate that the matrix A" cannot be written
as a linear combination of I, A, A2, ... A"~1. By definition of the diameter p as
the longest shortest path, we thus conclude that the matrices I, A, A2,..., A? are
linearly independent. Art. 254 shows that the matrix Fj, that represents the
orthogonal projection onto the eigenspace of A, is a polynomial in A. Thus, the
vector space spanned by I, A, A%, ..., A” is also spanned by a corresponding set
of matrices Ey, which obey ExE,, = lj—p). Let Y = zi} cply, then ¢; =
E;Y is only zero if all E} are linearly independent. The matrices £y and E,, are
only linearly independent if they belong to a distinct eigenvalue of A. The linear
independence of the set I, A, A%, ..., A? thus implies that at least p+ 1 eigenvalues
of A must be distinct. O

We may rephrase Theorem 11 as: “The diameter p of a graph G obeys p <1—1,
where [ is the number of different eigenvalues of A”. The second proof may be
found easier and more elegant.

Second proof: Suppose that the adjacency matrix A has precisely [ distinct
eigenvalues. Art. 228 shows that A obeys m., (A) = O, where the minimal poly-
nomial m., (z) = 22:0 brz* has degree I. Hence, we may write

-1
(Al)ij = _bll Zbk (Ak)ij (3.58)
k=0

which shows that the diameter p < [ — 1. For, assume that p > [ — 1, then there
is at least one pair (4, j) for which (Ak')ij =0 for 0 < k <[ — 1. But, the minimal
polynomial in (3.58) then shows that also (Al)zu = 0 and, further any (A”q)ij =0
for any integer ¢ > 0, because m., (A) = O implies that any power r of A higher
than > [ can be written as a linear combination of powers A* with k not exceeding
. The definition of the diameter, equivalent to (Ap)ij = 0, while (Ak) = 0 for

ij
1 <k < p, contradicts that p > [ —1.

Third proof (limited to a regular graph): Let us denote the [ distinct
eigenvalues of the adjacency matrix A of a regular graph G with degree r by r =
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a1 > ag > -+ > ;. The Lagrange polynomial p;_; (z) = 222 $=ok of degree
I — 1 in art. 303 passes through the points (ay,0) for 2 < k <[ and (r,1). If the
v = |V| nodes in the set V and the w = |W| nodes in the set W in a regular graph
G with degree r are separated by at least [ hops, the van Dam-Haemers inequality
(4.103) in art. 161 shows that

(N —v) (N —w)

<0

implying that there are no nodes in G at a distance of [ hops from each other, which
is equivalent to a diameter p < . O

As an example, consider the complete graph Ky whose adjacency matrix has
precisely [ = 2 distinct eigenvalues, \y = N — 1 and Ay = —1, as computed in
Section 6.1. Theorem 11 states that the diameter is at most p =1 — 1 = 1. Since
the diameter is at least equal to p = 1, we conclude from Theorem 11 that the
diameter in the complete graph equals p = 1, as anticipated. If there is only [ =1
eigenvalue, then the diameter is at most equal to p = 0 and this situation (e.g.
from (3.5)) corresponds to the empty graph only, where each eigenvalue A\, = 0.

It follows from Lemma 3 that Theorem 11 also holds for the Laplacian matrix
Q: If a connected graph G has [ distinct adjacency or Laplacian eigenvalues, then
its diameter p is at most [ — 1, i.e. p <[ —1.

70. Spectral upper bound for the diameter of a graph. Chung (1989) has proven:

Theorem 12 (Chung) Let y = mini<ix<n (1), then the diameter p of a graph,
in which |Aa| > |An|, is upper bounded by

1
el ) (y2 1) (3.59)
log A1 — log | A2

Proof: We bound (Ak)ij = Z LAE (z0), (zn); in (3.18) as

(Ak)ij > )‘If (xl)z (xl)j -

N
Z )‘k (xn) (xn)]

because the largest eigenvalue is always positive and the Perron-Frobenius Theo-
rem 75 in art. 269 states that the eigenvector components of x; are non-negative.
Further, we have that

Z)\ Tn); azn

n=2

<Z|A’“

n=2

2<n<N

(xn), :cn <max|)\|g‘zn xn‘
n=


https://doi.org/10.1017/9781009366793.006
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.006
https://www.cambridge.org/core

3.6 Diameter of a graph 7

, )\]]‘V|) = \/\2|k, because the graph features
[A2] > |An|. Invoking the Cauchy-Schwarz inequality (art. 222),

where maxo<n<n |)\fl{ = max ({/\]2C

N N N 2

n=2

and the eigenvector normalization z} 2, = 1 in (A.124), such that Znsz ((zn),|* =

%

1— (21)?, leads to ‘25:2 N (@), (xn)j‘ < hoff \/(1 - (xl)?) (1 - (xl)ﬁ) so that

(Ak)ij > b (1), (x1); — Ao|® \/(1 — (xl)?) (1 - (xl)j) The diameter p is the

smallest value of k for which (Ak)ij > 0 for each element in A*. Requiring that
the above inequality is strictly larger than zero amounts to

(2 JO-@i) (i)

|)‘2‘ (xl)i (xl)j -2

which proves the theorem. O

Theorem 12 shows that, when ‘:\\;‘ is large implying that the spectral gap A\; — A

of the graph is large, the diameter p is small. Equality in (3.59) is reached for the
complete graph, where y = \/—IN, A1 =N —1and |A2] = |An| = 1. Theorem 12 does
not apply to the complete bipartite graph K, , (Section 6.7), where Ay = —A; =
v/mn and all other eigenvalues are zero.

71. The spectral radius A1 and the diameter p. Communications networks are
designed to possess a small diameter, that results in efficient transport of packets
with low end-to-end delay and packet loss. In order to be less vulnerable to epidemic
malware, the spectral radius of the graph should be minimal, which corresponds to
a high epidemic threshold, as demonstrated in Van Mieghem et al. (2009). Inspired
by those requirements, van Dam and Kooij (2007) proposed to find those graphs
with minimum spectral radius \; given the diameter p of the graph. A few years
later, Cioaba et al. (2010) proved

Theorem 13 If p is the diameter of a graph G with N nodes, then the spectral
radius is lower bounded by

A > (N —1)7 (3.60)

Moreover, Cioaba et al. (2010) showed that equality in (3.60) holds for p = 1
if and only if G is the complete graph Ky and for p = 2 if and only if G is the
star K1 n_1, the pentagon, the Petersen graph (Fig. 2.3), the Hoffman-Singleton
graph, or a putative 57-regular graph on 3250 = 572 — 1 nodes. These cases for
p =1 and p = 2 were earlier found in van Dam and Kooij (2007).
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Proof of (3.60): The diameter equals the number of hops in the longest shortest
path in the graph G and a finite diameter implies that G is connected (art. 22).
This means that each node j is reachable from another node ¢ in G by a shortest
path possessing k hops, with k& < p, of the form® Py =mo~mny~ng o~
Ng—1 ~ N, where ng =i and ny = j (art. 6) and where each node n,, in the path
is different. If & = p, then the shortest path P;_; is also a walk with p hops. If
k < p, then there exists a walk Wi, = no ~ny ~ng ~ - ~ng_y ~ng = J ~
Ng—1 ~ Ng—2 ~ +-- with p hops, in which the walk segment from node i up to node
j is unique, because it is the shortest path between ¢ and j. Hence, for each node
1, we can reach each other node j by a walk W;.;., with p hops. Thus, there are
at least N — 1 different walks with p hops from 4 to another node j in G. This
holds for each source node 4, so that the total number of walks with p hops obeys

N, > N (N —1). The lower bound (3.60) then follows from (3.65). O

Although Theorem 13 indicates that —2— > 1 for any graph, Cioabi et al.
(N-1)¢
(2010) made the interesting claim that, for any graph class with p > 1 in which the
number N of nodes can grow unboundedly, there holds that
A
lim ———— =1 (3.61)
N=oo (N —1)%
They showed that their claim (3.61) is related to the degree-diameter problem that
asks for the graph with a maximum number N4,y of nodes, given the maximum
degree dpax and the diameter p. Bollobds (2004) has conjectured, for p > 3, that

N
lim inf —zeor) g (3.62)

N—oo dﬁlax

Cioabd et al. (2010) demonstrated that (3.61) is true if the conjecture (3.62) is true.

3.7 The spectral radius \;

The largest eigenvalue A\; of the adjacency matrix A, also called the spectral radius
of a graph GG, appears in many applications. In dynamic processes on graphs, the in-
verse of the largest eigenvalue \; characterizes the threshold of the phase transition
of both virus spread (Van Mieghem et al., 2009) and synchronization of coupled os-
cillators (Restrepo et al., 2005) in networks. If the effective viral strength 7 > /\—11,
the epidemic spreads over the network. If 7 < )\%, then® the epidemic dies out.
Sharp bounds or exact expressions for \; are desirable to control these processes.

Bounds for As and Ay in connected graphs follow from the general bounds (A.175)

5 Since the graph G is assumed to be undirected, a link between node n,, and n,,+1 is denoted
by Mm ~ N1, which reflects both possible directions nm S npm41.

6 The basic reproduction number Ry = 7\ separates the two epidemic phases: if Rg < 1, an
epidemic dies out, else it spreads. We assume here a mean-field approximation. The more
precise analysis can be found in Van Mieghem and van de Bovenkamp (2013) and Prasse et al.
(2021).
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and (A.176), respectively, on eigenvalues of non-negative, irreducible, symmetric
matrices in art. 273.

Due the importance of the spectral radius in complex networks, Stevanovi¢ (2015)
recently collected a large variety of results, mostly bounds on A;, into a book.

We remark that the largest eigenvalue of a non-negative matrix, that is not
necessarily symmetric, also obeys the Rayleigh principle (A.130) as can be verified
from art. 251 by incorporating the Perron-Frobenius Theorem 75. Hence, most
of the deduced bounds in this Section 3.7 also apply to directed graphs, whose
adjacency matrix is generally non-symmetric.

3.7.1 Lower bounds for the spectral radius \
72. Classical lower bound. The Rayleigh inequalities in art. 251 indicate that

xT Ax
A1 = sup =
z#£0 T T

and that the maximum is attained if and only if = is the eigenvector of A belonging

to A1, while for any other vector y # z, it holds that Ay > y;;;j/. By choosing the

vector y = u, we obtain, with (2.5), the classical bound

u"Au 2L

N > —
b= "0ty N

(3.63)
Equality is reached in a regular graph, because the average degree is E [D] = % =r
since d; = r for each node j, and because r is the largest eigenvalue of A belonging
to the eigenvector u (Theorem 8). The differences Ay — E'[D] and dpax — A1 can be
considered as measures for the irregularity of a graph.

Combining the relation 2L = fo:l A7 in (3.7) with the classical lower bound
(3.63) indicates, for any graph, that

N
WPV PPV

k=1

with equality only for a regular graph. Hence, we can determine from the spectrum
of the adjacency matrix that the graph is regular if it holds that NA; = Zszl AZ.

73. Variations on the Rayleigh mqu{ality. A series of other bounds can be deduced
from the Rayleigh inequality Ay > ny‘?ly. Applying the Rayleigh inequalities to A*,
invoking art. 243, and choosing y = A™u in Rayleigh’s inequality \¥ > %
leads, for non-negative integers m and k, with the definition N; = u” AJu in (3.26)
of the total number of walks to

Nom
Ak > 2tk (3.64)
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For m =0 in (3.64), we find

A > <%>_ (3.65)

The particular case of k = 2 in (3.65) becomes with Ny = d¥d in art. 59

1 X N > 2L Var [D]
N’;d _\/V D]+ (E[D)” = 1+7(E[D])2 (3.66)

Since the variance Var[D] > 0 and Var[D] = 0 only for regular graphs, the lower
bound (3.66) is thus always better than the classical bound (3.63) for non-regular
graphs. Beside regular graphs, equality in (3.66) also occurs in complete bipartite
graphs K,,, n_m (Section 6.7).

74. Ezact expression for the spectral radius of irreqular graphs. From the inequality
(3.30) in art. 59, we deduce for irregular graphs that

1 1
N\ ¥ Nog \ %
(3) <(%)

1 1
Thus, the sequence ]X} , (%) . (%) * ...isincreasing’, while each term is bounded
by the spectral radius A\; and we find
1
. Nk: ® o
which complements art. 58. The Fiol-Garriga inequality Nj < Z 1 df in (3.41)

for k > 2 indicates that

(&) ﬁi & | =(E [Dk])% _ ldlly (3.68)

N*

1
illustrating that (E [D*])* is increasing in k, while the Holder norm ||d|,, by (A.14)

j=1 dé) = drnaX7 we ﬁnd Wlth (367)

and (3.68) again the upper bound A\; < dp.x in art. 42 with equality only for
regular graphs. Combined with (3.66), it holds that (E [D2])5 < A1 < limg oo

is mon-increasing in k. Since limg_, o (N Z

1
(E [Dk}) *. Since (E [Dq]) ¢ is continuous and increasing in real ¢ > 0, there exists
one value of ¢ > 2 for irregular graphs that satisfies

1

N
¥ X:: (3.69)

Bl

7 Regular graphs with degree r have \; = (%&) =7 by (3.29), independent of k.


https://doi.org/10.1017/9781009366793.006
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.006
https://www.cambridge.org/core

3.7 The spectral radius Ay 81

Formula (3.69) was proved differently by Hofmeister (1988). Computations of (3.69)
on Erdés-Rényi random graphs show, for most instances, that ¢ € (2,5). Hofmeister
(1988) has proved for n € N that if ¢ = 2n+1 in (3.69), then A; is an integer and if
q = 2n, then \? is an integer. Indeed, if ¢ = k € N, then (3.69) shows that \¥ € Q7.
But A\; ¢ Q\Z (art. 45), so that \¥ € N, implying that A\, satisfies z¥ —m = 0 for
m = A\ € N. If k is odd, ¥ — m = 0 has only one real zero, \;; if k is even, then

2% —m = 0 has two real zeros, £\, and thus \? € N.

75. Spectral radius in subgraphs. The Interlacing Theorem 71 states that A; is
larger than or equal to the largest eigenvalue of any subgraph G, of G:

A1 > max (A (4g.)) (3.70)

all GsCG

The lower bounds deduced in this Section 3.7, such as (3.63) and (3.66), also apply
to each individual subgraph Gs. It is a matter of ingenuity to find that subgraph
G with highest largest eigenvalue A1 (Ag,). The lower bound (3.70) can also be
deduced from the Rayleigh inequality by choosing zero components in the vector y
such that y? Ay = wT Ag,w, where the vector w contains the non-zero components
of y and Ag, is the subgraph obtained by deleting those rows and columns that
correspond to the zero components in y.

Examples The spectral radius of the star K y is computed in Section 6.7 as
A (AKI,N) = +/N. Since any node j in a connected graph is locally a star Ky 4,

with d; + 1 nodes and A\q (AKl,dj) = /d;, we find that the lower bound in (3.70)

A1 > max ()\1 (AKl,dj)) = \/m

all jeN
Another derivation follows from the bound (Ak)jj < A} in (3.24), which holds for
any node j and any integer k > 1,

k
A > g 12}3%)(]\[ (A )jj (3.71)

The largest eigenvalue A; of the adjacency matrix is at least as large as the m-th
root of the largest number of m-hop cycles around a node in the graph. For k = 2
and with (AQ)M. =d; in (2.20), we again find
)\1 2 dmax
with equality in the star K y_1.
If G, is the largest clique in G containing w nodes, then A\; (Ak,_,) = w — 1 and
(3.70) leads to

)\1 Z w—1
where w is clique number (see art. 92).

76. Rayleigh’s inequality and the walk generating function. Continuing as in
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art. 73, we propose to choose in the Rayleigh inequality A¥ > y_u the vec-

tor yTy
y:iAju = —-A2) "u=u+zd+ 22Ad + ...
which converges for |z| < A7* (art. 62). The quadratic form
yT APy =T (I — Az) P AP (I — A2) M u
is only a norm for even k = 2m, yT A>™y = HAm (I —Az)" H > 0 and non-

negative for all |z| < A{'. Further, using the matrix norm inequality (A.25),

. 2
yT A2y HA (I - Az) H2 . HA’”H _em

A

where the last inequality follows from (A.23). The Cauchy product of power series
yields

oo 00 oo m
yTAky — Z UTAm om Aj-i—ku Zj — Z ZUTAm—jAj-‘rku ™M
m=0 7=0 m=0 \j=0
) )
= Z (m+ 1) ul Amrhy M = Z (m+1) Ny 2™
m=0 m=0

We write the sum y” A%y = Y (m+ 1) Niyym 2™ in terms of the generating
function Ng (2) =Y ey Ni2® in (3.35) of the total number of walks in a graph G

e} e} -1 0
= Z N,,z™m = Z Nk+ank+m =¥ ( Z Niamz™ + Z N;H_mzm)

m=0 m=— m=—k m=0
k

= E Ny 2" 4 2F E Niamz™
m=1 m=0

and

- d
yT ARy = Z (m4+1) Nppmz™ = o 217FNg (2 Z Ni_pzt™™

m=1

= +Z —1Nkmzm

Rayleigh’s inequality becomes, for |z| < A7,

26 (1 ) N, ()+Z]t2(k:—1—j)szj
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which simplifies most for k = 1,

dNg(z) dNg(z)

/\1 > dz — dz (3_72)
£ (2Ng (2)) 228G 4 NG (2)

This general lower bound (3.72) can be written in terms of the logarithmic derivative

of the generating function N¢g (z) as )\% <z+H gy
dz

77. Deductions from the walk generating function lower bound (3.72). Differentiat-

. — . . . oy Ay e
ing the right-hand side the Rayleigh quotient r (2) = Ty 7 o G )) in (3.72)
dz z
with respect to z gives
d’Neg(z) dNg (2) 2
dri(z)  No(2)£5g — 2 (gl
= 2
dz (4 (2Ng (2)))
2

illustrating that if Ng (2) dQJ;;(Z) -2 (dNCfZ(Z)) > 0, then 7 (z) is increasing and

drl(z)

until its maximum at = 0. The solution of the differential equation dré—i’z) =0
as well as (3.72) with equality sign is precisely the generating function (3.38) of
regular graphs.

(a) When z = 0, (3.72) reduces to Ay > —1, which is the classical lower bound
(3.63).

(b) For small z, we substitute the power series of Ng (2) up to order three in z
in the right-hand side of (3.72),

A N1+2N22+3N3,Z +O( )
12 Ny 1 2Nis 13N, + 0 ()
Maximizing the lower bound for z yields, after a tedious calculation,
NoN3 — N1 Na + \/NZN3 — 6NgN1 NaN3 — 3NZN3Z + 4 (N7 N3 + NoN3)
2 (NgNy — N?)

At >

(3.73)
Numerical results in Table 3.1 and Fig. 8.6 show that the bound (3.73) is better than
(3.66), which is not surprising because (3.73) includes via N3 additional information
about the graph.
(c) For large, positive and real z, the Rayleigh quotient is

T A¥ > 1) N, m n 1) V.. m
T‘k(z):y y: Z77§O(m+ ) k4+m % — lim Zm O(er ) ktm Z

y'y Domeo (M A1) Ny 2™ n=oo 350 (m+1) Ny 2™
m+1 Nk+n1 m—n
— lim Nk:—‘rn lim 1+Zrn =0 (n+1)Npyn Z

n—1 (m+1)N.,,

n— o0 Nn n—0o0 1+Zm,:0 (n+1)N,

me’ﬂ

and

NNg4n—1 51 1
ALES Lt v, 2 T 0()

2
n—oo nNp— 1
N L+ G, 21+ 0 ()

ri (2) = lim

n—oo
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Air transport Random ER Complete bipartite

A1 exact 80.9576 19.3405 105.5557
bound (3.63) = % 18.3079 18.3304 17.8701
bound (3.66) 42.7942 18.8005 105.5557
bound (3.73) 75.9029 19.2867 105.5557

Table 3.1. Comparison of a few lower bounds for \y. All networks have N = 1247
nodes. The European direct airport-to-airport traffic network is obtained from
Eurostat, while the Erdos-Réngi graph is defined in Section 1.5 and the complete
bipartite graph K, , in Section 6.7.

which illustrates that r (z) = lim,_ o Nj{,*" = A\¥ for sufficiently large, positive

z, because then the last limit tends to 1. nAlthough the series y = Z;io Ay 2

T sk
only converges for |z| < A7', the Rayleigh quotient ry, (2) = %11 exists for all
non-negative real z.

78. Another improvement of the classical bound (3.63) in terms of the total number
(3.26) of walks Ny, is derived in Van Mieghem (2007) and improved in Walker and
Van Mieghem (2008),

N Ny NN, N}
A > Wl +2 ( AL —1) A2+ 0@ (3.74)

where t > T, \g = tV/N,

7= max (a),+ 3 o) (3.75)
i#]
Since Ny = uT Au = 2L, the first term in (3.74) is the classical bound (3.63). The
Lagrange series (3.74) with terms containing powers of A, %7 for j > 0 measures the
irregularity Ay — F [D] of the graph.

The basic idea in Walker and Van Mieghem (2008) starts from the matrix func-
tion f (M) of any symmetric matrix M, where f(t) is an arbitrary increasing
function in the real number ¢, whose inverse function f~!(¢) around % exists.
A function of a matrix (see art. 232) can be written in terms of a Taylor series,
J(Mt) =372 fxM*t*, where t is a scalar, properly chosen to guarantee conver-
gence of the Taylor series. The classical bound (3.63) applied to the matrix f (Mt)
with largest eigenvalue f (A (Mt)) (see art. 257) yields

W TQIY < e, (an))
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Since f~1 (¢) is also increasing in ¢, it holds that

T 0 T k
o)z g (L) (ka“ i “tk> (3.76)
k=0

Tt

where the inverse function f~! can be expanded in a Langrange series. The func-
tion f (t) = ¢ returns the classical bound (3.63). An interesting property of (3.76)
for positive semidefinite matrices is that any real increasing function f(¢), dif-
ferent than f(t) = ¢, provides a tighter lower bound than the classical bound

k
(3.63). Indeed, using “T%k“ > (“Tlf‘f/fu) for any integer k£ as demonstrated in

k
art. 61, we find that Y~ fk“T—ANmtk > >t fr (“T%“t) = f (Lj\lyut) and

%f‘l (ZZOZO fr “T%k“tk> > “TK\/“, which demonstrates the property.

3.7.2 Upper bounds for the spectral radius A\

79. A sharper upper bound than A; < /2L (1 — %) in art. 42

M <20 (1 - l) (3.77)

w

where w < N is the clique number (art. 92), is deduced by Nikiforov (2002),
using the Motzkin-Straus Theorem 17 in art. 93. Squaring (3.3) and applying the
Cauchy-Schwarz inequality (A.72) yields

L 2 L
A =4 (Z (@1)+ ($1)1> < 4LZ (551)12+ (951)12*
=1

=1

After substituting the vector component x;+ — (xl)?+ into the Motzkin-Straus
Theorem 17, so that the requirement 1 = ZN T; = Zj\;l (:rl)j is satisfied, we

j=1
find (3.77).

More generally, combining Theorem 109, art. 42 and art. 73 gives for any integer
k>1,

) L
(NQ’“)ﬁ <A < mi War " (3.78)
a— min — 1 & » Umax .
N) =7= 1+ (N 1) .

where Wy, is the number of closed walks with & hops. For k =1, (3.78) reduces to

2L Var [D] . 2L (N —1)
~ 1+W <M Smln{ Tadmax} (3.79)

When we assume that ﬁ—'; < 1 for all 2 < n < N, which, as mentioned in
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art. 73, excludes bipartite graphs, the definition of Wy, in art. 65 indicates that
N k k
Aj max (A2, An)
Wi =<1 = AL+ (N —1) | ———
= +]§_23(A1) <N {1 (v - |

This implies that Wkl/k is decreasing in k, because (1 + :c)l/k is for x > 0 and, in

k .
addition, (%f)‘m) is exponentially decaying in k. Hence, limy_, Wk1 A AL
While the left-hand side of (3.78) is increasing in k (art. 73), the right-hand side
is decreasing in k. Together, they provide increasingly sharp bounds for A; when k&
increases.

An upper bound, related to the lower bound (3.71),

N
A1 <max 7| max (Am)..
m>1 1<i<N 4 v
Jj=1
follows from (A.26) and (A.21). Since W, = Zj\;l (A™),;, the above upper bound
is different from (3.78).

80. Bounds for connected graphs. A connected graph has an adjacency matrix that
is irreducible (Section 10.6). We apply the bounds (A.171) in art. 270 to A% by
choosing y = u,

min (A2u)4 <A < max (AQU),

1<i<N @ 1<i<N i

N
where (AQU) = (Ad)z = Z a’ijdj = Zj€neighbors(i) dj' ThUS,

i Jj=1

min d; <)X < max d; 3.80
1<i<N | Z == SN Z J ( )
j€neighbors (i) j€Eneighbors(i)

Invoking the basic law of the degree (2.3), we have

(AZU)Z,:ZL—CIZ‘— Z dj§2L—di—(N—1—di)
jéneighbors(z)

where the inequality arises from the connectivity of the graph, which implies that
the degree d; of each node j is at least one. Thus, max;<;<n (A2u)i =2L-N+1
and this maximum is reached in the complete graph Ky and in the star K; x_;.
Hence, for any connected graph, we obtain the bound

M <V2L-N+1 (3.81)

which is sharper than Ay < /2L — % in art. 42, but the latter bound did not
assume connectivity of the graph. In particular, for any tree where L = N — 1, the
upper bound (3.81) shows that A\; < /N — 1. When the maximum degree in a tree
is known, this bound is complemented by Theorem 19 in art. 95.
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When choosing y = d in (A.171) in art. 270, we obtain a companion of (3.80)
for connected graphs:
SBg X bshsmmg 34 (08
j€neighbors (i) j€neighbors (i)
81. Upper bounds for A1 in irregular graphs. Since the largest eigenvalue in a
regular graph with degree r equals A\y = dpax = 7, we omit regular graphs here.
We consider the Laplacian matrix @@ = A — A with eigenvalues p1 > pg > -+ >
un = 0 and their corresponding normalized eigenvectors yi1,¥ya, ... ynv = \/—"N such
that yl'yry = 1. The definition of an eigenvalue in terms of its corresponding,
normalized eigenvector shows that

y)-)’

Mh

L
=yl Qui = Zd y1); =2 W) (1),
1=1 1:1
where the last equahty follows from art. 102. Similarly, using Rayleigh’s principle
(art. 251), we have the bound

N
=l Qu =Y "d; (@1)] =\ (A) = > ((@1)s — (@1),)°

j=1 =1

from which we deduce that
N L
e =0 (4) = 3 (e = 5 02)] + 3 (1) = (o))
=1 1=1
The last sum can be lower bounded in a similar vein as in art. 138 by considering a
path as a subgraph of a connected graph. After bounding skillfully the right-hand
side of the last equality, Stevanovi¢ (2004) derived the upper bound for irregular
graphs
1
2N (Ndpax — 1) d2

max

A1 < dmax -

Stevanovié’s upper bound has been improved several times. A discussion of several
improvements is given in Stevanovié¢ (2015, p. 54-62). Using the diameter p of the
graph G, the two best improvements so far are
1
Amax — A1 > — 3.83
' (383)
due to Cioaba (2007) and
1
(N - dmin) 1Y + dtnaxiE[D] - (g)

due to Shi (2009). For more regular graphs, Cioabd’s (3.83) bound is better, while
Shi’s (3.84) expression is sharper for more irregular graphs. Both proofs use similar
ingredients as in Section 4.3, in particular art. 138, and are omitted.

Amax — A1 > (384)
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3.8 Eigenvalue spacings

The difference A\, — Ag11, for 1 < k < N — 1, between two consecutive eigenvalues
Ax and Agy1 of the adjacency matrix A is called the k-th eigenvalue spacing of A.
Only basic and simple, but general relations are deduced. Higher order differences
(see art. 306) are not considered, nor the combination with the powerful Interlacing
Theorem 71 in art. 263. Recently, Kolldr and Sarnak (2021) study eigenvalue gap
intervals in cubic graphs, connected regular graphs with degree r = 3, and list gap
intervals (2\/5, 3) in cubic Ramanujan graphs, [—3, —2) in line graphs and (—1,1)
in planar graphs.

82. Spectral gap. The difference between the largest eigenvalue \; and second
largest Ao, called the spectral gap, is never larger than V:

A =X <N (3.85)
Indeed, since A\; > 0 as indicated by the bounds (3.79), it follows from (3.5) that

N N
0:ZAk:A1+ZAk§A1+(N—1)A2

such that \g >

At NX
N-1 N-1
Art. 42 states that the largest possible eigenvalue is Ay = N — 1, attained in the
complete graph, which proves (3.85). The equality sign in (3.85) occurs in case
of the complete graph (see Section 6.1). When a link is removed in the complete
graph, the spectral gap drops by at least 1 (see Section 6.10). The spectral gap
plays an important role in the dynamics of processes on graphs (art. 99) and
it characterizes the robustness of a graph due to its relation with the algebraic
connectivity (art. 110 and Section 4.3).

A=A <

83. Figenvalue spacings. The sum over all spacings between two consecutive

eigenvalues equals
N-1

> (k= A1) = A — Ay (3.86)

=1

=

Since each spacing A — Ap+1 > 0, the largest possible spacing occurs when all
but one spacing is zero, in which case maxi<x<n—1 A — Ar41 s equal to A\ — An.
However, each spacing consists of two consecutive eigenvalues, which implies that
AN = Az or Ay_1 = A1. Art. 82 shows that the largest possible spacing is attained
in the complete graph and is equal to N, the largest possible spectral gap.

Let A) denote an arbitrary spacing between two consecutive eigenvalues, then
the telescoping series (3.86) shows that its average equals

)\1 - >\N < 2dmax

BIA =T =¥
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Abel’s partial summation

n n—1 k n
Zak by, = Z (Z al) (bk - bk+1) + b, (Z al> (3.87)
k=1

k=1 =1

applied to Zi\;l Ak = 0 in (3.5) shows that

N-1
> k(A = A1) = =Ny
k=1

The inequality (Hardy et al., 1999)

r r+r e r
min — < L A < max — (3.88)
1<k<n Qg qr+q+--+qn 1<k<n qj

where q1, g2, ..., q, are positive real numbers and r1,79,...,7, are real numbers,
yields 7, = k(Mg — Agt1) and ¢ = k bounds for the minimum and maximum
spacing between consecutive eigenvalues of the adjacency matrix A:

: —2)\N
< m — < < _ .
0= 1§k§%—1 Ak = A1) < N_1— 1§Ik1<1_a§_1 Ak — Akg1) (3.89)

Relation (A.176) in art. 273 implies that

such that the minimum spacing is never larger than

N
i — <
1§1£%IJI\1771 (A = Angr) < N -1

With Var[A] = 2 in art. 49, Lupas’ upper bound (B.72) in art. 345 is

. | L 2f
1§$?§N|>\kf)\|<2 ( : ) \/

84. Inequalities for An. Besides the general bounds in art. 273, new bounds for
the smallest eigenvalue Ay of the adjacency matrix A can be deduced, when known
relationships are rewritten in terms of the spacings.

Partial summation (3.87) of the total number of closed walks (3.52) yields, for
any integer 0 < m < k,

N N-1 7
W=t = 3 () o e, e
j=1

Jj=1

while the generalization of the telescoping series (3.86) is, for any n,

Z (AP = A0y) = AT =A% (3.91)
j=1
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The difference A} — A ; can be negative when eigenvalues are negative and n is
even. The sum lel A" is always positive for j < N, which is immediate for even
m. For odd m and denoting by ¢ the index such that A; > 0 and Ag4+1 < 0, we can
write for j > ¢

J q J
D= A DN
=1 =1 l=q+1
where the first sum is strictly positive and maximal Y 7_, Aj™ > Z{Zl At for any

1 < j < N and the second is strictly negative. The second sum decreases with
increasing j and is thus larger than or equal to Zl p +1 A", However, in that

extreme case where j = N — 1, the sum ZN ! At =Wy, — A% > 0. The minimum
value of the sum 2{21 A" is attained for even m at j = 1 and for odd m at either
J=1L i A" < W, = A, orat j =N —1,if \T* > W,, = AF. If m =1, the
minimum occurs at j = N — 1 provided A; > |Anx|, which excludes, as in art. 73,
bipartite graphs.

With this preparation, the inequality (3.88), with r; = ¢, sz:1 A, g = )\2? M

)\f_d” > 0 and k — m is odd, becomes, using (3.90) and (3.91),

Wi, — Xm0, A A m m
W Z 13%111\;171 ; )‘l = min (Wm AN )‘1 ) ]-{m is 0dd}+>‘1 ]-{m is even}
from which we arrive at the bound, for even m and for odd m provided W,,, — A3} >
e

Wk - /\k

> > \hm (3.92)
and, for odd m provided W, — )\7]\}” < AT
Wy — Ak
# > Ak (3.93)
m N

For example, for k—m = 1 and excluding bipartite graphs, (3.93) reduces for k = 2
2
and m = 1 and using (3.7) to % > A1, from which the lower bound follows

1
AN > B ()\1 - \/)\§+8L>

For k = 3 and m = 2, and using (3.8), (3.92) generates the upper bound
6AG — )\‘f
— = >\
oL — X2 — N
Since we can only compute the sum Zj\;l ( {:1 )\{”) for m = 0, the inequality

(3.88), with r; = ¢;(A¥ = A¥, ) and ¢; = j, yields for all integer k > 0, using (3.90),

. K 2 (Wi — NAK)
_ I
19%%—1 ()\ )\JH) - N(N-1) — 155%3137(—1

(AF =) (3.94)
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which is the generalization of (3.89).

3.9 Adding or removing nodes or links

This section relates the adjacency eigenvalues of the original graph to those in
the resulting graph after topology changes such as node and link additions and
removals.

85. Addition of a node to a graph. When node N + 1 is added to a graph Gy to
form the graph G i1, the adjacency matrix of the latter is expressed as

An UNx1 ]

Anpr = (3.95)

(UT) IxXN 0
where vy «1 is the zero-one connection vector of the new node N + 1 to any other
node in Gx. The degree of node N + 1 is dyy1 = vTv. The matrix (3.95) is
a special case of (A.154) in art. 259. The analysis in art. 259-261 and art. 264
readily applies to relate the spectrum of Ay and Anyq.

Suppose that v is an eigenvector of the adjacency matrix Ax with eigenvalue
Av, then Ay, = Apax (An) = A1 by the Perron-Frobenius Theorem 75 because v has
non-negative components®. Hence, if v is the eigenvector belonging to the largest
eigenvalue, then Ayv = Ajv and (Ax — )\I)_lv = (A — /\)_111 for A # A1 such
that

d
T (A - N[~y = AN+
vt (A=A v SV

The general determinant equation (A.157) becomes

det (Ay — AI)

det (Ant1 — M) = (A2 = M\ —dny) VY

Hence, if v is the (unscaled) eigenvector of Ay belonging to the largest eigenvalue
whose norm is ||v||§ = vTv = dyy1, then the spectrum of Ay, consists of all
eigenvalues of Ay, except for A = A\; and two new eigenvalues,

% (u 1+4dN+1>

A

In other words, the largest eigenvalue A; of Ay is split up into a slightly larger
one and a smaller one with strength related to the degree dy41. Such a vector
v exists, for example, when v = u and Ay is the adjacency matrix of a regular
graph (art. 55). The node N + 1 is then the cone of the regular graph with degree
dnt1 = N (see art. 86 and art. 166 for the Laplacian spectrum of the cone).
Moreover, the analysis also holds for weighted, undirected graphs.

8 If v has zero components, then A is reducible, which implies that the graph G is disconnected.
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86. Cone of a graph. Invoking the Schur complement (A.59), we obtain the
alternative expression for the determinant

Ay — M v vol
For any complex number z, the determinant det (Ayy1 — AI) in (3.95) can be
split into two others by (A.32):

AN7>\I v o ANf)\I v AN7>\I v
det[ o7 —)\}_det{vT—wT _)\_Z}—i—det[ T z}

When choosing w = v, then

AN—AI v . AN—/\I v AN—AI v
det[ T _)\] det{ Oro >\+z}+de‘u{ T ;

T
=—(A+2)det (Ay — AI) — zdet (AN—)\I-i-%)

where the Schur complement (A.59) is used. The particular case of the cone, where
v = u, then reduces, with J = u.u”, to

det (A1 — ) = zdet (AN L >\I> —(A+2)det(Ay — X))  (3.97)
z

Since the adjacency matrix of the complement G¢ equals A° = J — I — A, choosing
z=11n (3.97) results in

det (Ayi1 — M) = (=1)N det (A% + A+ 1) 1) — (A + 1) det (Ay — AI)

When a node that connects to all other nodes in G is added such that v = u,
the resulting graph Gy is called the cone of Gxn. The cone is always a con-
nected graph. The cone construction is useful to convert a reducible matrix into
an irreducible one, or to connect a graph with several disconnected clusters of com-
ponents. An interesting application occurs in Google’s PageRank as discussed in
Van Mieghem (2014, pp. 251-255).

87. Removing m nodes from a graph. Let N, denote the set of the m nodes
that are removed from G, and G.,,(N) = G\N,, is the resulting graph after the
removal of m nodes from G. We can always relabel the nodes, without affecting
the eigenvalues (art. 239), in such a way that the adjacency matrix A of G has the

form
| Av B
A=l g oa]

where A; is the adjacency matrix of G,,(N) and As is the adjacency matrix of
the removed subgraph on m nodes. Lemma 10 shows that Ay (4) > A\ (A1) and
A1 (A) > A\ (Ag) for m > 0, provided the graph is connected, else the upper bound
is not strict. We assume here that G is connected. Invoking (A.152) in art. 258
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3.9 Adding or removing nodes or links 93

where 1 is the eigenvector of A belonging to A\ (A) and writing out the quadratic
form leads to

A1 (4) (1 =23 e, (xl)i) 2 e, 2aien, %ii(1)i(1);

A1 (A) > A (A1) > 2
(A) > A1 (A1) > =y @)

(3.98)
which sharpens? the inequality in Li et al. (2012), where the denominator is absent.
The upper bound in (3.98) of A\; (A1) states that the spectral radius A of a graph
G is always larger than or equal to the largest eigenvalue of any subgraph G of G,

>
M2 gt (de.))
which is another proof for (3.70) in art. 72. If only m = 1 node is removed, then
(3.98) simplifies, because a;; = 0, to

1—2(x)2

AL (A) > X (Agyny) = M (4) 1~ (01)?

(3.99)
The highest lower bound in (3.99) occurs for the removal of node n with smallest
principal eigenvector component, which is positive in a connected graph (art. 269).

The addition of a node to a graph G was discussed in art. 85. In particular,
when Gy, is the cone of a regular graph Gy, the spectral radius A (An41) of
Gn41 equals w (1 +4/1+ 4%), where A1 (Ap) is the spectral radius of
Gy and d,, = N is the degree of the added cone node. Hence, the increase of the
spectral radius is related to the degree d,,. The lower bound in (3.99) underlines the
interpretation of a principal eigenvector component as an importance or centrality
measure (see Section 8.7.1). For, the more important the node n is, the higher the
value of (x1),, and the larger the possible decrease in spectral radius when this
node n is removed.

Applying (A.153) and interlacing (art. 263) leads to

(1 =23 N, (mv)i) AN(A) + X ien, 2oien,, @i (TN )i(TN);
1- ZnGNm (xN>721

Anv (A) < An(4)) <

(3.100)
which sharpens the upper bound in Xing and Zhou (2013).

88. Removing m links from a graph. After removing the set L£,, of the m links
from G, the resulting graph is G,,(£) = G\L,,. The adjacency matrix A,,(L) of
G (L) is still a symmetric matrix. The eigenvector z; of A,,(L), corresponding
to the largest eigenvalue A1 (A, (L)) in the graph G, (L), is normalized such that
2z = 1. Let e; be a base vector in the N-dimensional space, where the i-th

component equals (e;), = 0;; and d;; is the Kronecker delta. Then, the adjacency

i

9 A similar observation was made in Stevanovi¢ (2015, p. 42).
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matrix that represents the single link between nodes ¢ and j equals

Ajj = eiel +ejef (3.101)

ij
det (Aij - /\I) = (=1)M AN=2 (A2 — 1), such that the largest eigenvalue of A;; is

1. For any vector y, we have

Thus, flij equals the zero matrix, except that (/LJ> = (/LJ> = 1. Clearly,
Ji

y Aijy =y" (eie] +ejel )y =y eie; y+y ejel y = 2y, (3.102)

Art. 44 shows that 2y;y; < 1.
After these preliminaries, we now provide a general bound on the difference
between the largest eigenvalues in G and G, (L), where m links are removed.

Lemma 4 For any graph G and G, (L) = G\L,,, it holds that
23 s el €M (A) =M (An(£) <2 3 (@) (o) (3.103)

€L, €L

where ©1 and z, are the eigenvectors of A and A,, corresponding to the largest
eigenvalues A1 (A) and A1 (A,,), respectively, and where a link | joins the nodes [
and [~ .

Proof: Since Ap, =A—3 . A1~ where the left-hand side (or start) of the
link [ is the node [T and the right-hand side (or end) of the link [ is the node [~
and with the normalization 27z = 1, art. 44 shows that

M (A) = 2] Az = 2] (Am + Z Alﬂ) 21 = o] Apar + Z ol Ap-m

€L, €L,

Using (3.102) yields zT A;4;-xy = 2 (#1);+ (21),- and we arrive at

M(A) =af Apar +2 ) (@1),s (21),
€Ly,

The Rayleigh principle (art. 251) states that, for any normalized vector w with
wlw = 1, it holds that w” Aw < \; (A), where equality is only attained if w equals
the eigenvector of A belonging to A; (4). Hence, using 27 A,,71 < \; (A,,) leads
to

M (A) =2 Apzr +2 ) (@) (21),- <M (Am) +2 ) (@) (21),-
€Ly, el

from which the upper bound in (3.103) is immediate. When repeating the analysis
from the point of view of A,, rather than from A, then

M (Ap) = 2T Az = 2T (A — Z fllH) 21 =25 Az — 2 Z (21)+ (21),-

l€Lm leLlm
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3.9 Adding or removing nodes or links 95

By invoking the Rayleigh principle again, we arrive at the lower bound. O

For connected graphs G and G,,, it is known that A; (4) — A1 (A,) > 0 (see
Lemma 10). The same conclusion also follows from Lemma 4 because the Perron-
Frobenius Theorem 75 states that all vector components of z; (and z1) are posi-
tive in a connected graph G,,. Lemma 4 indicates that, when those m links are
removed that maximize 2, (21);+ (z1);-, then the upper bound in (3.103)
is maximal, which may lead to the largest possible difference A\; (A) — A1 (Am).
However, those removed links do not necessarily also maximize the lower bound
23 iem,, (21)p+ (21),-- Hence, the greedy strategy of removing consecutively the
link / with the highest product (x1),+ (1), is not necessarily guaranteed to lead
to the overall optimum. The fact that the problem to find m links in G, whose
removal minimizes A1 (A,,), is NP-hard as proved in Van Mieghem et al. (2011),
underlines this remark.

89. Graphs that optimize the spectral radius. Given the class G of all graphs with
N nodes and L links, which graph in this class has the lowest, respectively, highest
spectral radius? The first question is answered in Theorem 14. Surprisingly, the
second problem of finding the connected graph with the largest spectral radius in
that class G turns out to be difficult.

Theorem 14 Among all graphs G with N nodes and L links, the regular graph has
the lowest spectral radius.

Proof: We give two proofs. (a) Let A be the adjacency matrix of a regular
graph and consider, with the definition (3.101),
A=A + Akj — Ail
which is the adjacency matrix of the graph, constructed from the regular graph

by adding the link (k,j) and removing the link (i,1). After applying the Rayleigh
inequality (art. 251), we obtain

T
WO

where we have used u” (Akj - flz—l) u = 0, which follows from (3.102) and the fact
that u is the eigenvector belonging to the largest eigenvalue of the adjacency matrix
A of a regular graph (Theorem 8). The argument also shows that any construction
leading from A to A by adding and removing m links from a regular graph maintains
the inequality Ay (ﬁ) > A1 (A), because u” (Zm {flk] — Azl}) u=0.

(b) Theorem 14 follows directly from the inequality (3.66), because Var[D] = 0
for a regular graph and equality in (3.66) is only reached for a regular graph. J

We now discuss the second problem. Among all graphs G with NV nodes and L
links, Rowlinson (1988) proved that the graph with largest spectral radius consists
of a clique and a node adjacent to at least one node of the clique, possibly all, and
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a certain number of isolated nodes. Thus, when N and L is fixed, there is only
one such graph that maximizes the spectral radius. However, when we require, in
addition, that the graph must be connected, the problem becomes more difficult as
outlined by Simi¢ et al. (2010). The general subclass of connected graphs in G that
maximizes the spectral radius are nested split graphs. The set of nodes in a split
graph can be divided into a coclique and a clique (art. 92) with some cross links
joining a node from the coclique to a node in the clique. Simi¢ et al. (2010) draw
the structure of a connected nested split graph and they provide a set of lower and
upper bounds for the spectral radius of nested split graphs.

90. A link joining two disjoint graphs. The graphs Gy and G5 are disjoint graphs
implying that the nodal set A of G; and N, of Gy are disjoint sets. Let n = |N]
and m = |N|. Consider the graph G that is created after connecting the disjoint
graphs G; and G2 by one link. The link [ = ¢ ~ j that connects the separate
graphs G1 and G5 is the link between nodes i € A7 and j € N3. The corresponding
adjacency matrix of the graph G is

T
(AGl)’ﬂXn (eiej )n><’m

T
(eie,jr)an (AGZ)me

where the nodal set A; is numbered from 1 to n and the set Ao from n + 1 to
n + m and where e; is an n x 1 basic vector and e; is an m x 1 basic vector. The
n X m matrix eie]T has zero elements, except for the element on row 7 and column
Jj that equals 1. This matrix can be written as a Kronecker product (art. 286) as

T _ T
;€5 fei®ej.

Ag =

Theorem 15 (Heilbronner) The characteristic polynomial ca. (\) of the ad-
jacency matriz Ag of the graph G consisting of two disjoint graphs G, and Go
connected by a link between the nodes i € Gy and j € Go is

CAq ()\) = det (AG — )\I)
=det (Ag, — Al)det (Ag, — AI) — det (Ag,\qiy — AI) det (Ag,\ 3 — AI)
(3.104)
Theorem 15 appears in Cvetkovi¢ et al. (1995, Section 2.3) and is attributed to
Heilbronner (1953). We give our own proof and show below that generalizations to

graphs that connect two disjoint graphs by two and more links are not obvious to
derive.

Proof: The characteristic polynomial of G is
(eieT

(AGl - AI)an J )nxm
(ejelr)an (AG2 - )\I)mX’m

Invoking the Schur complement (A.57) yields

det (Ag — AI) =

det (Ag — M) = det (Ag, — AI) det (AG2 — M —e;el (Ag, —AD) el )
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3.9 Adding or removing nodes or links 97

For any n X n matrix Y, it holds that eje;fFYeie;fF = yiieje?, which equals the zero
matrix, except that the j-th diagonal element is y;;. Thus,
T _ det (AGl\{i} — )\I) ool

J det (Ag, —AI) 77
where we have used (A.52) and where G\ {i} represents the graph G from which
node ¢ and all incident links are removed. Hence,

ejel (Ag, — A\ eiel = (Ag, — A eje

det (AGl\{i} — /\I) el
det (Ag, — )\I) J

J

det (Ag — M) = det (Ag, — ) det (AG2 — A -

(3.105)
and

det (Agp\giy = M) o det (Ag,\(iy — M)
A T = diag [ A A . A A
+ det (Ag, — M) €5€; 1ag | A A, A det (Ag, — NI) Ay )

Using the column addition property of the determinant (A.32) in art. 209, we can
write the last determinant in (3.105) as

det (Ag i — A
R = det (AG2/\I et (Ag\(1 )eje,T>

det (A, — AI) 2%

det (Ag\ g1y — A
= det (Ag, — M) + det (AGWU_O_diag ()\ t (Ao )A>>

det (Ag, — M)

det (AGl\{i} - )\[)
det (A(;'1 — /\I)

so that (3.105) reduces to (3.104). O

= det (Ag, — M) —

det (Agz\ g5y — M)

For the special case where the graph G2 = {j} is a single node connected to node
iin G1, (3.104) reduces to

CAg (A) = —Xdet (AG\{j} — )\I) — det (AG\{z',j} — )\I) (3.106)

which can be computed directly by expanding det (Ag — AI) in cofactors along row
i using Theorem 59. Formula (3.106) is useful for graphs with degree 1 nodes (like
node j here), in particular, in trees as shown in Section 6.4 for the path graph Py.

If the link (4, j) is absent, then the last sum in (3.104) is absent as well and (3.104)
reduces to the well-known case of the characteristic polynomial of two disjoint
graphs (art. 116). The largest eigenvalue of two disjoint graphs is A1 (G1 + G2) =
max (A1 (G1), A1 (G2)), where G = G; + Gy is the direct sum of two graphs
G1 (N1, L1) and G5 (N3, L2) where G (N, £) satisfies NN = N1UN3 and £ = L1ULs.
By the Interlacing Theorem 71, we know that A; (G1) > A\ (G1\{i}) and A\ (G2) >
A1 (G2\{j}), so that the largest zero of the second polynomial in (3.104) obeys

A (G + Gayggy) = max (A (Gryiy) s M (Gayggy)) < max (A (G1), A (G2))

The zeros of the characteristic polynomial cy4,, (A) lie at the intersections of
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det (Ag, — AI)det (Ag, — AI) and det (Ag,\ iy — M) det (Ag,\ (53 — AI). Since the
eigenvalues of Ag,\(;) interlace those of Ag,, the zeros of Ag are, in general, dif-
ferent from either of the zeros of the polynomials in (3.104). The sign of ca, (A)
evaluated at A = A (G1 + G) equals (—1)""™~' which is minus the sign of the sec-
ond polynomial for A — co. The sign of the first polynomial for A — oo is (—=1)" ",
which shows that the largest eigenvalue A; (G) is larger than A\ (G1 + G2). The
adjacency matrix that represents the single link between node ¢ and j equals
eief +ejel’, whose largest eigenvalue is A\ (eiejT + e;jel’) = 1. Lemma 7 shows that
A1 (G) < A (G1 4+ G3) + 1. In conclusion, the largest eigenvalue of G is bounded
by

A1 (G1 + Gg) <A\ (G) <X\ (Gl + Gg) +1 (3107)
91. Two links joining two disjoint graphs. Only the addition of one link between

the disjoint graphs G; and Gs leads to a simple expression as (3.104). Indeed,
consider the addition of an additional link (k,[) between G; and Gs. Then,

Ag = (AGI)nan (eief + ekelT)nXm
(eie? + ekelT)an (AG2)m><m
and the Schur complement (A.57) indicates that
det (Ag — AI) T T —-1 T T
m = det (AGz — M — (ejei + elek) (AGl - )\I) (61'6]» + €€ ))
Since

(ejez-T + elekT,) Y (ez—e]T + ek.elT) = yiiejejr + ykkelelT + yikejelT + ykielef
and invoking the structure of the inverse of a matrix (art. 262), we need to interpret
i+ det (AGl\rowi \col; )‘I)
det (Ag, — AI)
The adjacency matrix Ag,\ row; \ col; 1S DOt symmetric anymore and represents a
graph where the out-degree links of node ¢ and the in-degree links of node j are

removed. A node is only removed if all its in- and out-degree links are removed.
Thus,

(Ag, =AD" = (-1)

R* = — (ejef +eief) (Ag, — M)~ (eie] + exel)

_ _det (AGl\{i} — )\I) T det (AGl\{k} — )\I) el
det (Ag, — AI) 9 det (Ag, — M)

1 i+k det (AGl\rowi \ colp, — /\]) T

eje

— (=) det (Ag, — \I) 4
e det (Ag\ rows \col, — M

_ (_1)Z+k € ( Gl\ Ic\ 11 >ele,‘

det (Ag, — AI) J

Since the matrices ejel and ele? contain off-diagonal elements, the matrix R*
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has four non-zero elements on rows and columns with the same indices j and I.
Moreover, as A\ yow, \ col; = (A\ row; \Colk)T for a symmetric matrix A and det A =
det (AT), we find that det (Agl\rowi\colk — )\I) = det (AGl\mwk \col; — /\I) and
that R* is a symmetric matrix, with non-zero elements
_ det (Ag,\ iy — M)

det (Ag, — M)
7det (AGl\{k} — /\I)

det (AGl — )\I)
i+k det (AGl\rowi \ colp, — >\I)

det (Ag, — AI)

When writing the matrix R* as a row of column vectors,

* _
Ry =

* o
Rll*

R;z = R?j =—(-1)

R:[Tl Tj 7] T’m]

all vectors 7; are zero, except for 7; and r; that both contain two non-zero elements
on row j and row [.

Using the column addition property of the determinant (A.32) in art. 209, we
obtain

det (A, — AT+ R*) = det (A, — AI) + det (AG2 _ )\I|,,.j)
+det (Ag, — A],,) + det (AGz - mw)

where in the matrix Ag, — AI|
and AG2 — /\I|

+,» the [-th column is replaced by the vector 7

., has column j and I replaced by the vector r; and the vector
VRLA)

7, respectively. Expanding the determinant det (AG2 — A |Tj) in cofactors of the
j-th column yields

det (A(;2 — /\I|Tj) = R}‘j det (AGz\{j} — )\])+(_1)j+l RZ';. det (AGQ\rowl \col; — )\I)
and, similarly,
det (AG2 — >\I|”) = RZ} det (AGQ\{I} — )\I)—i-(—l)j—H ;l det (AGQ\rowj \col; — )\I)

Expanding det (AG2 — Al |T,j m) first in cofactors of the j-th column gives

det (AGQ — )\I|Tj’”) = R}kj det (AGz\{j} — )\I’Tl)
+ (—1)j+l RZZ det (AGg\rowl \col; — )\I|”)

The determinant det (AGQ\{J-} — A ’m) contains a single element on the [-th row

and column so that det (AGQ\{J-} — )\I|T’) = R}, det (AGZ\{J-J} — )\I) and, similarly,
taking into account the sign due to size reduction,

det (AGg\rowl \ col; — >\I|”) = (_1>j+lil R;l det (AG2\{j,l} — )\I)
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Collecting all pieces in det (Ag — M) = det (Ag, — AI)det (Ag, — AT + R*) and
using det (AG2\ row; \ col; — /\]) = det (AGQ\mwj \col; — )\I) yields

det (Ag — M) = det (A, — M) det (Ag, — \)
— det (Ag,\ i) — AI) det (Ag,\ (3 — M)
— det (Ag,\ky — M) det (Ag,\ 1y — M)
9 (—1)HHRH gt (AG\ rowi \ coty — M) det (Agon row; \ coly — M)
| det (AGl\{k} —AI)det (Ag,\ iy —A) —det? (Ag\ row, \ cot, — )
det (A, — M)

x det (AGQ\{j,l} — )\I)

Symmetry in Ag — we can repeat the analysis with G; and G2 interchanged by
(A.59) — requires that

s = det (AGl\{i,k} — /\I)

et (Agy iy — M) det (Ag iy — M) — (det (Agy rowi\ o, — M)
B det (Ag, — AI)

(3.108)

The identity (3.108) can be used to compute the characteristic polynomial ¢4, ()
of a graph when the characteristic polynomials ca, (,, (A); Cagy 1y (), Cag iy (V)
and det (Acl\ row; \ coly — AL ) are easier to determine, due to the flexibility to choose
an arbitrary pair of different nodes ¢ and k of G. In fact, (3.108) is a special case
of (A.51) for symmetric matrices, which in turn is a special case of Jacobi’s famous
Theorem 61 in art. 214. Invoking identity (3.108), we finally arrive at

Theorem 16 The characteristic polynomial ca. (A) of the adjacency matriz Ag of
the graph G consisting of two disjoint graphs G1 and Go connected by two different
links (i,7) and (k,1), where the nodes i,k € Gy and j,1 € G, is given by

det (Ag — M) = det (Ag, — M) det (Ag, — \I)
— det (AGI\{Z»} — )\I) det (AGQ\{j} — /\I)
— det (Ag,\(ky — M) det (Ag,\ gy — M)
—2(=1) det (A, rows \ coty — M) det (Agy\ row; \ coly — M)
+ det (Ag\(iny — M) det (A, g — M) (3.109)

The method can be generalized to any number of links between two disjoint
graphs, although the resulting expression will be prohibitively complex. If i = k,
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then (3.108) shows that det (Ag,\{ixy — AI) =0 and (3.109) reduces to

det (Ag — AI) = det (Ag, — M) det (Ag, — AI) — det (AGl\{'i} — )\I)
X {det (AG2\{j} — )\I) + det (AGQ\{Z} — )\I)

+2(=1)7" det (A, vow, \eots — AT) }

If i = k and j =, then (3.109) reduces to Heilbronner’s formula (3.104).

3.10 Additional properties

92. C(Cliques and cocliques. A clique of size m in a graph G with N > m nodes is
a set of m pairwise adjacent nodes. Only when m = N or the clique is a disjoint
subgraph of G, the clique is a complete graph and each node has degree m — 1.
A coclique, the complement of a clique, is a set of pairwise non-adjacent nodes.
The clique number w is the size of the largest clique in G, while the independence
number is the size of the largest coclique.

Suppose that G has a coclique of size c. We can always relabel the nodes such that
the nodes belonging to that coclique possess the first ¢ labels. The corresponding
adjacency matrix A has the form

Ocxe NFCX(Nfc)

A (3.110)

| Flvooxe Fiv-oxv-o

Since the principal matrix O.x. has ¢ eigenvalues equal to zero, the Interlacing
Theorem 71 shows that, for 1 < j <,

AN—ctj (A) S0 <A (A)

Hence, the adjacency matrix A has at least ¢ non-negative and N —c+1 non-positive
eigenvalues. The converse is that the number ny = {j : A; (4) > 0} of non-negative
eigenvalues of A provides an upper bound for the independence number. Also,
the number n_ = {j: \; (4) <0} of non-positive eigenvalues of A bounds the
independence number by N —n_.

Only for the complete graph Ky, where ¢ = 1 in (3.110), there is only one
positive eigenvalue. If one link (e.g. between node 1 and 2) in the complete graph
is removed, the coclique has size ¢ = 2, and two eigenvalues are non-negative.
Consequently, the second largest eigenvalue Ay in any graph apart from Ky is at
least equal to zero. Another argument is that, apart from the complete graph,
any graph possesses the star K 2 as a subgraph, whose adjacency eigenvalues are
computed in Section 6.7. It follows then again from the Interlacing Theorem 71
that )\2 2 0.

Similarly, if G has a clique of size ¢, then, after relabeling, the adjacency matrix
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102 Eigenvalues of the adjacency matriz

has the form

A= (‘] I)cxc NGCX(N—C)

G(N c)Xe G(N_C)X(N_C)
1)[0—1]

Since the principal matrix (J — I),,.. has an eigenvalue ¢ — 1 and (—

values by (6.1), the Interlacing Theorem 71 shows that,

eigen-

AN—c+1(4) <c—=1< A (4)
and, for 2 < j <,
AN—c+j (A) < =1 < A; (A)
The bounds for the clique are less elegant than those for the coclique.

93. The clique number. The determination of the clique number in a given graph G
is an NP-complete problem. Motzkin and Straus (1965) found a remarkable result
that specifies the clique number w in a graph G:

Theorem 17 (Motzkin-Straus) For a given graph G, the mazimum value of
F(x) = Y0 m-a+ subject to ul'z = 27:1 zj=1landz; >0 for1 <j <N

equals % (1 - %)

The Motzkin-Straus Theorem 17 can be reformulated (art. 44) as

1
(1 - —) = maxz’ Ax (3.111)
w zeS
where the simplex S contains all vectors z that lie in the hyperplane u”2z = 1 and

possess non-negative components.
Before concentrating on the proof of Motzkin-Straus Theorem 17, we consider
the Lagrangian

L(zy,2e,...,2n) = F(z1,22,...,2N5) — & ij,1

where

F(:cl,xg,...,xN):%ZZa”meJ -z Ax—le T+

i=1 j=1 lec

The partial derivative with respect to xj obeys, since a;; = 0 and A = AT,

oL  OF N
8_:%78_;1%757;%"%75

=0or —gF =
N Tl | o
T=T T=x

A necessary condition for the extremal vector z* is that BBTL
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¢ for all 1 < k < N. When the constraint is the usual normalization 7« = 1, the
corresponding Lagrangian

N
L(.Z‘l,xg,.-.,l']\/'):F(afl,l'g,-.-,l‘]\/')_f Zl‘?—l
j=1

has the partial derivatives 2& = 2E _

S = Dar 28xy, = vazl ag;w; —28x, and the extremal
vector z* needs to obey the eigenvalue equation Az* = 2&zx*. The Lagrangian
method thus provides another demonstration that equality in the Rayleigh inequal-

ities (art. 251) is achieved for the eigenvectors.

Proof of the Motzkin-Straus Theorem 17: We denote the maximal vector
by z*, so that max,es F (z) = F (z*) = F (23,23, ..., 2%)-

a) Lower bound. We can always relabel nodes in G, so that 1,2,...,¢ = w are
the nodes in the largest clique of G (art. 92). After choosing z; = % for1<j<ec
and z; =0 for c+1 <1 < N, we obtain

1
T e
(N—c)xc (N=c)x(N—c)
1
T2
T

Further, using J = uv.u’,

1 T \2 T A—c 1 1
F =5 (W)’ —ulu) =55 25(1—2)

With this choice of the vector z, we arrive with ¢ = w at the lower bound

F(a*) > % (“i)

b) Upper bound. The remainder of the proof consists of demonstrating F (z) <
% (1 - l) for any vector x € S. First, if G is the complete graph Ky, then

w

(") e (T = Dexee tiexa

F(z) = %:rT (J-—1Dz= % ((azTu)2 - a:Tx)

The constraint shows that z7u = 1, while the Cauchy-Schwarz inequality (A.12)
indicates that % < 2T so that

ria-f-<3(1-3)-3(-2)

and the theorem holds for the complete graph K. Second, for a graph with N =1
1

node, F'(x) = 0 as well as % (1 — ;), because w = 1. Suppose now that for a graph

G’ with N — 1 nodes, it holds that

L1 1
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104 Eigenvalues of the adjacency matriz

which is the induction hypothesis. There are now two cases to consider for a graph
G with N nodes. If z{, lies on the boundary of the simplex S, then one of the
coordinates z7 = 0 and F (z;) = F (2§, ), where G’ is obtained from G by deleting
node j. By the induction hypothesis, the theorem holds for G’ so that

- ri -3 (1-2) <3(-3)

which illustrates that the theorem holds in general when z* lies on the boundary
of S. It remains to focus on the case where z{, lies in the interior of S and G is
different from the complete graph Kpy. After evaluating the Taylor series (A.8)
in art. 200 at the vector w = «* + h for h = (—y,y,0,...,0), which obeys the
constraint uTw = 1 and w; > 0 provided y < z7,

OF

F(iﬂik—yvl';—l—y,,{L‘}k\,):F(l'T,x%,x}k\[)—ya—xl

L OF
y@xg

r=x* r=x*

and taking into account the Lagrangian condition %

I le=x

=¢ foralll <j <N,
we find, for any 0 <y < z7,

F(z] —y,25+y,...,TN) :F(mi‘,xs,...,x}‘v)—alng

Since G # K, there is always a link absent, which we label to be between node 1
and 2 such that a12 = 0 and, for any 0 <y < 7,

F(lﬁlkfyvx;+ya7$*N):F(x>{am§aam*N)EF(wg)

which illustrates that there is a continuum of optimal vectors w* as long as 0 <
y <z}, where y = 0 is the trivial case. Finally, if y = x7, then

which means that the maximum is attained for the subgraph G’ by deleting node 1
from G. By the induction hypothesis, the theorem holds for G’ and the induction
principle then states that the theorem holds for G as well. O

For vectors = normalized as 7z = 1, the Rayleigh inequalities (art. 251) demon-

strate that 7 Az < A1, with equality only if = 1 is the (normalized) eigenvector
of A belonging to the spectral radius A\;. When choosing x = u%; in (3.111), Wilf
(1986) found that

1 T4
(1 - —> = maxaTAp > AT _ AL (3.112)
w €S (uTml) wy

T

where wy; = u’ 7 is the fundamental weight (3.2) in art. 43. Hence, the clique
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number is lower bounded by

w? N
w>— >
’wl—)q N—>\1

(3.113)

where the last inequality stems from w; = v’z; < VN (art. 68). Alternatively,
Wilf’s bound leads to a lower bound for the fundamental weight w,, besides wy > 1
(art. 43 and art. 68),

max (1, - A1 > <w; <VN (3.114)

_1
w

The Motzkin-Straus Theorem 17 for x = & yields

1 uTAu 2L
I=0)>2 ~w

If a connected graph G does not possess triangles, then w = 2, so that L <

N2
s

which provides another proof of Mantel’s Theorem 7.

94. Equitable partitions. If w is an equitable partition of the connected graph G,
then the adjacency matrix A and the corresponding quotient matrix A™ have the
same spectral radius.

Indeed, art. 37 shows that the eigenvalues of the quotient matrix A™ correspond-
ing to an equitable partition are a subset of the eigenvalues of the symmetric matrix
A. Moreover, any eigenvector v of A™ belonging to eigenvalue \ is transformed to
an eigenvector Sv with the same eigenvalue A\. The Perron-Frobenius Theorem 75
states that the eigenvector belonging to \; is the only one with non-negative com-
ponents. Both A and A™ are non-negative matrices. Since the characteristic matrix
S of the partition (art. 36) has non-negative elements, both the eigenvector v and
Sv have non-negative vector components and, thus, must belong to the spectral
radius.

In the terminology of art. 263, the eigenvalues of the quotient matrix A™ corre-
sponding to an equitable partition interlace tightly the eigenvalues of the symmetric
matrix A and of any permuted matrix , A. An interesting consequence is Hoffman’s
coclique bound for regular graphs:

Theorem 18 (Hoffman) Consider a reqular graph G with degree r and smallest

adjacency eigenvalue Ay, then the size ¢ of the coclique obeys ¢ < Tr‘li‘v‘N.

Proof: The quotient matrix A™ in art. 37 of the adjacency matrix A in (3.110)
is
0 r

cr cr
N—c N—c

AT =
r

Ccr

and A™ has eigenvalues r and —4=. The Interlacing Theorem 71 indicates that

AN < ==, from which the bound ¢ < /\)‘Jf]\’ivr follows. O
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106 Eigenvalues of the adjacency matriz

Any node in G outside a Hoffman coclique is adjacent to 7~ nodes of the

Hoffman coclique.

95. Spectral radius of a tree.

Theorem 19 The spectral radius A1 of any tree with maximum degree dmax > 1 is

smaller than 2+/dmax — 1.

There are several proofs of Theorem 19 for which we refer to Stevanovi¢ (2015,
Sec. 3.3.1). The upper bound (3.81) for any connected graph (art. 80) shows that,
in any tree, Ay < /N — 1 with equality for the star K; y_;.

96. Figenvalue equation of = = X o X. Art. 274 relates the diagonal elements
of a symmetric matrix to its eigenvalues. Since a;; = 0, the matrix equation
(A.179) becomes ZA = 0, where the eigenvalue vector A = (A1, Az,..., An) and
where the non-negative, asymmetric matrix = in (A.178) consists of column vectors
& = ((xk)f,(xk)g,...,(xk)?\,), where (2); is the j-th component of the k-th
eigenvector of A belonging to ;. Geometrically, =X = 0 means that the vector
A is orthogonal to all N vectors {; and, in order to have a non-zero solution for
A, it must hold that det = = 0. This means that the matrix = corresponding to
the adjacency matrix A has a zero eigenvalue, while all other eigenvalues of = lie,
as shown in art. 274, within the unit circle and the largest eigenvalue is precisely
equal to 1. The eigenvector u of the asymmetric = belonging to eigenvalue 1 and the
eigenvector \ of = belonging to eigenvalue 0 are orthogonal, i.e. u”\ = 0, agreeing
with trace(A) = Zszl Ar = 0 in (3.5). In addition, detZ = 0 implies that the
set of vectors £1,&s, ..., &N is linearly dependent and rank(Z) < N. Since the k-th

row of = equals the vector z; = ((m)? , (.132)3 e (a:N)f), the property detZ =
det Z7 = 0 also implies that the vectors z1, 2, ..., zy are linearly dependent.
Since (AQ)],J. = d,;, another instance of (A.180) gives

EN =d
where the vector A2 = (A}, A3,...,A%) and d = (dy,da, . .., dy) is the degree vector.

97. Co-eigenvector graphs. If the orthogonal matrix X of the adjacency matrix A
is known and if rank(Z) = N — 1, then art. 96 shows that the eigenvalue equation
ZX = 0 has a unique eigenvector A. In that case, the orthogonal matrix X specifies
the symmetric adjacency matrix A = XAX7 of the graph G uniquely, where A =
diag(\).

If rank(E) = N —m < N — 1, then the kernel space of = has dimension m
and contains, apart from the eigenvalue vector A, precisely m — 1 other linearly
independent vectors. Those m — 1 other independent vectors may generate one or
more eigenvalue vectors \, for which A, = XA, X7 is an adjacency matrix of a
graph G,,. All such graphs G, are called co-eigenvector graphs of the graph G.

98. The adjacency matriz and Hadamard products. Since A is a symmetric 0-1
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matrix, the Hadamard product Ao A = A and, more general, the k-fold Hadamard
product A¥® = A. If there would exist a relation between the eigenvalues of the
matrix M; o M5 in terms of the eigenvalues of the matrix M; and Ms, then the
eigenvalues of the adjacency matrix are invariant under the Hadamard product in
the sense that A; (Ako) = \; (A) for any integer k> 1and 1 < j < N.

An alternative derivation of 2A\% = d uses the Hadamard product A = Ao A and
its spectral decomposition (A.140) in art. 256,

N N
A= Z Z MeAm (T © T (xg © xm)T

k=1m=1

Since (xy o xm)T u = 2F 2 = Ok due to orthogonality (A.124) of the eigenvectors
of a symmetric matrix (art. 248) and with d = Aw in (2.4), it holds that

d= ZZAk)\ (T 0 Tpn) O, = Z)\k T © Tp)

k=1m=1

which is written in matrix form as X2 = d.
We generalize the above method and compute A = A3° as
N N N

Qaijj = (A30>ij = Z Z AN Am ((xk o xm) (xk © xm)T)z_j (xlxlT)ij
k

=11=1 m=1

Using (azkwlT)” (vmy(f).

,

N
Qij = (Ago)ij = Z

k=11

[

= ((zk 0 U (wy 0 yq)T) ~in art. 256 yields
ij

N
Z AN Am ((xk 0L 0 Ty) (T ox 0 mm)T)

m=1

] =

ij

Il
N

The procedure is readily generalized to A = A° resulting in the k-fold Hadamard
product decomposition

N N N k
A: H)\mj (mmloxnuo...ommk)(xn“o$m2o...ox7nk)
j=1

mi=1mqo=1 mp=1

(3.115)
With ((xml O Ty O+ 0 Timy,) (Tmy © Ty © -7+ O xmk)T) = Hf:l (Tm,.); (xmr)j’
ij

we verify that the corresponding (i, j)-th element is

N N N r
az’j:Z ZZ (H}WT T, ); ;pmr> (Z)\ (@), xm)> =ay;

mi=1mo=1 mr=1 \r=1 m=1

Right-multiplication of both sides in (3.115) by the all-one vector u presents, for
any integer k > 1, the degree vector

N

N N N
d= E E e E E H >\m] xm] (xml O Ty © + 0 ajmk)

mi1=1mqo=1 mrp=1 1j=1
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as a linear combination of the vectors Z,,, 0Ty, 0+ -0 &y, and generalizes d = Z\?,
corresponding to k = 2, in art. 96. However, only for £ = 2, the orthogonality of
the eigenvectors applies and leads to an elegant result.

3.11 The stochastic matrix P =A"1A4

99. The stochastic matrix P = A~'A, introduced in art. 8, characterizes a random
walk on a graph. A discrete-time random walk is a stochastic process that starts
at a node ¢ at discrete time k = 0, moves in the next step k¥ = 1 to node j with
probability p;; = d%aij, then at £ = 2 to node [ with probability p;; and so continues,
at each discrete time k, to jump to nodes in the graph. A random walk is described
by a finite Markov chain that is time-reversible!". If s[k] denotes the 1 x N state
vector at discrete time &k with component s; [k] = Pr [Xy = i], where X}, € N is the
random variable of the random walk at discrete time k, then the Markov governing
equation is s [k + 1] = s[k] P as derived in Van Mieghem (2014, Section 9.2), where
the transition probability is p;; = Pr[X,11 = j| X = i]. Random walks on graphs
have many applications in different fields (see, e.g., the survey by Lovész (1993)
and the relation with electric networks by Doyle and Snell (1984)); perhaps the
most important application is randomly searching or sampling.

The combination of Markov theory and algebra leads to interesting properties of
P = A~'A. In a connected graph, the left-eigenvector of P belonging to eigenvalue
A =1 is the steady-state vector 7 (which is a 1 x N row vector, see Van Mieghem
(2014)). The corresponding right-eigenvector is the all-one vector u. These eigen-
vectors obey the eigenvalue equations P77 = 77 and Pu = u and the orthogo-
nality relation 7u =1 (art. 237). If d = (di,da, ..., dy) is the degree vector, then

d

the basic law for the degree (2.5) is rewritten as (E)Tu = 1. The steady-state

eigenvector 7 of an aperiodic, irreducible Markov chain is unique (Van Mieghem,
2014, Chapter 9) such that the equations mu = 1 and (%)Tu = 1 imply that the

. T
steady-state vector is m = (%) or

d;

=L A1
5T (3.116)

T

In general, the transition probability matrix P is not symmetric, but, after a simi-
larity transform H = A2 a symmetric matrix R = AY/2PA~Y2 = A=1/2AA-1/?
is obtained whose eigenvalues are the same as those of P (art. 239). The powerful
property (art. 247) of symmetric matrices shows that all eigenvalues are real and
that R = Udiag(Ag) U, where the columns of the orthogonal matrix U consist of
the normalized eigenvectors v; that obey vavk = J;i. Explicitly written in terms

10 Alternatively, a time-reversible Markov chain can be viewed as a random walk on an undirected
graph.
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3.11 The stochastic matric P = A~1A 109

of these eigenvectors gives (art. 254)

N
R= Z )\k (P) vkv,{
k=1

where, with the Perron-Frobenius Theorem 75, the real eigenvalues are ordered as
1=X(P)>X(P) > > Ay (P) > —1. If we exclude bipartite graphs, where
the set of nodes is N’ = N7 UN; with N1N N5 = @ and where each link connects
a node in Aj and in N3, and reducible or periodic Markov chains (art. 268), then
M (P)] < 1, for k > 1. Art. 239 shows that the similarity transform H = A!/2

maps the steady state vector 7 into v; = H~'7” and, with (3.116),
Afl/Q,ﬂ_T
[N S

v =

or
\(d] d4
vy = 2L =\/5F =V
: N NG 2 2L :
> i1 ( 2L >

Finally, since P = A~"/2RA'/2  the spectral decomposition of the transition prob-
ability matrix of a random walk on a graph with adjacency matrix A is

N N
P ="M (P) A V20l AV2 = um + 37 A, (P) A7 200 A2
k=1 k=2

The n-step transition probability is, with (vkvg)ij = v Uk; and (3.116),

d  [d; &
n _ J J n . .
Pi' = _2L + _dz kE:Q )‘k (P) U]”’Ukj

The convergence rate towards the unique steady state 7; in a connected graph, also
coined the “mixing rate”, can be estimated from

a. d; &
125 =gl <\ D0 R P el | <[5 D I (P
i k=2 " k=2

Denoting by & = max (|A2 (P)|,|An (P)]) < 1 and by &y the largest element of the
reduced set {|Ar (P)|}\ {£} with 2 < k < N, we obtain

, d;
By —m| < /e v oigp)

Hence, the smaller £ or, equivalently, the larger the spectral gap [A1 (P)|—|A\2 (P)] >
1 — &, the faster the random walk converges to its steady-state.

100. The stochastic matrix P = A~!A can also be expressed in terms of the
Laplacian Q@ = A — A as P = I — A~'Q. This shows that the eigenvector x
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of P with corresponding eigenvalue A (P) is the same as that of the normalized
Laplacian A™*Q belonging to t = 1 — A(P) and 0 < i < 2. Hence, the spectral
gap of a stochastic matrix P also equals the second smallest eigenvalue of normalized
Laplacian A™'Q. Moreover, trace(P) = trace(A) = 0 and trace(P?) = trace(R?)
implies, with (R),, = —=—, that

i \/_

Thus,

which shows that chvzl A (P) < Zf\; d%_, where + Zfil d%- = E [4] is the har-
monic mean of the degree set {d;}, <i<n- Only for regular graphs where d; = r,

the double sum disappears and Zgzl A2 (P)= L. Since

N

NP =>(1-Mn(271Q =1+Z =) <14+ (N =1)(1 - f2)?
k=1 k=1

we find, for regular graphs, an upper bound for the spectral gap 1o < 1— i N—.l)‘

d -1 2 2
fip <1—2¥mex —(q_Z)4 =2
= max ( p> P

for a graph with diameter p > 4 is derived by Nilli (1991) using Rayleigh’s equation

A tight upper bound

(4.21) and some ingenuity.
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4
Eigenvalues of the Laplacian ()

In the sequel, we denote the eigenvalues and eigenvectors of the N x N Laplacian
matrix @) by pu and z, respectively, to distinguish them from the eigenvalues A and
eigenvectors = of the adjacency matrix A. The Laplacian eigenvalue equation is
Qzr, = pgzk, where the eigenvalue uy belongs to the eigenvector zy.

4.1 General properties

101. The Laplacian matrix is defined by @ = BBT = A — A in (2.6) in art. 4,
from which symmetry Q = Q7 follows. Eigenvalues and eigenvectors of a symmetric
matrix are real (art. 247). The spectral decomposition of any symmetric matrix in
art. 254 shows that
N
Q = Zdiag (n) Z7 = Z,ukzkzg (4.1)
k=1

where Z is the orthogonal matrix with the Laplacian eigenvectors z1, 23, ... 2y in
its columns, obeying ZZ7 = ZTZ = I. We order the N real eigenvalues of the
Laplacian @ as py < py-1 < -+ < pp. Similarly as for the adjacency matrix

(art. 45), none of the eigenvalues of the Laplacian @ is a fraction of the form £

B
where a and b are coprime and b > 1. A Laplacian eigenvalue can only be an integer
or an irrational number.

102. The quadratic form in art. 199,
27Qr =2"BB Tz = HBTng >0 (4.2)

is positive semidefinite, which implies that all eigenvalues of the Laplacian @) are
non-negative and at least one is zero because det () = 0 as shown in art. 4. Thus,
the zero eigenvalue is the smallest eigenvalue of (). Since Qu = 0, because the row
sum Zivzl gir, = 0 for each row 1 < ¢ < N, is an instance of the eigenvalue equation
(1.3), the eigenvector belonging to the zero eigenvalue is the all-one vector w.

The [-th component of (BTx)l = x; —x;, where the link [ = ¢ — j connects node

111
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112 Eigenvalues of the Laplacian @

i and j, starting at node ¢ = [T and ending at node j = [, allows us to write

2T Qu = HBTl‘Hi = Z (2 — - ) (4.3)

lel

If a link [ contains a weight w;, then @ = Bdiag(w;) BT, as shown in art. 14 for
an electrical resistor network where w; = r%’ and the quadratic form

2T Qu = Zwl (z1+ — 21— )° (4.4)

leL

generalizes (4.3). In terms of the basic vectors {ex}, <, the [-th component is
(BTz), = xpr —x- = (eg+ — e ) wand (z+ — x-)° = 2T (ejr — - )(ep+ — e~ ) .
Substitution into (4.4) produces the link decomposition of the weighted Laplacian

Q= wiler —e-) (e —e-)" (4.5)
leL
which complements the eigenvalue decomposition (4.1) as a sum over the nodes.
Since (4.3) holds for any real vector x, we may consider the component z,, as a
real function f (n) acting on a node n. With z;+ = f(I7) and ;- = f(I7), we
alternatively have
1\ 2
@f. 1) = (F17)=107))
leL
where (g, f) = >_,cn f (2) g (z) denotes the scalar product in art. 350 of two real

functions f and g belonging to L? (N\), the space of all real functions on the set of
nodes N for which the norm || f||> = (f, f) exists.

103. Since @ is a symmetric matrix, all eigenvectors z1, 23, ..., zny are orthogonal
(art. 247). Art. 102 shows that the eigenvector zy = T“N belonging to the smallest
eigenvalue pn = 0, such that, forall 1 <j < N —1,

N
usz = Z (%), =0
k=1
Thus, the sum of all vector components of a Laplacian eigenvector, different from
ZN = LN, is zero. When these eigenvector components are ranked in increasing
order, then the smallest and largest eigenvector component of z; # ﬁ, with
1 < j < N —1, have a different sign.
If x in (4.3) is the normalized eigenvector z; belonging to eigenvalue iy, satisfying
szzm = Okm, then the k-th largest Laplacian eigenvalue py = z,{sz,

e =Y () — (2),-)? (4.6)
leL

equals the sum over all links in the graph of the square differences of the eigenvector
components over the end points of a link . The weighted analogue fix, = z{ Q2
in (4.4) suggests a physical interpretation of a Laplacian eigenvalue as an energy,
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4.1 General properties 113

e.g. the energy dissipated in a resistor network (art. 14), and a similar energy
interpretation also follows from the Schrodinger equation in Section 1.3. Since the
eigenvector 2z is normalized, any component lies within the interval (zy); € (—1,1)
and the square ((zx);+ — (21),- )?> € (0,2). The eigenvalue i, in (4.6) increases from
zero at k = N, because all components (zN)j = LN are the same, to 1 at k =1,
where the eigenvalue components at both sides of a link have largest probability
to be of different sign. This observation means that (z), as a function f; (n) of
the node n oscillates, on average over all links of the graph, increasingly heavily
with decreasing index k. Thus, as well-known in Fourier analysis of functions and
illustrated by the spectrum of the circulant matrix in Section 6.2.1, the higher the
eigenfrequency (eigenvalue), the more the corresponding eigenfunction (eigenvector)
oscillates and (4.6) is the discrete analogue of that spectral property.

104. Gerschgorin’s Theorem 65 states that each eigenvalue u of the Laplacian
@ = A — A lies in an interval |p — d;| < d; around a degree d;-value. Hence,

which shows that Gerschgorin’s Theorem 65, alternatively to art. 101, demonstrates
that @ is positive semidefinite. Moreover, p; < 2dpax. This same bound (4.20) is
also found by considering the non-negative matrix dy.xI — @ whose largest eigen-
value is dpax and smallest eigenvalue is dyax — 41 The Perron-Frobenius Theorem
75 states that the positive largest eigenvalue is larger than the absolute value of
any other one eigenvalue, whence dpmax > |dmax — p1|. This inequality is essentially
the same as Gerschgorin’s.

A tighter bound than 1 < 2dp,.x for the largest Laplacian eigenvalue py follows
from Gerschgorin’s Theorem 65 applied to the matrix BT B, that possesses the same
non-zero eigenvalues as ) by Lemma 11 in art. 284. Indeed, it follows from art. 25
that (BTB)jj = Zi:;l bl2j = 2, while the radius r; in Gerschgorin’s Theorem 65
equals

L L L
r= Z |BTB|lk = Z ’BTB’lk —2< Z (RTR)lk —-2= (RTRU)l -2
k=1;k#1 k=1 k=1

where the matrix R is the unsigned incidence matrix. Art. 26 shows for a link [
with end nodes It and [~ that (RT Ru); = dj+ + d;- so that

< d di-) < 2dpax
u1_1}1€a£<(l++z)_ a

Hence, the spectral radius g1 of the Laplacian @ is smaller than or equal to the
largest sum of the nodal degrees on both sides of a link in the graph G. This
inequality appears in Anderson and Morley (1985), but is proved differently, based
on the Perron-Frobenius Theorem 75.

105. The definition of Q = A — A shows that trace(Q) = trace(A) = SN 1 dj.

J=
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114 Eigenvalues of the Laplacian @

The basic law of the degree (2.3) and the general trace formula (A.99) combine to

N
> e =2L (4.7)
k=1

Hence, the average value of a Laplacian eigenvalue equals the average degree,
B[4 = B[D].

Corollary 4 or (A.181) shows that any partial sum with 1 < j < N ordered
eigenvalues satisfies

J J
> day <Y m (48)
k=1 k=1
where d ;) denotes the k-th largest degree in the graph, i.e., dyy < d(ny_1) <+ <
d(l)
106. Applying the general trace relation (A.118) to the Laplacian @ yields

N
Z pi = trace (QQ)
k=1

The square equals Q2 = (A — A)* = A2 + A2 — (AA + (AA)T) and trace(Q?)
Zszl dz+ trace(A?). Using (A.118) and (3.7) leads to

N

N
Sup=> di+2L (4.9)
k=1

k=1

Stochastically', when considering the eigenvalue p and the degree D in a graph as
a random variable, (4.9) translates with E [u] = E [D] in art. 105 to

Var [u] = Var [D] + E [D]

where the variance Var[X] = E [X?] — (B [X ])? for any random variable X. Since
E[D] > 0 (excluding graphs without links), the variability of the Laplacian eigen-
values is larger than that of the degree D in the graph, i.e. Var[u] > Var[D].
Furthermore, since Var[D] > 0 and E [u] = E'[D] from (4.7), we find for any graph
the inequality E [p] < Var[u], which is written in terms of the Laplacian eigenvalues
as

(Z /%) SN (pk — ) (4.10)
k=1 k=1

Equality in (4.10) and E [p] =Var[u] only holds for a regular graph with Var[D] = 0.
Hence, similarly as for the adjacency eigenvalues in art. 72, we conclude that the

I Bach of the values p1,p2,...,u N is interpreted as a realization (outcome) of the random
variable g and the mean of the m-th powers is computed as E [p™] = % Zivzl T
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4.1 General properties 115

2
Laplacian spectrum can determine whether a graph is regular if (Zi\;l Mk) =

NZ,ivzl (13 — ) holds.
Applying Corollary 4 yields, for 1 < j < N,

J J J
Dodhy + Y dw <> mi (4.11)
k=1 k=1 k=1
where d(;) denotes the k-th largest degree in the graph. Hence, for j = 1, we find
the bound
dmax (dmax +1) < 1 (4.12)

107. The case for the third powers in (A.118) needs the computation of the trace
of

Q*=(A—A)
=A% - AZA - AAA + AA? — AN? + AANA + AN — A3

Since a;; = 0, all matrices to first power in A have a vanishing trace. By computing
the product of the matrices, we find that

=

trace (AA?) = trace (AAA) = trace (A%A) = Z dz
k=1

Hence,

2
2

where trace(A4?%) = Zévzl Zi\;l Zfil AjLaKIa;; = Zi\;l A? and (3.8) shows that
trace (A3) equals six times the number of triangles in the graph, which we denote
by Ag. Combining all yields

N N

N
S oub=> di+3) di —6ac (4.13)
k=1 k=1 k=1

For the complete graph, we have that trace(A4*) = N (N — 1) (N — 2) and Zi\;l d? =
N (N - 1)2 such that, for N > 3,
N
3 di —6A¢=3N(N-1)(3-N)<0
k=1
while for a tree, where Ag = 0, the last two sums are 3 Z,ivzl d? —6Ag > 0. Thus,

the sum of the third powers of the Laplacian eigenvalues can be lower and higher
than the corresponding sum of the degrees.
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116 Eigenvalues of the Laplacian @

Stochastically, the third centered moment, which quantifies the skewness of the
distribution, follows from (4.13), (4.9) and E [u] = E'[D] as

(Y Vel
B |(u=Elu)’] = B|(D - E[D)?] + 8Var[D] - 23&
The third centered moment of the Laplacian eigenvalue p differs from that of the

degree D by an amount 3 (Var [D] — 2Ac).

108. Due to the non-commutativity of the matrices A and A, it is difficult to
extend the computation

trace (Q™) = trace (A — A)™)
to the case m > 3, because the trace operator only preserves cyclic permutations
trace (ABC') = trace (BCA) = trace (CAB) (4.14)
but not arbitrary permutations,
trace (ABC') # trace (ACB) # trace (BAC)

In general, we can expand the matrix product as

2™ —1m—1
(A+B)™ Z H {eck (J)) A+ (1 —cx (4)) B} (4.15)

7=0 k=0
where ¢ (n) = 3 (1 - (-1 L21’“J) is the k-binary digit of the number of n =
EO%Q " % (n) 2% and the matrix product operator on the right-hand side is non-
commutative. If A and B commute, we readily verify that (4.15) reduces to the
binomial formula (A + B)™ = Y"1 (7)) A™~*B%. For m = 4, formula (4.15) yields

(A+ B)* = B' + AB® + BAB? + A’B?> + B’AB + ABAB + BA’>B + A®B
+ B*A+ AB?*A+ BABA + A’BA + B?A? + ABA? + BA® + A*

from which we find

trace (A + B)* = trace (B*) + 4 trace (B*A) + 4 trace (B*A?) + 4 trace (BA?)
+ 2 trace (BABA) + trace (A4)
where trace(BABA) # trace(B?A?) causes a deviation from the binomial formula.

Only in regular graphs, A and A commute and the binomial expansion yields,
for any integer m,

trace (A — A)™) = Z (7:) (_1)m7k trace (AkAm—k)

k=0
Since A*F = diag(d’f, ds, ... dk ), we then have

N
trace AkAm k Z A’fAm—k)” - Zdée (Am—k)”

=1
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4.1 General properties 117

and

m N
m m m—Fk m—
trace (Q ):Z<k> (-1) de (A k)”
k=0 =1
Taking into account that A; = 0 and using (A.118), the m-th moment of the
Laplacian eigenvalues of a regular graph with degree r are expressed in terms of the
number of closed walks W; in (3.52) in art. 65 of length j starting and returning

at node | (art. 6), as

kXN:_lMZ" = Nr™ 4+ (g) Nt (=)™ mz:ﬂ (7:) (=) Wi (4.16)

k=0

109. Art. 274 relates the diagonal elements of a symmetric matrix to its eigenvalues
and so provides another relation between the degree d; of node j and the set of
Laplacian eigenvalues 0 = puy < py—1 < -+ < 3. The matrix equation (A.179)
applied to the degree vector d = (dy,ds,...,dy) becomes

d=CZEgu (4.17)
where the eigenvalue vector u = (u1, 2, .., ty) and where the stochastic matrix
EZ¢o in (A.178) consists of column vectors &; = ((zl)? , (22)3,,(21\;)3), where

(21); is the j-th component of the k-th eigenvector of @ belonging to ju.
Analogously to the adjacency matrix in art. 96, also for the Laplacian the deter-
minant is singular, det Zg = 0. This follows from orthogonality (A.124) of eigen-
vectors and the fact that zy = LNu, because the sum of the first N —1 columns in
Eq is a multiple of the last column. Hence, beside the largest eigenvalue at 1, ¢
and Eg have also a zero eigenvalue. The obvious consequence is that Zgu = d in
(4.17) cannot be inverted. However, when deleting the last column, corresponding
to uy = 0, and the last row, the resulting matrix EQ can be inverted and the
eigenvalues i1, t2, - .., iy—1 can be determined if the degree vector d is known.

110. If G is regular, where all nodes have the same degree, d; = rforall1 < j < N,
then the eigenvalues of the Laplacian ) and the adjacency matrix A are directly
connected because det (Q — pl) =det ((r — u) I — A). Thus, for all 1 <j < N,

i (@) =71 — Ant1-j (4) (4.18)

Since py (Q) = 0, we find again as in art. 55 that the largest eigenvalue of the
adjacency matrix in a regular graph equals \; (A) = 7.
From (4.18), the difference for all 1 < j < N,

ti-1(Q) = 11 (@) = Ant1-5 (A) = Anya—; (4)

shows that the spectral gap (art. 82) in a regular graph equals A; (4) — A2 (4) =
1n—1 (Q). This relation might suggest that the spectral gap in any graph is related
to the second smallest eigenvalue pyn_; of the Laplacian, whose properties are
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118 Eigenvalues of the Laplacian @

further explored in Section 4.3. However, Section 8.5.2 exhibits a graph with large
spectral gap and small py_1.

111. A direct application of Lemma 7 to A = A — @ yields, for any eigenvalue
1<k<N,

drnin — pi (Q) < Ak (A) < dimax — o (Q)
and
Ay — M (A) < e (Q) < dgy — An (4)
Equality is only reached when dpin = dmax = r as in a regular graph (art. 110).

112. The Laplacian spectrum of the complement G¢ of G. From the adjacency
matrix A¢ = J — I — A of the complement G¢ of a graph G (art. 1), the Laplacian
of the complement G is immediate as

Q =A-A=(N-1DI-A—J+I+A

=NI-J-Q
Let z1,22,...,2y = u denote the eigenvectors of () belonging to the eigenvalues
11, 2, .., and py = 0, respectively. The eigenvalues of J are N and [O]N_1 as

shown in (6.1). Since Ju = Nu and Jz; =0 for 1 < j < N —1 as demonstrated in
art. 125, we observe that Q°u = 0 and

Q% = (N — ) zj

Hence, the set of eigenvectors of @ and of the complement Q¢ are the same, while
the ordered eigenvalues, for 1 < j < N — 1, are

1 (Q°) =N — un—; (Q) (4.19)

Art. 101 and alternatively art. 104 indicate that all eigenvalues of a Laplacian
matrix are non-negative, hence p; (Q¢) > 0 for all 1 < j < N such that (4.19)
implies that N — pn_; (Q) > 0. Thus, all Laplacian eigenvalues must lie in the
interval [0, N]. Hence, the upper bound for u; in art. 104 needs to be refined to

p1 < min (N, max (di+ + dl—)> (4.20)
€

Several other upper bounds for y; are discussed in Brankov et al. (2006).

113. Art. 103 shows that the eigenvector z of @ belonging to puy_1 must satisfy
2Tu = 0. By requiring this additional constraint and choosing the scaling of the
eigenvector such that 27z = 1, Rayleigh’s principle (art. 251) applied to the second
smallest eigenvalue of the Laplacian results in

UN-1 = min =T Qux (4.21)

lz)|2=1 and zTu=0
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4.1 General properties 119

Applied to the complement Q¢ and with (4.19), we obtain

pn-1(Q°) =N — 1 (Q) = min iUTch

HT”%:l and xTu=0
Since :L'TQCx =T (NI —-J - Q) r=N — iETQm as follows from art. 112, we have

N -1 (Q) = min (N — xTQx) =N -— max 2T Qux

lz|I3=1 and &7 u=0 [z]2=1 and &Tu=0

Hence, the largest eigenvalue of ) obeys

m(Q) = max "Qr =N — py_1(Q°)

lz)|2=1 and 2T u=0

114. Threshold graphs. A weighted threshold graph on N nodes, coded by the
vector Wr = (wa,ws,...,wx), is constructed, starting from node 1, by sequen-
tially adding a node n € {2,3,..., N}, which is connected to all previous nodes
1,2,...,n — 1 with link weight w,. Hence, the weighted degree (art. 5) of node
nis d, = (n—1)w, + Z;‘V:n-u w;. An example of a threshold graph is the uni-
form degree graph in Section 6.11. If all link weights w,, € {0,1}, then Hammer
and Kelmans (1996) prove that the Laplacian eigenvalues of a threshold graph are
integers (which follows from iterates of the cone of a graph in art. 166) and that
the Laplacian eigenvalue vector p is almost the same as the ordered degree vector
d of the threshold graph.

4.1.1 FEigenvalues and connectivity

115. Disconnectivity is a special case of the reducibility of a matrix (art. 268) and
expresses that there is no walk nor path between two nodes in a different component
or cluster. A component of a graph G is a largest or maximally connected subgraph
of G.

Theorem 20 The graph G is connected if and only if uy—_1 > 0.

Proof: The theorem is a consequence of the Perron-Frobenius Theorem 75 for a
non-negative, irreducible matrix. Indeed, consider the non-negative matrix al — @,
where a > dpax. If G is connected, then al — @ is irreducible and the Perron-
Frobenius Theorem 75 states that the largest eigenvalue r of al — @ is positive
and simple, the corresponding eigenvector z, has positive components and satis-
fies Qx, = (o —r)x,. Since eigenvectors of a symmetric matrix are orthogonal
(art. 247) while vz, > 0, the eigenvector x, must be proportional to the all-one
vector u, and thus uy = o —r = 0. Since there is only one such eigenvector z,
and since the eigenvalue r exceeds all others, all other eigenvalues of () must exceed
zero, otherwise I — (Q would have a larger eigenvalue than 7. O
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120 Eigenvalues of the Laplacian @

116. A graph G has k components or clusters, if there exists a relabeling of the
nodes such that the adjacency matrix has the structure

A O ... O
A O A
0 oo Ag

where the square submatrix A,, is the adjacency matrix of the connected component
m. The corresponding Laplacian is

Q1 O ... O
g-| 0 @
0) Qs

Using (A.57) indicates that

k
det (Q — pl) = ] det (Qu — 1)
m=1

Since each block matrix @, is a Laplacian, whose row sum is zero and det @,, = 0,
the characteristic polynomial det (Q — pl) has at least a k-fold zero eigenvalue. If
each block matrix @),, is irreducible, i.e., the m-th cluster is connected, Theorem
20 shows that @, has only one zero eigenvalue. Hence, we have proved:

Theorem 21 The multiplicity of the smallest eigenvalue u = 0 of the Laplacian @
18 equal to the number of components in the graph G.

If @ has only one zero eigenvalue with corresponding eigenvector u (art. 101),
then the graph is connected; it has only one component. Theorem 21 as well as
Theorem 20 also imply that, if the second smallest eigenvalue pn—_1 of @ is zero,
the graph G is disconnected.

The following Corollary for the maximum possible eigenvalue ;13 = N appeared
in Anderson and Morley (1985):

Corollary 1 If u3 = N in a graph G on N nodes, then G is connected.

Proof: If 41 = N, then the Laplacian complement formula (4.19) indicates that
un—1(Q° = N — 1 (Q) = 0. Theorem 20 applied to the complement graph G°
then states that G¢ is disconnected. Theorem 3 then implies that (G¢)° = G is
connected. O

The converse of Corollary 1 is not true, as can be verified for the path graph,
whose Laplacian spectra is given in (6.15).
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4.1 General properties 121

4.1.2 The number of spanning trees and the Laplacian @)

117. Matriz Tree Theorem. The coefficients {cy (Q)}o<y<y of the characteristic
polynomial of the Laplacian

N

cq (x) =det (Q —xI) = > e (Q) 2" (4.22)

k=0

can be expressed in terms of sums over minors (see art. 235). Apart from cy =
(=1)™, we apply (A.96) for 0 <m < N to the Laplacian Q = BBT

()N "oy (Q) = Zminorm (BBT) = Zdet ((BBT)m)

all all

where (Q)

same set of N —m rows and columns and where the sum is of over all (ﬁ ) = ( NJX m)
ways in which N —m rows can be deleted among the N rows. Since @ = BBT and
Gij = Zézl birbjk, deleting a row 4 in () translates to deleting row ¢ in B. Thus,
(B),, is an m x L submatrix of B in which the same N —m rows in B as in Q) are
deleted.

We apply (A.70) in the Binet-Cauchy Theorem 62 to det (BBT)m7

= (BBT)m denotes an m x m submatrix of ) obtained by deleting the

m

2
L blktl U blkm

det(BBT)m:i EL: S

k1=1ko=k1+1 km=km_1+1 bmk1 - bmkm

which illustrates that det (BBT)m is non-zero and (—1)*c; (Q) is non-negative
integer. Hence, the characteristic polynomial cg (—x) = ZQLO (—1)’C cx (Q) % has
all non-zero integer coeflicients and cg (—z) > 0 for real z > 0. Descartes’ rule of
signs in Theorem 87 shows that cq (—z) has no positive real zeros, i.e. cg () has
only non-negative zeros, in agreement with the positive semidefinite nature of the
Laplacian (art. 101).

Poincaré’s Theorem 2 in art. 12 tells us that the square of the above determinant
in the multiple sum is either zero or one. It remains to investigate for which set
(k1,ka, ..., km) the determinant is non-zero, hence, of rank m. Art. 12 shows that,
only if the subgraph formed by the m links (columns in the matrix of the above
determinant) is a spanning tree, the determinant is non-zero.

To conclude, det (BBT)m equals the total number of trees with m links that can
be formed in the graph on m + 1 given nodes. The coefficient (—1)V~"cy_,, (Q)
then counts all these spanning trees with m links over all possible ways of deleting
N — m nodes in the graph. In summary, we have demonstrated the famous Matrix
Tree Theorem:

Theorem 22 (Matrix Tree Theorem) In a graph G with N nodes, the coefficient
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122 Eigenvalues of the Laplacian @

(=1D)N=™cn 0 (Q) of the characteristic polynomial of the Laplacian Q equals the
number of all spanning trees with m links in all subgraphs of G.

Clearly, ¢o (Q) = det @ = 0 because there does not exist a tree with N links that
spans the N nodes in a graph. The other extreme is, by convention, (—1)Vey (Q) =
1. Further, (—1)N*1 en—-1(Q) = 2L, equals the number of spanning trees in G
each consisting of one link, which equals twice the number of links in G. In-
deed, det (BBT), = Zﬁlzl |b1x,| is the number of neighbors of node 1; taking
the sum over all possible ways to delete one row results in (—1)" ' ey_q (Q) =
Zi]\il Zi:l |bik; |, which is the sum of the absolute value of all elements in B. This
result also follows from the general relation (A.99) for the second highest degree
coeflicient in any polynomial and art. 105. When m = N — 1, art. 12 shows that
det (BBT) N_1 €quals the number of all spanning trees with N — 1 links in the
graph G. Since there are precisely N ways to remove one node (i.e. one row in B),
the coefficient —c; (Q) counts N times all trees spanning all N nodes in G.

The characteristic polynomial of the Laplacian of the example graph in Fig. 2.1
with NV = 6 nodes and L = 9 links is

co (v) = 2% — 182° 4+ 1252* — 41623 + 6592% — 3962

_ T-V13 -5 A 7+V6 7T+V14
=t|z-—F— ||z~ —5— (x —4) g —— |-

The example graph has 18 spanning trees with one link, 125 consisting of two links,
, and 66 spanning trees with five links (396 = 6 x 66) spanning all N = 6 nodes.

118. Matriz Tree Theorem for a weighed Laplacian Q Art. 14 has introduced
the weighted Laplacian Q BBT, with V x L weighted incidence matrix B =

Bdlag(\/?), in the context of electrical resistor networks, where the link weight
ij

w;ij = % is the inverse of the resistance r;; = 7; of the link [ between node ¢ and
: -

j. The weighted incidence matrix B has the same zero elements as the incidence
matrix B, but the non-zero elements are different.
Similar to art. 117 for det (BBT)m, the Binet-Cauchy Theorem 62 becomes

2
bik, -+ bk,

m

L L
et (BET) =32 3 - > I+
1=1 ko=k1+ km=km-1+1j= 1 ki b’rnkl s bmkm

Poincaré’s Theorem 2 in art. 12 then shows that the remaining determinant is only
non-zero when the corresponding m X m submatrix corresponds to a tree T with m
links spanning m + 1 nodes in the graph (art. 11). If the set of all spanning trees
on k nodes is denoted by 7 (k) with cardinality |7 (k:)|, then

det (EET) = Z H —

m
TeT (m+1) leT
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4.1 General properties 123

In contrast to the common, additive definition ), , w; of the weight in art. 7, we
define here the weight of a tree T as the product of the weight w; = T—ll of each link

[ in the tree T,
w(T) = H w;
leT

and define the “weighted” complexity as

EQ)= Y wm (123
TET(N)
If all link weights w; = 1, then the complexity & (G) = |7 (N)| of an unweighted
graph G equals the total number of spanning trees on all NV nodes of G.

119. There is another Matrix Tree Theorem variant for the coefficients of the
characteristic polynomial of @ due to Kelmans and Chelnokov (1974) based on the
notion of a forest. A forest is a collection of trees. A k-forest, denoted by F}, is a
forest consisting of £ components and a 1-forest is a tree. A component j is a set
N of nodes of G and two different components possess different nodes such that
N; NN, = @ for each component j and ! of a k-forest. A k-spanning forest of G is
a k-forest whose union of components consists of all nodes of G, thus Ulef\/} =N,
and a k-spanning forest of G has N — k links. Two k-spanning forests are different
if they have different sets of links.

Theorem 23 (Matrix Tree Theorem according to Kelmans) In a graph G
with N nodes, the coefficient (—1)™cp, (Q) of the characteristic polynomial of the
Laplacian Q equals ¢y (Q) =0 for m =0 and, for 1 <m < N,
(_1)mcm (Q) = Z Y (Fm>
all Fp,
where the sum is over all possible m-spanning forests of the graph G with precisely

m components and where v (Fy) = Hle ny with ng = |NV|.

Kelmans’ Theorem 23 is used in art. 127. Besides —c1 (Q) = NE&(G) and
(-1 en_1(Q) = 2L, Kelmans and Chelnokov (1974) also give?

N
- 1
()" Pen2(Q =22~ L5
k=1

N N
(~1)N P en_3(Q) = §L3 —20* = (L—1)) di+ % > di—2a¢
k=1 k=1
where Ag is the number of triangles in G. Invoking the Newton identities in
art. 294, we may verify that these expressions for the coefficients ¢ (@) are con-
sistent with (4.9) and (4.13).

2 The first result is presented without proof, but a reference to the Russian PhD thesis of Kelmans
is given, while the second result is obtained by using special types of graphs.
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124 Eigenvalues of the Laplacian @

120. The sequence (—1)" ¢ (Q) > 0 is unimodal. The Matrix Tree Theorem
22 indicates that the characteristic polynomial cq (—z) has positive coefficients
(—1)k ¢k (@) > 0. The symmetric Laplacian matrix ) has real eigenvalues (art. 247).
Thus, the zeros of ¢ () are real. Art. 328 shows that the sequence of the coeffi-
cients (—l)k ¢k (@) > 0is unimodal with a plateau of two points or a peak. Newton’s
Theorem 97 in art. 327 provides the inequality, for 1 <k < N — 1,

k+1N-k+1

— (4.24)

¢ (Q) = er1 (Q) -1 (Q)
For example, for k = N — 1, we find with ¢y (Q) = (=1)" and en_1 (Q) =
(=1)N "' 2L that

2L2N_1

> ()" en-2 (Q)

121. Spacing between Laplacian eigenvalues. If all the eigenvalues of the Laplacian
@ are distinct, then Mahler’s lower bound (B.71) in art. 344 for their spacing is

min — Uy
1<k<j<N H ! Nngrl (CQ (—1))N_1

where cg (—1) = det (Q + I) in (4.22), while Lupas’ upper bound (B.72) in art. 345
is

. 3 Var [u]
sl < z = A
| min o e — pi] <2 NT o1

where Var[u] =Var[D] + E[D] in art. 106.

4.1.8 The complexity

122. Asdefined in art. 118, the complezity £ (G) of the graph G equals the number
of all possible spanning trees in the graph. Let J denote the all-one matrix with
(J);;=1land J = u.ul, then

adiQ = £(G) J (4.25)

where X! = ;Zg))(( Indeed, if rank(Q) < N — 1, then every cofactor of Q is
zero, thus adj@ = 0 and (4.25) shows that £ (G) = 0 implying that the graph
is disconnected. If rank(Q) = N — 1, then QadjQ = Idet@ = 0 which means
that each column vector of adj@ is orthogonal to the N — 1 dimensional space
spanned by the row vectors of Q. Thus, each column vector of adj@ belongs to
the null-space or kernel of (), which is one-dimensional and spanned by wu, since
Qu = 0. Hence, each column vector of adj@ is a multiple of the vector u. Since @
is symmetric, so is adj@ and all the multipliers must be equal such that adj@Q = aJ.

Since adj@@ = det ((BBT)N_l), the Matrix Tree Theorem 22 in art. 117 shows
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4.1 General properties 125

that £ (G) equals the total number of trees that span N nodes. Equation (4.25)
demonstrates that all elements of adj@Q are equal to & (G).

Example We apply (4.25) to the complete graph Ky with Laplacian Qg, =
NI —J. It suffices to compute one suitable element of adjQ, for example, (adj@),;,
which is equal to the determinant of the (IV — 1) x (N — 1) principal submatrix of
@ obtained by deleting the first row and column in @,

N -1 -1 . —1
. -1 N-1 ... -1
(adj@),; = det . .
-1 -1 .. N—-1

Adding all rows to the first and subsequently adding this new first row to all other
Tows gives

1 1 1 1 1 ... 1
-1 N-1 ... -1 0 N ... 0

(adjQ),, = det | . . ) =det | . . .| =nNV2
1 -1 ... N-1 00 ... N

Hence, the total number of spanning trees in the complete graph Ky, which is the
largest number of possible spanning trees in any graph with N nodes, equals

§(Ky)=NN—2 (4.26)

which is a famous result of Cayley of which many proofs exist, see, e.g., Lovész
(2003), van Lint and Wilson (1996, Chapter 2) and Van Mieghem (2014, p. 631-
633).

123. Equation (4.25) shows that all N minors My_1 of @ are equal to £ (G).
Application of the general relation (A.96) for the coefficients of the characteristic
polynomial then gives ¢; = —NE(G), as earlier established in art. 117. Using
(A.100) and the fact that uxy = 0 (see art. 101) yields ¢; = —H;-V;ll w;. By
combining both, the total number of spanning trees £ (G) in a connected graph is
expressed in terms of the eigenvalues of the Laplacian () as

N-1
&)=~ [T m (a.27)

124. The complexity of G is also given by

o = det (aJ + Q)

£(G) e (4.28)

for any number o # 0. Indeed, observe that JQ = (JB) BT = 0 since JB = 0 as
follows from J = w.u” and from (2.1) in art. 1. Hence, taking into account that
JQ =0 and J? = N.J, we have

(NI -J)(aJ +Q)=aNJ+NQ —aJ? —JQ = NQ
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126 Eigenvalues of the Laplacian @
and
adj (NI — J) (aJ + Q)) = adj (o] + Q) adj (NI — J) = adj (NQ)

Since Qx, = NI — J and as shown in art. 122, adj(NI — J) = N¥~2J and since
adj(NQ) = NV~1adjQ = NV~ (GQ) J, where we have used (4.25),

adj (aJ + Q) J = NE(G) T
Left-multiplication with aJ + @ finally gives
(] +Q)adj (o + Q) J = aN?¢ (G) J

which proves (4.28) for a # 0, after invoking the definition (A.43) of the inverse

X~ = 24X written as XadjX = det X.

125. Since Qu = 0, we also have that QJ = O and, after taking the transpose,
JTQT = JQ = O. Hence, the Laplacian Q = A — A commutes QJ = JQ with
the all-one matrix J. Art. 55 shows that the adjacency matrix A and the all-one
matrix J only commute if the graph is regular. Since commuting matrices have a
common, not necessarily complete set of eigenvectors on Lemma 13, ) and J have
a common basis of eigenvectors. The all-one vector u is also an eigenvector of J
with eigenvalue A (J) = N. The eigenvalues (6.1) of the N x N rank 1 symmetric

matrix J = w.aul

are N and zero with multiplicity N — 1. If X is the matrix
containing as columns the eigenvectors j, = u, ja, ..., jny of J and XTX = I, then
diag(\x (Q)) = XTQX. However, there are infinitely many sets of basis vectors
that are also eigenvectors of J, but not necessarily of ). Hence, the difficulty lies
in finding X¢ among all those of X ;.

Art. 193 indicates that the matrix Y = I — %J projects any vector onto the
space orthogonal to the vector u. Hence, a set of eigenvectors of J consists of N —1
columns of Y and the vector u. Moreover, the Laplacian of the complete graph Ky
is Qxy = NI —J and the projector matrix ¥ = I — %J = %QKN will reappear in
pseudoinverse Qf of the Laplacian in art. 128.

126. Vice versa, if z; is an eigenvector of ) belonging to px > 0, then it is also an
eigenvector of J, because Jz, = 0 for any zp orthogonal to u. This means that the
eigenvalues of o + @ with a # 0 consist of the eigenvalue alN with eigenvector
u and the set 0 < pj, pj—1,..., 1 where j < N —1. Since un—1 > 0, Theorem
21 shows that the graph is connected. Invoking (A.98), a connected graph satisfies
det (aJ + Q) = aN Hj\;l w; and the complexity via (4.28) leads again to (4.27).

If G, is a regular graph where all nodes have degree r, then art. 110 shows that
Wi =7 — AN+1—;. Substituted in (4.27) yields

N

N-1
§(GT) =N"! H (r_)‘N+1fj) =N"! H (r—2Am)
j=1

m=2
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4.1 General properties 127

The characteristic polynomial ¢4, () of the adjacency matrix of G, equals

N

ca, (@) = (@ —7r) [T (@ = Au)

m=2
from which we deduce that

dca, (x)
dxr

N
(7" - Am) = Ng (GT)

T=r  m=2

127. Since ¢p (Q) = det @ = 0, the characteristic polynomial of the Laplacian is

art. 294) to CQT("L) gives

1l _ e (Q)
‘ a1 (@)

Applying the Newton equations

—~

2

-1

=~
Il

Since all zeros of ZkN:_Ol cr+1 (Q) ¥ for a connected graph are positive and <=L =

cN
—2L (art. 117), art. 294 provides the bound

@ (V- 1)°
C1 (Q) - 2L

Art. 123 shows that ¢ (Q) = —NE&(G), while the Matrix Tree Theorem 22 in
art. 117 indicates that co (Q) equals the number of all spanning trees with N — 2
links in all subgraphs of G that are obtained after deleting any pair of two nodes
in G.

For a tree G = T, we have that £ (G) = 1 and ¢; (Q) = —N, while Kelmans’
Theorem 23 states that

(@)=Y v(F)
all Fy

where the sum is over all possible 2-spanning forests of the graph G with precisely
two components. A 2-spanning forest F5 is constructed from a spanning tree of G
in which one link is deleted such that two disjoint trees 77 on ny = |T1| nodes and
T, with ny = |Tz| nodes are obtained. Now, v (Fy) = ming is also equal to the
number of ways of choosing a node v; in tree 77 (component 1) and a node vy in Ty
(component 2). Since G is a tree, the number of pairs (T1,v1) and (T3, v2) equals
the distance h (v1,v2) in hops between node v; and node vq, because (T1,v;) and
(T3, v2) can only be obtained by deleting one of the links in G on the single path
from vy to vy. Thus,

H@=3 S he =" "Dpp,

2
v1EN voFvi EN
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128 Eigenvalues of the Laplacian @

where Hrp is the hopcount in the tree T'. Hence, the average hopcount in any tree
satisfies

2 =1
EHyp)| = —— — 4.2
= (429)
Mohar (1991) has attributed formula (4.29) to Brendan McKay, who provided me
with the above derivation. Section 5.2 demonstrates, via inequality (5.46), that the

right-hand side of (4.29) is a lower bound for the average hopcount in any graph.

4.2 The pseudoinverse matrix Q! of the weighted Laplacian @

We study the inversion problem of the fundamental relation 2 = Qu in (2.15) of
art. 14 between the N x 1 injected current flow vector = into nodes of the network
and the N x 1 voltage vector v at the nodes, where @ is a weighted Laplacian matrix.
To simplify the notation, we omit the tildes in the eigenvalues and eigenvectors of
@. In fact, the subsequent algebraic manipulations equally hold for the Laplacian
@ and the weighted Laplacian @

128. The pseudoinverse Q. Due to the zero eigenvalue jy = 0 leading to det @ =
0 in art. 101, the matrix equation x = Qv cannot be inverted. We write the spectral
decomposition (4.1) as

-1

Q= L2k 2] JF,UN\/—\/— Zukzkzk

k=1

If the graph G is connected, all eigenvalues py, > 0 of Q for 1 < k < N so that the
N x N symmetric matrix

N-1
= Z i ezl (4.30)
k=1

exists. Furthermore, we verify that @QT = QT@ and invoking the orthogonality of
the eigenvectors z,{zm = Ok yields

N—1N-1 N-1 T

QQT Z Z _Zk Zk; Z’m Zm ZL2 ]{ szzk _ \/Lﬁ%

klml k=1

With Zszl zpzf = ZZT =1 and using the all-one matrix J = u.u”, we arrive at

QQ'=Q'Q=1- iJ (4.31)

Relation (4.31) illustrates that the matrix Q! commutes with the weighted Lapla-
cian Q and that the product QTQ equals the orthogonal projector Y = I — —J
onto the hyperplane through the origin that is orthogonal to the vector w in
art. 125. The matrix Q' is also called the Moore-Penrose pseudoinverse. Since
the vector wu is orthogonal to any other eigenvector, it follows from (4.30) that
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4.2 The pseudoinverse matriz QF of the weighted Laplacian @ 129

Qfu = uTQ' = 0. For any positive real number 3 > 0, the above argument and
~ _ ~ N\T _ _
(4.30) show that Q° = Zszll ,ufzkzg, (Qﬁ) = Zszll ukﬁzkzg = (QT)B and
Q° (QT)B - (QT)B QP =I-LJ. )
Multiplying both sides of the injected current-voltage relation £ = Qu by the
pseudoinverse Q' of the weighted Laplacian @ and using (4.31) yields

T
v=Qx+ %u (4.32)

where the average voltage in the network equals v,, = LN” The solution (4.32),
indeed, coincides physically with the fact that only the potential difference matters
and that a voltage is only determined with respect to a reference. In other words,
we can always choose the voltage reference at will and by choosing v,, = 0, the

solution (4.32) is most close to the standard inversion.

129. We present an alternative expression to (4.30) for the pseudoinverse Q' of
the (possibly weighted) Laplacian Q. Since QTJ = QTu.u” = O because QTu = 0,
we observe for any number « that

(@+ar)Q =1~ %J (4.33)

The N x N matrix @ +aJ = Zi\:ll ukzkz{ + ouu? = Zi\;l ukzkzg, with
here meaning gy = alN and zy = > has an inverse, provided iy # 0 and thus
a # 0, as for any connected graph (art. 126). The general determinant formula

~ ~ -1
(A.98) indicates that det (Q + aJ) =aN Hfj;ll Ui Since the inverse (Q + aJ)
exists for a # 0, the general formula (A.88) shows that

_ _1 N N-1 1
k=1 k=1

Thus, for any non-zero real number «, we obtain from (4.33) an alternative expres-
sion to (4.30) for the pseudoinverse of the weighted Laplacian @,

Q' =(Q+ aJ)_l <I - %J) (4.35)

We can also write (4.35) in terms of the Laplacian Qx, = NI — J of the complete

~ - -1
graph Ky as Qf = N (Q + aJ) QK- Additionally, comparing (4.30) and (4.34)
leads to
1

Q' =(Q+ aJ)_l - —=7 (4.36)

which illustrates that the right-hand side of (4.36) is independent of a # 0, because
(4.30) is.
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130 Eigenvalues of the Laplacian @

The definition (A.44) of the inverse matrix in art. 212, applied to (4.36), shows
that

QT _ ( )Z+J det (Q\rowi\colj +05uN—1-U%_1) B 1
Y det (@ + aJ) aN?

Using the “rank one update” formula (A.65) in art. 219

det (@\rowi\colj + OZUN_l.u%_l) = det [ Q\ ro[lvsﬂ/i\colj —QUN_1 ]
Un_q 1

= det (@\ row i\ Colj) <1+auT (@\ row i\ colj) _1u)

and det (@ + aJ) =aN Hfﬂv:_ll 1y yields

~ ~ ~ -1
QT 1 det (Q\ row 7\ colj) 1 det (Q\ row 7\ colj) u” (Q\row i\ colj) u
ii T N — |+
7aN (- )H_J Hk 1 Mk N (- )H_JNHk 1 Mk

Since the right-hand side must hold for any « # 0, we conclude that
o B 1 Nt
(_1)Z+J det (Q\ row 7\ colj) = ﬁ klill M (437)

which generalizes the complexity £ (G) in (4.27) and art. 124 to weighted Lapla-
cians. Section 8.8 shows that any principal submatrix of a (weighted) Laplacian
is positive definite. Moreover, (4.37) indicates that the removal of any row and
column in the (weighted) Laplacian leads, apart from the factor (—I)H_j , to the
same result, similar as (4.25). With (4.37), we arrive at

~ —1
+ ul (Q\ row 7\ colj) U
Qi; = N2

Again the definition (A.43) of the inverse matrix shows that

(4.38)

T - _ _ ~
o U (a'dJQ\row i\ Colj) U _ éVle ;\;11 ( )k+l det Q\ row(i,k)\ col(j,1)

ij = ~
N2 det (Q\rowi\colj) NHk 1 lj’k

(4.39)

Yet another representation

det l Q\ rowz\ col j 70“;N—1
Ql = (-1 e -
Y aN Hk 1 Pk al?
simplifies most for &« = —1, which bears resemblance with Fiedler’s block inverse

n (5.17). We proceed further in Section 5.1, where the effective resistance of a
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4.2 The pseudoinverse matriz QF of the weighted Laplacian @ 131

(weighted) graph is introduced. The element ij can be expressed in terms of the
effective resistance as shown in (Van Mieghem et al.,, 2017, Appendix B), which

demonstrates that QL > ij for each 7 and j.

Example Consider the weighted adjacency matrix W = b(J — I) of the com-
plete graph K, where b # 0. The corresgonding weighted Laplacian equals @ =
(N=1)bI—-b(J—=I)=b(NI—J)and Qp + aJ =bNI + (o —b) J. Since (4.35)

1

holds for any a # 0, the easiest choice is a = b leading to the inverse (@ +bJ )

ﬁ[. Hence, a pseudoinverse of the weighted Laplacian va = b(NI - J) for the
complete graph Ky follows from (4.35) as

1 1 1 1
T I B A
Q N (I NJ> N7 (NI -1J) N%QKN (4.40)
which is again a weighted Laplacian éb’r = bl (NI — J) of the complete graph Ky
with bf = ngb.

130. Cramer’s method. We solve z = @v by Cramer’s method in art. 220. We
assume that the graph is connected, i.e. puny—1 > 0 by Theorem 21. The rank
of the N x N weighted Laplacian @ is N — 1, because of a vanishing smallest
eigenvalue, py = 0, belonging to the eigenvector u. We recall from art. 14 that
ul'z = uTév = 0, physically meaning that the sum of injected currents in the graph
is zero. We ignore the trivial case x = 0 in which the potential vector v = au and
thus assume that at least two components of x are non-zero. There are basically
two approaches® to determine the N unknowns vy, vs,...,vx: (i) one of the N
equations/rows in x = @v can be replaced by an additional equation as explored
below and (ii) the set is rewritten in N — 1 unknowns in terms of one of them, say
vn. The analysis of (ii) is omitted, because the resulting expressions for vy are less
general as those in (i).

We replace an arbitrary equation or row in the set @v = x by a new linear

. N
equation cfv =13

GV, W i v . Wi . W
=1 CjVjs here c is a real vector. Following art. 128, we choose

¢ = 5 so that vy, = c’'v, which we can choose at will. Without loss of generality,
we first replace the N-th equation in Qv = x by uTv = Nv,, and the resulting set

of linear equations becomes
Q\ row N v = T\ row N
u Nuvgy

where é\ row N 18 the (N — 1) x N matrix obtained from @ by removing row N.
Clearly, the potential vy = Nv,y — Zjvz_ll v;. Cramer’s solution (A.68) in art. 220

3 These two approaches are similar to computing the adjoint matrix Q (A\) = ca (A) (A — A)~ 1,
whose columns are eigenvectors (see art. 230).
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132 Eigenvalues of the Laplacian @

yields, for 1 < j < N,

_ 7
Q\ row N det (@row N:u)

and? det (@row N:u) = N det (@\ row N\ COUV) is the same factor, appearing in each

vj for 1 < j < N and equal to Hiv;ll ur, = NE(G) by (4.37), where & (G) in (4.27)
is the complexity in a weighted graph. The numerator 7; in v; is

E]V11 c Z]Vl;j—l x1 q~1;j+1 te Z]VIN
g1 ce 52;3'—1 T2 q~2;j+1 te @N
n; = . .
q~N71;1 (?N71;j71 TN-1 q~N71;j+1 q~N71;N
1 1 Nuvay 1 1

We use the basic rules for determinants in art. 209. After® adding all columns in
74, except for column j, to the last one and using Zfil g1 = 0, the last column
becomes —g;;, except for the last row, which is N — 1. After changing the sign in
the last row and interchanging column j and N, we obtain

qu Tt q~1;j T qi;N—1 T
1 g1 Tt q~2;j T G2;N—1 T2
Vg = ——— : : : : 4.41
J Nf (G) _ . _ . B . . ( )
gN—1;1 gN—1;5 gN-1;N-1 ITN-1
1 e 1=N ... 1 Nugy

1 det Q\ row(N)\ col(N) T\ row N
NE(G) 8? Nuyy
where the (IV — 1) x 1 vector s; has all ones, except for component (s;); =1—N.
Only the element (s;); for v; differs from (sy,),, for each vy, when both j < N and
m < N. '

4 Add all columns in @row N=v to the last column, which becomes zero due to Qu = 0, except
the last row element equals N. Expand the determinant to the last row (Theorem 59).

After adding all rows to the last one, using Zg;ll Q1 = —qrN and ZkN;ll T = —x N because
ulz =0, the (N, j)-th element is Nvay — xn, while (N, )-th element, with I # 7, is 1 — gn.
Splitting the resulting determinant along the last row into two determinants leads to a determi-
nant equal to 7; and another det (Qcoljzm), that must be zero. Expanding det (@Colj:m> =0

5

along column j gives Zszl (=1)**7 2, det (Q\ row(k)\ggl(j)) = 0, which is only possible for

any vector x obeying zTu = 0, if (—1)k+j det (@\ row(k)\col(j)> is a constant. This demon-
strates (4.37) again.
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4.2 The pseudoinverse matriz QF of the weighted Laplacian @ 133

We apply twice Theorem 59: first, we expand the determinant in the numerator
of v; in (4.41) with respect to column N and then to row N. We arrive, for
1<j<N,at

N—1 N—-1

ke ) det (Q\row(k N)\ col(l, N)) (4.42)
k=1 =1

Vj = Vay —

which gives the solution of z = @U and equals v; = (@Tx) ~if v4y = 0. Since
J

N forl=1j
(si); —(s5), = —N forl=i
0 ifl#{ij)

the potential difference between node ¢ and j is

(= 1) {(—1)idet (é\row(k,N)\col(i,N)) —(—1)det (@\row(k,N)\couj,N))}

e £(G)
(4.43)

We will compute the effective resistance w;; from (4.43) in Section 5.6, from which
a triangle closure equation (5.37) for effective resistances is deduced.

131. The pseudoinverse Q' is not always a Laplacian. The pseudoinverse Q' of the
weighted Laplacian C~2 is not necessary a Laplacian, because off-diagonal elements of
QT can be positive, in contrast to the Laplacian @ We demonstrate the observation
by an example of the path graph®, whose explicit pseudoinverse Q' is computed in
Section 6.4.3. From (6.19), gy (m) = gn (—m) and (6.18), it follows that

1 2N —1
(Qpath);z—_,'_l Nb {Z — N + (N — 1) 5 }

Thus, (Qpath)z i1 (Qpath>z+1 ;> 0if

2N —1
6

i —iN + (N -1) >0

The discriminant of this quadratic equation is —% (N 26N+ 2), which is negative
if N > 5, implying that there is no intersection with the real axis and all solutions
in ¢ are positive. Hence, from N = 6 on, the pseudoinverse QT of the path graph
has positive elements in the band one below until one above the diagonal.

We give a physical argument. Consider an electrical resistor network (art. 14)
where a current I. is injected in node j, while all other nodes are sinks, which leads
to a current vector « = I, (e; — &u). The potential vector v = QTz in (4.32) then
equals for a unit current I. = 1 ampere

v=Qf (e] — —) QTe] = col; Qf

6 A similar verification holds for the cycle graph.
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134 Eigenvalues of the Laplacian @

and
_ Nt
=Q;; >0 (4.44)

is the largest positive potential (art. 129) in col; QT, because Q;j > QL ; for any
1 < k < N as shown in Corollary 2. It is possible for a node ¢ # j that its potential
= QZT]» > 0 if the resistance r;; is small.

132. The diagonal elements of the pseudoinverse Q. Similarly as for the Lapla-
cian @ and the weighted Laplacian Q, the positive diagonal elements Q[ of the
pseudoinverse Q' play an important role, as shown in Section 5.1. From (4.30), a
diagonal element of the pseudoinverse Q' equals

1

—~ 1
m m E -
e k

Using the doubly stochastic matrix =g for the Laplacian, defined in (A.178) and
in art. 109, the vector with the diagonal elements { = (QL, Q;Q, . ,QR,N> is

1
(=Z=¢g— 4.45
e (4.45)
1_ (1 2 1 . .
where the vector = (E’ T e 0). Relation (4.45), which corresponds to

that of the degree vector d = Zgu in (4.17), implies (see art. 275) that the vector

i magjorizes the vector ¢, while the vector u majorizes the degree vector d.

4.3 Second smallest eigenvalue of the Laplacian @

The second smallest eigenvalue py_1 of the Laplacian has many interesting prop-
erties and was coined by Fiedler (1973), the algebraic connectivity of a graph. After
Fiedler’s seminal paper of 1973, results on the algebraic connectivity up to 2006 are
reviewed by de Abreu (2007). In this section, mainly general bounds are presented,
whereas art. 144 provides the major motivation to focus in depth on the algebraic
connectivity pny—1. Bounds on p—_1 in trees are given in Section 6.8.4.

4.3.1 Upper bounds for un_1

133. The all-one eigenvector u of the Laplacian @ belongs (art. 350) to the smallest
eigenvalue puy = 0. In the terminology of art. 101 and art. 350, any constant
function f (z) = c is an eigenfunction of ux. Rayleigh’s theorem (art. 251) states
that un—1 (f, f) < (Qf, f) for any function f orthogonal to a constant function ¢
and that the minimizer, for which equality holds, is the eigenfunction belonging to
the second smallest eigenvalue px_1. With art. 101, we obtain

iy < Ziec £ - ()
M= Yen 2(0)

(4.46)
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4.8 Second smallest eigenvalue of the Laplacian Q 135

for any f that satisfies (f,c) = ¢}, cnr f(n) = 0. The latter condition is always
fulfilled if we choose f(z) = g(z) — % . ,cn 9 (n), where the last term can be

interpreted as an average of g over all nodes of the graph. In addition, for such a
choice, (f(IT) = f (7)) =(g(*) —g(l7)) such that

Sier (g (1) — g (1))
Snen 82 (1) = % (Cuen g ()’

for any non-constant function g.

For example, choose the vector or eigenfunction f as f(u) =1, f (v) = —1 and
f(n) = 0 for any node n # v # u. This vector is orthogonal to the constant,
(f,c) = 0. Inequality (4.46) then gives

pN-1 <

dy +d,
2

A sharper bound using the same method is obtained in (4.51).

Invoking the Koebe-Andreev-Thurston Theorem” of planar graphs and (4.46),
Spielman and Teng (2007) shows that the algebraic connectivity of a planar graph
with maximum degree dyax is bounded by puy_1 < Bd”%.

pN-1 <

134. Fiedler’s expressions for pn—1. There is an alternative representation for
(f, f) or for 272 = ||z||§ due to Fiedler. From the special case of Cauchy’s identity
(A.71) as explored in art. 68,

ZZ zi — zj) :ZZZ —QZzzZz]JrZZz =2Nz 272(u z)

=1 j=1 i=1 j=1 = =1 j=1

we find that

. | NN

because any Laplacian eigenvector z that does not belong to puy = 0 is orthogonal
to u. If f = zy_1 is the eigenfunction of @ belonging to uny_1, equality holds in
(4.46) and introducing the above, we arrive at Fiedler’s expression for the algebraic
connectivity

OIN e (FUT) = (7))
Swen Sven (F (@) = f (v))°

Fiedler’s formula (4.47) can also be written in terms of the adjacency matrix
elements as

UN—-1 = (447)

(4.48)

UN_1 = NZUEN Zve/\/ Ay (f( ) f(vg)

Zue]\f ZUEN( (U) (U))

7 For a planar graph with N nodes, there exists a set of disks {D1, D2,..., Dy} in the plane
with disjoint interiors such that D; touches Dj if and only if (¢,5) € L.
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136 Eigenvalues of the Laplacian @

from which

UN—1 = N (1 _ ZuGNZvGN (1 _auv) (f (u) —f('[})>2> _ N (1 B I (Q())
_ N

Yuen Lvenr (f (@) = £ (v))?

agreeing with the general relation (art. 112) between Laplacian eigenvalues of the
graph G and of its complement G¢. Further, we have
B N B N
SR SIS SRV S 11100 ety ) N SN ] o B A )
Yuen Lven Guv(f(u)=f(v))* Yiec (FUH)—f17))°
where the sum over links in the graph G generally contains all different non-negative
terms than the sum over links in its complement G¢. In a dense graph G, where
L = |L£| is large and thus L® = |£¢| is small, we expect a large algebraic connectivity
1N—1, but not larger than N. That maximum puy_1 = N can only occur if L¢ = 0,
thus only if the complement G¢ is the empty graph and G is the complete graph
Ky.
The numerator and denominator in (4.47) are invariant to the addition of a
constant. If f is orthogonal to the constant eigenfunction ¢ of @ belonging to uy,
Rayleigh’s principle in art. 251 states that

2

e 2N T )~ ()
 2uen 2ven (F(w) = F(v))
The advantage of Fiedler’s inequality (4.50) is, that explicit orthogonality (¢, f) =0
for f to the constant function ¢, is not required anymore since it is implicitly
incorporated into the denominator. For example, choosing now the eigenfunction
[ as f(x) = l{z—yy leads, with (f (u) — f () = L{u=w} + l{y=w} provided u # v

and
DD U@ =f@P =3 > lumwt Y D Le-w

(4.49)

. (4.50)

ueEN vEN ueN veN\{u} vEN weN\{v}
=2) l—wp ), 1=2(N-1
ueN veN\{u}

to un—1 < %dw. Since the inequality holds for any node w, the sharpest bound
is reached when d,, = dnin and we find Fiedler’s inequality for the second smallest
eigenvalue of the Laplacian

pn—1 < Awmin (4.51)

N-1
Since equality is attained for the complete graph Ky as shown in Section 6.1, the
bound (4.51) is generally the best possible. This inequality also follows from (A.189)
in Fiedler’s Theorem 80 for symmetric, positive semidefinite matrices. The bound
(4.51) is also derived from the Alon-Milman inequality (4.73) as shown in art. 144.

135. Fiedler eigenvector. The eigenvector zy_1 of the Laplacian @) belonging to
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4.8 Second smallest eigenvalue of the Laplacian Q 137

the algebraic connectivity pun—1 is called the Fiedler eigenvector, with component
(z2n-1), = f (v) for node v. We know already that the Fiedler eigenvector must be
orthogonal (¢, f) = 0 to the all-one vector u, which is equivalent to > - f (v) =
0. Art. 112 shows that the Fiedler eigenvector zy_1 (Q) is also the eigenvector
21 (Q°) of the Laplacian Q¢ of the complementary graph G¢ belonging to the largest
eigenvalue 1 (Q°).

Suppose that (f (u) — f (v))* = ¢, where ¢ is a positive constant, holds for all
nodes u and v, then (4.49) shows that

N N 2L N
UN—1 = — = = = E[D]
N—1 1+LT 1—1—%(@])—L) N—-1 N-1

which is contradicted by Fiedler’s upper bound (4.51) in non-regular graphs, be-
cause then E [D] > dp,. Hence, in non-regular graphs, the absolute value of the
difference of the Fiedler eigenvector components cannot be the same for all node
pairs (u,v). Thus, f (u) — f (v) = £4/c cannot hold!

136. Lower bound for pi. We apply (4.51) to the complement G° of a graph G,

N N N
- ¢ < —— i V== N —-1- = _ —_——
KN I(Q)*Nfldmm(G) N71< dmax<G)) N N*ldmaX(G)
Using (4.19) yields a lower bound for the largest eigenvalue of the Laplacian
N
mdmax S M1 S min (N7 2dmax) (452)

where the upper bound follows from (4.20). The weaker lower bound, p1 > dmax,
is immediate from (4.8), but the lower dpaxy /1 + ﬁ < pq in (4.12) can be better

than (4.52) for small dpax.
Grone and Merris (1994) succeeded in improving Fiedler’s lower bound (4.52):

M1 Z dmax + 1 (453)

which is a strict inequality when dp.x < N — 1 and excludes® the complete graph
Ky. Rayleigh’s principle (art. 251) applied to the largest eigenvalue pp of the
Laplacian @ yields for any vector x # 0, using (4.3),

2
S e"Qr e (@ —ap-)
S Ty

The particular choice of the vector =, where z; = d; and x;, = —1 for each node
k € neighbor(j) else 2 = 0, obeys u’z = 0 and we find that

2TQx  d;(dj + 1)
. +d;
i J

:dj+1

Since the inequality p; > d; + 1 holds for any node j, we arrive at (4.53).

8 In the complete graph K, all non-zero Laplacian eigenvalues are equal (see p. 193) to pp = N,
for k> 0.
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138 Eigenvalues of the Laplacian @

Applying (4.53) to the complement G¢ then shows that
(11 (Q°) 2 dinax (G°) + 1 = N — diin (G)
and, with (4.19), that
pn-1(Q) < dmin (G) (4.54)

valid for any graph G, except for K. Equality in (4.54) is reached, for example,
in the star K7,y (see Section 6.7). Clearly, the Grone-Merris upper bound (4.54)
is sharper than Fiedler’s upper bound (4.51).

4.3.2 Lower bounds for pun_1

137. Lower bounds for any Laplacian eigenvalue. Brouwer and Haemers (2008)
have impressively extended the Grone-Merris lower bound (4.53):

Theorem 24 (Brouwer and Haemers) For any graph but K,, + (N —m) K,
the disjoint union of the complete graph K,, and N — m isolated nodes, the j-th
largest Laplacian eigenvalue is lower bounded, for 1 < j < N, by

pj = dgy —j+2 (4.55)
where d;y is the j-th largest nodal degree.

Proof: The proof of Brouwer and Haemers (2008) cleverly combines the gener-
alized interlacing Theorem 72 applied to a specific quotient matrix K, defined in
art. 37. The proof is rather complex and omitted. O

Brouwer and Haemers (2008) also discuss graphs for which equality in (4.55) is
reached. Also, unweighted threshold graphs (art. 114) possess integer Laplacian
eigenvalues close to the degrees (Hammer and Kelmans, 1996, Theorem 5.3).

Since p; > 0, the bound (4.55) becomes useless when d(;) < j — 2. In fact, we
may introduce slack variables €; > 0 in (4.55) to obtain the equality

pj=diy —Jj+2+¢

Substitution into the m-th moment formula (4.16) specifies the moments SN, €.

J=1"]
For example, for m = 1, we find from (4.7), using Z;V:1 dijy = Zj\;l d;

ol N (N —3)
>, - MY
. 2
Jj=1
which shows that the average of the ¢;’s increases linearly with N. The cases for
higher values of m are more involved, as illustrated for m = 2, which is derived

from (4.9),

N N (2N2 — 9N + 13 N N N
e = ( 5 )+2L+2Zd§+22j(uj—dj)—22djﬂj
j j=1 j=1 j=1

J=1
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4.8 Second smallest eigenvalue of the Laplacian Q 139

The last sum is related to the covariance E [Dyp] — E [D] E [u] and, in general,
difficult to assess. The above method of equating moments (see also art. 354)
suggests to consider p; = d;) + €;, where the difference €; can be negative as well
as positive, but the average difference is zero.

In their book, Brouwer and Haemers (2012) conjecture, for any integer 1 < k <
N, the upper bound

k
S (F1) s
j=1
The Brouwer conjecture (4.56) on the partial sum of the largest Laplacian eigen-
values of a graph seems hard to prove in general, but it has been verified for many
graph types, like regular graphs. Moreover, the inequality (4.56) seems to hold for
weighted Laplacians as well.

138. Lower bounds for puy_1. We apply the functional framework of art. 102 to
derive a lower bound for the second smallest eigenvalue of the Laplacian. Assume
that f is the eigenfunction of @) belonging to py_1 for which the equality sign holds
in (4.46),
iy = Ziee D) = £
Zne/\/' f2 (n)

Let node u for which |f (u)| = maxnen |f(n)] > 0. Clearly, 3 .\ f?(n) <
N f?(u). Since Y, cp f (n) = 0 due to u'zy_1 = 0 as shown in art. 133, there
exists a node v for which f (u) f (v) < 0. Since puy—1 > 0 for a connected graph,
it means that there exists a path P (v,u) from v to « with hopcount A (P (v,u)).
The minimum number of links to connect a graph occurs in a minimum spanning
tree (MST) consisting of N — 1 links. Only if the diameter p > h (P (v,u)) of G is
smaller than N — 1, we have a strict inequality in

S ) = X () ) = Y () - f )

leL leMST leP(v,u)

By the Cauchy-Schwarz inequality (A.12), we have

hPw) S (FO)—f@) = Y (F0)-r(7)

leP(v,u) leP(v,u)

and with 3%, p(, . (f (7)) = f (7)) = f (v) = f (u), we find

hP ) S (P =) 2 ()~ f () (4.57)

leP(v,u)

Using (f (v) — f (u))? > f2 (u) because f (u) f (v) < 0, we obtain

w2 fAl) ()
zepz(;u) =10 h(P) & p
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140 Eigenvalues of the Laplacian @

Combining all inequalities leads to uy_1 > =% 5 N

139. Betweenness and weighted betweenness. The bound puy_;1 > pLN can be

improved by summing the Cauchy-Schwarz bound (4.57) over all node pairs,

S G- <Y S hPww) Y () -r0)

ueN veN ueN veN 1eP(v,u)
=3 Y R P @)D (F ) = £ (7)) Luerwan
UEN vEN leL
=> (F(") - )30 ST (P w,w) Lpepwny
leL ueN veN
and

— (1) (4.58)

o> (-

ueN veN

[\
dng
[}

—~
~

where we define
Z Z h (P ) Lier o)y (4.59)
uGNvGN

which is an integer, measuring the importance of a link I. Hence, we deduce from
Fiedler’s definition (4.47) that

vy > Ve () —f))”
B Zzez( (I*) - f(l_))Q 4]

Since the definition (4.59) holds for any path P (v,u) between a node pair (v, u),
there will exist a set of particular paths that minimizes or maximizes r;. That

(4.60)

minimum or maximum of r; can be regarded as a “centrality” metric for a link [
defined as the minimum or maximum of the sum of all hopcounts of paths P (v, u)
between all pairs of nodes (v, u) that contain that link [. Also, it does not necessarily
hold that the shortest hopcount paths? between a node pair (v,u) will lead to the
minimum of 7;. It also follows from the definition (4.59) that

mlnh P)B; < Z Z (v,1) Lpep )} < mgxh(?’) B
ueN veN

where the betweenness of a link [, defined as

Z > Liepay (4.61)

uEN veN

equals the total number of shortest paths in the graph that traverse or contain link
I. In a connected graph, the minimum hopcount is minp h (P) = 1, namely the
direct link between any two nodes, because h (P (u,u)) = 0 as P (u,u) cannot be a

9 Generally, there are several shortest hopcount paths between a node pair in a graph with unit
link weights.
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4.8 Second smallest eigenvalue of the Laplacian Q 141

path in absence of self-loops, and the maximum hopcount maxp h (P) = p equals
the diameter of the graph, so that

B <r <pB (4.62)

In view of the correspondence with the betweenness By, defined in (4.61) below, we
may call r; a weighted betweenness of the link [. By summing (4.59) over all links
and using Zle Liep )y = b (P (v,u)), we find

L 1 N
SLEEII MG (3)eim

ueN veN

and

L
Sori=g 2 Y H (P ww)
=1

ueN veN
from which the average weighted betweenness r,, = % Zlel r; follows as

, N(N—1 (N—1)E [H?
=g 3 2 P = S e ) - o

With E [H?] = (E [H])* + VarH and the average betweenness B,, = + 1, By,
we find that

_ _FEID] (N-1)
Tav = (N—l)Bs"Jr ED] VarH

In general, the right-hand side in (4.58) can be bounded as

minry Y (F (1F) = () < D0 (F ()= () re < maxr 37 (7 (1) —f (17)°

el leL el

While the smallest value m, of >, . (f (") — f(l’))2 r; would yield in (4.60)
the largest lower bound for py_1, we cannot guarantee that m, can attain the
lower bound mines 7)o, (f (1) = f (Z*))2 nor that the ensuing substitution in

(4.60) leading to minl]\é — will still lower bound py—;1. Simulations in Martin-
Hernandez et al. (2014) have led us to consider the average weighted betweenness

L . . ..
Toy = % lel r; to approximate the algebraic connectivity as py_1 ~ ri and

NE D]

UN-1~ m (4.63)

where H is the hopcount of an arbitrary path in G. For the complete graph Ky,

equality holds in (4.63). For a path graph on N nodes, E [HQ] = N26*1 (as follows

from Van Mieghem (2014, p. 629)) and the algebraic connectivity follows from
2
(6.15) as uy—1 = 2 (1 — cos (%)) =1z +0 (ﬁ) so that, for large N, pun_1 ~
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142 Eigenvalues of the Laplacian @

2 NE[D]  _ _12 12 g 2 2 NE[D] E[D]
vz < (N—DEHZ] — N°-1 ~ N2* Since I [H?] < p? and (N-DE[H?] © B[] W€
deduce from the estimate (4.63) the “approximate” inequality

E[D
BIN-1 % [2 ]
p
and the suggestion that the diameter may be “close” to p = EID) For sparse
gg y p = VEN—1' P

graphs, uy_1 =~ EP@ seems accurate. However, the right-hand side in (4.63) can
be lower and larger than the algebraic connectivity pun—1 and, even for large N,
the example of the path graph disproves asymptotic equality. These considerations
force us to continue with the worst alternative, max;c 77, so that

N
pN_g > ————— (4.64)
maXjer 7]

Furthermore, using the inequality r; < pB; from (4.62) into (4.58) yields
—\\2 _\\2
D) =1 @) > (SO = () B
lecL leL
As shown by Wang et al. (2008), the maximum betweenness in any graph is
1 N2
Bi=32 > luerwwy < {T} (4.65)
ueN veN
and

S ) -1 s [F]e 00 - 1))

leL lel

Since {NTQ} < NTz, introduction in (4.60) leads to
4
UN-1 2 N (4.66)

which is clearly inferior to (4.64). Nevertheless, equality in this lower bound (4.66)
can be reached. As mentioned by Mohar (1991), McKay has shown that in a tree
of diameter p = ¢t + 2, obtained from a ¢-hop path, where k nodes are connected to
each of its end-nodes such that N =¢ + 1 + 2k, (4.66) is sharp if % — 00.

140. We present another interpretation, deduced from art. 139, by rewriting the
definition (4.59) as

2= > h(P(v,u) lgepwu)

ueN veEN

replacing 1yep(vu)y = (l{le'p(v’u)} -1+ 1) and splitting the sums

2 =3 S hP@w) - > S hP@w) (- Luepwuy)

ueN veN ueN veN\{u}
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4.8 Second smallest eigenvalue of the Laplacian Q 143

because h (P (u,u)) = 0. In all other cases where nodes u and v are different,
h (P (v,u)) > 1, such that the last sum is lower bounded:

T= Z Z h(P (v,u)) (1= Ljep(uy) = Z Z (1= 1pepuy)

HEN Ve wEN veNfu)
N N N2  N(N-2)
2(2)2 Z 1{le7>(v,u)}22(2>2TT
wEN vEN\{u}

where in the last line (4.65) has been used. With the definition of the average
hopcount, > > pen B (P (v,u)) = N (N — 1) E[H], we find

N(N —2)

= Z Z h(P (v,u) Lyepouy < N(N —1) E[H] - 5

ueEN vEN

The lower bound px_1 > —2— in (4.64) shows that

Mz T
UN-1 2 2
T (N-1)E[H]- Y2
or
E[H] > & i

141. Another type of lower bound for puy_1. Let f be the eigenfunction of the
Laplacian @ belonging to py—_1, then the eigenvalue equation in (1.3) is Qf (u) =
un—1f (u) for each nodal component u € . Since f is non-zero and orthogonal to
the constant function,

0= fm)=> f(") = Y |f(n)

neN nteN n—eN

where, for nt € N, f(nt) >0and n= € N, f(n~) < 0. Let us define the set of
positive nodes Nt = {n € N': f(n) >0} and N~ = N\NT. Similarly, let £+ =
{uTvt € N: uT, vt € N} denote the set of all links between positive nodes and
L~ ={uTv™ e N: ut € Nt v~ € N~} denote the set of all links between positive
nodes and negative nodes. Multiplying both sides of the eigenvalue equation by
f (u) and summing over positive nodes yields

S ST {UFL)
Nt Z?}€N+ f2 (U)
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144 Eigenvalues of the Laplacian @

Using the definition in art. 4 of the Laplacian Q = A — A,
Y QI ) =Y fW)(Af-Af) (@)

veENT veNT
=D f@ldwf - Y f
veNt u€neighbors(v)

> Yo SO f@w)

veENT u€neighbors(v)
Further, after splitting the neighbors into positive and negative nodes,
YQIWfw= Y fOUF@-f@)+ Y f@ @)~ fw)
veN+ vtutelt vtu—€eL-
Since the graph is bidirectional, i.e., AT = A, the link vTut = wTvt appears twice
in the sum such that

Yo FOU@—f@)= Y Af @) (o) = f @)+ f @) (f (@)~ f ()}

vtutel+ utvtelt
= > (f@-fw)?
utvtelt

where a link utv* € LT is only counted once. Similarly as before, we denote the
link I = utv™ by the head of link as [T = u* and by the tail as [~ = v™. Thus, we
arrive at

ST =S (F) @)+ S F)(f )~ f(w)
veN+ leLt vtu—el—

and

iy = S D) = FO + T S 0 (F(0) = £ (W)
o Soen+ F2(v)

Since f (vT) (f (vt) — f(u™)) > 0, the last sum in the numerator is non-negative,
which leads to a lower bound

o e U0H = £ )
T Zne nr f2(n)
The lower bound (4.67) resembles the upper bound (4.46), except that only positive
nodes and links are considered and that f is not arbitrary, but the eigenfunction of
Q@ belonging to the eigenvalue pn_1.

We can improve this lower bound (4.67) by incorporating positive terms in
Yovtu-crc- f @) (f(v) = f(u)), that we have neglected. This means that also links
outside the positive cluster are taken into account. Following Alon (1986), we can
define g (v) = f (v) 1{year+} such that

S rO@-f@) = Y (g0) g W)

vtu—eL- vtu—eL—

N (4.67)
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4.8 Second smallest eigenvalue of the Laplacian Q 145

With this function, the first sum remains unaltered,

D) =10 =3 (00 =9 (7)) =2 (9 (%) ~9(17))°

lect leL+ lel

and, also Y v+ f2(n) = D cn+ 92 (n) = X, e 9% (n). Thus, the improved
lower bound is

T2

Zlec< () —g7)

UN— S vt ) (4.68)

142. Let G+ {e} denote a graph obtained from G by adding a link e between two
nodes of G. For any f orthogonal to a constant function, we have that

oo F ) =10 e E)=F0D () = £ ()’
ZTLEN f2 (Tl) B Zne_/\/ f2 (n) ZTLEN f2 (Tl)

If f = fat{e) is an eigenfunction of G+ {e} corresponding to uny—1 (G + {e}), then
(4.46) shows that

(fatier () = fariey (6_))2
ZTLEN fé’+{e} (n)

On the other hand, if f = fg is an eigenfunction of G corresponding to py_1 (G),
then

pn—-1 (G +{e}) < pun-1(G) +

(fa(e") = fo(e))?

pn—1(G+{e}) > un—1(G)+ S e f2 (1)

In the first bound,

(farier (€7) = fariey (6_))2
2 onen fé+{e} (n)
Ty () HSo g () —
[y (€N) F foye (e )+Zn€/\/\{e+ ey Ty (M)
(€) + fEi ey (€7) +2|fariey (€)] [fouqey ()] <9
fcz;+{e} (et) + f(;+{e} (e ) B

Gole)=re(= ) < g i

2 2r .
because max, —Z. — max,_ —=L. = 1. With
z20,y>0 7212 r=%4>0 71,2 S nen 15 (M)

b:

2faiey (€7) fariey (€7)

2
< fG+{e}

the second bound, we arrive at
pn-1(G) < pn-1 (G +{e}) < pun-1(G) +2 (4.69)

The same bounds (4.69) are elegantly proved by invoking interlacing (art. 267)
on Qg e} = Qc + Qey- Indeed, the Laplacian Q. of a link e;; between node
¢ and j has precisely four non-zero elements: ¢;; = ¢;; = —1 and ¢;; = ¢qj; = 1.
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146 Eigenvalues of the Laplacian @

The eigenvalues of Qy., } are obtained from det (Q{e} —ul ) after expanding the
determinant in cofactors over row ¢ (or j),

det (Qqey — ul) = (—1)* (=) 2 (1 = p)* = (1) (=1)7F (=)™ 2
= ()" (n-2)

The eigenvalues of Q.. are thus [O]N_1 and 2; the interlacing inequality (A.165)
leads to (4.69).

Art. 105 shows that, by adding one link, the sum of all eigenvalues increases
by 2. Hence, when the upper bound in (4.69) is achieved, all other eigenvalues of
QG+ (e} are precisely equal to those of Qg.

4.4 Partitioning of a graph

The problem of graph partitioning consists of dividing the nodes of a graph into a
number of disjoint groups, also called partitions (see art. 36), such that a certain
criterion is met. The most popular criterion is that the number of links between
these disjoint groups is minimized. Sometimes, the number of those partitions and
their individual size is prescribed. Most, but not all (see art. 143) variants of the
graph partitioning problem are NP-hard. We refer to Spielman and Teng (2007)
for the history of spectral methods for graph partitioning.

143. Graph partitioning into two disjoint subsets. When confining to a graph
partitioning into two disjoint subsets (subgroups, clusters, partitions,...), an index
vector y can be defined with vector component y; = 1 if the node j belongs to one
partition and y; = —1 if node j belongs to the other partition. The number of links
R between the two disjoint subsets, also called the cut size or size of the separator,
elegantly follows from the characteristic property (4.3) of the Laplacian,

1 1
R=7 i —u-)’ = ZyTQy (4.70)
lel

because, only if the starting node [T and the ending node [~ of a link ! belong to
a different partition, (y;+ — y;- )2 =4, else y;+ = y;—~. The minimum cut size is

1
Rmin = min ~y”
Mgy Qv

where Y is the set of all possible index vectors of the N-dimensional space with
either —1 or 1 components.
Since all eigenvectors {zj},; - of the Laplacian @) are orthogonal (art. 247),

. . I N
any vector can be written as a linear combination. Let y =3 ;_, a;z;, then

1 N N
R = 1 Zaj Z akijsz
k=1

=1
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4.4 Partitioning of a graph 147

and using the orthogonality property (A.121) in art. 247, we obtain
1
R= ZZQ?M (4.71)
Jj=1

Since pny = 0 and all other eigenvalues are larger than zero for a connected graph
(Theorem 20), the alternative eigenvalue expression (4.71) shows that R is a sum
of positive real numbers.

Although Stoer and Wagner (1997) have presented a highly efficient, non-spectral
min-cut algorithm with a computational complexity of O (N L+ N?log N ), which
demonstrates that the min-cut problem is not NP-hard, the minimization of (4.71)
is generally difficult. However, if one chooses in (4.70) y = an_1zy—-1, then R =
103, pun—1, which is, in view of (4.71), obviously the best possible to minimize
R. Unfortunately, choosing the index vector y parallel to the Fiedler vector zy_1
is generally not possible, because zy_1 ¢ Y. A good strategy is to choose the sign
of the components in y according to the sign of the corresponding component in
the Fiedler vector. A slightly better approach is the choice y = ayu + zy_1, since
the eigenvector u belonging to uxy = 0 does not affect the value of R in (4.71) and
it provides a higher degree of freedom to choose the size of each partition. This
strategy agrees with Fiedler’s graph partitioning explained in art. 150.

144. The Alon-Milman inequality. Another approach to the separator problem
is to establish useful bounds. As we will demonstrate here, it turns out that the
algebraic connectivity puny—1 plays an important role in such bounds. Our starting
point is the upper bound in (4.46) for px_1. The ingenuity lies in finding a function
f, introduced in art. 133, satisfying (f,¢) = 0 that has both a graph interpretation
and that provides a tight bound for py_; in (4.46). Alon and Milman (1985) have
proposed the function

1 1 1\ min(h,h(u,A))

o) = ¢~ (G +g) T

where (g, c) # 0 such that f = g — g in art. 133, with g = >, .- 9 (n). Further,
h is the distance (in hops) between two disjoint subsets A and B of N, h (u, A) is
the shortest distance of node v € A to a node of the set A and a = % and b = ENE,
where Nj, = | Nj| is the number of nodes of set NV. If u € A, then g (u) = 1, while,
if u € B, then h (u, A) = h and g (u) = —3. Moreover, if u and v are adjacent, i.e.,
they are either head (u = [1) or tail (u =17) of a link [, then

|9 (u) — g (v)] < % (% + %) (4.72)

Indeed, if v and v belong to the same set, then g (u)—g(v) =0. Ifu € Aand v ¢ A,

then h (v, A) = 1, because u and v are adjacent and g (u) — g (v) = (2 + 1) +. If

a
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148 Eigenvalues of the Laplacian @

both « and v do not belong to A, then |h (v, A) — h (u, A)| <1 and

9 ()~ 9 ()] = G + %) (= i (h, b (1, A)) + min (h, b (v, A))

where the difference of the min-operator is largest and equal to 1 if not both h(u, A)
and h (v, A) are larger than h. This proves (4.72). Using this bound (4.72), the
numerator in (4.46) is

S —FE) =) ~g)'= > (g -g())

leL leL leL\{AUB}
1 /1 1\2
<—(=+2) (L-Ls-L
<3 <a+b> ( A—Lg)

where L4 and Lp are the number of links in the sets A and B, respectively. The
denominator of (4.46) is

YLz Y =) (9gm) -9+ (9n)-g)°
)

neN ne(AUB neA neB

Finally, with (4.46), Alon and Milman (1985) arrive at

iyt < (NLA n N%) (L—La-Lp) (4.73)
The Alon-Milman inequality (4.73) shows that a large algebraic connectivity pn_1
leads to a high number of links between the two clusters A and B. Indeed, consider
all subsets A and B in a graph G with a fixed number of nodes N4 and Np and
same separation h, then a large pny_1 implies a large number of links L — L4 — Lp
between any pair — thus also minimal pairs — of subsets A and B. Hence, a large
1N —1 means a higher inter-twined subgraph structure and, consequently, it is more
difficult to cut away a subgraph from G. A graph with large second smallest
Laplacian eigenvalue ppy_1 is thus more “robust”, in the sense of being better
connected or interlinked. Just this property of py_1 has made the second smallest
Laplacian eigenvalue a fundamental characterizer of the robustness of a graph.

However, the algebraic connectivity py—_1 should not be viewed as a strict dis-
connectivity or robustness metric. Fig. 4.1 depicts two graphs G; and G3, each
with N = 7 nodes, L = 10 links and diameter p = 4, but with different al-
gebraic connectivity pny—_1 (G1) = 0.6338 and un_1(G2) = 0.5858. Although
un—1(G1) > pn—1(Ge), it is easier to disconnect G; than Ga, because one link
removal disconnects (G1, while two links need to be deleted in Gs.

145. Bounds for the separator. The Alon-Milman method of art. 144 can be
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4.4 Partitioning of a graph 149

Fig. 4.1. Two graphs G1 and Gz, each with N = 7 nodes, L = 10 links and diameter
p =4, but with different algebraic connectivity.

extended to deduce bounds for the separator S of two disjoint subsets A and B,
that are at a distance h from each other. The separator S is the set of nodes at a
distance less than h hops from A and not belonging to A nor B,

S={ueN\A:h(u,A) <h}

and AUBUS = N. Sometimes, when h = 1, the separator is called the cut size,
since there is a cut that splits the graph into two partitions. As in art. 144, we

define a = %, b= ENQ and s = %5-, where N¢ is the number of nodes in the set C.

Instead of using the inequality (4.46), Pothen et al. (1990) start from the Fiedler
inequality (4.50) in which they use

fu)y=1- %min(h,h(u,A))

which is recognized as the Alon-Milman function g (u) with a =b=1. If u € S,
then f(u) =1— 2h(u,A) and 1 — % > f(u) > 1—%}2;12 = —(1-%). The
numerator in (4.50) is computed precisely as in art. 144 with a =b =1,

S0 50D < (2) Lot < (3) N

lel

The denominator n.= 33 > - (f (w) = f (v))? in (4.50) is

n:<zz+zz+zz+z > )(f(U)—f(v))2

ucAveS wuwceAveEB uweBvES uweSveS:w>u

> (ZZ+ZZ+ZZ> (f (w) = f (v))

ucAveS wuweAveEB ueBvES

> (1 - (1 - %)>2N2a5 +(1—(=1))> N2ab + (—1 + (1 —~ %))QNQI)S

2
2

= (ﬁ) N?{s(a+b)+ h*ab}
With b =1 —a — s, we arrive at

Sdmax

s(l—=s)+a(l—a—s)h?

HN-1 < (4.74)
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150 Eigenvalues of the Laplacian @

which provides a quadratic inequality in s, from which a lower bound for s can be
derived.

146. Pothen et al. (1990) present another inequality for the normalized size s
of the separator, that is a direct application of the Wielandt-Hoffman inequality
(A.168) for symmetric matrices. We can always relabel the nodes in the graph G
corresponding to the sets A, B and S such that the Laplacian becomes

QNaxNa OnaxNb  @QnNaxnNs
Q= OnNbxNa QNoxNy  QNbxNs

(Qnaxns) (Quoxns)’  Qnexns

The idea, then, is to consider another matrix, whose eigenvalues are all known,
such as M = diag(JnaxNa, INbxNb, INsxNs), where J is the all-one matrix. The
eigenvalues of M are those of the separate block matrices, that follow from (6.1)
as Na, Nb, Nc and all the others are zero. Let us assume that a > b > ¢. We
apply the Wielandt-Hoffman inequality (A.168) to M and —@Q (to have consistent
ordering in the eigenvalues) such that

n

D M (=Q) A (M) == " pnvg1-kMe (M) = = (0.Na + py—1 Nb + piy—2N's)
=1 =1

while trace(—QM) = —trace(QM) and, with the shorter notation for the square
matrix Ryixni = Ry,

trace (QM) = trace (QnaJIna) + trace (QnpJnp) + trace (QnsIns)

= <Z+Z+Z) (dy — d¥)

u€A uweEB ueS
=92(L—Ls—Lp—Lg)

where d, is the number of links incident to the node u and with end node in the
same set as u. Substituting both in (A.168) yields

UN—1Nb+ pn_oNs <2(L—-Ls—Lp— Lg)
<2(L—La—Lg) < 2Nsdma

from which, using b =1 —a — s, a lower bound for the size of the separator follows
as

6> (1—a)un—1
2dmax — (UN—2 — N —1)

This inequality, that contains beside the algebraic connectivity uy_1 also the gap
UN—2 — N—1, complements the inequality (4.74).

147. Applications of the Alon-Milman bound (4.73). Alon and Milman (1985)
mention the following applications of the bound (4.73).
First, let A = {u} and B = M\ {u}, then h =1 and L — Ly — L = d,, the
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4.4 Partitioning of a graph 151

degree of node u. Since this inequality holds for any node w, the tightest bound
is obtained by choosing a node u with minimum degree dy,;, = min,ca dy,, which
leads again to (4.51).

Second, let a = b = %, then the set of all links connecting a node in A to a node
in B is called the bisector of G. The minimum number of the bisector is related to
min-cut, max-flow problems. The Alon-Milman bound (4.73) shows a lower bound
for the bisector,

N
THN-1 < bisector (G)

Third, if » > 1, then every link in the set £\ (£L4ULp) is incident with at least
one of the N—N4— Npg nodes of the set S = N\ (NMaUN ), such that L—Ls—Lp <
(N — N4y — Np) dmax. The Alon-Milman bound (4.73) becomes, using a + b < 1,

1 /1 1 1
<= |- n l—a-10 dmaxg— l—a-b dmax
”Nl—h2<a+b>( a—b) appz L =a=0)
_ Sdmax
a(l—a—s)h?

which is clearly weaker than (4.74) because 0 < s < 1. It provides a lower bound

for the fraction b = % as

1—a

b ————— (4.75)
iy h2 .
1 &gk
where h > 1.
Based on (4.75), Alon and Milman (1985) also derive a second bound
b<(l—a)exp < In (1 + 2a) \‘h 5;[—1 J) (4.76)

where |z] denotes!® the largest integer smaller than or equal to .

Proof: The idea is to construct subsets A, of N that include, beside the orig-
inal subset A, additional nodes of A/ within distance r € R hops from A, i.e.,
A, = {veN:d(v,A) <r}. We construct a sequence on distance r = j3 for
j =0,1,...,k of those subsets such that Az and N\ A(;;1)s are more than h > 1
hops separated, which requires that h > 8 > 1. For those subsets A C Ag C Asg C
-+ Apg C N, application of (4.75) yields

1—a;s < 1—aj;s

1 —agp = a;ah? =
iph2puN—_1 B2uN_1
1+ B e 1+a—F/—

dmax

The largest possible k is such that k8 < p, where p is the diameter of the graph.
With (4.51), we observe that, for N > 2,

1 N-11 1
> >
MUN—-1 B N dmin - 2drnax

10 Likewise, [2] denotes the smallest integer larger than or equal to .
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2dmax — 2dmax 1
such that wex > 1. Let p% = Zmax > 1, then 1 —agjp1)p < (1 —ajp) 1335 for
0 < j < k. Multiplying those inequalities yields

1
l—ap <(l-—q) —— = 1 — g)ekn(1+2a)
o< )(1+2a)k ( )

and by construction B C M\ Ayp or b < 1 — ags and k < % =p %VT:(. This
proves (4.76) for any h < p. O

148. Isoperimetric constant n. If we choose the set B equal to NM\Ny, then
L — L4 — Lp is the set of links with one end in A and the other in B. Thus,
OA =L — La — Lp is the number of links between A and its complement A"\ N4
and dA is called the cut size . The isoperimetric constant of the graph G is defined!!
as

0A
= min — 4.77
7 = in (4.77)
where the minimum is over all non-empty subsets N4 of A satisfying Ny < {%J
The isoperimetric constant is also called the Cheeger constant.

The Alon-Milman bound (4.73) reduces (with h = 1) to

1 1
< JE— R
pN-1 < 04 (NA * NNA)

If we denote n;, = minys, { %‘ Ny = k}, then pny_1 < %Ni—k and this inequality
holds for any set N4, also for the minimizer of the right-hand side. Thus, puy_1 <
N
Nk N_k and
N —k

UN—1 < Mg

We may further minimize both sides over all £k = 1,2,..., L%J Observe that

7 =min, , - & | - Hence, the Alon-Milman bound (4.73) leads to a lower bound
for the isoperimetric constant
HN-1
Lt B
5 = n
Using Alon’s machinery of art. 141 that led to the lower bound (4.68), Mohar

(1989) showed that, for N > 3,

n S \/HN—l (Qdmax - ,LLN—l)

Tighter, though more complex, bounds for the cut size as well as for the isoperi-
metric constant are derived in Devriendt and Van Mieghem (2019b).

149. Ezpanders. A graph G with N nodes is a c-expander if every subset Ny
with Ny < L%J nodes is connected to its complement N\N4 by at least ¢N4 links.

11 The computation of the isoperimetric constant is an NP-complete problem as shown by Mohar
(1989).
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4.5 The modularity and the modularity matriz M 153

Since A > cN4, art. 148 indicates that ¢ = 1. Expanders are thus difficult to
disconnect because every set of nodes in G is well connected to its complement.
This “robustness” property makes expanders highly desirable in the design of fault
tolerant networks such as man-made infrastructures like communications networks
and electric power transmission networks. A part of the network can only be cut
off by destroying a large number of individual connections. In particular, sparse
expanders, graphs with few links, have great interest, because the cost of a network
usually increases with the number of links.

A well-studied subclass of expanders are regular graphs. In Govers et al. (2008),
Wigderson mentions that almost every regular graph with degree » > 3 is an ex-
pander. The proof is probabilistic and does not provide insight how to construct
a regular c-expander. Although nearly any regular graph is an expander, it turns
out that there are only few methods to construct them explicitly. It follows from
the bounds in art. 148 and ¢ = 7 that

1
FhN-1 << VN1 (2r — pn—1)

where py_1 = 7 — A2 (4) also equals the spectral gap (art. 82 and art. 110).
The larger the spectral gap or the smaller Ay (A), the larger ¢ and the stronger
or the more robust the expander is. A remarkable achievement is the discovery
that, for all r-regular graphs, Ao (4) > 2y/r — 1 and that equality is only attained
in Ramanujan graphs, where r — 1 is a prime power, as shown by Lubotzky et al.
(1988).

150. Graph partitioning. Since rI — @) is a non-negative matrix for r > dyax, a di-
rect application of Fiedler’s Theorem 77 in art. 272 for k = 2 shows that a connected
graph G can be partitioned into two distinct, connected components G; and Ga,
where the nodes of G; = G\G3 are elements of the set M= {j eN: (xN_l)j > a},
where z_1 is the eigenvector belonging to the second smallest eigenvalue pn—1
of the Laplacian ) and « is some threshold value that specifies different disjoint
partitions. If o > maxi<j<n (xN,l)j orif o < mini<;<n (xN,l)j, there is only the
“trivial” partition consisting of the original graph G itself. Fiedler (1975) demon-
strates that, by varying the threshold o« > 0, all possible cuts that separate the
graph G = G UG5 into two distinct (G1 NG = &) connected components G and
G5 can be obtained in this way.

Art. 103 indicates that the sum over all positive vector components equals the
sum over all negative ones. This means that the value @ = 0 in Fiedler’s partitioning
algorithm divides the graph into two “equivalent” partitions, where “equivalent” is
measured with respect to the second smallest Laplacian eigenvector. It does not
imply, however, that both partitions have the same number of nodes.

4.5 The modularity and the modularity matrix M

151. Modularity. The modularity, proposed by Newman and Girvan (2004), is
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a measure of the quality of a particular division of the network. The modularity
is proportional to the number of links falling within clusters or groups minus the
expected number in an equivalent network with links placed at random. Thus, if
the number of links within a group is no better than random, the modularity is zero.
A modularity approaching one reflects networks with strong community structure:
a dense intra-group and a sparse inter-group connection pattern.

If links are placed at random, then the expected number of links between node
1 and node j equals —L. The modularity m is defined by Newman (2006) as

2L Z Z ( - > 1{2 and j belong to the same cluster} (478)

i=1 j=1
We consider first a network partitioning into two clusters or subgraphs as in art. 143.
The indicator function is rewritten in terms of the y vector, defined in art. 143, as
1
1{1’ and j belong to the same cluster} — 5 (yiyj + 1)

so that

1 L& dyd,
szZZ@j 2L> Yili

because, by the basic law for the degree (2.3) and by (2.2),

(2.
N did; N 4 &
Z (aij ~3I > Zau oL Z (4.79)

j=1

If there is only one partition to which all nodes belong, then y = u and the modu-
larity is m = 0 as follows from (4.79).
After defining the symmetric modularity matrix

1
M=A-_—dd" 4.80
with elements m;; = a;; — %’4, we rewrite the modularity m, with respect to a
partitioning into two clusters specified by the vector y, as a quadratic form
L 7
=—y M
m 1 Ly Y

which is analogous to the number of links R in (4.70) between the two disjoint
partitions.

152. A graph with ¢ communities. For a partitioning of the network into ¢ clusters,
instead of the vector y, the N x ¢ community matrix S, defined in art. 36, can be
used to rephrase the condition as

(&

1{1 and j belong to the same cluster} — E Szksjk
k=1
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4.5 The modularity and the modularity matriz M 155

which leads to the matrix representation of the modularity (Van Mieghem et al.,
2010)

c N N
1 trace (STMS
m = _2L E E E Sikmiijk = —(2L ) (481)

k=1i=1 j=1

We define the community vector s as the k-th column of the community matrix
S, which specifies the k-th cluster: all components of si, corresponding to nodes
belonging to cluster Cj, are equal to one, otherwise they are zero. For ¢ = 2
clusters, the vector y = s; — so and only one vector suffices for the partitioning,
instead of s; and ss.

Using the eigenvalue decomposition (art. 254) of the symmetric modularity ma-
trix M = Wdiag(\; (M)) WT, where W is the orthogonal N x N matrix with the
Jj-th eigenvector w; belonging to A; (M) in column j, the general spectral expression
for the modularity m for any number of clusters ¢ follows from (4.81) as

trace ((WTS)T diag (A\; (M)) WTS)
2L

N c
— % Z (Z (ijskf) A (M) (4.82)
j=1 1

k=

m =

because (WTS)jk = Zé\’:l WqiSqr = ijsk The scalar product ijsk = quCk (wj)q
is the sum of those eigenvector components of w; that belong to cluster Cy. If we
write the community vector s, = Z;\;l Brjw; as a linear combination of the eigen-
vectors of M, then the orthogonality of eigenvectors indicates that the coefficients
equal B; = ijsk. Moreover, art. 36 shows that the vectors sq, ss,...,s. are or-
thogonal vectors, and, by definition, that 22:1 Sk = u. Since u is an eigenvector
of M belonging to the zero eigenvalue as follows from (4.79), we observe that

C
g ijsk =0
k=1

provided the eigenvector w; # u. Using the Cauchy identity (A.71)

C C 2 C
CZ (w;‘rsk)Q — (Z ijsk> = Z (ij (8m — sk))2
k=1 m=2
we find that
1 N c m-—1 9
m = EZ ( (wT (Sm — sk)) > Aj (M)
j=1 \m=2 k=1

which reduces for ¢ = 2 and y = s1 — s2 to (4.99) below.
Since WWT = I (art. 247), we have that trace((WTS)T WTS) = trace(STS) =


https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core

156 Eigenvalues of the Laplacian @

N (art. 36), such that we obtain a companion of (4.82)

YN (Wls) =N (4.83)

j=1k=1
_u_

Let wy = i denote the eigenvector of M belonging to the eigenvalue A\, (M) = 0,
then

c

1 1 o
> )’ = 5 30 ()" = 5 Yok

k=1

where ny is the number of nodes in cluster Cj. Invoking the inequality (3.88) to
(4.82) subject to (4.83) yields

S sga (St (wFse)®) 2 (30) (355 (w]5)”) Ay ()

e T S B T s )
D imtjtq 2okt (wj Sk) == > k=1 (wj sk)
from which we find, with F [D] = %, a spectral upper bound for the modularity
A (M) I ¢ o
< 1-— . 4.84
"= "B D] N? I;"k (4.84)

This bound can also be written as

e A1 (M) (1 _ 1 - Var [nc])

- E|[D] ¢ N2
where ng is the number of nodes in an arbitrary cluster, because F [ng] = %
22:1 ng = % The spectrum of the non-back tracking matrix can accurately

determine the number c¢ of clusters in a graph as shown in Budel and Van Mieghem
(2021).

153. Upper bound for the modularity. Newman’s definition (4.78) is first rewritten
as follows. We transform the nodal representation to a counting over links [ =4 ~ j
such that

C

N N
§ § aijl{i and j belong to the same cluster} — 2 § Ly,
i=1 j=1

k=1

where Lj is the number of links of cluster C}, and the factor 2 arises from the
fact that all links are counted twice, due the symmetry A = AT of the adjacency
matrix. If we denote by Lipte, the number of inter-community links, i.e. the number
of links that are cut by partitioning the network into ¢ communities or clusters, then
L=3%7_1 Li+ Linter. Similarly,

N N c c
Z Z dzdjl{z and j belong to the same cluster} — Z (Z dl) Z dj = Z D%’k
k=1

i=1 j=1 k=1 \i€Cy FECK

where D¢, = > ,c o, di 1s the sum of the degrees of all nodes that belong to cluster
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Cy. Clearly, De, > 2L, because some nodes in cluster C, may possess links
connected to nodes in other clusters. The basic law of the degree (2.3) then shows
that >y _; D¢, = 2L. Substituting these expressions in the definition (4.78) leads
to an alternative expression!? for the modularity

m= Z( (DC’“)> (4.85)

Subject to the basic law of the degree, >, _, D¢, = 2L, the sum 7 | DZ is
maximized when D¢, = % forall 1 < k < ¢. Indeed, the corresponding Lagrangian

ﬁziD%k+§ (iDck —2L>

k=1 k=1

where & ib a Lagrange multiplier, supplies the set of equations for the optimal

solution =2D¢; +&=0for 1 <j<cand §2 =37} Do, — 2L = 0, which

’dD

The modularity in (4.85) is minimized, for c>1,if Ly =0for1 <k <cand
> jy D&, is maximized such that m > —=. In conclusion, the modularity of any

is satisfied for f =—2L and D¢, = 2: forall 1 < j < c. Hence, Y ;_; D% < (212)2'

graph is never smaller than —5, and thls minimum is obtained for the complete
bipartite graph.

Invoking the Cauchy identity (A.71) and > ;_, D¢, = 2L,

2 Y

c c j—1
1 g 2
D, = -
DD, CZZ De, = D)
k=1 2 k=1
results in yet another expression for the modularity
c j—1 2
Linter 1 1 e DC' - Dck
— ] _ Znter - _ _ — Tk 4.86
" L c c Jz:; P 2L (4.86)

Since the double sum is always positive, (4.86) provides us with an upper bound
for the modularity,

1 Liner
m<1— - - e

~ - (4.87)

The upper bound (4.87) is only attained if the degree sum of all clusters is the same.
In addition, the upper bound (4.87) shows that m < 1 and that a modularity of 1 is
only reached asymptotically, when the number of clusters ¢ — oo and Liyter = 0 (L),
implying that the fraction of inter-community links over the total number of links
L is vanishingly small for large graphs (N — oo and L — c0).

154. Lower bound for the modularity. Let Dac = max(c; ¢} ’ch —Dc¢, |,

12 Newman (2010) presents still another expression for the modularity.
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a lower bound of the modularity, deduced from (4.86), is

Linter 1 (C— 1) DAC 2
> Snter 2 Zac 4.
e L ¢ 2 ( oL ) (4.88)

Only if Dac = 0, the lower bound (4.88) equals the upper bound (4.87) and the
equality sign can occur. Excluding the case that Dac = 0, then not all D¢,
are equal, and we may assume an ordering Do, > D¢, > ... > Dc,, with at
least one strict inequality. We demonstrate that, for ¢ > 2, not all differences
D¢, — D¢, = Dac > 0 for any pair (j,k). For, assume the contrary so that
D¢, — D¢, = Do, — Do, = Do, — Do, = Dac > 0, then Dac = Doy, — De, =
(D¢, — D¢,) 4+ (D¢, — Dey) = 2Dac, which cannot hold for Dac > 0. Hence, if
Dac > 0, the inequality in (4.88) is strict; alternatively, the lower bound (4.88) is
not attainable in that case.

In order for a network to have modular structure, the modularity must be posi-
tive. The requirement that the lower bound (4.88) is non-negative, supplies us with
an upper bound for the maximum difference Dac¢ in the nodal degree sum between

two clusters in a “modular” graph

2 Linter 1
< - - = 4.
Dac 2L\/C 1 (1 c) (4.89)

For ¢ > 1, (4.89) demonstrates that Dac < 2L. Ignoring the integer nature of ¢,
the lower bound (4.88) is maximized with respect to the number of clusters ¢ when

2v/2L
¢ = V2 >

~ Dac

(4.90)

resulting in

Linter DAC 1 DAC 2
> - Zater ) Sy e
= L \/§<2L)+2<2L)

The right-hand side in this lower bound is positive provided that 1 > % >

V2 <1 — W/AME&L) When this lower bound for %ALQ is satisfied, the modularity m

is certainly positive, implying that the graph exhibits modular structure.

155.  Spectrum of the modularity matrizc M. Since the row sum (4.79) of the
modularity matrix M is zero, which translates to Mwu = 0, the modularity matrix
has a zero eigenvalue corresponding to the eigenvector u, similar to the Laplacian
matrix (art. 4). Unlike the Laplacian @, the modularity matrix M always has
negative eigenvalues. Indeed, from (A.99) and art. 46, the sum of the eigenvalues
of M equals

ZAj (M):—iZd?:—% (4.91)
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4.5 The modularity and the modularity matriz M 159

where Ny, is the total number of walks of length & (art. 59). The second order mo-
ment of the modularity eigenvalues are Zjvzl A2 (M) = trace(A?)—ftrace(Add" )+
(2+)2 Z;VZI d2trace(d.d"). Using (A.99) and art. 59, we have

2
N N 2
9 1 r 1 o 2Nj3 No

;Aj (M) =2L — Zd" Ad + ﬁ;dj =N, — Nt (E) (4.92)
In general, M and A do not commute. Hence, art. 284 shows that the set of
eigenvectors {wy}; < of M is different from the set of eigenvectors {xy}, .y
of A. o o

The eigenvalues of the modularity matrix M = A — ﬁd.dT are zeros of the
characteristic polynomial

d.d” 1 ddT
det (M — M) =det [ A— N — 25} = det (A — AI)det (I — (A— D) 22

2L 2L
Using the “rank one update” formula (A.66), we have

1
det (M — AI) = det (A — \I) (1 - ﬁdT (A—AD)~* d) (4.93)
T 2

We invoke the resolvent d” (A — XI)~'d = Zﬁ:l (im%)? in (A.162) in art. 262,

where z,, is the eigenvector of A belonging to eigenvalue \,,. Using d'z,, =
uwl' Az, = Apu’ 24, N1 = 2L and (3.28) produces

N N y2 (T 2
L PN U T, \2_ Ao (ul )
1 2Ld (A=) d72L {Z_:l)\n(u T 2::1 Fw—
AN (W) A
T2L = h -

which can, in view of (3.37), be written in terms of the generating function Ng (2)
of the total number of walks (art. 62). Thus, we arrive at'?

det (M — AI) = % det (A — \I) (NG (%) - N) (4.94)

Since limy_,o Ng (%) = 0, the characteristic polynomial (4.94) of M illustrates that
A = 0 is an eigenvalue of M, corresponding to the eigenvalue u as shown above. By
a same argument as in art. 263, the function Ng (%) — N has simple zeros that lie
in between two consecutive eigenvalues of the adjacency matrix A.

In summary, the eigenvalues of the modularity matrix M interlace with the

13 Invoking (3.40) and c4(\) = det (A — AI), another expression is

det (M — \I) = ﬁ ((—1)N Acae (<A — 1) — (A + N) cA(/\)>


https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core

160 Eigenvalues of the Laplacian @
eigenvalues of adjacency matrix A: Ay (A) > A\ (M) > X (4) > (M) > ... >
AN (A) > Ay (M)

156. Spectrum of the modularity matrix M for regular graphs. For regular graphs,
where each node has degree r and Au = ru (art. 55), we have that (A — ) u =
(r — A) u from which (A — M)~ u = (r — )™ u. Substituted in (4.93) yields, with
the degree vector d = r.u,

det (M — AI) = det (A — AI) (1 - %uT (A= \D)"" u)

_ _ T ) = 2 _
=det (A — \I) (1 N(T_)\)u u)—)\_rdet(A Al)
After invoking the basic relation (A.97), we arrive at
y N N
det (M — M) = A (A) =) ==X Ak (A) — A
et ( ) )\_rg(k( )—A) zg(k( ) =)

In summary, the eigenvalues of the modularity matrix M of a regular graph are
precisely equal to the eigenvalues of the corresponding adjacency matrix A, except
that the largest eigenvalue A\ (A) = r is replaced by the eigenvalue at zero.

157. The largest eigenvalue of the modularity matriz. Since Ng (%) —N>0in
(4.94) for A > A; as follows from (3.35) in art. 62, A; (M) < A1 (A). This inequality
is also found from the interlacing property of M and A derived in art. 155. We
will show here that A; (M) < A1 (4).

Since A = 0 is always an eigenvalue of M (art. 155), there cannot be a smaller
largest eigenvalue than zero. The interlacing property bounds the largest eigen-
value from below, A\; (M) > A2 (A), and art. 92 demonstrates that all graphs have
a non-negative second largest eigenvalue Ay (A) > 0, except for the complete graph.
The modularity matrix of the complete graph Ky is Mg, = %J — I, whose char-
acteristic polynomial is det (M — AI) = (—=1)™ A(1 + X))V ™" as follows from (6.1).
This illustrates that the largest eigenvalue of the complete graph is Ay (Mg, ) =0,
which is also the smallest possible largest modularity eigenvalue of all graphs.

The eigenvector wy of M belonging to A; (M) has negative components (in con-
trast to the largest eigenvector z1 of A), because u”w; = 0, which is similar to the
eigenvectors of the Laplacian @ (art. 103). The Rayleigh equation (A.130) and the
Rayleigh inequalities in art. 251 demonstrate that

wiMw;,  wl Aw, 1 (wipd)2 < 1

A (M) = = A (A) — —

T o2
— d 4.95
wlw, wiw, 2L wiw, — 2L (wid) (4.95)

because wiw; = 1 as the orthogonal eigenvectors are normalized (art. 247). The

scalar product w? d is only zero for regular graphs, where each node has degree
r, because the degree vector is d = r.u and wiu = 0, provided w; # T"N (as
in the complete graph). However, art. 156 shows that the largest eigenvalue for
regular graphs equals A\; (M,) = max (0, A2 (4,)) < A1 (A,), where the subscript
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4.5 The modularity and the modularity matriz M 161

r explicitly refers to regular graphs. Due to interlacing (art. 155), of all graphs,
the regular graph has the smallest largest eigenvalue of the modularity matrix.
Because the last term in the above upper bound is always strictly positive for non-
regular graphs, we obtain the range of A\q (M) for any graph: 0 < A\ (M) < Ay (A4).
In summary, the largest eigenvalue of the modularity matrix M is always strictly
smaller than the largest eigenvalue of the corresponding adjacency matrix A.

We apply the Rayleigh principle to the adjacency matrix A,

af Azy o] May

A (A) = — (&Td)” < M\ (M) +

= Taq 4.96
¥z 2T ay 2L ( ) ( )

1
2z (1
Combining both Rayleigh inequalities (4.96) and (4.95), we obtain bounds for the
difference Ay (A) — A1 (M) > 0,

1

2L( d) <A -\ (M) <

T 52
Since 27d = 2T ATu = (Az1)" u = A1 (A) 27w and invoking interlacing, we arrive
from (4.96) at the lower bound

(27 u)*
max <A2 (4), A1 (4) {1 Y A1 (A)}> <\ (M)

which is only useful when the fundamental weight (mlTu)2 can be determined accu-

T . . . _ d
rately. On the other hand, the scalar product zi d is maximal if 1 = T such

that, using (4.91),

1 > dTd N N
57 (@1d) SEZFTZ—ZM(M)
j=1

from which we obtain, together with (4.96), the upper bound
N
=Y N (M)
j=2

158. Bounds for the largest ezgem}alue of the modularity matriz. Applying d” Md =
dT Ad — (de) = N3 — 2, we obtain with d = Zk 1 VkWg, wWhere vy, = d"wy,
the decomposmon

NG O
Ny — 2 = i (M) (4.97)
k=1
As shown in Section 8.5, the sign of (4.97) determines whether a graph is assortative
(positive sign) or disassortative (negative sign). Similarly, from d* M?d, we deduce
that

N
N3N, N3 949
Ny—2 N, +N—12= E: Yidn (M
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By applying the inequality (3.88), we obtain

N; N a A (M (A (M
Ny V2 M < max %Ck—2() = A1 (M)
NQ Nl Zk:l 7}3 1sksn Pyk
and
N, Nj Ny 2
2 _93 <A (M
~, N + <N1> 1 (M)

Application of Laguerre’s Theorem 110, combined with art. 294 and trace rela-
tions (4.91) and (4.92), yields the rather complicated upper bound

A (M) < —% (%) + NT (ﬁi) - NL (i{;?’ Nl) (4.98)

For regular graphs where Ny = Nr* and 0 < Ay (M,.) = A2 (4,), the bound (4.98)
provides an upper bound for the second largest eigenvalue of the adjacency matrix,

)\(A)<——+ \/7“ —1)/N2—(N+1)r

For the complete graph Ky, where r = N —1 and A\ (Mg, ) = 0, the bound (4.98)
is exact. In view of the upper bound (4.84) for the modularity, the bound (4.98)
is only useful when the right-hand side is smaller than the average degree E [D].
Numerical evaluations indicate that the bound (4.98) is seldom sharp.

159. Mazimizing the modularity. Maximizing the modularity m consists of finding
the best N x ¢ community matrix S in either definition (4.81) or (4.82). Numerous
algorithms exist, that approximate the best community matrix S, for which we
refer to Newman (2010). Here, we concentrate on a spectral method.

ﬁyTM y for the modularity, where the
number of clusters ¢ = 2, Newman (2006) mimics the method in art. 143 by writing

Starting from the quadratic form m =

the vector y = Z;vzl Bjw; with 8; = yTw, as a linear combination of the orthogonal
eigenvectors wi,ws, ..., wy of M,

1 N
m=17 > BN (M) (4.99)
j=1

Maximizing the modularity m is thus equal to choosing the vector y as a linear
combination of the few largest eigenvectors, such that components of y are either
—1 and +1, which is difficult as mentioned above in art. 143. Newman (2006)

proposes to maximize 8; = y?w; and the maximum 3; = Z;V:1 ’(wl)j is reached
when each component y; = —1 if (w1); < 0 or y; = 1 if (w1); > 0. Moreover,
using properties of norms (art. 203), we find that 8, = |Jw1]|; > ||wi], = 1, and

by construction and the orthogonality of the eigenvectors, 5; < |lw;l|; .
This separation of nodes into two partitions according to the sign of the vector
components in the largest eigenvector wy of M is similar in spirit to Fiedler’s
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4.6 Bounds for the diameter 163

algorithm (art. 150). Apart from the sign considered so far, a large eigenvector
component contributes more to the modularity m in (4.99) than a small (in absolute
value) component. Thus, the magnitude (in absolute value) of the components
in w; measures how firmly the corresponding node in the graph belongs to its
assigned group, which is a general characteristic of a class of spectral measures
called “eigenvalue centralities”, defined in Section 8.7.1.

Since v is the eigenvector belonging to A (M) = 0, the trivial partition of the
network in one group is excluded from modularity, because A (M) = 0 does not con-
tribute to the sum in (4.99) and that any other eigenvector, due to the orthogonality
(art. 247), must have at least one negative component. In contrast to the Fiedler
partitioning based on the Laplacian, the situation where all non-zero eigenvalues
of M are negative might occur (as in the complete graph, for example; art. 157),
which indicates that there is no partition, except for the trivial one, and that the
modularity m in (4.99) is negative. This observation is important: Newman (2006)
exploits the fact that m < 0 to not partition a (sub)network.

4.6 Bounds for the diameter

160. Ezponential growth of a graph. Mohar (1991) has derived a beautiful formula
that relates the algebraic connectivity py_1 with the “growth” of a graph G. Let
By, (v) be the set of nodes of G lying at a distance of at most k hops from an
arbitrary node v € N and denote the cardinality of By (v) by by = | By (v)|. Mohar
(1991) defines the growth of the graph G by the increase of the numbers by, with
the number of hops k from v.

Mohar (1991) starts by applying Fiedler’s inequality (4.50) for the algebraic
connectivity in art. 134 to the eigenfunction

1 if u € Br_1
f (U,) = 0 ifue Bk\Bk,1

Executing the sums in (4.50) yields

Y w-re)’=Y Y 1+4 Y S

ueEN weN u€EBr_1 wEBE\Bk_1 u€Br_1 wé¢ By,
DD VIR DRI
u€BR\By—1 wEBE 1 u€EBR\Br_1 wg By,

A>T+ >

u@¢ B, WEBR_1  uéBj weEBE\Br_1
= 2bg_1my + 2 (N — b)) my + 8bg—1 (N — by)

where my = ZwEBk\Bkﬂ 1 = by — bi_1, the number of nodes at k& hops from an
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arbitrary node v, and

ST = F ) =

el

where 7y is the number of links [ = (I*,[”) with one end node [T € By and the
other end node [~ € Bj11\Bj. Introducing the above summations into Fiedler’s
inequality (4.50) for the algebraic connectivity pun—1 results in the inequality

N(vk—1+ k) = pn—1 (be—1mp + (N — b) my, + 4bi—1 (N — by,))
= UN—1 (Qbk(N — bk> + Qbkfl(N — bk,1) — Nmy + mi)

where the last equality is readily verified by working out the products. After rewrit-
ing the inequality as

1t
N (u> + N —m2 > 2{be(N — bg) + b1 (N — be_1)}
HN-1
Mohar (1991) bounds vx—1 + V& < dmax™k, so that
dmax
N <— + 1> myg — mz > 2 [bk(N — bk) + bk—l(N — bk—l)]
HN-1
He further omits the quadrate mﬁ because NV (j—i];‘i + 1) my > N (:f—x% + 1) my—

mj and, finally, arrives at a lower bound for the number m;, of nodes at k hops
from an arbitrary node v,

dmax
N (M— n 1) i > 200 (N — b))+ b (N — b)) (4.100)
N-1
Mohar (1991) proposes the function y (¢) with the property at integer values
t = k that y (k) = by. By a remarkable insight'#, he further relates the inequality
(4.100) of my = by, — b1 to the logistic differential equation

V(1) = Ly (V —y ()

d‘“‘%. The solution for the number y (¢) of nodes at distance ¢
max THN—1

with the initial condition y (0) =1 is

where g =

B N
14+ (N —1)e bt

y (1)

14 Mohar (1991) expands by_1 = y(k—h) = y(k) — v’ (k) h + o(h) to first order in h, thus
treating h as arbitrarily small and ignoring terms of the order o (h), while actually h = 1. The
replacement in (4.100) results in a differential inequality

N ( dmax +1) y/(k‘)h Z 2 [y(k) (N_y(k)).i,- (y(k) _y/(k)h) (N_y(k) +y' (k)h)]
HN-—1

=4y (k) (N —y (k) —=2(N =2y (k))y' (k) h + o (h)

which led Mohar to the logistic differential equation.
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4.6 Bounds for the diameter 165

Mohar (1991) proves for a connected graph (puy—1 > 0) that,
. N
if k> 1and b < E,then by >y (k). (4.101)

The inequality (4.101) implies that the graph G has exponential growth until about
half of the nodes in G are reached. From then on, i.e. when b > %, the finite size
N of G limits the exponential law. When y (I) = % so that [ = %ln (N =1), it
holds'® that b; > % and more than half of the nodes are reached from an arbitrary
node v, which leads to the bounds for the diameter: |I| < p < 2[l]. Explicitly,

Mohar bounds for the diameter as

{MN— 1 + dmax

In (N — 1)J <p<2 P“V‘l—ﬂia" In (N — 1)} (4.102)
dpn_1

dun_1

161. Distance between non-overlapping subgaphs. van Dam and Haemers (1995)
ingeniously apply interlacing (art. 266) and the definition (art. 21) of the hopcount
or distance between nodes in terms of powers of the adjacency matrix A. They start
by defining two sets of nodes, V with v = |V| nodes and W containing w = |W)|
nodes, whose nodes are separated by at least m+1 hops (see art. 23). The union of
both sets, V UW = N, comprises all nodes in the graph G. Art. 21 shows for node
k €V and €W that (pm (A)),, = 0 for any polynomial p,, (z) of degree m. By a
suitable node relabeling V ={1,2,..., v} and W={N —w+ 1,N —w+2,..., N},
the matrix p,, (A) can be written as block matrix

P _ 0]
o (A) = vX (N—w) vX W
P (4) RN_o)x(N—w) S(N-v)xw

Next, van Dam and Haemers (1995) concentrate on a regular graph (art. 55) with
degree r and construct the polynomial such that p,, (r) = 1. Since Au = ru
and p,, (A)u = py, (r)u = wu, working-out the block matrix p,, (A) with corre-
. T .
sponding block vector u = [ Ul (N—w) Ulxw ] yields Pu(y_w)x1 = Uyx1 and
Ru(n_wyx1 + Stwx1 = U(n—v)x1, but also from (py, (A))Tu = u, we find that
Py —I—RTU(N_U)Xl = U(N—w)x1 and STu(N_U)Xl = Uyx1. Inspired by the quo-
tient matrix (art. 37) of a graph, the average row sums of the block matrices are

. Ul x o Pucn_ u _onyRu(n— u — ) SUy .
determined as —X——Nowixl — ] gpd Zx(Now PWow)a 4 XN Pex] — 1 With

T u —_0)SUwx 1
Ut (N—0)SUwx1 = (Uix(N—v)SUwx1) = w, we find that XEW=2wxd — W 5
oy RN . . .
SN PN et — ] — - Rather than continuing with the matrix py, (A), van

Dam and Haemers (1995) continue with the larger, symmetric, general bipartite
matrix

0 Pm (A)

M=1p. @ o

15 Indeed, assume the opposite, namely that b; < %, then (4.101) shows that b > y () = %,
which leads to a contradiction.
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166 Eigenvalues of the Laplacian @

whose eigenvalues are £p,, (A;) for 1 < k < N and whose corresponding average
row sum matrix is

0 0 1 0
C = 0 0 L- Niiv Nui'u
N—w 1- N—w 0 0
0 1 0 0
The eigenvalues of the matrix C (see Section 6.8) are A\ (C) = —A4(C) and

A2 (C) = =X35(C) =, | tw=5(v=a7- The general interlacing Theorem 72 in art. 266

states that the eigenvalues of the matrices C' and M interlace, thus

X2 () < o (M) = max o ()]

In summary, if the v = |V| nodes in the set V and the w = |[W| nodes in the set
W in a regular graph G with degree r are separated by at least m 4 1 hops, then
the van Dam-Haemers inequality states that

(N —0) (N —w)

< 2 4.1
< maxpy, (Ax) (4.103)

for each polynomial p,, (z) of degree m obeying py, (r) = 1.

162. Diameter p. Another consequence of the Alon-Milman bound (4.73) is:

Theorem 25 (Alon-Milman) The diameter p of a connected graph is at most

2 max
p < { Yma log, NJ +1 (4.104)
UN—1

Proof: If B is the set of all nodes of G at a larger distance than h from A and
A contains at least half of the nodes (a > 1), then (4.76) gives

1 UN—1
< Z _
b< 5 €XP < In (2) {h 2dmaxJ>

If we require that exp (f In (2) {h ggﬂ;J) < %, then

2dmax 2dmax
h < log, N < { logQNJ—Fl
UN-1 HUN—-1

By construction, for such h, it holds that b < % or B = &, which implies that

A = N. Next, if v € N, then the subset {v,} of nodes that is reached within h
hops of node v contains more than N/2 nodes. Indeed, suppose the converse and
define A = N\ {vp}. Then a = A/N > 1. But, we have shown that, if h = p, then
A = N. This contradicts the hypothesis. Hence, all nodes in G are reached from
an arbitrary node within A = p hops, where p is specified in (4.104). ]
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4.6 Bounds for the diameter 167

For a > 1, Mohar (1991) has derived the bound

p<2 {\/; F + 1} {loga W (4.105)

which can be minimized for «. Mohar (1991) showed that (4.105) is sharper than
Alon-Milman’s bound (4.104), because 1 < 2dmax as shown in art. 104.

Theorem 26 (Mohar) The diameter p of a connected graph is at most

log %

p<2|—r2
log( 1n'1x+:]])

(4.106)

where 1 is the isoperimetric constant.

Proof: Mohar (1989) considers the subsets A, (r) = {v e N :d(v,u) <7} at
distance r of node u. The definition (4.77) shows that, for |4, (r)] < [§],

([ Au ()] +[Au (r = 1) < 0Ay (1) + 0A, (r — 1)

where 0A, (r) contains all the links between the set A, (r)\A, (r —1) and the
set Ay (r + 1)\ A, (r). Hence, 04, (r) + 0A, (r — 1) contains all links in two-hop
shortest paths between the set A, (r — 1) \ A, (r — 2) and the set A, (r + 1) \ A, (),
which equals

DA () +0A (r=1) = S dy < dyae (14 ()] = [Au (r = 1))
VEAL,(r)\Ay(r—1)

Thus, n(|Ay (P)|+ Ay (r = 1)|) < dmax (|Ay (1)] — Ay (r — 1)]) from which, for
Ay (n)] <[5,
4,0 2 2 1, )

Since |A, (0)] =1 and |A, (1)| = d,, iterating the inequality yields

4, ()] > (M>

dmax - 77

. N . . log . .
provided |A, (r)] < [£], which restricts rmax < [m y —‘ This maximum

hopcount reaches half of the nodes. To reach also the other half of nodes in the
complement, at most 2ry.x hops are needed, which proves (4.106). O

Theorem 27 (Chung, Faber and Manteuffel) The diameter p of a connected
graph is at most

arccosh (N — 1)

HituN—1
H1—HKN-—1

p < +1 (4.107)

arccosh (
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Proof: Chung et al. (1994) start from the characterization of the diameter p
in art. 22: the diameter p is the smallest integer such that, for any given node
pair (4,7) in the graph G, there exists a polynomial p,, (2) = >_j_, axz® of degree
m < p in z such that the element (7,7) in the corresponding matrix polynomial
Pm (@) is non-zero. Alternatively, if (pn, (Q)), ; > 0 for each node pair (,7), then
the diameter p < m.

First, Chung et al. (1994) derive an upper bound for any element of an N x N

matrix R with zero row sum and zero column sum, thus Ru = 0 and v’ R = 0,

where u is the all-one vector. Chung et al. (1994) propose the vector v; = e; — %,
which satisfies UZT\/—“N =0 and |juil[; = vFv; = 1 — 4. Then, invoking norms
(art. 205),
T T 1
Rij = ei Rej = v Roj < |Joily |B]l; llvjll, = 1Bll; {1 - = (4.108)

The Laplacian @ is a special case of the matrix R, but p, (Q)u =", arQFu =
apu is not zero, unless ayp = 0. Because properties of the Chebyshev polynomials
T, (z) = cos(narccosz) in Section 12.7 will be used later, Chung et al. (1994)
consider R = py, (Q) — +J and ag = py, (0) = 1, which satisfies (4.108) and thus
possesses a zero eigenvalue, while all other eigenvalues (art. 243) are p,, (u;) for
N —1 < j <1. Using the inequality |a| — |b] < |a + b| and (4.108) shows that

1 1 1 1
52 5 - Rl =5~ IRl (1- )

In order for (p., (Q)) > 0 for any node pair (4, j) such that p < m, we must require
that ||R||, = Hpm + J||2 ~—- Applying (A.23) yields Hpm + JH2

MaxXN_1<;<1 |Pm (,uj)| < N171 It remains to find a polynomial p,, (2) Wlth Pm (0) =
1 that is bounded on the interval [py_1, 1] by 5. The Chebyshev polynomials

(Pm (Q));; = Rij + <

T, (z) possess optimality properties (art. 343) on an interval [a,b] such that the
polynomial

a+b—2z
( ) Tm( +bfa )
PmZ)=———77—"—
b
T (%)

satisfies pp, (0) = 1 and maxgepq p) [P (7)] = (

(4.109)

. Applying the latter expres-

’—‘Q
~—1|

sion to the requirement maxy_1<j<1 |[pPm (1;)| < 57— gives the bound

T, <w> SN-1
— UN-1
Finally, using the definition T, (z) = cosh (marccoshz) in art. 375 leads to

arccosh (N — 1)

Hit+pN_—1
H1—HUN-—1

m >
arccosh (

Since m is an integer and p < m, we arrive at (4.107). O
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4.7 Eigenvalues of graphs and subgraphs 169

Chung et al. (1994) remark that the more “aesthetically pleasing” inequality

arccosh (N — 1)

p1tpUN—1
H1—HKN-—-1

p <
arccosh (

fails for graphs with diameter p = 1 +m, where m = ——— 5=~
arccosh(“li#N_1

tioned whether such graphs exist. The affirmative answer was published by Merris

arccosh(N—1) but ques-

(1999), who found that the cocktail party graph is a member of such graphs that
do not obey the above inequality. At about the same time of the work by Chung
et al. (1994), van Dam and Haemers (1995) found almost the same bound (4.110)
for the diameter as (4.107).

Theorem 28 (van Dam-Haemers) The diameter p of a connected graph is at
most

e log (2(N — 1))
= |log (v + y/iin—1) — log (it — iin-1)

Proof: The van Dam-Haemers inequality (4.103) in art. 161 is sharpest for the
polynomial that minimizes maxy~1 p2, (Ax). By “relaxing” this criterion to the min-
imization of max e[y, xs] [Pm (¥)], We arrive at the Chebyshev polynomials 75, ()
(see art. 343 and Section 12.7). In particular, van Dam and Haemers (1995) find a

_ T ()

similar polynomial (4.109) as in Chung et al. (1994), namely p,, (z) = T (EEE)
m\~ b—a

with a = Ay and b = Ay. The diameter p corresponds to m = p — 1 in the van

+1 (4.110)

Dam-Haemers inequality (4.103) for at least two nodes so that v = w = 1, from
which, similarly as in the proof of Theorem 27, the upper bound for the diameter
follows as

log (2(N — 1))

<
P= log(lzk—/\zv-&-)[k:—)q)
VEn—VE—Ds

+1

van Dam and Haemers (1995) remark that any non-regular graph can be made reg-
ular with degree r by the addition of self-loops, that (a) do not alter the Laplacian
(art. 4) and (b) allow to substitute £ —\; by u; based on the Laplacian @@ = rI— A
of a regular graph. After substitution, (4.110) is found. O

4.7 Eigenvalues of graphs and subgraphs

163. Laplacian eigenvalues of a subgraph. If G; and G are link-disjoint graphs on
the same set of nodes, then the union G = G; U G5 possesses the adjacency matrix
Ag = Ag, + Ag, and the Laplacian Q¢ = Q¢, + Qa,- Interlacing in art. 267 then
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170 Eigenvalues of the Laplacian @
states that, for each eigenvalue 1 < k < N,

AN (G1) + Ak (G2) < A (G) < X (G2) + A1 (Gh)
i (Ge) < i (G) < i (Go) + pa (G1)

This shows that the Laplacian eigenvalues uy (G) are non-decreasing if links are
added in a graph, or, more generally, if Go C GG and both have the same number of
nodes, Ng, = Ng, then py, (G2) < py (G).

164. Addition of a link. The general result in art. 163 can be sharpened for the
specific case of adding one link to a graph. If G+{l} is the graph obtained from G by
adding a link /, then the incidence matrix Bg, ;) consists of the incidence matrix
B¢ with one added column containing the vector z, that has only two non-zero

elements, 1 at row e™ = and —1 at row e~ = j,
Qc+{1y = BaBE + 227 = Qg + 227 (4.111)
In the terminology of art. 90, 22T = —eieJT —ejel +eel + ejejT, where ey, is a

N x 1 base vector. Further, an application of Schur’s complement (A.65) leads to
det (QG+{Z} — MI) = det (QG + 22T — MI)
= det (Qg — pl) det (I +27 Qg —pl) ™t z)
Applying the “rank one update” formula (A.66) yields
det (I—i—zT (Qg — puI) ™" z) =1+42(Qg—pul)™ ' 2"

The same argument as in art. 263 shows that the strictly increasing rational
det(Qg 1y —nl)
det(Qa—pl)
the poles. From the common zero uy (G) = pny (G+{l}) = 0 on, the function

det(Qc+ 1y —11)
det(Qa—pl)
the zero at puny—_1 (G + {l}). Hence, interlacing results in

pi (G) < pj (G +A{1}) < pja (G) (4.112)

for all 1 <4 < N and u1 (G) < p1 (G + {i}) for i = 1. Comparing this bound for
j =N —1 with (4.69) in art. 142 yields

pn-1(G) < py-1 (G +{l}) < min (uy—2 (G) , pv-1(G) +2)

function only possesses simple poles and zeros that lie in between

increases implying that first the pole at uy_1 (G) is reached before

165. Addition of a link without changing pn—1. Let y denote the Fiedler eigen-
vector of Q¢ belonging to the algebraic connectivity py—1 (G), normalized such
that y”y = 1. For any vector w, there holds that w” zzTw = (sz)2 = (w; — wj)2
and (4.111) indicates that yTQG+{l}y =y’ (QG + ZZT) y=pn-1(G)+ (yi —y;)*
Art. 113 shows that ¥ Qg 3y > pv—1 (G + {l}) and using (4.112), we obtain

(i = 9;)* > pn-1 (G +{1}) = pv-1(G) 2 0
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4.7 Eigenvalues of graphs and subgraphs 171

which demonstrates that the algebraic connectivity does not change when a link
Il =i ~ jis added between two nodes 7 and j with equal Fiedler eigenvector
components, i.e. y; = y;.

166. Laplacian spectrum of the cone of a graph. When a node N + 1 is added to
a graph G with NV nodes, a similar analysis as in art. 85 applies. The Laplacian,
corresponding to the adjacency matrix (3.95), is

_ Qnx N + diag ('U) —UNx1
Q(N+1)x(N+1) = — (")
I1xN

dny1

The special case v = u, where the new node with label N 4 1 is connected to all
nodes in graph G, forms the cone of the graph G . Let wy be the eigenvector of
Qnxn belonging to py for 1 <k < N, then, for the vector 2z = [ w{ 1,

0 o — Qnxn +1 —unx: wr | _ (e + 1) wy
(N+1)x(N+1)~k _ (uT)IXN N 0 T

—U" Wk

Any eigenvector w of Qnxn, orthogonal to u so that u”wy, = 0, results in an
eigenvector 2z of Q(ny1)x(n+1) belonging to p, + 1. Hence, in addition to the
zero Laplacian eigenvalue, N — 1 eigenvalues of the Laplacian of the cone of G are
{mr + 1}, oy The largest eigenvalue N + 1 follows from (4.7) or is determined
by Corollary 1.

Alternatively, as shown by Das (2004), the entire spectrum can be deduced by
considering the complement G%,, of the cone of G. Since the cone node has
degree N, the complement G%,, is disconnected. Theorem 20 states that the
Laplacian of G, has at least two eigenvalues uy = py_; = 0, while art. 116
tells us that the remaining Laplacian eigenvalues of G%,; are those of G%. Using
(4.19) then shows that the eigenvalues {,uj (Q(NH)X(NH))}lgjgNH of the cone
of a graph are N + 1, p; (Qnxn) +1for 1 <j < N —1, and zero.

167. Removal of a node. Let us consider the graph G\ {j} obtained by removing an
arbitrary node j and its incident links from G. Art. 166 shows that the Laplacian
eigenvalues of the cone of G\ {j} equal N, p1 (G\{j}) + 1, 2 (G\{j}) +1, ...,
un—2 (G\{j})+1 and 0. The original graph G is a subgraph of the cone of G\ {j}.
Since the Laplacian eigenvalues are non-decreasing if links are added to the graph
(art. 163), we conclude that, for all 1 <k < N — 2,

ke (G\{7}) +1 2 pi1 (G)

168. Vertex connectivity ka (G). The vertex connectivity of a graph, ks (G), is the
minimum number of nodes whose removal (together with adjacent links) disconnects
the graph G. The Rayleigh principle (art. 251) shows, for any other connection
vector v # u in art. 166, that ZTQ(N+1)X(N+1)Z > UN—1 (Q(N+1)X(N+1)) such that

-1 (Qv+nx(v+n)) < unv—1 (Qnxn) +1
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Repeating the argument gives uny_1 (Q(N+k)><(N+k)) < pn—1(@nxn) + kI
kn (G) = k, the above relation shows that (Fiedler, 1973)

pn—1 < kn (G) (4.113)

Indeed, for a disconnected graph py—1 (Qnxn) = 0 and the addition of minimum
% (G) = k nodes connects the graph, i.e., uy_1 (Q(N+k)X(N+k)) > 0.

169. FEdge connectivity kc (G). The edge connectivity of a graph, k. (G), is
the minimum number of links whose removal disconnects the graph G. For any
connected graph G, it holds that

ki (@) < kg (G) < duin(G) (4.114)

Indeed, let us concentrate on a connected graph G that is not a complete graph.
Since dpin (G) is the minimum degree of a node, say n, in G, by removing all links
of node n, G becomes disconnected. By definition, since x.(G) is the minimum
number of links that leads to disconnectivity, it follows that k2 (G) < dumin(G) and
kr(G) < N — 2 because G is not a complete graph and consequently the minimum
nodal degree is at most N — 2. Furthermore, the definition of k.- (G) implies that
there exists a set S of kz(G) links whose removal splits the graph G into two
connected subgraphs G and G, as illustrated in Fig. 4.2. Any link of that set S
connects a node in G to a node in G5. Indeed, adding an arbitrary link of that set
makes G again connected. But G can be disconnected into the same two connected
subgraphs by removing nodes in G; and/or Gs. Since possible disconnectivity inside
either Gy or G5 can occur before £, (G) nodes are removed, it follows that kpr(G)
cannot exceed . (G), which establishes the inequality (4.114).

Fig. 4.2. A graph G with N = 16 nodes and L = 32 links. Two connected subgraphs G
and G2 are shown. The graph’s connectivity parameters are kx(G) = 1 (removal of node
C), k2(G) = 2 (removal of links from C to G1), dmin(G) =3 and E [D] = 2 =4.

Let us proceed to find the number of link-disjoint paths between A and B in a
connected graph G. Suppose that H is a set of links whose removal separates A
from B. Thus, the removal of all links in the set H destroys all paths from A to B.
The maximum number of link-disjoint paths between A and B cannot exceed the
number of links in H. However, this property holds for any set H, and thus also
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4.7 Eigenvalues of graphs and subgraphs 173

for the set with the smallest possible number of links. A similar argument applies
to node-disjoint paths. Hence, we end up with Theorem 29:

Theorem 29 (Menger’s Theorem) The mazimum number of link- (node)-disjoint
paths between A and B is equal to the minimum number of links (nodes) separating
or disconnecting A and B.

The edge connectivity kz(G) (analogously the vertex connectivity wka(G)) is
the minimum number of links (nodes) whose removal disconnects G. By Menger’s
Theorem, it follows that there are at least k. (G) link-disjoint paths and at least
kn (G) node-disjoint paths between any pair of nodes in G.

170. Edge connectivity k. (G) and the algebraic connectivity pn—1. Fiedler (1973)
has proved a lower bound for py_; in terms of the edge connectivity s, (G).

Theorem 30 (Fiedler) For any graph G with L links and N nodes,

N1 > 2z (G) (1 — cos %) (4.115)
Proof: Consider the symmetric, stochastic matrix P = [ — —Q in Theorem 79.

The spectral gap of P equals 1 — X9 (P) = ’;N L and is lower bounded in (A.184) by
U (1 (P)) < 1=X9 (P), where ¢, (z) = 22 (1 —cos Z) for # < $ and the measure of
irreducibility r (P), defined in (A.169), equals r (P) = "if—(i) Indeed, by Merger’s
Theorem 29, the maximum number of link-disjoint paths between node A and B
equals the minimum number of links that separates A from B. Hence, there are at
least k¢ (G) link-disjoint paths between any pair of nodes in G. O

The function v, (z) in Theorem 79 on p. 387 provides a second bound

N

which is only better than (4.115) if and only if 2k, (G) > dmax. The algebraic
connectivity py—1 (Cn) = 2 (1 — cos N) of a circuit Cy follows from (6.6), while
pn—1(Pyx) = 2(1—cos%) for a path Py follows from (6.10). Also, ks (Cy) =
kn (Cn) = 2 and k2 (Pn) = kn (Py) = 1 show that equality is achieved in the
bound (4.115) for the path Py. However, in most cases as verified for example from
Fig. 4.1, the lower bound (4.115) is rather weak.

s 2w s T
un—1 > 2k (G) (cos N oS W) — 2dmax (1 — coS N) COS —

171. Pendants in a graph. A node with degree one is called a pendant. Many
complex networks possess pendants. If a connected graph G has a pendant, then
the second smallest eigenvalue puy—1 < 1 as follows from (4.53) in art. 136.

Theorem 31 If pendants are not adjacent to the highest degree node, then uy_1 <1.

Proof: Let node i be a pendant, connected to node j in G. The complement
G¢ of G has at least one node of degree N — 2, namely the pendant i in G€,
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while the degree d > 1, because node j is not the highest degree node. We
can construct a spanning tree 7' from the star K; y_2 with center at node ¢ by
precisely adding one link at a leaf node of the star to node j in G¢. Art. 164
shows for T = KLN_Q + {l} that M1 (T) > U1 (KLN_Q) and 1 (KLN_Q) =N-1
is computed in Section 6.7. Since the spanning tree T' is a subtree graph of G°¢,
art. 163 implies that pq (G) > py () > N — 1, such that we arrive, with the
complement formula (4.19), at uy—1 (G) < 1. O

The following theorem is due to Das (2004):

Theorem 32 (Das) If G is a connected graph with a Laplacian eigenvalue 0 <
<1, then the diameter of G is at least 3.

Proof: Let z denote the eigenvector of the Laplacian @ belonging to u, then the
eigenvalue equation (1.3) for the j-th component is

N N
1z = E Qirek = djz; — E ajrzr = djz; — E 2k
k=1 k=1

keneighbors(j)

which we rewrite for a particular neighbor k; of node j as

2, = (dj — p) zj — Z 2k

keneighbors(j)\k;

If Rk; = M geneighbors(5) #k = Zmin(j)» then ZkEIleighbors(j)\kj 2k < (dj - ]-) Zmax(j) >
(dj — 1) Zmax, Where zmax = maxi<p<n 2, and

Zmin(j) 2 (dj - M) Zj — (dj - ]-) Zmax

If we now choose node j such that z; = zmax, then we obtain the bound Zmin(j) =
(1 = 1) Zmax. Art. 103 shows that the sign of zyax is positive. Hence, if 0 < p < 1,
all eigenvector components corresponding to the neighbors of the node j with largest
eigenvector component, have the same sign as Zj = Zmax-

Similarly, if 2z, = maXpencighbors(j) = Zmax(j), then Zkencighbors(j)\kj 2p >
(dj = 1) Zmin(y) > (dj = 1) Zmin, Where zyin = minj<g<ny 2, and

Zmax(j) < (d] - :U'> 25 = (dj - 1) Zmin

Choosing node j such that z; = zmn, then yields zpaxj) < (1 = ) Zmin- Art. 103
shows, for u # puy = 0, that the sign of zy;, is negative. Hence, if 0 < p < 1, all
eigenvector components corresponding to the neighbors of the node j with smallest
eigenvector component, have the same sign as z; = zmin, Opposite to zmax. This
implies that the nodes with largest and smallest eigenvector component are not
neighbors (not directly connected), nor have neighbors in common. Since G is
connected, this means that the diameter in G is at least 3. O
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5

Effective resistance matrix

After the adjacency matrix and the Laplacian matrix of a graph, we believe that
the effective resistance matrix deserves a third position of importance. The effective
resistance matrix is a distance matrix and intimately related to the pseudoinverse
Q' of the Laplacian matrix introduced in Section 4.2. Geometrically, as shown in
Devriendt and Van Mieghem (2019a), the elements in the effective resistance matrix
equal the squared distances between vertices in the simplex of the graph. For more
details on the effective resistance matrix, we refer to Fiedler (2009) and Devriendt
(2022b).

5.1 Effective resistance matrix

We confine ourselves to a connected resistor network (art. 14) in which the injected

nodal current vector is specified by x = @v in (2.15) in terms of the nodal potential

L where
T

7, is the resistance of link /. The inverse relation v = Qfz in (4.32) in Section 4.2

assumes that the reference potential is chosen equal to the average voltage in the
T
network v,, = = = 0. We aim to determine the effective resistance matrix 2

with elements wg;, that, for a constant current 1. > 0, satisfy v, —vp = waple, which

vector v. The weight of link [ = (¢, j) between node ¢ and j is w; = w;; =

is Ohm’s law (2.12). The effective resistance wy, is a generalization of the classical
series and parallel formulas for the resistance to any graph configuration.

Due to the linearity of the flow dynamics in art. 14, any nodal current vector x
can be decomposed in several, elementary current injections with some magnitude
I. > 0 at some node a and leaving the network at some node b. Such elementary
current injection is represented by z = I. (e, — €p), where ey is the basic vector
with components (ex),, = l{x—n} and generates a potential at each node in the
network, specified by the inverse relation v = Qfz in (4.32) as

v=1I.Q" (eq — ep) (5.1)

Ohm’s law (2.12) states that the resistance is the proportionality constant or ratio
between the potential difference v, — v}, at the nodes a and b in a graph and the

“e— thus measures

c

current I, injected at node a and leaving at node b. The ratio

175
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176 Effective resistance matriz

the resistance of a subgraph over which the injected current I, in node a spreads
towards node b and wgyp is called the “effective” resistance between nodes a and
b. The pseudoinverse QT can be computed in different ways, by (4.30) in art. 128
and by (4.36) and related formulas in art. 129. The definition v, — vp = wapl. of
effective resistance and v, — v, = (eq — eb)TU combined with (5.1) then leads to
the quadratic form

wap = (€a — )" QT (eq — €3) (5.2)
Multiplying (5.2) out yields
wap = Qha + Ql), — 201, (5.3)
from which the symmetric effective resistance matrix (2 is obtained as
Q= C¢u” +u¢t —2Q7 (5.4)

where the vector ( = (QL, Q£27 cee Q}LVN). All diagonal elements of €2 are zero,

as follows from the definition v, — vy = weple or from (5.2). The explicit form of
the N x N matrix ¢u” +u¢7 is

2¢; G+¢ G+ -+ G+din
1+ ¢ 2¢2 G+@G o G+dn
ul +uT=| G+6 G@+d&G 26 - G+N

G+dv G@+iv G+v - 2w
Example The Laplacian pseudoinverse of the complete graph with r; = rg, for
1
each link [ is Q;(N = NTlKN ( — %J) in (4.40), with (k. = (]\1[T N)u. Formula (5.4)
(J-1)= AKN, where each

provides the effective resistance matrix Qg , = NTK
link has link weight w;; = ﬁ in the weighted adJacency matrix A K-
N

Substituting the spectral decompomtlon Qf = Zk Ly tzkz in (4.30) in the
definition (5.2) yields, with (e, — eb) 2= (21), — (21)p

- Z

illustrating that wep, > 0 and that the effective resistance w,;, between node a and
b increases with increasing difference between the vector components of Laplacian

ui — ()’

eigenvectors. For a small algebraic connectivity MN 1, the Fiedler vector zy_1
contributes significantly. Since QTQQT QT ( - ) Q' and substituting Q =
Bdlag( )BT in (2.14), the quadratic form (5.2) is transformed to a Euclidean
norm,

2

wap = (ea — )" QTQQT (ea — 1) =

(5.5)

dlag( ;_J) BTQ! (cq — ¢)

2
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5.2 Effective graph resistance 177

The effective resistance w; of a link [ = (4, j) between node ¢ and j in graph G
equals the “parallel resistor formula”

1 1 1

= (5.6)

Wi (wG\l)ij
where (wg\l)[ is the effective resistance between node i and j in the graph G\!
obtained from the graph G after deletion of the link [ = (7, j). Indeed, the current
x = I, (e; — e;) injected in node ¢ and leaving at node j flows through the resistor
r; of direct link [ and through the remaining part of the network. Applying the
law of Ohm and the definition v, — vy = wapl. of effective resistance leads to (5.6),
from which (wg\l)ij < (WG‘)z‘j = wy. If the direct link is absent, then collapse
all intermediate nodes between node ¢ and j # i to a single node v, resulting in
the graph G with (w@)ij < (wg)ij, because all resistances among the intermediate
nodes are put to zero in the graph G. The parallel resistor formula indicates that
(w@);jl =y o and (w@);jl = w%,k, while the series connection gives
(W@)ij = (w@)iv + (w@)vj. If all links have a unit resistance wy; = 1 and a;; = 0,
then we arrive at

1
wij > T + no direct link between 7 and j (5.7)
(3

1
d;

Coppersmith et al. (1996) elegantly show that

1 1
S S T
Wi = 1+d; + 1+d;
between any two nodes ¢ and j in a graph G.
The parallel resistor formula (5.6) shows that the relative resistance ‘:—ll <1,

with equality only if (wg\l)ij — 00, implying that the removal of link [ in G
disconnects the graph. The relative resistance w;;jw;;, coined by Devriendt and
Lambiotte (2022), appears in Foster’s theorem in (5.20), in spanning trees (Sec-
tion 5.6), in sparsification (Section 8.9) and in the resistance curvature p; = 1 —
% fo:l Ar;WirW;k at node ¢ where w;, = #, defined and studied by Devriendt and
Lambiotte (2022).

5.2 Effective graph resistance

The effective graph resistance, defined as

1o & 1
Re = B ZZwab = §uTQu (5.8)
a=1b=1
can be regarded as a graph metric that measures the difficulty of transport in a
graph G. The smaller R, the better transport is facilitated in the graph. In
a nicely written book, Doyle and Snell (1984) extensively treat the connection
between electric resistor networks and random walks, for which we also refer to
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178 Effective resistance matriz

Chandra et al. (1997), Ellens et al. (2011) and Ghosh et al. (2008). In chemical
graph theory, the effective graph resistance R¢ is called the Kirchhoff index.
The effective graph resistance Rg = 1u”Qu in (5.8) becomes with (5.4)

1 1
Rg = §uT§.uTu + §uTu.§Tu —u"Q'u = NuT¢ = Ntrace (QT) (5.9)
because u”QTu = 0 as the vector u is orthogonal to each other eigenvector of Q.
The trace-formula (A.99) leads to

N—-1
Rg =N
k=1

1
— 5.10
Mk ( )

The vector ¢ = (QL,Q;Q, .. .,Q}L\,N) is a graph metric vector and as important
as the degree vector d = (Q11,Q22,-..,QnnN). As shown in Van Mieghem et al.
(2017), the component k of the vector ¢, that satisfies sz < Q;r-j for1<j <N,
can be regarded as the best spreader node in the graph or as the node lying in the
center of gravity of the graph.

For the undirected version of the graph in Fig. 2.1, the effective resistance matrix
Q, computed from (5.4), is

0 31 37 64 49 36
31 0 34 55 34 31
1137 34 0 45 48 49
66 64 55 45 0 45 64
49 34 48 45 0 37
36 31 49 64 37 0 |

and the corresponding effective graph resistance (5.10) is Rg = %22. A more inter-

esting example is the effective resistance of the chain of cliques G}, (n1, ng, ..., np+1),
defined in Section 6.13. By using Theorem 45, art. 127 and the explicit relations
for the coefficients ¢ (D) and c¢1 (D) of the characteristic polynomial pp (p) in
Van Mieghem and Wang (2009), the effective resistance of the chain of cliques

GE(nl,nz,-~-,nD+1) is

po(vosEin) s mm
Ry =3 N vy (5.11)
o Ng—1Ngq Pt i k-1 + N + Nkt

where ng = npye = 0, the number of nodes N = Zf;ll n; in (6.50) and the

number of links L = Zf;ll (") + ZJ‘D:l njnjt1 in (6.51). Theorem 41 shows that
the minimum effective resistance in any graph with N nodes and diameter D is
achieved in the class G}, (n1,n2,...,np+1). Hence, minimizing (5.11) with respect
to ny,na,...,npy1 subject to (6.50) yields the smallest possible effective resistance

in any graph with N nodes and diameter D. An extreme case is the path Ppiq
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5.3 Properties of the effective resistance 179

with D-hops (see the end of Section 6.13), for which all n; = 1 such that N = D+1
and the effective graph resistance, computed via (5.11) and (5.10) with (6.15), is

RPD+1 -

D(D+1)(D+2)_D+1Z”: 1
6 2 kll—cosDkL

5.3 Properties of the effective resistance
5.3.1 The effective resistance w,, and \/w,, are both a metric

The effective resistance matrix € is a distance matrix (art. 8) obeying (a) non-
negativity, wap > 0, wee = 0, (b) symmetry wqp = wp, and (¢) the triangle in-
equality, wep < Wee + wWep, which follows from the simplex representation of an
undirected graph (Fiedler, 2009; Devriendt, 2022a). This metric property of  has
been discovered by Klein and Randi¢ (1993) and by Gvishiani and Gurvich (1987)
(in Russian).

Indeed, injecting a current I. in node a, which leaves the network at node b,
translates to v, — vy = wepl.. The potential of any other node m lies in between
Vg > Um > Up, else node m would be the source node if v, > v, or a sink node if
U, < vp. This property is known as the maximum principle of harmonic functions
(art. 15): the potential v is a harmonic function with boundary conditions at node
a and b. If y4, is the current flowing from node a to node m, then v, — v, =
WamYam and, similarly, v, — vs = WmpYmb, SO that v, — vy = WamYam + WmbYmb
and wWep = Wam y":” + Wmp I Ymb  The law of current conservation tells that both the
current Y., < I. and ymp § I. cannot exceed I., resulting in

Wab < Wam T Wmb

which proves the triangle inequality. Equality for m # a nor m # b only holds if
Yam = I and ymp = I., meaning that the effective resistances wg,, and wy,, are
in series and m is a “cut” node. In Section 5.6, we deduce the triangle closure
Wam + Wmp — Wap 10 (5.37).

The spectral decomposition of the Laplacian Q@ = ZMZ7 | where M = diag(u),
and its positive semidefiniteness allow us to write ) = Zdiag(\/ﬁ) diag(\/ﬁ) 77 =
STS with S = diag(\/ﬁ) ZT and similarly for the pseudoinverse. From the Gram

decomposition Qt = (ST)T ST, the square of the Euclidian distance between two
vertices a and b with coordinates p, = Ste, and p, = STe, in the inverse simplex
(Devriendt and Van Mieghem, 2019a) equals ||[ps — psl|* = (Pa — pb)” (Pa — pb) =
(eq — eb)T (ST)T ST (e, — €p). The definition (5.2) indicates that |p, — p;,||2 = Wab
and, by the triangle inequality ||pa — po|| < ||[pa — Pml| + |pm — pol|, we arrive! at

vV Wab < VWam + /Wmb

L A direct demonstration (art. 203) follows from /g, =
(5.5).

diag(m) BTQt (ea —e,,)H2 in
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180 Effective resistance matriz

In summary, the effective resistances obey two triangle inequalities. Thus, both wqy
and +/wgp are a metric.

5.3.2 The effective resistance w,, as minimization of electrical power

The power, the energy per unit time (in watts), dissipated in a resistor network is
the sum of the power dissipated in each resistor, which equals P = v”z. The voltage
vector v = Qfx in (4.32) gives P = 27 Q' x, while the injected current vector z = ij
in (2.15) leads to P = vTQu. The effective resistance matrix Q = ¢.u7 +u.¢T —2Q"
in (5.4) and the conservation law uTz = 0 of current in art. 14 expresses the power
inP=azTQtz as

N i1
P = f—:ETQ:c = —= ZZwljmlx] =— Zzwijl’i%‘ (5.12)
i=1 j=1 =1 j=1

where at least one component x; of the injected current x is negative. Since the
voltage is specified with respect to a voltage reference, the power equals P =
B2 (v*)T vi* for v = B (v* + au) for any real o and 5.

If we inject a current I. in node a, which leaves the resistor network at node b,
then the potential difference at the nodes a and b is v, —vp = waple = B (v} — vg). If

we choose a = %vb, then v} = % (Vg — vp) = %wablc and v; = 0. Finally, we choose

— 1
wable

B = waple so that v} = 1 and vj = 0 and the normalized vector v*
is dimensionless. Using (4.4) and w; = %, the dissipated power is

’P:vTvi:Z%(vH—vl Z Z a” i — ;)

lel =1 j= 7,+1

(v — vpu)

The power P is minimized (art. 200) with respect to the nodal voltages if the
corresponding gradient VP = 0, i.e. each partial derivative 2 BT =0for k e N.
Now,

N N a N k=1
g 2 kj 2 i 2
= ) Lo —v) 4+ ) — (o —v)"+ ) — (vi —vx)
i=1;i#k j=i+1;5#k Tij j=k+1 kj i=1 ik
and
N N
oP ak] azk ajk
— =2 (v — v4) 72 P — V) = (v —vj) = 2z
8 J J
Vk Tkj Tzk: T]k

j=k+1 = j=1

where the last equality follows from the flow conservation law in (2.11). By con-
struction, the injected current is xx = 0 in all nodes k € N, except for node a and

b, where x, = —x, = I.. But, in those nodes a and b, the voltage v, and vy is
given and is not variable, i.e. P cannot be varied over those voltages. This means
that the vector v* = wa},IC (v — vpu) minimizes the power P = (waple)? (v*)" Qu*,

given the normalized voltage v; = 1 and v; = 0, and consistent with the maximum
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5.3 Properties of the effective resistance 181

principle of harmonic functions (art. 15). Invoking (5.1) in v* = — 11. (v — vpu),

the minimized power is
Panin = (wanle)” (0)" Qu* = I (ea — )" QTQQT (e0 — &) = wanI?

where the last equality follows from (5.5). Hence, the effective resistance wgy is

proportional to the minimized power Py, given the injected current vector z =

I.(eq — €p). On the other hand, since %& = I. and Ppin = %, the effective

resistance wgp is inversely proportional to the minimized power Pui,, given the

potential v, and v,. Explicitly as in Batson et al. (2013), we find that w;bl =
min (U*)T Qu*.

v*wi=10y=0

5.3.3 FEigenvalue equation of the matrix éﬂ

From the definition (5.4) of the effective resistance matrix {2, we obtain QO =
Q¢u” + Qu¢™ — 2QQ" and using the basic inversion product QQ = I — &J in
(4.31) and Laplacian characterizing eigenvalue equation Qu = 0,

QQ = Qcu” —2 (I - %J) (5.13)

Right-multiplication of (5.13) with any vector = orthogonal to the all-one vector w,
thus satisfying u”x = 0, leads for a weighted Laplacian matrix @ with correspond-
ing effective resistance matrix {2 to the eigenvalue equation

Q0 = —2u (5.14)
Since each column of a weighted Laplacian matrix é sums to zero, (5.14) leads to
QOQ = —20Q (5.15)

The eigenvalues of the N x N asymmetric matrix Q€2 in (5.13) are the zeros
(art. 235) in A of the characteristic polynomial cg(, (A) = det (QVQ - )\I), which

is, with J = vu® and (5.13), cga (A) = det ((@( + %u) ul — (A +2) I). Invoking
the “rank one update” formula (A.66), det (I + ch) =1+d"¢, yields

cgo ) = (DY A+ 2V

Hence, the matrix @Q has N — 1 eigenvalues equal to A\ = —2, belonging to
each possible external current x orthogonal to u, and one zero eigenvalue whose
eigenvector must be a linear combination? of the eigenvector u and z. Hence,
QR (au+ bx) = aNQ(¢ —2bx = 0, so that x = %Qg and the eigenvector belonging

2 Since QQ is not symmetric, the eigenvectors are not necessarily orthogonal, but independent.
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182 Effective resistance matriz
to A =0 equals u + %@g Since uT (u + %@C) = N, it is convenient to scale that
eigenvector of QQ belonging to the single zero eigenvalue as
1~ U
== — 5.16
p=5Q0+ % (5.16)

which satisfies u”p = 1 and

Qp =2 (CTEC +RG> U

Alternatively, a solution for p in @Qp = é (Qp) = 0 is immediate from @u =0 as
Qp = cu for some constant ¢ # 0. Devriendt and Lambiotte (2022) demonstrate

b
that the vector p has several fundamental properties and that Cf“QC +Rg = 0? can

be interpreted as a variance of a distribution on a graph. The above properties of
p are recast into the matrix equation

() ()=o)

which has been generalized by Fiedler (2009) to Fiedler’s block matrix identity,

0 u” —20? pT~ g
u € P —%

which is verified taking into account the definition (5.16) of p and QQ in (5.13).
T~
Since (QQ) = Q1) Fiedler’s block matrix identity shows that

QO =2pu” — 21

Fiedler’s block matrix identity, equivalent? to

~1
0 u” —20%  pT . 2
( S > = ( ) 1 ~ with Qp = 20°u (5.17)

relates the effective resistance matrix Q to the (weighted) Laplacian é of a graph
and possesses many deep, geometric properties of the simplex geometry of a graph,
for which we refer to Fiedler (2009); Van Mieghem et al. (2017); Devriendt and
Van Mieghem (2019a); Devriendt (2022a). Applying the block inverse (A.61) to
Fiedler’s block matrix identity (5.17) indicates that 202 = m
p= mﬁ_lu, while the inverse of the effective resistance matrix is

and the vector

_ 1 1~

which was earlier found by Bapat (2004)[Theorem 3] after a longer computation
without resorting to Fiedler’s block matrix identity (5.17).

3 The nice identity (5.17) has independently been derived and studied by Subak-Sharpe (1990).
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5.3 Properties of the effective resistance 183

5.83.83.1 Foster’s Theorem
Applying the trace-formula (A.99) to the eigenvalue equation (5.14) yields

trace ((@Q)k> = (-1)* 2k (N - 1) (5.19)

for any non-negative integer k. For any two n X n matrices A and B, it holds
that trace(A”B) = 31U, >0 aijbij = u' (Ao B)u, where an element of the
Hadamard product A o B equals (Ao B),;; = a;;b;;. Hence?, for k = 1 in (5.19),
trace(QR) = Zivzl Z;VZI gijwij and since w;; = 0, we find with Q = A — A that
trace(QR) = — vazl Zjvzl a;;jwij, which maps (5.19) to

—ZZ aij— .: N-—1 (5.20)

i=1 j=1
In summary, the sum (5.20) over all weighted links of the relative resistances equals
Dinj Tt s =Y 1ec 2 = N—1or, in terms of the Hadamard product, u” (A o Q) u=

2 (N —1). Klein (2002)[Corollary C] mentions that (5.20) was first discovered by
Foster (1949) and (5.20) is known as Foster’s Theorem. The (weighted) effective
graph resistance (5.8) is written in terms of the Hadamard product as

EG:%uTQu—Q (JoQ)u ; ((J—g—i-g)o(l)u

= %uT ((J—;Q oQ)u—l— %uT (ZOQ)U
Foster’s formula (5.20) expresses the (weighted) effective graph resistance as
~ 1 ~
RG:N71+§UT((J7A)OQ)U (5.21)

5.3.3.2 Beyond Foster’s Theorem

Klein and Randi¢ (1993) have considered the matrix é@éﬂ, where @ is an arbitrary
N x N symmetric matrix, which equals with (5.13)

~ ~ ~ ~( ~ 2
QION = -2Qd+Q (@QC + N@u) ul
After taking the trace,

trace (@@@Q) = —2trace (@@) + trace (@ (@@C + %fbu) uT>

4 For k = 21in (5.19), we find after tedious computations the less physically interpretable relation

N N N N

N N
= Z Z Wizr’qviil]vr'r 2 Z Z 78] Z QWi Wir + Z Z Z Z @i Q] WimrWis

i=1r=1 r=11=1 i=1 1=1m=1r=1[=1

where the quadratic form ZZ <1 Zr 1 W2 GiGrr = L (Q0Q)7 and the vector § =
(@11,G22,---,qnnN) with g5 = Ek 17, k GT'Qq is related to the Kemeny
d4?d, as shown in Wang et al. (2017, Corollary 1).

constant
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184 Effective resistance matriz

and using the cyclic permutation property (4.14) of the trace, we obtain
trace (é@@Q) = —2trace (@@) (5.22)
because trace(@ (@@C + %@u) uT) = trace((@@C + %@u) uT@) =0. Ifd =

Q (@Q) k_2, then (5.22) shows that trace((éﬁ) k> = —2trace<(@9)k_l> , which

leads, after iteration in k, to (5.19), illustrating that (5.22) is a generalization of
(5.19).

5.4 The pseudoinverse Q! and the effective resistance matrix Q

We rewrite QL = eZTQTej with the property that Qfu =0 as

QL =elQle; = (ei - E)TQT (ej - i)

N N
Using 27 Qtx = —%xTQx in (5.12) for any vector z obeying z7u = 0, we obtain
1 u\T U uT'Q 1 uTQu
T _
Q=3 (e-x) 20— 5) =gy Cte) -390 - 5

With the definition (5.8) of the effective graph resistance Rg = “T2Q“, the elements

of the Laplacian pseudoinverse are expressed in terms of those of the effective
resistance matrix

TR L o U I o A D SR (5.23)
ij72 Nkil ik Nkil ik 2 i N2 .

Corollary 2 In each row (or column) of the pseudoinverse Qt, the diagonal element
1s the largest: QL— > Q;-rj for each row1 <i<N.
Proof: The difference QL - Q;-rj in (5.23) with w;; = 0 gives

t t 1 ’LLTQ 1 ol
Qii — Qi; = wij + W(ei —ej) = N Z {whi + wij — wij}
k=1

Section 5.3.1 shows that each element in the effective resistance matrix 2 satisfies
the triangle inequality wy; + w;i; > wij, so that QL— — Q;-rj >0, for any j. (]

5.5 The spectrum of the effective resistance matrix ()

Let us denote the eigenvalue equation of the N x N symmetric, non-negative effec-
tive resistance matrix €2 by

Q’Uk = PkVk (524)
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5.5 The spectrum of the effective resistance matrix 2 185

where pj is the k-th eigenvalue belonging to the normalized eigenvector vy, i.e.
Ugvk = 1. The real eigenvalues are ordered as usual: p; > po > --- > pn. The
eigenvalue decomposition in matrix form is

Q=VRVT (5.25)

where V' is an orthogonal matrix, the N x 1 vector p = (p1, p2, - - ,pN)T with eigen-
values of  and R = diag (p). Invoking the definition (5.4) of 2 in the eigenvalue
equation (5.24) leads to

CauTvog +u.CTog — 2QTv, = pruy, (5.26)

Taking into account that «”Qt = 0, we obtain v’ C.ulv, + uTu.CTv, = prulvs.
The definition (5.8) of the effective graph resistance Rg = %uTQu, complemented
by u''¢ = Rﬁ, shows that

Rg Ty,
— + N
N + uTvy,

Pr = (5.27)

In a connected graph, the effective resistance matrix €2 has full rank, i.e. detQ £
0, because the inverse Q! exists as shown in (5.18). Hence, we conclude that
the effective resistance matrix 2 does not possess a zero eigenvalue in a connected
graph and pg # 0 for 1 < k < N. A powerful theorem, that has appeared already
in Fiedler (2009, Corollary 6.2.9), is

Theorem 33 In a connected graph, the eigenvalues ps, ps, ..., pn of the effective
resistance matriz Q interlace with those of the Laplacian matriz as

2 2 2
0>——2p>——2>-+2>— > PN-1 2> —
M1 H2 HN-—2 HN-1

> PN (5.28)

Proof: We include the proof of Sun et al. (2015). Let the (N —1) x 1 vector
w = (1, 2, .., un—1) denote the positive eigenvalues of the weighted Laplacian
of a connected graph (Section 4.1.1). The spectral decomposition (4.1) is then

é =7 [ diag () 0 } Z7T . Let the matrix S = ZTQZ, then Q = Z§ZT, which we

0 0
write as Q = Z { 55; < § ] ZT, where S is a symmetric (N — 1) x (N — 1) ma-
NN

trix. Combining QQQ = —2Q in (5.15) shows that diag(y) Sdiag(u) = —2diag(y).
Hence, S = —2(diag(u))~" is the principal submatrix of Q and the Interlacing
Theorem 71 then leads to (5.28). O

Theorem 34 In a connected graph, the effective resistance matrix 0 has one pos-
itive and N — 1 negative eigenvalues.

Proof: Theorem 34 follows from Theorem 33 and the Perron-Frobenius Theorem
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75 for non-negative matrices as €. We add a second proof. For any vector z,
definition (5.4) of § indicates that

210z =2 (27¢) (zTu) — 227 Q"2 (5.29)

If 27w = 0 or 27¢ = 0, then 27Qz < 0, because QT is positive semidefinite. In other
words, for any vector z orthogonal to the all-one vector u or to the vector (, the
quadratic form z7Qz is negative, but %uTQu = 2Ry > 0 and ¢TQ¢ > 0. Since Q
is of full rank N and has no zero eigenvalue, there are (N — 1) negative eigenvalues
and one positive eigenvalue. O

We now concentrate on the largest eigenvalue p;. A consequence of Theorem 34
and (A.99) with the zero diagonal in § lead to

N N
*Zﬂk and p1 = Z ||
k=2 k=2

Gerschgorin’s Theorem 65 states that each eigenvalue py lies in a circle around the
origin — each diagonal element of Q is zero — with radius (Qu), for 1 <i < N. It
follows from the definition (5.4) and (Tu = &2 in (5.9) that

R
Qu = (N + u—2 (5.30)
N
and Gerschgorin’s Theorem 65 becomes, for a certain k and 1,
R
lorl < =5 + NG (5.31)

In particular, Gerschgorin’s Theorem 65 provides the upper bound

R
p1 < =7+ Nmax; (5.32)

Theorem 33 or the Rayleigh inequality p; > ZZTT%Z in (A.129) for z = u give the
lower bound

> = 5.33
,01 = TU ( )

Combining p, = Z& + N< °~ in (5.27) and Gerschgorin’s bound (5.31) implies

Ty

that there exists a component 7 in { so that % < % + (; for kK > 1. Since
the components of the principal eigenvector v; are non- negative by the Perron-

Frobenius Theorem 75, it holds that
N
¢Toy . Zj:l Gvj <

= max (;
T N S maxg;
u* v Zj:l vj i
Rg

where equality only holds if ¢ = au and relation (Tu = ¢ in (5.9) implies that

oz—N2 and ( = NQu
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5.6 The effective resistance and spanning trees 187

Theorem 35 If { = u then the eigenvalues of effective resistance matriz Q0 are
p1 = % and py = — s 2 for k> 1.

Proof: If ¢ = iu then Qu = (N + u% in (5.30) reduces to the eigenvalue
equation Qu = %u illustrating that p; = % and v; = . For ( = iu the

eigenvalue equation (5.26) becomes
R
( GJ QT> Vg = Pk

~ ~1
which we rewrite with QT = (Q + aJ) — —zJ in (4.36) after choosing & = —Rg

as —2 (@ — R@])il
the orthogonality of eigenvectors of the symmetric matrix € implies that viu=0
and RgJv, = 0. Thus, we arrive at the eigenvalue equation —%vk = Qug, which
indicates, for k > 1, that ux = ——k if (= N2 U. O

ﬁ

Vi = PVk, equivalent to —%'vk = (@ - RgJ) vg. For k > 1,

Earlier, Zhou et al. (2016, Theorem 12) have demonstrated that equality in (5.28)
only holds if Q is “resistance regular”, i.e. Qu = c.u, equivalent to { = ' .u, for
some positive real numbers ¢ and ¢’

With — /31 > po > f% in (5.28), the spectral gap p; —p2 of the effective resistance
matrix € is bounded by p; + % <pr—p2<p1+ % With the lower (5.33) and
upper (5.32) bound, the spectral gap lies between

2Rc = 2 Rg 2
Ze L2 < <2 4N i+ —
N+u1 pL—p2s o5t miaXCer

Since p1 < N by (4.20), the spectral gap of Q is always larger than
2(Rg+1)
N

Theorem 35 shows that (p1 — p2) g, = 2 and equality in (5.34) occurs in the com-
plete graph K. The spectral gap of 2 in K is smallest among all graphs.

pL—p2 = (5.34)

5.6 The effective resistance and spanning trees

As explained in art. 16, Kirchhoff (1847) has proposed an explicit solution of a
variant of the inversion problem of the fundamental relation z = Qu in (2.15).
Here, we present another method and deduce two forms (5.35) and (5.36) for the
effective resistance w;;.

Fiedler’s inverse block matrix (5.17) elegantly® leads to

i = det éN\{i,j} _ det (Q\FOW(iaj)\COI(iJ)) (5.35)
! det Q\{z} £(G)

5 The derivation is based on computations of Karel Devriendt.
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188 Effective resistance matriz

where M\, i1 is the (N —m) x (N — m) submatrix obtained from the N x N

matrix M by removing the rows and same columns i1, ...,%,,. Indeed, we rewrite
(5.17) as

0 1 Wl \ —20%  p, p"

1 0 wf =| p» —3Q Q;

uowi D P Qi 3y

The Schur block matrix inverse formula (A.60) in art. 217 shows that

—1 -1

1~ 0 1 UT T 7y —1

—5Q\) = (9\{j}—[ U w ][ Lo } [ T D = (g —wju’ —wwy)
~ —1

from which, after inversion, the element —2w;; = —2 (Q\{j}) ~ is found and the
definition (A.43) of the inverse of matrix and det @\{i} = ¢(G) by (4.37) then
demonstrates (5.35).

If z;, = 1 and z; = —1 in the potential difference (4.43) in art. 130, then the
definition of the effective resistance between node ¢ and j shows that v; — v; = w;;

and we find
B det (@\row(j,N)\col(j,N)) + det (@\ row(i,N)\col(i,N))
e £(G)
(_1)j+i (det (@\ row(i,N)\col(j,N)) + det (@\ row(j,N)\col(i,N)))
£(G)
Since @ = @T, it holds that det (@\ row(i,N)\col(j,N)) = det (@\ row(j,N)\col(i,N))-

Cramer’s method in art. 130 holds for an arbitrarily removed row in Qv = x and
we arrive, after replacing row N by a row k # {i,5}, at

det@\row(@k)\coluJe))+det(@\mwu,k>\colu,k))*2 - 1)i+jdet(@\row(@k)\col(j,k))
Wij =
‘ £(G)

(5.36)
We rewrite (5.36) with (5.35) as a triangle closure equation for the distance matrix
Q

det (Q\ row(i,k)\ col(j,k))
£(G)

whereS the last inequality is due to the triangle inequality (see Section 5.3.1).

itj

(wik + wij) —wij =2(=1) >0 (5.37)

6 Comparing the definition (5.3) of effective resistance w;; = Q:.ri + Q;j - 2Q;rj and (5.36) would
(=) det(Q\ row (i, k) col(4.k))
- det(Q\(x})

(A.43), apart from an arbitrary row and column deletion (due to det@ =0). But, ij >0is

hint to Q:.rj , which corresponds to the definition of the inverse

not true in general. The correct expression for Q;rj is given in (4.39).
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5.6 The effective resistance and spanning trees 189

The Matrix Tree Theorem for the weighted Laplacian in art. 118 additionally
tells us that

d (N , ) _ 1
et Q\ row i\ col j Z w (T) with ’LU H -
TET(N) leT
where ’T( ) is the set of trees spanning all N nodes in weighted graph with weight
w; = = of link [ and the total number of such spanning trees equals the complexity
¢ (G ) \T( )| in art. 122.

The numerator det @\ row(i,j)\col(i,j)) in (5.35) can also be expressed in terms
of spanning trees. The idea is to merge a pair of linked nodes (i, j) of the graph G
into a new node k by letting r;; — 0 or w;; = TL — 00 so that the voltages v; = v;.
The merging transforms the graph G into a new graph G’ with weighted Laplacian
@', where row 7 and j and column 7 and 7 in Q are replaced by a row and column
for node k, containing the links from node ¢ and j to the other nodes in G. The
link weights from node k£ to node m in the graph G’ is wy,,, = Win + wjy,, for all
nodes m € AN\{4,j}. Then, we obtain that Q’\{k} = Qv\{iyj}, which does not contain
row k; thus, neither w’ link weights nor the link weight w;; = % The Matrix Tree
Theorem for the weighted Laplacian in art. 118 then states that

det (@\ row(i,j)\col(i,j)) = det (Q'\{k}) = Z w (T)

TET'(N-1)

where 77 (N — 1) is the set of spanning trees on all N—1 nodes in the weighted graph
G’, thus also node k. Since node k is the merger of the linked nodes (i, 7), this means
that each spanning tree of 7/ (N — 1) in G’ contains the link (4, j) in the original
graph G, but the link (4, j) is not weighted. In other words, 7/ (N — 1) = 7(; ;) (N)
is the set of spanning trees in G that contain the link (7, j) and the weight of a tree

T € T' (N — 1) and its corresponding tree T' € 7 (N) are related by w (T") = %
ij
In summary, we have proved
Theorem 36 The effective resistance between node i and j in (5.35) equals
1
wij = 1 ZTeT(i,j)(N) w (T) _ ZTG’T@,]’)(N) HleT;l;&(z’,j) " (5.38)

Wij ZTGT(N) w(T) ZTeT(N) HleT %

where ’T( ) is the set of trees spanning all N nodes in weighted graph with weight
wy = r_z and 1(; jy (N) is the set of spanning trees in G that contain the link (i, j).

The relative resistance w;jw;; in (5.38), the effective resistance w; = wj; of the
link I = (4,7) multiplied by its weight w;; = w; = %,, equals the probability that
the link / appears in a random spanning tree of G. The relative resistance w;jw;;

reflects the importance of a link for connectivity of the graph. For unit resistances
r; = 1, the effective resistance in (5.38) simplifies to w;; = | \(7'7()1\(11)\( | _ | <£(72;()N)|,
which is a rational number, and equals the fraction of all spanning trees of the

graph G on N nodes that contain the link (z, ).
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190 Effective resistance matriz

5.7 Bounds for the effective resistance matrix )

A constrained system can never reach a lower global minimum of the system dy-
namics than a system without constraints. Hence, transport restricted to a single
path is never more efficient than unrestricted transports over all possible paths,
which implies (art. 7) that the weight w (P};) of the shortest path Pj; between
nodes i and j is lower bounded by the effective resistance:

i < sij =w(P) (5.39)

In other words, the N x N difference matrix S—¢2 is a non-negative matrix. Equality
in (5.39) occurs for trees, where there is only a single path between nodes.

Besides the upper bound w;; < s;; in (5.39), Theorem 37 presents a lower bound,
given in Lyons and Peres (2016, ex 2.129; p. 602):

Theorem 37 The effective resistance w;; can be lower-bounded by the hopcount h;;
of shortest path P;; as

—h2 < w; 5.40
m Wij ( )
where m =3, , wfl 1s the sum over all links of the inverse link weights.

Equality in (5.40) occurs in an unweighted graph, where two nodes i and j are
connected by k paths of h hops.

Proof: For a pair of nodes i and j, an i — j cut consists of a set of links such that
removing these links from the graph disconnects ¢ from j. If C;; is a collection of
i — j cuts which are independent, i.e. no two cuts share a link, then the inequality
of Nash-Williams (1959) states that

Z w(C) < wij (5.41)

CeCyj

where w(C) = (Z(a,b)ec w;bl) ' is the weight of a cut C' € C;;. Nash-Williams’
inequality (5.41) follows from Rayleigh’s monotonicity law by identifying the start
and end nodes of all links in each of the cuts. For two nodes ¢ and j which are
h;; hops removed from each other, we consider the following collection of ¢ — j
cuts C;; = {Cp};", where the cut Cp = {(a,b) € £ : hig = k,hip = k + 1}
contains all links between one node at shortest path hop distance k from i and the
other node at distance k + 1. Nash-Williams’ inequality (5.41) shows that w;; >
ZZ”O_I w( %). After multiplying both sides with m =}, . w; ! and noticing that
m>> klo "w=1(C}), because the right-hand side only counts the weights of links
in the cuts, we obtain

hijfl

h,;]‘*l
mwi; > Z w(Cy) Z w_l(C’k) > h?j
k=0

k=0
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5.8 Lower and upper bound for the effective graph resistance Rg 191

where the last step follows from the Cauchy-Schwarz inequality (A.72) in art. 222
that erases the link weights. This proves the lower bound in (5.40). O

5.8 Lower and upper bound for the effective graph resistance Rg

We end this chapter by establishing a lower and upper bound for the effective graph
resistance Rg. Art. 127 demonstrates that

(@ _ (N-1)

fe="¢6) = ED)

(5.42)

where the complexity £ (G) of the graph G equals the number of all possible span-
ning trees in the graph and where ¢; (Q) equals the number of all spanning trees
with N —2 links in all subgraphs of G (see the Matrix Tree Theorem 22). The lower
bound in (5.42) for the effective graph resistance R¢ is attained by the complete
graph Ky, for which Rx,, = N — 1. This lowest value of the effective graph resis-

tance R¢g follows from (5.21) in the unweighted case, where (J - g) o= A0Q,

RG:N71+%UT(ACOQ)’LL:N*1+ Z wij (5.43)
injeGe
because A° o §) is a non-negative matrix, which reduces to the zero matrix only for
the complete graph K.
Applying Schur’s argument in art. 276 for a convex function g to the degree
vector d = Egu in (4.17) in art. 109 and the diagonal element vector { = EQi in
(4.45) in art. 132 yields

zﬁﬂ@—dy,lz“g<>
Zﬁi:lg (ﬁQmm) = NNl Zk 1 9( )

For example, g (z) = 1 is convex for > 0 and, hence,

N— N N N-1 R
1Zm1dl—N1Zk1;}k:N4L
N-—-1
Z’leT —N 1Zkluk7N_

The harmonic, geometric and arithmetic mean inequality (6.38) indicates that 12\;_L2 =

Eﬁ)] < ZZ 1 d =NE [ ] Finally, we obtain the inequality, differently found
in Van Mieghem et al. (2017),

(N -1
E[D]
which is slightly sharper than (5.42). Combining (5.43) and (5.7) shows that

1 1
Rg>N-1+ Z (d—er—)
i j

injEGE

<(N-17°E [%] < Rg (5.44)
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Now, ZMGGC(% ) =42 S sy (1—ay) (2 + 4) and

i=1j= ”z#J i=1 " =150 j=1 "7 i=lsitj
N N
N-—-1-—d; 1
=2>" Z :2<(N—1)Zd—L—N>
=1 i=1

—1 (5.45)
that appeared in Zhou and Trinasjti¢ (2008)
(

An upper bound w;; < h;; follows from (5.39), where the distance matrix H is
defined in art. 8. This bound in (5.8) yields

Re < (Z)E[H]

where E [H] is the average hopcount in the graph. With Rg = N Zk 1 H_k in
(5.10), this bound is equivalent to

E[H

1
o (5.46)

L

where equality is obtained for a tree as shown in (4.29) of art. 127.


https://doi.org/10.1017/9781009366793.008
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.008
https://www.cambridge.org/core

6
Spectra of special types of graphs

This chapter presents spectra of graphs that are known in closed form.

6.1 The complete graph

The eigenvalues of the adjacency matrix of the complete graph Ky are Ay = N —1
and Ay = ... = Ay = —1. Since Ky is a regular graph (art. 110), the eigenvalues
of the Laplacian are, apart from uy =0, all equal to y; = N for 1 <j < N —1.

The adjacency matrix of the complete graph is Ax, = J — I and J = u.u®. A
direct computation of the determinant det (Ag, — AI) in (A.94) is

det (J — 1 — M) =det (u.uT—()\+1)]) _ (—()\—Fl))Ndet (I— ’)L\Lij;)

Using the “rank 1 update” formula (A.66) and u"u = N, we obtain
det (J—T=X)=(-D)N A+ ' (A+1-N)

from which the eigenvalues of the adjacency matrix of the complete graph Ky are
immediate. In summary,

det (J —aI), ., = (=1)"z"" " (z —n) (6.1)

A computation of det (Qx, — pl) follows the same determinant manipulations
as in the example in art. 122, after replacing N — 1 by N — 1 — u, to obtain

det (Qryy — ) = —p (N = )V ",

6.2 A small-world graph

In a small-world graph Gswyg;n, each node is placed on a ring as illustrated in
Fig. 6.1 and has links to precisely k subsequent neighbors and, by the cyclic struc-
ture of the ring, also to k previous neighbors. The small-world graph has been
proposed by Watts and Strogatz (1998) — and is further discussed in Watts (1999)
—to study the effect of adding random links to a regular network or of rewiring links
randomly. The thus modified small-world graphs are found to be highly clustered,

193
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194 Spectra of special types of graphs

like regular graphs. As mentioned in Section 1.5, depending on the rewiring process
of links, typical paths may have a large hopcount, unlike in random graphs.

The adjacency matrix Agwy,n is of the type of a symmetric circulant, Toeplitz
matrix whose eigenvalue structure (eigenvalues and eigenvectors) can be exactly
determined by the Fourier matrix.

Fig. 6.1. A Watts-Strogatz small-world graph Gswg;n with k& = 2 is a regular graph on
N = 16 nodes with degree d = 4.

6.2.1 The eigenvalue structure of a circulant matriz

A circulant matrix C' is an n X n matrix with the form

Co Cp—1 Cp—2 - 4]

C1 €o Cn—1 "~ C2

C= C2 C1 Co C3
Ch—1 Cp—2 Cp-3 - Co

Each column is precisely the same as the previous one, but the elements are shifted
one position down and wrapped around at the bottom. In fact, ¢jx = ¢(j_x)modn,
which shows that diagonals parallel to the main diagonal contain the same elements.
The elementary circulant matrix F has all zero elements except for ¢; = 1,

0 0 0 --- 17
10 0 --- 0
E=|101 0 "~ 0
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6.2 A small-world graph 195

and represents a unit-shift relabeling transformation of nodes: 1 — 2,2 —3,...,n —
1. Thus, the unit-shift relabeling transformation, which is a particular exam-
ple of a permutation (art. 31), maps the vector z = (z1,22,...,2z,) into Ex =
(Tn,x1, T2, ..., Tp—1). Again applying the unit-shift relabeling transformation maps
Ez into E%x = (2y,—1,%n, 1, . - ., Tn_2), which is a two-shift relabeling transforma-
tion, and
[0 0 0 1 0]
0 0 0 1
1 0 0 o 0
E? =
0 1
: . . . .0
0 - 0 1 0 0]

Hence, we observe that E? equals the circulant matrix C' with all ¢; = 0, except for
co = 1. In general, E¥ represents a k-shift relabeling transformation, where each
node label n; — 7(j41)moan and E* equals C with all ¢; = 0, except for ¢ = 1.
Alternatively, a general circulant matrix C' can be decomposed into elementary
k-shift relabeling matrices E*, with EY = I and E™ = I, as

n—1
C=col+c1E+cE*+ - 4¢p,_ BV = Z cp EF
k=0

Denoting the polynomial p (x) = ZZ;S cxz®, we can write that C = p (E).

The eigenstructure of £ can be found quite elegantly. Indeed, the eigenvalue
equation Fx = Az is equivalent to solving the set, for both A and each component
x; of the n x 1 eigenvector z,

Tp = AT
T = )\.7,‘2
Ty = )\{L‘3

Tp—1 = )\xn

After multiplying all equations, we find [[7_; #; = A" [[j_; @, from which A" =1

2mik 2nik

and A\, = e» , for k = 0,1,...,n — 1. The roots of unity A\, = e™= obey
AL = e, A = IAk]? = 1 and, thus with (A.98) in art. 235, we obtain
det E = Z;é A = (=1)"71. Since any eigenvector is only determined apart
from a scaling factor, we may choose the first vector component x; = « and, after
backsubstitution in the above set, we find that z, = Al *a forallk=1,...,n—1
and x,, = A = A!7" because A" = 1. Thus, the eigenvector x of F belonging to the

eigenvalue \; equals ¢ = « (1, )\,;1, )\;2, ey )\;”H) and the matrix X containing
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2mi

the eigenvectors of E' as column vectors is, with £ = e~ |

1 1 1 1
1 5 52 f"*1

X=a|l & ¢ gy (6.2)
| gl @21 L g

where (X)kj = ¢b=DG=1)_ We observe that X7 = X. If z and y are the eigenvec-
tors belonging to eigenvalue Ay and );, respectively, then the inner product zHy
(art. 246) is

n n ik n it 1
mHy _ szfyl — o2 Z (/\11;1)* )\;4 _ aQeui_kl Z (e_ui_kl)

1=1
— e 2mi(j—k)
o2 27r1(7 k) 9 1—e
- Z ( ) T T TEmam
l—e" = n
Since €2 = 1 for any integer m, we find that 27y = 0 if k # j, and 2y = na?

2

if k = j, which suggests the normalization a*n = 1. Hence, with a = %, we have

shown that X in (6.2) is a unitary matrix (art. 247), that obeys X7 X = XXH = I.
The matrix X is also called the Fourier matrix. The eigenvalue equation, written
in terms of the matrix X, is EX = XA, where

2mi Ami 2mik 2mi(n—1) )

A:diag(l,en ,en ...en ...,e n
= diag (1,671,726 Y)

Clearly, A™ = I confirming the general property P = I of an n X n permutation
matrix P in art. 31. Using the unitary property results, after left multiplication of
both sides in EX = XA by X in

XHEX = diag (1,671,672, 1)

and
XHEFX — diag (1,5—’2 £ ,§—<"—1>’“)

Since det E # 0, the inverse E~! exists and is found as
E-' = Xdiag (1,5,8, o ,§<"*1>) xH

Explicitly,

1 —1 H 1 & k—1)(m—1 —1)— —1)(yj—1
kj_EZ(X)kmgm (X )mj:ng( J(m=1)+(m—1)—(m—-1)(j—1)

m=1 m=1

(E7)

1 n—1 amitkgin 11— e—27ri(k—j+l)

= — e n :_Tzlk:‘fl
n nl—e*Z (= 1) {k=j—-1}
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6.2 A small-world graph 197

from which we find E~! = E"~! which corresponds to a unit-shift relabeling
transformation in the other direction: 1 —n,2 —1,..., n—n—1.
Finally, the eigenvalue structure of a general circulant matrix C = p(F) =
k
k 0 CkE

n—1 n—1
xHox = xH (Z ckEk> X = Z cxnXHEFX
k=0 k=0

n—1
= Z crdiag (17 gk ek 75—(n—1)1f)
k=0

n—1 n—1 n—1 n—1
= diag (Z ks Z Ckéhik: Z Ck’§72ka ) Z Ckg(nl)k>
k=0 k=0 k=0

k=0

In terms of the polynomial p (x) = ZZ;S cpz®, we arrive at the eigenvalue decom-
position of a general circulant matrix C,

XHCX = diag (p(1) p(EY) . p(E),. . p (g—<”—1>)) (6.3)

Remark: Let w, = ﬁ (1,)\,;1, /\;2, .. .7/\l:”+1) with A\, = e 2 be the eigen-

2nik

vector of C belonging to eigenvalue p (ffk) =p (62 . ), so that Cw, = p (e " ) Wy,

If C is real and p (esz“v) is real, then separating both real and imaginary parts of

wy, in the eigenvalue equation gives us two equations

C (Rewy) = p (™5 ) (Rewy,)

C(Imwg)=ple ™ ) (Imwyg)

Hence, the real eigenvalue p (e 27:fk) of the real matrix C possesses two real, or-

thogonal eigenvectors Re wy and Im wy, satisfying (Rewy)” (Imwy,) = 0, and must
have multiplicity at least two.

6.2.2 The spectrum of a small-world graph

The adjacency matrix Aswg,n of a small-world graph where each node, placed on
a ring, has links to precisely k subsequent and k previous neighbors (see Fig. 6.1),
is a symmetric circulant matrix where cy—; = ¢; and co = 0, ¢; = 1j¢1,4]}, Where
1, is the indicator function. Since the degree of each node is 2k and the maximum
possible degree is N — 1, the value of k is limited to k < % The corresponding

polynomial is denoted as psw.n (2) = Z;V;Ol cjz3. Since ¢y = 0, we have that

PSWisN ( Zch —chzJ—l— Z ch7

j=a+1
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198 Spectra of special types of graphs

Changing the j-index in the last summation to m = N — j yields ZJ at1C cjzl =
ZZ:T Lenomz¥=™ and invoking symmetry cy_,, = cm, we find, for any integer

a € [I,N — 1], that pswi;n (2) = D7, ¢;27 + Zj\[:—l c;zN=9. When choosing
a =k, the bound 2k +1 < N implies that N —a—1= N —k —1 > k. Introducing
¢; = lgjen k) and a = k, we obtain

_ k l_z—k’
242N z_’—z —l—zN_l—
SR REDS

An eigenvalue (Aswg;n),, of Aswk;n, belonging to eigenvector

! LA N2

Wm—-1 = \/—(7 m—1> "‘m— 1a"'7>‘;17i-11)

with Ay = ¢™%, follows for m = 1,..., N from (6.3) as

3 11— (I1—-m)k B 01— (m—-1)k
Aswiin),, = Pswren (£57™) = ¢ m% + £ Uﬁ

. _ 278 (1 —1)k
= 2Re (e%(m_l)—l ° .( : )
N

. 176217\(71(7?171)’6 i (m—1)(k—1) sin(—ﬂ(m]\?”k) . . .
After rewriting ~—*zm——F— = e~ ™ — v, the eigenvalue with index
1—e N (m=1) sm(—N )

m of ASWk;N is

sin w(m—1)k
N 7(m—1)(k+1)
(AsWisN ), = 2 T ~

sin (—7r e )

Finally, using 2sin (ak) cos (o (k + 1)) = sin (a(2k + 1)) — sin («), the unordered?
eigenvalues of Agwy,nv are, for 1 <m < N,

sin (Tr(m—ljzl(Qk-i-l))
(AswiiN),, =
sin (—ﬂ(mfl))
N

1 (6.4)

We find from (6.4) that the spectral radius (Asww;n); = 2k, which is equal to
the degree in a regular graph (art. 55). The complete spectrum for N = 101 is
drawn in Fig. 6.2, which is representative for values of N roughly above 50. Fig. 6.2
illustrates the spectral evolution (as function of k in the abscissa) from a circuit
(k = 1) towards the complete graph (k = [&31]). If 2k + 1 = N in which case
Aswi.n = J — I, then we obtain from (6.4) that limog41- N5 ()\SWk;N)j = —1 for all
m # 1, while (Aswx;n); = N — 1, agreeing with the computations in Section 6.1.

I The m-th ordered eigenvalue (Agw k)(m): satisfying ()\g\\-k)(m) > ()\SV\'k)(m.H): for 1 <m <
N, is not easy to determine as Fig. 6.2 suggests.
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Fig. 6.2. The complete spectrum (6.4) for N = 101. The z-axis plots all values of k from
n—1

1 to [25%] = 50, and for each k, all 1 < m < N values of (Asw;n),, are shown.

In terms of the Chebyshev polynomial of the second kind (B.135), we can write

(6.4) as
(Asw;N),,, = Uz (Cos (%)) 1

Applying sin (x + nw) = (—1)"sin (x), valid for any integer n, we find additional
symmetry in the eigenvalue spectrum,

‘i (w<2k+1>{%7<m71>})
(Aswr;N),, = :
Sin (

wiN—(m—l)'l) ~ 1= QswhiN)v

N

for 2 < m < N. In general, deducing more symmetry is difficult because, if N
is a prime, precisely [% + 1] eigenvalues are distinct for any k < % Theorem
11 on p. 75 states that the diameter of Gswy,n is at most [5] when N is prime.
Fig. 6.3 reflects the irregular dependence of the number of different eigenvalues,
which reminds us of the irregular structure of quantities in number theory, such as
the number of divisors and the prime number factorization.

Since a small-world graph is a regular graph, the Laplacian Qswi,ny = 2k —

Aswr;n and the corresponding unordered spectrum is (art. 110)
sin <7r(m—1]2](2k+1)>
(BSWE;N) N1 —m = 2k — (Aswr;n),, =2k + 1 —

sin (W)

As Theorem 20 on p. 119 prescribes for a connected graph, there is precisely one
zero eigenvalue (puswi;n)y = 0. Art. 110 demonstrates that (usw;n)y_; equals
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Fig. 6.3. The number of different eigenvalues in Agswy;n as a function of N for different
values of k = 1,2,3,4,5 and k£ = 10, 20, 30,40, 50. The insert shows the number of different
eigenvalues for N = 200 versus k.

the spectral gap, the difference between the largest and second largest eigenvalue
at each k as illustrated in Fig. 6.2.

The largest negative eigenvalue of (Aswi:n),, lies between % <m-1<
2N 2kN

3747 and, by symmetry m — N +2 —m, Shpr > m—1> (QS;QN. Indeed, if
we let © = w and © € [0,7.r), then the function f(z) = W — 1 has
the same derivative as f(z) = W, which has zeros at z = Wiﬁ € [0,m)
for I = 1,2,...,2k. By Rolle’s Theorem, f’(z) has always a zero in an interval
between two zeros of f (x), because f (x) is continuous. Since sinz has the same
sign in « € (0,7), the largest absolute values of f (x) will occur near x — 0 and

x — m, where sinz has zeros. A good estimate for the value at which the largest

negative eigenvalue occurs is half of the interval, hence, mu,, = [2(231@—]\-/;-1) + 1] . The

corresponding eigenvalue is, approximately,

1
ASWIN )y, &~ — 1 < =2
sm (2(2k+1))
Numerical values indicate that mu, = [% + 1} is, in many cases, exact.

Hence, the eigenvalues Agw;n of the adjacency matrix Agwy,n lie in the interval
,0}. This

interval is, to a good approximation, independent of the size of the graph N, but

[(ASWk;N)mmm ,2k}, and most of them lie in the interval [()\ska;N)

Mmi
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6.3 A cycle on N nodes 201

only a function of the degree of each node, which is 2k. The approximation fails
for the complete graph Ky when 2k +1 = N and (Aswg;n) =—1.

Mmin

6.3 A cycle on N nodes

A circuit or cyle Cy is a ring topology on N nodes, where each node on the ring is
connected to its previous and subsequent neighbor on the ring. Hence, the circuit
is a special case of the small-world graph for k¥ = 1. The adjacency matrix of the
circuit is Ac = F+E'=E+ ET,

o1 0 --- 0 1
10 1 --- 0
Ao = 01 0 .0 0
o o0 -~ 0 1
10 0 - 1 |
The eigenvalues of the adjacency matrix Ac of the circuit follow directly from
(6.4) as
. m(m—1
sin (3%)
Ae)m = —r 7y 1
o ()

Using the identities sin 3z = 3sinz — 4sin®z and 1 — 2sin® z = cos 2z yields, for
m=1,...,N,

mm—1) U) (6.5)

(Ac),, = 2cos ( c

which shows that (Ac),, = (A\¢)y_pye and that —2 < (A¢),, < 2. The lower
bound of —2 is only attained if N is even. Art. 29 shows that the line graph of
the circuit is the circuit itself: [ (Cy) = Cn. Since the number of links L = N
in the circuit Cy, the prefactor (A + 2)L7N in the general expression (2.33) of the
characteristic polynomial of a line graph vanishes. Nevertheless, only if N is even,
this line graph [ (Cy) still has an eigenvalue equal to —2, while all other eigenvalues
are larger (art. 27).

The real eigenvectors x,, of the adjacency matrix Ac belonging to eigenvalue
(Ac)y, = e ¥ (m=1) 4 ¢~ (m=1) follow from the eigenvector matrix X of the cir-
culant matrix in (6.2) as mentioned in the remark of Section 6.2.1. Indeed, let us
denote the eigenvector x,, belonging to the eigenvalue A\, = e & (m=1) with vector
components (), = Xpm = gh=D0n=1) for 1 < m,k < N with £ = e Then,
the unscaled eigenvectors

_ 2mi(m—1) _ 4mi(m—1) _ 6mi(m—=1) _2(N=1)mi(m—1) )
N N N

xm:(l,e N e , € S...,€
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202 Spectra of special types of graphs

and

LTom =T PRI

2mi(m—1)  4mi(m—1) 6mi(m—1) 2(N—1)mi(m—1)
(l,e N e N ,e N e N )

obey the eigenvalue equations (see Section 6.2.1)

236
Exy =e x (m=Lg

2mi

—1,.x _ - (m—1) ,.x
E7x,, =e N ),

We obtain after addition and after addition of the conjugates

—1, % _ _2Ei(m—1 —2zi(m—1), *
Er, +E "z, =eN (M= g + e~ F( )xm

—= (m—1) ,.* m—1), %
ExTrL+E Im = € N( ) L+6N( )x'rn

Again, adding and subtracting yields

(B+E7Y) (@ +ah) = (¥ 4 D) (2, +a7,)

2mi

V4% <m*1>) (& — 5,)

2mi (

(E+E™Y) (@ —a,) = (e ~(m—

Since Ac = E+ E~! and (\¢),, = e (m=1) 4 =% (m=1) we find that both

Re(zy,) 1 ( cos 27 (m —1) O47r(m—1) COSQ(N—l)w(m—l))

N % N oo N N
and
Im (z3,) (0 Sin27r(m—1) Sin47r(m—1) SiHQ(N—l)w(m—l))
VN /N N N N

are two real, orthogonal eigenvectors belonging to the same real eigenvalue (Ac),, =

(Ac)Ngo—m in (6.5). If N = 2n+11is odd, then with 1 < m < n + 1, there are

2n+1 eigenvectors, because %ﬁ = 0 is never an eigenvector. If N = 2n, then the

Re(e) 1)
VN

range 1 < m < n+ 1 contains 2n — 1 eigenvectors and is the eigenvector
belonging to (Ac),,; = —2.

The corresponding Laplacian Q¢ possesses the spectrum (art. 110),

27 (m — 1)
(MC) N41—m = 2 — 2co0s <T> m=1,...,N (6.6)

and contains the same eigenvectors as the adjacency matrix Ac.
The characteristic polynomial of the circuit C is

o= T (zem (Z270) ) = T (e (222 )

m=1

m=0
Since [[Z (2 cos (B2) —A) = (2- ) | (2cos (32) — A), we have

m=0 m=1

cc () = ﬂ 9 cos <%7m> A) ﬂ (_COS (%Tm>)

m=1
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6.4 A path of N — 1 hops 203

Using the product form T}, (z) — 1 =2""1[" _| (2 — cos (32X)) in (B.128) of the
Chebyshev polynomial in (B.127) shows that

cc (\) =2(-1)N (TN (%) - 1)

6.4 A path of N — 1 hops

6.4.1 The adjacency matrix Ap of the path graph
A path Py on N nodes, consisting of N —1 hops, has an adjacency matrix Ap, where
each row has precisely one non-zero element in the upper triangular part. There
exists a relabeling transformation that transforms the N x N adjacency matrix Ap
of the path graph Py on N nodes in a tri-diagonal Toeplitz matrix, where each
non-zero element appears on the line parallel and just above the main diagonal.
The eigenstructure of the general N x N tri-diagonal Toeplitz matrix,

TN(avb’C): (67)

is computed in Van Mieghem (2014, Section A.6.2.1). The matrix T (a, b, ¢) has
N distinct eigenvalues A, for 1 <m < N,

Am = b+ 2y/ac cos (;ﬁ) (6.8)

The components (z,,), of the eigenvector z,,, belonging to A, are, for 1 <k < N,

(o) =20 (£) o (21 ) (6:9)

Since the eigenvalues are invariant under a similarity transform such as a relabeling

transformation (art. 239), the complete eigenvalue and eigenvector system of Ap,
follows, for a = ¢ = 1 and b = 0, from the eigenstructure of the general N x N
tri-diagonal Toeplitz matrix for m =1,... N, as

Am (Py) = 2 cos (J\;TTJ (6.10)

Formula (6.10) shows that A, (Pn) = —An+1-m (Pn) and that all eigenvalues of
the N—1 hops path Py are strictly smaller than 2, in particular, —2 < A, (Py) < 2.
The largest eigenvalue of the path Py is the smallest largest adjacency eigenvalue
among any connected graph as proved by Lovasz and Pelikdn (1973). We provide
another reasoning: Lemma 10 shows that a tree has the smallest A;, because it is
the connected graph with the minimum number of links. Further, the tree with
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204 Spectra of special types of graphs

minimum maximum degree (dmax = 2) and minimum degree variance is the path.
According to the bound (3.79) and L = N —1 in any tree, the bounds for the largest
eigenvalue of the path satisfies

1 6
2(1—N)§2\/1—N§)\1(PN)§2

and the lower bound even tends to the upper bound for large N. Any other tree has
a larger variance, thus a larger lower bound in (3.79), while also the upper bound
A1 < dpmax in art. 42 is larger, because dpyax > 2.

The characteristic polynomial of the path is

con (V) = ﬁ <2cos (%) - )\) — (—)NUy (g) (6.11)

m=1

where the Chebyshev polynomial Uy (x) of the second kind (B.135) has been used.

The characteristic polynomial cp,, () is elegantly derived by Harary et al. (1971)
from the corresponding generating function pp (2) = > %_g cpy (A) 2V. The recur-
sion

CpPy ()‘) = _)\CPN—I ()‘) —CPy_» ()‘) (612)

follows directly from (3.106). Since cp, (A) = —X and cp, (A) = A2 — 1 and defining
cp, (A\) = 1, we multiply both sides of the recursion (6.12) by z% and sum over
N >2

Z CPn (A) 2N = —A Z CPn_1 ()‘) 2N — Z CPn_2 ()‘) 2
N=2 N=2 N=2

In terms of pp (2) = Y N_ cpy (A) 2V, we obtain the generating function

()=
L I perps
The generating function Y% Uy () 2" = (=== in (B.138) again leads to

(6.11).

6.4.2 The Laplacian matrix Qp of the path graph
After a suitable relabeling, the Laplacian @Qp of an N — 1 hops path is, except for
the first and last row, a Toeplitz matrix,
1 -1
-1 2 -1
QP: '.. '.. '._ (6.13)
-1 2 -1
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6.4 A path of N — 1 hops 205

We compute here the eigenstructure of @ p analogous to the derivation of the eigen-
structure of the general N x N tri-diagonal Toeplitz matrix in Van Mieghem (2014,
Section A.6.2.1) by considering a pseudo tri-diagonal Toeplitz matrix

d f

T = (6.14)
c b a

g h

6.4.2.1 Laplacian eigenvalues of the path graph

An eigenvector x corresponding to eigenvalue ¢ satisfies (T &I ) z = 0 or, written
per component,

(d=&)r1 + fra =0
cxi—1 + (b— 8z +axkr1 =0 2<k<N-1
grn_1+(h—&§any =0
We consider the generating function G (z) = Zfﬂvzl 22", where all x) are real
because all eigenvalues & of T are real (art. 370). After multiplying the k-th vector

component equation by z¥ and summing over all k € [2, N — 1], the above difference
equation is transformed into

N

N—2 N-1
cz Z 2" 4+ (b — £) Z 2" +az7! Zajkzk =0
k=1 k=2

k=3
and, in terms of G (z),

G(z2)—w22?—m12 0

ez (G (2)—zn_12V T —anz)+(0=¢) (G (2) —m1z2—a N2 ) +a .

Thus,
(2 +(b—&)z+a)G(z) = can_12V T + canzV T2+ (b — )31 27

+(b— §)azNzN+1 + awe2® + axyz

=yt {cggh + (b§)+cz}

+x1z{a+ (af;d+(b—§)> z}

where in the last step zo = §;—d:c1 and ry_1 = 5;—th have been substituted from
the first and last vector component equation. Solving for G (z) yields

mNzN{z—f—(é—%)f-l—%—%}—i—%ml{((%—l)f—i—b—“?d)z—i—a}

c(z—r1)(z—12)

G(z)==z
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206 Spectra of special types of graphs

where 71 and 7y are the roots of the polynomial 22 + b%z + 2 = 0, thus obeying
ri+re = % and rirg = 2 # 0. These roots r1 and rp cannot be zero and depend
on the yet unknown eigenvalue £. Since G (z) is a polynomial of order N, the zeros
r1 and r9 must also be zeros of the numerator

t(z):xNzN{z—i— (é—%)f—l—g—g}—i—%xl{((%—1)§+b—?)z+a}

Proceeding is only possible if the zeros of ¢ (z) are known. With 8 # 0, we can
factor ¢ (z) as

t(z) = <5xNzN—%%x1>(z%—¢

VN 5rim .
whose zeros are —a, and (— L;;N) X for m = 0,1,...,N — 1, provided that

—(a _ _ ad
B=(3-1)¢+b-%
11 b_h) _
s((5-#)ert-§) =
which is only possible for any eigenvalue £ if ¢ = f and g = ¢. Then, the above
requirement on elements of the pseudo tri-diagonal Toeplitz matrix 7' in (6.14)

simplifies to
b—d=2p
b—h="%

or (b—h)(b—d) = ac, which is fulfilled for Qp, where a = ¢ = —1, b = 2 and
d=h=1.
We confine ourselves in the sequel to the Laplacian @ p, in which case, r; and

VN onim

7o must be either 1 or (f—;}) X for m = 0,1,...,N —1. If ry =1, then also
ﬂ)l/NeQWJ:}‘nl
TN

ro = 1 in which case 4 = 0 and x7; = xn as follows by raising (

$Nz(zN71)

1 to the power N. In that case, G (z) = =) = N Zgzl z¥ such that
the corresponding eigenvector is, indeed, the scaled all-one vector au with a =

zy (art. 101). All positive eigenvalues > 0 correspond to distinct zeros r =
1/N wim .
(;—;) XN for m = 0,1,2,...,N — 1. But, since r; = rfl, the zero ro also
2min

1/N
must be of this form, ro = (ﬁ) e~ for some 0 <n #m < N —1. Thus, the

TN

I 2/N 2wi(m—+4n)
TITy = o e~ N =1
N

raised to the power N, shows that ;”—Zlv = +1 = € such that 1 = e
wi(2n+k)

product

wi(2m+k)
N

.. _ . mi(m—n)
and 7o = e . Requiring that ro = r] L results inr; = e W and ro =
mi(n—m) _ mi(m—n)

=e ~ . Now, r; changes with m, while ro with n. For each m =
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6.4 A path of N — 1 hops 207

1,2,..., N — 1, there must correspond to I = m — n in the exponent of r;, a value
—l = —(m —mn) in rg, only by changing n # m, thus n = m — . The extent over
which the integer [ can range is — (N —1) <1 < N — 1 and to each [ there must
correspond a —I. Hence, forl = 1,2,..., N—1, we finally find that p; = 2—(r1 + 72)

and
i i l !
w=2— (eTL —|—e_Tl) =2 <1 — cos (%)) = 4sin® 27T_N

and to [ = 0, the case 1 = ro = 1 corresponds with o = 0. In summary, the
ordered Laplacian eigenvalues of the N — 1 hops path are

(10) sy = 2 (1 = cos (%)) m=0,1,.. N-1 (6.15)

All Laplacian eigenvalues of the path are simple, while most of the cycle Laplacian
eigenvalues in (6.6) have double multiplicity. Moreover, the Laplacian eigenvalues
of the path Py are the same as the Laplacian eigenvalues of the cycle Cap.

0.4.2.2 Laplacian eigenvectors of the path graph

We now determine the Laplacian eigenvectors z1, 2o, . . ., zy—1 and use the notation
(zm) j for the j-th component of the eigenvector z,,, where 1 < j < N points
towards node j in the path graph Py. The eigenvector z,, corresponding to p,, =
(4P ) n—,m > 0 has the generating function G,, (w) = Zszl (2m), wF,

() (w0 = Dw (" — 20 )

mim _mim
w—e€e N w—e€ N

Invoking art. 313 to the polynomial

G’m (’LU) =

o) = (o) 0= ) (10" = Z20)

(zm)n

= (2m) N wh*? — (Zm)NwN+1 = (zm)y w? + (2m); w
yields, with pg (w) = Z;VJOQ ajwl where all coefficients a; = 0 are zero, except for
ant2 = —an+1 = (zm)y and a1 = —as2 = (2m)1,
1 N [ N+2 ‘ ‘
G (W)= ———==> ¢ Y a (e(j*kfl)wlzvm _e,(jfkrfl)%) wh
enN —e N 5 sk

N+2

N
sin1" Z Z a;j sin (% (j— k- 1)) w”

mm
N k=0 | j=k+1

Equating corresponding powers in w in G, (w) = Zszl (2m) wk yields (2,) =

Sinl,% Z;V:,irl a; sin (5% (j —k — 1)) for 0 < k < N. Since (z,), = 0, introducing
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208 Spectra of special types of graphs

the coefficients a; reduces to

N+2
. ™ . [Tm
0= Z a; sin ( (j— 1)) = (Zm) y sin (7rm+ W) — (2m); sin (W)
such that (2,,)y = (=1)" (2mm);. For k > 0 and ant+2 = —an+1 = (2m) x, we have
that
[ N2
(Zm)k = ™m Z aj bln( (-7 —k— 1))
Singt 4,
(Zm)N . ™m . ™m
Sl o (P 00) (1)
sin%{bm(l\f ( Rt )) SN ( k)
2 (zm)n

= Wsin (%) cos (2N (2N — 2k+1))

Using (2m)y = (=1)" (2m),, we finally find the k-th component of the eigenvector
zm belonging to the eigenvalue ji,,, = (pp)yn_,,, > 0,
(Zm)4 ™m
(2 = — ke cos (S (2k = 1))
COS 577 2N
A proper normalization of the eigenvectors, obeying z{ z,, = 0k, as in art. 247, is
readily obtained for 1 <m < N — 1 as

2
(2Zm)), = \/NCObW(Qk—l) for1<kE<N (6.16)

which illustrates the Laplacian property in art. 103 of more oscillations in the

eigenvector z,, with higher frequencies m. For m = 0 in (6.15), the eigenvector
u

belonging to uy =01is zy = 7

6.4.3 The pseudoinverse matriz Q' of the Laplacian of the path graph

For a path graph with equal link weights b, the weighted Laplacian in (6.13) equals
é = bQp. The positive eigenvalues i of the weighted Laplacian @ of the path
graph follow from (6.15) as (fip)y_; = 2b(1 —cos (Z£)) = 4bsin® (Z£) where
1<k<N-1(and o = (p)y = 0). The normalized eigenvector elements of the
Laplacian Qp of the path graph, corresponding to pr = (fip)_j, are specified in
(6.16). The elements of the pseudoinverse of the path graph Laplacian follow from
(4.30) as
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6.4 A path of N — 1 hops 209

which is rewritten as (6.19) by

Theorem 38 If we define the trigonometric sum

N—-1 km N-1 wkm
cos ( ) 1 Cos ( )
aN (m) = Z 1 Nﬂ'k = 5 2 J:k (617)
2 Toem () 2 2 5l ()
which is an even function in m, i.e. gy (M) = qn (—m) and equal, for 0 < m < 2N

to

m? 1 om+1)+ (=)™ NZ_1
QN(m)ZT—m<N+—>+( )4( ) + 3

(6.18)
then we can compactly express each element (i,7) of the symmetric pseudoinverse

matric Qpath of the path graph as

(Qparn); {on (4 = 1) +an (i = 5)} (6.19)

2Nb

In fact, (6.19) shows that the symmetric pseudoinverse matrix Q' is the sum of
two symmetric matrices @1 and @2, where all elements in @)1 along parallels of the
anti-diagonal are the same, whereas all elements in ()2 along parallels of the diagonal
are the same. Since cos (Z£(m + 2jN)) = cos (Z&m + 27kj)) = cos (Z£m) for any
integer j, we find periodicity qn (m) = gy (m +2jN) in N. Invoking an identity,
proved in (Van Mieghem et al., 2017, Appendix), we have

1 1 NZ -1
v (0) =5 s (25 =—3 (6.20)
k=1 2N
which is the maximum value of gy (m), because |gy (m)| < 3 iv 11 |COS£(’WV_)) <
2N

30D sty = av (0.

Proof of Theorem 38: The trigonometric sum ¢y (m) in (6.17) is evaluated
by first deriving a difference equation for g (m), which is then solved.

(a) Difference equation for qn (m). Using

cos mkm — cos Lc(m—l) = —2sin —ka—ﬂ—k i Lk
N N B N 2N 2N

the difference Agny (m) = gy (m) — gy (m —1) is

oy A ) —oon () o e g
v im) = 2 — sin® (%) N — sin (%)

from which we find that Agy (m)|,,_o = an (0)—gn (—1) = gn (0)—gn (1) = N—1.
Observing that

sin tk(m+1) 7k —sin mkm 7k — 94in wk o8 wkm
' N 9N N aon) "M\ an N


https://doi.org/10.1017/9781009366793.009
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.009
https://www.cambridge.org/core

210 Spectra of special types of graphs

the second order difference A%qx (m + 1) = Agy (m + 1) — Agy (m) = qn (m +1)—
2gy (m) + gy (m —1) is

: wk(m+1) mk : mkm wk _
= 1sm( N 2N)*Sm( N~ 3n) = wkm
A2qn (m+1) Z — :fQZcos —_—
k=1 sin (3) k=1 N
pika Nz _q 1(N Do sm(NT)
Taking the real part of the geometric sum Z =<ng =€ &)
= sin b
N-1 : 1
sin (z (N — 5 1
coskx = er + - (6.21)
P 2sin (5) 2

and evaluating at © = I > 0 yields Zg:_ll cosk (Z2) = 1 ((—1)7”_1 - 1), while
Zk 1 cosk (B) = N —1 for m = 0. The second order difference A?qy (m +1) =
gy (m+1) —2qn (m) + gn (m — 1) becomes for m # 0,
N(m+1)—2qny (m)+qgy(m—1)=1+(-1)™" (6.22)
while, for m = 0,
av (1) = 2qn5 (0) +an (=1) =2(av (1) —qw (0)) = =2(N — 1) (6.23)

(b) Solving the difference equation (6.22) for qn (m). The general solution of the
difference equation gy (m + 1) — 2qn (m) + gn (m — 1) = f (m) for integers m # 0
and an arbitrary function of f (m) can be deduced with generating functions,

z) = Z gy (m) 2™ (6.24)

m=0

m

After multiplying both sides by z™ and summing over all m > 0, the difference

equation becomes

ZQN(m'i‘l)Zm—QZQN(m)Zm—FZQN(m ’m:Zf Zm
m=1 m=1 m=1

m=1

Written in terms of F (z) = > °_ f(m)z™ and T (z),
1

LT —av (02— ax 0) = 2(T () —an (0) + 2T (2) = F(2) ~ 1 (0
Rearranged,
(5-2+2) 76 = F () +ay () = £ 0) — 20y (0)) + 2L
invoking the conditions (6.23) and gy (0) — (N — 1) = gy (1) yields
T() = P ()~ (V= 1)y (0) 4 1 (0)) ey + O

(1—2) (1-2)° (1-2)
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6.5 A path of h hops 211

After expanding the Taylor series around z = 0 and using the Cauchy product
Z;.S:O f’man Z:j:() gmzm = Z::() (ZZL:O f’m—kgk) Zm7 we obtain

Z{Zkfm ) m{(N—1>+qN<o>+f<o>}+qN<o><m+1>}zm

m=0

where we have used the derivative of the geometric series, %1—; = ﬁ =
S mz™"1. Equating corresponding powers in z yields the general solution

as a function of f (m) and the initial conditions gy (0),

m

m) =Y kf (m—k)—m{(N—1)+(0)} +a (0) (6.25)

For f(m) =1+ (—1)", the sum in the general solution (6.25) becomes

m

_1\ym+1
Zkfm k) kZ_Ok( m):m(n”;+1)+(2m+1)z( 1)

and (6.25) reduces to

m(m+1 om+1) + (-1)™ !
QN(m)=¥—m(N+1)+( )4( ) +qn (0)
Finally, with (6.20), we arrive at (6.18), for 0 < m < 2N due to periodicity and
gy (—m) = gn (m). O

6.5 A path of h hops

A path of h > 0 hops/links in a graph with N nodes has h non-zero rows with one
non-zero element in the upper triangular part. After a similarity transform, the
corresponding adjacency matrix can be transformed into

Ah»hop path =

(AP)(hsyx(ha1) Oty x(N—h-1)
O(N-h-1)x(h+1) OWN—h-1)x(N—h-1)

where Ap is the tri-diagonal Toeplitz adjacency matrix of an h hops path in a graph
with h + 1 nodes. Invoking (6.10), the spectrum of an h hops path possesses a zero
eigenvalue of multiplicity N —h — 1 and h + 1 eigenvalues for k =1,...,h + 1,

wk
()\h—hop path)k = 2cos (h T 2)

6.6 The wheel Wy,

The wheel graph Wy, is the graph obtained by adding to the circuit graph one
central node n with links or “spokes” to each node of the circuit. Thus, the wheel
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212 Spectra of special types of graphs

graph is the cone of the circuit graph. The adjacency matrix is a special case of
art. 85,

Ay = |: Ac UNx1 :|

Ulx N 0

Since u is an eigenvector of A¢ belonging to Ao = 2 because the circuit is a
regular graph, all eigenvalues of Ac are the same as those of Ay, ,, except for
the largest eigenvalue A\¢ = 2, which is replaced by two new ones, 1 £ 1+ N,
as derived in art. 85. Hence, the spectrum of the wheel with N 4+ 1 nodes is

-1+ N+1, {QCOS(MI\;_I))} and 1 ++v/1+ N.

2<m<N
The Laplacian spectrum follows from art. 166 and (6.6) as, (uw)y,, = 0,

(pw)y = N +1and (pw)y 9, =3 —2cos (W) form=2,...,N.

6.7 The complete bipartite graph K,, ,

The complete bipartite graph K, ,, consists of two sets M and N with m = | M|
and n = [N nodes respectively, where each node of one set is connected to all
other nodes of the other set. There are no links between nodes of a same set. The
adjacency matrix of K, , is, with N =m + n,

_ Om><m men
AK"ML - |: Jnxm Onxn :| (6.26)

and the characteristic polynomial is

- AI mxXm Jm Xn

det (AK J’nX m _>\In Xn

—AI):'

Invoking (A.57) and JgxnJnxi = ndixi gives

det (AK

m,n

, 1
- )‘I) = (_/\)rn det <_>\In><n + XJnX’meXn)

= (-N)"det (ST =AI) = (=" (%)" det (J - %21>

nxn nxn

Using det (J — zI)
of K’m,n is

s = (=1)"2"" (z — n) in (6.1), the characteristic polynomial

det (Ak,,, — M) = (=1)™t"7IA™H=2 (32 — mn) (6.27)

m,n

from which the eigenvalues? follow as —Amax, [O]N_2 and Apax = vmn. With
N = m + n, the spectrum of a star topology K, for m =1is —/N — 1, [O]N_2
and Ao = VN — 1.

2 We denote the multiplicity m of an eigenvalue A by [A\]™
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6.7 The complete bipartite graph Ky, », 213
The Laplacian of the complete bipartite graph K, ,, is

n]mxm _men :|

_Jn><m mIan

Qn, . = {

and the characteristic polynomial is

_ . (n—,u) I xm —Jmxn
det (Qxs,., MI)—‘ e (1= ) L

A derivation similar to the above results in

det (Qk,,,, — p) = (m —p)" " (n— )"~ ((m — ) (n — ) — nm)

The eigenvalues of Qk L ]m_l

o are 0, [m] and m +n = N. In the case of the
star K1 5, the eigenvalues of Q, ,, are 0,[1]"~! and n + 1. The complexity & (V),

the number of trees in K, ,,, is found from (4.27) as

n

1 N—-1
€ (N) = ~ kli[l = mlpm=l

and clearly, for the star where m =1, {x, , (N) = 1.

. T . .
The eigenvector @] = [ TCpy1 LBy ] belonging to the largest eigenvalue

Amax = v/mn obeys

Omxm men TChx1 _ mean =\ xrc
max :EB

Jnxm Onxn TB,x1 JnxmmC

Thus, the k-th component of z¢ must satisfy 37, (zp); = v/mn (z¢), for 1 <k <
m and similarly, the j-th component of z5 must satisfy >_,- ; (z¢), = Vmn (zp);
for 1 < j < mn. This implies that all vector components of ¢ and xg are the same,
ie. (z¢), = xc for 1 <k < m and (mB)j =z for 1 < j < n. The eigenvalue
equation simplifies to

nTry = /Mnx,
mT. = /mny

whose unscaled solution is x, = 1 and 2. = /. Finally, normalizing the eigen-
vector so that 27z, = 1 yields

T
ol = | ZAmtmx1 Ftnsa | (6.28)
Alternatively, we may solve the block eigenvalue equations by left-multiplying
ment = )\:EC by Jnxm~ USiIlg JanJnXl = anxl yields mJanzB = )\JnmeEC-
With the second equation J,xmzc = Axp, we find that J,xn,zp = %2:53. The
eigenvector of J,x, belonging to the only non-zero eigenvalue n is uw. Hence,
TR = Upx1 and %2 =n or A = +y/mn. Substituted into the first equation gives

1 L . . . .
To = ﬁjmxnunxl = /- Umx1. After normalization, we arrive again at (6.28)
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214 Spectra of special types of graphs

for A = y/mn. This approach also leads to the normalized eigenvector belonging to

A= —y/mn,
T 1 1 T
o= A g | (6.29)

It follows from A* = SN _ Ak 22T in (3.19) that

m

A, = N {@ial + (-1)* anal }

Introducing the eigenvectors in (6.28) and (6.29),

J’an’nl J'ITLX'II
+(1)k[ T H

Jnxm nxn Jnxm nxn

2y/mn 2n T 2y/mn 2n

leads to an explicit form for the integer powers k of the adjacency matrix of the
complete bipartite graph K, ,,

o [ Dt w 1-(=D*
' TJnXm T\/FJan

illustrating the alternating bipartite structure for even k, which is a general property
of bipartite graphs as shown in Section 6.8.

k Jm X 1 Jm X 1
k _ 5 2m 2y/mn
Ak, = (mn)? J

6.8 A general bipartite graph
6.8.1 Undirected bipartite graph

Instead of connecting each of the m < n nodes in the set M to each of the n nodes
in the other set A/, we may consider an arbitrary linking between the two sets
represented by a matrix R,,x,, resulting in a general bipartite graph By, , with

adjacency matrix
(@) R
AB — { mXm mXn }
e RY Onxn

nxm

Using (A.59) when m < n, the characteristic polynomial is

1
det (AB,"L," - )\I) - (_)\)ndet <_)\Im><m + XRanRZ;Xm)

= (=\)"""det (Ryxn R

nXm

- >\2Im><m)
while, using (A.57) when m > n, we obtain

det (Ap,, ., — M) = (=\)"""det (R}

nxm

Rmxn - AZIn><n)

These two forms for m < n and m > n are an illustration of Lemma 11. In the
sequel, we confine to the case where m < n without loss of generality.
The singular value decomposition of Ris R = Upxm (XR),,xn VI ., where Xp =

diag(o1,...,0m,0,...,0), because the rank of R cannot be larger than m < n


https://doi.org/10.1017/9781009366793.009
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.009
https://www.cambridge.org/core

6.8 A general bipartite graph 215

and where U and V are orthonormal matrices (art. 247). From UUT = I and
RRT = U, ym2? ur we see that

mxXm =~ mxXm?

mxm >\2-[m><m) = det (Ume (Zgnxm - >\2 m><m H
j=1

det (Rixn R}

Hence, the spectrum of the general bipartite graph is

m

Buw — M) = (=1)" "X ] (07 =A%)

j=1

det (A

which show that, apart from the zero eigenvalues, it is completely determined by

the singular values of R, because A = *o; for j =1,...,m.
Since
A2 — |: RanRZXm Omxn :|
Bon,n Onxm RZXmRmxn
and, further for any integer k > 1,
k
2k o (RanRZXm) Omxn X
BWL n -
' OnXm (REXmRan)
and
A2Bk+1 — Om><m (RanRZLﬂXm) Rm><n
e (szmRmX’n> R%-‘)(m OTLX’!L

the even powers A2Bkm . are reducible non-negative matrices (art. 268), while the
odd powers again represent a “bipartite” matrix structure.

6.8.2 Directed bipartite graph
A general directed bipartite graph BG has an adjacency matrix,

_ Omxm Bmxn
Ave = { Cosm O } (6.31)

Any tree T on N = n + m nodes can be represented in the form of a levelset.
Denote by {X](\f)} the k-th levelset of a tree T, which is the set of nodes in the
tree T at hopcount k from the root in a graph with N nodes (art. 23), and by
XI(\?) the number of elements in the set X](\]f) . Then, we have XI(\?) = 1 because
the zeroth level can only contain the root node itself. For all k£ > 0, it holds that
0<X¥ < N—1and that

N—-1

S xP =N (6.32)

k=0
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Root X ,(\,0) =1

2 @ @ D)

Fig. 6.4. An instance of a tree with N = 26 nodes organized per level 0 < k < 4. The
nodes in the tree are arbitrarily labeled.

Nodes XJ(\’,C) at a same level k are not interconnected. Fig. 6.4 draws a tree organized
per level.

The levelset can be folded level by level to form a general bipartite graph. Indeed,
the root connects to the nodes X](\;) at hop 1; those XI(\}) are the ancestors of all
the nodes on levelset Xz(\?)~ We may arrange these X](\?) nodes at the side of the
root. Next, these X](\?) are the ancestors of all XJ(\‘?) nodes, which we move to the
other side of the XJ(\}) node. In this way, all even levels are placed at the side of the
root and all odd levels at the other side, thus creating a general directed bipartite
graph. Hence, the adjacency matriz of any tree can be recast in the form of (6.31),
where m = Z,E XI(\?k) and n = ZE X](\?kﬂ) = N —m. In a stochastic setting,
where E [Xj(\?)} = NPr[Hy = k|, we observe that the average multiplicity of the

zero eigenvalue of Apg in (6.33) equals (assuming n > m)
N-1
Eln—m] =N Pr[Hy =k (-1)* = Nou, (1)
k=0

where the probability generating function of the hopcount in a random tree is
N—1
oy (2) = E [2V] =300 Pr[Hy = k] 2",
T
If 27 = [ To TR ] is an eigenvector belonging to eigenvalue A\, which means
that

Omxm Bmxn ZC,x1 o Bzp o Azo
Crxm  Onxn ITB,x1 N Cxc N Arp

T, . . .
then also 27 = [ Tc —IB ] is an eigenvector belonging to the eigenvalue —A,

which shows that the spectrum is symmetric around A = 0. The same result can
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6.8 A general bipartite graph 217
be derived from (A.57) analogously to the spectrum of Ap,, , above as
det (Ape — M) = (=1)""" A" "™ det (BmxnCrnxm — A Limxm) (6.33)

Hence, Apg has, at least, n — m zero eigenvalues. Consequently, we have demon-
strated:

Theorem 39 The spectrum of the adjacency matrix of any tree is symmetric around
A =0 with, at least, n —m zero eigenvalues.

6.8.3 Symmetry in the spectrum of an adjacency matriz A

Theorem 39 can also be proven as follows. If the spectrum of A is symmetric, then
the characteristic polynomial c4 () = ¢ 4 (—) is even, which implies that the odd
coefficients cop41 of the characteristic polynomial ¢y (z) are all zero. Thus, for
each eigenvalue A = r > 0 of A, there is an eigenvalue A = —r of A with the same
multiplicity. Art. 51 shows that the product aip, asp, - ..arp, of a permutation
p = (p1,p2,...,pk) of (1,2,...,k) in a tree is always zero for odd k. Hence, (3.9)
indicates that the spectrum of the adjacency matrix of any tree is symmetric.
Indeed, the only non-zero product aip,azp, ...ap, in a tree is obtained when a
link is traversed in both directions. Loops longer than two hops are not possible
due to the tree structure and the permutation requirement for the determinant.
The latter only admits paths of & hops as subgraphs Gy in art. 51 because all first
as well as second indices need to differ in aip, agp, - .. akp,, because a;; = 0. A
longer even loop containing more than two hops will visit the intermediate nodes
of the k-hop path twice, which the determinant structure does not allow.

The skewness sy, defined in art. 65, is zero for a tree, which again agrees with
Theorem 39. The reverse of Theorem 39 is:

Theorem 40 If the spectrum of an adjacency matrix A is symmetric around A = 0,
then the corresponding graph is a bipartite graph.

Proof: Consider the adjacency matrix

A= Om xXm B mXn
Cn Xm D nxn

where C' = BT if the graph is undirected. Any adjacency matrix can be written in
this form for m > 1, because aj; = 0. The characteristic polynomial det (A — A1)
follows from (A.57) as

det (A — M) = (=X)"""det (ADnxn — A Inxn — CrixmBumxn)

The determinant on the right-hand side is only a symmetric polynomial in A if
D = O. In that case, A equals the adjacency matrix (6.31) of a bipartite graph. O
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218 Spectra of special types of graphs

6.8.4 Laplacian spectrum of a tree

We have shown in Section 6.8.2 that any tree can be represented by a general
bipartite graph after properly folding the levelsets. Art. 25 indicates that the
unsigned incidence matrix R and the incidence matrix B satisfy BT B = RTR,
provided the links are directed from a node at an even levelset Xﬁk) to a node at
an odd levelset X](\gkﬂ) (or all in the opposite direction), for all levels 0 < k < N—1.
Under this condition, the relation (2.34) in art. 27 applies such that, with L = N—1

in any tree T,
1y (T) = X5 (i) +2 (6.34)

for 1 < j < N and py (T) = 0, as for any graph. Hence, the j-th Laplacian
eigenvalue of a tree T equals the j-th eigenvalue of the (N — 1) x (N — 1) adjacency
matrix of its corresponding line graph [ (7).

Petrovi¢ and Gutman (2002) have elegantly proven that the path with N — 1
hops is the tree with smallest largest Laplacian eigenvalue. Their arguments are
as follows. When adding a link to a graph, the Laplacian eigenvalues are non-
decreasing as shown in art. 164 such that, among all connected graphs, some tree
will have the smallest largest Laplacian, because a tree has the minimum number of
links of any connected graph. Now, (6.34) shows that the smallest largest Laplacian
in any tree is attained in the tree whose line graph has the smallest largest adjacency
eigenvalue. This line graph has N — 1 nodes. The line graph of any tree on N > 4
nodes possesses cycles, except for the path Py with N — 1 hops. Any connected
cycle-containing graph G on N — 1 nodes has a spanning tree that contains the
minimum number of links and whose largest adjacency eigenvalue is smaller than
A1 (G) by Lemma 10. As shown in Section 6.4, the path Py_; has the smallest
largest adjacency eigenvalue among all trees on N — 1 nodes. Since the line graph
of the path Py is the path Py_1, we conclude that the path Py has the smallest
largest Laplacian eigenvalue among connected graphs. Combining (6.10) for Pn_1
and (6.34) yields 1 (Py) =2 (1+cos (%)) < 4, which agrees, indeed, with (6.15).

Kolokolnikov (2015) has proved that, in any tree 7' on N nodes and with max-
imum degree dp,.x fixed and not a function of N, the algebraic connectivity py_1

obeys, for large N,
(dmax — 1) In N
<
pv-1 S 2T O

Moreover, Kolokolnikov (2015) conjectures that the upper bound can be likely
sharpened by replacing the factor 2 by dz:;‘il, in which case equality is achieved
for a maximally balanced tree. For large N, the algebraic connectivity pn_1 of
a tree with fizred dmax (because, in the star, pny_1 (K1,n) = 1) tends to zero as

O (N,

3 A maximally balanced tree is a tree whose leaves are all at the same distance from the root
node and whose non-leaves have the same degree. Examples are well-balanced Bethe trees and
Cayley trees.
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6.9 Complete multipartite graph

Instead of two partitions, we now consider the complete m-partite graph, where
each partition of £; nodes with 1 < j < m is internally not connected, but fully
connected to any other partition. The corresponding adjacency matrix is

Okl Jktl X ko o Jk?l Xkm
Jk?g ><k71 Okz e Jk?2 ka.
Am»partite = . .
kaxkl Okm

This complete m-partite graph is denoted as K, k,,. .. k,} and possesses N =
> iy kjnodes and L =371%, 37, kik; links. The complement of the m-partite

graph is the union of m cliques Ky, , Ky,, ..., K,,, whose spectrum is the union of

m?
C

the eigenvalues of each clique, given by (6.1). Thus, the eigenvalues of A5, .
are {k; — 1}, ., and [—1)¥"™, where N = >oi ki As we will see below, the
eigenvalues of_A?n_partite via (3.39) are not quite helpful to derive those of A, partite-

If all k; = k, then Ay, partite = Ak,, ® Jixk, Whose corresponding spectrum fol-
lows from art. 286 as {\; (Ax,,) At (Jkxk)}1<j<pm1<i<ks Where, according to (6.1),

A (Ak,,) € {m -1, [—1]m71} and \; (Jexk) € {k, [O]kfl} . Thus, when all m par-

titions are equal, k; = k for 1 < j < m , the regular, complete m-partite graph has
N = kmnodes, L = kQ(ZL) = (1 — %) NTQ links and degree r = (1 — %) N =N-—-k.
Moreover, the eigenvalues of A, partite are (m — 1)k, [O]N_m and [—k]m_l.

When the number N of nodes and the number m of partitions is given, then
the most regular complete m-partite graph is called the Turdn graph T, (N).
Specifically, if the number of nodes is N = mk + [, where 0 < | < m so that
| = Nmodm and k = |Z|, then the Turdn graph T,, (N) contains | partitions
with k£ 4+ 1 nodes, each of degree N — (k+ 1), and m — [ partitions with k& nodes,

each of degree N — k. The number of links in T}, (V) equals L = {(1 -4 NTQJ =
I(k+1)(N—(k+1))+ (m—10)k(N — k). The Turan graph T,,, (N) is the graph
on N nodes with the highest numbers of links that does not contain a clique K, y1.
This property of T}, (N) was proved* by Pél Turdn in 1941 and has marked the

beginning of extremal graph theory (see e.g. Bollobds (2004)). An interesting
%) NTQ links or average

degree larger than (1 — %) N contains a clique K, 1. The special case for trian-

corollary is: Any graph G on N nodes with more than (1 —

gles (m = 2) was encountered in Mantel’s Theorem 7. A more general result, due
to Nikiforov et al. (2018), states that if a graph G on N nodes does not contain
a graph H and A\ (G) > kN'=1/5 then G contains an induced copy of K+ for
t>s >3, where k > (R (H, Kt))Q/S R(H, K;) and R (H,G) is the Ramsey number
of H versus G.

The eigenvalues of the general complete multipartite graph K, k... k) can be

4 A proof in English, close to the original of P4l Turdn, is given in Diestel (2010). Five different
proofs are given in Aigner and Ziegler (2003, Chapter 32).
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220 Spectra of special types of graphs

obtained using the quotient matrix (art. 37). Since the row sum of each block
matrix in Ag, partite is the same, the partition is equitable, with corresponding
quotient matrix

0 ke km

ki 0 km .
(Aﬂ')m-partitc = : . : = (J - I)mxm dlag (k])

ki ke - 0

The eigenvalues of (A’r)m»mrtite are the non-trivial eigenvalues of Ay, partite- The
remaining N — m eigenvalues of A, jartite are zero, because, only when A = 0,
the matrix Ay, partite — AL has in each block k; identical rows. The eigenvalues of

(A™) 0 partite are obtained by subtracting the first row from all the others, which

results in
_A k2 k3 e km
ki+X —(A+ko) 0 0
det ((Aw)m»partite _ )\I) — | k1 4+ A 0 -+ ]413) . 0
ki + A 0 0 e = (At k)
B ) y"
| (ki + N u diag(— (A +kj))

where the vector y = (ko, k3, ..., kn). Using the Schur-complement (A.59),

U T 1
det ((A )rm-partite — ) 1;[ (A+kj) det (/\ +y d1ag<>\ "y )(kl +A) u)

J

= ()" [T O A+k) | A= (b + ) Zm:
:2

replacing A by (k1 + A) — k1 leads to

det ((A”)m-partite - AI) =) [k (1= S ijk‘ (6.35)
j=1

j=1 J

and the polynomial of degree m in A

ot (A7), e — M) = (17 TL O+ ) = (<17 Sk [ )
j=1

I
When multiplying out, we find that all coeflicients c; in

m

det ((Aﬂ—)m—partite - AI) = (_1)m71 ch)\j

=0
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6.9 Complete multipartite graph 221

are positive, except for ¢,, = —1 and ¢,,—1 = 0. Explicitly, we have
m—1 T
co = (=)™ det (A7), purise ) = (m = 1) [Ths
=1
and

Cj = (mfj — 1)67,,,_]' (kl,kg,...,kn)

for 0 < j < m — 2, where ¢, is the elementary symmetric polynomial (art. 297).
Art. 320 demonstrates that det ((A’T)

while all others are negative. Equation (6.35) shows that all eigenvalues of (A7)
satisfy

mepartite — M ) has only one positive zero,

m-partite

1
> =1 (6.36)
)
P
The partial fraction g (z) = Z:n:l x_]ffk} in (6.36) has simple poles at * = —k;

with g (—k; —¢) <0 and g(—k; +¢) > 0 and, g (0) = m and lim, .1 ¢ (z) =0,
and g (z) is strictly decreasing for all, finite real z, because ¢’ (z) < 0. These
properties indicate that, if all k; are different and ranked as k(1) > k) > -+ > k(m),
then the eigenvalues as a solution of g(x) = 1 lie between k(;) and k¢;_qy for
1 < j < m and only one eigenvalue is strict positive. That largest eigenvalue of
Appartite and (A”)m_partite is the unique, positive solution of (6.36) which shows
that (m - ].) minlgjgm kj S A S (m — 1) maxi<;<m kj.

The spectral gap of A, partite 18 equal to the largest eigenvalue of (A”)m_partitc,
because Ag (Ap-partite) = 0. Therefore, an explicit expression for the largest eigen-
value A; (Am-partite) is desirable to estimate the influence of the partitions k; on the
spectral gap. Below, we devote some effort and present two different expansions for
A1 (Ampartite)- If all k; = k, then, as found above,

T m—1

det (A7) partiie = M) = (1) A+ )" (A= (m = 1) k)

which reduces to the characteristic polynomial (6.1) of the complete graph K, if
k = 1. The spectral gap is km — k = N — k, which equals that of the complete
graph Ky minus k. When not all k; are equal, the spectral gap is smaller than
N — k as verified from Lagrange optimization of (6.36) for all k; subject to N =
Z;”:l k;. This underlines that regularity in a graph’s structure scores highest in
terms of robustness.

We can rewrite (6.36) as

m—1

S
7j=1 )\+k?]

. Tterating (6.37) once gives a sharper lower

A= (6.37)

from which the positive A > —2=L

& 1
j=1T;
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bound

A — m—1 _ m—1

Z 1
e mo1 m 1
Themy (=) (2 i

Jj1=1 m
m71+2j2:1 %

After g-times iterating the equation, we obtain a finite continued fraction expansion
m—1
)\1 (Am»partite) >

>h .
1=1T%, + m—1
I m . —
2

m—1

1
DU
jq=1 k]q

that approaches A; (A partite) arbitrarily close from below for sufficiently large g.
Finally, for real positive numbers a1, a2 ,...,ay,, the harmonic, geometric and
arithmetic mean inequality (Hardy et al., 1999) is

(6.38)

m m

-1 —11 -1 N
A== mm 1 Sm m Z/\+ij :m—<>‘+_>
m ijl pwwey m.om \ = m m

from which an upper bound is deduced

1
>\1 (Am-partite) S <1 - _> N

m

where the right-hand side equals the degree of the regular complete m-partite graph
when all k; = k. Only when m = N in case all k; = 1, the largest eigenvalue
A1 (Ar-partite) equals that of the complete graph K.

6.10 An m-fully meshed star topology
In the complete bipartite graph K,,,, the m star nodes are not interconnected
among themselves. The opposite variant, which we now consider, is essentially
K., » where all nodes in the m set are fully connected. We denote this topology by
Gmstar- The adjacency matrix of a graph of m stars, in which node 1 up to node
m has degree N — 1 while all other nodes have degree m, is

Amstar = [ (J - I)me Jm><(N—m) :|
Jn—myxm  ON-m)x(N-m)
Observe that Amstar = AKm,n + AKm, where

(J = Dpxm Omx(n—m) }

A =
Fom |:O(Nm)><m O(N—m)x(N=m)
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6.10 An m-fully meshed star topology 223
The characteristic polynomial is
det (Amstar - )‘I) = det (J a (>\ + 1) I)mxm me(N—m)
J(N—m)xm _>‘I(N—m)><(N—m)
which will be solved in two ways by applying (A.57) first and then (A.59).
Applying (A.57) and using

gives det (Apmstar — M) = det (X) det (=M — J(n—m)xmXmsxmImx (N—m))- We
first need to compute the inverse X ! = 3—;% of Xoxm = (J=A+1)1),, >
where the adjoint matrix adj(A) is the transpose of the matrix of the cofactors of
A in art. 212. An inspection of the matrix X shows that there are precisely two
types of cofactors. The cofactor X j; of a diagonal element of X equals

-2 1
. 1 =X

X;; = det =det (J = (A+ 1) 1) (m-1)

1 1 -A
The off-diagonal cofactor X” (with i # j) is

i-th col
-2 1 1 1
1 =X 1 1
Xy=()Pda| F : 1
1 1 1 -

where the j-th row and the i-th column consist of all ones.

all other rows yields

-A—-1

0

0
“A—1

0

i-th col

0

0

Subtracting row j from

—A—-1 |

The i-th column now has only one non-zero element at row j, such that the deter-
minant is equal to (—1)"/ times the minor of element (j,7), which is (—1)™"2(A +
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224 Spectra of special types of graphs

1)™=2. Hence, the adjoint matrix has all elements equal to (—1)™"2(A+1)""2 ex-
cept for the diagonal elements that are equal to (—1)™"2 (A +1)""> (A +2 —m),

adj (X) = (=)™ *(A+ 1)
—(D)TTEAH D) ()R )T (A2 m) ) T
= (D" DI+ A+ L =m)])

+

/N

and, since det X = (=1)™ 1 (A+1)""" (A\+1—m), the inverse matrix of X =
J—\+1)TIis

_ -1
X ==+ = A1—m)I 4
We now compute Y = J(N*m)Xer;,imex(me);
1
= — 1 —

Using JixnJnxi = ndix; gives
_ 1 (
M+ O+ 1—m)

mQJ(N_m)X(N_m) +mA+1-—m) J(N—m)x(N—m))

whence
m
= - Oxiom) J(N=m)x(N=m)

Combining all in det (Astar — AI) = det (X) det (—A] —Y") yields

(6.41)

m
det (Amstar — AI) = det (J — A+ 1)T), . det <7J _ AI)
* A+l-m (N—m)x (N—m)

Finally, using (6.1) leads to
det (Apstar — M) = (=D A+ D)™ AN """V (XA +1—m) —m (N —m))
= (DY A+ D)L (N — ) (A —ay) (6.42)

where
2
-1 -1
ai:m—:lz m(N —m)+ m--
2 2
The eigenvalues of A,iar are a_, [—1]"’L_1 , [O}N_l_m, and (Amax),spar = Q4> Which
is larger than (Amax)x =~ = /m (N —m) as was expected from Gerschgorin’s

m,n

Theorem 65 on p. 355. When viewing the complete spectrum, we observe that the
spectrum is not symmetric in A anymore for m > 1.

If m = N — 1, the mstar topology equals K. It is readily verified that, indeed,
for m = N — 1, the spectrum reduces to that of K. If m = N — 2, then the mstar
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6.10 An m-fully meshed star topology 225

topology equals Ky minus one link, for which the eigenvalues are «_, [—1]N_3 ,0,
and

N-3 8(N —2)
(Amax)mstar 0T T {1 + 14+ (]\/'7}

(N2 —2N —1)

=N-1-2 3
N-3)

Hence, by deleting one link in the complete graph Ky, the spectral gap (art. 82)
reduces from N to oy < N — 1. The spectral gap of the complete multipartite
graph (Section 6.9) equals N — 2, when k = 2 and N = 2m. In that case, m links
are removed from the complete graph K in such a way that each node has still
degree N — 2.

The second, considerably more efficient way of computing det (Astar — A) is
based on (A.59),

—m 1
det (Amstar — M) = (—/\)N det <(.] —(A+1) I)mxm + XJmX(Nm)J(Nm)Xm)

Using Jxxndnxi = ndgx; and (6.1) leads, after some manipulations, to (6.42). The
first, elaborate computation supplies us with the matrices X ! in (6.40) and Y in
(6.41), that will be of use later in Sections 6.10.2 and 6.10.3.

The spectrum of A,,sar can be determined in yet another way®. Since A,,giar
has N —m identical rows, it has an eigenvalue 0 with multiplicity at least N —m —
1. Further, since A,,siar + I has m identical rows, it follows that A,,st.r has an
eigenvalue —1 with multiplicity at least equal to m — 1. The remaining two other
eigenvalues are obtained after determining the eigenvector that is orthogonal to the
eigenvector (with constant components) belonging to A = 0 and that belonging to
A=-—1.

The remainder of this section computes the spectra of several subgraphs of

Gmstar .

6.10.1 Fully-interconnected stars linked to two separate groups

In stead of the J,,, « (v—m) matrix in A,,sar of Section 6.10, a next step is to consider
some matrix B. Thus, instead of connecting each of the m fully interconnected stars
to all other non-star nodes, each such star does not necessarily need to connect to
all other nodes, but to a few.

Let us consider

A o Apmxm Bix (N—m)
mmnstar — T
B(N—’m)Xm O(N_””)X(N_"”)

5 This method was pointed out to me by E. van Dam.
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226 Spectra of special types of graphs

where

B = Jnxl Onx(N—m—l) :|
O(m—n)xl J(m—n)X(N—m—l)
which means that n stars all reach the same [ nodes and m — n stars all reach
N —m — [ other nodes. The eigenvalue analysis is simplified if we consider A = O.

Then, using (A.57) gives

, 1
det (Ammstar — AI) = (=\)™ det (—/\I + XBTB)

where

BTB =

O cnemety Tlnmyx(nem—t | L Otm—nyxt  J(m—n)x(N—m-1)

_ { nJdixi O1x(N=m—1) ]
O(N—m-tyxi (M =n) J(N—m—1)x(N—m—1)

J;{Xl O{mfn)xl ‘| |: Jnxi On><(N—m—l) :|

With the dimensions of B, (n—m) and (BTB)(me)X(Nim), we have
1
b= det (—/\I + XBTB> = A""Ndet (BT B — A1)
m— Jixi — N O1x(N—m—1
:)\mNdet[nX x( m—1)
ON=m—-tyxt (M =) J(N—m—i)x(N—m—1) — N1
= X" Ndet (i — AT) det ((m — 1) J(§—m—1)yx(N—m—1) — A*])
Nem—i )\2 )\2
=\ Nyt (m—mn) " det (Jlxl — —I) det (J(le)X(le) — I>
n m—n

With (6.1), we arrive at
det (Apmnsiar — AI) = (=1)VAN"H (A2 —nl) (A* = (N —m — 1) (m —n))

and the eigenvalues of Apnsiarc are £v/nl, +1/(N —m —1) (m — n) and (VR
For | =n = 0, the spectrum reduces to that of K, y_m.

6.10.2 Star-like, two-hierarchical structure

We compute the spectrum of a classical star-like, two-hierarchical telephony network

where
(J—1) B (N-m)
A star — e
mdoublest B(j;\]—m)xm O(me)x(me)
where
B = . . . = Imxm @ U1
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6.10 An m-fully meshed star topology 227

with u1x; is the [ component long all-one vector and the Kronecker product is
defined in art. 286. Thus, the dimension of B is m x Im and N —m = [m, and
the number of nodes in Aqoublestar 18 N = (I +1)m. All m fully interconnected
nodes (Amxm = (J = 1) may represent the highest level core in a telephony
network. Each of these m nodes connects to [ different lower level nodes, the local

me)

exchanges, in the telephony network.
Applying (A.57) and denoting X, xm = (J — (A+1)1)
polynomial is

det (Apmdoublestar — M) = det (X) det (—)\I ~ Blysm n;;mBmX(N,m))

In Section 6.10, the inverse of Xyxm = (J — (A + 1))

mxm» the characteristic

is computed in (6.40),

mxXm

BT -1 B — _B(TN—m)Xm (‘] + (A +1- m) I)me B7”><(N—””)
(N—m)xm“*mxmEmx(N—m) = (/\+1) (/\_|_1_m)

Using properties of the Kronecker product (Meyer, 2000, p. 598),
ImsxmBmx(N-m) = Jmxm Imxm @ U1x1) = (Jmxm @ Urx1) (Imxm ® U1x1)
= (JmxmImxm @ U1x1U1x1) = Jmxm @ Uixt = Jmxmi
and, similarly,
BE‘FN_M)X,,LJmeZ = (I;mxm @ Uix1) (Jmxm @ Uixi) = Jmxm @ Ux1U1xi
= Jmxm @ Jixi = Jmixmi

the matrix V' = B?N_m)x,m
V= Jleml + ()‘ + 1- m) B(TN—m)XmBmX(N*m)

Further, B,(TN,m)XmBmX(me) = (Im><m ®ul><1> (Imxm ® lel) = Innxm @ Jixi
and, with Jml><ml = Jm><m®Jl><l; we have V' = {Jme + ()\ +1- m) Im><m}®Jl><l~
Hence,

C = det (—)\I — B{me)Xanz;mBmx(me))

1
()\ T 1) ()\ 1 m) {JmX'rn + (>\ + 1-— m) Im><’m} ® Jl><l>

_ det (“AA+1D) A +1=—m)T+{Jmxm + A +1—=m) Lsxm} ® Jixi)
A+1D)™ A +1—m)™

= det (—/\I+

The eigenvalues of Dy, xm ® Ejx; are the ml numbers {\; (D) A (E)}1<j<m 1<k<l
(art. 286). The eigenvalues of D = Jy,sm + (A + 1 —m) Ly follow from (6.1) as

A(D) = {[/\ +1-m]" A+ 1}, while the eigenvalues of E = Jjx; are A (F) =

{[0]"1 ,l}. With 2 = AQA+ 1) (A + 1 — m), det (Dysem ® Eixi — 2I) = 0 has the

zeros [0]™™ (A +1) and [l (A+ 1 —m)]™ " and the same as the polynomial
2 TA+ 1) (2=l (A+1—m))"
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228 Spectra of special types of graphs
such that the polynomial C' in A is

2= I+ 1) (z =LA+ 1—m)"!

C= ml ml
A+ D)™ (A +1—m)

2=AO+1)(A+1—m)
Combining all and using (6.1), yields
det (Amdoublestar — AI) = a(=1)™ (A + 1) H (A +1—m)
2 A+ 1) (2= I+ 1—m))" !
A+D)™A+1-—m)™
which simplifies with z=A(A+1) (A+1—m) to
det (Amaoublestar — AI) = (=)™ X" (AX(A+1—=m) =) AA+1) = )"

X

The eigenvalues of Apdoublestar With N = (I 4+ 1) m nodes are, beside a high-
multiplicity root at zero [0 ™™, m=1+1. /(m — 1)2 4 4] and [+ £3V1+ 4l]m71.
The number of different eigenvalues equals four, which implies that the diameter
is three (art. 69). The largest eigenvalue of the double star with m = 2 and
N =2(l + 1)was given earlier by Das and Kumar (2004),

(N-1)+v2N -3 1

1
/\max (A2doublestar> - \/ B = 5 + § 2N —3

6.10.3 Complementary double cone

We consider a complete graph K to which two nodes, labeled by N 41 and N + 2,
are connected. Node NN + 1 is connected to m nodes in K and node N + 2 to the

N — m other nodes. The corresponding adjacency matrix of this “complementary
double cone” (CDC) on Ky is

J—1 B
Acpe = |: ( BT)NXN ON><2 :|
2x N 2x2 J(N4+2)x(N+2)

where

Um, O

BN><2 _ |: 0 x1 x1 :|
(N—=m)x1 U(N-—m)x1

The CDC graph has diameter 3 and each other graph with diameter 3 is a subgraph
of CDC (see also art. 56 on strongly regular graphs). The corresponding Laplacian
is

[ NI=(J=1)yyn —Bnx2
Qeve = { ~Bln diag (m, N —m)
whose eigenvalues follow from
(N+1—M)I-JN><N _BNXQ
det — ul) = det
*{(Qope —ul) =de [ —Bjn diag (m — p, N —m — p)
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6.10 An m-fully meshed star topology 229
We apply the Schur complement (A.59) with D = diag(m — p, N —m — u) and
BD™'C = By xadiag ((m— )™ (N = m— u) ") BL

:|: Umx1 Omx1 :| ml_ﬂ 0 |:U1><m 01><(N—m)
O(N—m)xl UN-—m)x1 0 N,rln O1xm UL x (N—m)

—p

_ ﬁJme Om><(N—'m)
O(N—m)xm mJ(N—m)X(N—m)

such that
T=(N+1-pu)Il—Jyxn—BD'C

_ (N +1 =) Imxm — (m;,u"f'l)t] _me(me)
1
_J(me)xm (N+1_M)I_(N7m7'u+1)‘]

Hence,
det (Qepe — pul) =det DdetT = (m — p) (N —m — p)det T

The determinant of 7' is computed with (A.57). The computation is similar to those
of m fully connected stars in Section 6.10. Using (6.39), we express the matrix as

1+ 1+m—
(N + 1- /J) I’me - u']nw@m = _meXm
m—p m— [
where A +1 = 72 (N 41 — p). With (6.41), we have
m— [ -1 (m —p) m
7J _ X ) = Jiv_ _
m—p) m N—m—pu+1
and with 6 = 1+777,H/L) (A+1—m) + N—mfu ’
14+m-—p
det T = det _m——/uLmem det((N—i—l—M)I(me)x(me)—9J>
L+m—p\" Nem N+1l—p
=(——- —0 det (J—(A+1)I)det | J - ——1
(S ) oY den (- ey e (1= 2

Using (6.1) yields
dﬁT(Liﬁ:ﬁ>Q+1mﬂN+1mNQUV+1;L(wa)
m

After simplification, we find that

nmeme+UfuﬂN+1ffm+nume&+2mu4nﬁfﬁ
(m(N—-m)—p W+D+MMN—m—M

0:

We now compute N+1—pu— (N —m)f =
riOMN*M*uW+D+uMN*m*M
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230 Spectra of special types of graphs
The result is

S(M):,u(,u3—2,u2(N+1)+u{(N+1)2+m(N—m)}—m(N—m)(N+2))

S

The polynomial 5 ) has degree 3 in p and the sum of its zeros is 2 (N + 1), while
the product is m(N —m) (N + 2). Combining all factors yields
1

_ V-2
detT_(m—u)(N—m—u)(N+l 1) (1)

and

N-2

det (Qepe — pul) =det DdetT = (N + 1 — p) s ()

In summary, the eigenvalues of (QCDC)(N+2)><(N+2) are 0, [N + I]N—27 and the
three real positive roots of s ().

6.11 Uniform degree graph
We define the uniform degree graph Yy by the adjacency matrix

Ary = (J_TI)[%]X[%] V[ﬂlx[ml}

2 (6.43)
Vizaixy)  Opeixae

where V,,«, is square and symmetric Hankel matrix for even N = 2n
111 -+ 1

0
Viaxn = 0

1 11
1 10
1 0

but V,, «(n41) is non-square and asymmetric for odd N = 2n + 1,

111 .- 1

0
an(n+1) = 0

1 11
1 1 0
1 1

The uniform degree graph Ty consists of a union of [%} stars with different size,
Ty = U;V: %i]Kl’j,l. Indeed, the star K y_1 with center at node 1 spans all
nodes, the star K; y_o with center at node 2 spans all nodes but node N, the
star Ky y_3 with center at node 3 spans all nodes but node N and N — 1 and so
on. Except for two nodes (art. 3), each node in a uniform degree graph Yy has a
different degree and the degree vector is

RECIEE -
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6.11 Uniform degree graph 231

Behzad and Chartrand (1967) prove that there exist only two graphs with two nodes
of equal degree (also called antiregular graphs): Gn with equal degree [%} and its
complement G with equal degree [%] Bapat (2013) states that antiregular
graphs are threshold graphs (art. 114). Hence, the uniform degree graph YTy is a
special case of an unweighted threshold graph. The number of links in Y equals

Ly, = NTT? while the number of triangles (art. 50) is Ay, = —(nfl)nﬁ(%fl) and

Ay, ., = 2(";1). The complement of the uniform degree graph Ty is a uniform

degree graph Y _1 and one isolated node (with degree 0). Finally, the bipartite

graph Y derived from the uniform degree graph T 5, without the major clique of
N

size [3} and with adjacency matrix

A [ Oixlg] Vi (6.44)
N V[N;rl]x[%] O[N;l]X[Ng»l]
has the property, for even® IV, that each degree from 1,2,..., [%] occurs precisely

twice.

6.11.1 The characteristic polynomial of Y5, and :fgn

We confine ourselves to the even case with N = 2n and let ¢ = 1 for T, and ¢ =0
for To,,. The computation of the eigenvalues of Ay,, and Ag_is based on (A.59),

_ qAKn — A vnxn
det (A(qm mg)Tan) = )\I) — det [ o o

nxn
1
= (=\)" det <qAKn — M, + Xvfm)

= det (\I, — A\gAx, — V2,.,)

since VI

= V., xn. The matrix V2

s «n has the particular form

n n—-1 n—-2 --- 2 1
n—1 n—-1 n-—-2 --- 2 1
o2 n—2 n—2 n—2 2 1
nxn
2 2 2 1
1 1 1 1 1_

6 When N is odd, T2m+1 is a disconnected graph with one isolated node, and apart from the
isolated nodes, each degree occurs still twice.


https://doi.org/10.1017/9781009366793.009
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.009
https://www.cambridge.org/core

232 Spectra of special types of graphs

Denoting Y (¢) = (—1)" det (A(ngn-s-(l—q)T%) — )\I) yields

n—X  n—14+q¢g\ n—2+qg\ --- 24g)\ 1+g)
n—14g\ n—1—-X2 n—2+4+¢\ - 24q\ 1+g\
n—24+g\ n—24+qg\ n—2-X . 24¢g\ 1+g)\

Yig) = : : : ) : :
2+ g\ 2+ g\ 24qg\ - 2—=X% 14gA

14 gA 14+ gA T4gh - 14g) 1-X

We first subtract in the determinant (art. 209) column j from j — 1, starting from
j =2 to j =mn, and obtain

1—qgh— A2 1 1 1 14 gA
A gh  1—gh— )2 1 1 1+ g\
0 A2 + g\ 1—gh—X .. 1 1+ gA
Y(q): . . . . . .
0 0 0 o 1T=gA =A% 14\
0 0 0 A2 1=

Next, we repeat the same action on the rows and subtract row ¢ from row i — 1,
starting from i = 2 to i = n, and find, with y = A? + ¢)\, that the determinant

1-2y Y 0 0 0
Y 1-2y Y 0 0
0 Y 1-2y - 0 0
Yig) = : : . . . :
0 0 0 e 1 =2y Y
0 0 0 Y 1— )2

has a tri-diagonal Toeplitz form (6.7), except for the element y,, = 1 — A%, The
eigenvalues of this pseudo tri-diagonal Toeplitz matrix of the form (6.14) cannot
straightforwardly be solved with the generating function method of Section 6.4.
The determinant Y (¢) can be expanded in a continued fraction as in art. 373.

6.11.2 The characteristic polynomial of V2

As shown in Section 6.8, the eigenvalues of the bipartite matrix AT% are plus and
minus those of V,,«x,. Let us concentrate on the eigenvalues of V,,«,. The j-th
row of the eigenvalue equation Vx = dx yields

n+l—j

Z Ty = 0T

m=1

Subtracting row j + 1 from row j gives us

Tnt1—j =0 (T; — Tj41) (6.45)
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6.11 Uniform degree graph 233

which is valid for 1 < j < n with the assumption that x,,41 = 0, because x; = dx,,.
After the index transformation j — n + 1 — j, we obtain

Tj =06 (Tnt1—j — Tnt2—j) (6.46)

Assuming the existence of the inverse V1, the eigenvalue equation becomes x =
dV~1z, and comparison with (6.46) illustrates that the inverse V~! of the Hankel
matrix V,

0 0 0 - 1

/-1

viol.=10 0o 1 0
0 1 -1 0

1 -1 0 0

is again a Hankel matrix. Moreover, V! exists so that the eigenvalue & # 0. Iter-
atively applying the cofactor expansion (art. 212) with respect to the last element

of the first row, the determinant is evaluated as det V%, = (—1)[%] = det Vy,xn,

while trace(Vnin) = (=1)""" and trace(V,x,) = [2]. Art. 235 then indicates
that

T M () = (D S () =[3] S sy = ()"

More interestingly, V2 is a pseudo tri-diagonal Toeplitz matrix (6.14), equal

to the Laplacian matrix Qp of the path on p. 204, except for the last diagonal
element that is (V”)nl = 2 instead of (Qp),,, = 1, thus V=2 = Qp + e,el. This

difference is also manifested in det V,2, = 1 and trace(Van) = 2n — 1 while

det @p = 0 and trace(Qp) = 2n — 2, and is in agreement w1th the analysis of Y (q)
above. Alternatively with the Toeplitz matrix (6.7), V=2 =T, (—1,2,—1) — erel.
By interlacing (Lemma 7) and A (elel) =1, but A (elel) = 0 for &k > 1, the
eigenvalues are upper bounded by (6.8) those of T}, (—1,2, —1),

14 2cos m §5,;2§2+2cos e
n+1 n+1

We now evaluate the characteristic polynomial ¢, (A\) = det (V,2, —AI) in

nxn
closed form. Expanding the determinant ¢, (\) = det (V,, 2, — AI) towards the

first row yields
en(N) =1 =N |Tho1 (-1L,2=X-1)] = |Thh—2(—1,2 = X\, —1)|
Invoking (A.98) with (6.

)
B (e
=00 e (A2 - o (A2
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234 Spectra of special types of graphs

After introducing the series representation (B.135) of the Chebyshev polynomial
U, (z) of the second kind and some manipulations, we find that the characteristic
polynomial ¢, (\) of V2

nxn

=3 (") v (6.47)

Since the binomial coefficients are non-negative, Descartes’ rule of signs (Theorem
87) states that ¢, (A) has only positive real zeros. The same result also follows from
the eigenvalue equation V™22 = §2z. The interval of eigenvalues A = § 2 of V2
is [0,4], where the maximum eigenvalue follows from Gerschgorin’s Theorem 65.

Introducing () = Jo) (lz',fﬂ dz into (6.47) yields

27”

n+k

k
on ( 27rz/ O)Z 22’““ (=A)"dz

_ _ﬂ/ (1+2)" (142)" 2
C

1
d — ——d
271 ) A1+ 2) + 22) 220+t a 2mi /C(O) A1+ 2) + 22 ®

If A = 0, the first term vanishes and the second term equals one. If A # 0,
the second term is zero, because the integrand is analytic at z = 0. The first
integral can be closed over the entire complex plane, except for the origin, thereby
enclosing the simple poles of A (1 + 2) + 2% = (2 — 21) (2 — 22) at 21 = ﬁ@
and zo = ﬁ@ in clockwise sense. By Cauchy’s residue theorem, it holds
that

L (1+2)2n+1 b 1 1+Zl 2n+1_ 1+Z2 2n+1
2mi Joo) (2 — 21) (2 — 22) 227417 (25— 21) 21 2z

By using properties of the zeros of a quadratic equation, we arrive, after some
manipulations, to the closed form of the characteristic polynomial ¢, (A) of V2
with ¢, (0) = 1 and for A # 0,

A+VAT=AN) (2-A—VAZT—40) "= (A= VAT —4X) (2-A+VXZ—4N)"
2n+1/A2 — 4

en(N) =

(6.48)
which bears resemblance to Chebyshev polynomials (art. 377). After invoking
the polar representation of complex numbers, the alternative form of characteristic
polynomial ¢, (A) = det (V — ) is

nxn

¢n (\) = ———==sin (arccos g — M arccos (1 - %)) (6.49)
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6.12 A link joining two disconnected graphs 235

6.12 A link joining two disconnected graphs

We consider two applications of Theorem 15 in art. 90. Another application on
the kite graph P, K,,, that consists of a complete graph K, and a path graph P,
attached to one of the nodes of K,,, is presented in Van Mieghem (2015b).

Example 1 We consider the complete graphs G; = K,, and G2 = K,,, where
n > m, that are connected by one link. Then G1\ {i} = K,,—1 and G2\{j} = K1,
because a removal of node in the complete graph is a complete graph with size
minus 1. By using (6.1) into (3.104), the graph G with N = n + m nodes has the
characteristic polynomial in y = A+ 1

det (Ag — M) = (=1)" "yt L2 (y —n) (y—m) — (y —n+1) (y —m+1)}
= (=)™ YT (y)

where
pW)=y'—(n+m)y’+ (nm—-1)y> +(n+m-2)y—(n—1)(m—1)

The zeros z; > z9 > z3 > z4 of the fourth degree polynomial p(y) can be com-
puted exactly. Unfortunately, the algebraic expressions are cumbersome and fail to
provide insight.

The sum of zeros equals z1 + 22 + 23 + 24 = n+m = N, while the product equals
z1222324 = —(n— 1) (m —1). Since A\; (K,,) = n — 1, we know from (3.107) that
the largest zero lies” between n < z; < n + 1. We note that

p(n)=-1—(m-m) pm)=-1+mn-m) p(m—1)=—(m-1)°>p(n)
and
pP)=N-3 p0)=—(n-1)(m—-1) p(-1)=N+1

If n —m =1, then p (m) = 0 and z2 = m is the second highest zero. If n —m > 1,
then p(m) > 0 and p(n) < 0 indicate that there is at least one zero between m
and n. If n = m, the second largest zero z5 lies between n — 1 and n, because
p(n—1) = —(n—1)°p(n). The fact that p(0) < 0 and p(1) > 0 illustrates that
z3 must lie in between 0 and 1 (for m > 2). The fact that p (0) < 0 and p(—1) >0
illustrates that z4 must lie in between —1 and 0 and z4 is the only negative zero.
Moreover, in case n —m > 1, z1 + 22 > n + m so that z3 + z4 < 0, which shows
that |z4] > 2z3. In summary for n > m, the zeros of p(y) obey n < 21 < n + 1,
m<zz<n,0<zz3<land —1<z4<0.

Next, we consider the Lagrange expansion (art. 342) around y = n. We expand
the polynomial p (y) in a Taylor series around y = n and obtain, with z =y — n,

p(@z+n)=a"+{3n—m}a®+ {3n® — 2nm — 1} 2?
+{n® —mn® — (n—m) -2}z — {1+ (n—m)}

7 Numerical computations show that z; < n + % forn >m > 2.
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236 Spectra of special types of graphs

Application of the general Lagrange series (B.68) and recalling that y = A + 1,
yields, up to third order in £ = 1+(n—m)

n2(n—m)—(n—m)—2"

3n2 —2nm — 1

Al(G)Zn_l—’—g_n?’—an—(n—m)—2€2

(3n—m)(n3—mn2—(n—m)—2)—2(3n2—2nm—1)2
n3 —mn? — (n—m) — 2

& +0(gh

This Lagrange series converges rapidly for large n and large n — m, since £ is then
small, but diverges for n = m. Since the second order term is positive, we find for
n —m > 1 that
14+ (n—m)

n2(n—m)—(n—m)—2

which is also satisfied for n = m > 2 when the absolute value is taken. This bound
is increasingly sharp in n — m and shows that A\; is decreasing with n — m. In
other words, the maximum A); is obtained for the symmetrical case where n = m.

AN =M (G) =M (G\fi~ j}) < € =

Example 2 The case where both G; = K, , and G2 = K; ,,, are stars can also
be evaluated exactly with (6.27). We have that G1\ {i} = K1,-1 and G2\{j} =
K1 ,m—1 when i and j are not the center node. (a) Application of (3.104) yields

det (Ag — M) = (—1)" AT 2 (N —n) (A2 —m) — (A2 —n+1) (A2 —m+ 1)}
= (=1)"H™ Antm—ty ()\2)
where
qN) =X —n+m+ DN+ mm+n+m—2)A—(n—1)(m—1)

The zeros of the third degree polynomial g () in A? again can be computed exactly.
Cardano’s explicit expressions are unfortunately still unattractively complex.

(b) If 7 is a center node, then G\ {i} consists of n — 1 disconnected nodes and
AGl\{i} = O; then

det (Ag — M) = (=1)" " X2 (X2 —n) (A =m) — (A = m+1)}
= (=D)AL — (it m+ 1) A+ (n 4 1)m — 1}

The zeros of the quadratic polynomial in A? are

/\i%{(n+m+1)i\/(n+1m)2+4}

from which

)\1(G)=\/%{(n—l—l—l-m)-i-\/(n—i—l—m)z—l-él}

1 1
= |n+1+ +0 ;
n+1-m (n+1-—m)
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6.13 A chain of cliques 237
This eigenvalue is largest when n = m and equal to A\; (G) = /n + %ﬁ
(¢) In case both i and j are center nodes of the star, we have
det (Ag — AI) = (—1)" T ATm=2 (A2 — ) (A2 —m) — (—1)" T A
_ (_1)n+’m )\'rz+'rrz—2 {)\4 _ (n +m+ 1) /\2 + nm}

and with roots A3 :%{(n—i—m—l-l):t\/(n—m)2+2(n+m)+1}. In case n =

m, we find A\ (G) = /n+ @.

6.13 A chain of cliques

A chain of D + 1 cliques is a graph G7,(n1,n2,...,np+1) consisting of D + 1 com-
plete graphs K,,; or cliques with 1 < j < D + 1, where each clique K, is fully
interconnected with its neighboring cliques K,,,_, and K, ,. Two graphs G; and
(G are fully interconnected if each node in G is connected to each node in Go. An
example of a member of the class G}, (n1,n2,...,np+1) is drawn in Fig. 6.5. The

Fig. 6.5. A chain of cliques G}(8,1,3,4).

total number of nodes in G§,(n1,n2,...,npy1) is

D+1

N=> n, (6.50)

The total number of links in G7, is

D+1

D
Iy
L= E (;) + E TiTi41 (651)
j=1 j=1

where the first sum equals the number of intra-cluster links and the second the
number of inter-cluster links. The main motivation to study the class of graphs
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238 Spectra of special types of graphs

Gp(ni,ng,...,npy1) with nj > 1 is its extremal properties, which are proved in
Wang et al. (2010):

Theorem 41 Any graph G(N, D) with N nodes and diameter D is a subgraph of
at least one graph in the class G5 (n1 = 1,n2,...,np,np41 = 1).

Theorem 42 The mazimum of any Laplacian eigenvalue 1;(G3) for i € [1,N]
achieved in the class G (n1 = 1,ng,...,np,npy1 = 1) is also the mazimum among
all the graphs with N nodes and diameter D.

Theorem 43 The maximum number of links in a graph with given size N and
diameter D is Lyax(N,D) = (N72D+2) + D — 3, which can only be obtained by
either Gh(1,...,1,n; = N — D,1,...,1) with j € [2, D], where only one clique has
size larger than one, or by G (1,...,1,n; > 1,n;11 >1,1,..,1) with j € [2,D — 1]
where only two cliques have size larger than one and they are next to each other.

Another theorem, due to van Dam (2007) and related to Theorem 43, is:

Theorem 44 The graph G (n1,nz,...,npy1) with npz] = N — D and all other
2

n; = 1 is the graph with the largest eigenvalue of the adjacency matriz among all

graphs with a same diameter D and number of nodes N.

Here, we will compute the Laplacian spectrum of G, (n1,n2, ..., np—1, p, Np+1):
we will show that N — D eigenvalues are exactly known, while the remaining D
eigenvalues are the positive zeros of an orthogonal polynomial. The adjacency
matrix Ag: of G} (n1,ng,...,np_1,mp,np41) is

Jn1 Xni Jnl Xno

JTLQXTL] JTLQ Xna J’nang

J’I’Li XNi—1 J’I’Lani J’I’Ll XMNi41

JnD+1><nD+1 JTLD+1><nD+1 m

where J = J — 1.

Theorem 45 The characteristic polynomial of the Laplacian Qgs, of the class of
graphs G, (n1,ng, ...,npt1) equals

det (Qay, — pl) = pp () 1725 (dj +1— )™ (6.52)

where dj = nj_1 +nj; +n;11 — 1 denotes the degree of a node in cliqgue j. The
polynomial pp (1) = HJ.DZTHJ» is of degree D+1 in p and the function 0; = 0; (D; )
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6.13 A chain of cliques 239

obeys the recursion

0= (dj+1—p)— (nj‘l +1) n; (6.53)

with initial condition 8y = 1 and with the convention that ng = npio = 0.

The proof below elegantly uses the concept of a quotient matrix, defined in
Section 2.5. An elementary, though more elaborated proof, which is basically an
extension of the derivation in Section 6.10.3, is found in Van Mieghem and Wang
(2009). Consider the k-partition of a graph G that separates the node set N of G
into k € [1, N] disjoint, non-empty subsets {N7, N, ..., N} }. Correspondingly, the
quotient matrix A™ of the adjacency matrix of G is a k x k matrix, where A7 is the
average number of neighbors in N of nodes in N;. Similarly, the quotient matrix
Q™ of the Laplacian matrix @ of G is a k x k matrix, where

. —A%,ifi#j
2% #kAf’k, ifi=j

As defined in art. 37, a partition is called regular or equitable if for all 1 <i,5 <k
the number of neighbors in N; is the same for all the nodes in ;. The eigenvalues
derived from the quotient matrix A™ (Q™) of the adjacency A (Laplacian @)) matrix
are also eigenvalues of A (Laplacian @) given the partition is equitable (see art. 37).

Proof: The partition that separates the graph G%,(n1,ne,...,npy1) into the
D + 1 cliques K, Ky,,..., Ky p,, is equitable. The quotient matrix Q™ of the
Laplacian matrix @ of G is

no —Ng
—-n; N1 -+ng —nsg
—ng ng+mng —ny
Q" = , (6.54)

—Nnp-1 MNp-1+Npt1 —NpD41
—Np np
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240 Spectra of special types of graphs

We use (A.57) to det (Q™ — )

No — W —MN9
—n ny+mng—p  —N3
—No Mo +MNa— U —Ny
—Np-1 MNp-1+Npy1— MK —NpD41
—Nnp np — K
ni+ng—p— Pt —ng
—No Ng+MNg— (U —Nag
= (n2 —p)
np — p

We repeat the method and obtain

det (Q™ — pl) = (n2 — p) <n1+n3—u—w) X

ng — W
—y— —_ mong
ng +ng — [t BT n4
(mtna—u-3222)
det
—Np-1 MNDp-1+Npy+1 —Hf —ND+1

—Nnp np — w

Eventually, after subsequent expansions using (A.57), we find

det (Q —pl) = [ _ 05 =pp (1)
where 6; follows the recursion
9j = (nj_1 +njr1 — )\) — %
j—1

with initial condition 8y = 1 and with the convention that ng = np4e = 0. When
written in terms of the degree d; = n;_1 +n; +n,11 — 1, we obtain (6.53).

Any two nodes s and ¢ in a same clique K,,, of G}, are connected to each other and
they are connected to the same set of neighbors. The two rows in det (Qg»j3 —ul )
corresponding to node s and ¢t are the same when p = d; + 1, where d; is the degree
of all nodes in clique Ky, . In this case, det (Qgz —pl) = 0 since the rank of
Qgz, — pl is reduced by 1. Hence, u = d; + 1 is an eigenvalue of the Laplacian
matrix Qg . The corresponding eigenvector x has only two non-zero components,
xs = —x; # 0. Since the D + 1 partitions of G7},(n1,n2,...,np4+1) are equitable,
the D + 1 eigenvalues of Q™, which are the roots of det (Q™ — uI) = 0, are also
the eigenvalues of the Laplacian matrix Qg . Each eigenvector of Qg3 , belonging
to the D + 1 eigenvalues, has the same elements x; = x; if the nodes s and ¢
belong to the same clique. Hence, the Laplacian matrix Qg; has D + 1 non-trivial
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6.13 A chain of cliques 241

eigenvalues, which are the roots of det (Q™ — puI) = 0 and trivial eigenvalues d; + 1
with multiplicity n; —1for 1 <j <D+ 1. (]

6.13.1 Orthogonal polynomials

In the sequel, we will show that the polynomial pp () in Theorem 45 belongs to
a set of orthogonal polynomials (see Chapter 12). The dependence of §; on the
diameter D and on g is further on explicitly written.

Lemma 5 For all j > 0, the functions 8; (D;x) are rational functions

tj (D;x)

0; (D;z) = tr (Dia)

(6.55)

where t; (x) is a polynomial of degree j in x = —p and to (D;x) = 1.

Proof: It holds for j = 1 as verified from (6.53) because 0y (D;x) = 1. Let us
assume that (6.53) holds for j —1 (induction argument). Substitution of (6.55) into
the right-hand side of (6.53),

(z4nj_14nj410)t;—1(Dsx)—nj_1nit;_2(D;x) 1< <D

. _ t;_1(D;x
ej (D,ZL’) - { (a:+nD)tD(D;:b)j7(1Dn)D+1tD_1(D;m)
tp(D;z)

j=D+1

indeed shows that the left-hand side is of the form (6.55) for j. This demonstrates
the induction argument and proves the lemma. O
The polynomial of interest,

D+1 D+1
po () = T1240; (D) = > e (D) " = T (2 — n) (6.56)
k=0 k=1

(where the product with the zeros zpy; < zp < -+ < 21 follows from the definition
of the eigenvalue equation (A.97)) equals with (6.55)
L2 (D5w)
pp (—2) = —F5 =tp4y1 (D;x)
151 (Ds )
We rewrite (6.55) as t; (D;z) = 0; (D;z)t;—1 (D;z) and with (6.53), we obtain
the set of polynomials

tpy1(D;x) = (x +np)tp (D;x) —npnpiitp_1 (D;x)
ti(Dix) = (x+nj_1+n41)tj—1 (D;x) —nj_intj_o (D;z) for 1 <j <D
t1 (D;z) = (x 4+ n2) to (D; x)

(6.57)
where to (D;2) = 1. Art. 357 demonstrates that, for a fixed D, the sequence
{t; (D;@)}o<j<pyq Is aset of orthogonal polynomials because (6.57) obeys Favard’s
three-term recurrence relation. By Theorem 112, the zeros of any set of orthogonal
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242 Spectra of special types of graphs

polynomials are all simple, real and lie in the orthogonality interval [a, b], which is
here for the Laplacian equal to [0, N].
By iterating the equation upwards, we find that

1
, <5<
t; (D;0) = I 1<i<D (6.58)

m=2

0 j=D+1

Thus, tp4+1 (D;0) = 0 and thus 0p14 (D;0) = 0 implies that pp (1) must have a
zero at p = 0, which is, indeed, a general property of any Laplacian (art. 101).
From (6.55), it then follows that 6; (D;0) = n;j4y1 > 0. The eigenvalues of the
Jacobi matrix (art. 370),

—MNg 1
ning — (n1 —+ 713) 1
M = (6.59)
np—inp —(Mmp-1+npy1) 1
NDND+1 —np

are equal to the zeros of pp (—z). Moreover, we observe that also the quotient
matrix Q™ in (6.54) possesses the same eigenvalues as the Jacobi matrix M. Since
the eigenvalues of M are simple, art. 239 shows that there exists a similarity trans-
form that maps the Jacobi matrix M into the quotient matrix @™ (and vice versa).
Moreover, the matrix M can be symmetrized by a similarity transform,

1 1 1

’ j—1 D
VAL an VMM p41 H?’Lk
k=2 k=2

H = diag | 1,

yeeey

and the eigenvector belonging to zero equals

F(D;0) = Hr (D;0) = | 1 v \/"Ir

After the similarity transform H, the result is M=HMH -1

) \/T1N2
yunz  —(np+n3)  /nang

Vip—inp —(np—1+npy1) /RDND41
NI —np
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6.13 A chain of cliques 243

The corresponding square root matrix A of the Gram matrix —M = AT A can be
computed explicitly as

V2 —yn1
0 N V)
A: '.. '.. '..
0 VDf1 —+/MD
0 0

in contrast to the general theory in art. 374, where each element is a continued
fraction.

In summary, all non-trivial eigenvalues of Qg+ are also eigenvalues of the simpler
matrices Q™, —M or M. Properties and bounds on those non-trivial eigenvalues
and zeros of pp (1) as well as the spectrum of the corresponding adjacency matrix
are studied in Van Mieghem and Wang (2009). We mention the asymptotic scaling
law:

Theorem 46 For a constant diameter D and a large number N of nodes, all non-
trivial eigenvalues of both the adjacency and Laplacian matriz of any graph in the
class G (n1,n2, ...,np+1) scale linearly with N, the number of nodes.

All coefficients ¢, (D) of pp (i) in (6.56) can be computed explicitly in terms

of the clique sizes ni,no,...,npy1 for which we refer to Van Mieghem and Wang
(2009). We merely list here the first few polynomials gp (1) = pi—(’f):

a1 (p) =—(u—N)
a2 (1) = p* — (N +n2) p+ Nng = (u— N) (p —n2)
g3 (1) = —p® + (2N —n1 — na) p® — (n3 + 13 + nanz + ning + ning + 3nans + nang + nana) p
+ Nnang
qa () = p* — (2N —ny —ns) p® + (n% +n3 +n2 +ngns +n3(3ng +n5))u2
+(2(3n3 + 3n4 + 2n5) 4+ n1(n2 + n3 + 2ng + n5) Ju?
- (n3n4 (n3 + na +ns) + na {n% + ni + 4nzng + (n3 + na) ns + n2 (n3 + na + 77,5)}
+ n1 (n2 +na) (n3 +na +ns)) p+ Nnanzng

For increasing D, the explicit expressions rapidly become involved without a simple
structure. There is one exception: G7,(n1,n2,...,np4+1) with all unit size cliques,
n; = 1, is a D-hop line topology, whose spectrum is exactly given in (6.15), such

that
) (#; {n; = 1}1§j§D+1) = 12[ (2 (1 — cos (Dk—j:l>> _ u)

k=1
Finally, we mention that g3 (u) appears as the polynomial s (u) in the Laplacian
spectrum of the complementary double cone (CDC) in Section 6.10.3. The CDC,

written as G5 (1,m, N — m, 1), is clearly a member of the class G5, (n1,n2,...,np+1)
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244 Spectra of special types of graphs

6.14 The lattice

Consider a rectangular lattice with size z; and z; where at each lattice point with
two integer coordinates (k,[) a node is placed. A node at (k,l) is connected to its
direct neighbors at (k+ 1,1), (k —1,1), (k,I+ 1) and (k,l — 1) where possible. At
border points, nodes only have three neighbors and at the four corner points only
two. The number of lattice points (nodes) equals N = (21 + 1)(22 + 1) and the
number of links is L = 22125 + (21 + 22). Meyer (2000) nicely relates the Laplacian
of the lattice G, () to the discrete version of the Laplacian operator,

o o
0x2 = 0Oy?

In a similar vein, Cvetkovi¢ et al. (2009, Chapter 9) discuss the Laplacian oper-
ator and its discretization in the solution of the wave equation with rectangular
boundary.

The adjacency matrix, following Meyer (2000), is

T+ x4+ L) xz+1)
Tt 1yxa+))  Tas)xa+y 1

ApLa(ny = T4y x (21 41)

T+ x4+ L+ x(zi41)

~

I 1 )x(a+) T4 x(zi+1)
where the Toeplitz matrix
0 1
1 0 1
T(21+1)><(21+1) = 1
0 1
1 0

is the adjacency matrix of a z; hops path whose eigenvalues are given by (6.10) with
N — 21 + 1. The Laplacian Q,(n) is not easily given in general form because the
sum of the rows in Ar, ) or the degree of a node is not constant. The adjacency
matrix Ay, vy is a block Toeplitz matrix whose structure is most elegantly written
in terms of a Kronecker product. We may verify that?

Ara(N) = Lo+ 1) x(204+1) @ Tz 41)x (2141) T T(za41)x (2241) @ L2141y x (22 +1)  (6.60)

The eigenvalues of Ap,(y) are immediate from art. 286. For 1 < j <z +1,1 <
k < z9 + 1, it holds that )\jk (ALa(N)) = )\j (T(Z1+1)><(Z1+1)) + A (T(22+1)><(22+1))

8 When applying the identity (A1 ® B1) (A2 ® Bs) = (A142 ® B1Bz2) in (Meyer, 2000, p. 597) to
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6.1/ The lattice 245

and with (6.10), we arrive at

] wk
)\jk (ALa(N)) = 2cos (m) + 2 cos (2,’2 i 2>

where 1 <j<z1+1,1<k<2+1.
Several extensions are possible. For a cubic or three dimensional lattice, the

adjacency matrix generalizes to

Ara(v) = Lza+1)x (z341) @ Tzot1)x (z241) @ T(z1+1)x (2141)
F L) x(za4+1) @ T a4 1) x(zo+1) @ L2141 x (21 4+1)
+ Tt 1) x(za+1) @ a1 x(zo41) @ L1 41)x (21 4+1)

with spectrum

7j mk i
Ajkl (AL‘&(N)) = 2cos <Z1 +2> acos (ZQ + 2) Facos (Zg +2>

where 1 < j<z1+1,1<k<2+4+1,1 << 23+ 1. The Kronecker product where
the Toeplitz matrix T of the path is changed for the circulant Toeplitz matrix of
the circuit represents a lattice on a torus (Cvetkovié¢ et al., 1995, p.74).

We end this section by considering the m-dimensional lattice La,, with lengths
Z1, %2, ...,%m in each dimension, respectively, and where at each lattice point with

integer coordinates a node is placed that is connected to its nearest neighbors whose
coordinates only differ by one in only one component. The total number of nodes
in La,, is N = (21 +1) X (22 +1) X ... X (2, +1). The lattice graph can be written
as a Cartesian product (Cvetkovi¢ et al., 1995) of m path graphs, which we denote
by La,, = P, +1n0P;,+n0...0P, 4+1). According to Cvetkovic et al. (1995),
the eigenvalues of La,, can be written as a sum of one combination of eigenvalues
of path graphs and the corresponding eigenvector is the Kronecker product of the
corresponding eigenvectors of the same path graphs,

)\i1i2~~~’iN (La‘m) = Zjn:l Ai]’ (P(zj+1)) (661)
Tirig.rim (Lam) = @iy (Pley41)) © Ty (Paytn)) @2 @ @4, (Pizptn))

where i; € {1,2,...,2; + 1} for each j € {1,2,...,m}. Since both the adjacency
and the Laplacian spectrum of the path Py graph are completely known (Section

2

compute the square of A ) given by (6.60), powers of the Toeplitz matrix appear. However,

La(N
1 0 1
0 2 0
T2 — . .
(z1+D)%x(z1+41) — | 1 0 . o1
2 0
1 0 1

shows that the Toeplitz structure is destroyed.
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246 Spectra of special types of graphs

6.4), the corresponding spectra of the m-dimensional lattice La,, can also analyt-
ically be computed from (6.61) by substituting N = z; + 1 in the derivations in
Section 6.4.

Lemma 6 The number L of links in the m-dimensional lattice Lay, is, for m > 1,

m

UZJ+1 szzj-l

Proof: We will prove the lemma by induction. Let the number of links in the
k-dimensional lattice Lay be I(z1,29,...,2;). For k = 1, we have a path graph
P., 41 and its number of links is L = [(21) = z1 = (21 +1) 735,
the lemma holds for k-dimensional lattices. We consider the (k + 1)-dimensional
lattice Lay1, which is constructed from k different k-dimensional lattices

Let us assume that

La(3i1+1)><(Zi2+1)><~u><(zik+1)7 where i1,19,...,0 € {1,2,...,(k+ 1)}

in the following way. We position a total of (z;,,, + 1) such k-dimensional lat-
tices La(zilH)X(%H)X,_X(%kﬂ) next to each other in the direction of dimension
ix+1. In this way, every link is counted k-times in each dimension. Intuitively, this
construction is easier to imagine in three dimensions, where the three dimensional
lattice La., £1)x (2041)x (25+1) 1S constructed by (z3+1) consecutive two dimensional
La(z, +1)x(z.+1) Planes that are positioned next to each other in the direction of the
third dimension, (22 + 1) consecutive two dimensional La., 1)x(z;+1) Planes that
are positioned next to each other in the direction of the second dimension and,
finally, (21 + 1) consecutive two dimensional La L .,41)x(z,+1) Planes that are po-
sitioned next to each other in the direction of the first dimension. All links in this
process are counted twice. Returning to the k-dimensional case, we thus deduce

that
k+1

1
(21,22, s Zkt1) kz zi + D24y, Zjgs -+ Zji)
i=1

where j, # i for each i = 1,2,...,k+ 1 and w = 1,2,..., k. Introducing the
induction hypothesis for k-dimensional lattices, we obtain

k+1 k41 k+1 .
) J
(21,22, oy Zkt1) kZZZ+1 1_[44(2]—1—1).2:.%+1
Jj=1,j#i Jj=1,#i
k+1 k+1 k+1
k H Zj
i=1 j= 1];62
k+1

wIH

k+1

which illustrates that the induction hypothesis is true for k£ + 1, and consequently,
the lemma is true for each dimension m > 1. O
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7

Density function of the eigenvalues

General properties of the density function of eigenvalues are studied. Most articles
in this chapter implicitly consider the eigenvalues of the adjacency matrix A. Es-
pecially for large graphs and random graphs, a probabilistic setting in terms of the
density function is more suitable than the list of eigenvalues.

7.1 Definitions

172. The Dirac function. The Dirac function, also called impulse or delta function,
is the continuous counterpart of the Kronecker delta or indicator function. The
Dirac function is a generalized function with characteristic property

9(0) = [ 95 (a—wdu (7.1)

where L is a path in the complex plane containing x and g is a function that is
defined and finite along L. For example, when L is the real axis and g = 1, we
find the well-known property that ffooo 0 (t)dt = 1. Since the Dirac function is a
generalized function, there exist several representations.
A first class of representations is deduced from integral transform pairs. For
example, from the double-sided Laplace transform pair
F(s)=["_f(@)e*dz & [(z) =5 fCHOOF(s) estds

27i Je—ioc0

where ¢ is the smallest real part of s for which ffooo f(x) e 5%dx exists, we find
formally after a reversal in integration that

(e’ c+ioo
rw= [ aus (% s dses(””“))

Comparison with the property (7.1) leads to the representation of the Dirac function
as a complex integral

1 c+ioco .
(1) —/ e*dz (7.2)

211 oo

247
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248 Density function of the eigenvalues

valid for any finite real number c. If Re(¢) > 0 (similarly Re (¢) < 0), the contour
in (7.2) can be closed over the negative (positive) Re (z)-plane. Since e**
inside the contour, Cauchy’s integral theorem (see e.g. Titchmarsh (1964)) states
that the integral vanishes; except if ¢ = 0, then the integral is unbounded.

A second class represents the Dirac function as the limit of a sequence of func-

is analytic

tions. For example, executing the integral (7.2) as ¢ (t) = limy_. ﬁ ;:‘; e*tdz
leads to
1 e(c+iy)t _ e(cfiy)t ect
0(t)==-—— 1 = — lim sinyt
®) 21 yggo t mt yglgo Sy
but the latter limit with a value in [—1, 1] does not exist, although! [*_§(t)dt =1,

and illustrates difficulties, which has led to the development of a theory of gener-
alized functions. A particularly interesting class of functions are probability den-
sity functions fx (t) of a continuous random variable X, because of their prop-
erty [*_ fx (t)dt = 1. For example (see e.g. Van Mieghem (2014)), the limit of
Gaussian probability density functions with variance tending to zero yields

. e_§Z
0 (t) = lim
o—0 2mo

while the limit of Cauchy probability density functions with width 7 tending to
zero leads to

. 1 n
o) =l

which is written in complex notation as

1 1
0(t)=——lim Im - (7.3)
T n—0 t+n
This representation (7.3) is related to the Cauchy transform (see art. 361).
173. The density function of the eigenvalues {A\;,},-,, <y is defined by
N
It =+ 2:6 (t=Am) (74)
Using the representation (7.2) of the Dirac function, we have for ¢ > 0,
1 c+1i00
i) = 5 /c_ioo ety (2)dz (7.5)
I Indeed,
oo c+ioco u ct+ico zu _ ,—zu
/ 5(t)dt = —— Tim / e*tdtdz = —— lim -
—o0 21 U= Joioo —u 2 U= Jo oo E

where the latter integral follows from Cauchy’s integral theorem because, for ¢ > 0,
L fetioo “—dz =1if Re(u) > 0, else it is zero.

2mi Je—ioco
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7.1 Definitions 249

where, analogous to the definition of a probability generating function (pgf),

| X
=5 Z exp (—2zAm) (7.6)

can be interpreted as the generating function of the density function of the eigen-

values {)\m}1<TVL<N'
The representation (7.3) of the Dirac function leads to

Invoking >, ﬁ — trace(z] — A)~" in (A.163) of the resolvent (2] — A)~" in
art. 262 yields

At) = _% lim Tm trace (¢ +in) I~ 4)™") (7.7)

n—0
where %trace((z] — A)fl) is called the Stieltjes transform of the matrix A.

174. Probabilistic setting. The eigenvalues A1, Ao, ..., Ax, now ordered as Ay <
Ag < --- < Ap, can be regarded as a complete set of all realizations of the random
variable A, in which case the probability that X\ is smaller than or equal to a real
number u equals

N
Pr )\<u Z Ap<u}
k:

which shows, for u = )\;, that?

Pr[A < \] = %

Usually only a limited set of realizations of a random variable can be measured
and the above representation for its probability is then approximate and called the
empirical distribution (see e.g. (Van Mieghem, 2014, p. 580-581)).

By applying Abel summation (3.87) to the pgf in (7.6)

N—
1
pa(2) =+ Z k (exp (—2Ak) — exp (—2Ak41)) + exp (—2An)
k=1
replacing exp (—zAx) — exp (—zAp4+1) = —2 >:\:+1 e *"du,
N-—1 L Akt 1
or(2) =2 Z N /\ e *du + exp (—zAn)

k=1 k

2 Our usual ordering Axy < An_1 < --- < Ap results in Pr[A < \j] = % and unnecessarily
complicates the derivations below.
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250 Density function of the eigenvalues
we introduce Pr A < \;] = 7% in the k-sum

Akt1

Ak41
e~ du = Pr\ < ule"d

2 3 AN
— / +/ +...+/ Pr{A <u]e *"du
)\1 /\2 /\Nfl

and arrive, for the ordering A\; < Ay <--- < Ay, at

A1
©x(2) = exp (—zAn) — z/ Pr[A <u]e™*“du
AN
After partial integration with the probability density function fy (u) = d% PrA <,
the usual expression for the probability generating function of the real random vari-
able —N < A < N is found

—z\1 AN o]
o (2) = ¢ ~ + /)\ e f (u) du = / e f (u) du

1 — 00

175. Trace representation of ¢ (z). Art. 234 shows that e=*4 =377 | %:C (—2)".
Introducing A* = X diag()\]fn) X7 in the Taylor series, where the orthogonal matrix
X has the eigenvectors of A as columns (art. 247), yields e=*4 = Xdiag(e =) X 7.
Hence, if {A\,},<,,<y are the eigenvalues of a symmetric matrix Ay, then
{e_ZAm}lngN —zA
to the eigenvalue )\, is also the eigenvector of e=*4 belonging to the eigenvalue
e~#m_ After cyclic permutation (4.14) with XTX = I, we arrive at the trace

are the eigenvalues of e and the eigenvector of A belonging

representation
1
o (2) = Ntrace (e7*4) (7.8)

The relation with a probability generating function, ¢ (2) = F [e"z}‘], suggests
that the moments E [A\"] = (—1)" <pE\n) (0), and with (7.8) that

E[V] = trace (47) (7.9)

Relation (7.9) lies at the basis of Wigner’s moment approach in art. 187 to com-
puting the eigenvalues of random matrices.

z

176. Lower bound x(z) > 1 for real z. Since e % is convex for real z, the

general convexity bound (Van Mieghem, 2014, eq. (5.5)), from which also Jensen’s
inequality F [e*”‘] > e #FW s derived, gives

N

Z >eXp<——Z)\>

because E [\ = + Zf\ri:l Am = 0 for the adjacency matrix A (art. 46).
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7.2 The density when N — oo

Usually analysis simplifies in limit cases. For a few graphs, where the number

of nodes N tends to infinity, the spectrum can be computed, which requires the
. . 1 N

evaluation of Yy, (2) = iMoo 77 D —q €XP (—2Am).

177. Replacing a sum by an integral. The basic summation formula (Titchmarsh

and Heath-Brown, 1986, p. 13),

2] 0= [ s [ (s=t1-5) Lo s (=t -3) 100

~(-m-3) s (7.10)

is valid for any function f (z) with continuous derivative in the interval [a,b]. We
define the continuous eigenvalue function A (x) on [0, N] such that A (m) = A,.
Since, for any integer m € [1, N], art. 42 shows that — (N —1) < A, < N —1
and since Ay < Ay_1 < ... < )Aq, the eigenvalue continuous function |A (x)] is
bounded on [1, N] by N —1 and A (m) < A(m — 1) for any m. Thus, we assume
that A (x) is continuous and not increasing on [0, N]. The continuous eigenvalue
function A (x) can be obtained by Hermite or Bernstein interpolation (art. 304),
but not by Lagrange interpolation (art. 303), because the Lagrange interpolating
polynomial is not necessarily increasing at each real z € [1, N].
Application of the summation formula (7.10) to the pgf (7.6) yields

e—zA(N) _ e—zA(O)

1N
©x (z) = N/(; e ? (”‘)dm—yN (Z) +

2N
where
N
oz 1\ _a@dA ()
yN(z)—N | (a: [z] 2>€ T dx
Since —3 <z —[z] — 1 < % and dj(\igf) < 0, we may bound yy (z) for real z as,
N
—zA(JL ) < _E —zA(z) dA (z)
2N/ g rsuv(E) s 2N/06 @

e—#M0) _ —2A(N)

With fo e=?A(@) AL z)d fA(N =A@ gA (2) = , we have that

z

esz(O) _ esz(N) - - esz(N) _ esz(O)
N Syn(2) < ON

Thus, for real z, we obtain the bounds for the pgf ¢, (2) in (7.6)

1 N . 1 N i —zA(N) _ ,—2zA(0)
N/o e M dy < oy (2) < N/o e @y 4 ~ ¢

The density function fy (¢) involves a line integration (7.5) over Re (z) = ¢ > 0.
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252 Density function of the eigenvalues

If, for Re (z) > 0,
e—2AN) _ o—2A(0)

R N = Jm

then the limit
1 N
Jim o) () = Jim + /0 =A@ gy

exists and, hence, also limy_. fx (t). The condition means that the absolute value
of the smallest eigenvalue A (N) = Ay < 0 grows as |[Ax| = O (log N) at most, for
Re (z) = ¢ > 0, but arbitrarily small. This condition is quite restrictive and suggests
to consider the spectrum of normalized eigenvalues.

178. Moments. We start from E [A\™] = +-trace(A™) in (7.9) and the number of
closed walks W,,, = trace(A™) in art. 65 and use the Stieltjes integral (art. 350),

e 1
E[\"] = / x™dFy (Gn) = Ntrace (A% n)
If limy oo +trace(AR, ) = we (m) exists and the distribution F) (Gy) tends to
F)oo, then

/ " dF\ = wg (m) (7.11)
which implies that the limiting distribution F)__ of the eigenvalues of the infinitely
large graph G, = limy_ Gn exists. Assuming that this distribution is also
differentiable, then [0 a™dFy\_ = [~ a™fy_ (x)dz. Since trace(Anxn) = 0
and trace(A%, y) = 2L, we find, beside ffoo fre (x)dx =1, that

/OO Tfa,. (x)dx =0

/_0o 22fr_ (z)dz = E[D]

Multiplying both sides in (7.11) by = z), and summing over all integers m yields
again the pgf

O (2) = /00 e *dF\ = Z (_ni?mwg (m) (7.12)

— 00

7.3 Examples of spectral density functions
Only for a few graphs, the spectral density functions can be computed analytically
with the methods art. 175-178.
179. Infinite line topology. Applying (7.6) to a path P on N nodes with eigenvalue
Ak (P) = 2cos (N+1) for 1 <k < N in (6.10) yields the pgf of the eigenvalues of
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the path P
N
wk
SD/\P = kz (22 COS (N—_H>>
—2z cos( &L
Since A(z) = 2COS(1\}T$1) and limN_,oo$ = limNﬁw% = 0,

art. 177 shows that the limit generating function exists,

TN

N1 [Fh

¥i1)dz = lim i / e2zcosqp
N—oo N7 0

1\}1_{1’100(10)\}3( — lim N/ —22005

N—o00

Hence,

1 ™
lim @y, (2) = —/ exp (—2zcos ) df = Iy (—2z) = I (22)
N—oo i 0

where I, (z) is the modified Bessel function (Abramowitz and Stegun, 1968, Section
9.6.19); (Olver et al., 2010, Chapter 10). The inverse Laplace transform is

1 c+ioco 1 c+ioco B
hm H) = 2m/ ey (22)dz = 527 e*(t+2) {me %15 (22)} dz

and with the Laplace pair in Abramowitz and Stegun (1968, Section 29.3.124), we
arrive at the spectral density function of an inﬁnitely long path:

lim fy (¢) = 1

N—oo ™ \/4—752 |t|<2 (713)

180. The spectrum of an arbitrary path in a graph with N nodes can be computed
if the distribution of the hopcount Hy > 0 of that path is known. Indeed, using
the law of total probability (Van Mieghem, 2014, p. 23) yields

N-1
Pr [)\arbitrary path < t] = Pr [Aarbitrary path < tl HN = k] Pr [HN = k]

ol
LH

Pr [)\k-hop path S t] Pr [HN = k]
1

k
Differentiation gives us the density,

N-1

f>\arbitrary path f/\k hop path Pr [HN - k]
k=1

Introducing the definition (7.4) combined with the spectrum specified in Section
6.5,
k+1

N-k-1 1 ™m
Frinop pann (B) = Té( + — Z 1) (t2cos (k‘ 2))

m=1
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254 Density function of the eigenvalues

gives

Prosnirns s (0) = ——— =25 1)

The spectral peak at ¢ = 0 has a strength equal to %E[HN] Just as for the N —1

k+2
that range over more possible values than a constant hop path. Moreover, the
strength or amplitude of a peak is modulated by the hopcount distribution.

hop path, the spectrum lies in the interval (—2,2) at discrete values t = 2 cos (ﬂ)

181. Small-world graph SWy.n. Applying (7.6) to the small-world graph SWy. n,
with (6.4), gives

. w(m—1)(2k+1)
z Sin (MT)

N
(&
PAsw kN (2) = N Z eXp | == . m(m—1)
m=1 sin (T)

7r(.77—1)(2k+1)) 7r(N—1)(21c+1))
N N

Since A(l‘) = — 1 and A(N) = ﬁrl(mn(ﬂ—Nﬂ -1 Z ()\SW‘k;N)min,

which is independent of N, the limit generating function exists

(w(ij)\gzkﬂ))
sin (%)

After the substitution § = IT*I and executing the limit, we find

PASW kio0 (Z) = e_/ €xp (_Zw) do (7.14)
0

T sin @

sin(

Sin(%

z N sin
lim PAsw ks N (Z) = lim — eXp | —=
N—oo ? 0

In terms of the Chebyshev polynomial U, (x) of the second kind,

eZ

PASW k500 (Z) = ?‘/0 exp (*ZUQk (COS 9)) dé

Since #nGktle _ sin@ktl)(n—2) "t}o definition (B.135) shows that Usy (cosf) =

sin sin(m—x)

Usy, (cos (m — 0)) and

_2e

™

Parsw oo (2) / exp (—zUs (cos ) df (7.15)
0

With Usy, (cos ) = SmCELDE _ 4 9 Z?:l cos 276, we have

sin 6

k
1 us
Parsw oo (2) = —/ exp | —2z E cos 250 | df
0

T °
Jj=1
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7.8 Examples of spectral density functions 255

Applying the generating function (Abramowitz and Stegun, 1968, Section 9.6.33)
of the modified Bessel function I, (z) = I_,, (z) for integer n,

e?CosT i In (Z) einx
and
k k k [e%S)
exp —QZZCOS 239 _ H e—2zcos2m9 _ H Z I, (_22) ez2mn0
j=1 m=1 m=1n=—o0
(oo} oo ) X
S RN SRS
ny=—0oo NE=—00
yields
oo o] oo k 1 T .
PASW kioo (Z) = Z Z Z H I’ﬂm (—22) ;/ 6229 2im=1 mnm dqg
n1=—00 Ng=—00 ng=—oo m=1 0
The integral %foﬂ €120 Xy M ) = 1{25”:1 mnm =0} Translating that condition
asn| = — an:Q mn,, for k > 1, we arrive at
0o 0 k
Prswime ()= D 0 Y Ik, (—22) I1 .. (—22) (7.16)
Ng=—00 Np=—00 m=2

while for k =1,

PASW k=1;00 (Z> =1 (_22) = Iy (22)
which shows that the limit density of the infinite cycle (k =1) is the same as
that of the infinite path in (7.13). If k = 2, then (7.16) becomes with I, (—z) =
(_1)n L, (2),

o

Prsw pezioe (2) = Z In (=22) Ipn (—22) = Ig (22) +2 Z (=1)" I, (22) Iz, (22)

n=-—o00 n=1

Unfortunately, we cannot evaluate the inverse Laplace transform of pyyy ... (2) in
(7.16) for k > 1, but art. 182 computes the Taylor expansion of )y, ,... () around
zp = 0 exactly.

182. Moments of the small-world graph SWy,. Taylor expansion of the pgf
¢r(2) = E[e*] in (7.6) shows that E[Ax™] = LN am — (—1)™ o™ (0).
Expanding the exponential in (7.14) in a Taylor series,

e (9 37 L (b

m! 7 sin @

m=0
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256 Density function of the eigenvalues

indicates that F [e~(AswreotD2] = 575 271 L (Sm(zkH)Q) df and that, by

m' sin 6
equating corresponding powers in z, the centered moments around ¢ = —1 are
1 (™ /sin(2k +1)0\"™
Bl +17)= L [ (B0
T Jo sin ¢

sin 6 sinu

T (sin(2 1 m 1 27 /i(2k+1)0 _ p—i(2k+1)0\ ™
/ (bln( .k—i- )9> d@:—/ (e . 67‘9 ) w0
0 sin 6 2 /o il _ o—i

6 is

Since f (w) "d =y (Sm (Zk+1)u )/n du, it holds that

The complex transformation w = e

o2 /i —i m "
Gi(2h+1)6 _ o —i(2k+1)8 1 w2 1 w2km=1 g,
) el _ o—if i Jjwj=1 \ w2 =1

The integrand is analytic inside the unit circle, except for a pole of order 2km+1 at

1 d*f(2) =L f(w) dw
k! dzF 27mi JCO(20) (w—z0)F+1>

the origin w = 0. By Cauchy’s integral theorem
we find that

1 w4k+2 -1 m okl om ) d2km w4k+2 -1 m
= s 4 | W dw = ] lim 2km 2
i Jjwj=1 \ w? =1 (2km)! w—0 dw?km w? —1

Invoking the binomial series (1 + )% = 377 ()7 yields

7=0
4k+2\™ 2\ —m (M) [(—m jtn . 2n+4kj+25
(1—w ) (1—w) :ZZ i N (—1) w J+2j
=0 n=0

Using dd—;lxa = (a(i!l),xa_l and (7) = (—1) Hi’)l = (—1) (Z7J1.+j) leads to

lim
w—0 dekm

Jq2km w2 _q X X (- j (m) (m 1+n) (2n + 4k] + 2]) .
w? — E‘SZ (2n + 4kj + 25 — 2km)! X

The condition X is {n + 2kj + j — km = 0} and specifies n = km — (2k+ 1) j.

Since n > 0 or km — (2k + 1) j > 0, it holds that j < 2’;2’:1 and we arrive at

[ (S8 e 5 () (7 )

In summary, the pgf of the eigenvalues of an infinitely large small-world graph
SWi.oo with degree r = 2k is

PASW k00 (Z) =e* Z (_ﬂi?mE [()‘S\Vk;oo + 1)m]

m=0
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7.4 Density of a sparse reqular graph 257

where the centered moments F [(Aswk:co — ¢)"'] around ¢ = —1,

Ezd |
ElQswioo + 1" = Y (21) ((kz +1) m;: (2 +1) ]

=0

) (-1)7  (7.17)

are positive integers. We find that E[(Aswieo +1)] = 1, E {(ASW;“OO + 1)2} =
2k +1and FE [()\SWk;oo + 1)3} = (3’“;2) — 3(1«;1). The moments

E A8 kioo) = (—l)me: (7) (-1)'E {()\SW,C;OO + 1)1}

1=0
being the average number of walks W, are also all positive integers and can be
computed from (7.17): E[Aswkioo] = 0, E [A%Wk;oo} =2k FE [A%Wk;oo} = 6(12“)
For k > 3, we did not find simple expressions.

7.4 Density of a sparse regular graph

We present the ingenious method of McKay (1981), who succeeded in finding the
asymptotic density of the eigenvalues of the adjacency matrix of a regular, sparse
graph.

183. A large sparse, regular graph. Consider a regular graph G (r; N), where each
node has degree r. The sparseness of G (r; N) is here understood in the sense that
G (r; N) has locally a tree-like structure. In other words, for small enough integers
h, the graph induced by the nodes at hop distance 1,2, ..., from a certain node
n is a tree, more specific a k-ary, regular tree with the out-degree k = r — 1. We
will first determine the moments via trace(A™), as explained in art. 178, where
each element (A™) i equals the number of closed walks of m hops starting at node
j and returning at j (art. 6). The regularity of G (r; N) suggests for any node n
that, for N — oo,

1 N

race (A7) = = 37 (A™),; = (A7),
j=1
Hence, for large N and fixed m, the local structure around any node n is almost the
same. In addition, as long as the contribution ¢(N) of cycles to trace(A™) is small,
ie., ¢(N) = o(N), the above limit is unaltered, for + (Zivﬂ (A™),; £ c(N)) —
(A™),.,- The fact that the number of cycles in G (r; N) grows less than propor-
tionally with NV is an alternative way to define the sparseness of G (r; N).

184. Random walks and the reflection principle. McKay (1981) had the fortu-
nate idea to relate the computation of the number of closed walks to the powerful
reflection principle, primarily used in the theory of random walks.

The largest hop distance reached in a k-ary tree by a closed walk of m hops is
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258 Density function of the eigenvalues

[%] The length m of all closed walks in a k-ary tree is even. Moreover, all walks
travel some hops down and return along the same path back to the root n. Due
to the regular structure, the analogy with a path in a simple random walk is very
effective.

In a simple random walk, an item moves along the (vertical) z-axis over the
integers during n epochs, measured along the horizontal k-axis. At each epoch
k, the item jumps either one step to the right () = zx_1 + 1) or one step to the
left (zx = zx—1 — 1). Assuming that the item starts at the origin at epoch 0, then
zo = 0, its position at k = n equals x,, = r — [, where r and [ are the total number
of right and left steps, respectively. Geometrically, plotting the z distance versus
discrete time k, the sequence z1, xs, ..., T, represents a path from the origin to the
point (n,z,). In general, z; can be either negative, positive or zero. The number of
such paths with r right steps is (TTL) = (nﬁr) = (?), which is thus equal the number
of paths with [ left steps, because [ + r = n. Writing in the sequel z for x,, and
combining x, =r —1[l and [ +r = n leads to r = ”5'2"”. Hence, the number of paths
from the origin to the point (n,z) is

n
T(n,a:) = <%) 1{“—"2161\1} (7.18)

The reflection principle states that:

Theorem 47 (Reflection principle) The number of paths from the point a =
(m, |z|) to the point b = (n, |y|) that cross or touch the k-azis is equal to the number
of all paths from —a = (m, — |x|) to that same point b.

The reflection of a point (k,x) is the point (k, —z).

Proof: The reflection principle is demonstrated by showing a one-to-one cor-
respondence with the subpath from a = (m,|z|) to ¢ = (u,0) and the reflected
subpath from —a = (m, —|z|) to ¢. For each subpath from a to ¢, there corre-
sponds precisely one subpath from —a to ¢ (and the sequel of ¢ to b is the same in
both cases). O

A direct consequence of Theorem 47 is the so-called ballot theorem:

Theorem 48 (Ballot) The number of paths from the origin to (n,x), where n,x €
No, that never touch the discrete time k-azis equals =T, 4.

Never touching the z-axis implies that 7 > 0,22 > 0,...,z, = = > 0. The
proof is too nice to not include.

Proof: Since z; > 0, the first step in such a path is necessarily the point
(1,1). Hence, the number of paths from the origin above the k-axis to the point
(n,x) is equal to the number of paths from (1,1) to (n,z) lying above the k-
axis. The total number of paths from (1,1) to (n,x) is T(n_1,—1). All paths
from (1,—1) to (n,z) cross the k-axis and their number equals T(,_1 y41). By
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7.4 Density of a sparse reqular graph 259

the reflection principle, the number of paths that does not touch the k-axis equals
Tin-1,2-1) = Tn-1,241) = =1 (n,z), where the last equality follows from (7.18) and
n—1 n—1\ _ 2k—n (n
(krfl)_( k )_T(k)' U

With this preparation, we can determine (A™), . Each walk of m hops or
m links, starting at epoch 0 at the origin where the root node n is placed, can
be represented by the sequence of points (0,0),(1,1),(2,hs2),...(m,hy;,), where
hj > 0 is the distance in hops from the root node n. A closed walk of m hops
returns to the root, which means that h,, = 0. Each such walk of m hops may
consist of smaller walks of [ hops, each time when h; = 0 for 0 < 5 < m. In the
language of a random walk, each time j, that the path starting from the origin
and returning back to the origin, but only lying above the k-axis, it touches the
k-axis at (j,h; =0). We thus need to compute the number of such paths with
[ points touching the k-axis. Feller (1970, pp.90-91) proves that this number of
paths equals ﬁ(f[n%*]l)l {1<m 2 en)- An elementary closed walk of ¢ € [1,!] hops
consists of one excursion to some maximum level H,. and back along the same

track. The total number of such elementary closed walks of ¢ hops is r (r — I)HF1

)
because the root has degree r, and from hop level 1 on, each node has outdegree
r — 1. Only the upwards steps towards the local maxima at level H. contribute
to the determination of the total number of walks in a c-hop closed walk. Walk
excursions that do not reach H. are subwalks of elementary closed walks reaching
the maximum level H,.. Since there are [ such elementary closed walks, their total
is ch:1 r(l=r)f =l 1) (r = 1)22:1 He  Now, each closed walk has an
even number of hops and precisely as many up as down in the k-ary tree. Hence,
Zlczl H. = [%], the highest possible level to be reached. Thus, we end up with
a total of ﬁ(’f%l)l{%eN}rl (r— 1)[%]4 walks with [ touching points. Finally,
summing over all possible [ yields McKay’s basic result

(A% = l; <2mm_ l> le_ gt (r =" (7.19)

(A277L+1) _ 0

nn

185. Asymptotic density fioo (). The next hurdle is the inversion of (7.11) in
art. 178. We assume that the limit density exists and is differentiable such that

/:x: $2mf)\oo (:]Z) do — i <2mm— l> 2ml_ lrl (7, o 1)m7l

=1

and fy_ (z) = fa, (—z) is even to satisfy (AQmH)nn = 0. Recall from Theorems
39 and 40 that symmetry in the spectrum of A is the unique fingerprint of a bipartite
structure of which a tree is a special case. McKay succeeded in finding fr_ (x) by
inverting this relation, using a rather complicated method.

He presents various alternative sums of (7.19) without derivation. Then he de-
rives an asymptotic form of (7.19) for large m to conclude that the extent of fy__ (z)
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Fig. 7.1. The spectral density fi. (z) of a large sparse regular graph for various values of
the degree r.

is bounded, i.e., fy_ (x) exists only for |z| < 2v/r — 1. After normalizing the z-
range to the interval [—1, 1], he employs Chebyshev polynomials (Section 12.7) and
their orthogonality properties to execute the inversion, resulting in:

Theorem 49 (McKay’s Law) The asymptotic density fi_ (x) of the eigenvalues
of the adjacency matrix of a large, sparse regqular graph with degree v equals

ry4(r—1)—a?

Paoe (2) = 2 (12 — 22) N1 (7.20)

The corresponding distribution function Fx_ (z) = Pr{As < ] is, for —24/r — 1 <

T <2yr—1,

r

P (2) 1 . r . T r—2 " =g
Xr) = — — | arcsin — arctan
Aoe 2 2r 20r—1 r 4(r—1) — a2

The spectral density (7.20) is plotted in Fig. 7.1. For r = 2, we again find the
spectral density (7.13) of an infinitely long path.

7.5 Random matrix theory

186. Random matrix theory investigates the eigenvalues of an N x N matrix A
whose elements a;; are random variables with a given joint distribution. Even if


https://doi.org/10.1017/9781009366793.010
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.010
https://www.cambridge.org/core
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all elements a;; are independent, there does not exist a general expression for the
distribution of the eigenvalues. However, nice results exist in particular cases, e.g.
when the elements a;; are Gaussian random variables. Moreover, if the elements
a;; are properly scaled, in various cases the spectrum in the limit N — oo seems
to converge rapidly to a deterministic limit distribution. The fascinating results of
random matrix theory and applications from nuclear physics to the distributions of
the non-trivial zeros of the Riemann Zeta function are reviewed by Mehta (1991).
Recent advances in random matrix theory, discussed by Edelman and Raj Rao
(2005), present a general framework that relates, among others, the laws of Wigner
(Theorem 50), McKay (Theorem 49) and Maréenko-Pastur (Theorem 54) to Her-
mite, Jacobi and Laguerre orthogonal polynomials (see Chapter 12), respectively.
A rigorous mathematical treatment of random matrix theory has appeared in An-
derson et al. (2010).

Random matrix theory immediately applies to the adjacency matrix of the Erdos-
Rényi random graph G, (N), where each element a;; is 1 with probability p and
zero with probability 1 — p.

7.5.1 Wigner’s Semicircle Law

187. Wigner’s Semicircle Law is the fundamental result in the spectral theory of
large random matrices.

Theorem 50 (Wigner’s Semicircle Law) Let A be a random N X N real sym-
metric matriz with independent and identically distributed elements a;j with o2 =
Varla;;] and denote by A(An) an eigenvalue of the set of the N real eigenvalues of
the scaled matriz An = f;ﬁ' The probability density function fy(ay) (z) tends for
N — o0 to

. 1
ngnoo fA(AN) (x) = Vo2 — 2 Liz<20 (7.21)

2102

Since the first proof of Theorem 50 by Wigner (1955) and his subsequent general-
izations (Wigner, 1957, 1958) many proofs have been published. However, none of
them is short and easy enough to include here. Wigner’s Semicircle Law illustrates
that, for sufficiently large IV, the distribution of the eigenvalues of % does not de-
pend anymore on the probability distribution of the elements a;;. Hence, Wigner’s
Semicircle Law exhibits a universal property of a class of large, real symmetric ma-
trices with independent random elements. Mehta (1991) suspects that, for a much
broader class of large random matrices, a mysterious yet unknown law of large
numbers must be hidden. Generalizing Wigner’s Semicircle Law to asymmetric
complex matrices, Tao and Vu (2010) have proved:

Theorem 51 (Circular Law) Let Ay be the N x N random matriz whose entries
are i.i.d. complex random variables with mean 0 and variance 1. The empirical
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spectral distribution of é—% converges (both in probability and in the almost sure

sense) to the uniform distribution on the unit disk.

The adjacency matrix of the Erdés-Rényi random graph satisfies the conditions
in Theorem 50 with 02 = p (1 — p) and its eigenvalues grow as O (\/N ), apart from
the largest eigenvalue (see art. 190). In order to obtain the finite limit distribution
(7.21) scaling by ﬁ is necessary.

188. The moment relation (7.9) for the eigenvalues suggests us to compute the
moments of Wigner’s Semicircle Law (7.21),
00 1 20
B = [ lim fya (o) do =

— 00

"\ 40?2 — 22dx

2wo2 |_o,
Thus,
E [)\n] — O,ncfn

where

™

2n+1 1
C, = / /1 — t2dt (7.22)
1

shows that C), = 0 for odd values of n, because of integration of an odd function
over an even interval. Using the integral of the Beta-function (Abramowitz and
Stegun, 1968, Section 6.2.1) for Re(z) > 0 and Re (w) > 0,

LT (w)

1
B(z,w):/o 1=t d = T T w)

we execute the integral in (7.22) for n = 2k,

! 1y (3
/t%\/l—t%lt:/ xk—%(1_$>§dxzr(k+2)r(2)

1
0 0 I'(k+2)
Using the functional equation I' (z + 1) = 2I'(2), I' (3) = /7 and the duplication

_ 222*% 1\ - . .
formula T"(22) = Nerad ()T (2 + %) in (Abramowitz and Stegun, 1968, Section

6.1.18), finally gives

2k)! o
Cor = (k:<+ 1))!k:! - k(—kk)l (7:23)
The numbers Cyy, are known as Catalan numbers (Comtet, 1974). Reversely, since
all moments uniquely define a probability distribution, the only distribution, whose
moments are Catalan numbers, is the semicircle distribution, with density function
given by (7.21).
Another derivation, that avoids the theory of the Gamma function, rewrites the
integral (7.22) as

n+1 1 n+1 1 _
anzw /115%/1—1&%75:—27T /71\/1_t_1t2{t”’1(1—t2)}dt
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Since %\/ 1—t2= \/1*—_257, partial integration gives

/1 VI—2{(n—1)t""? = (n+1)t"}dt

=4(n—1)Cph2—(n+1)C,

2n+1

C, =

™

which leads, with Cy = 1 and Cy = 0, to the recursion C,, = 4(77:;21) C_o. Iteration
gives

o 722pn71n73n75 n—(2p—1)
"7 n42 n o n—-2 n-—(2p—4)

Cn—Qp

If n is odd, C},, = 0 as found above, while if n = 2k and p = k, then

2k —12k-32k-5 1
2%+2 2k 2%k—2 4
gk 2k2k—12k 22k —32k 42k -5 1 (2k)!

Cop = 22

2% 2%k +22k—2 2%k 2k—42k—2 4 (k+ 1)k

which again results in the Catalan numbers (7.23).

The Catalan numbers appear in many combinatorial problems (see e.g., Comtet
(1974)). For example, the number of paths in the simple random walk that never
cross (but may touch) the k-axis and that start from the origin and return to the
origin at time n = 2m, is deduced from the reflection principle (Theorem 47) as

2m 2m
Tiom,0) — Tiom,—2) = ( ) - ( ) = Conm

m m—1

Indeed, the number of paths from the origin to (2m,0) that never cross the k-axis
equals the total number of paths from the origin to (2m,0), which is T(2,, o), minus
the number of paths from the origin to (2m, 0) that cross the k-axis at some point.
A path that crosses the k-axis, touches the line z = —1. Instead of considering
the reflection principle with respect to the x = 0 line (i.e. the k-axis), it evidently
applies for a reflection around a line at * = j € Z. Thus, the number of paths
from (2m,0) to the origin that touch or cross the line at z = —1 is equal to the
total number of paths from (2m, —2) to the origin. That latter number is T3, —2),
which demonstrates the claim.

189. Extensions of Wigner’s Semicircle Law. A single eigenvalue has measure zero
and does not contribute to the limit probability density function (7.21). By using
Wigner’s method, Fiiredi and Komlés (1981) have extended Wigner’s Theorem 50.

Theorem 52 (Fiiredi-Komlés) Let A be a random N X N real symmetric matric
where the elements a;; = aj; are independent, not necessarily identically distributed,
random variables bounded by a common bound K. Assume that, for i # j, these

random variables possess a common mean E [a;j] = p and common Var [a;;] = o2,
while E [a;;] = v.
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(a) If 1 > 0, then the distribution of the largest eigenvalue Ay (A) can be approxi-
mated to within order O (\/LN) by a Gaussian distribution with mean

E[)\l(A)]z(N—l)u—l-z/—l-%Q

and bounded variance
Var[\; (A)] ~ 202
In addition, with probability tending to 1,

max |, (4)] < 20VN +0 (N1/3 log N) (7.24)
J

(b) If . = 0, then all eigenvalues of A, including the largest, obey the last bound
(7.24).

The Fiiredi-Komlés Theorem 52 has been sharpened to max;~1 |\; (4)| < 20v/N+

0 (N1/4 log N) by Vu (2007). The so-called Gaussian Unitary Ensemble (GUE) is
defined by an N x N Hermitian Wigner matrix W, where the diagonal elements
wy; are 1.i.d. real Gaussian random variables N (0,1), while both the real and the
imaginary part of the complex off-diagonal elements w;; are i.i.d. Gaussian random
variables N (0, %) Among many results, Tao and Vu (2011) mention a theorem
of Gustavsson, illustrating that, for large N, an eigenvalue \; (W) of a random
Hermitian Wigner matrix W has Gaussian fluctuation:

Theorem 53 (Gustavsson) If i varies with N such that i/N — ¢, as N — o0,
for some 0 < ¢ < 1, then the scaled i-th eigenvalue of an N X N random Hermitian
Wigner matrixc W tends, for N — oo, in distribution to

1 (g () N (WVR) - NEA (%)
\/ V‘; N i 5 N(0,1)

where Fy' (z) is the inverse function of the normalized (o = 1 in (7.21)) Wigner
semi-circle distribution function,

1 xT
Fw($)2§/2\/4—t2dt

Loosely speaking, Gustavsson’s Theorem 53 states that

2log N
(4= (F' ())&

190. Spectrum of the Erdbés-Rényi random graph. We apply the powerful Fiiredi-
Komlés Theorem 52 to the Erdés-Rényi random graph G, (N). Since p = p,
v =0 and 0? = p(1 —p), Theorem 52 states that the largest eigenvalue A; is

A (W) =~ Fyt (%) VN+N [o,
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a Gaussian random variable with mean E[M] = (N=2)p+ 1+ O (\/—%) and

Var[A\; (A)] = 2p (1 — p), while all other eigenvalues are smaller in absolute value
than 2,/p (1 —p) N + O (N'/*log N), the latter due to Vu (2007).

14#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\7

—p=0l1 N=50
12 p=02 |
p=03
p=04
—p=05
—p=06
—p=0.7
—p=038
—p=09
—— Semicircle Law (p = 0.5)

10

Fix)

E[4]=p(N-2)+1 n

N

JANAY

40

10

eigenvalue x

Fig. 7.2. The probability density function of an eigenvalue in G,(50) for various p.

Wigner’s Semicircle Law, rescaled and for p = 0.5 (0? = i), is shown in bold. We

observe that the spectrum for p and 1 — p is similar, but slightly shifted. The high peak
for p = 0.1 reflects disconnectivity, while the high peak at p = 0.9 shows the tendency to
the spectrum of the complete graph where N — 1 eigenvalues are precisely —1.

The spectrum of G, (50) together with the properly rescaled Wigner’s Semicircle
Law (7.21) is plotted in Fig. 7.2. Already for this small value of N, we observe
that Wigner’s Semicircle Law is a reasonable approximation for the intermediate p-
region. The largest eigenvalue A; for finite NV, which is almost Gaussian distributed
around p (N — 2)+1 with variance 2p (1 — p) by Theorem 52 and shown in Fig. 7.2,
but which is not incorporated in Wigner’s Semicircle Law, influences the average
EN=+ Zszl Ar = 0 and causes the major bulk of the pdf around x = 0 to shift
leftward compared to Wigner’s Semicircle Law, which is perfectly centered around
z =0.

The finite size variant of the Wigner Semicircle Law for the eigenvalue distribu-
tion of the adjacency matrix of the Erd6s-Rényi random graph G), (N) is

ANp(1—p) — (z +p)?
h@§¢ p(1—p)— (z+p)

e <2 A-pVN (7.25)
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The expression (7.25) for the bulk density of eigenvalues, thus also ignoring the
largest eigenvalue A, agrees very well with simulations for finite N. Below, we
sketch the derivation of (7.25). The probabilistic companion of (3.5) is

EN= S kPriA=k =0

k=—o00

while the discrete random variable A needs to satisfy >, Pr[A=4k] = 1. The

k=—o0
Perron-Frobenius Theorem 75 states that any connected graph has one largest

eigenvalue \; with multiplicity one, such that Pr[A = A\;] = % Both the mean and
the law of total probability can be written, for one realization of an Erdés-Rényi
random graph, as

1
EN=M—=+ Y kPr]A=k=0 (7.26)
N A1l 'others

and > Pr[A=k]=1-<. Fig. 7.2 suggests us to consider the Semicircle Law
All others
for finite N shifted over some value ¢,

\/4Np 1—p)—(z+¢)
SL‘ E =

27er(17 S o] <2p(1-p) VN

Denoting the radius R = 2p (1 — p) V/N and passing to the continuous random
variable, relation (7.26) becomes

0—)\1N / xfy (z;e) dx
R—e¢

—)\1N / (z+¢) fA(xg)dx—s/ fa(z;e) dx

R—¢

Since fi:a (z+¢) fr(x;e)de = 0 due to symmetry and fi;fs (z;e)dz =
1- %, we obtain )\1% —€ (1 — %) = 0. Finally, Theorem 52 states that A\ =
(N =2)p+O(1) such that e = p+ O (N ') leading to (7.25).

The complement of G, (N) is (G,(N)) = G1—, (N), because a link in G,(N) is
present with probability p and absent with probability 1 —p and (G,(N))® is also a
random graph. For large N, there exists a large range of p values for which both p >
pe and 1 —p > p. such that both G, (N) and (G,(N))® are connected almost surely.
Fig. 7.2 shows that the normalized spectra of G, (N) and G1_, (N) are, apart from
a small shift and ignoring the largest eigenvalue, almost identical. Equation (3.39)
and art. 62 indicate that the spectra of a graph and of its complement tend to each
other if u?z; — 0, except for the largest eigenvector 1 which will tend to u. This
seems to suggest that G, (N) and Gi1—_p, (N) are tending to a regular graph with
degree p(N — 1) and (1 — p) (N — 1) and that these regular graphs, even for small
N, have nearly the same spectrum, apart from the largest eigenvalue p (N — 1)
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Six)

20 40 60 80
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Fig. 7.3. The spectrum of the adjacency matrix of G,(100) (full lines) and of the corre-

sponding matrix with i.i.d. uniform elements (dotted lines). The small peaks at higher
values of = are due to A;.

and (1 —p) (N — 1) respectively: )‘\;’Np ~ — jpﬁ - \/LN where )\, is an eigenvalue of
Gp (N).

Fig. 7.3 shows the probability density function fy (z) of the eigenvalues of the
adjacency matrix A of G, (N) with N = 100 together with the eigenvalues of
the corresponding matrix Ay where all one elements in the adjacency matrix of
G, (100) are replaced by i.i.d. uniform random variables on [0, 1]. Since the elements
of Ay are always smaller with probability 1 than those of A, the matrix norm
|Avll, < [|All, and the inequality (A.26) imply that A1 (Ay) < A1 (A4). In addition,
relation (3.7) shows that S0, A2 (Ayy) < 2L such that Var[\ (Ay)] < Var[x (4)],
which is manifested by a narrower and higher peaked pdf centered around = = 0.

7.5.2 The Marcéenko-Pastur Law

The last of the classical laws in random matrix theory with an analytic density
function for the eigenvalues is given in the next theorem without proof:

Theorem 54 (The Maréenko-Pastur law) Let C' be a random m x n matriz
with independent and identically distributed complex elements c;; with finite 02 =
Var[c;;] and zero mean E [c;;] = 0, or the complex elements ¢;; are independently
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distributed with a finite fourth-order moment. Let y = 7t as n — oo and define

a(y) =02 (1- \/5)2 and b(y) = o* (1+ \/37)2, and denote by A(S) an eigenvalue
of the set of the m real eigenvalues of the scaled Hermitian matriz S = %C’C’*. The
probability density function fygy (z) tends for n — oo to

. Ha(y)<a<b 1
Jim fys) (2) = —ifizgggggLi\/ (y)x)*<1 5) 6 () Lyy>1y
(7.27)

Marcenko and Pastur (1967) prove Theorem 54 by deriving a first-order partial
differential equation, from whose solution the unique Stieltjes transform m (1; z) of
Y (z) = limy, oo fr(s) (7) is found. The Cauchy or Stieltjes transform (art. 362) of
a function f (), defined by

~ @),

o 2 X

m(f,z) =

is a special case of an integral of the Cauchy type, that is treated, together with
its inverse, in art. 361. The method of Margenko and Pastur (1967) is different
from the moments method used by McKay, sketched in Section 7.4, and earlier by
Wigner (1955).

3.5

3.0

cococo~
oo
3

= e

2.0 =

Fis®

05 7T e |

eigenvalue x

Fig. 7.4. The Mar¢enko-Pastur probability density function (7.27) for various values of y.
Each curve starts at = a (y), which is increasing from 0 to 1 when y decreases from 1
to 0, and ends at = b(y), which decreases from 4 to 1 when y decreases from 1 to 0.
When y — 0, the Marcéenko-Pastur probability density function tends to a delta function
at x = 1.

The last term in (7.27), the point mass at * = 0, is a consequence of the non-
square form of C. The rank(CC*) < min (n,m) such that, for y > 1, the m x m
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matrix CC* hasm—n=m (1 — %) zero eigenvalues, while all ny other eigenvalues
are the same as those of C*C', which follows from art 284.
In the case m =nandy = 1, and C = CT = \/—, the eigenvalues of S are the

squares of those of -4 T Since the latter eigenvalues obey Wigner’s Semicircle Law

(7.21) and since the density fx= ( M for any random variable X
as shown in Van Mieghem (2014 p 50), we ﬁnd indeed for y =1, that

Iaan) V) + faa,) (V) faa,) (V)

2V Ve
Also, in that case, the matrix S represents a square covariance matrix. In general
for m real random n x 1 vectors, S represents the m x n covariance matrix, that
appears in many applications of signal and information theory and physics. Fig. 7.4
illustrates the Marcenko-Pastur probability density function fys) (z) for various
values of y < 1.

fas) =

7.5.83 Density of random graphs with arbitrary expected degrees

Raj Rao and Newman (2013) consider the configuration model that generates a ran-
dom graph with a given degree distribution. The degree d; of a node ¢ is visualized
as d; stubs or half-links incident to node i. Given a degree sequence di,ds, . ..dy,
after a pairwise matching of stubs of different nodes, in which each matching ap-
pears with equal probability, the final configuration graph is obtained. Thus, each
joining of two uniformly chosen and not yet paired stubs creates a link in the con-
figuration graph and the process continues until all stubs have been joined. The
expected number of links between nodes i and j equals dgzj for large N. This
property of the configuration graphs relates naturally to the modularity matrix M
defined by (4.80) in art. 151. However, the links in the configuration graph are not
independent and to avoid this major complication, Raj Rao and Newman (2013)
consider a modified graph in which the number of links between each pair (4, j) of
nodes is an independent Poisson random variable with mean dg}fj. In particular,
instead of the specific degree, they treat d; as the expected degree of node i, which
is, for large N, a good approximation because the actual degree is then narrowly
peaked around the mean degree. These expected degrees, that are now real numbers
x instead of integers, are drawn from the continuous probability density function
fa (x). The corresponding adjacency matrix of the modified configuration graph is

1
A=—dd"+M
2L +

where ﬁd.dT is the ensemble average of A and the modularity matrix M is the
deviation from that ensemble average, whose elements are, by construction, inde-
pendent but not identically distributed random variables with zero mean. Moreover,
since the variance Var|a;;] = Var[m;;] and since a;; are Poisson random variables,

we have that Var[m;;] = E[a;;] = % and E [mfj] = d2L , [mi;] = 0.
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270 Density function of the eigenvalues

After using (7.7) for the density f\(as) (z) of the eigenvalues of the modularity
matrix M, repeatedly approximating F [f (X)] by f (F [X]) justified by construc-
tion of the modified configuration graph and for large N and using the Cauchy or
Stieltjes transform (see art. 361), Raj Rao and Newman (2013) end up with

d
av I h2
— mh”(2)

I () = —

where the average degree dg, = %@ and where the function h (x) satisfies the
integral equation
1 [ afy(x)dx
h (Z) = E/O m (728)

Due to interlacing (art. 155) of eigenvalues of the adjacency and modularity
matrix, the spectral density of the modularity matrix equals that of the adjacency
matrix, fyar) (2) = faca) (), except for the largest eigenvalue A; of the adjacency
matrix A. The largest eigenvalue Ay = A1 (A4) is shown to satisfy (Ay — 1) h (A1) = 1,
where h obeys (7.28).

Generally, for an arbitrary degree density function fy (k), the resulting spectral
density f(a) (x) deviates from Wigner’s Semicircle Law (7.21). The spectrum still
consists of a main band, but nodes with exceptionally high degree, the so-called
hubs, may give rise to eigenvalues that lie outside that band, akin to the energy of
impurity states in solid state materials.
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Spectra of complex networks

This chapter presents examples of the spectra of complex networks, which we have
tried to interpret or to understand using the theory of previous chapters. In contrast
to the mathematical rigor of the other chapters, this chapter is more intuitively
oriented and it touches topics that are not yet understood or that lack maturity.
Nevertheless, the examples may give a flavor of how real-world complex networks
are analyzed as a sequence of small and partial steps towards, hopefully, complete
understanding.

8.1 Simple observations

When we visualize the density function fy (z) of the eigenvalues of the adjacency
matrix of a graph, defined in art. 173, peaks at t = 0, z = —1 and x = —2 are
often observed. The occurrence of adjacency eigenvalue at those integer values has
a physical explanation. Integer eigenvalues are special (art. 45).

8.1.1 A graph with eigenvalue X (A) =0

A matrix has a zero eigenvalue if its determinant is zero (art. 235). A determinant is
zero if two rows are identical or if some of the rows are linearly dependent (art. 209).
For example, two rows are identical resulting in A (A4) = 0, if two not mutually
interconnected nodes are connected to a same set of nodes. Since the elements a;;
of an adjacency matrix A are only 0 or 1, linear dependence of rows occurs every
time the sum of a set of rows equals another row in the adjacency matrix. For
example, consider the sum of two rows. If node n; is connected to the set S; of
nodes and node ns is connected to the distinct set Sy, where S; NSy = & and
n1 # ng, then the graph has a zero adjacency eigenvalue if another node ng # ns
and ngz # ny is connected to all nodes in the set S1 U Ss. These two types of zero
eigenvalues occur when a graph possesses a “local bipartiteness”. In real networks,
this type of interconnection often occurs.

271
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272 Spectra of complex networks

8.1.2 A graph with eigenvalue \(A) = —1

An adjacency matrix A has an eigenvalue A (A) = —1 every time a node pair n;
and ng in the graph is connected to a same set S of different nodes and ny and no
are mutually also interconnected. Indeed, without loss of generality, we can relabel
the nodes such that nq; = 1 and ny = 2. In that case, the first two rows in A are of
the form

0 1 a3 aiqg -+ ain

1 0 a3 aua -+ ain

and the corresponding rows in det (A — M) of the characteristic polynomial are

A 1 a3 as -+ ain
1 =X a3 auu -+ ain

If two rows are identical, the determinant is zero. In order to make these rows
identical, it suffices to take A = —1 and det (A 4+ I) = 0, which shows that A = —1
is an eigenvalue of A with this particular form. This observation generalizes to a
graph where k nodes are fully meshed and, in addition, all £ nodes are connected
to the same set S of different nodes. Again, we may relabel nodes such that the
first k rows describe these k£ nodes in a complete graph configuration, also called a
clique. Let x denote a (N — k) x 1 zero-one vector, then uz’
rows identical and equal to . The structure of det (A — AI) is

is a matrix with all

(J=O+11), 1 .l

det (A—\I) =
( ) B(N—k)xk (C=A)(N_kyx(N—k)

which shows that the first k£ rows are identical if A = —1, implying that the mul-
tiplicity of this eigenvalue is k — 1. Observe that the spectrum in Section 6.1 of

the complete graph K, where k = N, indeed contains an eigenvalue A = —1 with
multiplicity N — 1. We can also say that a peak in the density of the adjacency
eigenvalues at A = —1 reflects that a set of interconnected nodes all have the same

neighbors, different from those in the interconnected set.

8.1.3 A graph with eigenvalue \(A) = —2

If the graph is a line graph (art. 25), then art. 27 demonstrates that the adjacency
matrix has an eigenvalue equal to A (A) = —2 with multiplicity L — N. However,
it is in general rather difficult to conclude that a graph is a line graph. FEach node
with degree d — locally, a star K; 4 — is transformed in the line graph into a clique
with (‘21) links. Thus, a line graph can be regarded as a collection of interconnected
cliques Kgq;, where 1 < j < N. The presence of an eigenvalue \(A4) = —2 is
insufficient to deduce that a graph is a line graph. A more elaborate discussion on
line graphs is found in Cvetkovi¢ et al. (2004) and Cvetkovié¢ et al. (2009, Section
3.4).

A peak in the density fy (z) of the eigenvalues of the adjacency matrix at A (A) =
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8.2 Distribution of the Laplacian eigenvalues and of the degree 273

—2 and A (A) = 2 may correspond to a very long path (art. 179). As shown in Fig.
7.1, these peaks occur in large, sparse regular graphs with degree r = 2 by McKay’s
Theorem 49.

8.2 Distribution of the Laplacian eigenvalues and of the degree

Although the moments of the Laplacian eigenvalues (art. 106-108) can be expressed
in terms of those of the degree, in most real-world networks the degree distribution
and the Laplacian distribution are usually different. In this section, we present a
curious example, where both distributions are remarkably alike.

Software is assembled from many interacting units and subsystems at several
levels of granularity (subroutines, classes, source files, libraries, etc.) and the inter-
actions and collaborations of those parts can be represented by a graph, which is
called the software collaboration graph. Fig. 8.1 depicts the topology of the VTK
network, which represents the collaborations in the VTK visualization C++ library
that has been documented and studied by Myers (2003).

Fig. 8.1. The connected graph of the VTK network with N = 771 and L = 1357. The
nodal size is drawn proportionally to its degree.

Fig. 8.2 shows the correspondence between the degree D and the Laplacian eigen-
value p in the connected VIK graph with N = 771 nodes, E [D] = E [u] = 3.5201,
Var[D] = 33.0603 and Var[u] = 36.5804, which agrees with the theory in art. 106.
Both the degree D and the Laplacian eigenvalue u of the VTK graph approximately
follow a power law, a general characteristic of many complex networks, and each
power law is specified by the fit in the legend in Fig. 8.2, where cp and ¢, are nor-
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274 Spectra of complex networks

malization constants. The much more surprising fact is that the insert in Fig. 8.2
demonstrates how closely the ordered Laplacian eigenvalues py follow the ordered
degree d(y. Only in software collaboration networks, such as MySql studied in
Myers (2003), have we observed such a close relationship between D and u, which
suggests that these graphs may be close to threshold graphs (art. 114).

I; T T T T T L —— T . .
® f# () and fit: ¢, x|
0le e Pr[D=x]andfit: ¢, 2 -
© 0.01 =10 : :
~ FoF E
! : ° e o0 o .-
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L |~ Ordered degree d, ]
0.1 £ ‘. ]
00001 0100 200 300,400 500 600700 o
2 3 4 5 6 7 89 > 3 "

! 10

X

Fig. 8.2. The density function of the degree and of the Laplacian eigenvalues in the soft-
ware dependence network VTK. The insert shows how close the ordered degree and Lapla-
cian eigenvalues are.

The definition of the Laplacian Q = A — A hints that the influence of the adja-
cency matrix on the eigenvalues p of the Laplacian is almost negligible. The bounds
in art. 106, derived from the interlacing principle,

diky — M (A) < g (Q) < dry — An (A)

are too weak because A\; (A) = 11.46 and Ay (A) = —9.13. Our recent perturba-
tion approximation (Van Mieghem, 2021) for a Laplacian eigenvalue p,, expanded
around the degree d; of a node ¢ in the graph

" S " Arq " QqkQr

o A d }: 23 3 (8.1)
— dr 16 o dg — d, Pt dg — dy,
k#q T#q k#q

Qhglkl N~ Gr
Zdrd Zd fdlzd idk_z (d, _qd 2Zd — dp,
T#q k#q

T#q
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is expected to be useful, e.g. when a few links are added or removed in threshold
graphs (art. 114).

Fig. 8.3 presents the density function fy (x) of the adjacency eigenvalues, which
is typically tree-like: a high peak fy (0) = 0.42 at the origin = 0 and the density
function is almost symmetric around the origin, f) (—z) =~ fi (z). If a graph is
locally tree-like (art. 183), we would expect its density to approximately follow
McKay’s Theorem 49 drawn in Fig. 7.1. At first glance, the peaks in f) (z) at
roughly + = —1 and = 1 may hint at such a locally tree-like structure, but
McKay’s Theorem 49 predicts singular behavior at x = 2y/r — 1 ~ 3.1 for degree
r ~ E[D] = 3.52. The small variance Var[A\] = E[D] = 3.52 (art. 49), which
is much smaller than Var[D] and than Var[u] = Var[D] 4 Var[)\], supports the ob-
servation why the adjacency spectrum only marginally influences the Laplacian
eigenvalues.

1.0x10™
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0.6

Jr ()

0.4
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L L L B L R R RN RN R
(=}

0.0

Fig. 8.3. The density of the eigenvalues of the adjacency matrix of the VTK graph. The
insert shows the ordered eigenvalues A\, versus their rank k, where \; = 11.46 and Ay =
—9.13.

Finally, we mention the nice estimate of Dorogovtsev et al. (2003). Using an ap-
proximate analysis from statistical physics, but inspired by McKay’s result (Section
7.4) based on random walks, Dorogovtsev et al. (2003) derived the asymptotic law
for the tails of fy (x) of locally tree-like graphs as

fr(z) = 2|z|Pr[D = 2]

for large x. For example, in a power law graph where Pr[D = k] = ck™"7, the
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asymptotic tail behavior of the density function of the adjacency eigenvalues is
I (@)~ 2cfaf 7

As shown in Fig. 8.2, the power law exponent for the VTK network is about v ~ 1.9
such that 2y — 1 ~ 2.8, but fitting the tail region of f) (x) in a log-log plot gives a
slope of —1.7, which again seems to indicate that the VTK graph is not sufficiently
close to a locally tree-like, power law graph.

8.3 Functional brain network

The interactions between brain areas can be represented by a functional brain net-
work as shown by Stam and Reijneveld (2007) and Tewarie et al. (2021). The con-
cept of functional connectivity refers to the statistical interdependencies between
physiological time series recorded in various brain areas, and is thought to reflect
communication between several brain areas. Magneto-encephalography (MEG), a
recording of the brain’s magnetic activity, is a method to assess functional connec-
tivity within the brain. Each MEG channel is regarded as a node in the functional
brain network, while the functional connectivity between each pair of channels is
represented by a link, whose link weight reflects the strength of the connectivity,
measured via the synchronization likelihood. It is based on the concept of general
synchronization (Rulkov et al., 1995), and takes linear as well as non-linear syn-
chronization between two time series into account. The synchronization likelihood
w;j between time series ¢ and j lies in the interval [0, 1], with w;; = 0 indicating
no synchronization, and w;; = 1 meaning total synchronization. We adopt the
convention that w;; = 0, rather than w;; = 1, because of the association with the
adjacency matrix of the corresponding functional brain graph.

The weighted adjacency matrix W of the human functional brain network con-
tains as elements w;; the synchronization likelihood between the NV = 151 different
MEG channels, each probing a specific area in the human brain as detailed in
Wang et al. (2010). Since all functional brain areas are correlated, the matrix W
has the structure of the adjacency matrix Ag, of the complete graph Ky, where
the one-elements a;; are substituted by the correlations |w;;| < 1. Since the ma-
trix norm [|[W{|, < [[Ak ||, because all elements |w;;| < 1, art. 207 indicates that
At (W) < [[W]|, and Ay (W) < A1 (Aky) = N — 1. Fig. 8.4 shows the eigenvalues
of the weighted adjacency matrix W of the functional brain network of a typical
patient before and after surgery. The correlations w;; before and after surgery are
almost the same. The spectrum in Fig. 8.4 is closely related to that of the complete
graph Kp: the Ay = —1 eigenvalue with multiplicity N — 1 in K is here spread
over the interval [—1,\1). All eigenvalues are simple and the largest eigenvalue in
[14, 15] is clearly most sensitive to the changes in the weighted adjacency matrix W,
as the insert in Fig. 8.4 shows. Hence, the changes in the few largest eigenvalues
seem to be good indicators to evaluate the effect of the brain surgery.
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Fig. 8.4. The eigenvalues of the weighted adjacency matrix of the functional brain network
before and after surgery in increasing order. The insert shows the differences between the
eigenvalues before and after surgery.

8.4 Rewiring Watts-Strogatz small-world graphs

The spectrum of the Watts-Strogatz small-world graph G'sw .y without link rewiring
is computed in Section 6.2. Recall that Gswy,n is a regular graph (art. 55) where
each node has degree r = 2k. When links in Gsw;n are rewired, independently and
with probability p,, the graph’s topology and properties change with p,. Fig. 1.3
presents a rewired Watts-Strogatz small-world graph, while the original regular
small-world graph Gswy,n is shown in Fig. 6.1. Here, we investigate the influence
of the link rewiring probability p, on the eigenvalues of the adjacency matrix of
Watts-Strogatz small-world graphs.

Fig. 8.5 shows the pdf fy (z) of an eigenvalue A of the adjacency matrix of a
Watts-Strogatz small-world graph. In absence of randomness p,. = 0, the spectrum
is discrete, reflected by the peaks in Fig. 8.5 and drawn differently for all k in
Fig. 6.2. When randomness is introduced by increasing p, > 0, the peaks smooth
out and Fig. 8.5 indicates that the pdf fy (x) tends rapidly to that of the Erdds-
Rényi random graph shown in Fig. 7.2.

Fig. 8.5 thus suggests that a bell-shape of the spectrum around the origin is a
fingerprint of “randomness” in a graph, while peaks reflect “regularity” or “struc-

»1

ture We also observe that “irregularity” can be measured, as mentioned in

L The quotes here refer to an intuitive meaning. A commonly agreed and precise definition of
“randomness” and “structure” of a graph is lacking.
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Fig. 8.5. The probability density function fx (z) of an eigenvalue in Watts-Strogatz small-
world graphs with N = 200 and k& = 4 for various rewiring probabilities p, ranging from
0 to 1, first in steps of 0.01 until p, = 0.1, followed by an increase in steps of 0.1 up to
pr = 1. The arrow shows the direction of increasing p,.

art. 72, by the amount that the largest eigenvalue deviates from the mean degree
E D] = 2k. Rewiring does not change the mean degree, because the number of
links and nodes is kept constant and E [D] = 2&, but the z-axis in Fig. 8.5 shows
an increase of the largest eigenvalue from A; = 8 = 2k when p, = 0 to about 9 for
pr = 1.

Fig. 6.3 has shown how irregular the number of different eigenvalues of Gsw ;N
without rewiring behaves as a function of N and k. Simulations indicate that, even
for a small rewiring probability of p, = 0.01, the spectrum only contains simple
eigenvalues with high probability. When rewiring only one link in Ggwyg,ny with
N = 200 and k = 4, the number of distinct eigenvalues dramatically increases
from 95 to about 190. Hence, destroying the regular adjacency matrix structure
by even one element has a profound impact on the multiplicity of the eigenvalues.
This very high sensitivity is a known fact in the study of zeros of polynomials
(Wilkinson, 1965, Chapter 2): small perturbations of the coefficients of a polynomial
may heavily impact the multiplicity of the real zeros and whether the perturbed
zeros are still real. Another consequence is that the upper bound in Theorem 11 on
p. 75 for the diameter p in terms of the number of different eigenvalues is almost
useless in real-world graphs, where most of the eigenvalues are different, such that
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the bound in Theorem 11 reduces to p < N — 1 = ppax. By rewiring links in
Gswr;N, we observe even contrasting effects: the regular structure of Ggwp,n is
destroyed, which causes the diameter p, in most cases, to shrink, while the number
of different eigenvalues jumps to almost the maximum N.

8.5 Assortativity
8.5.1 Theory

“Mixing” in complex networks refers to the tendency of network nodes to connect
preferentially to other nodes with either similar or opposite properties. Mixing is
computed via the correlations between the properties, such as the degree, of nodes
in a network. Here, we study the degree mixing in undirected graphs. Generally, the
linear correlation coefficient between two random variables of X and Y is defined
(Van Mieghem, 2014, p.27) as

E[XY] - pxpy

p(X,Y) =
OxXO0y

(8.2)
where ux = E[X] and ox = /Var[X] are the mean and standard deviation of
the random variable X, respectively. Newman (2003a, eq. (21)) has expressed the
linear degree correlation coefficient of a graph as

ny (emy - awby>
Ty

- 8.3
pD o (8.3)

where e, is the fraction of all links that connect the nodes with degree x and y and
where a, and b, are the fraction of links that start and end at nodes with degree
x and y, satisfying the following three conditions: Y e,y = 1, az = > e,y and
by = > ezy. When pp > 0, the graph possesses assoz“tatwe mixing, a ;reference
of higﬁ—degree nodes to connect to other high-degree nodes and, when pp < 0,
the graph features disassortative mixing, where high-degree nodes are connected
to low-degree nodes. We refer to Noldus and Van Mieghem (2015) for review on
assortativity.

The translation of (8.3) into the notation of random variables is presented as
follows. Denote by D; and D; the node degree of two randomly chosen nodes :
and j in an undirected graph with N nodes that are connected, thus with element
a;j = 1in (1.1) of the symmetric adjacency matrix A. We are interested in the
degree of nodes at both sides of a link, without taking the link, that we are looking
at, into consideration. As Newman (2003a) points out, we need to consider the
number of excess links at both sides and, thus, the degree D;+ = D; — 1 and
D,- = Dj — 1, where the link [ starts at [t = ¢ and ends at [~ = j. The linear
correlation coefficient of those excess degrees is

E[DyD-|-E D+ E[Di-]  E[(Di+ —E[Dy+]) (Dy- —E[Dy-])]

0D, 0D, 0D, 0D,

p (D, Di-) =
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where 0%, = Var[D;| = E [(Dl -F [Di])Q]. Since D+ — E[D;+] = D; — E[Dy],
subtracting one link everywhere does not change the linear correlation coefficient,
provided D; > 0 and D; > 0, which is the case if there are no isolated nodes.
Removing isolated nodes from the graph does not alter the linear degree correlation
coefficient (8.3). Hence, we can assume that the graph has no zero-degree nodes.
Since E [D;] = E[Dj], the linear degree correlation coefficient is

_ E[DiDj] - (E[Dy))?

aijzl -

p(Dy+, Di-) = p(Ds, Dj)

8.4
- (34)
We express E [D;D;], the mean pp, = E[D;] and variance 03, = Var[D;] =
E [Df] — N2D,-, in the definition of p (D;+, D;-) for undirected graphs in terms of the
total number Ny = uT A¥u of walks with k hops (art. 59). First, we have that

dT Ad N3
E i J QLZdeaU* 2L N1

=1 j=1

and

2 3
=3I SHW IS 3L Zd
=1 j=1
The average pup, and pp, are the mean node degree of the two connected nodes

i and j, respectively, and not the mean of the degree D of a random node, which
equals E [D] = 2. Thus,

d'd N
sza”:uz LTS A

=1 j=1

illustrating that pp, = pp, and o7, = o%j. After substituting all terms into

the linear degree correlation coefficient in (8.4), our reformulation of Newman’s
definition (8.3) in terms of Ny is

N N3 — N2

pp = p(D;, D;) = (8.5)

N
Ny S —

i=1
The crucial understanding of (dis)assortativity lies in the total number N3 of walks

N
with three hops, studied in Li et al. (2006), compared to Y d? = NE [D3].
i=1

8.5.1.1 Discussion of (8.5)

As shown in art. 63, the total number Ny = u” A*u of walks of length k is upper
bounded by

N
S
j=1
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with equality only if & < 2 and, for all &k, only if the graph is regular. Hence,
(8.5) shows that only if the graph is regular, pp = 1, implying that maximum
assortativity is only possible in regular graphs2. Since the variance of the degrees
at one side of an arbitrary link

1 & Ny \ 2
2 3 2
b =3 > dd - (_N1> >0 (8.6)

i=1

the sign of Ny N3 — N2 in (8.5) distinguishes between assortativity (pp > 0) and
disassortativity (pp < 0). The sign of N;N3 — N3 can also be determined from
(4.97). Using Z;\le d3 — N3 = >, (dir — d-)* in (3.43) and denoting a link
[ =i~ j, the degree correlation (8.5) can be rewritten as

ij (di B dj)2

PD = 1-— ~ N 3 (87)
> -4 (L)
i=1 i=1
The graph is zero assortative (pp = 0) if
N2 = N1 N3 (8.8)

We can show that the connected Erdés-Rényi random graph G, (IV) is zero-assorta-
tive for all N and link density p = L/ (gf ) > p., where p. is the disconnectivity
threshold. Asymptotically for large N, the Barabdsi-Albert power law graph is
zero-assortative as shown in Nikoloski et al. (2005).

Perfect disassortativity (pp = —1 in (8.5)) implies that

=Ny Nd3
P= s+ d; (8.9)

i=1
For a complete bipartite graph K, , (Section 6.7), we have that

N N
z:(difdj)2 = mn(n—m)?, de :nm(n2+m2) andZd? =nm(n+m)

inj i=1 i=1

such that (8.7) becomes pp = —1, provided m # n. Hence, any complete bipartite
graph K,, , is perfectly disassortative, irrespective of its size and structure (m,n),
except for the regular graph variant where m = n. The perfect disassortativity
of complete bipartite graphs is in line with the definition of disassortativity, be-
cause each node has only links to nodes of a different set with different properties.
Nevertheless, the fact that all complete bipartite graphs K,, , with m # n have

2 The definition (8.5) is inadequate, due to a zero denominator and numerator, for a regular
graph with degree r because N rcgular graph = Nrk (art. 59). For regular graphs where
Z£i1 d? = N3, the perfect disassortativity condition (8.9) becomes N22 = N1 N3, which is
equal to the zero assortativity condition (8.8). One may argue that pp.regular graph = 1, since
all degrees are equal and thus perfectly correlated. On the other hand, the complete graph K

minus one link [ has pp (Kn\{l}) = N;fl’ which suggests that pp (Kn) = 0 instead of 1.
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pp = —1, even those with nearly the same degrees m = n £ 1 and thus close to
regular graphs typified by pp = 1, shows that assortativity and disassortativity of
a graph is not easy to predict. It remains to be shown that the complete bipartite
graph K, , with m # n is the only perfect disassortative graph.

There is an interesting relation between the linear degree correlation coefficient
pp of the graph G and the variance of the degree of a node in the corresponding
line graph [ (G) in art. 25. The I-th component of the L x 1 degree vector in the
line graph [ (G) in art. 26 is (dl(G))l = d; +d; — 2, where node ¢ and node j are
connected by link [ =7 ~ j. The variance of the degree Dy of a random node in
the line graph [ (G) equals Var[Dyg)| = E [(D,- + Dj)ﬂ —(E [D; + D,])?, which we
rewrite as Var[Dy)| = 2 (E [D?] — u3, + E[D;D,] — pi3,,). Using the definition
of pp in (8.4) leads to

Var [Dyq)| =2(1+ pp) (E [D}] — 1p,) =2 (1+ pp) Var [D;]
N

=2(1+ pp) (Nil > dd - (%)j (8.10)

i=1

The expression (8.10) shows for perfect disassortative graphs (pp = —1) that
Var [DI(G)] = 0. The latter means that [ (G) is then a regular graph, but this
does not imply that the original graph G is regular. Indeed, if G is regular,
then [ (G) is also regular as follows from the {-th component of the degree vec-
or, (dl(g)) , = di +d; — 2. However, the reverse is not necessarily true: it is
possible that [ (G) is regular, while G is not, as shown above, for complete bipartite
graphs K, , with m # n that are not regular. In summary, in both extreme cases
pp = —1 and pp = 1, the corresponding line graph [ (G) is a regular graph.

8.5.1.2 Relation between A1 and pp

We present a new lower bound for A\; in terms of the linear degree correlation

coefficient pp. For k=3 in A} > &k in (3.65) and using (8.5), we obtain

A3 %: ! <pD (Zd3 ) ?\i) (8.11)

This last inequality (8.11) with (8.6) shows that the lower bound for the largest
eigenvalue A1 of the adjacency matrix A is strictly increasing in the linear degree
correlation coefficient pp, except for regular graphs. Given a constant degree vector
d, inequality (8.11) shows that the largest eigenvalue \; is obtained, when we
succeed in increasing the assortativity of the graph by degree-preserving rewiring
discussed in Section 8.5.2.

Fig. 8.6 illustrates how the largest eigenvalue A\ of the Barabdsi-Albert power
law graph evolves as a function of the linear degree correlation coefficient pp, which
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Fig. 8.6. The largest eigenvalue A\ of the Barabdsi-Albert power law graph with N = 500
nodes and L = 1960 links versus the linear degree correlation coefficient pp. Various
lower bounds are plotted: bound 1 is (8.11), bound 2 is (3.73) and bound 3 is Ay > N3 /N>
in (3.64). The corresponding classical lower bound (3.63) is 7.84, while the lower bound
(3.66) is 10.548. The latter two lower bounds are independent of pp.

can be changed by degree-preserving rewiring. The optimized lower bound (3.73)
outperforms the lower bound?® (8.11).

8.5.1.8 Relation between puny_1 and pp

The Rayleigh principle in art. 133 provides an upper bound for the second smallest
eigenvalue py—; of the Laplacian @ for the choice g (n) = d,,, the degree of a node
n?

Sier [div —di-)’?
2
N N
Zj:l d? - % (Zj:l dj)

After introducing (8.7), we find for any non-regular graph

pn-1 <

N N 2
> -3 (L)
pn-1 < (1—pp) l;l 'L:iv 5 =(1—pp)
Zj:l d? - % (Zj:l dj)

E[D|E[D¥] - (B [D?)’
E [D] Var [D]

(8.12)
which is an upper bound for the algebraic connectivity pny_1 in terms of the linear
correlation coefficient of the degree pp. In degree-preserving rewiring, the fraction

3 Especially for strong negative pp, we found — very rarely though — that (3.73) can be slightly
worse than (3.66).
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in (8.12), which is always positive, is unchanged and we observe that the upper
bound decreases linearly in pp.

8.5.2 Degree-preserving rewiring

Degree-preserving rewiring changes links in a graph, while maintaining the degree
distribution unchanged. If the degree vector d is constant and, consequently, that
N, = vazl d;, Ny = Zfil d? and vazl d? do not change during degree-preserving
rewiring, only N3 does, and, by (8.5), also the (dis)assortativity pp.
Degree-preserving rewiring changes only the term 37, , (d; — dj)2 in (8.7), which
allows us to understand how a degree-preserving rewiring operation changes the lin-
ear degree correlation pp. Each step in degree-preserving random rewiring consists
of first randomly selecting two links ¢ ~ j and k ~ [ associated with the four nodes
1,7, k,l. Next, the links can be rewired either into ¢ ~ k and j ~ [ or into 7 ~ [ and

j~ k.

Theorem 55 Given a graph in which two links are degree-preservingly rewired and
the degree of the four involved nodes is ranked as d(1y > d(zy > d(zy > d(4y. The two
links are associated with the four nodes nq,,, N, (s, and nq,,, only in one of the
following three ways: (a) nag,, ~ Ndgy s Ndy ~ Ndys () Nday ~ Mgy Ndey ~ Ny
and (c) Na;,, ~ Ndgy,Mdy ~ Ndg, - The corresponding linear degree correlation
introduced by these three possibilities obeys py > pp > pe-

Proof: In these three ways of placing the two links, the degree of each node
remains the same. According to the definition (8.7), the linear degree correlation
changes only via e = =% j (d; — dj)2. Thus, the relative degree correlation dif-
ference between (a) and (b) is

2 2 2 2
o —eb =~ (day — dz))” = (d) —dw)” + (day — d@)” + (d2) — d))
= 2(d2) — ds))(d1) — dg)) = 0

since the rest of the graph remains the same in all three cases. Similarly,

€a — € = 2(d(2) — d(ay)(d1)y — dz)) >0
ey — €c = 2(d1y — d(2))(dz) — d(g)) >0

These three inequalities prove the theorem. O

A direct consequence of Theorem 55 is that we can now design a rewiring rule that
increases or decreases the linear degree correlation pp of a graph. We define degree-
preserving assortative rewiring as follows: randomly select two links associated with
four nodes and then rewire the two links such that, as in (a), the two nodes with
the highest degree and the two lowest degree nodes are connected. If any of the new
links exists before rewiring, discard this step and a new pair of links is randomly
selected. Similarly, the procedure for degree-preserving disassortative rewiring is:
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Fig. 8.7. The ten largest and five smallest eigenvalues of the adjacency matrix of the USA
airport transport network versus the percentage of rewired links. The insert shows the
linear degree correlation coefficient pp as a function of the assortative degree-preserving
rewiring.

randomly select two links associated with four nodes and then rewire the two links
such that, as in (c), the highest degree node and the minimum degree node are
connected, while also the remaining two nodes are linked provided the new links do
not exist before rewiring. Theorem 55 shows that the degree-preserving assortative
(disassortative) rewiring operations increase (decrease) the degree correlation of a
graph.

The assortativity range, defined as difference maxpp—minpp, may be regarded as
a metric of a given degree vector d, which reflects its adaptivity in (dis)assortativity
under degree-preserving rewiring. As shown earlier, for some graphs such as regular
graphs, that difference maxpp—minpp = 0, while maxpp—minpp < 2 because
-1<pp <L

Degree-preserving rewiring is an interesting tool to modify a graph in which the
resources of the nodes are constrained. For instance, the number of outgoing links
in a router as well as the number of daily flights at many airports are almost fixed.

We exemplify degree-preserving rewiring with the US air transportation net-
work*, where each node is an American airport and each link is a flight connection
between two airports. We are interested in an infection process, where viruses are

4 The number of nodes is N = 2179 and the number of links is L = 31326.
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286 Spectra of complex networks

spread via airplanes from one city to another. From a topological point of view,
the infection threshold 7. = )\—11 is the critical design parameter, which should be as
high as possible, because an effective infection rate 7 > 7. translates into a certain
percentage of people that remain infected after sufficiently long time (for details
see Pastor-Satorras et al. (2015)). Since most airports operate near to full capacity,
the number of flights per airport should hardly change during the re-engineering
to modify the largest eigenvalue A\;. Fig. 8.7 shows how the adjacency eigenval-
ues of the US air transportation network change with degree-preserving assortative
rewiring, while the disassortative companion figure is also shown in Van Mieghem
et al. (2010). In each step of the rewiring process, only four elements 1 (i.e., two
links) in the adjacency matrix change position. If we relabel the nodes in such a
way that the link between 1 and 2 and between 3 and 4 (case (a) in Theorem 55) is
rewired to either case (b) or (c), then only a 4 x 4 submatrix A4 of the adjacency

A C
Lo i

matrix A in

is altered. The Interlacing Theorem 71 states that Aj44 (A) < \; (Ac) < Aj (A) for
1 < j < N —4, which holds as well for A, after just one degree-preserving rewiring
step. Thus, most of the eigenvalues of A and A, are interlaced, as observed from
Fig. 8.7. The large bulk of the 2179 eigenvalues (not shown in Fig. 8.7) remains cen-
tered around zero and confined to the almost constant white strip between A1 and
AN—5. As shown in Section 8.5.1.2, assortative rewiring increases A;. Fig. 8.7 illus-
trates, in addition, that the spectral width or range Ay — Ay increases as well, while
the spectral gap A; — A2 remains high, in spite of the fact that the algebraic connec-
tivity py—1 is small. In fact, Fig. 8.8 shows that un_1 decreases, in agreement with
(8.12), and vanishes after about 10% of the link rewiring, which indicates (art. 116)
that the graph is then disconnected. Fig. 8.8 further shows that by rewiring all links
on average once (100%), assortative degree-preserved rewiring has dissected the US
air transportation network into 20 disconnected clusters. Increasing assortativity
implies that high-degree and low-degree nodes are linked increasingly more to each
other, which, intuitively, explains why disconnectivity in more and more clusters
starts occurring during the rewiring process.

The opposite occurs in disassortative rewiring: the algebraic connectivity pn—1
was found to increase during degree-preserving rewiring from about 0.25 to almost 1,
which is the maximum possible due to (4.54) and dp,in = 1 as follows from the insert
in Fig. 8.8. Hence, in order to suppress virus propagation via air transport while
guaranteeing connectivity, disassortative degree-preserving rewiring is advocated,
which, in return, enhances the topological robustness as explained in art. 144.

Finally, we mention that highly disassortative graphs possess a zero eigenvalue of
the adjacency matrix with large multiplicity, which can be understood from Section
8.1.1: high degree nodes are preferentially connected to a large set of low degree
nodes, that are not interconnected among themselves.
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Fig. 8.8. The twenty smallest eigenvalues of the Laplacian matrix of the US air trans-
portation network versus the percentage of rewired links. The insert shows the degree
distribution that is maintained in each degree-preserving rewiring step.

8.6 Reconstructability of complex networks

In this section, we investigate, given the set of eigenvectors xy,xs ,...,zN, how
many eigenvalues of the adjacency matrix A are needed to reconstruct A exactly.
Specifically, we perturb the spectrum by omitting the j smallest eigenvalues in
absolute value of A and we determine the maximal value of j such that the matrix
A can be exactly reconstructed. Art. 97 shows that if the orthogonal matrix X of
the adjacency matrix A is known and if rank(Z) = N — 1, where the Hadamard
product is = = X o X, then the adjacency matrix A can be reconstructed exactly,
without needing the eigenvalue vector !

Since Z;.V:O Aj =0 (art. 46), on average half of the eigenvalues of the adjacency
matrix A are negative. Therefore, we reorder the eigenvalues as |)\(1)| < |)\(2)| <
e < |)\( N)| such that Ay is the j-th smallest (in absolute value) eigenvalue corre-
sponding to the eigenvector z(;). Let us define the N x N matrices

Ay = diag (0., 0,AG+1), A2, s Aav))
and
Agy = XA XT

where X = [ T(1) T2y " TN ] is the reordered version of the orthogonal
matrix X in (1.2) corresponding to the eigenvalues ranked in absolute value. Thus,
Aj) is the diagonal matrix where the j smallest (in absolute value) eigenvalues are
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Fig. 8.9. The histograms of the entries of A(s), A0y, Aas) and Agg). The matrix A
(A = A(p)) is the adjacency matrix of an Erd6s-Rényi random graph with N = 36 nodes
and link density p = 0.5.

put equal to zero, or, equivalently, are removed from the spectrum of A. The spec-
tral perturbation here considered consists of consecutively removing more eigenval-
ues from the spectrum until we can no longer reconstruct the adjacency matrix A.
Clearly, when j = 0, we have that A ) = A and that, for any other j > 0, A(;) # A.
Moreover, when j > 0, A(;) is not a zero-one matrix anymore. Fig. 8.9 plots the
histograms of the entries of Ay, A(10), A(15) and A(zg) for an Erdés-Rényi random
graph with N = 36 nodes and link density of p = 0.5. The removal of a part of
the eigenvalues causes roughly the same impact on the 1 and 0 elements of the
adjacency matrix A, as shown in Fig. 8.9. This means that the deviations on 1s
and Os are almost the same, and that the distribution of values around 1 and 0
will reach 1/2 roughly simultaneously, when the number of removed eigenvalues
increases gradually. Using Heaviside’s step function h (),

0 ifz<O
h(z)=4 % ifz=0
1 ifz>0

we truncate the elements of A;) as h ((A(j))ij — %) If we now define the operator
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H applied to a matrix A(;) that replaces each element of A;) by h ((A(j))ij — %),

then 1/4\; =H (A(j)) is a zero-one matrix, with the possible exception of elements
%. The interesting observation from extensive simulation is that there seems to
exist a maximal number 6, for which Z; =A,if j <0 and :4\; #A,ifj>6. In
other words, # is the maximum number of eigenvalues that can be removed from
the spectrum of the graph such that the graph can still be reconstructed precisely,

given the matrix X. We therefore call 8 the reconstructability coefficient.

8.6.1 Theory

Art. 254 shows that any real, symmetric matrix A can be rewritten as (A.138),

N N
A= Z )\kackac{ = Z)\kEk
k=1 k=1

where the matrix Ej = z,xl is the outer product of x), by itself. Any element of A
can be written, with the above relabeling of the eigenvectors according to a ranking
in absolute values of the eigenvalues ‘)\(1)‘ < ‘)\(2)’ <o <L ’)\(N)‘ as

m

N
aij =) Aw (Bw)y; + Y Aw (Bw),, (8.13)
k=1 k=m-+1

where m € [1, N] is, for the time being, an integer. As shown in art. 255, the
2-norm of Ej is not larger than 1, so that ’(E(k))ij‘ < 1forany 1 < k < N,

which implies that —1 < (E(k))ij
ordering in absolute value is most appropriate for our spectral perturbation: the
usual ordering A\y > Ay > --- > Ay_1 > Ay in algebraic graph theory would first
remove Ay < 0, then Ay_; and so on. However, |Ay| can be large and its omission
from the spectrum is likely to cause too big an impact.

The reconstructability of a graph is now reformulated as follows. Since a;; is

either zero or one, it follows from (8.13) that, if

< 1. Relation (A.138) also explains why an

N

ai;— > A (Bw),y

k=m+1

1
<3 (8.14)

we can reconstruct the element a;; as a;; = 1 } The recon-

{Zfzmﬂ Ay (B> %
structability requirement (8.14) determines the values of m that satisfy the inequal-
ity. The largest value of m obeying (8.14) is the reconstructability coefficient 6 of
a graph. Using (8.13), the reconstructability requirement (8.14) is equivalent to

<

N =

0
D A (Bw),,

k=1
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8.6.2 The average reconstructability coefficient E [0)

Via extensive simulations, Liu et al. (2010) investigated the properties of the re-
constructability coefficient 6 for several important types of complex networks intro-
duced in Section 1.5, such as Erdés-Rényi random graphs, Barabdsi-Albert scale-
free networks and Watts-Strogatz small-world networks, and also other special de-
terministic types of graphs. A general linear scaling law was found:

E[0] = aN (8.15)

where the real number a € [0,1] depends on the graph G. Moreover, the variance
Var[f] was sufficiently smaller than the mean E [f] such that E [f] serves as an excel-
lent estimate for #. For sufficiently large N, a portion a of the smallest eigenvalues
(in absolute value) can be removed from the spectrum and the adjacency matrix is
still reconstructible with its original eigenvectors. The magnitude of a for different
types of complex networks with different parameters was found to vary from 39%
to 76%, which is surprisingly high.

The reconstructability coefficient 8 or the scaled coefficient a = % in (8.15) can
be regarded as a spectral metric of the graph that expresses how many dimensions
or orthogonal eigenvectors of the N-dimensional space are needed to represent or
reconstruct the graph. Roughly, a high reconstructability coefficient 8 reflects a
“geometrically simple” graph that only needs a few orthogonal dimensions to be
described.

8.7 Spectral graph metrics

Most of the graph metrics, such as the hopcount, diameter, clustering coefficient,
and many more listed in Section 1.6, are defined in the topology domain. In this
section, we briefly mention graph metrics that are defined in the spectral domain,
but we study the effective graph resistance in depth in Section 5.2. We have already
encountered some spectral graph metrics such as the algebraic connectivity pn—1
in Section 4.3 and the reconstructability coefficient 6 in Section 8.6.

8.7.1 FEigenvector centrality

The per component eigenvalue equation (1.4) of the k-th eigenvector,

Axy).
(ax), = ( )\:)j _ Ai S () (8.16)

k le neighbors(j)

is called the eigenvector centrality of node j according to the eigenvector zj of the
adjacency matrix A of a graph G. This “centrality” measure reflects the importance
with respect to the eigenvector xj of a node in a network and provides a ranking
of the nodes in the network according to the eigenvector xj. Since the eigenvector
21 has non-zero components (art. 41), this largest eigenvector is considered most


https://doi.org/10.1017/9781009366793.011
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.011
https://www.cambridge.org/core

8.7 Spectral graph metrics 291

often. Perhaps the best known example of this spectral graph metric is Google’s
Page Rank, explained in Van Mieghem (2014, Section 11.5), where the importance
of webpages is ranked according to the components of the largest eigenvector of a
weighted adjacency matrix, actually the stochastic matrix P = A~'A of the web.

Van Mieghem (2015a) advocates the squared eigenvector components (mk)? of
e.g. the adjacency matrix as nodal centrality metrics.

8.7.2 Graph energy
The graph energy Eg is defined as

N
Eg=>|x(A) (8.17)
j=1
The graph energy (8.17) is inspired by the energy eigenstates of the Hamiltonian
applied to molecules (such as hydrocarbons) and was first proposed by Gutman
(Dehmer and Emmert-Streib, 2009, Chapter 7). The chemical origin does not
directly help to interpret the notion of graph energy, so that the graph energy is
best considered as one of the spectral metrics of a graph.
The absolute sign in the definition (8.17) complicates exact computations, but
a large number of bounds exist. A direct application of the inequality (B.75) and
art. 243 gives

(Eg — M\ (A)*™ < (N —1)""7} {trace (4*™) — A" (A)}

Rewritten with definition of W}, = trace(Ak) in art. 65, we obtain, for any integer
m > 0, the upper bound

Eq < AL (A) + (N — 1)@ 2nfyy, o \2m (4)

Other upper bounds are found in Dehmer and Emmert-Streib (2009, Chapter 7).
A lower bound is deduced from

EG=3 AA)+) > (Al (4)

Jj=1 J=1 k=1k#j

We apply the product in the harmonic, geometric and arithmetic mean inequality
(6.38) to the last sum and find

Eo > /2L + N (N — 1) (jdet (4))*~

which shows that Fg > \/i

The determination of graphs that maximize the graph energy Fg is an active
domain of research. We content ourselves here to list a few results and refer to
Dehmer and Emmert-Streib (2009, Chapter 7) for a detailed review. The graph
with minimum energy is the empty graph consisting of isolated nodes, i.e., the
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complement of the complete graph (Kx)“. Among the trees, the star K;, has
minimal graph energy, whereas the path possesses maximum energy. Simulations,
as mentioned by Gutman et al. in Dehmer and Emmert-Streib (2009, Chapter
7), show that Eg seems to decrease almost linearly in the multiplicity of the zero
eigenvalue for a certain class of graphs.

8.7.3 Delft graph metrics
Delft graph metrics, created in my NAS group in Delft, are defined as the quotient

of quadratic forms for positive integers k,

uT AFQ ARy
uT A2kq,

where the denominator Nop = u u is the total number of walks (art. 59) in the

graph G with 2k hops or of length 2k. If k = 0, then with «”u = N, the definition

(8.18) leads to the effective graph resistance Rg = u”Qu in (5.8)

ul Qu _ 2Rg

uTu N

and if £ = 1, the definition (8.18) relates to the Kemeny constant Ko = digd in
Wang et al. (2017)

D = (8.18)

TAQk

oD =

_dd _ 4L
-~ dTd  dTd

The definition (8.18) itself is an instance of the Rayleigh quotient %9, where
the vector y is chosen as y = AFu. Rayleigh’s principle (art. 251) states that, for

1D G

any k,
D < p1

where p; in Section 5.5 is the largest eigenvalue of the effective resistance matrix
Q. The normalization Noj = u” A%*u in (8.18) is algebraically more convenient
than the current definitions of the effective graph resistance Rg = %uTQu and the
Kemeny constant Kg = %, where the quotient % is implicitly chosen.
The power method (art. 244) shows for sufficiently large k that the vector y = A*u
tends to cxp, where xj is the normalized eigenvector of the adjacency matrix A
belonging to the eigenvalue A\, and where c¢ is a constant. Hence, it can be proved

that

lim D= x{ﬂxl

k—o0

After writing y = A*u as a linear combination (art. 251) of the eigenvectors
{Uk}1 << Of 2, Theorem 34 shows that

S A e TA) A (AR’
o ul A2%kq T uT A%y ,01—; uT A%kq, [Pkl < Zi\le (v,{Aku)2p1

v D
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The class of regular graphs with degree r indeed demonstrates, since u is the eigen-
vector (art. 55) belonging to the largest eigenvalue \; = r, that

r2uTQu  2Rg

kDre ular graph — — é P1
ghiar srap r2kyTy N

which is independent from k. Equality in the last inequality occurs when ¢ = %u
(see Theorem 35, which appears in so-called vertex-transitive graphs, that are a
subclass of regular graphs.

Since all involved matrices and vectors in (8.18) are non-negative, the graph
metrics D are positive and reflect a global graph property. The electric power
P = —%xTQx in (5.12), subject to uTx = 0 and at least one vector component of
the injected z is negative, indicates by decomposing y = A*u = au + bx that the
Delft graph metrics D only contains a small contribution of the electric power P.

8.8 Laplacian spectrum of interdependent networks

An interdependent network, also called interconnected or multi-layer network, is a
network consisting of different types of networks, that depend upon each other for
their functioning (Buldyrev et al., 2010). For example, a power grid is steered by a
computer network, that in turn needs electricity to function. Van Mieghem (2016)
shows that regularity in the interconnection pattern features attractive properties,
that provide engineers with handles to control or uncouple the network’s dynamics
by changing the strength of the interconnectivity as well as by balancing or dis-
tributing that total strength over several inter-links, that connect nodes in different
networks or layers.
A two-fold interconnected network G has an adjacency matrix

(Al)an anm
(BT)mxn (AQ)mxm

where A; is the n x n adjacency matrix of the graph G; with n nodes, Ay is the
m x m adjacency matrix of the graph G5 with m nodes and B is the n x m weighted
matrix interconnecting G; and G35, whose elements are real, non-negative numbers.
The total number of nodes in G is N = n+m. The Laplacian Q of G, corresponding

A= (8.19)

to (8.19) generalizes that of the cone in art. 166 and equals

(@Q1),,xn, + diag ((Bum,)) —Bxm
= (B") sn (Q2) s + diag (BT un))

where Q1 = A1 — A1, Q2 = Ay— Ay and Ay, = diag ((Aguy)) = diag(d (Gy)) for k =
1,2 and where d; (G) denotes the degree of node ¢ in the graph G. Only if B is a
zero-one matrix, the total number of links in G equals L = Lg,+Lg, +u£Bn><m Ui
where Lg, = %uTAku is the number of links in Gi. The block matrix (8.20)
illustrates that a submatrix such as Qg = (Q1) + diag((Bu,,)) of a Laplacian

Q= (8.20)

nxn
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Q of a connected graph is positive definite, i.e. 2T Qgz > 0. Indeed, if z # u,, then
2TQ1z > 0, else u” diag((Buy,)) u > 0; hence the inverse Q' exists.
Any eigenvector x = x = (JJIT,:UQT)T of the Laplacian @ of the interconnected

network G with 1 < k < N, thus excluding =y = u, obeys
ulzy +ulzs =0 (8.21)

T

while the normalization x* x = 1 of the eigenvector x translates to

vl +aley =1 (8.22)

The Laplacian eigenvalue equation for the eigenvector x = (le, 3:2T)T belonging to
the eigenvalue p,

O iy | [ ] 20 5]

is equivalent to the set

{ Q11 + diag ((Bum,);) 1 — Bz = pay

Qa2 + diag ((BTun),) 72 — BTay = pas (8.23)

The quadratic form of @ has the following property, proven® in Van Mieghem
(2016):

Theorem 56 Lety = (le, yg)T be any real vector, then the quadratic form yT Qy,
where the Laplacian matriz Q is defined in (8.20), equals

yTQy = ZJ1TQ1?J1 + ngQyQ + R(yl,yQ) (824)

where

Ry, y2) = Z ZBij ((yl)l - (y2)j)2 (8.25)

i=1 j=1
which is always non-negative because B;; > 0.

Since any Laplacian is positive semidefinite, each term in the Laplacian quadratic
form (8.24) is non-negative. Excluding uncoupled networks, B # O, then (8.25)
shows that R(,, ,,) = 0 only if (y1); = (y2); for all possible pairs (i,;) of nodal
interconnections with positive coupling strength B;; > 0. In particular, when
y=u= (ul,ul,

no m

)T, then R, u,,) = 0 independently of the structure of B (as
also follows from (8.24) because xy = wu is the eigenvector belonging to the zero

> 0, we find with

Y1,Y2)
y =z in (8.24) that any eigenvalue p of @ belonging to eigenvector x = (:clT, zQT)T

is lower bounded (art. 163) by

Laplacian eigenvalue uy = 0). As a consequence of R

Wz $1TQ1331 + $5Q2f€2

5 Theorem 56 is generalized to an m-fold interconnected network with m > 2 in Van Mieghem
(2016).
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8.8 Laplacian spectrum of interdependent networks 295

We may interpret R, ..,y in (8.25) as the total interconnection energy between G

and G2 due to the vector y = (y?, yg)T In such an interpretation, 37 Qy represents
the total network energy for a state vector y.

If the interconnected network G with N = m + n nodes has a special regular
structure, we can determine at least two eigenmodes of Q:

Theorem 57 Only if the n x m interconnection matrix B has a constant row sum
equal to Kzm and a constant column sum equal to 5zn, which we call the regularity
condition for By xm,

then s
o= [ VB —yES ] (.27)

an eigenvector of Q, defined in (8.20), belonging to the eigenvalue
1 1
w= (— + —> ul Byt (8.28)
nom

and ul By xmUm = Z?Zl ZT:l Bi; equals the sum of the elements in B, specifying
to the total strength of the interconnection between G1 and Gs.

The proof is a consequence of equitable partitions in Section 2.5. Since each
* T
element B;; > 0, the eigenvalue L = = Brxmtm i (8.28) represents the average

nm

“coupling strength” per element in B and can only be zero if B = O, in which case
the two networks GG; and G5 are disconnected. The eigenvector and eigenvalue in

Theorem 57 are only determined by the interconnection matrix B and are indepen-
dent of the structure of G; and of G5, because each eigenvector component of x in
(8.27) satisfies Q11 = Q1u, = 0 and, similarly, Qoz2 = Q2u,, = 0.

By choosing y; equal to the k-th normalized eigenvector (i.e. y{y; = 1, while
y'y = yTy1 +yIy2) of Q1 and y» equal to I-th normalized eigenvector of Qs, the
quadratic form (8.24) reads

v Qy = 1 (Q1) + 1 (Q2) + Ry ya)

In particular, confining to the algebraic connectivity where y; = z,_1 and ys =
T,—1 are the eigenvectors belonging to the respective algebraic connectivity pi,—1
in G1 and p,,—1 in Go, leads to

yTQy = Hn-1 (Ql) + m—1 (Q?) + R(wn,l,szl)
where vl 2,1 =0 and ul x,,_1 = 0, so that yTuy = 0. In that case, the Rayleigh

inequality ¥7Qy > pimin—1 (Q)yTy = 2ptmin—1 (Q) leads to the upper bound for
the algebraic connectivity of @,

i1 (Q) < 5 (11 (QU) F i1 (Q2) + Res ) (8.29)
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Let us investigate the smallest, non-zero eigenvalue p, corresponding to any
eigenvector x = (mf,xg)T of Q obeying ulz; = ul
tion for regularity of B. The Rayleigh inequality demonstrates for ulz; = 0 that
2T Qi1 > pn—1 (Q1) 2T 21 and, similarly for ul xo = 0, 22 Qax0 > i1 (Q2) w2
with equality only if z; and x5 are the eigenvectors of @)1 and @5 belonging to the
algebraic connectivity, eigenvalues pi,—1 (Q1) and py,—1 (Q2), respectively. Com-
plementary to the upper bound (8.29), the quadratic form (8.24) leads to the lower
bound (8.30) for the algebraic connectivity of G with regular interconnection ma-
trix B,

fN-1(Q) > pin—1 (Q1) ] 1 + pm—1 (Q2) T3 T2 + Ry 4y >0 (8.30)

with 0 < 2329 = 1 — 272, < 1. Combining the upper bound (8.29) and the lower
bound (8.30) yields, for a regular interconnection matrix B,

zo = 0, a necessary condi-

n— m— n— m— R Tn—13Tm—
H 11(Q1)+M 11(Q2)+R(11@2) < unve1(Q) < 2 12(Q1)+M 12(Q2)+ ( 12 1)
xizy 1—z{ @y

(8.31)
Even when both G; and Gy are disconnected (pn—1 (Q1) = pm—1(Q2) = 0), a
positive interconnection energy R(;, ,,) > 0 results in a connected interdependent
network G (i.e. pn—1(Q) > 0). We observe from (8.31) that, if p,—1(Q1) =
tm—1 (Q2), then we obtain the curious inequality

R($n71,$m,1)

pn—1(Q1) + Rzy 20y < pn—1(Q) < pin—1 (Q1) + 5

illustrating that 0 < Ry, 2,) < pn—1(Q) — pin—1(Q) < M The inter-
connection energy R, .,y for the Fiedler eigenvector x of @ is smaller than half
the interconnection energy R, .. _,) of the individual Fiedler vectors x, 1 of
@1 and z,,—1 of @2, both belonging to a same algebraic connectivity p,—1 (Q1) =
pm—1 (Q2)-

The scaling of elements in B also causes that the eigenvalue p* in (8.28) is not nec-
essarily equal to the second smallest eigenvalue py—1. Indeed, by lowering the total
coupling strength ul B, xmtm, we can always force u* to be lower than uy_1 (Q).
The possibility of modifying the total coupling strength u By, «.mum leads to con-
sequences elaborated in Sahneh et al. (2015), where the coupling strength w in
B = wl was computed so that p* = uy_1 (Q).

8.9 Graph sparsification

The goal of sparsification is to approximate a given weighted graph G by a sparse
weighted graph H with less links and potentially different link weights, but on the
same set of nodes, by trying to preserve in H some property of G. For example, cut-
sparsifiers approximately preserve the sizes of all cuts, while a spectral sparsifier
approximately preserves eigenvalues (see e.g. Chu et al. (2020)). Spielman and
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8.9 Graph sparsification 297

Srivastava (2011) have proposed an elegant spectral sparsification algorithm for
any graph G that samples a link [ = (4,7) in G with probability p; proportional
to the relative resistance wjw;, where w; is the weight of link [ and w; = w;; is its
effective resistance.

Before specifying the Spielman-Srivastava sparsification algorithm in Batson et al.
(2013), we define spectral similarity. Two symmetric N x N matrices A and B are
e-spectrally similar if

(1—¢e)a"Br <2TAx < (1+¢)a"Bx  for all N x 1 vectors x

If the components of the vector = are restricted to z; € {—1,1} for all i € N,
one obtains cut- spar51ﬁers (art. 143). The Courant-Fischer Theorem, A; (4) =

MaxXdim y—; Mingey & TL in (A.132), implies that

(1—2) A (B) < \i(A) < (14+e) A\ (B)

“ 7

The notion of e-spectral similarity is written with the inequality sign “<” as
1-¢e) B A< (1+¢)B

because it allows matrix operations as with the usual inequality sign <, in particular
for positive semidefinite matrices. Indeed, let QG and QH denote the weighted
Laplacian of the graph G and its sparsifier H, respectively. Since all Laplacian

-

i ~
eigenvalues are non-negative, we have that QQ = (Q) ’ (Q) * and left- and right-

= (Qé)T (see art. 128),

[V

multiplying (1 —¢) Q¢ < Qn < (1 +¢) Qg with (Qg)
3 3

using (Qg) QG( g) = f—J, yields

(1—5)(1—%.])4( TG)%@H( g)%<(1+a)<1—%.]> (8.32)

Invoking Q = Yoiecwi (e —e-) (e+ — e;-)" in (4.5) indicates that

1 1 1 1
(@F)" @ (@k)" = 3 win (Qh)™ (er= —er) e — )" (@F) (8:39)
leLa
where the link weight w;, g is crucial and determined below.
Batson et al. (2013, Theorem 5) state the algorithm: “Set ¢ = 8N log &. Choose
a random link [ of G with probability p; proportional to wyw;. Add [ to H with link
Welght . Take q samples independently with replacement, summing weights if a link
is chosen more than once.” With probability at least 1/2, H is a (1 + ¢)-spectral
approximation of G. We first formulate a variant without link replacements, which
is more natural for sparsification and akin to random matrix theory in Section
7.5. Limitations of sampling without replacement leads to the Spielman-Srivastava
sparsification algorithm with link replacements.
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8.9.1 Sampling links without replacement

The link weight in the sparsifier H is written as w;, g = s;u;w;, where the positive
real number v, is a link weight scaler and the indicator s; = 1z} is s = 1 with
probability p; = Pr[l € L] if link [ € L& is maintained as a link in the sparsifier
H, else s; = 0. The mean of an indicator or Bernoulli random variable is F [s;] = py,
but we require that the number of links Ly =} ;. Lo SIS fixed® and not a random
variable. Thus, the expected number of links in H is E[Lu| = > )c,.m = L.
The expectation

E {QH} =E l; siupw (ep+ — ) (ep+ — el—)T‘|
G
= Z pwwy (e+ — e-) (e+ — elf)T
leLa

suggests to choose u; = p% for any link [ € L so that E [@H} = ég, meaning that
the average link weight in the sparsifier H and the original graph G is the same.
Since p; < 1 as Ly < Lg, the link weight scaler u; > 1 and any sampled link of G
possesses a higher weight in the sparsifier H.

The expectation of the random matrix in (8.33) becomes

E [(QE)% Qu (QL)%] =F Z Wi H (Qg)% (er+ —e-) (er+ —e-)" (Qg)ﬂ

leELo

1 1

= Y E[simw)] (QL) Tler —e) (e —e-)" (QE) ’

leLo
Since the choice u; = % implies that E [sjuw;] = ww, E [s)] = wwip, = wy, we
arrive at
3 ~ 3 3 T 3
E [(Qg) Qu (QE) } = (QE) wi (e+ —€-) (er+ — €-) (QE)

leLo

(@h)" @ (@h) =1~ 5

and at the random matrix

(QTg) %QH (QTg) ' = Z {Sl\/g(QTG) %(GH —e-) }{ Sz\/g(Qi;) %(6# — € )}

leLa

T

1
Denoting the random vector g; = sy, /% (Qg) ’ (e;+ — €;-), the norm of the

6 Similar to the variant of Erd8s-Rényi graphs (see e.g. Van Mieghem (2014, p. 376) and Bollobas
(2001, Section 2.1)), where a link ! occurs with probability p; and the total number of links is
fixed. Links in H are weakly dependent and E [s;$m] # E [s;] E [sm].
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random matrix using (A.18) is

H CAHCAR

2

<> gl lly = lal3

2 leLa leLg

> a9l

leLa

and

1
2 wi 2 wi T wi
||gz||2:H Sl—(QE) (err —e-)|| =s1— (er+—er-) Qg(eﬁ—ek) = Si—wp
Di D y2i

(8.34)
where the last equality follows from the definition (5.2). Thus,

wi wi
<D m—w= )y —w
leLe Y2 Yz

leLy

3~ 3
H (Qb) @u(at)’|
and Foster’s rule ), - wyw; = N — 1 in (5.20) with w; = % illustrates that
l/-v
E [ \(Qg) ‘() } > ww =N -1

lELG
If |[gl||§ = a in (8.34), then Jtw; = « for a link [ in the sparsifier H, where the
relative resistance wjw; < 1 for any link [ as follows from the parallel resistor

formula (5.6). Sampling without replacements leads to the number of links Ly =

Zleﬁc o=+ Zle[: wyw; in the sparsifier H, from which follows that o = I\i—;l
and p; = —wlwl Then, the norm of the random matrix is bounded by
+ %'v + % 2 LG
(Q5)'Qu(@L)7|| = X lalls =72 (v -1)
2 Lu
leLo

while the norm of its average

2 [(05) @ (@t) ]| = 1 - 4, =1

stantially lower! Since p; = L—wlwl < 1 for any link [ € Lg, it holds that

N -1
Ly < min
leLe WiWp

which confines the number of links Lz in the sparsifier H. This constraint is absent
in Spielman and Srivastava (2011). More importantly, the stringency ¢ in (8.32)
cannot be tuned. In order to create a sparsifier H whose Laplacian eigenvalues are
within stringency ¢ from those of the original graph G, Spielman’s sampling with
replacement is needed.

8.9.2 Sampling links with replacement

Instead of selecting a link in the original graph G only once, sampling with replace-
ment allows to choose a link several times. The number of link samplings is ¢ and
the random variable 5; = ¢s; = q.1jc,) denotes the number of times link [ is


https://doi.org/10.1017/9781009366793.011
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.011
https://www.cambridge.org/core

300 Spectra of complex networks

sampled, leading to the probability that link [ € L5 appears in the sparsifier H is

now ¢p;. The link weight is w;, g = S;uw;, where the link weight scaler is u; = q—;)l

to obey E {@H} = @G. Thus, each time the same link is chosen, its weight is
increased with %, but wi.p = siuw; = spuyw; remains the same as in sampling
without replacement. Instead of imposing that F [Ly]| = Ly, which creates depen-
dence, only the average number of links E[Ly] = q) ;... p can be determined
and each sampled link is independent from all g others.

1
In order to bound the deviations in the random matrix (QE) Qu (Qg) * from

its mean I — & J, Spielman and Srivastava (2011) rewrite (8.33) as

1
2

[N

CARCARS SETTI (8

lELG

1 1 q
(er+ —e-) (epr —e-)T (QTg) 226 Z yiy;
i=1

where y; are i.i.d. random vectors drawn with probability p; from the distribution
1

Y=/ (QT(;) : (e;+ — ;- ) with link [ € L5 and they apply”

Theorem 58 (Rudelson and Vershynin (2007)) Let y1,y2,...,Y, be indepen-
dent random vectors with max ||y;||, < m and || E [yy”] H2 <1, then

< min [ 8m logq’l
) q

> t] < exp (—cLﬁ) (8.35)

E

1 ! T T
= vyl — E [yy"]
q i=1

and, for 0 <t <1 and for a constant c,

Pr
mlogq

1 q
|— > vyl —E [y
q i=1

Since the definition of the matrix norm in (A.23) shows, with art. 193, that
1 1
3~ 3
12, = || (@k) n Q)]
2
max ||y;|l, < m in Theorem 58 needs to be obeyed. Spielman and Srivastava (2011)
choose the norms of all random vectors y; equal and deduce m? = maxi<;<q ||y; ||§ =
N — 1, which is optimal, because the lowest right-hand side bound in Rudelson’s
theorem 58 is attained. Finally, they find that p; = ﬁwlwl, which demonstrates
the key idea in Spielman and Srivastava (2011) of sampling links in G with a
probability p; proportional to the relative resistance wyw; = %

T .
It remains to estimate the number ¢ of link samplings. Together with e-spectral

= ||[I - %J||, = 1, only the condition

7 Rudelson and Vershynin (2007, remark 3.4) state that the estimates in Theorem 58 are generally
best possible.
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8.10 Machine learning: Assigning labels to nodes 301

similarity, (Qg)% QH (Qg)% <(1+e)(I- %J), Rudelson’s theorem
ol aute'- (-4
(-2

then states that 8\/% < ¢, which leads to ¢ = O (£ log &%) for large N.

Indeed®, a few iterations in the recusion inequality g, > w log gn,—1, with qg
64(1\]_1)7 shows that g ~ %N (logsﬂr‘, + log log Eﬂg + - ) The probability (8.35

£2

E

J

1 ! T T
= vyl - E [yy"]
qi:l 2

<e

~—

=

l ~
then demonstrates that the deviations in the random matrix (Qg) ’ Qu (QT(;)

from its mean I — %J are small.

Sampling with replacements allows to incorporate a stringent € > e,;, accuracy,
at the expense of a large number ¢ of samplings. The accuracy € that specifies the
deviations of the Laplacian eigenvalues of the sparsifier H from those in the orginal
graph G and the sparseness of H remains a trade-off: if ¢ < ep;,, then H = G.
Since the Spielman-Srivastava sparsification algorithm is stochastic, more than one
sparsifier H can be found that meets the accuracy range in (8.32).

8.10 Machine learning: Assigning labels to nodes

A classical task in machine learning consists of classifying objects such as images.
Suppose that there are IV objects represented by points in an m-dimensional space.
For example, an image with 256 pixels is represented by an m = 256 dimensional
vector, also called a feature vector. Precisely [ objects are labeled or classified by
labels y1,92,...,y. For example, an image ¢ of a written letter A is recognized
precisely and labeled as y; = 1. The remaining u = N — [ objects, typically | < u,
are unlabeled and the aim is to label them. This problem is called semi-supervised
learning.

All N points or objects are considered as nodes in a graph G. The labeled nodes
belong to the set S C N and the unlabeled nodes to its complement S¢ = N\S.
The links are specified by an N x N symmetric, weighted matrix W, which we
assume is given®. For example, the link weight between node 4 at position r; and
node j at position r; is w;; = g (||r; — r;||) and g (z) is a decreasing function of the
distance = ||r; — r;|| in the m-dimensional Euclidean space. The corresponding
weighted adjacency matrix (art. 5) is A=W.

The labeling requires to construct a real-valued function that maps a node i € A/

8 The exact solution of 10—5—;‘1 = Wil) is ¢ = exp (fW (7W271))), where W (z) is the
Lambert function with inverse W1 (z) = ze®.
9 We refer to Zhu et al. (2003, Section 6) for a method to estimate W if the weighted matrix W

is neither given nor fixed.
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to a label, which is a real number. Inspired by the elegant properties of an electric
resistor network (art. 14), Zhu et al. (2003) propose as a real-valued function to
consider the potential v, which is a harmonic function (art. 15). Consequently, the
labels reflect injected currents, provided that the current cor%servation law u”
is obeyed, which can be met by a current vector x = y — “FZu. The fundamental

current-voltage relation z = @U in (2.15) shows that (@U) o= 0 for an unlabeled
jese

=0

node j, whereas z = (év)k for a labeled node k € S. The inverse relation v = Qfx

in (4.32) specifies the labeling function v at each node completely, with average label
uTv = 0. Since v is harmonic, its maximum and minimum value is attained at the
boundary S and all unlabeled nodes in §¢ will receive a label between maximum
and minimum. Examples of this “harmonic” label assignment and a comparison
with other methods are given in Zhu et al. (2003). Harmonic label assignment

assumes that direct neighbors in G likely share the same label.

8.11 Graph neural networks

We only review the theory and concepts and refer for examples and applications to
Ortega (2022) and Gama et al. (2020).

8.11.1 Graph signal processing

A process on a graph G with N nodes, such as an epidemic in a contact net-
work, power transport in an electric network, etc., can generate an outcome of that
process, called “data”, at each node of the graph. In graph signal processing (see
e.g. Gama et al. (2020)), the datum x; at node 4 is the i-th component of a graph
signal =, which is an N x 1 vector. The graph signal & can be shifted over the nodes
by the graph shift operator S, which is an N x N real symmetric graph-related ma-
trix, such as the adjacency or Laplacian matrix. After a shift Sz, the datum at node
iis (Sz), = Zj\]:l sijxj, which is a linear combination of the data z; at neighbors

j € N; of node i. Given the K x 1 parameter vector h = [ hi hs -+ hg }T ,
a graph convolution is defined as
K
H(S)x=> hS*s (8.36)
k=0

The k-shifted signal S¥z contains a summary of the information located in the k-hop
neighborhood, akin to A¥z in Section 1.3, and hj weighs this summary. The graph
convolution (8.36) is said to filter a graph signal x with a finite impulse response
(FIR) graph filter H (S) and the weights hy, are called filter taps or filter weights
(Gama et al. (2020)). The spectral domain, called the graph frequency domain in
signal processing, is specified by the eigendecomposition of the shift operator S =
VAVT, similar to A = XAXT. The set of eigenvectors {”j}1<j<N form the graph
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frequency basis of graph G and can be interpreted as signals representing the graph
eigenmodes or graph oscillating modes, while the set of eigenvalues {);}, <j<n are
called graph frequencies. The graph Fourier transform (GFT) of the graph signal
xis T = V7 and the component Z; is the Fourier coefficient associated to graph
frequency A;, which quantifies the contribution of mode v; to the signal x. Since
VTV = VVT =1, the inverse GFT is = V. The GFT of the graph convolution
y=H(S)z in (8.36) is

K K
G=VTy=> mV'VAV e =3 "nAT=HN)T

k=0 k=0
where H (A) is an N x N diagonal matrix with i-th diagonal element H;; (A) =
ZkK:O he)f = h(\;), where h(z) = Zszo hiz* is the frequency response of the
graph filter H (A) and solely determined by the filter tap h. The i-th frequency
content of the GFT g is y; = h (\;) Z; and the graph convolution (8.36) modifies the
i-th frequency content ; of the input signal z according to the filter value h ()\;)
at frequency ;.

8.11.2 Graph convolutional neural networks

Learning from graph data x requires a map ® between the data x and the target
representation y that incorporates the graph structure: y = @ (z;.5). The image
of the map ® is known as the representation space and determines the space of all
possible representations y for a given graph shift-operator S and any graph signal z.
One example of a representation map is the graph convolution ® (z; S, H) = H (S)
in (8.36), where the set H = {h} contains the filter taps that characterize the
representation space. In order to learn this map, a cost function J is optimized,
given a training set 7 = {z1,22,...,z7} with |7| samples. The learned map is
then @ (z; S, H*) with

M = argmin % S (@ (338, H) (8.37)
zeT

Typical cost functions are the mean squared error, the L; norm for regression, cross-
entropy for classification and the maximum likelihood for stochastic processes. If
® (z;5,H) = H (S) z, then the optimization in (8.37) returns the K + 1 best filter
taps H* = {h*} that best fit the training data with respect to the cost function
J and where K can be considered as a known design parameter or as a variable
to be optimized. However, graph convolutions limit the representation problem to
a linear map. Non-linear maps lead to the concept of a graph perceptron o (y),
where each component y; in the vector y is transformed to o (y;), thus the vector
o(y) = (6(W1),0(y2),...,0(yn)). In other words, if x is the input signal to a
graph convolution y = H (S) z, then the graph perceptron z = o (y) creates a non-
linear output signal, where o (¢) is usually a sigmoid function of the parameter ¢
such as o (t) = tanh(5t) or o () = max (¢,0).
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Instead of one non-linear perceptron that maps each input component z; to an
output component z; = o ((H (S)x),), a cascade of L graph perceptrons is built
that forms a multi-layer graph perception, also called a graph convolutional neural
network, where layer [ — 1 feeds the next layer [ by

T = 0] (Hl (S)l‘l_l) where [ =1,...,L

Solving this recursion indicates that an input signal x( of an L layer graph percep-
tron is eventually transformed to an output signal

x =0p, (HLUL_1 (HL—1UL—2 (HL—2 001 (Hlxo))))

which is a nested function evaluation of sigmoid functions o; and where we have
omitted the dependence of H; on the underlying graph via the shift-operator S.
The L layer graph perceptron is actually a generalized, directed bipartite graph,
where odd layers are placed on the left side and even layers are the right-side nodes
of the bipartite graph and links are directed from layer ! to layer [ 4+ 1. Graph
theoretically, the implicit underlying bipartite structure of a multi-layer perceptron
neural network is perhaps one of its major limitations, because it prevents that
layer [ can interact directly with layer I’ # [+ 1. The corresponding representation
problem @ (z; S, H) = o (Hjo (Hj—10 (Hj—2--- 0 (H120)))) in (8.37) then finds the
best filter coefficients H* = {h}}, ., given the sigmoid functions {0}, and
the order K of each graph convolution in (8.36). The number L of layers is either
fixed and given or it can be iteratively increased to enhance accuracy.

We refer to the specific and rapidly evolving literature (see e.g. Gama et al.
(2020), Ruiz et al. (2021) and references therein) for implementation details, algo-
rithms to find the optimal filter coefficients H*, such as stochastic gradient descent,
and applications.
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Part 11

Eigensystem
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9

Topics in linear algebra

This chapter reviews a few, general results from linear algebra. In-depth analyses
are found, among many others, in the books by Gantmacher (1959a,b), Wilkinson
(1965), Shilov (1977), Mirsky (1982) and Meyer (2000). We refer to Golub and
Van Loan (1996) for matrix computational methods and algorithms.

In this chapter, A is a general matrix, not the adjacency matrix.

9.1 Matrix transformations

Any linear transformation, that maps a vector = to a vector y in an n-dimensional
vector space, can be represented by y = Az, where A is an n X n matrix. The
relation y = Ax links matrix theory to geometric mappings and vector spaces.
After reviewing the basic concept of a coordinate of a point in an n-dimensional
space, we discuss here matrix transformations, that can make certain components
of a vector x zero and that play a role in the transformation of a matrix A to a
triangular form.

191. Coordinates. Let us consider an n-dimensional space and n basic vectors
e1,e9,...,e, With vector components (ek)j = 0, where dy; is the Kronecker delta,
Le. (ex); =0if k # j and (ey); = 1if k = j. This set of basic vectors ey, €2, ..., €,
is orthonormal, because el ey = 0y, and is said to span the n-dimensional space,
because any n x 1 vector y = (y1, 92, - .-, Yn) can be written as a linear combination
of the basic vectors y = Z?Zl ajej, where o is a real number. If we explicitly use
the definition of the basic vectors e, es,...,e,, then we can write this expression
in matrix form as

1 0 0 1 0 --- 0 Qg

0 1 0 0 1 0 Qs
y=a . + a2 . + an . = .

0 0 1 0 0 1 Qp,

In matrix notation, we have that y = I = «, where I is the n X n identity matrix
and where the n x 1 vector a = (1, as,...,q,), and we observe from y = « that

307
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308 Topics in linear algebra

the vector components yr = ay. The projection of the vector y on a basic vector
ex is equal to yTey, = Z?Zl Yj (e;‘rek) = yi, where we have invoked orthogonality.
A point p in the n-dimensional space can be represented by a vector y and the k-th
vector component ¥y, is called the coordinate of the point p in the basis determined
by the set of vectors e1,es,...,e,. Finally, the Euclidean norm of the vector y
equals y”'y, which is the distance of the point p to the origin, the point o with zero
coordinates and norm.

192. Orthogonal transformation. Suppose that X is an n x n orthogonal matrix
(art. 247, 248 and 249) satisfying X7 X = X X7 = I, from which X! = X7 This
means that the k-th column vector of X, which we denote by z, is orthogonal to
Tm if K # m. Thus, the set of orthogonal vectors x1,z2,...,x, can span the
n-dimensional space and, similarly as in art. 191, we can write the vector y =
Z?:l Bjz; as a linear combination of those orthogonal vectors and orthogonality
shows that 8, = yTx;. In matrix notation, y = X/, where the n x 1 vector
B = (B1,B2,-..,0,) are the coordinates of the point p, represented by the vector
y, in the basis specified by the orthogonal vectors x1,xs,...,2,. The Euclidean
norm of the vector y in the coordinate system determined by the orthogonal vectors
T1,22,...,Ly 1S

n n n n n
yTy = Zﬁ]xT Z BmTm = Z Z BjBm (xTxm) = Z BJQ
j=1 m=1 j=1m=1 m=1
or, in matrix notation, yTy = (XB8)' X8 = BTXTXB = BTB. The equality
yTy = BT implies that the Euclidean norm is preserved after an orthogonal trans-
formation: the distance of the point p to the origin is unaltered in the coordinate
system eq,es, ..., e, and in the coordinate system x1, xs, ..., Z,, although the cor-
responding coordinates y, = y”ex and B, = yT x; are generally different.

The relation between the coordinates (y1,¥ys,. .., ¥y,) of the point p in the basis
€1,€2,...,e, and its coordinates (81, B2,...,0n) in the basis x1,za,...,x, is the
linear transformation y = X3 and its inverse transformation f = X1y = X7y.
Hence, an orthogonal transformation, characterized by an orthogonal matrix X,
preserves the Euclidean distance and provides an easy way to interrelate the coor-
dinates of a same point p, without requiring the computation of the inverse matrix.
Geometrically, any orthogonal transformation is a rotation of the vector y around
the origin to a vector 8, and both y and 3 have equal Euclidean distance or norm
(see art. 201).

193. Elementary orthogonal projector. A matrix of the form

1
S =1- m’l).’UT (A].)

is called an elementary orthogonal projector onto the hyperplane through the origin
that is orthogonal to the vector v. That hyperplane contains all the vectors y that
are orthogonal to the vector v, i.e. that satisfy y?v = 0. Indeed, the vector Sz =
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T — (Z;Z) v obeys vT (Sx) = vTz — (Z;—Z) vTv = 0 and thus lies in the hyperplane

orthogonal to v. Moreover, (I — S)z = (Z;f}) v is the vector proportional to v or

lying on the line determined by the vector v.

The elementary orthogonal projection S is symmetric, because the matrix v.v7

is symmetric. However, S is not orthogonal because STS = I — ’;}’: # I. Hence,
since STS = S2, we observe that S? = S, and S* = S for k¥ € N. The squared
length [lw]|3 = wTw of the projected vector w = Sz equals 27 ST Sz = 272z =

T (v72)”

2T Sy =aTx — —r—, which can be viewed as the higher dimensional analogue of
Pythagoras’ theorem.

194. Spectrum of the elementary orthogonal projector. The functional equation
52 = S in art. 193 means that the vector z is transformed to the vector w = Sz,
which is orthogonal to v, and that any subsequent set of projections, S*w, keeps
the vector w unchanged in the hyperplane orthogonal to the vector v. Indeed, if
w is orthogonal to v, then v“w = 0 and Sw = w, which shows that A\ = 1 is an
eigenvalue of S for all vectors orthogonal to v. Fach vector z that is not orthogonal
to v is of the form x = av + By, where yTv = 0, and is transformed into a vector
w = Sz = By that is not proportional anymore to itself. The eigenvalue equation
Sz = Az only has a solution if A = 0 and y = 0, in which case Sv = 0. Hence, S is
singular, i.e. det.S = 0.

Similar to the spectrum of the complete graph in Section 6.1, the eigenvalues of
S also follow from (A.66): the eigenvalues of S are A = 1 with multiplicity N — 1
and A = 0 with multiplicity 1.

195. General Projector. The elementary orthogonal projector S can be generalized.
Let X and ) be complementary subspaces of a vector space V so that every vector
v € V can be uniquely resolved as v = x + y, where x € Xand y € ). The unique
linear operator P defined by Pv = x is called the projector onto X along ) and P
has the following properties: (a) P2 = P (i.e., P is idempotent), (b) I — P is the
complementary projector onto ) along X, (c) If V is R™, then

I O
O O

where the columns of X and Y are respective bases for X and ). These results
are proved in Meyer (2000, p. 386). If ) = X", then P is the orthogonal projector
onto X. In that case, Meyer (2000, p.430) shows that P = X (XTX)_lXT.
Moreover, if the basis vectors of X’ are orthogonal, i.e., X7 X =1 = XX7T, we have
P=XXT=1.

P=[Xx Y}[ MX vy

196. Gauss transformation. Gaussian elimination is the key technique to solve a
set of n linear equations of the form Ax = b. A characteristic step in the Gaussian
elimination is illustrated for n = 2 variables and transforms the set
{ a1171 + a1pw2 = by
a2171 + 22w = by
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after multiplying the first equation by %, assuming a1 # 0, and subtracting from
the second equation to the equivalent set

aiil

aj1r1 + arz = by
a a
(a22 - a21a—f) Ty =by — by

In matrix form, this transformation is written as

1 0 ail a2 | _ | an ai2
—421 ] as1 @99 0 age—an2

all aii

Multiplying both sides with the inverse transformation yields

{an a12}_[1 0}{%1 a2 }
ag az | | 1 0 ax—ang?
which is called the LU decomposition of A = LU, where L is a unit lower triangular
and U is an upper triangular matrix. The solution Az = b is found in two steps by
solving triangular matrices that have an easy solution (see e.g. Golub and Van Loan
(1996)): (a) solve y in Ly = b, (b) solve z in Uz = y. Indeed, we verify that z is
the solution, because Ax = LUz = Ly = b.

A crucial step in Gaussian elimination is the transformation Gy, of a vector z”
[:cl o TR XTge1 :cn] to a vector (Gk:z)T = [3:1 SRR 7 | B 0].
The case n = 2 above has shown, for 7 = 2 (and 21 # 0), that

R

In general, the rank-one update

Gp,=1- tkeg (A.2)

Wherethevectortg = [ 0 -+ 0 Tggy1 -+ Tn ] and 7; = fk fork+1<j<n
transforms z into Gpr = (I - tkeg) T = x — tpx, with the desired property that
only the first k£ components of Gz are non-zero and equal to those of the first k
components of z. The transform Gy in (A.2) is called the Gauss transformation
with Gauss vector t;. The Gauss transformation is a unit lower triangular matrix,

1 -+ 0 0 0 --- 0
0 1 0 0 0
Ge=10 0 1 0 0
0 -+ 0 —7p41 1 0

0 -+~ 0 -7 0 - 1]

The inverse Gauss transform follows from the inverse (A.67) of the rank-one update
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9.1 Matrix transformations 311
with eftk =0 as
Gl = (I—tpel) ™ =T+ tpef (A.3)

which is a unit lower triangular matrix. In general, after n — 1 Gauss transforms

G1,Ga,...,Gy_1, the matrix A is transformed into an upper triangular matrix
U=G,_1...G1A so that

A=(Gn1...G) 'U=LU

where, using (A.3),

L=(Gn ... HG— Gt 1J+Ztkek

is a unit lower triangular matrix. Numerical aspects (such as pivoting, error analy-
ses, algorithms and numerical complexity) of the LU decomposition A = LU are
discussed in Golub and Van Loan (1996).

197. Householder reflections. The n x n real! matrix R of the form

2 T
R = I—m’v’l}

(A.4)

is called a Householder reflection or transformation with Householder vector v.
The Householder transformation is symmetric, because (v.vT)T = v.0T, and or-
thogonal, because RT R = I. Moreover, the Householder transformation (A.4) is
the only orthogonal rank-one update transformation. Indeed, a rank-one update

transformation V = I — cd”, that is orthogonal, must satisfy
I=VTv =T1—-cd" —dc" + (cTc) dd”

so that cd” +dc” = (cTc) dd”. Let ¢ = ad+ By and y”'d = 0, then the requirement
is 2add” + (ydT + dyT) = (anTd + ﬁQyTy) dd”, which shows that y = 0 and
2a = a?dTd or o = dT 5. Hence, an orthogonal rank-one update transformation is

of the form V =1 — d%dddT
Let x be a non-zero vector, then
2 T 20T
Rx([mv.v )z:p Ty Y (A.5)

Since R is an orthogonal transformation, (Rx)T Rx = 2Tz, the length of the vector
x is preserved after transformation, implying that both x and Rx lie on the same
hypersphere with center at the origin and radius VaTz, Interestingly, after applying
the elementary orthogonal projector S, defined in (A.1) and art. 193, to y = Rz,
we find that

1 The Householder reflection with a complex Householder vector v is defined as R = I — vHv vl
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312 Topics in linear algebra

Hence, both the orthogonal projection onto the hyperplane orthogonal to v of the
vector  and the vector y = Rz are the same. This means that the Householder
transformation (A.4) creates a reflection of the vector « with respect to the hyper-
plane orthogonal to v. Since R~' = RT = R, we have that R? = I.

Since the Householder transformation R in (A.4) is orthogonal, in contrast to
the elementary orthogonal projector S, a useful application is to find the vector v
so that Rz = ey, where z is a given vector. Equation (A.5) indicates that v is a
linear combination of 2 and e;. Thus, setting v = x + ae; gives, with 1 = e 2,

2(zTz + ax 2(zTx + ax
e1=Rx=|1- ( 1) T — ( 1)
2Tz 4+ 2021 + a2 Tz 4 2021 + a2

. . . 2(z™
which requires that the coefficient of x must be zero, 1 — mT(;Jr;;i?az =0 or
o? = 2Tz, Hence, for a Householder vector v = z & |||, e1, it follows that?
Re =T |[|lz]y e (A.6)

The orthogonality and symmetry of the Householder transformation implies that
R = RT = R, so that = = F |||, Re1, which illustrates that the orthogonal
matrix R contains the vector z in the first column (which is Rey).

In summary, the columns of the Householder matrix R with Householder vector
v =2x £ ||z||, e1 represent a set of orthogonal vectors of which the first equals .

198. Householder reduction. Gaussian elimination (art. 196) is a technique to
transform a matrix A to an upper triangular matrix U. Consecutive application of
the Householder transformation (art. 197) can also achieve a similar result as we
will show here.

Consider a real m X n matrix A = [ ay as - Gy ] where aj is the m x
1 vector of the k-th column. We invoke the m x m Householder reflection R,
with Householder vector v; = a1 + |la1||y €1 to transform the first column a; to
w11 (€1),, 1> With u11 = % [ja1 ||, according to (A.6). Hence,

U1l U?
R1A= [ U1 (61)mx1 Riay -+ Ryay, ] —
0 B
where the real (m — 1) X (n — 1) matrix B = [ by by - bp_1 } has (m — 1) x 1

column vectors. N
After (m — 1) x (m — 1) Householder reflection Ry with (m — 1) x 1 Householder
vector U2 = by £ ||b1]|, e1 of the matrix B, (A.6) shows that

RoB = [ Uz (€1) (1)x1 Re2bz -+ Roby }

where ugo = % [|b1]|. Now, if U and V are orthogonal matrices, so is [ g ‘O/ ]

2 Besides the Householder reflection, also Givens rotations, explained in Meyer (2000); Golub
and Van Loan (1996), can easily map an arbitrary vector z to the basic vector e;.
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9.1 Matrix transformations 313

1 0
Hence, the matrix Ry = [ 0 B ] is orthogonal and, moreover, Ry is also a
2

Householder reflection with Householder vector v” = (O, ﬁ) Thus,

U1 u%r’ Ui * *T
R2R1A = 0 E B = 0 U22 Us
2 o 0 C

After the k-th iteration, the result is

Ry...RoR1A= (Uk) (Wk)kx(n—k)
O(m*k)Xk K(mfk)x(n—k)
Ii_
where Uy, is upper triangular and R; = ]0 1 7 is a Householder reflection.
J

The final result after ¥k = m — 1 steps is RA = U, where R = R,,_1...R; is
an m x m orthogonal matrix® and U is an m x n upper triangular matrix, with
diagonal element wu;; equal to plus or minus the Euclidean norm of an (m — j) x 1
vector. In fact, the above method shows that we can always choose the sign of
u;j. In summary, Householder reduction? results in the factorization A = RTU of
any m X n matrix, where RT is an orthogonal (unitary) matrix and U is an upper
triangular matrix.

199. Quadratic form. To a real symmetric matrix A, a bilinear form z” Ay is
associated, which is a scalar defined as

n n
2T Ay =z Ay” = Z Z Qi TiY;
i=1 j=1
We call a bilinear form a quadratic form if y = x. A necessary and sufficient
condition for a quadratic form to be positive definite, i.e., 27 Az > 0 for all = # 0,
is that all eigenvalues of A should be positive. Indeed, for a real symmetric matrix
A, art. 247 shows the existence of an orthogonal matrix U that transforms A to a
diagonal form. Let © = Uz, then
n
2T Az = TUT AUz = Z Ap2p (A.7)
k=1
which is only positive for any vector component zj provided Ax > 0 for all k. From
det A = [;_, M\ in (A.98), a positive definite quadratic form 27 Az possesses a
positive determinant det A > 0. The problem of determining an orthogonal matrix
U or the eigenvectors of A is equivalent to the geometrical problem of determining

3 Although each Householder reflection R; = RjT is symmetric, the product is, in general, not

symmetric, because (Rm—1 - .. Rl)T =Ri...Rm_1.

4 Householder reduction is only one of the techniques to obtain this type of matrix factorization,
also known as QR factorization or decomposition, which is treated in depth by Golub and
Van Loan (1996).
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the principal axes of the hyper-ellipsoid »3;"; >7"_; a;;z;y; = 1. Relation (A.7)
illustrates that the inverse eigenvalue )\,;1 is the square of the principal axis along
the zp vector. A multiple eigenvalue refers to an indeterminacy of the principal
axes. For example if n = 3, an ellipsoid with two equal principal axis means that
any section along the third axis is a circle. Any two perpendicular diameters of the
largest circle orthogonal to the third axis are principal axes of that ellipsoid.

For additional properties of quadratic forms, such as Sylvester’s law® of inertia
in art. 266, we refer to Courant and Hilbert (1953) and Gantmacher (1959a).

200. Taylor series of a multivariable function and a quadratic form. The Taylor
expansion of a differentiable function F (x) of the vector z around the vector h is

F(x) = F () + (VF (1) (@ —h) + 5 (o~ W) H () (2~ h) + R

where R is the remainder of the order of O (||x - h||3) , the gradient vector VF (h) =

8rF,§I) oF(x) e BF—(I) and the n x n Hessian matrix is
oz _ .0 Oz 0 ' Oz o
z=h r=h
[ 8*F(=) 9*F(h) - Al () b
Oz o—h 9110w2 |, _p dx19n |, _p
9*F(h) 9% F(x) . 9°F(h)
Hpy= | 7 lemn 9% lom om0 |,
92 F(h) 92 F(h) o 9% F (x)
L O0zndz1|,_;,  Ozndxa|,_, ox2 s=h J

If F(z) = 27 Az is a quadratic form and y = x — h, then
F(z)=F(h+y)=(h"+y")A(h+y)
=hT AL+ hT Ay +yT Ah + yT Ay
Since all terms are scalars, y” Ah = (yTAh)T = hT ATy, we have
F(z)=F(h)+h" (A+A") (x —h) + F (x — h)

Comparison with the above general Taylor series indicates that the remainder R = 0
and that VF (h) = hT (A+ AT) and H (h) = 2A. After putting z — z + h and
h — z in the Taylor series of a quadratic function F (z) = F (z1,22,...,Tp) =
T Ax yields

< OF (m1,3,..., @)
F .. , :F PR J
(l‘1 + hi,x9 + ha, s T+ ha) (x1,$27 @) ¥ ; axj &
1 Zn Zn O*F (z1,2,...,1y,)
—_ 2 ! ’ - (3 A
+ 2 8$i8$j h h] ( 8)

BQF(:vl,zg,...,mn) o OF (z1,%2,...,xn) __ n
where omos T = 204 and e = > iy (ajr + agj) zp-

5 The number of positive and negative coefficients in a quadratic form reduced to the form (A.7)
by a non-singular real linear transformation does not depend on the particular transformation.
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9.2 Vector and matrix norms

201. Vector and matrix norms, denoted by ||x|| and ||A|| respectively, provide a
single number reflecting a “size” of the vector or matrix and may be regarded as an
extension of the concept of the modulus of a complex number. A norm is a certain
function of the vector components or matrix elements. All norms, vector as well as
matrix norms, satisfy the three “distance” relations:

(i) [Jz|| > 0 unless x = 0;
(ii) |Jazx| = |a|||z|| for any complex number «;
(iii) ||z +y| < [lz] + [|¥l (triangle inequality)

An example of a non-homogeneous vector norm is the quadratic form
2] 4 = VaT Az

provided A is positive definite. Relation (A.7) shows that, if not all eigenvalues A;
of A are the same, then not all components of the vector = are weighted similarly
and, thus, in general, /||z||, is a non-homogeneous norm. The quadratic form
|||, equals the homogeneous Euclidean norm |z||3.

202. Holder g-norm. The Holder g-norm of a vector z is defined as

1/q

lzlly = { D lzl (A.9)
j=1

The well-known Euclidean norm or length of the vector z is found for ¢ = 2 and
Hx||§ = 2Hz. In probability theory where = denotes a discrete probability density
function, the law of total probability states that ||z||; = Z?Zl z; = 1 and we will
write ||z]|; = ||z||. The extreme case ¢ — oo follows from (A.9) as max|z;| =
limg oo [|zfl, = [|2] . = maxi<j<n [2;|. The unit-spheres Sy = {z : ||z[|, = 1} are,
in three dimensions n = 3, for ¢ = 1 an octahedron; for ¢ = 2 a ball; and for ¢ = co
a cube. Furthermore, S; fits into Sy, which in turn fits into S, and this implies
(art. 203) that ||z[|, > ||z[|, > [|z| ., for any .

The Holder inequality, proved in e.g. Van Mieghem (2014, p. 106), states that,
for%+%:1andrealp>1,

1 1
S lwjyl < Yl >yl (A.10)
j=1 j=1 j=1

and in vector form

|™y| < |2l llyll, (A.11)
A special case of the Holder inequality where p = ¢ = 2 is the Cauchy-Schwarz
inequality

™ y| < Izl llyll, (A.12)
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The Cauchy-Schwarz inequality (A.12) follows immediately from the Cauchy iden-
tity (A.71) as shown in art. 222. The ¢ = 2 norm is invariant under a unitary, hence
also orthogonal, transformation U, where UHU = I, because ||Uz||3 = zH U Uz =
oy = ||x||§ (see art. 192).

203. Norm inequalities. All norms are equivalent in the finite dimensional case®:
there exist positive real numbers ¢; and co such that, for all vectors x,

czl, < llzlly < ez llll, (A.13)
For example,

Izl < llzlly < Vil

2]l < llzlly < nflzll

2]l < ll2lly < v llzll o

By choosing z; — aj:cj; for real s > 0, y; — ozja >0 and p = % in the Holder
inequality (A.10), we obtain with 0 < # < 1 the inequality

1
s

Zn 2—0,_.s0 s_le Zn %‘ ,|S
j=1% T < j=1% 1%j

Z?ﬂ Qj N Z?:1 Qj

For a; = 1, the weights «; disappear such that the inequality for the Holder g-

norm becomes ||z|,, < [|z]|, n5(5 =Y, where n+(5=1) > 1. On the other hand, with
0 < 0 <1 and for real s > 0,

i 1
s

n 1\ 1

ol (Spaalaalt)” Sl _(< 231 ))
- 1 1 - n 0
|6 (S0, [a]*0) 0 (S0, [a|*0)? =\ 2k )

j=1

REL
Since y = % <1 and % > 1, it holds that y% <y and
k=1

‘mk‘

n |$'|89 % % n |{l?'|S9 % n . |xj|s9 %
E —_ § : J Z]:

( n 59> = —22"50 = —Z"S" =1
= > ket |kl j=1 Zuk=1 || fet [Tk ]

which leads to an opposite inequality ||z, < ||z||,,-
In summary, if p > g > 0, then the general inequality for Holder ¢g-norm is
1

i_1
lll, < llzlly < llzll,ne > (A.14)

The Minkowski inequality for the elements a;; > 0 of an m X n non-negative

For a finite dimensional vector space, the inequality (A.13) shows that the concept of “con-
vergence of a sequence {zn},,~; to a point *” does not depend on the particular norm. For
infinite dimensional vector spaces, however, the choice of the norm matters: for example, a
Fourier series converges to the function with respect to the Lo-norm (art. 350), but the Gibbs
phenomenon illustrates that the Fourier series does not converge uniformly.
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9.2 Vector and matriz norms 317
matrix A, proved in e.g. Van Mieghem (2014, p. 108), is

Z (Z aka) < Zafj (A.15)
k=1 1 \j=1

: 7

3
Sl

and reduces for m = 2 to

1 1
Sl +ylt ] < DIl |+ [ D] Il (A.16)
j=1 j=1 j=1

which is also known as the “triangle inequality”, ||z +y|, < [[=[, + [yl for the
vector ¢g-norm (A.9).

Ql
Q-
Ql

204. Matrix norms. For m x n matrices A, the most frequently used norms are
the Euclidean or Frobenius norm

1/2
m n
2
1Al = | D> laij] (A.17)
i=1j=1
and the g-norm
IIAwIIq
1All, = (A.18)
4 Tl
The second distance relation in art. 201, ”fﬁ”" = HAHTII , shows that
q
1Al = S [Az]l, (A.19)
Furthermore, the matrix g-norm (A.18) implies that
[Az[l, < [IAll, [lzll, (A.20)

Since the vector norm is a continuous function of the vector components and since
the domain [|z[|, = 1 is closed, there must exist a vector x for which equality
|Az||, = [[All, llz]l, holds. The i-th vector component of Az is (Az); = 37, ajjz;
and the Holder g-norm (A.9) indicates that

q\ 1/a
m n

[Az]l, = | YD aijz;

i=1 |j=1

For example, for all  with |||, = 1, we have that

Az, = Z Zaijxj = szzﬂ |z;] = Z|%|Z|aw|

i=1 |j=1 i=1 j=1

n m m
3 (3 ) = el gl = 3
j=1 i=1 i=1 i=1
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There exists a vector x for which equality holds, namely, if k is the column in A
with maximum absolute sum, then « = ey, the k-th basis vector with (ex),,, = Oxm.
Similarly, for all  with ||z = 1,

n n n
[Az|,, = max Z&zj%‘ < miaXZ lag;| ;] < mz_axz |ag|
= =1 =1

If r is the row with maximum absolute sum and z; = 1.sign(a,;) such that ||z| . =

1, then (Az), = 37, |aj| = max; Y75, |aij| = [|Az|,,. Hence, we have proved
that
14l = max ) |ay] (A.21)
j=1
m
41, = mas Yo (A2
i=1

from which ||AH||Oo = || A]|;.
205. The ¢ = 2 matrix norm ||Az||, is obtained differently. Consider
|Az||3 = (Az)" Az = oM A Az

Since A” A is a Hermitian matrix, art. 247 shows that all eigenvalues are real and
non-negative because a norm ||Ax||§ > 0. These ordered eigenvalues of A A are
denoted as Uf > 05 > . > O’EL > 0. Theorem 68 in art. 247 states that there
exists a unitary matrix U such that x = Uz yields

e AP Ag = HUT AR AU 2 = 2" diag (O'JQ-) z <oty =02 Hz||§

Since the ¢ = 2 norm is invariant under a unitary and orthogonal transform ||z, =
|| 2|5, the definition (A.18) shows that

[ Az]]
|l = sup ———2

=01 (A23)
i 1

where the supremum is achieved if x is the eigenvector of A7 A belonging to o2.
Meyer (2000, p.279) proves the corresponding result for the minimum eigenvalue
provided that A is non-singular,

1
o1

-1
HA HQ " min HA:E||2 T n

llzll;=1
The non-negative quantity o; is called the j-th singular value of the n x m matrix
A and o is the largest singular value of A. An extension of the eigenvalue problem
(1.3) to non-square matrices is called the singular value decomposition. A detailed
discussion is found in Golub and Van Loan (1996) and Horn and Johnson (2013,

Chapter 2).
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9.3 Formulae of determinants 319

206. The Frobenius norm HAH?, = trace(A” A). With the trace-formula (A.99)
and the analysis of A7 A above,

n
1AIE =)ot (A.24)
k=1
In view of (A.23), the bounds [|A|, < ||A|| < /n||Al|, may be attained.
207. Additional norm inequalities. Since |AF|| = [[AA*Y|| < ||A][|AF=Y|, by
induction, we have for any integer k, that
; k
145 < Tl
and
Jim AR =0if ||A] <1
We apply the norm inequality (A.20) twice to the product AB
[ABz], < |[All, | Bzll, < [lAll, 1Bl [,
The g-norm definition [|Al|, = sup,_, % in (A.18) then leads to
g
IAB], < Al 1Bl (A.25)

The norm [|Az|| = |A| ||z|| of the eigenvalue equation (1.3) leads with ||Ax||q <
A, llz[l, in (A.20) to

A< 1Al (A.26)

Hence, the largest in absolute value eigenvalue of a matrix A does not exceed any
matrix g-norm in (A.18). Applied to A¥ A, for any g-norm,

ot < [la" ], < [[4"] 41,
Choose ¢ = 1 and with (A.23),
1AL < JA%[], 1Al = 1Al 1Al

Any matrix A can be transformed (art. 239) by a similarity transform H to a
Jordan canonical form C as A = HCH™!, from which A* = HC*H~!. A typical
Jordan submatrix (Cp,(\))" = A¥=2B, where B is independent of k. Hence, for
large k, A¥ — 0 if and only if || < 1 for all eigenvalues.

9.3 Formulae of determinants

The theory of determinants is discussed in historical order up to 1920 by Muir
(1930) in five impressive volumes. Muir claims to be comprehensive. His treatise
summarizes each paper and relates that paper to others. A remarkably large amount
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of papers are by his hand. Many papers deal with specially structured determinants
that sometimes possess a nice, closed form”.

208. Definition. A determinant of an n X n matrix A is defined by
det A=>"(=1)"? [, (A.27)
P Jj=1

where the sum is over all the n! permutations p = (kq, ko, ..., k) of (1,2,...,n) and
o (p) is the number of interchanges between p and the natural order (1,2,...,n).
For example, p = (1,3,2,4) has 1 interchange, o (p) = 1, while p = (4,3,2,1) has
o (p) = 2. Thus, o (p) is the number of interchanges to bring p back to the natural
order. The determinant of a non-square matrix is not defined.

An important observation from the definition (A.27) of a determinant is that the
product H;.L:l ajk,; contains precisely one element from each row and one element
of each column. Hence, if the matrix A contains a zero row or zero column, then
its determinant det A = 0. Any n X n diagonal matrix A = diag(a) possesses only
one non-zero product [;_, a;; = [[j_, a;; and (A.27) with o (p) = 0 reduces to

det (diag (a 1_[a,7 (A.28)

The same argument shows that any n xn triangular matrix 7', with all zero elements
ti; = 0 below (or above) the main diagonal, has a determinant equal to detT =
[1}-, tj;, which generalizes the result (A.28) for the diagonal matrix.

209. FElementary properties. From the definition (A.27) of a determinant in
art. 208, the following elementary properties can be derived (see e.g. Meyer (2000)
or Mirsky (1982)).

(a) The transpose of a square matrix does not alter the determinant:

det (AT) = det A (A.29)

Hence, a sequence of row manipulations performed on a matrix results in the same
determinant after performing the same sequence of corresponding column manipu-
lations.

(b) If two rows (or columns) of a matrix A are interchanged, then the determinant

7 We mention as an example the following n x n determinant of Scott (1880) in Muir (1930,
vol. IV, p.124), which involves all players of the harmonic, geometric and arithmetic mean
inequality (6.38),

0 a1 +az a1+as

a1 + a2 0 a2 +az ... ( Q)n_l " " "
. _ \= ) = 2)2
a1 + ag as + ag ., - 9 1_[1‘13{(2 ) (Za > }
j= j=1 =1
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9.3 Formulae of determinants 321

of the resulting matrix B equals
det B=—det A (A.30)

An immediate consequence of property (A.30) is that, when a matrix A contains
two identical rows (or columns), its determinant is zero. Indeed, after interchanging
these identical rows in A, property (A.30) indicates that the sign of the determinant
must change, but the matrix A is unchanged! Hence, det A = — det A implies that
det A =0.

(c) If a row (or column) in a matrix A is multiplied by a complex number z, then
the determinant of the resulting matrix B equals

det B = zdet A (A.31)

Clearly, if z = 0, then the matrix B has one zero row and we obtain again the
property, deduced in art. 208, that directly follows from the definition (A.27).
(d) The column (or row) addition property for determinants states that

air 0 bigter o aim
a2 0 bag ek o0 azg
det A =

Qp1 bnk +cnke - Gnn
a0 b 0 ai aip 0 Gk o Gln
aig 0 by - a2, aiz 0 Cip ot Gzp

= +
anl ... bnk .. ann a‘nl DR Clk) ... ann

= det Ay + det Ay (A.32)

In other words, when the matrix A is written in terms of its column vectors aj =
(alky A2y -+« - ank’) as
A= [ a -+ Gg—1 G Qg1 - An ]

and ay = by, + ¢ so that

Av=[ar - a1 b appr - apn |
and
Ay=[a1 - ap-1 o appr - an |

then (A.32) holds, but clearly A # A; + As. A consequence of property (A.32)
and (A.30) is that the determinant is unaltered if a multiple of a column (row) is
added to another column (row). Thus, if we add to the column vector by in A; the
column vector ¢ = za; for any 1 < j # k < n (thus a; # b;) and any complex
number z, then the matrix As consists of two identical columns after applying

the column multiplication property (A.31) and its determinant vanishes, so that
det A = det A4;.
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322 Topics in linear algebra
(e) Product rule: If A, B,C are n X n matrices and C = AB, then

det C = det A.det B (A.33)

210. FEzplicit form of det (A + B). We illustrate the definition (A.27) of a deter-
minant by computing det (A + B), the determinant of a sum of two matrices, which
can be recursively obtained from the column addition property (A.32). Here, we
present a direct computation of

p

det (A+B) =Y (-1)"" ﬁ (ajk, + bjk,)
j=1

We first compute the product, rewritten as [[7_, (z; +y;) = [[;=; #; [1j=, (1 + %j)

and the latter product is a special case of the polynomial [T}_, (z — ;) = 37} apz®

in (B.1) with a,, = 1, where z; = —% and z = 1. We invoke Vieta’s formula (B.11)
J

and find that

n n n n n n—k
1 EERIED oI (STED I DIESD S |
Jj=1 k=0 J1=1j2=j1+1  jn—k=jn—k-1+1 i=1
We return to the original product
n

n n n n n—k n
-Ul(ijryj)ZZ Z Z Z H?/J H Zj;

k=0 \ ji=1j2=j1+1 Jn—k=jn—k—1+1i=1 i=n—k+1

n
which, introduced into det (A 4+ B) = H ajk; + bjk, ), yields

det (A+ B) = Z Z Z Z Z(* a(pn Ham H bjit;,

k=0\Jj1=1j2=j1+1 jn—k=Jn—k-1+1 Pn i=n—k+1
(A.34)
where the p,, sum is over all the n! permutations p,, = (;,,1;,,...,l;,) of the n-tuple
(J1,72,- -5 Jn). We observe that
n—k n

S0 o, 1T b

Pn i=1 i=n—k+1
is the determinant of the matrix with rows ji, jo, ..., jn—k consisting of elements of
the matrix A and the remaining rows j,_k+1,...,Jn With elements of the matrix

B.

211. Eaplicit form of det (A — AI). The special case of (A.34), where B = —\I,

is of particular interest (see art. 235). If B = —AI, then the factor [[;_, ., bju,,
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is non-zero and equal to (—)\)k, only if [, = jm forn —k +1 < m < n, so that,
using the notation of (A.95) in art. 235,

det (A — AI) chx’f
with
n n n n—k
Kk Z Z Z Z (71)0(1771—10 H aj.i,, (A35)
i=1

j1=1j2=41+1 Jn—k=Jn—k—-1+1Pn—k

where the last sum is over all (n — k)! permutations of p,,_x = (lj1 gy ljnfk) of
(j1,425- -+ Jn—k)- The latter determinant, called a principal minor, is thus obtained
from the matrix A by selecting only (j1, o, - .-, jn—k) rows and the same columns.
For example, the case k = n — 1 in (A.35) equals ¢, = (—1)"" > i_1 @jj, pre-
sented in (A.99). For k =n — 2, (A.35) becomes

n n n n
n
Cne = (=1)" D> Y (away; — aijaz) = E E: o
i=1 j=i+1 i=1 j=i ge %ai

212. Expansion of the determinant in cofactors. A cofactor of the element (4, j) in
the n X n matrix A is defined as

Aij = (_1)i+j det A\ row 2\ col j (A36)

where A\ row i\ co1j 18 the (n — 1) x (n — 1) matrix obtained from A by deleting the i-
th row and the j-th column. The determinant M;; = det A\ 1w i\ col j 18 also called
the minor of element a;; in the matrix A. The adjugate of the matrix A is the
transpose of the matrix of cofactors,

adjA = AT (A.37)
and

(a‘d.]A)z] = ‘ZlJt = (_I)H_j det A\ row j\ coli (A38)

Theorem 59 (Cofactor Expansion) If A” is the cofactor of a;j in the n X n
matriz A and d;; is the Kronecker delta, then for 1 <i<n and1 < j <mn, the i-th
row expansion of the determinant of A equals

Z aikﬁjk = 5ij det A (A39)
k=1

while the i-th column expansion is

Z aki/ikj = 6ij det A (A40)
k=1
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Proof: See, e.g., Mirsky (1982, pp. 15-20). O
When ar = (aig, a2k, - .., ank) is the k-th column vector in the matrix A and
/olk = Izllk, figk, ... ,fink is the vector of cofactors of the components of the vector

ag, then (A.40) in the cofactor expansion Theorem 59 is rewritten as the scalar
product (ai)T /olj = d;;det A. Only when each element in column ¢ is multiplied
by its corresponding cofactor, we obtain the value of the determinant of A, else
(ai)T /ij = 0. In other words, the vectors a; and /Olj are orthogonal if i # j.

An interesting application of the cofactor expansion Theorem 59 is Cauchy’s
formula

det (adjA) = (det A)" ! (A.41)
Consider the matrix C' = A.adjA, where ¢;; = > /'_, aik/ijk. Invoking (A.39) shows
that the matrix C' is a diagonal matrix with the same diagonal elements, ¢;; = det A.
Similarly, using (A.40) shows that adjA.A = I'det A = C. Hence, by (A.28), we

have that det C = (det A)" and by the product rule (A.33), we arrive at (A.41).
Moreover, from the basic property of the adjugate

A.adjA = Idet A = adjA.A (A.42)

we find that the inverse of a matrix A equals

-1 adJA
= A.4
det A (A.43)
and with (A.38)
A = (—1) 25 M\ row j\ col @ A 44
(4, = (o e )

213. Derivative of a determinant. Suppose that the elements a;; of a matrix A
are differentiable functions of ¢. Then, the derivative of det A is computed from the
definition (A.27) of the determinant of A (¢) as

ddet A (t) ) d
edt :Z (p) Hﬂk

p
Since
d . dalk
yrd | CZSN0) Z —a H ajk; (t)
Jj=1 =1 J=15#l
we have

dd%;él(t)zzz( )a(mda#lt() T an @

=1 p J=15#l

The definition (A.27) shows that (_1)0(11) dazk da (t) [li=1jz ik, (1) = det Ay,
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where the matrix A; is equal to the matrix A, except that the [-th row in A; is

replaced by the derivatives M for 1 < j <n. Hence,

ddet A Z det A, (A.45)

We compute the derivative of the characteristic polynomial c4 (A) = det (A — AI)
with respect to A using (A.45). Since dLj}l"/\(—)‘) = —J;5, the cofactor Theorem 59 and
the definition of a cofactor (A.36) in art. 212 indicate that det A; = det A\ 3,
where A\ gy is the (n — 1) x (n — 1) matrix deduced from A by deleting the I-th

row and [-th column. Thus, we find that

dea(\) _ ddet(A—A)
Py = ax Z det A\{l} - /\I Z CA\{I} (A46)

=1

Invoking ¢; = dﬂ%)(\/\)‘)\: =detAY
(A.46) leads to

/\k( 5 in (A.100), the case for A = 0 in

n n 1
det (A\{ }) =det A
2 (o) =442 3

214. (Generalized expansion of the determinant. In 1772, Laplace has presented
a generalization of the cofactor expansion Theorem 59 in art. 212. Before stating
Laplace’s theorem, the definition of the cofactor needs to be generalized. We denote
by A(i1---iglj1---jx) the k x k submatrix of the n x n matrix A formed by the
rows 11, i3, . . . , 1 intersected by the column j1, jo, ..., jx. The corresponding minor
M (i1 - -iglj1- - Jr) is the (n — k) x (n — k) determinant of the submatrix of A
obtained by deleting the rows i1,14o0,...,4; and the column ji,7jo,...,jx from A.
The cofactor of A (i1 - -ix|j1 -+ jx) is defined as

o k 4 i . L. .
Alin--igljie--gi) = (=1)Zm= M iy i i) (A.47)
When k=1, then A(i1---ix|j1---jx) = A(i]j) = a;; and A(zlzk|]1]k) =

A(ilf) = (- )Zﬂ M;; = A;j, consistent with the definition (A.36) of the cofactor.

Theorem 60 (Laplace) For each fized set of row indices 1 < iy < iy < -+ < ij <
n, it holds that

det A = Z det A (iy -+ g1 -+ Gi) A (i1 -+ iklj1 - ji) (A.48)

1<j1<—<jr<n

where the sum is over all (Z) ways in which a set j1,jo, ...,k of k columns can be
chosen.

Proof: See, e.g., Mirsky (1982, pp. 22-23). O
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Due to property (A.29), we have similarly, for each fixed set of column indices
1<j1 <jo<---<jp<m, that

det A= Y detA(ir---ikljy-cge) A iglgi ) (A.49)

1<ip < <ip<n

Mirsky (1982) remarks that Laplace’s expansion Theorem 60 can be obtained
from the column or row addition property (A.32): select the 41,is,...47; rows in
the matrix A and write each element in those rows as a;; + 0, while every other
element in each remaining row as 0+a,,. After repeatedly invoking the row addition
property (A.32), we obtain a sum of 2" determinants. The non-zero of those 2"
determinants can be written as a product of two determinants, corresponding to a
k x k submatrix and its corresponding cofactor.

The next generalization is a famous theorem of Jacobi from 1833.

Theorem 61 (Jacobi) For 1 < k < n, it holds that

o

det (adjA (iy -+ il - - jr)) = (det AV A (iy - igljr -+ ji) (A.50)
Proof: See, e.g., Mirsky (1982, pp. 25-27). O

For k =1, (A.50) reduces to an identity. If k = n, then adjA (i1 - - - inlj1 - jn) =
adjA and (A.50) reduces to Cauchy’s formula (A.41) when we define

z‘i(il"'in\jr“jn):l

consistent with (A.48). If k = n — 1, then A (i1 - - - ig|j1 - - - jx) equals an element in
A, say (—=1)"" a,.s, and det (adjA (i1 - - - ix|j1 - - jr)) is the cofactor of element (r, s)
in the adjugate matrix adjA, which is, by (A.50), equal to (—1)"* @, (det A)" 2.
If k=2 and let iy =1, iy =m, j1 = j and jo = [, then

Ay Ay

o o

Amj Aml
_ (_ 1)i+j+'rn+l

det (adJA (i1i2|j1j2)) = det = /L‘jAoml — Aoil/imj

det A\ row i\ col j A€t A\ row m)\ col 1
— (=1)"FH et A\ o iy col 1 det A\ row m ol j
and

A(ivialjija) = (=1) " H det (A\ row i\ row m\ col 7\ col 1)

If the latter is non-zero, Jacobi’s formula (A.50) becomes

_ det A\ row 7\ col j det A\ row m\ coll — det A\ row 7\ coll det A\ row m\ col j

det A
det (A\ row i\ row m/ col j\ col l)

(A.51)

215. Resolvent and Jacobi’s trace formula. The diagonal element of the matrix
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(zI — A)™", called the resolvent (art. 262) of matrix A, follows from (A.44) as

det (2] = Ayvgyy)

(al - A);} = Tt T A) (A.52)

where A\ (5} is the (n — 1) X (n — 1) matrix obtained from A by deleting the j-th row
and column. The expression d% det (zI — A) = Z?Zl det (zI — A\y;y) in (A.46) in
art. 213) shows that
- L det (2 —A) d
T—A) =de " 0 — Jogdet(zl — A
Z(m )i det (zI — A) dz 8 (= )

Jj=1

which is rewritten as

trace ((m] - A)fl) = d%: logdet (xI — A) (A.53)

Integrating both sides with respect to z yields (art. 231)
trace (log (zI — A)) = logdet (xI — A)

By substitution of B = log(xI — A), we find Jacobi’s expression, valid for any
matrix B,

etrace(B) — det ¢ (A.54)
After taking the logarithm in (A.54), the trace is expressed in terms of the deter-
minant,

trace (A) = log det e”

while by substituting A = e? in (A.54), Jacobi’s identity expresses a determinant
as a function of the trace

det A = etrace(logA)

Expanding the last expression in a Taylor series shows the relation with the Newton
identities (B.4) as demonstrated in art. 65.

216. Christoffel-Darboux formula for resolvents. The resolvent (al —A)_1 of
matrix A obeys

(@l —A) =yl -A) = (y—2)(al - A) " (y[ - A"

which is verified by left-multiplication by (yI — A) and right-multiplication by

(zI — A). With the inverse matrix B~! = 342 in (A 43),

adj (zI — A) adj (yI — A)
det (I — A) det (yI — A)

adj (zf —A) adj(yl — A) = (y— )
det (v — A)  det (yl — A) Y

After multiplying both sides by (y — )" det (21 — A) det (yI — A), the element ij
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328 Topics in linear algebra
of the resulting matrix T =adj(zI — A)adj(yl — A) is
_adjy; (el — A)det (yI — A) — adj;; (yI — A) det (z] — A)
y—x

= Z adj;, (21 — A) adjy,; (yI — A)
k=1

Since both the adjugate and the determinant of I — A are polynomials in x of degree
n — 1 and n, respectively, the Christoffel-Darboux identity reflects a polynomial
identity, whose strength is applied in the study of orthogonal polynomials (see
art. 358). In particular, the limit y — x results in

: : d d .
yh_rg tij = adj;; (1 — A) T det (zI — A) — @ad‘]ij (2 — A)det (zI — A)

= Zadjik (xI — A)adjy; (I — A)

k=1
If 1 = j and A is symmetric, then adjA is symmetric and
det (zI — A) = Z (adj,,, (I — A))?

k=1

(A.55)

By using the same arguments as in art. 364, the above expression implies that
the zeros of the polynomial p(z) = adj; (I — A) and the polynomial ¢ (x) =
det (zI — A) interlace.

ddet (v — A)  dadj;, (¢ — A)
dx dx

adj;; (zI — A)

217. Schur complements. From the Schur identity

A B I o014 B
[C D}_{CAI IHO D-CA™'B (4.36)

which is a block Gaussian elimination in art. 196 to construct an upper block
triangular matrix, we find that

det[c D

A B } = det Adet (D — CA™'B) (A57)

and D — CA™'B is called the Schur complement of A. A similar identity

A B A—-BD7'C B I O
o nl= Y e 7] e
leads to
A B _
det [ c D } = det Ddet (A — BD™'C) (A.59)

with Schur complement A — BD~!C.
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Applying det (AB) = det (A) det (B) in (A.33) to the right-hand side of (A.57),
provided A, xn and D,,xm, have the same dimensions m = n, results in

det Adet (D — CA™'B) = det (AD — ACA™'B) = det (DA — CA™'BA)

which illustrates that, if A and C or A and B commute (i.e. AC = CA or AB =
BA), then the Schur determinant simplifies to

A B

det[c D

} =det (AD — CB) =det (DA — CB)
which is formally equal to the determinant of a 2 x 2 matrix.

We can further reduce the block triangular matrices to block diagonal matrices
as

[ A B ___A O I A'B

| O D—CA_IB___O D—-CA-'B O I
and

[ A—BD-'C B ] B [ I BD-! A—-BD'C O

i O D___O I O D

so that the first (A.56) and second (A.58) Schur identities become

A Bl [ I o0]1]4 0 I A'B
c D| |cAat 1]|O0 D-cA'B||O I

and

C D

{A B]:{I BD™' ][ A-BD™'C O}{ I O}

o 1 || 0 D

From the identity

it follows that
I x17' [ -x
o I O T
while the inverse of a diagonal block matrix equals
A 01" (41 0
O D N O D!

With (ABC)™" = C~1B~1C~!, we find two expressions for the inverse of the block
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matrix:
A B [1I -AB|] A o) I o
¢ D] ~ o I O (D-ca'B)” || -cAat I
A 'va'B(D-cA'B) T At A 'B(D-CAT'B)T
B —(D-cA'B)"'cA? (D-cAB)™
(A.60)
and
AB]' [ 1 o01[@-Bpe)t o |[1 -BD
¢ p| ~|-plC I ) pt|lo I
B (A-BD'C)™" —(A-BD-'C)"' BD"!
- |-p'c(A-BD'C)”" D'4+D"'C(A-BD'C) 'BD"!
(A.61)

Equating corresponding blocks at the right-hand side of (A.60) and (A.61)
returns the formulae

1

A'B(D-CA'B)"' = (A-BD'C)” BD™!

and
(A-BD'C) ' = A '+ A'B(D-CAT'B) " cA™! (A.62)
where the latter (A.62) is known as the Sherman-Morrison-Woodbury formula.

218. Schur’s complement extended to a general block matriz. Powell (2011) applied
block Gaussian elimination to the n/N x nN block matrix A, which is partitioned
into N2 blocks, each of size n x n,

Ay A - Aiw
Ay Az oo Aoy
A= ) . )
An1 An2 -+ Ann
The determinant of A is
N
det A = [ det (si3™") (A.63)

k=1

where the n x n matrices SZ.(;.C) obey the recursion

Sy = Ay (A64)
o 64
k+1 k k k k
SEY =80 =S8 (S8 enor) SNy for0<k<N
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In the case N = 2, (A.63) reduces to det A = det Sﬁ) det Ség) = det Sﬁ) det Az
and the recursion (A.64) for Sﬁ) becomes

-1
Sy =89 — st (5502)) S = Ay — A Ayt Ay
which is precisely equal to Schur’s block determinant (A.59).

219. Rank one update formulae. An interesting application of art. 217 is

det ‘g’;x” _C}”Xk } = det (Apxn + CrnxuDiy,) = det Adet (I, + DTA™'C)
kxn k

(A.65)
which follows by applying both (A.59) and (A.57). For k=1 and A = I in (A.65),
we obtain the “rank one update” formula

det (I+cd")=1+d"c (A.66)

This example shows that interesting relations can be obtained when the inverse of
either A or D or both in (A.57) and (A.59) are explicitly known.
The inverse of (Aan + Crxix DY, n) follows from formula (A.62) as

(Ausn + Crxi Diy) =A™ = A7'C (I 4+ DTAT'C) " DT A

from which the special case k = 1 of the “rank one update” follows as

7 —1 o, AledTAT?
and, in particular for A =1,
m™-l_ cd”
(I+ed") =1 T dfe

The classical example of (A.67) is the case where one element a;; in an n X n matrix
A is increased by a number x, which is established if ¢ = e; and d = ze; so that
cd” = xeieJT and

S T B foleiejTAil a1 Y- (Ail)jk (Ail)ki
(A-i-l‘ez@j) =A —1_‘_3:6}"14_1@ =A 1+$(A71)jz’
4t z (A_Q)ji
a 1+z (A1),

Hence, if the inverse A~! is known, the inverse (A + xeief)_l is efficiently com-
puted in terms of the elements of A~!, which is useful for perturbation or sensitivity

analyses.

220. Cramer’s rule. The linear set of equations, Ax = b, has a unique solution
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x = A7'b provided det A # 0. If we write the matrix A in terms of its column

vectors ax = (a1, gk, - - -, Gnk ), then
A:[al Ap—1 ag ak+1 an]
Cramer’s rule expresses the solution of © = (z1, 9, ...,z,) per component as
det| a1 -+ ap—1 b ag S a
— —+1 n

det A
Indeed, the matrix A with the k-th column replaced by the vector b is
Ay :A—l—(b—ak)ez

where ey, is the k-th basis vector. Hence, yeg equals the zero matrix with the k-th
column replaced by the vector y and it has rank 1. Then,

det Ay = det (A+ (b—ay)ef) =det Adet (I + A" (b—ax)ef)

The “rank one update” formula (A.66), with Aej, = ap and e = A~ tay, produces
det(I+ A7 " (b—ap)ef) =1+ef A (b—ap)=1+¢] (A7'b— A ay)
=1+4ef (z—ep)=mp

which demonstrates Cramer’s formula (A.68).

221. FExpansion of the determinant of a product.

Theorem 62 (Binet-Cauchy) Let C = AB where Apxn and Bpxm. Then,

g, 0 Q1k, S R
det C = > Do AT (A.69)

1<k <k < - <km<n
=rshe - Amk; " Amk,, bklm to bkmm

Proof: See, e.g., Gantmacher (1959a, pp. 9-10). O

If Byxm = (Amxn)T (thus b;; = a;;), then the Binet-Cauchy formula (A.69)
reduces to

2
n alkl e alkm

detAAT:Zn: Zn: Y oL (A.70)

k1=1ko=k1+1 km=km—_1+1
! M mmel Amk, " Amk,,

222. The Cauchy identity. The Cauchy identity

2

DEDBE R DI I %ZZ (@jyk — zry;)° (A.71)
Jj=1 j=1 j=1

j=1k=1

is the special case for the dimension m = 2 in the Binet-Cauchy Theorem 62.
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.’L‘T

Specifically®, (A.70) reduces to (A.71) for the matrix Asy, = { T } where x

and y are n X 1 vectors. Since the right-hand side in the Cauchy identity (A.71) is
non-negative for real vectors x and y, the Cauchy-Schwarz inequality (A.12) is

2
DD DI (A.72)
=1 =1 =1

The equality sign is only possible if and only if all z; = x and all y; = y. With the
scalar product =7y = ||z||, ||y||, cos 0., where 6, , is the angle between the vector
x and y, the Cauchy identity (A.71) is represented as

) 1 n n 9
[zl [lylly Isin Oz.y| = 522(%’2&*@&&)
j=1k=1
Since Var[X] = E [X?] — (E [X])?, Cauchy’s equality (A.71) shows for any ran-
dom variable X in a graph, such as the degree D, that the variance equals
2

1 n 1 n n j—1 o 2
Var[X] = — Z;xf - Z;x, =¥ (””—f’“) (A.73)
j= j=

i=2k=1

where the last term sums the square of the difference in realizations of X over all
pairs of nodes in the graph.

223. The de Bruijn inequality. If a1, as,...,a, are real numbers and z1, 2o, ..., 2,
are complex numbers, then de Bruijn (1960) found the interesting inequality

2

n 1 n n n
Zaij < 52&? Z|zj\2+ szz (A.74)
j=1 j=1 j=1 j=1

Since ‘Z?Zl 2]2‘ <3 |2;]%, the de Bruijn inequality (A.74) is sharper than

2
n n

n
2
D az| <D a) Il
1

j= j=1 j=1

which follows from the Cauchy-Schwarz inequality (A.12), because ‘Z?Zl ajzj‘ <
Z?:1 aj |zj].

Proof of (A.74): Let S = }"_  a;2; and denote z; = z; + iy;. de Bruijn
(1960) observes that Se and S have the same modulus |S|, so that we may as-
sume that Y7 ) ajz; = Y7 ajz; > 0 and Y7 a;y; = 0, which corresponds to

8 The case n = 2 in the Cauchy identity (A.71), (x? +x%) (y%er%) = (z1y1 + ay2)? +
(z1y2 — zoy1)?, has played (Weil, 1984, p. 67-69) a role in Fermat’s “Christmas 1640” Theo-
rem, that every prime of the form p = 4m + 1, where m is a positive integer, can be written in
one and only one way as sum of two squares.
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a simultaneous rotation of zi, 29, ..., 2, around the origin of the complex plane.
Invoking the Cauchy-Schwarz inequality (A.12) then yields

2 2

n
E (Iij = E ajIEj S
j=1

Jj=1 J

Since |z;|* = z?+y}? and Re (27) = 27 —y?, we have that 27 = 1 (|zk\2 +Re (z,%))
Together with Y~ Re (27) = Re (3 _; 22) < |>j_; 22|, the de Bruijn inequality
(A.74) is proved. O

224. Vandermonde matriz. The n x n Vandermonde matrix of the vector z is
defined as?®

[ 3 oad - 2t
zo a3 oad - aht
1 z3 23 a3 - af?
Va(@)=| . : : : : (A.75)
2 x2 oz ... gl
The Vandermonde determinant obeys the recursion
n—1
det V,, (z) = det Vi1 () H (xn —zj) (A.76)
j=1

with det V5 (x) = 22 — 1. Indeed, subtracting the last row from all previous rows
and using the algebraic formula z* — y* = (z — y) Z;:& k=1 yields

0 =z —uaz, (1 —zpn)(z1 + 1) R

0 z92—x, (o — zp) (22 + 2y) e x§71 — gt

0 z3—uzp (23 — xn) (23 + ) R R
det V, (z) = .

0 @p-1—2n (Tn-1—Tn)(@Tn-1+2n)

1 Ty x% xﬁfl

After expanding the determinant as (—1)" times the cofactor of the last element
of the first column, the resulting determinant is, after dividing each row r by the

9 There are different ways to define the Vandermonde matrix, for instance, by organizing the
powers of the vector z in rows (as in art. 242) instead of in columns, and by choosing the
sequence of powers in either decreasing or increasing order.
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factor x, — z,,,

n—2 95 4
R R ST v
n—2 N ]
1 zo+a, 23 + 9Ty + 22 ijo 270
n—2 npn_92_4 7
1 z3+z, T3 + oxy + 2 e Y g

det Wn—l =

1 zp_o+x, xEFQ + Tp_ox, + x% :
2 2 n—2 n-2-j_j
I zp+m, x5 +Tp1xnta; - Zj:(} Ty,

A determinant remains unchanged by adding a column multiplied by some number
a to another column. Since Z;:é gh1=0yd = k-1 4 ny;g k2779l we can
subsequently multiply each but the last column k by z, and subtract the result
from the column & +1 to arrive at W,,_; = V,,_1 (z). This establishes the recursion

(A.76). Iterating the recursion (A.76) results in

det V,, (z) = H (xj — ;) = H H (xj — ;) (A.7T7)

1<i<j<n i=1j=i+1

The cofactor of the Vandermonde matrix V,, (z) is elegantly derived as (B.26) in
art. 305 using the Lagrange interpolation polynomial.

225. Hadamard’s inequality. Consider the matrix A = [ a; as - ap ], with
the vectors {a}, <4<, as columns. The Hadamard inequality for the determinant,
proved in Meyer (2000, p. 469), is

n n n
2
jdet A| < TT llaxlly = TT 4| D lawsl (A.78)
k=1 k=1 \ j=1
with equality only if all the vectors a1, as,...,a, are mutually orthonormal, i.e., if

(ak)T )H a; = dxj, for all pairs (k,j). As proved by

Meyer (2000, p.469), the volume v,, of an n-dimensional parallelepiped, a possibly

a; = dx; or, when complex (ay,

skewed rectangular box generated by n independent vectors aq,as,...,a,, equals
v, = |det A|. This relation provides a geometrical interpretation of the determinant.
Hadamard’s inequality (A.78) asserts that the volume of an n-dimensional paral-
lelepiped generated by the columns of A cannot exceed the volume of a rectangular
box whose sides have length |la||,. In general, an n-dimensional parallelepiped is
skewed, i.e., its n independent, generating vectors ay, as, ..., a, are not orthogonal,
which geometrically explains Hadamard’s inequality (A.78).

We apply the Hadamard inequality (A.78) to the Vandermonde determinant in
art. 224, where the components of the vector = are ordered as |z1] > |z2| > ... >
[Tm| > 1 > |Zme1] > ... > |x,|. After dividing the first m rows, corresponding
to the components with absolute value larger than 1, by x?_l for 1 < j < m, we
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obtain
—(n—1 —(n—2 —(n—3 —(n—4
e T R IV
m —(n—1 —(n—2 —(n—3 —(n—4
det V. (CIE) — Hx’rpfl xm( ) xm( ) -'L"m( ) xm( )
" J 1 z x2 x3 ceo gt
=1 m—+1 m—+1 m-+1 m-+1
2 3 —1
1 Ln x’n .13” ‘rz

Since none of the elements in this determinant exceeds in absolute value unity,
Hadamard’s inequality (A.78) shows that [det V,, (z)] < n¥ [T}, ;""" with equal-
ity if and only if the row vectors are orthogonal. Art. 242 shows that orthogonality
is only possible if all 2; = €™ corresponding to the zeros of p, (2) = a, (2" £ 1).
Using (A.77) and |z;| = 1 yields the identity

n n

k=1j=k+1

2mij 2mik

en —en | =n% (A.79)

226. A Hadamard matriz. An n x n Hadamard matrix H,, contains as elements
either —1 and 1 and obeys H,,H! = nl,. The normalized matrix X,, = ﬁHn is
an orthogonal matrix (art. 248), from which it follows that det H,, = n%. Art. 225
demonstrates that det H,, is maximal among all n x n matrices with elements in
absolute value less than or equal to 1, which includes all orthogonal matrices. Any
relabeling (permutation of rows and columns, art. 31) of a Hadamard matrix is
again a Hadamard matrix; multiplying any row or column by —1 preserves the
Hadamard properties.

Sylvester found a construction for symmetric Hadamard matrices Hor = Hor—1 ®

rot }, that

H,, where ® is the Kronecker product (art. 286) and Hy = { 1 —1

contain the u vector in the first column.

9.4 Function of a matrix

227. Bézout’s Theorem. Consider an arbitrary matrix polynomial in A,
F(A) =Y Fp\*
k=0

where all F}, are n X n matrices and F,, # O. Hence, any element of the n x n
matrix F (\) is a polynomial Fj; (A\) = >, (Fk)y; A of at most order m in \.
Any matrix polynomial F'()\) can be right and left divided by another (non-zero)
matrix polynomial B()) in a unique way as proved in Gantmacher (1959a, Chapter
IV). Hence, the left-quotient and left-remainder F'(A\) = B(A)Qr(A) + Rr(\) and
the right-quotient and right-remainder F/(A) = Qr(A\)B(A)+ Rg(\) are unique. Let
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us concentrate on the right-remainder in the case where B(A) = M — A is a linear
polynomial in A. Using Euclid’s division scheme for polynomials (art. 309),
m—2
F(A) = FpX™ N (AL = A) + (Fp A+ Fpp o) A"+ ) FrF
k=0
= [FanXA™ '+ (FrnA + Fruo1) NP 72] (M = A)
m—3
+ (FrnA2 + Fm—lA =+ Fm—?) )\WL_Z + Z Fk:)\k
k=0

and continuing, we arrive at

F) = [Fp A" e XTI AR N TR ATTH (AT - A) 4 FAY
j=k j=1 j=0

In summary, F(A) = Qr(A\) (Al — A) + R(\) and similarly for the left-quotient and
left-remainder with

Qr(N) = T M (S FAT ) Qu(h) = Sy Xt (S, A7 F )
Ru(\) = X Fy 4 = F(A) Ro() = X7 ATF,
(A.80)
and where the left- and right-remainder is independent of A\. The Generalized
Bézout Theorem states that the polynomial F(\) is divisible by (Al — A) on the

right (left) if and only if F(A) = Rr(\) = O (or Rr(\) = O).

228. The Cayley-Hamilton Theorem. Operations with matrices are different
from operations with scalars. Well-known examples of the difference are the non-
commutativity of the matrix product and the fact that AB can be the null matrix
O, although both A # O and B # O. The Cayley-Hamilton Theorem is another
example that leads to a remarkable consequence discussed in art. 233.

Theorem 63 (Cayley-Hamilton) An n x n matriz A satisfies its own charac-
teristic polynomial

ca(A)=0 (A.81)
where the characteristic polynomial is ca () = det (A — XI) = Y"1 _ cuAr.

There exist several proofs of the Cayley-Hamilton Theorem. Due to the impor-
tance of the Cayley-Hamilton Theorem, valid for any n x n matrix A, we provide
a general proof.

Proof: Applying the basic property of the adjugate (A.42) in art. 212 to the
matrix A — M1, yields, with ¢4 (A) = det (4 — AI),

(A=A adj(A— M) =ca (\) I, = adj (A — \XI) (A — AI) (A.82)

Since the characteristic polynomial c4 (A) = >__ cxAF is a polynomial of degree
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n in A, art. 227 demonstrates that!? Q (\) = adj(A — \I) = Z;& CiAF must be
a polynomial of at most degree n — 1 in A with n X n matrix coefficients. Hence,

n—1 n—1 n
(A= ADadj (A=) = (A=A Y CpA* = ACA = " Cr g M
k=0 k=0 k=1
n—1
= ACo+ > (ACk — Cr—1) M — C g A

k=1

Equating corresponding powers of A in (A.82) yields

COIn = AC()
CkIHZ(ACk—Ck_l) forl<k<n-1
CnIn = Un-1

After multiplying the above equation of the coefficients of \¥ from the left by A*,
we obtain

n n—1
> oAb = ACo+ ) (APTC, — ARGy 1) = A"Cy =0
k=0 k=1

Hence, ca (A) = > _, ckA¥ = O, which completes the proof. O

229. The minimal polynomial of a square matriz. Let me, (z) = 22:0 brz* denote
the minimal polynomial, defined in art. 310, of the characteristic polynomial c4 (2)
of a matrix A and the degree of the minimal polynomial obeys [ < n, where [ is the
number of different eigenvalues of A.

A polynomial f, (2) = Y p_, fxz" is called an annihilating polynomial of the
square matrix A if f, (A) = O. The minimal polynomial m., (z) = ZL:O b2k of
degree [ is the annihilating polynomial of A of least degree with highest coefficient
b; = 1. Consider the division

fa (2) =me, (2)q(2) +7(2)

where r (z) is a polynomial in z of degree less than [ and consider the corresponding
matrix division

fa (A) =me, (A) q(A) +r(4)
Since f, (A) = O and m., (A) = O, we conclude that r (4) = O and that r(z)

10 Given the matrix A, Gantmacher (1959a) describes a method due to Faddeev that si-
multaneously computes the coefficients pg of the characteristic polynomial det(Al — A) =
AT — Zz;é Pr—kAF as well as the matrix coefficients By of the adjoint matrix é()\) =

Z;S B, _1_)\*, differently defined than ours in (A.84). Faddeev defines, for 1 < k < n,
the system rp = %trace(Ak) and By = Ap — ri I, where Ay = ABg and A; = A. A check is
Bp = Ap —rnI, = O. The solution is A, = A* —E?;ll rk_jAj. After taking the trace of both
sides of this solution and comparing the result with the Newton identities (B.9), we find that
rr = pi are the coefficients of the characteristic polynomial det(Al — A) = A" — Z;& Pr—iAF.
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is also an annihilating polynomial of A. But, the degree of r (z) is lower than the
degree of the minimal polynomial m., (z), which is impossible, else 7 (z) should
be the minimal polynomial. Hence, r (z) must be zero. In conclusion, there holds:
fa (A) =me, (A) q(A) or every annihilating polynomial f, (2) of a matriz A, obey-
ing fo(A) = O, is divisible, i.e. without remainder, by its minimal polynomial,
me, (2)|fa (2). Consequently, since the characteristic polynomial is an annihilating
polynomial by the Cayley-Hamilton Theorem 63, it holds that m., (2)|ca (2).

Moreover, given the matrix A, its corresponding minimal polynomial m.., (z) is
unique. The uniqueness of the minimal polynomial also follows from the above argu-
ment. Indeed, if n., (z) were another minimal polynomial of A, then n., (2)|m., (2)
as well as m., (2) |nc, (2). Hence, m., (z) = Bn., (z), but the constant 8 must be
one since the highest coefficient of a minimal polynomial is 1.

We remark that the coefficients of an annihilating polynomial are scalars. A

general matrix polynomial F (z), satisfying F' (4) = >, FxA¥ = O where the co-
efficients F}, are n x n matrices, can be of lower degree than the minimal polynomial
me, (2) = 22:0 biz*, i.e. m <[, as exemplified in art. 55.
230. The adjoint matriz. By the Generalized Bézout Theorem, the polynomial
F(X\) = g(MI — g(A) is divisible by (A — A) because F(A) = g(A)I — g(4) = O.
If F(\) is an ordinary polynomial (i.e. all coefficients Fj, are scalars), then the
right- and left-quotient and the remainders are equal, Qr(\) = Qr(A) = Q (\) and
Rr(A\) =Rr(N) =R(N),

FON)=QMNM-A)+RXN=MN-A)QN +R(N
Let g(A) = ca()), then
AT — e (A) = Q) (AT — A) = (A — 4) Q(\) (A.83)

The Cayley-Hamilton Theorem 63 states that c4(A) = O, which indicates that
ca(MNI = Q(A) (A — A) and also ca(A\)I = (M — A) Q(N). Incidentally, the rela-
tion (A.83) also proves the Cayley-Hamilton Theorem 63, based on the property
(A.82) of the adjugate matrix (art. 212). The two proofs illustrate the intimate
relation between the adjugate and the Cayley-Hamilton Theorem 63.

The matrix

Q) =adj(A— X)) = (A —A) " ea(N) (A.84)

is called the adjoint matrix of A. Explicitly, from (A.80),

n n
Q) =D AN ik
k=1 j=k
With ¢p = det A in (A.98), it holds that Q(0) = —A~"det A = }"_, ¢;A7~". The
Cayley-Hamilton Theorem (A.81) and (A.98), O = Z?Zl cj AT + Idet A, directly
lead to the above polynomial form for the inverse matrix A~! of a non-singular
matrix A.
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The main theoretical interest of the adjoint matrix Q(\) stems from its definition,

caMI = Q) (M = A) = (A - 4)Q(N)

In case A = ), is an eigenvalue of A, then (A — A) Q(\x) = O, which indicates by
(1.3) and the commutative property (A — A) Q(A) = Q(A) (M — A) that every non-
zero column(row) of the adjoint matrix Q(X\) is a right(left)-eigenvector belonging
to the eigenvalue \. In addition, by differentiation with respect to A, we obtain

AN = A=A Q'(N)+Q(N)

This demonstrates that, if Q(A;) # O, the eigenvalue Ay is a simple root of c4(A)
and, conversely, if Q(Ax) = O, the eigenvalue A\ has higher multiplicity.

The adjoint matrix Q(A) = (M — A) "' c4(\) is computed by observing that,
on the Generalized Bézout Theorem, r (A, u) = %}i“(“) is divisible without re-
mainder. By replacing A and g in this polynomial r (A, 1) by AI and A respectively,
Q(N) =17 (M, A) readily follows.

231. Consider the arbitrary polynomial of degree [,

l
o]l )

Substitute = by A, then g(A) = go H;Zl(A — p;I). Since det (AB) = det Adet B
and det(kA) = k™ det A, we have det(g(A)) = giy Hé‘:1 det(A—u,I) = g¢ HJ 1calpy).
With ca(A) = HZ:l (A — A) in (A.97),

I n n l n
det(g HH Ak — 1) =H H(Ak—ﬂj)ZHg(Ak)
j=1k=1 k=1 j=1 k=1

Let g(z) = h(x) — A, then we arrive at the general result: for any polynomial h(x),
the eigenvalues of h(A) are h(\1),...,h(A\,) and the characteristic polynomial is

det(h(A) — AI) = ﬁ (h(A) = A) (A.85)
k=1

which is a polynomial in A of degree at most n. Since the result holds for an
arbitrary polynomial, it should not surprise that, under appropriate conditions of
convergence, it can be extended to infinite polynomials, in particular to the Taylor
series of a complex function.

232. A function of a matriz. As proved in Gantmacher (1959a, Chapter V), if the
power series of a function f(z) around z = zy,

z) = ij(zo)(z —20)7  where  fj(20) = l djf(,z) (A.86)
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converges for all z in the disc |z — 29| < R, then
A) =3 fi(z0)(A—zl) (A.87)
j=0
provided that all eigenvalues of A lie within the region of convergence of (A.86),

i.e., |\ — 29| < R. For example,

(I—zA)"" =300, 2k Ak for [z2\g] <1,all1<k<n
et =37 Zkk—‘?k for all A
logA =32 LV (A1) for [\ —1]<T,all I<k<n

The Taylor series of an analytic function can be differentiated and integrated within
the region of convergence, which leads us to define other matrix functions. For
example, when |z, < 1 for all 1 <k <mn,

o0 k+1
1 z
/(I—ZA) dz = E )

k=0

12 A" A" og (I — zA)

from which log (I — zA) = [A(I —24)"" dz, while, for all |2£| < 1, we find
dlog%z[ A (ZI A)
Expression (A.85) shows that the eigenvalues of e?* are e

the knowledge of the eigenstructure of a matrix A allows us to compute any function

A e*M. Hence,

of A under the same convergence restrictions as complex numbers z.

233. A function of a matriz is a polynomial. Any function f (z), that has a Taylor
series (A.86) around some point zp, can define (art. 232) the function f(A) as a
Taylor series (A.87) for any n x n matrix A, provided that the Taylor series (A.87)
converges. In that case, the Taylor series of f (z) consists of an infinite number of
terms, except when f (2) = p,, (2) is a polynomial of degree m.

The situation for f(A) is surprisingly different: if the Taylor series (A.87) of
f(A) converges and, hence, defines f(A), then there is a polynomial py (z) of
degree k < n — 1 such that f(A) = px (A). This remarkable property is a direct
consequence of the Cayley-Hamilton Theorem (A.81): A" = — (=1)" 3] cx A*
so that each matrix A"** for any integer k£ > 0 and similarly each term (A — zoI )j ,
for j > n, in the Taylor series (A.87) can be expressed as a polynomial in A of
degree not exceeding n — 1, as illustrated in art. 234 below.

234. The function of a symmetric real matriz. Using the vector notation (A.138)
of the eigenvalue decomposition of a symmetric matrix A and (A.117), we have that

n
— Z()I E )\k — Z(] xkxk
k=1

For any analytic function f that possesses a converging Taylor series around some
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342 Topics in linear algebra

point zg, the function f (A) is, with (A.87),

A) = ij(zo)( — zol)? Zf] 20 Z (O — 20) zpx}
j=0 j=0 k=1

oo

=y Zf; 20) (A = 20) | apaf

k=1 7=0

Hence, provided that all eigenvalues of A lie within the radius of convergence of the
Taylor series (A.86) around zp, we find that

A) =" f ) wea, (A.88)
k=1

which indicates that the function f cannot map a symmetric matrix A into an
asymmetric matrix, where f (4) # (f (A))".

Art. 233 demonstrates that f(A) = p,—1 (A) for any n x n matrix A, if the
minimal polynomial m.., (z) is of degree n — 1, in which case all eigenvalues are
distinct. Hence, if there exists a polynomial for which f (Ax) = pn—1 (Ag), for all
1 < k < n eigenvalues of A, then

Zf Ak) TRy, —an 1 () zpxl = pa_1 (A) (A.89)
k=1 k=1

A polynomial p,,_1 (z) of degree n— 1 that passes through a set of n different points
{(Mks [ (Ak))}1<p<p is precisely the Lagrange interpolation polynomial (B.20),

o) =3 F 0w T 5=
J=1yj#k

k=1

studied in art. 303, and thus,

. OA- NI
Pn—1 (A) = Z f (/\k) H — ;\ (A.90)
k=1 j=1i#k R T

Substituting the relations in art. 303 into (A.90), the function f (A) in (A.89) can
be written explicitly as a polynomial of degree n — 1 in A,

n—1

)= elf] At (A.91)
k=0

where the coefficient ¢y, [f], which depends on the function f and on the eigenvalues
of A, is

1 & f A A
a=5 2 H?—r#i (/\fn — ) dzF ‘,H (# =)

m=1
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9.4 Function of a matrix 343

Since both expressions (A.89) and (A.90) hold for any function f, we conclude that

b A= N\T
=tk " T

Another proof of (A.92) follows from (A.88) with f (x) = i“‘_—(;z =k (=N,
where ¢4 () is the characteristic polynomial of A,

H (A=) = %xﬂs? = lim Mm;ﬂf =y (M) zpat
j=Tk =1 Tk = E
because ¢y (A\¢) = [[j=y.j20 (A — Aj)-

The above discussion has assumed that the eigenvalues of A are distinct, in order
to straightforwardly apply the Lagrange interpolation (art. 303). However, when
A has eigenvalues with multiplicity larger than one or when A is not symmetric nor
diagonalizable, but has the Jordan form (art. 239), matrix polynomials p,,_1 (A4)
based on the spectrum of A can still be deduced. The analysis (see e.g. Gantmacher
(1959a, Chapter V), Meyer (2000, Section 7.9)) becomes more complicated and is
here omitted.
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10

Figensystem of a matrix

This chapter reviews general results about the eigensystem or spectrum of a square
matrix A, the set of eigenvalues with their corresponding eigenvectors. The em-
phasis lies on symmetric matrices, A = A7, for whom the spectral theory belongs
to the pearls of linear algebra.

10.1 Eigenvalues and eigenvectors

235. The algebraic eigenproblem Az = Az in (1.3) asks for the determination of
the eigenvalue A, a complex number, and the corresponding n x 1 eigenvector x of
an n X n matrix A for which the set of n homogeneous linear equations

ain — A a12 a13 cee A1n Z1
as1 a2 — A a3 e azn T2
as1 asz as3 — A ... a3n z3 | =0 (A.93)
Gn1 An2 Gn3 cee Opp — A Tn
in n unknowns x1, xa, . . ., £, has a non-zero solution. Clearly, the zero vector z = 0

is always a solution of (1.3). A non-zero solution of eigenvalue equation Az = Az
is only possible if and only if the matrix A — AI is singular, that is,

det (A— M) =0 (A.94)

As shown! in art. 211, this determinant c4(\) = det (A — AI) can be expanded as
a polynomial in A of degree n,

CA<>‘) = ch)‘k =cp\" + cn—l)\n_l +-+ad+ce =0 (A95)
k=0

L Another proof is given in Meyer (2000, p. 495).

345
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346 FEigensystem of a matrix

which is called the characteristic or eigenvalue polynomial of the matrix A. Apart
from ¢, = (—1)", the coefficients for 0 < k < n are

o= (=1 M,y (A.96)
all
and Mj, is a principal minor?, given explicitly in (A.35) in art. 211. Meyer (2000,
p. 504) mentions the Leverrier-Souriau-Frame algorithm that computes the coef-
ficients ¢y, of characteristic polynomial c4 (A) in (A.95) as

_ trace (ABg_1)
k

Cr =

where the matrix By, obeys By = I and the recursion By, = f%IJrABk_l
for k=1,2,...,n.

Since a polynomial of degree n has n complex zeros (art. 291), the n x n square
matrix A possesses n eigenvalues Ai, Ag,...,A,, not all necessarily distinct. In
general, the characteristic polynomial can be written in product form (B.1),

ca) =[x =) (A.97)
k=1
Since ca(A) = det (A — AI), it follows from (A.95) and (A.97) that, for A =0,

det A=co=[] M (A.98)

k=1
Hence, if det A = 0, there is at least one zero eigenvalue. Also (see art. 211),

n

(—1)" e, g = Z A = trace(A) (A.99)
k=1
and
n n n 1
a==), H Aj:—detAZ/\—k (A.100)
k=1j=1;j#k k=1

For any eigenvalue )\, the linear set (A.93) has at least one non-zero eigenvector
. Furthermore, if x is a non-zero eigenvector, also kx is a non-zero eigenvalue.
Therefore, eigenvectors are often normalized, for instance, a probabilistic eigenvec-
tor has the sum of its components equal to 1 or a norm ||z||; = 1 as defined in

(A.9). The most common normalization is the Euclidean norm ||:c||§ =27z =1.

236. Multiplicity of eigenvalues. If the same eigenvalue A\, reappears my times as

2 A principal minor My, is the determinant of a principal k x k submatrix My obtained by
deleting the same n — k rows and columns in A. Hence, the main diagonal elements (Myx);;
are k elements of main diagonal elements {a;;};<;<,, of A.
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10.1 Eigenvalues and eigenvectors 347

a zero of the characteristic polynomial c4 (A) in (A.95), then (A.97) can be written
as

! l
ca(\) = H (A —A)"™ with ij =n
j=1 j=1

and my, is called the algebraic multiplicity of the eigenvalue A of the n x n matrix
A.

If the rank of A — AI is less than n — 1, there will be more than one indepen-
dent eigenvector belonging to the eigenvalue A\. The geometric multiplicity of the
eigenvalue A, of the n X n matrix A is defined as n— rank(A — A\;I), which equals
the number of linearly independent eigenvectors associated with the eigenvalue Ag.
For any n X n complex matrix, the algebraic multiplicity of an eigenvalue is larger
than or equal to its geometric multiplicity (Meyer, 2000, p. 511). If a matrix is
diagonalizable as any symmetric matrix; art. 247, then the algebraic and geometric
multiplicity of any eigenvalue are equal (Meyer, 2000, p. 512).

Multiplicity of eigenvalues seriously complicates the eigenvalue problem. In the
sequel, we omit a detailed discussion on multiple eigenvalues and refer to Wilkinson
(1965).

237. FEigenproblem of the transpose AT. The eigenvalue equation (1.3) of the
transposed matrix AT,

ATy =)y (A.101)

is of singular importance. The determinant of a matrix is equal to the determinant
of its transpose (art. 209). This property det (A" — AI) = det (A — AI) shows that
the eigenvalues of A and AT are the same.

However, the eigenvectors are, in general, different. Transposing (A.101) yields

yTA =T (A.102)

The vector ij is therefore called the left-eigenvector of A belonging to the eigenvalue
Aj, whereas x; in Az; = \jz; is called the right-eigenvector belonging to the same
eigenvalue A;. An important relation between the left- and right-eigenvectors of a
matrix A is, for A; # A,

Yl =0 (A.103)

Indeed, left-multiplying Az = A\gxy in (1.3) by ij, ijA:rk. = )\k.ij:rk, and similarly
right-multiplying ijA = )\jij in (A.102) by g, ijA:Ek = )\jij:rk, leads, after
subtraction, to 0 = (A — ;) ij:ck and (A.103) follows.

Since eigenvectors can be complex and since yJTxk = x{yj, the expression yJTxk is
not an inner-product that is always real and for which ij:rk = (zfyj) " holds. How-
ever, (A.103) expresses that the sets of left- and right-eigenvectors are orthogonal

i \j # A
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348 FEigensystem of a matrix

238. If A has n distinct eigenvalues, then the n eigenvectors are linearly inde-
pendent and span the whole n-dimensional space. The proof is by reductio ad
absurdum. Assume that s is the smallest number of linearly dependent eigenvectors
labeled by the first s smallest indices. Linear dependence then means that

Zak:pk =0 (A.104)
k=1

where ai # 0 for 1 < k < s. Left-multiplying by A and invoking the eigenvalue
equation (1.3) yields

Zak)\kxk =0 (A.105)
k=1

On the other hand, multiplying (A.104) by A and subtracting from (A.105) leads
to

s—1
Zak (A — As) zp =0,
=1

which, because all eigenvalues are distinct, implies that there is a smaller set of
s — 1 linearly depending eigenvectors. This contradicts the initial hypothesis.

This important property has a number of consequences. First, it applies to left-
as well as to right-eigenvectors. Relation (A.103) then shows that the sets of left-
and right-eigenvectors form a bi-orthogonal system with y{xk # 0. For, if x5 were
orthogonal to yj, thus ylz; = 0, then (A.103) demonstrates that zj would be
orthogonal to all left-eigenvectors y;. Since the set of left-eigenvectors span the n
dimensional vector space, it would mean that the n-dimensional vector xj; would
be orthogonal to the whole n-space, which is impossible because xj, is not the null
vector. Second, any n-dimensional vector can be written in terms of either the left-
or right-eigenvectors.

239. Let us denote by X the matrix with the right-eigenvector z; in column j
and by Y7 the matrix with the left-eigenvector y! in row k. If the right- and
left-eigenvectors are scaled such that ylx), = 1, for all 1 < k < n, then (A.103)
leads to

YIX =1 (A.106)
Thus, the matrix Y7 is the inverse of the matrix X. Furthermore, for any right-

eigenvector, the eigenvalue equation Az = Az in (1.3) holds, rewritten in matrix
form,

AX = X diag()\) (A.107)

where the n x 1 eigenvalue vector is A = (A1, A1,...,A,). Left-multiplying by
X! =YT7 yields the similarity transform of matrix A,

XTAX = YTAX = diag()) (A.108)
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10.1 Eigenvalues and eigenvectors 349

Thus, when the eigenvalues of A are distinct, there exists a similarity transform
H~'AH that reduces A to diagonal form.

In many applications, similarity transforms by a matrix H are applied to simplify
matrix problems. The only condition is that the inverse H~! of the matrix H must
exist. Indeed, if Ax = Az, then \H 'z = H 1Az = (H 'AH)H 'z. Thus, a
similarity transform preserves the eigenvalues; the matrix H 'AH possesses the
same eigenvalues as A, while the eigenvectors x of A are transformed to H 'z.

When A has multiple eigenvalues, it may be impossible to reduce A to a diagonal
form by similarity transforms. Instead of a diagonal form, the most compact form
when A has r distinct eigenvalues each with multiplicity m; such that Z;:1 m; =mn
is the Jordan canonical form C,

le (/\1>
sz ()‘1>

C’rrLT,l (A’r'—l)
C(mr ()\7)

where C;,(\) is an m x m submatrix of the form

A1 0 - 0
o X 1 0
Cn(N)=1|:+ =+ &+
0o --- 0 A 1
o --- 0 0 A

The number of independent eigenvectors is equal to the number of submatrices
in C. If an eigenvalue A\ has multiplicity m, there can be one large submatrix
Cm()), but also a number k of smaller submatrices Cj, (A) such that Z§:1 b =
m. This illustrates, as mentioned in art. 235, the much higher complexity of the
eigenproblem in case of multiple eigenvalues.

240. Frequency interpretation of the eigenvalue equation. The dependence on the
parameter A in the eigenvalue equation (1.3) in art. 235 is made explicit in

Az (A) =Xz () (A.109)

where a non-zero vector x (\) only satisfies this linear equation if A is an eigenvalue
of A such that the eigenvector z; = z (\;). We can interpret A as a frequency that
ranges continuously over all real numbers. This “frequency” interpretation of the
eigenvalue equation will be exploited in art. 241, where the application of calculus
to (A.109) is illustrated, and in art. 249.

241. Principal vector of grade m. Invoking Leibniz’ rule to the parameterized
eigenvalue equation (A.109) of the n x n matrix A in art. 240, the m-th derivative
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350 FEigensystem of a matrix

of both sides of Az (A) = A x (\) with respect to \ is

Lo ! k I—k Ly =1,
prEACY =Z<l)j—>\k(/\)%x(/\)=>\d A, =)
k=0

dN k d\! d\-1
so that, for any integer [ > 1,

dz(\) ldlflx N
d\I T dAL

(A— D) (A.110)

Explicitly, denoting 2V (\) = % and 2(®) (\) = z()\), we obtain the sequence
forl=0,1,...,m,
(A=ADx(\) =0, (A=ADzMN)=2()), (A-A)z® ) =20 (N),
up to
(A=) 2™ (A) = ma™ Y () (A.111)
Multiplying both sides in (A.111) with (A — A)F™*,
(A =AD"z (\) =m (A - AD" " 2m=D ()
using (A.111) to the right-hand side iteratively p-times
(A=AD" 2™ (N) =m (A =AD" 2D (A) = m (m — 1) (A =AD" 2 2(m=2) ()
=m(m—1)(m-2) (A= A)"P2" () =

yields
m)!
(m —p)!

Choose p = m and () (A) = z (A), then (A — AI)* 2™ (A) = m! (A — A" ™z (N).
Subsequently with k& = m, we find that

(A= AD)F 2™ (\) = (A — XI)F7P g(m=p) ()) (A.112)

(A =AD" 2™ () = mlz () (A.113)

and, from (A — AI)z (X) =0, that
(A= XD)™zm (X)) =0 (A.114)
If X is not an eigenvalue so that A— AT is of rank n and invertible, then (A.114) and
(A.113) show that 2™ (\) = 0 and z (\) = 0, while the recursion (A.111) further
tells that all higher order derivatives vanish, () (\) = 0 for 0 < j < m. If X is an

eigenvalue, the vector z("™) ()\) can be different from the zero vector and orthogonal
to all the row vectors of (A — AI)™".

Theorem 64 The set of vectors {z () LD (N, 2@ (), 2 (AN} is linearly
independent.
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10.1 Eigenvalues and eigenvectors 351

Proof: Assume, on the contrary, that these vectors are dependent, then
boz (A) 4+ b1z (N) 4+ boz® (V) + ...+ bpz™ (N) = Z bz (A\) =0
j=0

and not all b; are zero. Left-multiplying both sides with (A — AI)™ and taking
(A.114) into account that (A — XI)"™"7 2 (X\) = 0 for any j > 1 and m > 1 leads
to

b (A= XI)" 2™ (X)) =0

and (A.113) indicates that b, must be zero. Next, we repeat the argument and left-
multiply both sides with (A — A1) ", which leads us to conclude that by,_; = 0.
Continuing in this way shows that each coefficient b; = 0 for 0 < j < n, which
contradicts the assumption and proves the Theorem 64. O

Let us now consider the integer m = n, equal to the dimensions of the matrix A.
From (A.112), we define for 1 < k < n the vectors

ye = (A= AD" 2" ()

that satisfy
n!

gl (A= AD)FPgn=p) ()

Yk =
while relation (A.113) shows that y,, = nla ()\). Hence, any vector y;, is generated
by the vector (™) () and Theorem 64 states that the set {y1, ¥, ...,y } is linearly
independent and thus spans the n-dimensional space. In the classical eigenvalue
theory (Wilkinson, 1965, p. 43), the vector z satisfying (A — A1) 2 = 0 is called
a principal vector of grade n + 1 corresponding to eigenvalue A\g. Theorem 64 and
(A.114) show that z = Bz(™ ()), for any non-zero number 3.

We now concentrate on eigenvalues. Left-multiplying (A.113) by z7 (£) yields

nlz” (&) z (\) = 27 (&) (A= AD)" =™ (N)

If A is a symmetric matrix and ¢ is an eigenvalue of A, then x7 (&) (A — \)" =
2T (&) (€ = \)", so that

T _ (f — /\)n T (n)
dor = o7 (€2 () = E=2aT (€ 2™ ()
Hence, 7 (&) 2™ (\) = 0 for all n > 0, if the eigenvalue ¢ is different from the
eigenvalue \. However, if £ = A, an inconsistency appears when n > 0, which
implies that a principal vector z(™ (A\) of grade n + 1 with n > 0 does not exist
for symmetric matrices. Indeed, for symmetric matrices, the set of eigenvectors
{Zm}1 <<y spans the entire space, as demonstrated in art. 247 below, so that
z(™ (X\) = 0 for n > 1, because a non-zero vector cannot be orthogonal to all
eigenvectors. Hence, a principal vector (™ (\) of grade m + 1 with m > 0 only
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exists for asymmetric matrices and may be helpful to construct an orthogonal set
of vectors when degeneracy occurs as in Jordan forms in art. 239.

242. Companion matriz. The companion matrix of a polynomial p,, (z) = Y p_, ax2"
is defined® as

_8n-1 _ Gn-2 _a1 _ag
10 - 0 0
C = 0 1 0 0
0 0 e 1 0
The basic property of the companion matrix C is
n (A
det (€ — A1) = (—1)" 22O (A.115)
an
Indeed, in
Gn—1 by an—2 _ a1 __ag
1 .\ 0 0
det (C — XI) = 0 1 0 0
0 0 1 =

multiply the first column by A”~!, the second column by A\”~2, and so on, and add
them to the last column. The resulting last column elements are zero, except for
that in the first row, which is fp’(‘l—(:‘). The corresponding cofactor is one, which
proves (A.115). The inverse C~! of the companion matrix C is

0 1 0 0

0 0 1 0

c1 = : : : : :
0 0 0 1
_4n _%n-1 _ Gn-2 a1

ao ao ao ao

The companion matrix of the characteristic polynomial (A.95) of A is defined as

(_1)7L—1Cn71 (—]_)”—1077472 . (_1)’”—101 (_1)n—160
1 0 0 0
0 0 1 0

such that det (C' — AI) = ca (N\). If A has distinct eigenvalues, A as well as C' are
similar to diag();). It has been shown in art. 239 that the similarity transform H

3 Other variants with the first row replaced to the last column also appear in the literature.
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10.1 Eigenvalues and eigenvectors 353

for A equals H = X. The similarity transform for C is the Vandermonde matrix
Vi (M) in art. 224, where

R = el
i =
Vo(z) = : :
1 T2 Tn—1 Tn
L1 1 1 1]
Indeed,
AT X Ay o Ag,% An
DDV S B Vi
Vi (N)diag (A;) = :
AN N A
)\1 )\2 e >\n71 >\n
while
(D" ea M)+ AT (=) rea(A2) + A5 - (=D rea (M) + A
)\;1,—1 )\;L—l . )\271
CVp(A) =
Y A3 : b
Al A2 o An

Since c4 (A;) = 0, it follows that CV,,(\) = V,,(A)diag();), which demonstrates the
claim. Hence, the eigenvector x; of C belonging to eigenvalue Ay is

af =[ AN AR 0 1]

The Vandermonde matrix V,, (A) is non-singular if all eigenvalues are distinct
(see also art. 224). In the case that det V;, () # 0, the matrix V,, (A) is of rank n,
implying that all eigenvectors are linearly independent. The eigenvectors are only
orthogonal if 2} z,, = 0 for each pair (k,m) with k # m. In other words, if

N O () = e PeAm)" =1
0=">" () Am) = MAm o1

Jj=1
The solution is Ag\,, = X for | = 1,2,...,n — 1, which implies that each of
the n eigenvalues {A;}; <4<, must be an n-th distinct root of unity and that the
associated polynomial to the companion matrix is p, (2) = an (2" £ 1).
The first component or row in the eigenvalue equation Cx = Ax expresses ex-
plicitly the root equation ¢4 (A) = 0 of the polynomial

(Czy); — (M), = —ca (M) =0 (A.116)

and any other row is an identity. If C' has an eigenvalue A of multiplicity m,
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354 FEigensystem of a matrix

then Ay satisfies cq4 (M) = ¢4 (M) = ... = cfllm*l) (M) = 0. The first equality is

equivalent to (A.116). The others are similarly derived by differentiating (A.116)
with respect to A\g such that, for 1 <j7<m —1,

(6),~ (7).~ ), =~ 0=

Hence, if A is a zero with multiplicity m, then Cz; = Apxg, where zp is the

eigenvector and the other 2 < j < m equations are Cy; = Ayy; + yj—1, where
LG 1)
Yi=g=i s a generalized eigenvector (art. 241),

=000 1 (P . (N

which has a 1 in the j-th position. Clearly, with this notation, x} = y;. Moreover,
the set of the eigenvectors and m — 1 generalized eigenvectors are independent
because the m x n matrix formed by their components has rank m.

243. Powers of a matriz and eigenvalues. When left-multiplying (1.3), we obtain
A%x = Nz = N’z
and, in general, for any integer k > 0,
APz = \rg (A.117)

Since an eigenvalue \ satisfies its characteristic polynomial c4 () = Y _, cxA* =
0, we directly find from (A.117) that c4 (A) z = 0. Only if the set of all eigenvectors
T1,x2,...,T, spans the n-dimensional space and forms a basis, thus only for n x n
diagonalizable matrices, then c4 (A) [ #1 @2 -+ @, | =0 implies c4 (A) = O,
which demonstrates the Cayley-Hamilton Theorem 63 (art. 228).

If A has no zero eigenvalue, i.e., A~! exists, then left-multiplying (1.3) with A=!
yields A=z = A1z, We apply (A.117) to the matrix A~! and conclude that

A kg = "k

In other words, if the inverse matrix A~! exists, then equation (A.117) is valid for
any integer, positive as well as negative.
Combining (A.117) and (A.99) implies that

trace (A*) =Y Ak (A.118)
j=1

244. Power method. Let x1,x2, ..., z, denote the complete set of eigenvectors of A.
For example, if A has distinct eigenvalues A1, Ao, ..., Ay, then art. 238 demonstrates
that the set x1,xa,...,x, of linearly independent vectors spans the n-dimensional
space. Any symmetric matrix possesses an orthogonal set of eigenvectors by The-
orem 68 in art. 247. For such matrices, any other vector w can be written as a
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linear combination,
n
w = E CEj(L‘j
j=1

Then, for any integer k and using (A.117) yields

n n
kyy — AF . = Ao
Aw = g ajA%x; = g i\ T
i=1 i=1

If the largest eigenvalue obeys that |Ai| > |X2| and |Aa| > |A;| for any 3 < j < n,
then, for large k and assuming that a; # 0 nor too small, we observe that

k
Akw:al)\’fxl 1+0 (|>\_2>
Al

This shows that, after subsequent multiplications with A, an arbitrary vector w
(not orthogonal to zy, i.e. a; = wlx; # 0) aligns increasingly more towards
the largest eigenvector x;. This so-called power method lies at the basis of the
computations of the largest eigenvector, especially in large and sparse matrices.
In particular, the sequence Aw, A%w, A*w, ..., A" w, tends exponentially fast to a
vector, proportional to the largest eigenvector z1 of A under the very mild condition
that |>\1| > |)\2‘

10.2 Locations of eigenvalues

245. General bounds on the position of eigenvalues. Marcus and Ming (1964)
overview the historic achievements on the localization of eigenvalues of a complex
n X n matrix A from the early beginning up to 1964. Gerschgorin’s Theorem 65
has been central, although several other scholars have earlier rephrased variants of
Theorem 65.

Theorem 65 (Gerschgorin) Every eigenvalue of a matriz A lies in at least
one of the circular disks with center aj; and radii Rj = 32,y |aje| or rj =
Zk:l;k;ﬁj |a;|

Proof: Suppose that the j-th component of the eigenvector x of A belonging to

eigenvalue A has the largest modulus. An eigenvector can always be scaled and we
normalize such that

T

z xlnya"'axj—1517xj+1a'~-7$’n)

where |zi| < 1, for all 1 < k < n. Equating the j-th component on both sides of
the eigenvalue equation Az = Az gives Y ,_; ajxxr = Az; = A. Hence,

n n n

laj; =A< D el <> agel el <D0 Jagl

k=1;k#j k=1;k#j k=1;k#j
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which shows that A lies in a circular disk in the complex plane centered at a;; with
a radius not larger than >7)'_ ) [a;x|. The other radius mentioned follows from
the fact that A and AT have the same eigenvalues as shown in art. 237. O

A real n x n matrix A has a characteristic polynomial with real coefficients
as follows from (A.96), so that its m zeros are either complex conjugate or real
(art. 314). A consequence of Gerschgorin’s Theorem 65 is

Corollary 3 (Gerschgorin) If all n Gerschgorin disks, each centered around a
diagonal element a;; of a real matriz A, are disconnected (i.e. not overlapping),
then all eigenvalues of A are real.

Marcus and Ming (1964, p. 150) mention a generalization of Gerschgorin’s The-
orem 65 due to Ostrowski:

Theorem 66 (Ostrowski) Let 0 < 6 < 1, R; = 37, |aj| and rj =
D k—t1:k2; [akj], then det A # 0, provided |a;;| > R?rjl._g for each 1 < j < mn.

Proof: The j-th row of the eigenvalue equation Az = Az is (a;; —A\)x; =
— ZZ:I;I@#]’ a;jkTk, from which

n

n
0 1-6
lag; = Mlzsl < >0 agillael = Y0 lagil” lagel ™" |k
k=1:k#j k=1:k#j

After applying the Holder inequality (A.10) with p =4 > 1,

0 1-6
n n n 1
0 —0 —
> gl lage] 0 e < > il > gkl |z T
k=Tiksj k=1ikj k=1ik£j

and the definition R; = >, _ ;. ; |a;k|, we obtain for each 1 < j <mn,

1-6
n

o
lag; = Azl < RS 0 lagl ok ™= (A.119)

k=1;k#j
We deduce a contradiction by supposing that det A = 0, which implies that
Az = 0 has a non-zero vector x belonging to A = 0 as solution. Ostrowski’s

theorem states that Rjezrjl-fe < laj| for all 1 < j < n, so that the general inequality
(A.119) becomes

n

1 1
il |77 <Y Jagn] k] T
k=1;k#j

Summing over all j, recalling that the inequality is strict for at least one j,

n 1 n n 1 n n 1 1
ol <Y Y ajkllxklﬂ=z<2|ajkkalﬁ—ajjllleﬁ)
j=1

J=1k=1;k#;j =1 \k=1
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and reversing the j- and k-sum, leads to

n

_1
Z’“a|%\”<z Z il || 77 = 3 || T Z |ajk| = ZTH%PG

k=1j=1;j#k k=1 J=Lj#k
which is a contradiction. O

Since each eigenvalue A obeys det (A — A\I) = 0, Ostrowski’s Theorem 66 implies
that each eigenvalue of A lies on or inside at least one of the disks

laj; — Al < Rjr;™* 0<6<1) (A.120)

that reduces to that of Gerschgorin for 8 = 1.

The idea in the proof of Ostrowski’s Theorem 66 can be pushed a little further,
by showing that at least two components in the vector x, satisfying Ax = 0, should
not be zero. Indeed, let x,. and xs be the components of the vector z such that
|zr| > |zs| > |xk| for any k # r. Now, suppose that z;, = 0, then all components
of the vector z, except for z,, are zero. But, row r in Az =0, >.)'_; arpzi = 0,
shows that a,, = 0, which contradicts the condition |a;;| > R?TJIfG for each row j.
Hence, there are at least two equations for which det A = 0 implies that

n

n
|arr| [z, < Z lark| |zk| < |2s] Z |ar| = Ry |2

k=1;k#r k=1;k#r

and

n n

|ass| ‘xs‘ < Z ‘ask| ‘xk| < |x7| Z ‘ask:| = Rs |JI7|

k=1;k+#s k=1;k#s

leading to |a,||ass| < R, Rs and to

Theorem 67 (Ovals of Cassini) If, for each i,j € {1,2,...,n} and i # j, it
holds that

|aii| laj;| > RiR;
then det A # 0.

A direct consequence of Theorem 67 is that each eigenvalue of a complex n x n
matrix A lies in at least one of the (}) ovals |A — a;;| [A — aj;| < R;R; of Cassini. A
combination of Ostrowski’s Theorem 66 and Theorem 67 leads to the generalization

n(n—1)
2

that each eigenvalue of A lies in at least one of the ovals of Cassini, specified

by
X —aii| |A —ajj;| < RfrilfeR?rjl-*e (0<6<1)
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10.3 Hermitian and real symmetric matrices

246. A Hermitian matriz. A Hermitian matrix A is a complex matrix that obeys
AR = (AT)* = A, where al = (a;;)" is the complex conjugate of a;;. The super-
script H, in honor of Charles Hermite, means to take the complex conjugate and
then a transpose. Hermitian matrices possess a number of attractive properties. A
particularly interesting subclass of Hermitian matrices are real, symmetric matrices
that obey AT = A. The inner-product of vector y and z is defined as y"« and
obeys (ny)* = (ny)H = 2 y. The inner-product =z 2 = Z?:l \xj|2 is real
and positive for all vectors except for the null vector.

247. The eigenvalues of a Hermitian matrix are all real. Indeed, left-multiplying
the eigenvalue equation Az = Az in (1.3) by 2 yields

2 Ax = etz

Since (xHAcc)H = gHAHg = xH Az, it follows that Az x = M zHz or A = M\,

H

because zfz is a positive real number. Furthermore, with A = AH, we have

AH g = \z. Taking the complex conjugate, yields
ATz = Ao

In general, the eigenvectors of a Hermitian matrix are complex, but real for a real
symmetric matrix, because A¥ = AT. Moreover, the left-eigenvector y” is the
complex conjugate of the right-eigenvector x. Hence, the orthogonality relation
(A.103) reduces, after normalization, to the inner-product

afx; = 0y (A.121)

where ¢y is the Kronecker delta, which is zero if k£ # j and else dx, = 1. Conse-
quently, (A.106) reduces to

XHX =T (A.122)

which implies that the matrix X formed by the eigenvectors is a unitary matrix
obeying X1 = X#,

For a real symmetric matrix A, the corresponding relation X7 X = I implies
that X is an orthogonal matrix obeying X' = X7 and XTX = XX7 = I,
where the first equality follows from the commutativity of the inverse of a matrix,
X'X = XX~'. Hence, all eigenvectors of a symmetric matrix are orthogonal.

Although the arguments in Section 10.1 for a complete set of eigenvectors that
spans the n-dimensional space have assumed that the eigenvalues of A are distinct,
Theorem 68 for Hermitian and real matrices, proved in Wilkinson (1965, Section
47), applies to eigenvalues of any multiciplicty:

Theorem 68 (Hermitian and real symmetric diagonalizability) For any
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Hermitian matriz A, there exists a unitary matric U such that, for real Aj,
UH AU = diag(\;)

and for any real symmetric matriz A, there exists an orthogonal matriz X such
that, for real \;,

XTAX = diag()\;)

Due to the fundamental character of these diagonalizations, we will prove the last
case in which A is real and symmetric. Transformations of a matrix A to another
matrix B that contains more zero elements are key operations in linear algebra,
that, as mentioned by Meyer (2000), have started with Gauss, who frequently used
the technique of Gaussian elimination. In 1909, Schur has proved that every square
matrix is unitarily similar to a triangular matrix:

Theorem 69 (Shur’s Triangularization) For any square matriz A, there exists
a unitary matriz U, which is not necessarily unique, and a possibly non-unique
triangular matriz T such that UP AU = T. The diagonal entries of T are the
eigenvalues of A.

The proof of Schur’s Triangularization Theorem 69 (see e.g. Meyer (2000),
Mirsky (1982, p. 307-308)) is similar in nature to that of Theorem 68. The proof
relies on interesting properties of the Householder transformation (art. 197) and re-
duction (art. 198). The proof is here for an upper-triangular matrix, but Theorem
68 also holds for a lower-triangular matrix.

Proof of Theorem 68: Let x; be the real eigenvector of an n X n symmet-
ric matrix A = AT belonging to the real eigenvalue \; and normalized such that
2Tz = 1. We invoke the Householder reflection R = RT in art. 197 with House-
holder vector v = x; + eq, such that Rx; = e; and also z; = RTe; = R e;. From
the eigenvalue equation Ax; = Az, we obtain, after Householder reflection, that
Me; = RAxy = RTAR ey, which indicates that the first column of the matrix
RT AR is a multiple of e;. But, since RT AR is symmetric, it must be of the form

A1 0]

T AR —
RAR_[O B

where B is an (n — 1) x (n — 1) symmetric matrix. We can proceed to iteratively
apply the above recipe to the matrix B as in art. 198. Here, we use induction
and assume that there exists an orthogonal (n — 1) x (n — 1) matrix V such that
VT BV = diag(v). The existence is clearly true for n = 2, since V is then a scalar.
Next,

3 s 21 103 510 203wl

Since X = R { é 3 } is an orthogonal matrix, the induction assumption also
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holds for the n x n matrix A, which establishes the diagonalization for any real
symmetric matrix by a real orthogonal matrix. After comparison with the eigen-
value equation AX = XA, we conclude that v; = A;. Hence, we have demonstrated
that XTAX = diag(\) for any real symmetric matrix A. d

248. The orthogonal matriz X of a real symmetric matriz. We elaborate on the
results of art. 247 for a real symmetric matrix and point to the notion of double
orthogonality. We denote by xj the eigenvector of the n X n symmetric matrix A
belonging to the eigenvalue A, normalized so that ] ), = 1. The eigenvalues of a
symmetric matrix A = AT are real and can be ordered as A\; > Xy > ... > \,,. The
orthogonal matrix X with the eigenvectors of A in the columns,

X:[:cl To X3 - xn]

is explicitly written in terms of the m-th component (z;), of eigenvector x;,

(331)1 (x2)1 (xS)l (xn)l
(331)2 (x2)2 (xS)Q e (xn)Q

X=| (@); (w25 (23)3 - (n)s (A.123)
(), (@) (@s)y o (o),

where the element X;; = (;),. For a graph related matrix, the row i of X de-
tails the eigenvalue components of the node ¢ over all eigenfrequencies/eigenvalues
(art. 240), while the column k of X equals the eigenvector z; belonging to the j-th
largest eigenfrequency/eigenvalue ;.

The relation X7X = I = X X7 (art. 247) expresses, in fact, double orthogonal-
ity. The first equality X7 X = I translates to the orthogonality relation — the real
companion of (A.121) —

n

xgxm = Z (:Ek)j (mm)7 = Okm (A.124)

J=1

stating that the eigenvector x; belonging to eigenvalue \j is orthogonal to any other
eigenvector belonging to a different eigenvalue. The second equality X X7 = I,
which arises from the commutativity of the inverse matrix X' = X7 with the
matrix X itself, can be written as Y77, (z;),, (¥;), = dmi and suggests us to
define the row vector in X as

Um = (1), 5 (T2) 1y 5 -+ (@N),,) (A.125)

Then, the second orthogonality condition X X7 = I implies orthogonality of the

vectors
n

oly; = (i) = 6 (A.126)
k=1
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Beside the first (A.124) and second (A.126) orthogonality relations, the third com-
bination equals

n

UJTLL']C = Z (CCZ)J- (.Z‘k)l = ZleXlk = (XQ)jk (A.127)
=1 =1

Each n x n symmetric matrix A possesses 2" different orthogonal matrices, be-

cause each column in (A.123), thus each eigenvector, can be multiplied by —1
without violating the orthogonality conditions (A.124) and (A.126).

249. Continuous form of the orthogonality relations. Invoking the frequency inter-
pretation of the eigenvalue equation (A.109) in art. 240 and the Dirac delta-function
0 (t) in art. 172, the first orthogonality relation (A.124) becomes

n n

Y (#5), (@), = Yo @), @),

i=1 AE{A1, A2, A0}
=3 [T 0= @), ),

Using the non-negative weight function in art. 350

W) =6 (A= X)) = 8 (det (4= AD)) ‘w )
shows that

The right-hand side in (A.128) is the continuous variant of (A.126) that expresses
orthogonality between functions with respect to the weight function w in art. 351.
Specifically, the orthogonality property (A.128) applied to a general tri-diagonal
matrix (see e.g. Van Mieghem (2013, Appendix) and art. 370) shows that the set
{(@ (M) }1<imen is aset of n orthogonal polynomials in A, that are further studied
in Chapter 12.

250. The spectrum of a unitary matriz. We denote the eigenvalues of the n x n
unitary matrix U by p1, o, ..., fn.

Theorem 70 All eigenvalues of a unitary matriz have absolute value 1, i.e. |pug| =1
foralll <k <n.

Proof: The orthogonality relation (A.121) for k = j or the matrix product of the
j-th diagonal element in [ in the orthogonality relation (A.122) equals Y., |U;; ? =
1, which implies that the elements U;; of a unitary matrix cannot exceed unity in
absolute value. Therefore, the absolute value of the coefficients cj in (A.96) of the
characteristic polynomial is bounded for any n x n unitary matrix U.
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Taking the determinant of the orthogonality relation (A.122) gives
1 =det (URU) = det (U?) det U = |det U|?

while (A.98) then leads to [],_, luk|? = 1. Hence, a unitary matrix cannot have
a zero eigenvalue. In addition, it shows, together with the bounds on |c¢k| that
are only function of n, that all eigenvalues must lie between some lower and upper
bound for any n X n unitary matrix U and these bounds are not dependent on
the unitary matrix elements considered. Art. 243 shows that any integer power
m, positive as well as negative, of U™ has the same eigenvalues of U raised to the
power m. In addition, U™ is also an n X n unitary matrix obeying (Um)H um=1
as follows by induction on

um HUm _ Umfl HUHUUm71 — Umfl HUmfl
um)

Hence, |det U™|* = 1 and, by (A.98), we have, for any m € Z, that [[}_, |u]*"™ = 1.
But, the absolute value of these powers, positive as well as negative, can only remain
below a bound independent of m provided |ug| = 1 for all k. O

A unitary matrix U = Ug + iU; obeys UTU =1,
UMU = (Ug —iUp)" (Ug +iU) = U UR + UF Uy +i (UL Ur — UFUR)

which requires that ULUg + U Ur = I and ULU; = U} Ug. The latter, written
as (UITUR)T = UITUR7 shows that UITUR is a symmetric matrix. An orthogonal
matrix Ug that obeys ULUg = I can be regarded as a unitary matrix U = Ur +iU;
with imaginary part Uy = 0. Theorem 70 states that the j-th eigenvector z; =
x; + iy; obeys the eigenvalue equation Uz; = %% z; for real 0;, explicitly,

(Ur +tUr) (zj +iy;) = (cosb; +isinb;) (x; + iy;)

Thus, in general, the eigenvalues s and eigenvector zj of an orthogonal matrix
Ur with Uy = 0 are complex with unit modulus. An alternative proof starts from
the eigenvalue equation of a real, orthogonal matrix Urz; = A;z;, whose complex
conjugate is Urzj = Ajz} from which transposing follows as (zj)T U?:E =Aj (zj)T
After multiplication, we obtain
AjA] (z}‘)sz = (z;‘)TUgUsz = (z;f)sz

Since an eigenvector is different from the zero vector, we find that AjA} = |A; \2 =1
Only if the orthogonal matrix Ug is symmetric, i.e. when Up ! = Ug, the eigen-
vectors and eigenvalues are real (art. 247). Hence, an eigenvalue of a symmetric
orthogonal matrix Ur = U};; is either 1 or —1.

251. The Rayleigh inequalities. Art. 247 tells that the normalized eigenvectors xj
and x,, of real symmetric* A obey x%Axm =0if k£ # m and x%Axk = Ai. These

4 The extension to a Hermitian matrix is straightforward and omitted.
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10.8 Hermitian and real symmetric matrices 363

n eigenvectors span the n-dimensional space. Let w be an n x 1 vector that can be
written as a linear combination of the first j eigenvectors of A,

W= C121 + C2T2 + - -+ + CjT5

where all ¢, = w” 'z, € R. Equivalently, w € X where X is the space spanned by

the vectors {z1,x2,...,2;}. Then wlw = ) ekemat e, =0, ¢t and
Jj J J
wl Aw = Z Z ckcm:c{Aacm = Zcz)\k
k=1m=1 k=1
Since A has real eigenvalues )\1 > X2 2 Ay, thls ordermg of the eigenvalues

leads to the bound \; Zi < Zk 1 ck)\k < A1 Y%, ¢ from which the Rayleigh
inequalities for w € &) follow as

T
w Aw

Aj < T <X\ (A.129)
Equality in “jUTT‘ﬁ" = Ay is only attained provided w € & is an eigenvector of A

belonging to eigenvalue A\p with A; < A\ < Aq. If w is a vector that is orthogonal to
the first j eigenvectors of A, which means that w = ¢j 1241 +cjproxjpo+- -+ cpp
can be written as a linear combination of the last n—j eigenvectors or that w € X’ jJ-,
T
then An S waAww S Aj-i—l-
The two extreme eigenvalues can thus be written as

TA
Alfsupy 4 (A.130)
y#0 y Yy
Mo = inf LAY (A.131)
y750 yTy

The Courant-Fischer Theorem, proved in (Meyer, 2000, p. 550), is the generaliza-
tion to Hermitian matrices and infinite-dimensional operators,

y A
A; = max min Y (A.132)
dim V=i yeV y Yy
H A
A= min max LY (A.133)

dim V=n+1—1i yeV y Y

252. Field of values. The field of values ® (.) is a set of complex numbers associated
to an n X n matrix A,

®(A) = {z"Az 2 eC”, 2"z =1} (A.134)

While the spectrum of a matrix is a discrete set, the field of values @ (.), of which
an instance appeared in art. 251, can be a continuum. However, ® (A) is always
a convex subset of C for any matrix A, a fundamental fact known as the Toeplitz-
Hausdorff Theorem and proved in Horn and Johnson (1991, Section 1.3). Another
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property is the subadditivity, ® (A + B) C ® (A) + ® (B), which follows from the
definition (A.134). Indeed,

®(A+B)={2"Az +2"Br:zeC" 2fa =1}
c{a"Az:zeC a2z =1} + {y"By:yeC", y"y =1}
= (A)+P(B)
Since the set A (A) of eigenvalues of A belongs to @ (A), it holds that
AMA+B)C®(A+B)C®(A)+o(B)
which can provide possible information about the eigenvalues of A+ B, given ® (A)
and @ (B).
In general, given the spectrum A (A) and A (B), surprisingly little can be said
about A (A + B) (see also art. 267 and 284). For example, even if the eigenvalues of

A and B are known and bounded, the largest eigenvalue of A+ B can be unbounded,
as deduced from the example inspired by Horn and Johnson (1991, p.5), where

A=Y o=l L

Clearly, the eigenvalues of A, B and A + B are

Mo (4) =3 (14 VTFAEE 2+ 7 @)
AL?(B):%(M\/1+4(x2+x+g(x)))

Ma(A+B) = 3 (14 VIFIT @ +9 @)

It suffices to choose f(z) = —2® + z + ¢; and g(z) = —2? — z + ¢5 for arbi-

trary constants ¢; and ¢ to have bounded eigenvalues, independent of x, while
limy o0 |A1,2 (A+ B)| = 0.

253. Weyl’s problem. Knutson and Tao (2001) discuss the problem of Weyl (1912):
Given the eigenvalues of two n x n Hermitian matrices A and B, determine all the
possible sets of eigenvalues of A+ B. Apart from the trace equality (A.99),

n n n

DAAFB) = N (A)+) A (B)

i=1 i=1 i=1

Horn (1962) has shown that a finite number of inequalities of the form

Z Akgt(r—q+1) (A+ B) < Z Aig+(r—q+1) (A) + Z Njot(r—q+1) (B)  (A.135)
q=1

q=1 q=1

needs to be obeyed, where 1 < r < n and all triplets of indices 1 < i1 < --- < i,
1<ji <~ <gjrand1l <k < -+ <k, belong to a certain finite set T5.,,.
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Horn conjectured in 1962, but Knutson and Tao proved in 1999, that the set 1)
is generated by the triplets of indices that obey

i+ Ge= Zk 2 T+1 (A.136)
g=1 q=1

and the inequalities

Zzal + Z]bl > qu ) + slevl) (A.137)

for 1 < s < r and all triplets of indices 1 < a1 < --- < as, 1 < by < --- < by and
1<e¢ <+ <csin T, . The above equations are a highly recursive algorithm
to generate the sets T, , in terms of earlier generations 7 , and give the complete
solution to Weyl’s problem for any dimension n. The complicated proof of Knutsen
and Tao relies on their discovery of an equivalence between Weyl’s problem and a
planar graph, called the honeycomb, that is further explained in Knutson and Tao
(2001).
For the case that r = 1, (A.135) reduces to

Ak1 (A+ B) < i1 (A) + A 41 (B)

while the indices (A.136) satisfy i; + j; = k1 + 1. Hence, for the n x n Hermitian
matrices A and B, the Weyl inequality in Weyl (1912, Sec. 1), for 2 <i+j <n-+1,
is

Aitj-1(A+B) < Ai(A)+ A5 (B)
while, for 2n > i+ j > n 4+ 1, the dual Weyl inequality is

Aitj—n (A+B) = Xi (A) + X; (B)
254. The eigenvalue decomposition of a symmetric matriz. Art. 247 shows that
any real, symmetric matrix A, x, can be written as A = XAX7 where A = diag())
with eigenvalue vector A = (A1, Ag, ..., A,) and where X = [ 1 T ... Tn ]
is an orthogonal matrix, obeying X7X = XX7 = I, formed by the real and

normalized eigenvectors x1,xa,...,x, of A corresponding to the eigenvalues \; >
Ao > -+ > \,. In vector notation,

A= Mg (A.138)

where the matrix Ej, = xkxf is the outer product of x; by itself.

255. Properties of the matriz Ej = :Ekz{. The definition Ej = :ckzzg shows that
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366 FEigensystem of a matrix

By = Eg is symmetric. The explicit form of the n x n matrix Ej is

(z1)7 (i) (@k)y  (zi)y (k)3 - (zk)y (k)

(xk)z (xk)1 (xk)g (xk)z (xk)?, T (xk)2 (‘rk)n

Ey, = xprt = (zr)s3 (T);  (zr)3 (Tk), (xk)g o (@e)s (),
(@k)y (2)y (@r), (@k)y (2n), (2h)g - (a0

which shows that the diagonal element (E}),, = (z1i)? equals the square of the i-th
vector component of the eigenvector z;. Hence,
n
trace (Ey) = Z (zk)? =alxp =1 (A.139)
i=1

We write Ej in terms of the elementary orthogonal projector S = I — ﬁv.vT

onto the hyperplane through the origin that is orthogonal to the vector v in art. 193
as

Ekiffsk::Ek:Ez

which represents the orthogonal projection onto the eigenspace of Ax. Any vector
w is projected by Epw = (x{w) xy, onto the vector xy.

The orthogonality property (A.121) of eigenvectors z;, of a symmetric matrix
indicate that E,% = E), and E,E,, = 0 for k # m. The eigenvalue equation E,y; =
&y, of the symmetric matrix Fj has (art. 194) a zero eigenvalue Ay = 0 with
multiplicity n — 1 and one eigenvalue A\, = 1, such that ||E|, = 1, which follows
from (A.23). The zero eigenvalues imply that det (Ey) = 0 and that the inverse
of Ejy does not exist. Geometrically, this is understood because, by projecting,
information is lost and the inverse cannot create information.

The notation of Ej so far has implicitly assumed that all eigenvalues of the
symmetric matrix A are different. If the eigenvalue A has multiplicity my, then
there are my eigenvectors belonging to A; that form an orthonormal basis for the
eigenspace belonging to ;. Let Uy denote the n X my matrix with its columns equal
to the my, eigenvectors belonging to Ay, then the matrix E, = UyU] generalizes
E) = zpaf. Thus, with (A.99), trace(Ey) = my, is equal to the rank of Ej, which
is the dimension of the eigenspace associated with A.

Consider now the n x n matrix ¥ = 22:1 FEy, where the k index ranges over
all distinct [ < n eigenvalues {A;}, .-, of A. Since E? = E}, and EE,, = 0 for
k# m, we find that Y2 = 3}, Ex S0 By = Y B3+23 ) SV BBy =Y
such that all eigenvalues of the symmetric (Hermitian) matrix Y are either 1 or 0.
But, trace(Y) = Zzzltrace(Ek) = 22:1 my = n implies that all eigenvalues of Y
must be equal to 1, and thus that Y = I. The fact that 22:1 E, = I, follows
directly from (A.89) for f (r) = e**, after letting z = 0. Moreover, this relation is
rewritten as X X7 = I, which, combined with the normalization (A.122), implies
that X is an orthogonal matrix, which we already knew from art. 247. It means
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10.8 Hermitian and real symmetric matrices 367

that the sum of the orthogonal projections onto all eigenspaces of A spans again
the total n x n space.

256. Hadamard product form of the decomposition of two symmetric matrices. Let
A=AT = XAXT and B = BT = VMV7, then their Hadamard product is written
with (A.138) as

n

(Ao B),;; = aijbi; = Z Z Akefbm (mkmf)” (”mvg)ij

k=1m=1

Since
(kalT>ij ( my(?)z-j = (xk)l (wl)j (Um)z' (yq)j = (zg o Um)z‘ (wr o yq)j

= (e ovm) (wowy))

we obtain (A o B)ij = (Zzzl S Nkt (Tg 0 V) (T © vm)T) . Hence, we find
: ij
that the Hadamard product of two symmetric matrices is

AoB =" Aeftm (w0 vm) (x5 0 v) " (A.140)

k=1m=1

257. The eigenvalue decomposition of a function of a symmetric matriz. Art. 234
generalizes the spectral decomposition (A.138) of a real symmetric matrix A to a
function f (A) in (A.88), whose elements are

(f (A))z'j = Z f () (k) (xk)j (A.141)

(a+b)2— (a2+b2)

Using the identity ab = in (A.141) yields

:
(P = 230700 (@04 @0,) = 232 F 0 @ =2 37 () (@0
and - . -

(F (A, = %;f ) (@@, + (@),)” - LA Ty 1)
Similarly, using ab = LD 1a4s £

(f (A),;; = SASl ; Uy _ % kznjl ) ((@n); = () j)2 (A.143)

After addition, we obtain

(@A) =3 37 0w (@), + @e)) =730 7 ) (), — ();) (A1)
k=1


https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core

368 FEigensystem of a matrix

2
Since >"}_, ((fﬂk)l + (mk)]) = 2(1=+4;;), upper and lower bounding results in

A)).. A)). .
(1+) min 7o) < LT L (p < 14 6y) max 0
(A.145)
and
A+ (F(A))
(=) min 7o) < LT < 0 6y) max 0
o (A.146)
while the addition formula (A.144) leads to the bound
e, =% (min 7o)+ £ )| < 5 (£ 0 = min 7))
o (A.147)

Each non-diagonal element in (A.147) is bounded by

] = 5 (s, £ 00 - min £ 0w)

1<k<n 1<k<

while each diagonal element is bounded by (A.145) as minj <<, f (Ax) < (f (A4))., <

Ji =
maxi<k<n [ (Ag). If mini<p<, f(Ag) > 0, then f(A) is positive semidefinite and
(A.146) shows, for i # j, that (f (A))z-j < w
bound for the off-diagonal elements (art. 279).

, which is a well-known

10.4 Recursive eigenvalue equation of a symmetric matrix

258. The eigenvalue equation of a symmetric block matriz. We write the n x n
symmetric matrix A as a block matrix

A= [ ;‘; Z } (A.148)

where A; is an (n —m) X (n — m) symmetric matrix and As is an m X m symmetric

matrix. The eigenvalue equation Az = X\ (A)x with the block eigenvector 7 =

[y 21"
5[]l

is written as the linear block set,

Aiy+Bz=X(A)y
BTy+ Ayz = )X(A)z

Y

(A.149)

T

where the normalization z72 = 1 is equivalent to yTy + 27z = 1.
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10.4 Recursive eigenvalue equation of a symmetric matriz 369

After left-multiplying the first block equation in (A.149) with 47 and the second
block equation with 27, we obtain

y" Ay +y" Bz =X (A)y"y
2TBTy+ 2T Agz = N (A) 272
Adding and subtracting these two scalar equations and using y” Bz = 27 BTy and
yTy+ 272 =1 yields
MNA) =yT Ay + 20" Bz + 2T Ay (A.150)
and
yT Aty = A (A) (1 —2272) + 27 As2 (A.151)
which only contains two quadratic forms after the elimination of the (n —m) x m
matrix B. .
Applying the Rayleigh inequality (A.129) to vT Ajv, Ay (A1) > % > A (Ay)

leads, after substituting (A.151) and using the corresponding eigenvector, to a lower
bound for the spectral radius of Ay,

A1 (A) (1 - 22?2’1) + 2T Ay

A (Ap) > A.152
1 (A1) > =7 ( )
and an upper bound for the smallest eigenvalue of Aj,
A (A) (1—2202,) + 21 A
A (Ay) < 2 (L= 220 20) + 20 Aszi (A.153)

T
1—2; 2,

259. The eigenvalue equation approached recursively. We revisite the eigenvalue
equation (1.3) for a real symmetric n X n matrix A,,, which we write in terms of
the (n — 1) x (n — 1) symmetric matrix A,,_; by adding the last column and row
as

Anfl ’U(nfl)xl
A, = (A.154)
" (UT)lx(nfl) nn
where the (n — 1) x 1 vector v = (a1n, G2n, .-, Gn—1,n). Let zx (A4,) = [ Yy oz ]T

be the eigenvector of A, belonging to the eigenvalue \j (A4,), normalized in the
usual way as z7 (A,)zk (A,) =1 and y is an (n — 1) x 1 vector, while z is a real
number. With A = A\; (A,,) to simplify the notation, the block eigenvalue equations
in (A.149) in art. 258 reduce to

(A1 = A)y+20=0
vIy 4+ 2 (apn, —A) =0

Assuming that (A,—1 — A\ )_1 exists, which implies that A is not an eigenvalue
of A, _1, the first equation is solved for the (n — 1) x 1 vector y as

y=—2(Ap_1— M) "0
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(—vTy) = 2 Ana1=A) T o g

Apn—A

Introduced into the second equation, z =
to an equation for A,

Apm—A

vl (Ap_q — )\I)fl V= Qpy — A

which is consistent with (A.157) in art. 264, because ) is not an eigenvalue of A,,_1.
The normalization of zy (4,,) shows that y7y + 22 = 1 and, explicitly,

1=22+ (UT (Ap—1 — )\I)_l z) z(Ap-1 — )\I)_l v =22 (1 + 0T (Ap—1 — )J)_Q v)

With z = (2 (4n)),,
component of the eigenvector xy, (A,) obeys
2 1 _ 1
= =~ 2
PFoT (Auma =AMy (4, = A0
2

and provided that A\ is not an eigenvalue of A,,_1, the n-th

(A.155)

Since rows can be interchanged, a similar type of expression can be deduced for
each eigenvector component of A,. Invoking f(A4) = >"1_, f (\x) zxz} in (A.88)
to the symmetric matrix A,,_; yields

n 1 x (An 1)
Ap_ 1 — M)~ L
( ; (A=A (Ap-1))?

Finally, the square in (A.155) of any component of an eigenvector xy (A;) of A,,, be-
longing to the eigenvalue A = A\ (A4,,), can be written in terms of the eigenstructure
of a submatrix A, _; with corresponding vector v,

v 2y (Ap— 1))2 -
(1 - Z — A (An- ))2>
2 2
Using the norm inequality (A.12): H(An_l — )\)_IUH2 < H(/\I — A"_l)_lH2 ||’U||§

(A= An_l)_le -

m If A = A1 (A,) is the largest eigenvalue, the interlacing Theorem
71 shows that A1 (4,) > A1 (A,—1). By assumption that A is not an eigenvalue of
Ap—1, we conclude that Ay (4,) > A1 (A,—1) in which case the minimum eigenvalue
of the matrix AJ — A,_1 equals A — Ay (4,,—1). Hence, as follows from (A.155) and
if Ay (A,) > A1 (An—1), then any component of a principal vector of a symmetric

Since (Ap—1 — A )_1 is symmetric, art. 205 illustrates that ‘

matrix can be lower bounded by

1
22> T (A.156)

I+ @@ oe

260. Determinant for the eigenvalue equation of blockmatriz (A.154). The char-
acteristic polynomial of the recursive, symmetric block matrix A, in (A.154) is,
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10.4 Recursive eigenvalue equation of a symmetric matriz 371
invoking the Schur complement (A.57),

A1 — M v
det (A, — M) = det [ ;T o — A }

= det (An_1 — AI) det <a,m A (vT (Ap_1 — )" v) )
1x1
and
det (A, — M) = (a,m A =0T Ay = M) 7! v) det (An_1 — \I)  (A.157)

For any symmetric matrix A,,_1, the resolvent in (A.162) in art. 262 is

where x1,%o,...,x,_1 are the orthogonal eigenvectors of A, _1, belonging to the
eigenvalues &1 > & > ... > &, _1, respectively. Hence,

n—1 T 2
-1 (v 7m)
VT (Ap =MD T =) N

m=1

T

and (A.157) is written with the projection® ¢,, = vTz,, of the vector v on the

eigenvector x,, as

det (A, — \I) w2
T4 g = Qnn — A— uC
det (Ap—1 — M) Tnzﬂ§m—k
Since det (Ap—1 — AI) = 2;11 (& — A) as shown in art. 235, we find the char-

acteristic polynomial of A, written in terms of the eigenvalues {&}, )<, _; of
Anflv o

n—1 n—1 n—1
ca, W) =det (A = AD) = (N [[&-D - & [ &-N
k=1 m=1 k=1;k#m
(A.158)
Equation (A.158) shows that
qg—1 n—1
ea, (€)= D" G [Tl — &l T 16—l (A.159)
k=1 k=q+1

The consequences of (A.158) and (A.159) are analyzed in art. 264.

261. Cocfficients of the characteristic polynomial of A,, in terms of those of A, _1.

5 Art. 192 regards the values (c1,c2,...,cn—1) as the coordinates of the point v = 22;11 CmTm
in the n — 1 dimensional space with respect to the coordinate axes generated by the orthogonal
eigenvectors x1,x2,...,Tp—1 of Ap_1.
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Invoking the expansion of the resolvent of a matrix A, valid for A > A\ (4),

_ 1 1 1 o= AF 1 A A?
A— L (r=X14) =—=N" 2=
(A—XI) )\(I ATHA) 32 ,\<I+A+A2+ )

(A.160)
in (A.157) yields

_ 1~ vTAF v
o (g = AD) T o= o3 S et

We translate (A.157) in the polynomial® form ca, (A) = >_;_, ¢k (n) A¥ in (A.95)
of the characteristic polynomial c4,, (A) = det (A,, — AI),

n v A v n—1
ch(n))\k:< /\+Z )\kill )ch(n—l))\k
k=0 —

n—1 oo n—1
= (@nn = A) D> _ ek (n=DN 4> (T AL ) cj (n—1) N
k=0 k=0 j=0

The substitution of m = j — k — 1 changes the summation in

oo n—1
Z Z (vTAE_jv)ej (n—1) MR = Z Z ( Tl 1v)cj (n—1)A™
k=0 j=0 m=—00 j=max(0,m+1)

For m < 0, the last sum is v7 (Z;L “ei(n—1) AL ) A; ™ 1y = 0 by the Cayley-
Hamilton Theorem (art. 228), stating that ca, (An) =3 o¢i(n) AJ = 0. Hence,
we obtain

n n—2 n—1
ch(n))\ (@nn — A ch (n—1) )\k—l—Zch (n—1) ( A ’U))\k
k=0 k=0 j=k-+1

Equating corresponding powers in A yields, for” 1 < k < n — 1, a recursion that
expresses the coefficients of the characteristic polynomial of A,, in terms of those

6 The first equation only holds for A > A1 (A), but since the final result is polynomial, by analytic
continuation (see e.g. Titchmarsh (1964)), it holds for all complex .
7 For k = 0, we find with Cayley-Hamilton’s Theorem that

n—1

co (n) = annco (n —1) + 0T (Z cj(n—1) AZL__11> v=co(n—1) (ann — UTA;11U>

j=1

which, indeed, equals (A.157) when A = 0, while for k = n, ¢, (n) = —cn—1 (n — 1) leads to
¢n (n) = (=1)", a requirement for any characteristic polynomial c4 (A\) = det (A — \I).
For k =n — 1, it holds that
cn-1(n) =anncn—1(n—1) —cp_a(n—1)=(-1)" 1ann—cn,2(n—1)
which we write as (—1)" " lcp—1 (1) = ann +(—=1)""2cp—2 (n — 1). Let t, = (=1)""Lcp—1 (n),

then the recursion tn, = ann + tn—1 yields t, = 23_1 ajj, which is (A.99).
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10.5 Interlacing 373

of Anfl,
n—1 )
ek (n) =appcg(n—1) —cp_1(n—1) + Z ¢ (n—1) (vTAf;(lkH)v) (A.161)
Jj=k+1

Given the coefficients {cx (n — 1)}o<j<p,, the quadratic forms rj, (v) = vT AL v
for 1 < k < n constitute the major computational effort in (A.161) to determine
the coefficients {cy, (n)}<y.,. Starting with n = 2, the set can be iterated up
to any size n and any structure in A,,, each n producing the set of coefficients
{ck (n)}g<p<n of a polynomial with integer coeflicients and real zeros. Moreover,
art. 263 shows that all eigenvalues of A,_; interlace with those of A,,. These
properties are also shared by orthogonal polynomials (see Chapter 12).

10.5 Interlacing

262. The resolvent. The resolvent (zI — A)_1 of matrix A is defined in art. 215
and is related in art. 230 to the adjoint matrix Q (z) = (I — A) " ¢4 (z), where
ca (z) is the characteristic polynomial of A. Applying f (4) = >_7_, f (\x) zx2} in
(A.88) for a symmetric matrix A to the function f (y) = Zle, which is everywhere
analytic except for z = y, yields the spectral decomposition

- :Ek:ET
ot k
(zI — A) > p— (A.162)
k=1
Since trace(zpaf) = Py (xk)f = 1 by orthogonality (A.124), we have
e 1
trace (2] — A)"" = Z p— (A.163)

k=1

263. Interlacing. For any n X 1 real vector y, we obtain from (A.162) for a
symmetric matrix A that

n (yTiEk) 2

6y (2) =y" (I - Aty =Y L

k=1
which implies that the rational function ¢, (z) has simple poles at the real eigen-
values of A. Differentiating with respect to z yields for a real vector y

doy (2) " (y )’

GOu\2) Tl — A) 2y = —
- y™ ( )y ;(Z_)\k)Q

Since A = AT is symmetric
T 2
g =)y =y (-7 L=y =||eI- ATy 20

we observe that %Z(Z) is always strictly negative whenever z is real and not a pole
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of ¢, (z). This implies that each zero of ¢, (z) must be simple and lying between
two consecutive poles of ¢, (z). By choosing y = e; equal to the base vector e;, we
find that
_ det (zI — A\, )
— Y e \i}
G, (2) = (21 = A)y det (21 — A)

where the last equality is (A.52) in art. 215. Thus, the polynomial det (2 — A\ ;1)
has simple zeros that lie between the zeros of det (21 — A).

In summary, all eigenvalues of the symmetric matrix A\ (;y lie in between eigen-
values of A = AT,

Ait1 (A) < Ni (Ayggy) < A (4)

for any 1 < i < n—1. This property is called® interlacing. Repeating the argument
to a principal submatrix A\ ;) of A\(;}, obtained by deleting a same row k& and
column k, we arrive at the general interlacing theorem:

Theorem 71 (Interlacing) For a real symmetric matric Anxn and any principal
submatriz By, xm of A obtained by deleting n —m same rows and columns in A, the
eigenvalues of B interlace with those of A as

An—m—+i (A) <X (B) <\ (A) (A.164)
forany 1 <i<m.

Also the zeros of orthogonal polynomials (art. 364) are interlaced. There is an
interesting corollary of Theorem 71:

Corollary 4 Let A be a real symmetric n X n matriz with eigenvalues A, (A) <
An—1(A) <--- <A\ (A) and ordered diagonal elements dp, < d,—1 < --- < dy then,
for any 1 < k <mn, it holds that

k k
Dodi <Y oA (4)
j=1 j=1

Proof: Let B denote the principal submatrix of A obtained by deleting the rows
and columns containing the n — k smallest diagonal elements dg41,dg42,...,d,.
The trace formula (A.99) indicates that trace(B) = Zle A; (B) and, by construc-
tion of B, trace(B) = 25:1 d;. The Interlacing Theorem provides the inequality
(A.164) from which Z§:1 Aj(B) < Z§:1 Aj (A). Combining the relations proves
the corollary. O

Corollary 4 is differently proved in (A.181) in art. 275 based on properties of

8 A sequence of real numbers b, < --- < by < by is said to interlace another sequence of real
numbers an < --- < agz <ayp withn >m, if an—m4s < b; < a; for ¢ =1,...,m. The interlacing
is called tight if there is an integer k, with 0 < k < m, such that a; = b; for i = 1, ..., k, and
Ap—m+i =0b; fori=k+1,...,m.
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10.5 Interlacing 375

the n x n doubly stochastic matrix Z, defined in (A.178) and associated to the real
symmetric matrix A.

264. Strict interlacing. A number of interesting conclusions can be derived from
(A.158) and (A.159).

(a) If & = £,41 is an eigenvalue of A,,_; with multiplicity larger than 1, then
(A.159) indicates that ca, (&) = 0, implying that &, is also an eigenvalue of A,,.
Eigenvalues of A,,_; with multiplicity exceeding 1 are found as a degenerate case
of the simple eigenvalue situation when {;, — &,4; with [ > 1. Thus, we assume
next that all eigenvalues of A, _; are distinct and simple such that the product of
the absolute values of the differences of eigenvalues in (A.159) is strict positive.

Then, (A.159) shows that the eigenvalue &, of A,,_; cannot be an eigenvalue of
Ay, unless ¢; = 0, which means that v is orthogonal to the eigenvector z,. If v is
not orthogonal to any eigenvector of A,,_1, then ¢;;, # 0 for 1 < m < n — 1 and
ca, (&) #0for 1 < g <n—1. Moreover, ca, (&) is alternatingly negative, starting
from ¢ = n—1, then positive for ¢ = n—2, again negative for ¢ = n—3, etc. Since the
polynomial cy4,, (z) = (—x)" + O (z"~1) for large x as follows from (A.158), there
is a zero smaller than &,_1 (because ca, (§,—1) < 0 and lim,_,_ ca, () > 0) and
a zero larger than & (because (—1)" ' ca, (€1) > 0 and lim,_oo (—1)" " ¢4, (2) <
0). Since all zeros of c4,, () are real (art. 247) and the total number of zeros is n
(art. 291), all zeros of ¢4, (z) are simple and there is precisely one zero of ¢4, (z)
in between two consecutive zeros of ca, _, ().

This argument presents another derivation of the interlacing principle in art. 263.
But, the conclusion is more precise and akin to interlacing for orthogonal polyno-
mials (art. 364): if the vector v is not orthogonal to any eigenvector of A,,_1, which
is equivalent to the requirement that ¢, # 0 for 1 < m < n—1, then the interlacing
is strict in the sense that

An (An) < Ap—1 (Ap—1) < An—1 (Ap) < oo <A1 (A1) < A1 (4y)

Only if v is orthogonal to some eigenvectors, the corresponding eigenvalues are the
same for A,, and A, _1.

(b) If v is proportional to an eigenvector, say v = c,z4, then ¢, = 0 for all
1 <m <mn-—1, except when m = ¢, such that (A.158) reduces to

n—1

det (A, — A1) = {(ann - ) (é.q - )‘) - Ci} H (& — /\)

k=1;k#q

which shows that det (A, — AI) and det (A,_; — AI) have n — 2 eigenvalues in
common and only &, and the zeros of the quadratic equation are different. Indeed,
&g is ot a zero of py (A) = (ann — A) (§ — A) — ¢ because py (&;) = —c2 # 0, by
construction. An example is given in art. 85. The observation is readily extended:

if v is a linear combination of [ eigenvectors, then there are n — 1 — [ eigenvalues in
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common. From (A.158) with ¢j41 = ¢j42 = ... = cy—1 = 0, we have
- l l n—1
det (A — M) = (ann — A H G-N-> e I @-»IT &-»
k=1 m=1 k=1;k#m k=Il+1
n—1
= ) [ & —»
k=I+1

where pri1 (A) = (ann = N TTimy (G = X) = X00my & s (€ — 2. We see
that pry1 (&) = —c2 # 0, for 1 < ¢ < I, by construction and that the real [ + 1
zeros of the polynomial p;y; (A) determine the zeros of ¢4, (x), that are different
from those of ¢4, _, ().

In summary, if we build up the matrix A, in (A.154) by iterating from n = 2
and requiring in each iteration ¢ that the corresponding (i — 1) x 1 vector v is not
orthogonal to any eigenvector of A;_1, then each matrix in the sequence As, A3, ...,
A, has only simple eigenvalues, that all interlace over 2 < i < n. Their associated
characteristic polynomials are very likely a set of orthogonal polynomials.

265. Symmetric matriz with simple, distinct eigenvalues. In order to have simple,
distinct eigenvalues, it is sufficient for Ag in (A.154) that all elements in the upper
triangular part including the diagonal are different. However, the statement that
“the symmetric matrix A,, has only real, simple eigenvalues provided all its upper
triangular (including the diagonal) elements are different” is not correct for n > 2
as follows from the counter example®

9 3 6
Az=1{3 1 2 | =AL
6 2 4

because the eigenvalues of A3 are 14,0,0. In fact, A3 is the n = 3 case of a
Fibonacci product matrix A,,, with elements a;; = Fj1Fj4+1, where F; denotes the
i-th Fibonacci number. Since Fiy1Fj4+1 and F,41Fp,41 are only equal if ¢ = m and
j = n, all elements in the upper triangular part are different. Since all rows are
dependent, we have n — 1 eigenvalues equal to 0 and one eigenvalue equal to the
sum of the diagonal elements, Z F; .

Although not correct for n > 2 we provide a probabilistic argument that the
statement is in most, but not all cases correct. A random vector v has almost surely
all real elements (components) different. In additional, such a random vector v is
almost never orthogonal to any of the n — 1 given orthogonal eigenvectors of A,,_1,
that span the n — 1 dimensional space. Intuitively, one may think of a unit sphere
in n = 3 dimensions in which the eigenvectors form an orthogonal coordinate axis.
The (normalized) vector v is a point on the surface of that unit sphere. The
orthogonality requirement translates to three circles on the sphere’s surface, each
of them passing through two orthogonal eigenvector points. The vector v is not

9 This example is due to F.A. Kuipers.
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allowed to lie on such a circle. These circles occupy a region with negligible area,
thus they have Lesbegue measure zero on that surface. Hence, the probability that
v coincides with such a forbidden region is almost zero. Geometric generalizations
to higher dimensions are difficult to imagine, but the argument, that the forbidden
“orthogonality” regions have a vanishingly small probability to be occupied by a
random vector, also holds for n > 3. In practice, most matrices A,, that obey the
statement have distinct eigenvalues.

266. General interlacing. Theorem 71 in art. 263 is extended by Haemers (1995):

Theorem 72 (Generalized Interlacing) Let A be a real symmetric n x n matrix
and S be a real n xm orthogonal matriz satisfying STS = I. Denote the eigenvector
vy belonging to the eigenvalue \i, (B) of the m x m matriz B = STAS. Then,

(i) the eigenvalues of B interlace with those of A;
(ii) if A (B) = Ak (A) or Mg (B) = Atk (A) for some k € [1,m], then Svy, is
an eigenvector of A belonging to Mg, (A);
(iii) if there exists an integer k € [0,m] such that \; (B) = \j (A) for 1 <j <k
and \j (B) = Ap—m+j (A) for k+1 < j <m, then SB = AS.

Proof: The Rayleigh inequalities (A.129) in art. 251, applied to an m x 1 vector
s; being a vector belonging to the space spanned by the eigenvectors {vi, vs, ..., v;},

sT Bs; . sTBs; _ (Ss;)TASs; . . .
i M . J R J J 'q
are ey > X (B). Since T = (Ga)Te, Rayleigh’s principle, now applied to

the vector S's;, states that the right-hand side is smaller than \; (A) provided S's;
belongs to the space spanned by {x;,z;,...,z,}, the last n+1—j eigenvectors of A.
In that case, S's; can be written as a linear combination, Ss; = ZZ:j crTy. Using
the orthogonality S~' = 57, we have s; = Y7 cxS"xy. Hence, if we choose
s; belonging to the space spanned by {v1,ve,...,v;} and orthogonal to the space
spanned by {STw1, 5% z,...,5Tx;_1}, then Aj11 (A) < A, (B) < A (A) for any
1 < j < m. If the same reasoning is applied to —A and —B, we obtain A; (B) >
An—m+j (A), thereby proving (i). Equality, occurring in the Rayleigh inequalities,
Aj (B) = Aj (A), means that the s; = v, is an eigenvector of B belonging to the
eigenvalue \; (B) and that Ss; = Sv; = x; is an eigenvector of A belonging to
the eigenvalue A; (A4). This proves (ii). The last point (iii) implies, using (i),
that Svy, Svg, ..., Sv, is an orthonormal set of eigenvectors of A belonging to the
eigenvalues A; (B), A2 (B),..., A\m (B). Left-multiplying the eigenvalue equation
Bvj; = \; (B)v; by S yields SBu; = Aj (B) Sv; = \j (A)z; = Az; = ASv; from
which SB = AS follows because all 1 < j < m eigenvectors span the m-dimensional
space. O

By choosing S = [ Lnxm  Omx(n—m) ]T, we find that B is just a principal
submatrix of A. This observation shows that Theorem 71 is a special case of the
general interlacing Theorem 72, which was already known to Cauchy. Another
useful choice is the community matrix S in art. 36 that defines the quotient matrix
(2.43) of a matrix in art. 37. Haemer’s Theorem 72 may be compared to
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378 FEigensystem of a matrix

Theorem 73 (Sylvester’s law of inertia) Let A be a real symmetric n xn matrix
and B be a real non-singular n x n matriz. Then, the matriz BT AB has the same
number of positive, negative and zero eigenvalues as A.

Sylvester’s theorem also holds for Hermitian matrices A and B and follows from
the Courant-Fischer expression (A.132) or (A.133) with y = Bz. If B is an orthogo-
nal matrix, then Theorem 68 shows that BT AB is a diagonal matrix D. Sylvester’s
law of inertia states that the number of positive, negative and zero diagonal ele-
ments of D is an invariant of A, that does not depend on the matrix B. Bapat
(2013) computes the inertia of threshold graphs (art. 114).

267. Interlacing and the sum A+ B.

Lemma 7 For symmetric n X n matrices A, B, it holds that
An (B)+/\k (A) < A (A+B) < A (A) + A1 (B) (A.165)

Proof: The proof is based on the Rayleigh inequalities (art. 251) of eigenvalues
(see, e.g., Wilkinson (1965, pp. 101-102)). O

An extension of Lemma 7 is, for i +j — 1 < n,
Aij—1 (A+ B) < A (A) + A; (B)

which is also called an interlacing property. These inequalities are also known as
the Courant-Weyl inequalities and also hold for Hermitian matrices (see art. 253).

A C
cT B
square, and consequently symmetric, matrices, then

Lemma 8 If X = [ } is a real symmetric matriz, where A and B are

>\max (X) + >\min (X) < )\max (A) + >\max (B) (A166)

Proof: See, e.g., Biggs (1996, p. 56). O

Theorem 74 (Wielandt-Hoffman) For symmetric matrices A and B, it holds
that

n
> (M (A+B) ?< Z A (B (A.167)
k=1
Proof: See, e.g., Wilkinson (1965, pp. 104-108). O

We can rewrite (A.167) with C = A4+ Band B=C — A as

SR+ NO) =D R(C-A4)<2) M(A)A
k=1 k=1 k=1 k=1
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Using (A.118), we have

2 Zn: Ak (A) A (C) > trace (AQ) + trace (CQ) — trace ((C - A)Q)
k=1

= trace (CA+ AC) =2 Z Zaijcij

i=1 j=1

Hence, an equivalent form of the Wielandt-Hoffman Theorem 74 for symmetric
matrices A and B is

trace (AB) < z”: Ak (A) A (B) (A.168)
k=1

10.6 Non-negative matrices

268. Reducibility. A matrix A is reducible if there is a relabeling that leads to

i { A1 B }
0O A,
where A; and A, are square matrices. Otherwise A is irreducible. Relabeling
amounts to permuting rows and columns in the same fashion. Thus, there exists a
similarity transform H such that A = H AH!.
For doubly stochastic matrices, where Y ;_, ax; = > p_; ajx = 1, Fiedler (1972)
has proposed the “measure 7 (A) of irreducibility” of A defined as

r(A) = mirj{/ Z ik (A.169)
ieEMkgM

because A is reducible if there exists a non-empty subset M of the set of all indices
in NV such that a;; = 0 for all i € M and k ¢ M. Hence, if A is reducible, then
r(A) = 0. Since 37, vq kg ik < S r_pair <1 for a doubly stochastic matrix,
the measure of irreducibility lies between 0 < 7 (A) < 1.

269. The famous Perron-Frobenius theorem for non-negative matrices.

Theorem 75 (Perron-Frobenius) An irreducible, non-negative n X n matriz A
always has a real, positive eigenvalue A1 = Amax (A) and the modulus of any other
eigenvalue does not exceed Amax (A), i.€., |Ap (A)] < Amax (A) for k = 2,...,n.

Moreover, \y is a simple zero of the characteristic polynomial det (A — X\I). The
etgenvector belonging to A1 has positive components.

If A has h eigenvalues A1, Aa, ..., A\p with |[\p| = A1, then all these equal-moduli
eigenvalues satisfy the polynomial \* — X\ = 0, i.e., \p = )\162”(5‘1) for k =

1. h
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Proof: See, e.g., Gantmacher (1959b, Chapter XIII). O

If a non-negative n X n matrix A is reducible, then A has always a non-negative
eigenvalue Ay ax (A) and no other eigenvalue has a larger modulus than Apax (A).
The corresponding eigenvector belonging to Amax (A) has non-negative components.
Hence, reducibility removes the positivity of the largest eigenvalue and that of the
components of its corresponding eigenvector. An essential Lemma in Frobenius’
proof, beside the variational property of the largest eigenvalue

Az).
Amax (A) = max min g

j (A.170)
z#0 1<j<n X5

akin to Rayleigh’s inequality (A.130) and a consequence of (A.171) in art. 270 for
a symmetric matrix, is:

Lemma 9 If A is an n X n non-negative, irreducible matriz and C is an n X n
complex matriz, in which each element obeys |c;;| < a;j, then every eigenvalue X (C)
of C satisfies the inequality |A (C)| < Amax (A).

Proof: See, e.g., Gantmacher (1959b, Chapter XIII). O

An application of Lemma 9 is Lemma 10 for non-negative matrices, which is
useful in assessing the largest eigenvalue of the adjacency matrix of a graph:

Lemma 10 If one element in a non-negative matrix A is increased, then the largest
eigenvalue is also increased. The increase is strict for irreducible matrices.

T
70
is the zero matrix, except for the

Proof: Consider the non-negative matrix C' and A = C + ee;e

e; and e; are the basic vectors and O = eiejT

element 5ij = 1. Lemma 9 shows that Apax (4) > A(C). We now demonstrate
the strict inequality Amax (A) > A(C) for irreducible matrices. If 2 denotes the
eigenvector belonging to the largest eigenvalue of C, then the variational property
(A.170) implies

where € > 0,

T T T, T

zt Ar 2 Cux T eje; T TiX 5
A A) > = +e I =\ O)+e=2
max (4) 2 zTx zTx zTx max () Tz

Since all components of the largest eigenvector x are non-negative and even positive
if C' is irreducible, the lemma is proved. O

270. Bounds for the largest eigenvalue of symmetric, irreducible, non-negative ma-
trices. If the irreducible, non-negative matrix is symmetric, we can exploit symme-
try to deduce bounds for the largest eigenvalue by considering the quadratic form
yT' Az, = 2T Ay, where x; is the eigenvector with positive components (Perron-
Frobenius Theorem 75) belonging to the largest eigenvalue A\; and y is a vector
with positive components. Using the eigenvalue equation Ax; = Ajz1, we obtain
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yT Azy = \yTx,. On the other hand, we have

Ay =303 g e = 3 (e [ 30 Sl
=1

i=1 j=1

and, since the components of y and x; are positive,

n n n

n
, a;ijy; a;ijy;
min —”% E (z1),y; < 2] Ay < max E 114% E (1), vi
<isn £~

i=1 == =1 Yi i=1

By combining both expressions, taking into account that y’z; = S (x1);y >0,
we obtain, for a positive vector y and for any symmetric, irreducible, non-negative
matrix A, the bounds

A Ay).
min Ui < < max A8 (A.171)
1<i<n Y, 1<7,<n Yi
271.  Mazimum ratio of principal eigenvector components of a positive matriz.

Ostrowski (1960) considered the maximum ratio
v = max @ (A.172)

1<ij<n (1),

of components of the principal eigenvector 1 of an n X n positive matrix M, that
is irreducible, hence, (z1); > 0 for all 1 < j <n. Minc (1970) briefly overviews the
results and proves the following theorem:

Theorem 76 (Minc) Let M be a positive n X n matriz with principal eigenvector
1, then

msj
< .
VS (A4.173)

Equality in (A.173) holds if and only if the p-th row of M is a multiple of the q-th

Mg
row, for some pairs of indices p and q satisfying - —P— = maXi<s,rj<n m—SJL
The main idea of Minc’s proof is as follows. We consider the eigenvalue equa-
tion for both the minimum (21), = mini<;j<, (1); and the maximum (z1), =
maxi<;<n (21); principal eigenvector component:

A (M) (1), = 375 myj (1)
A (M) (1), = 25wy (21)

Their ratio equals

. Exl)ﬂ _ X1 s (), (A.174)

1), Doy My (7))



https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core

382 FEigensystem of a matrix

Since (21); > 0 and m;; > 0, invoking the inequality (3.88) yields

Myj Msj
v < max <  max
1<j<n my,j ~ 1<s,rj<n M,
If equality holds, then v = %‘fjﬁ for 1 < j < n, illustrating that row p and v are
linearly dependent and that det M = 0 in art. 209. We refer to Minc (1970) for the
converse, which then proves Theorem 76. Theorem 76 also applies to the matrix
M + yI, because eigenvectors are the same for M and M + yI. The ratio (A.173)
can be sharpened by choosing the optimal value for y.

272. FEigenvector components of a non-negative matriz. Fiedler (1975) found a nice
property regarding the signs of eigenvector components of a non-negative symmetric
matrix, that have a profound impact on graph partitioning (art. 150).

Theorem 77 (Fiedler) Let A be an irreducible, non-negative symmetric n X n
matriz with eigenvalues A1 (A) > Ay (A) > ... A\, (A) and z be a vector such that
Az > N, (A) z with k > 2. Then, the set of indices (nodes) M = {j e N : z; > 0}
18 not empty and the number of connected components of the principal submatriz
A (M), with indices of rows and columns belonging to M, is not larger than k — 1.

Before proving the theorem, we rephrase the theorem when A is the adjacency
matrix of a graph G. The non-negative vector components of z correspond to
nodes, that induce a subgraph, specified by the adjacency matrix A (M), with at
most k£ — 1 distinct connected components.

Proof'’: The set M cannot be empty. For, if M were empty, then all com-
ponents of z would be negative such that v = —z satisfies Av < A\, (4)v. Since
A is irreducible, Perron-Frobenius Theorem 75 demonstrates that Axy = A\ (A) 21
and A1 (A) > max(\y (4), A, (A)). Thus, 27 Av = A\ (A) 2Tv > A (A) 2T v, while
the hypothesis implies that 7 Av < A\ (A) 2T v, which leads to a contradiction.
If M =N, the theorem is true by the Perron-Frobenius Theorem 75. Suppose
A C
ct D
where A consists of 7 distinct connected or irreducible matrices Aj, subject to
> iy dim (4;) = dim M < n with structure

now that M # A. Then, we can always write the matrix A as A =

Y

Al O O Cl
~ S C
i-| 9 A “lando=| 2
: . .0 :
O - 0O A, C.

We partition the vector z conformally,

-3

10 We have combined Fiedler’s proof with that of Powers (1988).
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where the vector 2¥ = [ 2T 2 ... 2T

] has subvectors x; all with non-
negative components whose indices belong to M. This implies that y contains
only positive components, otherwise a component of y would belong to M. The
condition Az > A, (A) z implies that A;x; — Cjy > Mg (A)x;. Since A is irre-
ducible, none of the block matrices C; can be zero such that C;y > 0, with inequal-
ity in some component because all components of y are strictly positive. Hence,
Ajz; > A (A) z; holds with strict inequality in some component which implies that
x] Ajzy > M (A)z] x; for 1 < j <r. By construction, each A; is irreducible. The
Perron-Frobenius Theorem 75 and the Rayleigh inequality (art. 251) for the largest
eigenvalue state that Ay (4;) x] x; > a7 Aja; such that Ay (4;) > A (A). Finally,
the interlacing Theorem 71 shows that, if A\q (4;) > Mg (A) for all 1 < j < r, then
Ar (A) > Mg (A) and r < k — 1. This proves the theorem. O

An immediate consequence is that the vector z = avy +wv9, where vy is the largest
eigenvector with all positive components and vs is the second largest eigenvector
of A, satisfies, for @ > 0, A (avy +v2) = a1 (A) vy + Aa (A) v2 > Ao (A) (avy + v9)
and thus the inequality in Theorem 77 for £k = 2. Hence, the index set M =

{j eEN:a(v); + (v2); > O} corresponds to an irreducible submatrix of A (M).

Since A and A (M) are irreducible, it means that A (M°), where MU M = N

and M°® = {j EN:a(v); + (v2); < O}, is also irreducible. This index set M
decomposes the set of indices (nodes) into two irreducible submatrices (connected

subgraphs).

273. Bounds on eigenvalues of the adjacency matriz. We present a consequence of
Fiedler’s eigenvector component Theorem 77 in art. 272. Consider the eigenvalue
equation Azy = A (A) zi, where the eigenvalue Mg (A) is smaller than the largest
eigenvalue A; (A). The corresponding real eigenvector xy, is orthogonal to x1, whose
vector components are positive by virtue of the Perron-Frobenius Theorem 75. Let
us denote the nodal sets

M, = {jeN: (xk)j>o},/vt, - {je/\f: (xk)j<0},./\/lo - {je/\/: <xk>j=o}

such that M4y UM_ UMy = N. Since zf 21 = 0 by orthogonality (art. 247),
it holds that M| > 1 and |[M_| > 1, whence |[My| < N — 2 for any eigenvalue
Ak (A) with index k > 1.

Suppose that (zx), = mini<j<y (zx); < 0 and (z),, = maxi<j<n (zx); > 0.
The eigenvalue equation (1.4) for component [ is, assuming that A; (A) > 0,

Ak (A) (zx), = Zazj (@r); = (M| = 1) (z1),

while that for component m is A\ (A4) (zx),, < (M4| —1) (2k),,. Thus, provided

m —

Ak (A) > 0, we have that Ay (4) < (IM_|—1) and Ay (A) < (IMy|—1), from

which A; (A) < min(IM_|,M4|) —1 < MJQF‘M” —1 = N=Mol 1 Since

2
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|Mo| > 0, we find that

X (A) < gJ _1 (A.175)

When A, (A) < 0, we obtain A (A) (zx); = | M (A)]. [(zk),| < M| (2k),, and
e (A) (z1),, > M| (zx),. Thus, |A\x (4)](zk),, < |IM-|(zx), from which we
deduce, after multiplying both inequalities [Ag (A)] < /M| |IM_| < L;HMH
Since /|Mi||M_| = /M| (N — [M4]| — [Mo]) and |[Mo| > 0, this quantity is
maximal if M| = |§ | and |[Mo| = 0. Hence, the smallest eigenvalue of A obeys

oz J[2] 2] a1

In addition to this bound (A.176), the Perron-Frobenius Theorem 75 as well as
Theorem 109 indicate that Ay (4) > —A;1 (4).

We end this section on non-negative matrices by pointing to yet another nice
article by Fiedler and Ptak (1962), that studies the class of real square matrices
with non-positive off-diagonal elements, to which the Laplacian matrix of a graph
belongs. We also mention totally positive matrices. An n X m matrix is said to be
totally positive if all its minors are non-negative. The current state of the art is
treated by Pinkus (2010), who shows that the eigenvalues of square, totally positive
matrices are both real and non-negative.

10.7 Doubly stochastic matrices

A non-negative matrix A is doubly stochastic if both its row and column sums
are 1, i.e. Au = u and uTA = u. Sinkhorn (1964) has demonstrated that any
matrix A with strictly positive elements can be made doubly stochastic by pre- and
post-multiplication by diagonal matrices. Thus, for any strictly positive matrix A
(without zero elements), there exist positive diagonal matrices D; and D such that
D1 AD, is doubly stochastic.

274. Diagonal elements of Ei and the doubly stochastic matrix =. It directly
follows from (A.138) that a;; = > ) Ak (Bk)j; = D ey M (:ck)j2 for each 1 < j <
n and by art. 243 that

(A™) ;5 =D A ()] (A.177)
k=1

Geometrically, the scalar product of the eigenvalue vector A = (A1, A, ..., \,,) with
the vectors &, = ((a:k)f , (mk)g ey (zk)Q) where (xy), is the j-th component of

nj’ J

the k-th eigenvector of A belonging to Ag, equals the diagonal element a;;. With
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the n X n non-negative matrix = = X o X, where o denotes the Hadamard product,

2 2 2 2
2= | (@); (z2); (33)3 (Tn)3 (A.178)
(@)s (w2)r (w3)r o+ (za)
and with the vector b = (a11,a22, ..., any), the relation a;; = > 1 _; Ak (xk)f reads
in matrix form
2N =b (A.179)
If a function f of the vector v = (v1,va,...,v,) is denoted by

f)=(f(v1),f(v2),.... [ (vn))
then f(A) =Y p_, [ (Ax) zpzi in (A.88) leads to

Ef () =f() (A.180)

Since Zu = u and ZTu = u, by “double orthogonality” of (A.124) and (A.126),
and since each element 0 < (xk)i < 1, the matrix Z with squared eigenvector
components of a diagonalizable matrix A is doubly stochastic with largest eigenvalue
equal to 1. Since Z is a non-negative matrix and Zu = wu, the Perron-Frobenius
Theorem in art. 269 indicates that the eigenvalue 1 belonging to the eigenvector u
with non-negative components is the largest one and that the absolute value of any
other eigenvalue is smaller than 1. Hence, all eigenvalues of the asymmetric matrix
= lie within the unit circle.

275. Partial sum inequalities and doubly stochastic matrices. Consider the n x 1
real vectors o and (3, both with ordered components, i.e. a3 > as > ... > «, and

Theorem 78 If P is a doubly stochastic matriz with elements 0 < p;; < 1 and
a = Pf, then the partial sum inequalities hold,

k k
ZaiSZﬁi for1<k<n
i=1 i=1

n n
TS
i=1 i=1
which is denoted as o < B and expresses that the vector 8 majorizes the vector c.

Proof (Marshall et al., 2011, p. 31): Summing the first ¥ components in « = Pj3
. k k k n n k
yields >3 o = 35, (PB);, = >0y Zj:l pijbj = Zj:l (Zi:l pij) Bj. We
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denote t; = 2% pi; and t; satisfies 0 < t; < 1 and Sty = S > i pi = k.
Hence,

k k n k n k n
D= Bi=) =D 8= =) BBk (k=D b
i=1 i=1 j=1 j=1 j=1 j=1 j=1
Splitting the n-upper limit sums at the right-hand side,

k k
D= Bi= Zt B4 > th - Zﬁ;-Fﬂkk mzt Ay
i=1 i=1 j=k-+1 j=k+1
and recombining yields, recalling that 51 > B2 > ... > (8,

k—1 n

Zaz Z@—Z (t; =) (B = Br)+ D (B —Br) <0
Jj=1 j=k+1
The equality for & = n follows from u? = uT P as uTa = u' P3 = uT3. O

The proof does not use the ordering of the vector «, only that 8 is ordered.
Except for the k = n case, the proof also holds for a doubly substochastic matrix
S, in which there are rows and columns that sum to a value less than 1. Indeed,
denote 7; = Zle sij, it now holds that Y°7 | 7; <k, so that

k k n k n k n
DD IED DT SR DT SR (S v
i=1 i=1 j=1 j=1 7=1 7j=1 7j=1

and the remainder of the proof remains unchanged.

Application of Theorem 78 to Zf (A) = f (b) in (A.180), where the components
of the vector f(\) decrease with index i, shows that u” f (\) = u” f (b) and, for
1<k<n,

-
~

k
A));; < Zf (\) (A.181)

i=1

The partial sum inequalities (A.181) are also proved in Corollary 4 in art. 263
based on interlacing.

276. Convez functions and doubly stochastic matrices. Schur (Marshall et al.,
2011, Chapter 3) demonstrated in 1923 another type of inequality that involves
doubly stochastic matrices and a continuous convex function g. Consider the i-
th component in (A.179), b; = Sp_, & With S0 & = S0 &1 = 1 and
ik = (xk)?, then the definition of convexity (Hardy et al., 1999, art. 90, p. 74)

Dbe1 PRTE ) _ D Prg (k)
g( > h—1Pk )_ =1 Pk (4.182)



https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core

10.8 Positive (semi) definiteness 387

with equality only if g is linear or all zj, are the same, shows that
gbi)=yg (Z &k)\k) < Ging ()
k=1 k=1

Summing over all 1, Z?:l g(bi) < Z?:l 22:1 §ikg (M) = ZZ:1 (Z?:l &ik) 9 (Ak)

results in Schur’s inequality,

> gb) <> g (A.183)
k=1

i=1
which is, in vector form, uTg (b) < ulg(N).

277. The next remarkable theorem by Fiedler (1972) bounds the spectral gap for
symmetric stochastic matrices, that are doubly stochastic.

Theorem 79 (Fiedler) Let P be an n xn symmetric stochastic matriz with second
largest eigenvalue Ay (P). Then

n

U (r(P) <1-X(P) <

P A.184
L (P) (A184)
where the measure of irreducibility v (A) is defined in (A.169) and where the con-
tinuous, convex and increasing function ¢y, (x) € [0,1] is

B 233(1—003%) O<z
wn(f)_{ 1_2(1—x)cos%—(2$—1)C052:r %<x

1
<32

0o =1

The inequality (A.184) is best possible: if u,v € R satisfy 0 < u <1 and ¢, (u) <

1 —v < -25u, then there exists a symmetric stochastic matriz P with v (P) = u

and Ao (P) = v.

Proof: The proof is rather involved and we refer to Fiedler (1972). O

10.8 Positive (semi) definiteness

278. Positive definiteness. A matrix A € R™*™ is positive definite if the quadratic
form 27 Az > 0 for all non-zero vectors x € R™. This definition implies that
A is non-singular for otherwise there would exist a non-zero vector x such that
2T Az = 0.

We start with a basic property: If A € R™*™ is positive definite and Y € R*¥*"
has rank k, then the k x k matrix B = YTAY is also positive definite. Indeed,
suppose that the non-zero vector z € RF satisfies 0 > 27 Bz = (Y2)" A(Yz), then
Yz = 0 by the positive definiteness of A. But Y has full column rank, which implies
that z = 0, leading to a contradiction.

A consequence of the basic property is that all principal submatrices of A are
positive definite. In particular, all diagonal elements of a positive definite matrix
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A are positive. By choosing Y equal to the k column vectors of the identity matrix
I, xn, any principal submatrix of A is found as B = YT AY'.

If A is positive semidefinite, then any principal submatrix of A is also positive
semidefinite. This property is less stringent than the basic property for positive
definiteness, because 27 Bz = (Yz)" A(Yz) > 0 for any vector Y z.

279. FElements in a symmetric positive semidefinite matriz. If A € R™*" is sym-
metric positive semidefinite, then

1
laij < 5 (@i +aj) (A.185)

laij| < /aiag; (A.186)
Proof: Since /zy < % for positive real numbers z and y as follows from

(\/— — \/5)2 > 0, we only need to prove the geometric mean inequality (A.186).
We give two different proofs.

(i) Positive semidefiniteness implies that 27 Az > 0 for any vector . Choose
now = = e; +aej, where o is a real number and e; is a basis vector with (e;), = d;x.
Using a;; = el Ae; yields

2 2

2T Ax = ai; + Qaaij + ajjoz2 = ajj (a + &> + M
ajj j;
and the positive semidefiniteness requires that =7 Az > 0, which is equivalent to the
condition that a;a;; > afj, because the diagonal elements of A are non-negative
(art. 278).

(ii) Consider a principal submatrix of A, which is also positive semidefinite
(art. 278). Without loss of generality, we can choose the principal submatrix A, =
{ ain ar

a1 a2
which requires that the discriminant 4a3, — 4aj1a2e < 0. O

} and the vector z = [ ? } Then, 0 < 2T Az = a1102 + 2120 + a92,

Since the inequality (A.185) holds for all ¢ and j, it also implies

max |a;;| < maxa;;
i,j J

280. The Gram matriz associated to the vectors ay,as,...,a, is defined as
G=AT4, A:[al as - an]
so that Gi; = aTa; and Gy = aTa; = |a;” for i = 1,...,n. The Gram matrix

G = AT A is symmetric and positive semidefinite because z7Gx = (A:c)T Az =
\|A:c||§ > 0. Art. 199 implies that all eigenvalues of G are real and non-negative.
When a matrix G is positive semidefinite and symmetric, we can find the ma-
trix A as the square root A = +/G. Indeed, the eigenvalue decomposition is
G = Udiag(A\:(G))UT, where U = [ Uy Uy e Up ] is an orthogonal ma-
trix (U Tu=v0uT =1 ) formed by the scaled, real eigenvectors uj belonging to
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eigenvalue A\, (G). Since all eigenvalues are real and non-negative, it holds that
Ai(G) are real such that G = Udiag( )\k(G))diag( )\k(G)) UT. Any orthog-

onal matrix W satisfies WTW = I (see art. 247) and a more general form is
T
G = AAT = Udiag(\/M(G))WTW (diag( )\k(G))) uT

from which
A = Udiag(\/ e (G))WT

The matrix A is also called the square root matrix of G, but it is not unique, because
we can choose any orthogonal matrix W, such as, for example, W =1. If W = U,
we construct a symmetric square root matrix A = AT = Udiag(\/ M\ (G))U7, so
that G = A2. The matrix A can be found from the singular value decomposition
of G or from Cholesky factorization (Press et al., 1992). The Cholesky method
gives a solution A = /G that is, in general, not symmetric. Another example of a
non-symmetric “square root” matrix A appears in art. 374.

Moreover, if R is an orthogonal matrix for which RTR = I, then A = RA has a
same Gram matrix since

G=ATA=(RA)"RA=ATRTRA=ATA=C

Hence, given a solution A of G = AT A, all other solutions are found by orthogonal
transformation.

In summary, any symmetric, positive semidefinite matrix can be considered as
a Gram matrix G whose diagonal elements are non-negative, G;; > 0. The non-
negativeness of the diagonal elements was already demonstrated in art. 278 and
art. 279.

281. Stieltjes matriz. An n X n positive definite matrix A with non-positive off-
diagonal elements, i.e. a;; < 0 for all ¢ # 7, is called a Stieltjes matrix. Let
A1 > Ao > ... > A, > 0 be the eigenvalues of a Stieltjes matrix A, then Micchelli
and Willoughby (1979) demonstrate that the matrix polynomials

Fo (A) = T] (I - 4)
k=1
are non-negative matrices: any element (F, (4));; > 0 for 1 < m < n. The
polynomials Fy, (z) in (B.17) arise in Lagrange (art. 303) and Newton interpolation
(art. 306), as well as in function expansions of a matrix (art. 234).

282. If all eigenvalues are real and A; > 0 as in a symmetric, positive definite matrix
(art. 199), we can apply the general theorem of the arithmetic and geometric mean
in several real variables xy > 0, which is nicely treated by Hardy et al. (1999),

H zfF < Z qrTk (A.187)
k=1 k=1
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where Y1, qr = 1, to (A.98) and (A.99) with g = Z—,,’f— >0,

DIV
ﬁ)\ak < ZZ:I ak)\k Y
— n
hel D=1

Choosing a; = 1, so that det A = []}'_; A in (A.98), leads for an n X n symmetric,
positive definite matrix A to the inequality

0<detA< <M>
n

283. Let M be a symmetric and positive semidefinite n X n matrix with Mu =
0. Any square matrix whose n row sums are zero has an eigenvalue zero with
corresponding eigenvector u. Let W denote the set of all column vectors = that
satisfy 72 = 1 and 27w = 0. If M is positive semidefinite, then the second smallest
eigenvalue

A1 (M) = min 27 M2 (A.188)
zeW

which follows from the Rayleigh inequalities in art. 251 and the fact that the
smallest eigenvalue is A, (M) = 0.

Theorem 80 (Fiedler) The second smallest eigenvalue Ap,—1 (M) of a symmetric,
positive definite n X n matrix M with Mu = 0 obeys

)\n—l (M) S

— 1r<1§i£1n mj; (A.189)

In addition,

2 max /m;; < Z‘/mkk (A.190)
=1

1<j<n

and

QI?Jagn\/mjj—An_l (M) (1--) Z mjj — An—1 (M) (1-%) (A.191)

Proof: Fiedler (1973) observes that the matrix M=DM-=X\_; (M) (I-2LJ)is
also positive semidefinite. For, let y be any vector in R™. Then y can be written
as y = ciu + CQ:C where x € W. Since Mu = 0 because Ju = nu, it follows
with Jz = wuTz = 0 that yT My = cQ:cTMx =c} (" Mz — N\,—1 (M)) > 0 by
(A.188). Since any symmetric, positive semidefinite matrix can be considered as a
Gram matrix, whose diagonal elements are non-negative (art. 280), the minimum
diagonal element of M is non-negative,

1
0 < min m;; = min (mjj—)\n_l(M) <1——)>

1<j<n 1<j<n

which proves (A.189).
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10.9 FEigenstructure of the matriz product AB 391

Also M is a Gram matrix, i.e., M = ATA and mi; = aZTaj, where M = MT
is symmetric. The fact that Mwu = 0 translates to Au = 0. This implies that the
row vectors ai, ag, ..., a, of Aobey Y ;_; a; = 0. Hence, a; = — ZZ:L,C# ay, and
taking the Euclidean norm of both sides leads to |a;| < >7;_, . |ak|. Since this
inequality holds for any 1 < j <, it also holds for max; <<y |a;|,

n
1<
2 max |aj| < 2 x|

With m;; = |a;|*, we arrive at (A.190), which, when applied to M, yields (A.191).
O

10.9 Eigenstructure of the matrix product AB

284. Figenvalues of the matriz product AB.

Lemma 11 For all matrices Apxm and Bpxn with n > m, it holds that A (AB) =
A(BA) and A (AB) has n —m extra zero eigenvalues.

Proof: Consider the matrix identities

|: Inxn Onxm :| |:MIn><n Apxm :|: fdrxn Apxm
_Bmxn ,UfIme Bmxn M]mxm Omxn (#2‘[ - BA)m,Xm

and

|: ,UfInxn 7An><m :| |: ,anxn Anxm :| _ (H2I*AB)an On><m
Brxn  pdmxm Bixn Pl scm

Omxn Imxm

Taking the determinants of both sides of each identity and denoting
X — [ /’LIHXTL ATLXTTL }
B’ran I’I’I’”’LXTVL
gives respectively
p"det X = p det (;LQI — BA)
p"det X = p"™ det (MZI — AB)
from which it follows, with A = p?, that A»"™det (BA — \I) = det (AB — \I),

which is an equation of two polynomials in A. Equating corresponding powers in A
proves Lemma 11. O

If A and B are both n x n matrices and det (A) # 0 so that A~! exists, then
BA = (A7'A) BA = A7' (AB) A. Thus, the matrix BA and AB are similar and
art. 239 shows that their eigenvalues are the same.
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Lemma 12 If A and B are symmetric matrices and one (or both) is positive
definite, then all eigenvalues of AB are real.

Proof: See, e.g., Wilkinson (1965, pp. 34-36). (]

The eigenvalue equation ABx = Az under the conditions of Lemma 12 is equiv-
alent to Bx = AA "'z in case that A is positive definite, because the inverse of
a positive definite matrix exists and is also positive definite (art. 280). If B is
positive definite, then ABx = Ax can be written as

A(Bzx) = AB™! (Baz)

Hence, the corresponding characteristic polynomials, det (AB — A\I), det (B - )\Afl)
and det (A — )\Bfl) have the same zeros (roots). Finally, the eigenvalue problems
ABx = Mz and Ay = A\Cy are equivalent if C = B! is positive definite.

If A and B are symmetric matrices, but neither is positive definite, then the
eigenvalues of AB can be complex, although all eigenvalues of A and B are real
(art. 247). Wilkinson (1965) illustrates the importance of positive definiteness by
the example

a 0 0 1 0 a
a2 0] o0 ] awa ane [0 2]

where the eigenvalues of AB, being +v/ab, are complex when a and b have different
sign. Moreover, if neither A nor B is positive definite and ( is a complex eigenvalue
of the eigenvalue equation Ax = ABz with corresponding non-zero eigenvector x,
then it holds that

e Az = (Re¢ +iIm () 2 Bz

Since 27 Az and xf Bx are real (art. 247), we conclude that Az = 2 Bx = 0.
In other words, both A and B must have a zero eigenvalue.

285. Matrices A and B commute.

Lemma 13 If square matrices A, xn and By xy, commute such that AB = BA, then
the set of eigenvectors of A is the same as the set of eigenvectors of B provided that
all n eigenvectors are independent. The converse more generally holds: if any two
matrices A and B have a common complete set of eigenvectors, then AB = BA.

Proof: If z; is an eigenvector of A corresponding to eigenvalue Ag, then Axy =
ArZr. Left multiplying both sides by B and using the commutative property
yields A (Bxy) = A\ (Bxy), which implies that, to any eigenvector xj with eigen-
value A, the matrix A also possesses an eigenvector Bz with same eigenvalue
Ak. Since eigenvectors are linearly independent and since the set of n eigenvectors
{z1,xa,...,z,} spans the n-dimensional space, the eigenvector Bz, = puixk, which
means that xj is also an eigenvector of B.
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10.9 FEigenstructure of the matriz product AB 393

The converse follows from art. 239 since A = Xdiag(\;) X! and, similarly,
B = Xdiag(ug) X 1. Indeed,

AB = Xdiag (\;) X ' Xdiag (ux) X 7' = Xdiag (Appr) X °
BA = Xdiag (u1,) X ' Xdiag (\x) X ! = Xdiag (A\ppr) X

shows that AB = BA. O

If all eigenvalues are distinct, all eigenvectors are independent (art. 238). How-
ever, in case of multiple eigenvalues, the situation can be more complex such that
there are fewer than n independent eigenvectors. In that case, the Lemma 13 is not
applicable.

A direct consequence of Lemma 13 is that, for commuting matrices A and B,
the eigenvalues of A + B are A; + ux and both eigenvalues belong to the same
eigenvector xy. If matrices are not commuting, remarkably little can be said about
the eigenvalues of A + B, given the spectra of A and B (see also art. 252).

286. Kronecker product. The Kronecker product of the n x m matrix A and the
p X ¢ matrix B is the np x mq matrix A ® B, where

annB a;2B - aipB

a1B  axpB - ayB
AR B = ]

anlB CLnQB cee ant

The Kronecker product A® B features many properties (Meyer, 2000, p. 597). The
eigenvalues of Ay, ® Bnxm are the nm numbers {\; (A) \x (B)}1<j<n71<k<m.
Likewise, the set of eigenvalues of I,,, ® Apxn + Bmxm ® I, equals the set of nm
eigenvalues {A; (4) + A (B)} << 1<pam:

287. The commutator of a matriz. Consider the matrix equation
AanXnXm + XonxmBmxm = Cnxm

that includes the commutator equation, AX — XA = O, where X are all matrices
that commute with A, as a special case, as well as the Lyapunov equation (Horn
and Johnson, 1991, Chapter 4). The matrix equation is written in Kronecker form
as

(Im ® Anxp + BE o ® I,) vee (X) = vec (O) (A.192)

where the nm x 1 vector is

vec(X) = (:rf,zg,,z%) = (T11, -+, Tnl, T12, -y T2y« -y L1y - - + s Trum)

where z; is the j-th n x 1 column vector of X. The mixed-product property (Meyer,
2000, p.597),

(A1 ® Bl) (A2 (24 BQ) = (A1A2 ® BlBQ)
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shows that

In other words, the square mn x mn matrices I,, ® Ay, xn and By, xm ® I, commute.
Horn and Johnson (1991) prove that, if wy is an n x 1 eigenvector of A belonging
to A (A) and y; an m x 1 eigenvector of B belonging to A; (B), then y; ® wy, is
an nm X 1 eigenvector of I, ® Apxn + Bmxm ® I, belonging to the eigenvalue
Ak (A) + N (B).

The linear equation (A.192) has a unique solution provided none of the eigenval-
ues A\ (A)+ N (B)=0forall 1 <k <nand1<1[<m,because \ (BT) =X\ (B)
on art. 237. Likewise, if C' = O in (A.192), the equation AX — X B = O has only
a solution, provided {Ag (A)}; <<, N AN (B)} i<y # D. Thus, when B = A,
in which case X is the commutator of A, there are at least n zero eigenvalues of
I, ® Apsn — Anxn @I, (and more than n if A has zero eigenvalues) illustrating that
there may exist many possible commutators of a matrix A. If C # O and B = —A
in (A.192), there is no solution for X. A theorem of Shoda, proved in Horn and
Johnson (1991, p.288), states that C' can be written as C = XY — Y X for some
matrices X and Y provided trace(C) = 0.

10.10 Perturbation theory

We confine ourselves to simple eigenvalues of a symmetric matrix A, in which case
perturbation theory is relatively simple. Perturbation theory for non-symmetric
matrices and for eigenvalues with higher multiplicity is more involved and omitted.
We follow Wilkinson (1965, pp. 60-70), although a similar analysis, albeit a little
less transparent, appears in Cvetkovié¢ et al. (1997, Sec. 6.3).

288. Perturbation theory around a simple eigenvalue. Let us consider the matrix
A(¢) = A+ (B. Perturbation theory assumes that the real number ( is sufficiently
small so that we may regard A (¢) as the perturbation of the original nxn symmetric
matrix A by an n X n matrix B, which is not necessarily symmetric. We denote by
z (¢) the n x 1 eigenvector of A (¢) belonging to the eigenvalue A (¢). As shown in
Wilkinson (1965, pp. 60-70), both z () and A (¢) are analytic functions of { around
zero and can be represented by a power series

Q) =z+(n+Cant=) 5 (A.193)
7=0

MO =A+Ca+Cort- =) ¢! (A.194)
7=0

where z (0) = = = 2 is the eigenvector of A and A(0) = A = ¢ is its corre-
sponding simple eigenvalue. We omit considerations about the convergence radius
of the above power series. We choose x = x4, as the normalized eigenvector of A
corresponding to A = A,.
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The eigenvalue equation of A (¢) is (A+(B)x (¢) = A ({) z ({). After introduc-
ing the power series (A.193) and (A.194), we obtain

(A+(B) [z + > %0 | =D 0> %!
j=1 j=0 j=0

The left-hand side equals

(A+(B) [2g+ > 2¢7 | = Azg+ Y Az¢? + (Bxg+ »  Bz¢i™
j=1

j=1 j=1
= Agq + (Az1 + Bg) (+ > (Azj + Bzj_1) ¢!
j=2

while the Cauchy product of the right-hand side gives

Z chj Z ZjCj — Z (Z cjkzk> ¢ = Mgt (c1zy + Agz1) C+Z (Z Cjk2k> ¢J
j=0 j=0

=0 \k=0 =2 \k=0

Equating corresponding powers in ( yields, for j =1,

Az + Bzg = M\gz1 + 1y (A.195)
and, for j > 1,
J Jj—1
Azj+ Bzj_1 = Z Ci—kZk = CjTq + Z Ci—kZk + AgZj (A.196)
k=0 k=1

Relations (A.195) and (A.196) are the results of complex function theory. The
solution for the n x 1 vectors {2;},, in (A.193) and the coefficients ¢y in (A.194)
now requires linear algebra. -

289. Scaling of the eigenvector x(¢). The vector z; can be written as a linear
combination of the eigenvectors xj of the symmetric matrix A,

% =Y Bikwk (A.197)
k=1

where the coefficients 8, = 2zl z; = ijxm # Bmj. The particular case j = 0,

where zp = x4, indicates that Sor = 0r,. Thus, the eigenvector in (A.193) is
rewritten as

() =Y _5 =Y A DBl | an =D Bl |t D | DB | wk
j=0 k=1 \j=0 7=0 k=1;k#q \j=0
and

() =1+ B¢ |mg+ D DBkt | w
j=1

k=Lik#q \J=1
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We can always scale an eigenvector by a scalar a # 0, which we choose here as
a=1+ Z;’;l BjqC?, assuming that the power series converges to a value different
than —1. The latter condition can always be met for sufficiently small |(] and we

Bik€
Jj= 1 J
az(()=z4+ Z ( +Z; 15}q<]>

k=1;k+q

arrive at

If we choose f3j4 = L z; = 2§ z; = 0 for j > 1 and recall that fo; = 1, then o = 1
and we simplify the computation by requiring that any “perturbation” vector z;
for j > 1 is orthogonal to the eigenvector z, of the matrix A.

If we choose a different scaling by requiring a normalized eigenvector, such as
2T (¢)z (¢) = 1, then it implies that

1:wT<<>w<o=szc-fZch""=Z(Zz - )
j=0 m=0

7=0

and equating corresponding powers in ¢ leads, for j = 0, to 2zl zp = 1, which
is satisfied for any normalized eigenvector zyp = z4 of A and, for j > 0, to 0 =
jn —0 ?;sz m- The latter condition means that 2l z; = 0 and furthermore that
2z = Zm L2 2 for § > 2.
In summary, the normalization of the eigenvector x (¢) imposes conditions on
the scalar products z{ z; for all j > 1. Choosing a different scaling leads to a dif-
ferent computational scheme and the art consists of choosing the most appropriate

conditions on z{ z;.

290. Ewvaluation of the power series coefficients ci, and vectors z;. After expressing
the relations (A.195) and (A.196) with z; = >_}'_; Bjkek in (A.197) in terms of the
normalized eigenvectors x1,xs,..., 2, of the matrix A and taking the eigenvalue
equation Az = A\px) into account, we obtain the set of linear equations

1y = Zﬂlk (A — Ag) @i + Bag (A.198)

and, for 7 > 1,

n j—1

Tq= Zﬁjk (A — Ag) zp + Zﬁj—LkBa?k - Z Z Ci—kBrT (A.199)
=1 k=1

=1 k=1

in the unknown numbers {ci};>, and {Bjr};5, 5, As eigenvector scaling, we
choose ;4 = alzj = 2 zj = 0 for j > 1, which is computationally, the simplest
choice.

Pre-multiplying (A.198) with the vector 21, using Xz, = §,, yields

Clérq - Blr (>\r - >\q) + szxq
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In particular, if r = ¢, then
¢ = aquB:rq (A.200)

else,
' Bz,

ﬁlr = )\q — )\T

for r # ¢ (A.201)

The expression (A.201) emphasizes that the eigenvalue A, must be simple, which
is a basic limitation of the presented perturbation method. Hence, it follows from

(A.197) that z; = S0 Bupak = Zszl;k# %%f—fzxk + Bigq. With our eigenvector
scaling choice 31, = 0, we find the first order expansion in ¢,
N z}l Bz
z(Q)=24+¢ Zk:l;k;éq ﬁxk +0 (CQ)
A(C) = Ag +¢alBzy + 0 (¢?)

Pre-multiplying (A.199) with the vector 2 analogously leads, for j > 1, to

n J—1
¢i6rq = Bir (Ar = Ag) + Y Bj—1p@f Bry — Y ¢ kB
k=1 k=1

In particular, if r = ¢, then

n j—1
T
¢ = E Bj-1,kTy Bry — g Cj—kBrq
=1 k=1

else

1 j—1 n
Bjr = P {Z Cj—kBrr — Zﬁj—l,kszxk} for r # q (A.202)
T 9 (k=1 k=1

With our eigenvector scaling choice 8;4 = 0 for j > 1, the first recursive equation
in the coeflicients ¢ simplifies considerably to

¢ = i 5j71,k$qTB$k for j > 1 (A.203)
k=1;k#q
Substituting the explicit form of the coefficients ¢; in (A.203) into (A.202) yields
1 - -« T T
Bjr = PR l_IX;l:;éq {kz_lﬁkrﬁj—k—l,lzq Bz — Bj-1,1%, Bﬂ?l} for r # q

The scaling choice 8y; = d;4 and S, = 0 for j > 1 simplifies, for r # ¢, to a
recursion in §j,

B'fl;rxTBx 1 . 2
Bjr = =2 N, _q)\q 74 A Z Zﬁkrﬁj—k—l,lfﬂqTBIEl — Bj—1,2- By

9 1=1;12q (k=1 A )
.204

which can be iterated up to any desired integer value of j.
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398 FEigensystem of a matrix

For example, if j = 2, then (irrespective of the choice of scaling)

n n
T T
2= Pikae Box —cifig= Y Bl Buy

k=1 k=1;k#q

and

1 n
/827‘ = N — \ {Blrngmq - Zﬁlkx?Bmk} for r 7é q
r q k=1

Using (A.201) results in

n T 2
=3 (zi Bro)” (A.205)

hTigg 1T M
and
By = 1 n (m{qu) (angmT) B (xZqu) (ngqu) for r £ ¢
Ag — Ar b Tt Ag — M (Ag — Ar)
(A.206)
Moreover, we can use [32,, immediately in c3 = Zzzl;kiq szngCCk in (A.203),
n n n 2
o = ng:CT Z (szxq) (a:%B:ET) B Z (%TB%) (ngxq)
- — 2
r=lir#g Ag = Ar k=Lk#q Aq = Ak r=1;r#£q (Ag = Ar)
(A.207)

illustrating that, in general, the eigenvalue expansion (A.194) can always be com-
puted, with the same efforts, one order higher in ¢ than the eigenvector expansion
(A.193). Indeed, the coefficient ¢; in (A.203) only depends on §;_; ; and not on
Bjk as z; in (A.197).

If A\; = Ay is the largest eigenvalue of a symmetric matrix A, then we observe
that the coefficient ¢ in (A.205) is positive. Consequently, if ¢ is sufficiently small

so that the remainder of the series in (A.194) obeys ‘ZJO';3 cjgj‘ < (2, then the
first order perturbation A (¢) > Ay + ¢z Bz is a lower bound.
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11

Polynomials with real coefficients

The characteristic polynomial of real matrices possesses real coefficients. This chap-
ter aims to summarize general results on the location and determination of the zeros
of polynomials with mainly real coefficients. The operations here are assumed to
be performed over the set C of complex numbers. Restricting operations to other
subfields of C, such as the set Z of integers or finite fields (see e.g. Gilbert and
Nicholson (2004)), is omitted because, in that case, we need to enter an entirely
different and more complex area, which requires Galois theory, advanced group
theory and number theory. A general outline for the latter is found in Govers et al.
(2008). A nice introduction to Galois theory is written by Stewart (2004).

The study of polynomials belongs to one of the oldest researches in mathemat-
ics. The insolubility of the quintic, famously proved by Abel and extended by
Galois (see art. 291 and Govers et al. (2008) for more details and for the historical
context), shifted the root finding problem in polynomials from pure to numerical
analysis. Numerical methods as well as matrix method based on the companion
matrix (art. 242) are extensively treated by McNamee (2007), but omitted here.
A complex function theoretic approach, covering more recent results such as self-
inversive polynomials and extensions of Grace’s Theorem (art. 331), is presented
by Sheil-Small (2002) and by Milovanovi¢ et al. (1994) and Borwein and Erdélyi
(1995), who also list many polynomial inequalities. In addition, Milovanovié¢ et al.
(1994) treat polynomial extremal problems of the type: given that the absolute
value of a polynomial is bounded in some region of the complex plane, how large
can its derivative be in that region?

11.1 General properties

291. Definition of a polynomial. A fundamental theorem of algebra, first proved by
Gauss and later by Liouville (Titchmarsh, 1964, p. 118), states that any polynomial
of degree n has precisely n zeros in the complex plane. If these zeros coincide, we
count zeros according to their multiplicity. Thus, if there are | < n zeros and a zero
zr, has multiplicity my, then the fundamental theorem states that 22:1 mi = n.

401
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402 Polynomials with real coefficients

In the sequel, we represent zeros as if they are single, however, with the convention
that a coinciding zero z; with multiplicity my is counted my times.

Let p,,(z) denote a polynomial of degree n defined by

n n
pn(2) :Zak 2F =a, H(z—zk) (B.1)
k=0 k=1
where {2 }1<k<n is the set of n zeros and the coefficient ay, (for 0 < k < n) is a finite,
complex number. Moreover, we require that a, # 0, otherwise the polynomial is
not of degree n. If a,, = 1, which is an often used normalization, the polynomial is
called “monic”.

Once the set of zeros is known, the coefficients aj, can be computed by multiply-
ing out the product in (B.1). The other direction, the determination of the set of
zeros given the set of coefficients {ay} <)<, Proves to be much more challenging.
Abel and Galois have shown that only up to degree n = 4 explicit relations of
the zeros exist in terms of a finite number of elementary operations such as addi-
tions, subtractions, multiplications, divisions and radicals on the coefficients. The
solution of the cubic (n = 3) and quartic (n = 4) can be found, for example, in
Stewart (2004) and Milovanovi¢ et al. (1994). An important aspect of the theory
of polynomials thus lies in the determination of the set of zeros.

It follows immediately from (B.1) that p,(0) = ag = a,, [[_;(—2k), which shows
that the absolute value of any zero of a polynomial must be finite. If ag = 0, then
at least one zero must be zero and p, (z) = 2z™pp_m (2) for an integer m > 1.
Therefore, we often implicitly assume that ag # 0, otherwise the polynomial p,, (2)
can be trivially reduced to a lower degree polynomial. From (B.1), one readily

verifies that
1 n k n 1
2" pn (;) = kZ_Oan,k 2F = ag kl:[l (z — Z_k> (B.2)

Hence, the polynomial ZZ:O an—1 2 with the coefficients in the reverse order pos-
sesses as zeros the inverses of those of the original polynomial ZZ:O a2~
292. Polynomials with integer coefficients. If all the coefficients ay, of p, (z) =
n k . . ro. . . .
p—o @x2" are integers and if { = £ is a rational zero (i.e. r and s are integers and

coprime), then r|ag and s|a,. Indeed, rewriting p,, (£) =0 in (B.1) as,

n—1
r 2 CLkJrl’l"kS”_k_l _ —s”ao
k=0

shows that r divides the left-hand side and, hence, r|s™ag. Since the prime factor-
izations of r and s do not have a prime number in common because r and s are
coprime, r|s"ag implies that r|ag. The second statement follows analogously after
L) =0as a,r" = —s ZZ;S agrkst—1-k,

The zeros of a monic polynomial (i.e. a, = 1) with integer coefficients are called
algebraic numbers and play a fundamental role in algebraic number fields (see, e.g.,

rewriting p, (
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r

Govers et al. (2008)). Since the integer s in the zero § = £ of p, (z) must divide
an, = 1, it must equal one so that algebraic numbers cannot be rational numbers.
This fact was first observed by Gauss (1801, art. 11).

293. Irreducibility. While a polynomial p, (z) = Y__,ax2" with complex co-
efficients can be factored over the complex numbers C as in the definition (B.1),
confinement of its coefficients to rationals or integers generally also confines the
factorization. If all coefficients are rational, i.e. a; € Q, then by multiplying p, (2)
with the least common multiple of all denominators, a polynomial with integer co-
efficients is obtained with the same zeros. A polynomial p,, (z) is irreducible over
Q if pn (2) = gm (2) by (2) with n = m + [ cannot be factored into two polynomials
gm (2z) and h; (z) with integer coefficients. Irreducibility over Q means that a monic
pn (2) with a,, = 1 does not have rational zeros, but the converse is not true; e.g.
(22 — 2) (22 - 3) does not possess rational zeros, but it is reducible. There exist
criteria (e.g. due to Eisenstein and Perron) to test whether a polynomial p,, (2)
with integer coefficients is irreducible.

Irreducibility over Z occurs if n—1 zeros of a monic polynomial p,, (z) with integer
coefficients and a,, = 1, a9 # 0 are, in absolute value, smaller than 1. In that case,
the definition (B.1) shows that p,(z) = (2 — 21) [[4_o(2z — 2) where |z1| > 1 >
20| > |23] > |2nl, but gn_1 (2) = [T}—y(2—2x) = 33—y brz" cannot be a polynomial
with integer coefficients b, € Z, because 0 < [g,—1(0)] = |bo|] = [[j_sl2k] < 1
and by ¢ Z. This fact, combined with Perron’s Theorem 85, shows that a monic
polynomial p, (2) = >_)_, axz" is irreducible over Z if its integer coefficients obey
S iZZlak] +1 < |an_1| or, by Theorem 86, if either p,, (% (ZZ;S lak| + 1)) <0

or (=1)" pn (_% ( Z;S lag| + 1)) < 0 holds. Perron (1907) derives several other,
but more complicated irreducibility criteria.
Eisenstein’s criterion, proved in Gilbert and Nicholson (2004, p. 194), is

Theorem 81 (Eisenstein) If the coefficients ax of pn (2) = Y 1_o arz® are in-
tegers and if all the following conditions hold for some prime p: (i) play for all
0<k<mn, (i) pta, and (iii) p* | ag, then the polynomial p, (2) is irreducible
over Q.

For example, 2° — 2 and 223 4+ 9z — 3 are irreducible over the rational numbers
and do not possess rational zeros.

294. Newton identities. The Newton identities are a recursive set of equations that
relate the coefficients ay of a polynomial p, (2) = >_,_, axz" to sums of integer
powers j € [1,n]

Zj=> 4 (B.3)
k=1

of the zeros z1, 22, ..., zn of p, (2).
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404 Polynomials with real coefficients

Theorem 82 (Newton) For any polynomial defined by (B.1), the coefficients, for
1 <1 < n, satisfy the recursion

Proof: The logarithmic derivative dlogd—zn(z) of (B.1) is

n

1
Palz) = pa(2) Y — (B.5)
k=1 k
For z > maxy z;, we can expand Zka = T jz_k) = % ;-’10 z—é in a geometric

series py,(2) = pul2) D1 X je0 % = pa(2) 2720 Z—iﬁ, where the summations
can always be reversed for polynomials (finite n), but not for functions. Introducing
the series representation in (B.1) of p,, (z) yields

n n o0 (o] n
Zkak 2k = Zak szijfj = ZZak ijkfj (B.6)
k=1 k=0 §=0 §=0 k=0

Let | = k — j, then —oo <[ <mn. Also j = k —1 > 0 such that & > [. Combined
with 0 < k < n, we have max(0,!) < k < n. Thus,

o0 n n n
S anzi =3 Y anZed

j=0 k=0 l=—o00 k=max(l,0)
0 n n o n
= Z Z ak Zp—12' + Z Z ax Z—12"
l=—00 k=0 =1 k=l

Equating the corresponding powers of z in (B.6) and using Zy = n yields

> k0 Zk—1 =0 1<0
ZZ:Z+1 ap Zp—1=(l—m)ay 1<I<n

The first set of equations, equivalent for ¢ > 0to 0 = >"}'_ ak Zktq = Y _jq 21 Pn (1)
are trivial, because p,, (z;) = 0. Newton’s theorem thus follows from the second set
of equations. O

By rewriting the Newton identities (B.4) as
1 =
Zj = T (janj + ;amnﬂ' Zk> (B.7)

we obtain, for 1 < j < n, a recursion that expresses the positive powers Z; of the
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11.1 General properties 405

zeros in terms of the coefficients ay. Explicitly for the first few Z;,

n

Zi=Y z=-"7 (B.8)

=1 Qp
n 2
o 2 an—1 2an72
= 2, = 5 —
— a’n an
n 3
Ze = 3 Op_1 30n_20n_1 3an-3
3 = E Zp = — 3 + B —
a3l a? an,

n

n n—1 4an,2a%,1 2@%,2 +4a,—3a,-1 Qp—4

Zy = E = 3 + 2 —4
a, ay, ap, Qn

Applying (B.8) to the polynomial 2" p,, (1) = 3"}'_ an—x 2* with the coefficients
in reverse order (art. 291) gives

n
1 ai
2= T e

=1 k 0

n
7 1 a?  2as
S S
k=1 "k 0 0

When changing the coefficients a; — a,,—; and Z; — Z_j, in the Newton identities
(B.4) according to (B.2), we obtain

n—l

1
A n—l Z Qn—k L_jy1 = _lzan—l—kz—k

k=141 k=1

After letting m = n—1, we find, for 0 < m < n, the appealing form'® of the recursion
for the sum of inverse powers of zeros,

m
Mgy, = — Z Ot Z_1; (B.9)
k=1
= *am—lz—l - am,—ZZ—Z e T aOZ—m
The inverse powers Z_,, Zk : z’” and thus also the positive powers Z,, after

changing a; — a,_; can be exphc1t1y expressed for m > 1 as

m o 4Nk
Z _m :mZ%s[kz,m]

— k ag

where s[k, m] is the characteristic coefficient (Van Mieghem, 1996),

k
slk,m] = Z H aj;, (B.10)

Sk Gi=msgi>01=1

L If a polynomial is defined as pn(2) = 3p_o an—sk z* rather than our standard definition (B.1),
then the Newton identities appear in this easier form.
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406 Polynomials with real coefficients

If all zeros {2z}, <, are real and positive, the harmonic, geometric and arith-
metic mean inequality (6.38) shows that

from which we find “2=14L > p?

Finally, the Newton 1dent1tles (B.4) are linear equations that express the co-
efficients aj of a polynomial p, (z) in terms of sums of powers Z; of zeros and
illustrate that the set {Z;},_,,, suffices to determine the coefficients {ax},<;<,
uniquely and, hence, the polynomial p,, (z). The trace formula (A.118) relates Z; =
trace (Aj), where the zero z, equals the eigenvalue Ay of the n x n matrix A.

295. The problem of finding the zeros z, from the coefficients {ay}<j, and
the set {Z Yo<j<n is difficult. However, from Z; = Yoz =—=Land Z_; =

Zk 137 = Z—;, two zeros z; and z9 can be determined in terms of the others.

Lemma 14 Both A = —%2=1 — %" .2, and B = - - b3 5 determine the
- -

zeros

A / 4 A 4
z1:§<1+ 1—E> and21:5<1— 1—5)

in terms of the other n — 2 zeros and the coefficient ratios a;” and Z—(l)
n

Proof: Let A = — > gzkand B=—% -3 . 7 then it holds that
= B. Thus,
the product is z120 = %, while the sum is z; + 20 = A, leading to the quadratic

equation z? — Az + % = 0, with solution z; 9 = % (A +4/A2 - 4%). O

296. Vieta’s formulae express the coefficients ay of p, (2) explicitly in terms of its
zeros {2 f1<k<n-

z1 +20 = A and 2_1 —I— 2—2 = B. The last equatlon is rewritten as e

Theorem 83 (Vieta) For any polynomial defined by (B.1), it holds, for 0 < k < n,
that

n n—=k

Z_: =Ry DL > II = (Jo=0) (B.11)

Ji=1j2=71+1 Jn—k=Jn—k—1+1 =1
n—=k
_ n—k
=(-1) Y 11 = (B.12)
1<j1 <2< <jn—r<n i=1

Proof: The proof is based on the principle of induction. Relation (B.11) is
verified for n = 2. Assume that it holds for n > 2. Consider now the polynomial
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11.1 General properties 407

of degree n + 1 whose zeros are precisely those of p,(z), thus zx(n+ 1) = z(n) for
1 < k < n with the addition of the n + 1-th zero, z,4+1(n + 1). Hence,

n+1

Prt1(2) = (z— zpp1(n+1))p Zak 1 zk —Zzn+1(n+1)ak(n) 2k
k=0
n

= —zpr1(n+ 1)a0(n)+2[ak_1(n) —Zpi1(n 4 Dag(n)] 2" +a, (n) 2"
k=1

from which the recursion
ar(n+1) =agp_1(n) — zpt1(n+ 1) ag(n)

is immediate. Since the coefficient of the highest power in (B.11) equals unity,
by definition thus a,(n) = a,+1(n+ 1) = 1, and since the constant term indeed
reflects (—1)"*! times the product of all n+ 1 zeros, we only have to verify for the
coefficients ax(n+1) with 1 < k < n whether (B.11) satisfies the recursion relation.
Substitution yields

n+l—~k

ag(n+1) = (=1)"H* Z Z > II =0

ji=1ja=j1+1 Jn+1—k=Jn—kr+1 =1
—k

_(_1)n7k Z Z Z H zj,(n) Zny1(n+1)

Jj1=1j2=j1+1 Jn—k=Jn-k-1+1 i=1

3

Distributing the product of zeros over the sums and using zx(n + 1) = zx(n) for
1 <k <nleads to

ar(n+1) = (D)"Y "2 e+ 1) >zt D) Y 2 (04 1)
ji=1 J2=j1+1 Jn—k=Jn—k—1+1

n

Y Zeaa D) Fzn(n 1)
jn+17k:jn7k+1
n+1

= (- 1"+1kZzJ1n+1 Zz]nkn+122jn+lkn+l)

ji=1 In—k=Jn—k—1+1 Jn+1 k=Jn—k+1

Since Zzza f(k) =0if a > b, the last relation equals (B.11) when n is replaced by
n+ 1. (]

In case z(n) = 1 for all k, we have p,(z) = (z—1)" = Y"1 (7)(=1)" 7% 2" from
which the simple check

S 0 Y di=nm-D (k)K= (Z)
J1=1j2=j1+1 Jn—k=Jn—k—1+1

follows, because only one ordering of {j;} out of k! is allowed. Hence, the mul-
tiple sum in (B.11) consists of (}) terms. Applying (B.11) to (B.2) yields, after
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408 Polynomials with real coefficients

substitution of m = n — k, the following alternative expression:

I S DRI DI | (B.13)

j1=1jo=j1+1  jm=fm—1+li=1 "J¢

Finally, if the multiplicity of the zeros is known, then the polynomial can be
written as
1

oI "

Using Newton’s binomium (z — z;,)™"* = 37 (m’“) (—2)’ ™I expansion of the
product yields

ma my
Pn (Z) = an Z (ml) (—z < ) (ml) (_Zl)]l Z’n—2§€=1jk
Jj1=0 J1 J2 —O 1= 0 Ji

where we have used 22:1 m; =n in art. 291. Let g = 22:1 Jji, then

IREEEN 3 DS H(m) (2 =1

a=0 b1 dk=qjk >0 k=1

from which the coefficient a, follows as

G= ()" a3 H()

S k=i >0 k=1

The last sum is an instance of a characteristic coefficient (B.10) of a complex func-
tion, first defined in Van Mieghem (1996) and different in form than (B.11).

297. The elementary symmetric polynomials of degree k in n variables z1, 22, ..., 2,
are defined by

(_1)n_k An—k

er (21,22, ...y 2n) = p
n

where “2= is given in either (B.11) or (B.12). We define e (21, 22, ..., 2,) = (—1)".
By Vleta s Theorem 83, any polynomial p,, (2) = Y p_gar 2% =3 j_oan_r 2" % in

(B.1) can be expressed in terms of elementary symmetric polynomials as

n

pn (2) = ap, Z (—1)F en_ (21,22, . ., 2n) 2"

k=0

which is verified by multiplying out p,(z) = ay, [[;_;(z — 2x), or easier, p,(—z) =
(=1)"an [1i—;(z + 2x). For example, for n =1,

el (Zl) =zZ1
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11.1 General properties 409

for n = 2,
el (21, 2’2) =21 + 29
€2 (21322) = Z1%22
for n = 3,
e1(z1,22,23) = 21 + 22 + 23
e (21, 22,23) = 2122 + 2123 + 2223
e3 (21,22, 23) = 212223
for n = 4,
e1(21,22,23,24) = 21 + 22+ 23 + 24
ea (21,22, 23, 24) = 2122 + 2123 + 2124 + 2223 + 2224 + 2324
es (21,22, 23, 24) = 212223 + 212224 + 212324 + 222324
eq (21, 22, 23, 24) = 212272324

For each positive integer £ < n, there exists exactly one elementary symmetric
polynomial ey (21, 22, . .., 2, ) of degree k in n variables, which is formed by the sum
of all different products of k-tuples of the n variables. Since each such a product
H?:1 zj is commutative, all linear combinations of products of the elementary
symmetric polynomials constitute a commutative ring, which lies at the basis of
Galois theory. For example, it can be shown that any symmetric polynomial in n
variables can be expressed in a unique way in terms of the elementary symmetric
polynomials ey (21, 22, ...,2,) for 1 <k <mn.

298. Discriminant of a polynomial. The discriminant of a polynomial p,, (z) is
defined for n > 2 as

A(pn) = ap > H (2j — 2)? (B.14)
1<k<j<n

with the convention that A (p;) = 1. In view of (A.77), the discriminant can be
written in terms of the Vandermonde determinant as

A (py) = a®"72 (det V,, (z))2 (B.15)

where z = (21, 22, ..., 2,) is the vector of the zeros of p, (z). The definition (B.14)
of the discriminant shows that A (p,) = 0 when at least one zero has a multiplicity
larger than 1. In order words, A (p,,) # 0 if and only if all zeros of p,, (z) are simple
or distinct.

Since the discriminant is a symmetric polynomial in the zeros and any symmetric
polynomial can be expressed in a unique way in terms of the elementary symmetric
polynomials (art. 297), the discriminant can also be expressed in terms of the
coefficients of the polynomial. For example, for n = 2, we obtain the well-known
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410 Polynomials with real coefficients
discriminant of the quadratic polynomial p; (2) = az? + bz + c as
A (p2) = b* — 4dac
The discriminant of the cubic p3 (z) = az® + b2? +cz +d is
A (p3) = b*? — dac® — 4b*d — 27ad? + 18abed

299. Discriminant and the derivative of a polynomial. The logarithmic derivative
of the polynomial p, (z) in (B.5) shows that

hE=ad [[ -2

Evaluated at a zero z,, of p, (z) gives

n m—1 n

phn)=an [ Gu-z)=a(=0"" ] G-z [ Gu—2)

j=lij#m j=lij#m j=m+1
n(n 1) n 9
from which we obtain H pn (zm) = a? Hm 1Hg m+1 2j — Zm) .
By invoking the definition (B.14) of the dlscrlmmant, we arrive at
n(n 1)
A (pn) = (_ Hp” Zrn (B16)

which shows that, if the discriminant is non-zero, the derivative p/, (z) has all its
zeros different from the simple zeros of p,, (z). In cases where a differential equation
for a set of polynomials is known, such as for most orthogonal polynomials, the
relation (B.16) can be used to express the discriminant in closed form as shown in
Milovanovié et al. (1994, p.67).

11.2 Transforming polynomials

300. Linear transformation. Any polynomial
Qn Z b ZJ - bn (Z - yk)

where b,, # 0 can be reduced by a linear transformation z = z+ ¢ into a polynomial
Pn (@) =30, arz®, where the coefficient a,,_1 of 2"~ is zero. Indeed,

n (v +¢) :]iobj (z+c) Zn:bji:<) ’“cj—’fzzn: Zn:bj@)cj—’f "

k=0 \ j=k

= bpa" + (bp_1 +nbpc) a1 ..+ ijcj
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11.2 Transforming polynomials 411

shows that, if ¢ = —2=1_ the polynomial Pn () = qn (x + ¢) possesses a zero
coefficient of "1, thus an 1 = 0. Clearly, a linear transform shifts the zeros
{Yk }1<r<n Of @n (2) to the zeros {yr — ¢}, <1<, Of Dn (2). The sum of zeros of p, (2)
is zero by (B.8) such that c is the mean of the zeros of ¢, (2). Hence7 without loss
of generality, any polynomial g, (z) can be first transformed by z = x + ¢ with
c= _b”T:: into the polynomial p,, (z), where a, = Z] kb (k)cj % and a,,_; = 0.

The Newton identity Zo = S 7_, (yx — ¢)* = —2aa"n 2 shows that the real coeffi-
cients a,—»2 and a, of a real polynomial p,, (z), where a,,_1 = 0, must have opposite
signs if all zeros are real.

301. Mobius transform or linear fractional transform. The Mobius transform or

+b
crtd>
point in the w-plane, is the only univalent? transform in the whole finite plane
(Markushevich, 1985, Vol. II, p.116). The Mobius conformal mapping w = %;j
and z = i—z transforms the right-half complex plane Re (z) > 0 into the unit circle

|w| < 1. For, let z = re'?, then

. i0+1n r _i6+4Inr7 i10+1n r
1— ezQ-HU r e 2 e 2 — e 2 Inr + 0
= —tanh [ —

linear fractional transform f(z) = that maps a point in the z-plane to a

w= 1+ eif+Inr = ei€+21n7‘ (e_ i€+21n7‘ +ei€+21n7‘) 2

which can also be written as

coshlnr — cos@ in g
w = 4 COSIMT — COSU i(arctan( i ) +7)
coshlnr + cosf

If r =1, then w =1 tan , which shows that a point z on the unit circle is mapped

into a point w on the i 1mag1nary axis (and vice versa). If Re () <0 or 6 € (%,3F),

then cosf < 0 and |w| = ,/% > 1, while, if Re(z) > 0or 6 € (—5,5)
and cos@ > 0, then |w| < 1.
If all zeros of p,, (2) lie in the Re () > 0 - plane and similarly, all zeros of p,, (—z)

lie in the left-half complex plane, then all zeros of p, }1—3) lie inside the unit circle

|w| < 1. The function?

1—w — ne
k=0
has the same (finite) zeros as the polynomial

G (W) =Y a (L+w)" " (1 —w)
k=0

2 A single-valued function f (2) is univalent (schlicht or simple) on a domain D if f () is analytic
in D, except possibly at simple poles, and if f (z) takes distinct value at distinct points of D,
ie. f(z1) # f(22) for z1 # 21 and 21,22 € D.

1—

- 1+$

S (Z7o (-1 Tizoar (1R () (W75)) wr.

3 Al zeros of opn lie outside the wunit circle and w"gn (w_l) =
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412 Polynomials with real coefficients

Newton’s binomium and the Cauchy product give

o= S ()

m=0 j=0
such that the polynomial ¢, (w) = ZZ:O bmw™ has coefficients
=S () () S B
- : m— ] mkWk
7=0 k=0 k=0

Defining B, = Z;.":O(—l)j (I;) (::L_fj) as matrix elements of the (n +1) x (n+ 1)

matrix B allows us to write the coefficient vector b in terms of the coefficient vector
a as b = Ba. Since ¢, (1) = ag 2™, which is, for any set of coeflicients ag, equivalent

to
N b= 3 (1) I;)ak, (f) (;_i) — 2"aq

m=0 m=0 j=0

we find, by equating corresponding coefficients a; that

DRIl (4] (A EESTAES Sy

Hence, the sums over the columns of B are zero, except for the zeroth column k = 0.

Let us consider the inverse transform w = %_T_z in pn (i _7_;”}) = (‘173_(5)%,
P () =27 (14 2)" g (1o
where
1=z —Xn:b L=\ (1+2)" Zb (1+2)"""1-2)m
m\1+z) - &"\1+2
m=0
=(1+2)"" Z Cm 2™
m=0
Since by = Yo (1) S g
ince by = > (—1)" X240 aq (1) (W=1), the coefficient c,, is
m ) n k n— k/‘
Cm = —1)7 bi | . .
e (5) ()
j=
m n k n q n—gq k n—k
_ l - -
Sy (zersa () (20) 06)
§=0 k=0 \1=0 q=0


https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core

11.2 Transforming polynomials 413

Thus, p, (2) = 27" Y 2™ and since p, (z2) = Y o am 2™, we must have

that a,, =2 "¢, is

=S (s ()(20) (S () (25)

After equating corresponding coefficients a,,, we find

2 (E 062) (2 ()62) -

k=0 \ j=0

In terms of the matrix elements By, = Y " o(—1)! (’j) (:;;_’3.), we observe that

n
> BukBrg = 2"5qm
k=0
Hence, the matrix B? = 271.
If all zeros of g, (w) lie inside the unit circle, then the sequence of the power sums
Z;=>7_1 zi is strictly decreasing in j. Art. 333 below gives another check. In
addition, the sum of the inverses of the zeros w1, ws, ..., w, of ¢, (w) is (art. 294)

Lo b e
Wk

bo ZZ:O ak
d n 1—
e e (2, W
=— =-n
Pn (1) pn (1)

302. Moébius tmnsform of an even polynomial. Consider an even polynomial
Ton (2) = Y p—o G2k 2%%. Conformal mapping w = I_z 1+ Y leads to

1 —w —2n 2n 2k 2%k 1 —w
E 1— — 7o, I,
Ton (1 ) a2k; + w ( ’LU) Ton 1 w

0 ()

where
2n
t27l Z bm
with coefficients by, = Y27, (—1)7 2o4_¢ azk (2;9) (%;:3&). The inverse transform
w = 7? applied to ra, (1+ ) = (1+w) " ta, (w) gives

—om , 1-2 —om, 1+z2
Ton (2) =2 2 (1+z)2"t2n(1+z> =922 (1z)2nt2n(1_z)
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414 Polynomials with real coefficients

where the latter follows from ry, (2) = ra, (—z). Explicitly, we have that

2n 1-2 s« m 2n—m
(14 2) tgn(Hz) Zb —2)™ (1 +2)

and

2n 1+Z * n—m 2n—
(1-2) t2n<1—z) Zb (1—2)? (1+2)™ ZbZn m(1=2)7 (14 2)"1

Equating corresponding powers in (1 —2)" (14 2)" = (1 - 22)m shows that the
coeflicients b}, are symmetric around b,

b*

m — b2n7m

Thus,

2
U}2nt2n <_> Z b’m Z an mW M= XH: b;wq = t2n (U})
q=0

or, in symmetric form?, w™tay, (%) = w™ "ty, (w). Hence, if the polynomial t5,, (w)
does not have a zero inside (and thus also outside) the unit circle, all 2n zeros of
ton, (w) must lie on the unit circle, which is equivalent to the fact that all zeros of
Ton (2) lie on the imaginary axis.

On the other hand, we can write

n—1 n—1
ton (w § bhw™ + § b w™ = > bR w™ b Y bw T
m=0 m=n+1 m=0 m=0

n—1
n (b:z + Z b:@ (wm—n +wn—m)>
m=0

Let w = 7€', then with w™~" 4+ w"~™ = 2cosh ((n — m) (Inr + i6)), we have

w gy, (w) = b + 2 Z b i cosh (k (Inr + i6))
k=1

If r=1andif by, < 2b},,; <205 <--- < 2b5,, then

e—in9t2n (e'm) = b;kL +2 Z b;Jrk CO8 (ke)
k=1

has 2n distinct real roots in the interval 0 < # < 27, and no imaginary roots at all.
The proof is given in Markushevich (1985, Vol. II, pp. 50-52).

4 Polynomials py, (2) with complex coefficients that satisfy S F_garz® = S 7_g (an—x)* 2%,
equivalent to pn (2) = (2"pn (zil))* are called self-inversive and discussed in Sheil-Small
(2002, Chapter 7).


https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core

11.8 Interpolation 415

11.3 Interpolation

303. Lagrange interpolation. Interpolation consists of constructing a polynomial
that passes through a set of n distinct points, defined by their finite, possibly com-
plex, coordinates (z;,y;) for 1 < j < n. In many cases, each ordinate y; = f (z;)
is a known value at x; of a function f (x), that we want to approximate by a poly-
nomial. Lagrange has developed a convenient way to construct an “interpolating”
polynomial.

We start by considering the polynomial of degree n,

Fof@) =] @) (B.17)

Clearly, 52(::;3 = H;L:h j2 (€ — ;) is a polynomial of degree n — 1 and, since
F, (zx) = 0, we have that
Fn . Fn B Fn .
lim (z) = lim Fn (@) = Fo (4) =F) (zg) = H (xg — z5) (B.18)
T—Tr T — Tk T—Tk r — X =1tk X

Since all xj, are distinct, xj, is a simple zero of F,, (x) such that F) (x) # 0. The
polynomial of degree n — 1,

F, (x) Hn T —Tj
B . [ L S — 1
b1 (@;2%) (x — i) F), (1) j=tijk TR T o

possesses the interesting property that, at any of the abscissae x1,a,...,Z,, it
vanishes, except at © = x, where it is one. Thus, with Kronecker’s delta dy;, it
holds that

ln—1(xj; 1) = Oy

Lagrange observed that the polynomial of degree n — 1,
n
Pn-1 (33) = Zyjln—l (.7), xj) (BZO)
j=1

passes through all n points {(z;,y;)},;<,, satisfying pn—1 (z;) =y; for 1 <j <n.
The polynomial (B.20) is called the Lagrange interpolation polynomial correspond-
ing to the set of n points {(z;,y;)}, <<,

The Lagrange polynomial (B.20) is unique. Indeed, assume that there is another
polynomial ¢,,_1 (z) that passes through the same set of n points. Then p,_; () —
gn—1 () is again a polynomial of degree n — 1 that possesses n zeros at z; for
1 < j < n, which is impossible (art. 291). Hence, p,—1 () = ¢n—1 (x), which
establishes the uniqueness.

If the function f () that generates the set of n ordinate values {y; = f (;)}, <,
is a polynomial of degree r, then the Lagrange polynomial (B.20) returns precisely
that polynomial f (x) provided that m > r 4+ 1. This property follows, similarly
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416 Polynomials with real coefficients

as the argument above, by considering the difference polynomial f (x) — p,—1 (),
which is zero at the n different abscissa points {z;}, <i<n: Hence, using more
(different) sampling points than r 4+ 1 to determine a polynomial f (z) of degree r
cannot lead to a Lagrange polynomial of a higher degree than r. On the other hand,
using more information than necessary does not degrade the Lagrange polynomial
Pn—1 (z) in the sense that p,_1 (z) is still precisely equal to f (). This property
can be useful when we possess a set of n distinct points {(z;, f (z;))},<;,, of which
it is unknown whether f (z) is a polynomial. If f (z) is a polynomial of degree r,
then after generating more than n > r+ 1 function evaluations, the Lagrange poly-
nomial does not change anymore and we may conclude that f (x) is a polynomial of
degree r. Otherwise, the degree of the Lagrange polynomial p,,_; (z) will continue
to increase with n.

304. Approximating a function by a polynomial. Given the set {xj}lgjgn of dif-
ferent abscissae lying in the interval [a, b] and ordered b > z1 > zo > -+ > x,, > a,
the goodness of the approximation of f (z) by the Lagrange polynomial p,_1 (z)
is usually measured by the maximum deviation maxg<g<p |f (x) — pn—1 (x)] for in-
creasing n > 0, while the remainder is r,, () = f (z) — pp—1 (z). From (B.20), we
deduce that

n

max |f (z) —pu—1 (2)] = max Y (f (&) = ;) b1 (z32;)

a<lzx<b a<z<b |4
<a< 25| 2
n
s 5 )] s, Y s (a5,
< oy, If (@) = £ (o) o2, Dl (@:25)
J=

and the definition (B.19) shows that Z?Zl [ln—1 (z;2;)| is independent of the func-
tion f(x). The smaller max,<z<yp Z?:1 [ln—1 (z;2;)|, the better the sequence of
Lagrange interpolating polynomials at the set {z;}, <j<n approximates the func-
tion f (z) uniformly over [gL(,mb] .a)Often, the interval [a, b] is transformed to [—1, 1] by

the linear transformation === —1. Finding the best set {z;},;,, in [-1,1] that

minimizes max_i<z<1 Z?Zl [ln—1 (z;2;)| seems a difficult, open problem (Rivlin,
1974), although the set that minimizes max_1<,<1 )7 In_1 (z;25) is known®.
Erdds (1961) demonstrates® that there exists a positive real constant ¢ such that
max_i<z<i 27:1 lln—1 (z;2;)] > 2logn — c, for any set {j}i<j<n- Consequently,

given the set {z;},_,.,, when n — oo, there exists a continuous function f () on

5 Rivlin (1974, p. 52) mentions that this optimal set {xj}1<j<n consists of zeros of le P,—1 (t) dt,
where Py, (z) is the n-th Legendre polynomial, for which max_;<;<1 2?21 1721—1 (z525) = 1.
6 Rivlin (1974, p. 18) proves that, with the Euler constant v = 0.5772,

2 2 8 n 2
21 Z(1og= E Lp—1 (z;25)] < =1 1
wan+ﬂ<Ogﬂ+’y><*lrg%cX§1j_l|n 1(x,m])|_ﬂ_ogn+

where each point z; in the set {xj}1<j<n is a zero of the Chebyshev polynomial Ty, (z) =
cos (narccos x).
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11.8 Interpolation 417

[—1,1] for which the Lagrange polynomial (B.20) does not converge uniformly to
7 (@).

Hermite interpolation requires that the interpolating polynomial hg,_1 (z) of
degree 2n — 1 satisfies, besides the function values y; = han—1 (z;) at x;, also the
first derivative y; = hy,_; (z;) for each 1 < j <n, so that

o (2) = ; Lo (1- BB - a)) o) -0 s (s

Whereas Lagrange interpolation failed, Rivlin (1974, p. 27) demonstrates that Her-
mite interpolation at the zeros of the Chebyshev polynomial leads to a sequence of

polynomials that converges to the function f (z). Consequently, Hermite interpo-
lation also proves Weierstrass’s famous approximation theorem:

Theorem 84 (Weierstrass’s approximation theorem) For any continuous
real-valued function f (z), defined on the real interval [a,b], and for every e > 0,
there exists a polynomial p (x) such that |f (z) —p(x)| <€, for all x € [a, b].

n

Also Bernstein polynomials by, ,, (z) = (k)xk (1—=z
k € [0,n] provide a constructive proof of Weierstrass’s approximation theorem.
Indeed, it can be shown that the polynomial Y )_ f (%) bk () converges to f (x)
uniformly for any = € [0,1].

Since pp—1 (xj) = f (z;) for 1 < j < n, the remainder r,, (z) = f(x) — pp—1 (x)
is zero at each interpolation point x; and we can write with the definition (B.17)
of F,, (z) that

)" % of degree n and integer

(€)= Fo (2) g (2)

where g () is a function related to f (z). Consider the auxiliary function

wy (t) = f () —pn—1 (t) = Fr (t) 9 ()

which is zero at ¢ = z; for 1 < j < n and also, by definition of the remainder
rn(y), at t =y. If y € [a,b] and y # z;, then wy (¢) has at least n + 1 different
zeros in [a, b], d—wd@ has at least n zeros lying in between those of wy (t) since the
interpolation points and y are different, and so on. Thus, dn;‘;i(t)
zero ¢ lying inside the interval (x,,, 1) and satisfying

d"wy (t)
dtr

has at least one

=0 & fM(E-nlg(y) =0
t=¢
In summary, assuming that f has continuous derivatives up to order n in [a, b], we
arrive at the Lagrange interpolating polynomial with remainder
n
F, (x (n)
f@) =Y e e+ R @ (B21)

= (v — k) F}, (x1) n!

where z, <& < z;.
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418 Polynomials with real coefficients

The error 7, (z) = f(x) — hap—1 () of Hermite interpolation is zero at each
interpolation point x; and each zero has multiplicity two because both f (x;) =
hon—1 (zj) and f'(z;) = hb,_, (z;) so that 7, (z) = F2(x)g(z). By a similar
argument that led to (B.21), the Hermite interpolating polynomial with remainder
is

e ©)

f (@) = han—1 () + WE% (x) (B.22)

305. Lagrange interpolation and the Vandermonde matriz. There is a notewor-
thy relation with the Vandermonde matrix (art. 224), when we write the set of
equations, y; = p,—1 (x;) for 1 < j < n, using p,—1 (z) = ZZ;S apz®, as

aop + ar1wy + azx? + ...+ an,1x71“1 =

aop + ai1wy + a3 + ...+ an,1x72“1 =1y

2 -1 _
ag + a1Tp + a2x; + ...+ ap_1Ty = Yn

which is
1 n—1
T  xy T ao Y1
n—1
1 zo x5 T4 ai Y2
2 -1
1 =z, =z Ty Ap_1 Un

In matrix form, the interpolation problem becomes V,, (z)a = y, where the co-

efficient vector a = (ag,a1,...,a,—1) is transformed to the ordinate vector y =
(y1,Y2,---,Yn) by the Vandermonde matrix V,, (z) of the abscissa vector z =
(x1,22,...,2,). Using Cramer’s rule (art. 220), the coefficient aj, reads
1 e miﬂiQ y1 x’f e :L"’f’71
ap —
detViI'(z) | © SR :
1o zh=2 oy, ak o ap!

After expanding the determinant in cofactors of the k-th column (art. 212) and
recalling that cofactor,,;V, (z) = cofactorym, V, (z), we find

1 n
ay = m mZ::l Yymeofactory,, V;, (z) (B.23)

The coefficient vector a can be found after multiplying out the product of I,,_1 (x; )
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11.8 Interpolation 419

n (B.19). Let”

n

H (x — z;) Zbk (B.24)

Jj=Lj#m
and introduction into the Lagrange polynomial (B.20) results in

Pn— 1 Z Ym — Zbk

J 11]757’”( m

Equating corresponding powers of = in p,_1 (z) = Z:;S arz® and the above form
yields

n

Ym
m=1 H;'lzl;j#m (l'm - xj)

Combining (B.23) and (B.25) leads to an explicit expression for the cofactor of the
Vandermonde matrix,

cofactory,, Vy, (z) bi (m) (B.26)

det V;, () j=1jm @m = z5)

306. Newton interpolation. Before Lagrange, Newton has proposed to construct
the interpolating polynomial passing through n different points {(z;,;)}, <j<n
based on Newton polynomials of degree 7, o

v) =[] (@ - ) (B.27)
k=1

where ng (z) = 1, ny (z) = ¢ — x1, and so on. With the definition (B.17) of F, (z),
we recognize that n; (z) = F; (z) and that Fj (z,,) = 0 if j > m. Similarly as the
Lagrange polynomial (B.20), the Newton interpolating polynomial is

Pn—1(z) = Z arFy (x) (B.28)

7 After relabeling the set zj=xjfor 1<j<m-—1and z; =z;41 for m <j<n—1, we write

n

n—1 n—1
H (x —zj) = H(m—zj):Zbk(m z*
j=1 k=0

j=lij#m
and by using Vieta’s Theorem 83, we have

n—1 n—1—k

n—1 n—1
b (m) = (D"t N S > II = (jo = 0)

J1=1j2=j1+1 In—1—k=Jn—k—2+1 i=1

Thus, by (m) is equal to the elementary symmetric polynomial of degree k in n — 1 variables
21,22, .., 2n (art. 297).
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where the coefficients aj can be found from the relation that p,_i (z;) = yj;, so
that, for 1 < j <mn,

n—1 j—1
yi = axFi(z;) =Y apFy (z;) (B.29)
k=0 k=0
Explicitly, executing the relation p,_1 (z;) = y; for all n coordinates leads to a set
of linear equations that determine ag,aq,...,a,_1 as
1 0 0 e 0 ao N
1 (332 — .131) 0 s 0 aj Y2
1 (zp—21) (2p—21)(@p—22) - [[12) (@0 — 1) An—1 Un

Y3—Ys _ ¥2-y1

, g = =322 22" whijch is also written
r3—T1

— Y2—y1
Tra—x1’

Hence, we find that ag = y1, a1 =
as

Y1 Y2 Y3
(@1 —32) (21 —23) (22— a1) (22— 23) (23 —21) (23 — 32)

a9 =

By iterating (B.29) further, we observe that

Jj+1 J+1

Yk Yk
@ = 1 =) = (B.30)
kzzl irj_ 1ym#k ( xm) ;CX: FJI+1 ( )

where (B.18) has been used. Indeed, substitution of (B.30) into (B.29) justifies the
correctness of (B.30),

n—1 k+1

=Y S S S, Bt sy, Y S )

F_ . (z
k=0m=1" k+1 m k=1m=1 m=1 k=m

Since Fjy_1 (z;) = | (xj —x4), it holds that Fjr_;(z;) = 0if & > j + 1.

q=1
Also, Fy—1 (x;) = H;n:l (x; — xq) Hl;;ln“ (xj — xq) illustrates that, if j < m, then
Fy_1(z;) =0. Hence, k = j =m and
Fr_1(z; Fy
B () _ lim (@) =1(z;;z;) =1

Fi(zy)  e—ey (z—xj) FY ()

The expression (B.30) for a; is called the divided difference of (y1,vy2,--.,yj+1)
and denoted as a; = [y1,¥2, - - -,Yj+1]. The divided difference possesses interesting
recursive properties, such as

[y27' .. ayj-i-l] - [ylay27 cee 7y_]]
Tj+1 —T1

[3/172/27 v 7yj+1}

similar to forward and backward differences, for which we refer to Lanczos (1988).
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11.8 Interpolation 421

In conclusion, the Newton interpolating polynomial that passes through the n points
{(zj, )} 1<j<p I8

n—1 k+1
Pt (@) =) Z ——— ¢ Fy. (2) (B.31)
k+1 (mm)

k=0 (m=1
Explicitly,
Ys—Y2 _ Ya2—Yi
P (z) =y + =N (z—ap)+ Q&= w2mm Uig gy (g — ) + ...
To — I T3 —T1

which shows that each term in k-sum in (B.31) is a polynomial of degree k, whereas
each term in j-sum in the Lagrange interpolating polynomial (B.20) is of degree
n—1. Since the polynomial (B.31) is unique, the Lagrange and Newton interpolating
polynomials are equal, but just different in representation.

307. FEquidistant interpolation. When the set of abscissae {xkhgkgn is chosen in
an equidistant way as xp = kAx for 1 < k < n, then the Lagrange interpolating
polynomial (B.20) reduces to

P (@) = Fo(2) ) pnﬂn(ij)
=l (x — jAx) H (j —m) Az
m=1mzj

Using [[,—1.me; (5 —m) = (=) (j — D! (n — §)!, we obtain

ﬁ x — kAzx) " (—1) - (jAz)
k=1 n—1\(-1)""7 pp_1 (jAz
Pn-1 (l‘) - (Al‘)n_l (n _ 1)' Z <J - 1) z —]A:E

Jj=1

It is often more convenient to interpolate the polynomial p,, (x) from x; = 0 with
steps of Az = y up to z, = (n— 1)y, in which case we arrive at the classical
equidistant interpolating polynomial:

n

H (SL‘ - k) n n—j .
pulay) == 3" <n> D" pa () (B.32)

n! =\ T —j

In particular, the special case where x = —1 leads to

polen =3 (0 11) -0 (B.33)

j+1

which expresses the negative argument values of a polynomial in terms of positive
argument values.
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422 Polynomials with real coefficients

Finally, we present
n y
palen) = > a7, 0) (") (8.31)
q=0

where

q
81,0 = 31 (] o)
k=0

is the ¢-th difference obeying A%f,, = A7 f, 1 — A97Lf,, for all ¢ € Ny, thus
Afm = fm+1 — fm. By iteration, we have that A?f,, = >1 (1) (=17 fr_ g,
which we apply to the set {fo, f1,.--, fn} = {pn(0),pn(x),...,pn(nx)}. Substitut-

ing the polynomial form p, (z) = 3";_, axx® into the g-th difference yields

q n
A PT(O) = SWayam
q

m=q
where S,,(,?) are the Stirling numbers of the second kind (Abramowitz and Stegun,
1968, Section 24.1.4). The relation (B.34) is commonly known for 2z = 1 as Newton’s
equidistant difference expansion for polynomials. If both sides of (B.34) converge
in the limit for n — oo, the left-hand side converges to the Taylor series around
y = 0 of a complex function f and the right-hand side then equals the difference
expansion for f,

F)=> fy*=>" (i) AF fo (B.35)
k=0 k=0

The series (B.35) first appeared in Newton’s famous book Philosophiae Naturalis
Principia Mathematica (Newton, 1687). If the Taylor coefficients { fi (20)},~ are
known around zg, then Newton’s series (B.35) generalizes to

P =Y Ao - =3 () a4t
k=0

k=0

Carlson’s theorem® indicates that Newton’s series (B.35) is unique.
Using the formula

N GO\ (vY _ (DI +y)
20 (k) <J) R e (B-36)

=k

=0nk if y=mn

where I" () is the Gamma function, we may verify that Newton’s difference expan-
sion (B.34) for polynomials is equivalent to the equidistant interpolating formula
(B.32).

8 A special case of the Phragmén-Lindelsf theorem (Titchmarsh, 1964, p. 176).
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11.8 Interpolation 423

308. Inequalities for derivatives. The Lagrange interpolation polynomial (B.20),
applied to the derivative p/, (x) of a polynomial p,, (), is written with y; = p},_; (x;)
for 1 < j <n and the definition (B.19) of I,,_; (z;z)) as

’ n p,ﬂ (zz)
P (z) _ Z ACH)
F, (z) e
while the logarithmic derivative of F), (z) is %’% =Y = =7+ The derivative
/ " ’ / n (@)
i <pn (.13) > — Pn (.7,‘) F, (37) — P (37) Fn (33) - _ Z Fl (x5)
i \Fy (@) FZ () L (a—a)
illustrates that, at a zero x = ¢ of F, (x),
Py (x5) P (5)
P (©) ‘ _l Z": Fre) | < Z": Fi ()
= 2| = 2
F (€) j=1 (¢ — ;) j=1 ¢ = ;]
If |pl, (z;)] < |F} (z;)] and all @q,29,...,2, are real and distinct, then Rolle’s

theorem? states that also ( is real so that

Py (x5)
F (z;)

n

ST o icui ) S MY ]
O T HC-2)  H (-2 [Fa(Q)
from which we conclude that [p! (¢)] < |F/({)|. The last equality only holds
provided all {z;}, <j<n AT€ real and distinct. Since the argument holds for any
zero of F, (x), we ﬁnd that, if |p], (z;)| < |F,, (z;)| for each zero z; of F, (z), then
[p (¢)] < |EY ()] at each zero ¢ of F), (x), provided all a1, zs,...,x, are real and
distinct.

The analysis can be extended by observing that F; = qH ), where

g € Ry, all zeros (; are real and distinct and, in addltlon dlfferent from those of
F,, (z), by Rolle’s theorem. Generalizing this observation, we find that Fm () =

qu;:;n (3: —¢ 7(-m)), where all zeros ¢ j(m) are real and distinct and different from

those in the sets {(J(-k)} ien where 0 < k < m and CJ(.O) = z;. The corresponding
1<j<n—

Lagrange interpolation polynomial (B.20) becomes

(m+1) C(m)
p%m-H) ( Z F(m+1) (C(m)>
F’V(Lm = T — C(m

the interval [a, b], that is differentiable inside the interval

9 If a real, continuous function f (z) on t
z =10, f(a) = f(b) = 0, then there exists at least one point

(a,b), vanishes at = a and
¢ € (a,b) for which f/ (€) = 0.
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424 Polynomials with real coefficients

while the logarithmic derivative of F\™ (x) is
F" () ”i” 1
E™ () ¢

j=1 L 7§;

<m+1> (CJ(_m))‘ ‘F(’"“) (gj(,m))‘ for each

real zero ¢ ]("L) of F\™ (z). Differentiation as above yields

(M+1) (C(m )

2

( - <.§-’”’)

1—n

)

which holds for any real = different from CJ(.m). By choosing © = C§m+1) for which
F™Y () = 0, we find that ‘p(er 2) (g;m+ 1))’ < |Eim+2) (gj(.m* 1)) , which estab-
lishes the induction for all m, because the case for m = 0 has been demonstrated

pgm-i-?) (IE) Fy(Lm) (LZ‘) . pgm-i-l) (LL‘) Frgl’m-&-l) ( n—m

(o)

o,

Q
:

IN

iFr(Lm+1) (l‘)
dx Fr(lm) (z)

above. In conclusion, we have proved:

Lemma 15 Let all 1,3, ...,T, be real and distinct. Define Q( ) = =g; for1<j<
n. Further, consider a polynomzal pn (2) and the Lagrange product F (2), defined
in (B.17). If |p,, (z;)| < |F}, (x;)| for each 1 < j <, then it holds for any integer

m > 0 that
(m41) [ (m PO ([ om
N GO G
(m) M) (N T (g o)
where (; is a real zero of F™ (z) = qm H z—( ).
j=1

11.4 The Euclidean algorithm

309. Consider two polynomials'® s (z) = Y ;_,ax 2" and s (2) = Y1 bx 2"

both with complex coefficients and where the degree n of sg(z) is larger than or
equal to m. Then, there always exists a polynomial ¢; (z), called the quotient, such
that

s0(2) = q1(2) 51 (2) + 52 (2)

and the degree of the remainder polynomial s, (z) is smaller than m. Indeed, we can

10 The indices in s (2) and s1 (2) here deviate from the general definition (B.1) and do not reflect
the degree, but the sequence order of polynomials in the Euclidean iteration scheme.
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11.4 The Euclidean algorithm 425

always remove the highest degree term a,,2" in sq (2) by subtracting {=2""™s; (2).
This first step in the long division yields

n—1
Qnp — Qp, .
50 (Z) a b_zn "1 (Z) = § : (aj - b_bj—n-l-m> 2z =r (Z)

m j=0

where the convention b_; = 0 for j > 0 and where the degree of r (2) = 27;01 ;2
is at most n— 1. If the degree of the remainder r (z) is larger than m, we repeat the
process and subtract TZ—:,Z”*P’”Q (z) from r(2), resulting in a remainder with
degree at most n—2. As long as the degree of the remainder polynomial exceeds m,
we repeat the process of subsequent lowering the highest degree. Eventually, we
arrive at a remainder s, (z) with degree smaller than m. This operation is the
well-known long division.
Next, we can rewrite the equation as

28 =0 () + 8 =1 () + %

and apply the same recipe to f;—g; =q(2) + 28, where the degree of s3(2) is
smaller than that of sy (z). Thus,

0 (%) 1

s1(2)

We can repeat the recipe to iig; =q3(2)+ Z‘;Ez; , where again the degree of s4 (2) is

smaller than that of s3 (2). Hence, we can always reduce the degree of the remainder

and eventually it will be equal to zero. The result is a finite continued fraction for
s0(z)

e in terms of the subsequent quotients ¢ (2),q2 (2),...,qm (2),
s0(2) 1
=q(2)+
s1(2) g2 (2) + W
Rar=e)

Alternatively, we obtain a system of polynomial equations

S0 (2) =q1(2)s1(2) +52(2) (0 < deg s2 < degs1)
s1(2) = q2(2) s2(2) +s3(2) (0 < deg s3 < deg s2)

s2(2) =q3(2) s3(2) +s4(2) (0 < deg s4 < deg s3)

Sm—2 (2) = @m-1(2) Sm—1(2) + sm (2) (0 < deg sy < degsm—1)
Sm-1(2) = Gm (2) 5m (2)

which is known as Euclid’s algorithm. The last equation shows that s, (z) di-
vides $;,—1(2). The penultimate polynomial equation, written as $,,—2(z) =
Gm—1 (2) @m (2) $m, (2) + Sm (2), indicates that s, (z) also divides sy,—2 (z). Contin-
uing upwards, we see that the polynomial s,, (z) divides all polynomials sy, (z) with
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426 Polynomials with real coefficients

0 < k < m. Hence, s,, (z) cannot be zero for all z, otherwise all sj (z) would be
zZero.

Thus, s,, (2) is the greatest common divisor polynomial of both s (2) and s; (2).
Indeed, any divisor polynomial d (2) of s (z) and s1 (z) obeys d|so and d|s1, then
the first Euclidean equation indicates that d|ss, and subsequently, d|si. Since the
degree of the sequence of polynomials sy (z) strictly decreases, s, (2) is the largest
possible common divisor polynomial. Consequently, the functions fj (z) = ;:L—((Zz))
are again polynomials.

310. Minimal polynomial. The minimal polynomial associated to a polynomial
pn (2) = ay, Hﬁg:l (2 — zk)™™", where my, denotes the multiplicity of zero zy, is de-
fined as

l
my, (2) = an [ ] (z — ) (B.37)
k=1

The minimal polynomial divides p,, (z) and is the lowest degree polynomial pos-
sessing the same zeros of p, (2), all with multiplicity 1. If p, (z) has only simple
zeros, i.e., mp = 1 for all 1 <k <n, then m,, (z) = py (2).

The minimal polynomial plays an important role in matrix polynomials (art. 229).

311. Division by a first degree polynomial. The division of p, (2) = > j_, ax 2"
by the polynomial z — ¢ of degree 1 can be computed explicitly. In the notation of
art. 309, the long division of sg (2) = p, (2) by s1 (2) = z — £ gives the remainder
s2 (z) and the quotient

n—1 n

ql(z):Z &% Z a;&l 5 2F (B.38)

k=0 j=k+1

It is instructive to relate the long division with Taylor series. We assume that & # 0.
With the convention that ay = 0 if £ > n and a, # 0, execution of the Cauchy
product of two Taylor series around z = 0 yields, for |z| < |¢],

P (Z) oo oo Zk oo 1 k
k j k
zn—g == = ngz—z R da s
k=0 k=0 k=0 7=0

We split the series into two parts and take into account that ar = 0 if & > n,

o

Dn (Z) n—1 1 k ‘ 1 n )
D D= D DU EAD DR b= DL
k=0 j=0 =0

k=n
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11.4 The Euclidean algorithm 427

Observing that p, (§) = 3_7_, a;&7, the last sum equals

oo

1 n ) . o] Zk o] Zk n—1 Zk
> a2 wd :pn(f)Zk—-H = O X — 2 @
=2 7=0 = s ¢
B i’n— Z é“lf—ﬁ-l

such that

[ay

n—

k
(=) p© ~Yase | § 2 @)

ck+1 _
= € z—=¢

where the k-sum is the quotient ¢; (z) = %:’g"(g) in (B.38) obtained by the long
division. It follows from (B.39) that g1 (£) = pl, (£). The latter is, indeed, deduced
from (B.38) as

[
Ju

j n—1
aj18 = Zagﬂﬁj Z Z (G+ 1D a8 =p), (&)

=k 7=0 k=0 7=0

n—1 n—

k=0

<.

We rewrite the quotient ¢; (z) in (B.38) with (B.39) as

n\Z) — DPn - 1 . j -1 - = J -1
%Z{g—kzaﬁj}zk Z{Z(:)aﬂkf}zk

=) Pn\S) Qi 7 anlfl
Z—f Z j+n l§

n—1
= an anl + {an—l + a7z£} Zn72 + 4+ Z Clj+1£j
j=0
Let us denote the set of polynomials

x) = Zaj+n,l:cj for0<I<n (B.40)

then fo () = an, fi (z) = ap—1 +anz, .., and f, (x) = 37 a;jz? = p, (x). With
definition (B.40), the quotient g; (z) becomes

n—1

Pn ( pn Z fl (B41)
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428 Polynomials with real coefficients

which is also valid if € is a zero of p, (2) and p,, (§) = 0. Writing

I+1

1
fis1 (z g Qjpn—1—17) = E Ajpn_1z’t ffEE Qg2 + an_ (41

j=-1 j=0

shows that the polynomials {fi (x)}g<i<n obey the recursion

Jiv1 () = 2 fi () + an—_q41) for0<I<n-1 (B.42)

312. Application of art. 311. Perron (1907) considers a monic polynomial p,, (z) =
Y h—o Gk 2F ie. with a,, = 1 and ag # 0, and defines, for the polynomials in (B.40),

n—1

)
=1

After introducing the recursion (B.42)

n—1

1 n
Z |fi1 (©) = an—qany | < = D (A O]+ lanl)
T4 €l =

1 O+ A= 11O+ lan—i]
- 2.
and using |f1 (§)| = |an—1 + an€|, we find the inequality
AEI-1) < [fa (€ |+Z|ak| lan—1+ ang|

The sharpest bound is achieved if ¢ is a zero of p,, (z), for which 0 = p,, (§) = fn ().
If |¢] = 1, then

> lar] > lan—1 + an)| (B.43)

n—2
If [£] > 1, then A < Zk:o‘a’“l‘g‘f{“ﬁa"g‘. Perron (1907) now constrains the right-

hand side to be smaller than 1, which leads to the inequality
n—2
S Janl 1 €] < Jan-1 + an€] (B.44)
k=0
Perron (1907) remarks that this constraint is not compatible with || = 1, because
it violates (B.43).
Let B be another zero of p, (z), different from the zero £, then the quotient
polynomial in (B.41) becomes 0 = Zl":_ol fi (€) B~ 171, which is equivalent, with
fo(x) =a,=1,t0 f" ' = =377 f1(€) B~ 171 If we assume that |3] > 1, then

n—1 n—1

18"~ 1<Z|fz @18 < 18" 2Z|fl )| =18""*x
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11.4 The Euclidean algorithm 429

which implies that |3| < A\. However, the constraint (B.44) implies that A < 1, and
thus, that || < 1, in contrast to the assumption. In summary, we have proved

Theorem 85 (Perron) If a zero & of the monic polynomial p, (2) =3 j_o ar 2",
i.e. with a, =1 and ag # 0, obeys |&| > 1 and inequality (B.44), then it holds that
|€] > 1, while all n — 1 other zeros are smaller, in absolute value, than 1.

Since |an—1]—|¢| < |an—1 + £| and requiring that ZZ;S lag|+1—1&] < |an—1|—&],
then leads to a more stringent, but easier Perron constraint than (B.44),

> lak| < 2an| (B.45)
k=0

Theorem 85 with constraint (B.44) replaced by (B.45) still holds.
On the other hand, it also holds that |£]| — |an—1]| < |an—1 + £| and then a second
more stringent constraint than (B.44) is

n—2
> lakl + 1= 1€ < [€] = lan-1] < lan-1 + ané]
k=0

from which a second lower bound for the zero 1 < |¢] follows,

n—1
5 (Zw +1> <
k=0

Theorem 85 then states that, for a monic polynomial p, (z), whose zero & obeys
|€] > min (1,% (ZZ;& lax| + 1)), any other zero 8 of p, (z) satisfies |3] < 1. If

a=1 ( Z;é lak| + 1) > 1, then [¢] > 1 and ¢ is the only zero outside the unit
circle. If all coefficients a of the polynomial p,, (2) are real, then the zero ¢ must!?
be real. Thus, if the zero £ > 0 is positive, then £ is the only real zero lying between
a and 400, so that p, (a) < 0, because a,, = 1. If £ is negative, then ¢ is the only
real zero lying between —a and —oo, so that (—1)" p, (—a) < 0. In conclusion,
Perron’s Theorem 85 can be rephrased as:

Theorem 86 (Perron) Let p, (z) = > ,_, ar z¥ be a monic polynomial with real
coefficients aj, with a,, =1 and ag # 0 and define o = % (ZZ;& lak| + 1). If either

pn (@) <0 or (—1)" pn (—a) < 0 holds, then p, (2) has a real zero & with |&| > 1,
while all n — 1 other zeros are smaller, in absolute value, than 1.

11 If ¢ were complex, then also its complex conjugate £* with |£*| = |¢| > 1 would be a zero, but
there is only one zero outside the unit disk.
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313. Division by an m-degree polynomial. By using the Taylor series in case m = 2,

= 1
= ng <<k+1 - é‘k?+1) g

a similar series expansion manipulation as in art. 311 leads to

O NS S o ¥ I S WP S Y
(Z_E)(Z_C)*C_szzo Ck+1j§1ajc Ek-&-lj%ﬂ%f z

pu(Q) 1 + pn(§) 1
(=8z—-¢ &§—-¢z—¢
When ¢ = (, differentiation yields

+

n—2

pn (Z) — 1 _ _ 7 k pfn (5) pn (5)
(z—§)2 ;::o §k+2];1j Da;? 5= +z—§+(z—§)2

The general result is elegantly deduced from the k-th derivative of the Cauchy
integral,

1d'f(z) _ 1 _ S B.46
/c<z> ( (3.4

! de 211 — Z)k+1

o

where the contour C'(z) encloses the point w = z. Let F, (2) = [[j~, (z = &) in
(B.17), where z;, = &, and assuming that all zeros &; of F,, (z) are different, then

the Cauchy integral with k =1 in (B.46) becomes

1 1 / 1 du
F,, (z) 27i c

(=) H w— fj )

Since lim,_, m = 0, we can deform the contour C (z) to enclose the entire
complex plane except for an arbitrary small region around the point w = z. The
function #(Z) is analytic everywhere, except for the simple poles at w = &; and
does not possess zeros for finite z. Cauchy’s residue theorem (Titchmarsh, 1964)
then leads to the partial fraction expansion

ilm - w=&
=1 Hw &) (w—2)

77L
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and

- 1 1
21:21 " z =&
H (& —&5)

If not all zeros are simple, a tedious computation using (B.46) leads to the general
partial fraction expansion

Mg

S szqz_ L) (B.A7)

H§:1(2*§j) g=1r=1

l
_ Xq (05&9) | Xq(15&) Xq (Mg —15&4)
_Z{<Z—€q>+<z—§q>” A }

q=1

where the residues are

Xq (rw) = ! qu__l _ . : (B.48)
(mq 1= ,,1)[ dwm,q 1—r Hl (w _ fj)mj

J=1j#q

With — & => oo E"“ for |z| < |&| and proceeding with distinct zeros, we find

the Taylor expansion, for |z| < miny<;<m, |§],

1 1 0 m
Fm(Z): i :72 Z k:+1 H fl P (B.49)

m
H (Z _ f]) k=0 | I=1 j=1;5#1
j=1

Similarly as in art. 311 by computing the Cauchy product of p,, (z) and jo (Z), we
arrive at

— i Z:; k41 ag€f Zk_”i po (&) 1

H z—é} el K aal | GER?) =11 (&_fj)z—&
=1 J=Li#l J=Lij#l
(B.50)

We recognize that [[72,.;; (& — &) = Fy, (&) and (B.50) reduces, when m = n,
to

ARG
Zp” Py A )]

which is the Lagrange interpolation polynomial (B.20) corresponding to the set of
n points {(&,pn (§))}1<;<p,- The first sum in (B.50), which reduces to the k = 0
term when n = m, vanishes because

pn pn Pn gl u 1
Z ﬁlF’ (&) Zle’ (&) b (O)Zfz F (&) =0
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432 Polynomials with real coefficients

which follows from the Taylor expansion (B.49) and the Lagrange polynomial, both
evaluated at z = 0.

We have implicitly assumed that not all & are zeros of p,, (2). If all {&}.,<,,
are simple zeros of p,, (z), then (B.50), written in terms of the polynomial in (B.17),
reduces to the quotient polynomial

n—m m n—k—1 a | q
dm (Z) = ]];:1((2)) - Z {Z Zq_OFT/n (gl—;k+ gl }Zk (B51)

k=0 =1

Compared to the quotient polynomial (B.38) for m = 1, the coefficients in the
general version (B.51) of the quotient polynomial only require m similar polynomial
evaluations Z;Zf -1 ag+k+1€] as in (B.38) and m additional F, (&) computations.

11.5 Descartes’ rule of signs

314. A famous theorem due to René Descartes is:

Theorem 87 (Descartes’ rule of signs) Let C' denote the number of changes
of sign in the sequence of real coefficients ag,aq,...,a, of a polynomial p, (z) =
o apx® and let Z denote the number of positive real zeros of p, (z), then

C—-7Z=2k>0
where k is a non-negative integer.

Before proving Theorem 87, we make the following observation. Since the poly-
nomial p,, (—x) has coefficients (—1)¥ay,, Descartes’ rule of signs indicates that the
number of negative real zeros of p,, (x) is not larger than the number of changes in
signs of ag, —ai, ..., (=1)" a, in p, (—x).

The product form in (B.1) for a real polynomial with v real and 2m complex
zeros (m conjugate pairs), such that n = v + 2m, can be written as

pn(z):anH z— ;) H z—Rezj (Imzj)2
j=1 j=1
from which
v

m
ao = pn (0) = an [ [ (=;) [[ (Rezj)” + (Im 2)”
j=1 j=1

shows that the sign of ag does not depend on the complex zeros. For example, ag has
the sign of a,, if all real zeros z; are negative. The sequence ag, a1, ..., a, in which
sign(ag) = sign(a,, ), equivalent to agpa, > 0, has an even number of changes in sign.
This is verified when the sequence is plotted as a piece-wise linear function through
the points (k, ay) for 0 < k < n, similarly as for the random walk in art. 184. The
number of sign changes equals the number of k-axis crossings. Zero coefficients do
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11.5 Descartes’ rule of signs 433

not contribute to a change in sign. For example, the sequence {1,2,0,0,—1,0,1}
has two sign changes.

Generalizing this observation, if the polynomial p,, (z) with real coefficients has
an even number of real, positive zeros such that sign(ag) = sign(a,), the number
C of sign changes in ag, a1, ..., a, is even, whereas, if p,, (z) has an odd number of
real, positive zeros such that sign(ag) = — sign(a,), the number C of sign changes
is odd. Hence, C and Z are both even or odd, which demonstrates that C —Z = 2k
is even. To show that k is non-negative, a deeper argument is needed.

Proof'? (by Laguerre): Let z = e, then the number of real zeros of the
function p, (e?) = Yp_,are"® is the same as the number of positive zeros of
pn (z), because x = log z is monotonous increasing for z > 0. Laguerre actually
proves a more general result by considering the entire function

n
F(z)= Z ape
k=0

where the real numbers obey A\g < A\ < -+ < \,. Clearly, if we choose A\, = k,
we obtain p, (e*). Let C' denote the number of changes in sign in the sequence
ai,as,...,a, and let Z denote the number of real zeros of the entire function
F(x). For x — oo, the term a,e*"® dominates, while for + — —oo, the term
ape*® is dominant; by the argument above, therefore, C — Z is even. The proof
that C'— Z > 0 is by induction. If there are no changes of sign (C' = 0), then there
are no zeros (Z = 0) and C > Z. Assume that the Theorem holds for C'—1 changes
of sign (hypothesis). Suppose that F (x) has C' > 0 changes of sign and let § + 1
be an index of change, i.e., agagy1 < 0 for 1 < B < n. Consider now the related
function

G(x)=> ar (A —A) e
k=0

then, for Ag < A < Ag41, the number of changes of sign in the sequence
7@0()\*)\0),7(11 ()\7}\1),...,7(1/3()\*)\,5),(1,54_1()\54'_1 7)‘)3-'-30%()‘717)‘)

is precisely Cq¢ = C — 1 because now —ag (A — Ag) ag+1 (Ag+1 — A) > 0, where all
other consecutive products remain unchanged. Further,

d
Ax —Az
G(z)=e %(e F (z))
and, since e™** > 0 for all real x, both e **F (z) and F (x) have the same real
zeros. Rolle’s Theorem (Hardy, 2006) states that the derivative f’(x) has not less

than Z — 1 zeros in the same interval where f (x) has Z zeros. Hence, G () has at

12 Tn 1828, Gauss proved Decartes’ rule, which was published in 1637 in his Géométrie. Laguerre
studied and extended Decartes’ rule in several papers, combined by Hermite et al. (1972) in
the part on Algebra.
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434 Polynomials with real coefficients

least Zg > Z — 1 zeros. On the other hand, G (x) has at most Z — 1 zeros'®. Thus,
Ce—Zg=C—1—-(Z-1) and, by the induction argument, C —1 > Z — 1, we
arrive at Cg > Zg. Introducing Cg = C — 1 and Zg = Z — 1, we finally obtain
that C' > Z, which completes the induction. O

Since the set of exponents {A;},., ., can be real numbers, Laguerre’s proof
thus extends Descartes’ rule of signs to a finite sum of non-integer powers of z. For
example, 2% — 22 + 21/3 4+ 21/7 — 1 — 272 = 0 has C = 3 sign changes, and thus at
most Z < 3 positive (real) zeros.

Descartes’ rule of signs is only exact if C' < 2 because k > 0; thus, in case there is
no (C = 0) or only one (C = 1) sign variation, which corresponds to no or exactly
one positive real zero. The reverse of the C' = 0 case holds: if all zeros of a real
polynomial have negative real part, then all coefficients are positive and there is no
change in sign. However, the reverse implication, {Z =1} = {C = 1} does not
hold in general as the example 22 — 22 + 2 — 1 = (z — 1) (x — i) (x + i) shows.

Example 1 The polynomial ps () = 22° — 2 + 2% + 1122 — x + 2 has four
changes in sign, while ps (—x) = —22°% — 2* — 2% + 112 + 2 + 2 only has one change
in sign. Hence, while there are in total precisely five zeros, there is at most one
negative real zero and at most four real positive. Since complex zeros appear in
pairs, there can be either four, two or zero real positive zeros, but precisely one
negative zero.

Example 2 Milovanovi¢ et al. (1994) mention the remarkable inequality, valid
for all real x and even integers n = 2m > 0,

gn(x)=2"—nzx+n—-1>0

with equality only if x = 1. Since g, (—x) has only positive coeflicients, g, (—z) > 0.
For = > 0, there are C' = 2 changes in sign and Descartes’ rule of signs states that
there are at most two real zeros. Since gy, (1) = ¢/, (1) = 0, the polynomial g, (z) has
a double zero at © = 1, which is thus the only real zero and this implies ¢, () > 0.

315. Number of sign changes in the sequence of the differences. Let C be the
number of sign changes in the sequence ag, aq,...,a, and assume that these sign
changes occur between the elements

(ak17am1) ) (akzvamz) PRI (akcwamc)

where k; < m; — 1 and the equality sign only occurs if there are no zero elements
between ay; and ap,,. We denote a,,, = ao and ag.,, = an, which has the same
sign as ap. and ag.,,+1 = 0. Assume, without loss of generality, that a,,, > 0.
Then, we have that sign(ay,) = (1)’ sign(am,) = (1)’ for 1 < j < C and

(_]‘)jil (lmj,1 Z 0

13 If f (2) is an analytic function in the interior of a single closed contour C defined by |f (2)| = M,
where M is a constant, then the number of zeros of f(z) in this region exceeds the number
of zeros of the derivative f’(z) in that same region by unity (Whittaker and Watson, 1996,
p.121).
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11.5 Descartes’ rule of signs 435

Consider now the sequence of the differences ag, a1 —ag, a2 —ay,...,a, —ap_1. We
denote the difference by Aa; = a; —aj—1 for 1 < j <n and Aag = ag. The sign of
the 1 < 7 < C elements,

(—1)i (am]. — amj,l) = (—1)i Aam; >0

is known. Since Aa,,;_, and Aa,,; have opposite sign for 1 < j < C by construc-
tion, the changes in sign of all differences between them is odd; an odd number of
k-axis crossings. The last subsequence between Aay,. and Aayp 11 = apy1—0ke,, =
—sign(am,) = —sign(Adam,) also has an odd number of sign changes. Summing
the sign changes in all C' + 1 subintervals equals C' plus an odd number of sign
changes. Thus, we have proved:

Lemma 16 If C' is the number of sign changes in the sequence ag,as, - .., a,, then
the number of sign changes in the sequence of the differences Aag, Aay, ..., Aay,
where Aa; = a; —aj_1 for 1 < j <n and Aag = ag, equals C plus an odd positive
number.

316. Application of Lemma 16. Consider the polynomial g,+1 (z) = (x — &) py, (),

n n+1
Gny1 (T) = anz" T 4 Z (ak—1 — &ax) ok — &ag = Z (aj-1 — &aj) &’
k=1 =0

with the convention that a_; = an4+1 = 0. If £ > 0, the number of sign changes in
the coefficients b; = a;_1 — €a; of ¢y41 (z) equals the number of sign changes in
the difference A (¢a;) = &a; — & aj_y = —€/71b;. Lemma 16 shows that the
number of sign changes in the difference sequence equals that in the polynomial
pn (2) plus an odd positive number. Descartes’ rule of signs in Theorem 87 states
that C), (.) = Z,, (») + 2k and, hence,

Cq"+1(z) = Zp"(z) +2k+2m+1= anJrl(Z) +2 (k’ + m)

The argument and Lemma 16 provide a second proof of Descartes’ rule of signs,
Theorem 87, because we have just shown the inductive step: if the rule holds for
Pn (2), it also holds for ¢,41 (z). Descartes’ rule of signs definitely holds for n =0
and this completes the second proof.

If £ > 0 and the number of changes in sign in p,, (z) is zero, which implies by
Descartes’ rule of signs in Theorem 87 that p,, () has no positive real zeros, then
¢ is the largest real zero of ¢,11 (x). If £ < 0 and the coefficients of p, (z) are
alternating (equivalent to the fact that p, (z) does not have negative real zeros
(art. 314)), then £ is the smallest real zero of ¢,11 ().

317. Laguerre’s extension of Descartes’ rule of signs. Laguerre (see Hermite
et al. (1972)) has elegantly and ingeniously extended Descartes’ rule of signs. As
in art. 314, Laguerre considers, as a generalization of the polynomial p, (z) =
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436 Polynomials with real coefficients
> h_o @xz", the entire function

F(z)= Zakzﬁk = an 2"+ ap_12P7 a2 (B.52)
k=0

where 3, > 8,1 > ... > [y are real numbers.

Theorem 88 (Laguerre) The number of real zeros Z of the entire function F (z),
defined in (B.52), that are larger than a positive number £, is at most equal the
number C' of changes in signs of the partial sum sequence

a'néﬁn 5 anfgn + an—lfﬁn_l 5 anfgn + an—lfﬁn_l + an—?éﬂn_Qa ey F (5)
and C — Z =2k > 0.

Proof: We start from the polynomial identity (B.39),

Pn (2) :nil i ajgj—k—l Zk+P (3]

Ik S j=kt1 2=

Using the expansion of (z — &) ™" for z > £ results in

-1 n o) k
pn(2) _ S j—k—1 k §"pn (§)
it Z a;§ F4Y s

k=0 \j—k+1 k=0

Since ¢ > 0, all terms &¥p,, (€) for k > 0 have the same sign as p,, (£), which implies
that the number C of sign changes is equal to the number of sign changes of the
coefficients in the first k-sum. Each of these coefficients has the same sign as the
partial sum Z;L:k 41 a;& of p, (€), because £ > 0. This proves the theorem in case
F (z) is a polynomial.

We can always reduce F'(z) to a polynomial form. If Sy < 0 and all exponents
B, are integers, 2 A0 F (x) is a polynomial and the above argument applies. If
Br € QF, then F (2V) is a polynomial provided w is the least common multiple
of the denominators of the set {5}, )<, Since each real number can be approx-
imated arbitrarily close by a rational number, so can F (z) with real exponents
approximated arbitrarily close by a polynomial, which proves Theorem 88. O

Theorem 88 is modified when we want the number of positive zeros smaller than
£. In that case, we may verify by following the same steps as in the proof above
that the Theorem 88 also holds for the number of positive zeros smaller than &,
provided the order of terms (B.52) is written according to increasing exponents,
ie., Bn < Pn-1 <...< Bo. As a corollary, the number of zeros in [0,1] of F (z) is
at most equal to the number of sign changes in the sequence

anaan+an—la-"7F(1)
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11.5 Descartes’ rule of signs 437

Another application is F' (z) = p, (2 + h), which we expand by Taylor’s theorem

. " (h, (n) h
P (2 +h) = . Z]an(h)+zp;(h)+z2p”T(>+,,_+z"%

§=0
into a polynomial, written with exponents of z in increasing order. The number of

real zeros of F'(z) between [0, ], and thus the real zeros of p,, (z) between [h, h+¢],
is at most equal to the number of sign changes in the sequence

Py (B
{0, 1) -6, 0 1) 5 (0 + P25 (e
and their difference is an even integer (possibly zero).
The whole idea can subsequently be applied to (f j(;)m using art. 313. Since the

number of sign changes in (f_(;)) is at most equal to that in (sz% (art. 316),
but not smaller than the number of real zeros of p,, (z) larger than &, we may expect
to deduce, by choosing an appropriate m, an exact way to determine the number
of such real zeros. In fact, Laguerre succeeded (Hermite et al., 1972, p.24-25) to
propose an exact method, that involves the discriminant (art. 298), which is hard
to compute. In summary, his method turns out to be less attractive than that of

Sturm, discussed in art. 326.

318. We present another nice approach due to Laguerre (Hermite et al., 1972,
p. 26-41). Consider the polynomial
Fn(2) =) Ajpn (§2) = | ax Y A;El | 2"
j=1 k=

=0 j=1

where 0 < &y, < &1 < ... <& and p, (2) = >0, az®. Descartes’ rule of signs
in Theorem 87 states that the number Z of positive zeros is at most equal to the
number C' of variations in sign in the sequence

m m m
a0 Y Aj a1y A an Yy ALY
Jj=1 J=1 Jj=1

That number C is also equal to the number C of sign changes in the sequence
(I <n)

Slz aozAj,CLlZAjfj,...,CLZZAJ{]Z‘
j=1 j=1 j=1

plus the number C5 of changes of sign in the remaining sequence

m m m
l +1
ng alZAjfj,al+1ZAj§j+ ,...,anZA]f;L
j=1 j=1 j=1

{10 (0),a1410(1),...,and (n—1)}
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438 Polynomials with real coefficients

where
— ZAjgégL ZA fl 10%5]
i—1

If we suppose that all a; > 0, then the number C5 of variations in sign in S,
is at most equal to the number Z; of positive zeros of ¢ (z), because even if
¢ (k)¢ (k—1) > 0, there can be an even number of zeros in the interval (k — 1, k).
The number Z; is also equal to the number of real zeros of ¢ (log z) = 0, which is
greater than 1. Theorem 88 in art. 317 shows that the number Z, of real zeros
of ¢ (log z) larger than 1 is at most equal to the number Cy of sign changes in the
sequence

{Alfia Alfi + AQE%? A ¢(O>}

Hence, Z < C < C; + Cy. Since the above holds for all 0 < [ < n, the simplest
choice is [ = 0. Thus, we have proved

Theorem 89 (Laguerre) The number of real roots Z of the equation

S Apa (€52) = 0
j=1

where 0 < &y < &1 < ... <& and pyp (2) =Y 4y apz®, is at most equal to the
number of changes in sign of the sequence {Al, Ay + Ag, ..l ZT:1 Aj}.

Theorem 89 holds for f(z) = lim,,—,o pp (2) provided the polynomial sum con-
verges. Let us consider f(2) = ¢*. The equation }77"  Ajexp (§;z) = 0 possesses
the same roots as ZT:O Ajexp ((&5 + k) z) = 0, where k is a finite real number such
that the restriction 0 < &, can be removed. Let {; = a + jAt and &, = b > a,
such that m = bg—f, then we obtain the Riemann sum,

b—a

At b
lim ZAje(“HAt)ZAt:/ e (z) dz

At—0 4
j=

where 9 (z) is an arbitrary function, because the coefficients Ay, A1, ..., A,, are
arbitrary. The number of sign changes in {Al, Ay + Ao, ..., Z;n:l Aj} is, in that
limit, at least equal to the number of zeros of f; ¥ (2) dz = 0 in the interval (a,b).
For example, let

ZPrtw—1

Zak I' (B +w)

where all 8 > 0, w > 0 and T (z) is the Gamma function. For ¢ = 0 and b = co
the equation fooo e**1 (z) dz = 0 becomes

)

n

Z ;Eﬂa,kliw =0

k=0
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11.5 Descartes’ rule of signs 439

whose number of positive zeros is, after the transformation z — x~!, precisely
equal to those of Y"}'_, arz®* % = 0 and, thus, of >_,arz’ = 0. On the other
hand, the number of positive zeros of the equation fox ¥ (z)dz = 0, computed as

$6k+w

Z T Bt w+1) Br+w+1)

is at least equal to those of >, _, arz® = 0. Now, for Bx = k the equations reduce
to polynomials and we observe that, after a transform x — —z, the number of
negative zeros of the polynomial p,, (z) = Y ;_, axz” is at most equal to those of

the polynomial >, akﬁiﬂ). Consequently, we arrive at

Theorem 90 (Laguerre) If all zeros of the polynomial p, (z) = > _, arz® are
real, then the zeros of the related polynomial g, (z;w) =Y 1_, akr(%fuﬂ) are also
all real, for any real number w > 0.

Many extensions, so-called zero mapping transformations, have been deduced
of Laguerre’s Theorem 90. Consider the set of real numbers {vx},~,, which is
a zero mapping transformation, satisfying certain properties. If all zeros of the
polynomial p,, (z) = >°}_, axz” are real, then the zeros of the related, transformed
polynomial ¢, (z;7) = >_p_,vkaxz”® are also all real. A large list of particular
sequences {7x};~, is presented in Milovanovi¢ et al. (1994).

319. Theorem 90 in art. 318 can be extended,

Theorem 91 (Laguerre) Let p, (2) = Y p_, arz" be a polynomial with real zeros
and let f (z) be an entire function (of genus 0 or 1), which is real for real z and all
the zeros are real and negative. Then, the polynomial g, (z) = > p_, arf (k) 2* has
all real zeros, and as many positive, zero and negative zeros as py, (z).

Proof: See Hermite et al. (1972, p.200) or Titchmarsh (1964, pp. 268-269). O

It can be shown (Titchmarsh, 1964, pp.269-270) that, if n — oo and p(z) =
lim,, 00 pr (2) is an entire function, then ¢(z) = lim,_ o g, (2) is entire, all of
whose zeros are real and negative. Hence, applied to p (z) = e*, Laguerre’s theorem
91 (extended to m — oo) shows that the Taylor series

o0
N LR
)= Z k!
k=0
is an entire function g (z) with negative, real zeros.

320. Application of Descartes’ rule of signs. The polynomial

n—1

e (2) = |an| 2" — Z lax| 2"

k=0
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440 Polynomials with real coefficients

where |a,| > 0 and Y, —, " lax| > 0, has precisely one positive real zero. Descartes’
rule of signs in Theorem 87 tells us that there is at most one positive real zero,
because there is one change of sign. Since the k-sum in

rn (2) = |ag| 2" (1 - Z laxl 2= ”)

|n

is monotone decreasing from oo to 0 when z increases from 0 to oo along the real
axis, there is precisely one point z = £ at which the k-sum equals one and r,, (§) = 0.
Moreover, r, (z) < 0if z < £ and r,, (2) > 0if z > €. If zg is a zero of the polynomial

n—1

Pn(2) = 1 apz®, then

n—1
|an 25| = ‘_ Z akz§
k=0

which shows that 7, (|z0]) <0, implying that |z9| < &. Hence, we have proved

n—1
<> laxl |20l" = lanl |20]" = (|20])
k=0

Theorem 92 If zy is a zero of py, (2) = ZZ:O apz® and & is the only positive zero
of T (2) = |an| 2™ — Zz;é lag| 2%, then |zo| < €.

In other words, the absolute values of all zeros of p,, (z) are smaller than or equal
to the only positive zero of 7, (z). Theorem 92 is related to, but different from
Perron’s Theorem 85 in art. 312.

321. Cauchy’s rule. We derive an upperbound ¢ > 0 for any positive zero of the
real polynomial p, (z) = 3", _, axz", without resorting to Decartes’ rule.

Theorem 93 (Cauchy’s rule) No zero of the real polynomial p, (2) is larger in
absolute value than

|ak| 1/(n—k)
¢= max ( > (B.53)
0<k<n—1 and £ <0 ck |an|

n—1

> e <1 (B.54)

k=0 and ££<0

where

Proof: The upperbound ¢ > 0 satisfies

n—1

<n+zak<k

n—1

<<”+Z

Since the coefficients of p,, (z) are real, we rewrite the latter bound as

0< ak

P () ‘

n—1 n—1

Cn 1— Z Z_kck—n + Z Z_ké-k >0

k=0 and k<0 k=0 and k>0
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11.5 Descartes’ rule of signs 441

Let us denote ¢ = %& ¢k=m > 0 for all k indices for which %& < 0. Then,
1/(n—k)
¢= (%) and the above inequality reduces to (B.54). O

n—1

F=0 and 2 <0 1 be the number of negative coefficients of

Examples Let p =
p’;—(z), then the choice ¢ = % satisfies the condition (B.54), leading to
ag
an

)T (B.55)

a

(= max L
0<k<n and u—i‘;<0

1/(n—k)
A weaker bound ¢ = maxo<p<n—1 ((na—k) ), derived from the inequality

an|
in (B.53), follows from the choice ¢, = + <

()

for all k, is cx = S

. Another choice, that satisfies (B.54)

==

322. Rescaling. The equation p, (2) = 0 where a,, # 0 can be transformed by
the substitution z = bx into =" + ZZ;S Z—’:’Lbk’”xk = 0. Let us confine to odd n.
0Odd polynomials with real coefficients have at least one real zero. We now choose b

1/n
such that ¢-0™" = —lor b= (—Z—O) . This choice reduces the original equation

n

P (2) = 0 into

n 2 ao \ /" &
gn () =2 ’;%( an) ¥ —1=0
Since ¢, (0) = =1 < 0 and lim,_, o, gy, (x) > 0, there must lie at least one real root
in the interval (0, 00). If g5, (1) > 0, the root must lie between 0 and 1; if ¢, (1) < 0,
then the root lies in the interval (1,00). By the transform z = y~!, the interval
(1,00) can be changed to (0,1). Alternatively, art. 291 shows that [[,_; zx = 1
which indicates that not all zeros can lie in (0,1) nor in (1,00). Hence, we have
reduced the problem to find a real zero of p, (z) with odd degree n, into a new
problem of finding the real root of g, (z) in (0,1). We refer to Lanczos (1988)
for a scheme of successively lowering the order of the polynomial g, (z) by shifted
Chebyshev polynomials.

323. Isolation of real zeros via continued fractions. Let m; € N and my € Ny for
all k > 1. Akritas (1989, p.367-371) has proved:

Theorem 94 (Vincent-Uspensky-Akritas) There exists a continued fraction
transform with a mon-negative my and further positive integer partial quotients
{mk}ggkgl;

_ Aw+ Ajq 1

= = + B.56
‘ Byw+ B m Mg + - 4 —2 ( )

my+w
that transforms the polynomial p, (z) with rational coefficients ar and simple zeros

%) = (Bjw + Bj_1)" " pn (w) such that the polynomial

into the function p, (B’erB’_l
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Dn (W) has either zero or one sign variation. The integer | is the smallest integer
such that Fl_lg > 1 and Fi_1Fid > 1 + ', where d is the minimum distance

n

between any two zeros, F,, is the m-th Fibonacci number that obeys F,, = Fy,_1 +
1
Fo._o form > 1 and with Fy = F; = 1 and where €, = (1 + %) n=t— 1.

While the converse of Descartes’” Theorem 87 in case C' = 0, implying that
there is no positive real zero, is generally true, the converse of the case C' = 1 is not
generally true as demonstrated in art. 314. The part of Theorem 94 that details the
determination of the integer [ guarantees that, if there is one zero with positive real
part and all others have negative real part and lying in an ¢,-disk around —1, the
corresponding polynomial has exactly one change in sign. The Fibonacci numbers
F,,, enter the scene because they are the denominators of the m-th convergent of
the continued fraction of the golden mean (see e.g. Govers et al. (2008, p.316)),

1+v5 1

1
2 L ——

I+
in the limit case where all m; = 1 for £ > 1. The continued fraction transform
(B.56) roughly maps one zero to the interval (0,00) and all others in clusters
around —1 with negative real part. The continued fraction (B.56) is equivalent
to a series of successive substitutions of the form z = m; + % for 1 < g5 <.
The best way to choose the set of integers {mx}, <, is still an open issue. Akritas
(1989) motivates to choose m; in each substitution round equal to Cauchy’s estimate
(B.55). Finally, Akritas (1989) claims that his method for isolating a zero is superior
in computational effort to Sturm’s classical bisection method based on Theorem 96.

11.6 The number of real zeros in an interval

324. The Cauchy index. Consider the rational function r (z) = 1; ’:((ZZ)) that has at
most n poles: the zeros of the polynomial p,, (z) that are not zeros of the numerator
polynomial p,, (z). We further assume n > m, else we can always reduce the
rational function as the sum of a polynomial and a rational function, where the

numerator polynomial has a smaller degree than the denominator polynomial as

explained in art. 309.
If & is a zero with multiplicity my of p, (z) but not of p,, (z), then r(z) =
l ,
P (2) Hk*l (z — &)™ and the partial fraction expansion (B.47) shows that the

behavior of 7 (z) around a pole &, of order m, is dominated by b, (z — ;) "¢, where
l —m
bg = Pm (&) Xq (Mg — 1;€q) = P (&) Hj:l;j;éq (&g — &) " # 0.
The Cauchy index of a rational function r (z) at a real pole y is defined to be +1
if

lim, ,,- r(z) = —oco and lim,_,,+7 () =00
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11.6 The number of real zeros in an interval 443
and the Cauchy index is —1 if
lim,_,,-7(z) =00 and lim,_,+7(z)=—0c0

while the Cauchy index is zero if both limits are the same. Hence, the Cauchy index
at a real zero £, of p, (z) equals 0 if m, is even and sign(b,) if m, is odd. The
Cauchy index of a rational function r for the interval [a, ], denoted by I’r (), is
defined as the sum of the Cauchy indices at all real poles y between a and b, such
that ¢ < y < b and a and b are not poles of 7.

The logarithmic derivative of p,, (z) = HL:I (z — Ck

)—mk is

dlogpn(z)_p;l(z)_i Mk —i UL (2)
iz pae) Ei-G Eei-G

k=1 k=1

where only the first s zeros are real in the interval [a,b]. The Cauchy index for

the interval [a, b] is I52 "E 5 = 8, which is equal to the number of distinct real zeros

of p, (2) in the interval [a,b]. Since p, () has a finite number of zeros, 1732 5 o Ef;
equals all distinct real zeros of p, (2).

Sturm’s classical Theorem 95 in art. 325 is a method to compute the Cauchy
index for the logarithmic derivative, which determines the number of real zeros of

a polynomial in a possibly infinite interval [a, b].

325. A Sturm sequence. A sequence of real polynomials fi (x), fo (z),..., fm (2) is
a Sturm sequence on the interval (a, b) if it obeys for each a < & < b two properties:
(i) fm (z) #0 and (ii) fr—1 () frt1 (x) <0 for any k where fi (x) = 0.

Let V (z) denote the number of changes in sign of the sequence f (x), f2 (x), ...,
fm (z) at a fixed z € (a,b). The value of V () can only change when x varies from
a to b, if one of the functions fj (x) passes through zero. However, for a Sturm
sequence, property (ii) shows that, when f; (z) = 0 for any 2 < k < m—1, the value
of V (z) versus x does not change. Only if f (z) passes through a zero £ € (a,b),

then V (z) changes by +1 according to the Cauchy index of ﬁg;g at x = £. Hence,
we have shown:

Theorem 95 (Sturm) If fi1(x), f2(z),..., fm (x) is a Sturm sequence on the
-V

interval (a,b), then I? fQEig =V (a) (b).

326. An interesting property of a Sturm sequence is its connection to the Euclidean

algorithm (art. 309), which we modify (all remainders have negative sign) into
s0(2) = q1 (2) 51 (2) — 52 (2) (0 < deg sy < deg s1)
s51(2) = g2 (2) 52 (2) — 53 (2) (0 < deg s3 < deg s2)
3 (2) 53(2) — 54 (2) (0< deg s4 < deg s3)

s2(2) = ¢

Sm—2 (Z) =dm-1 (Z> Sm—1 (Z) - Sm (Z) (O < degs;, < deg Sm— 1)
Sm—1 (Z) =d4m (Z) Sm (Z)
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The sequence {si ()}g<j<,, i a Sturm sequence if the largest common divisor
polynomial s,, (z) does not change sign in the interval (a,b). By the modified
Euclidean construction, we observe that property (ii) in art. 325 is always fulfilled.
Indeed, in the modified Euclidean algorithm for any 0 < & < m and x € (a,b)
relation si—1 () = qx (z) sg () — sg+1 () shows that, if si () = 0, both s;_1 (z)
and sg41 (z) have opposite sign and do not contribute to changes in V (z).

The Euclidean algorithm, applied to the logarithmic derivative r (z) = %
where sg (z) = p(x) and s1 (z) = p’ (2), provides information about the multiplicity
of zeros of the polynomial p (z). If £ is a zero with multiplicity m of p (z), then it is
a zero with multiplicity m — 1 of p’ (z). Hence, both p () and p’ (z) have the factor
(z— &)™ " in common, and since, by construction, s, (z) is the largest common
divisor polynomial, s,, (z) also must possess the factor (z — €)™ "

In summary, applying the (modified) Euclidean algorithm to the logarithmic

derivative r (x) = Z}'; ((':)) of a polynomial p (z), art. 324 with Theorem 95 leads to:

Theorem 96 (Sturm) Let p(z) be a polynomial with real coefficients and let
{pk} be the sequence of polynomials generated by the (modified) Euclidean algorithm
starting with so (z) = p(z) and s1(2) = p' (2). The polynomial p(z) has exactly
V (a)—V (b) distinct real zeros in (a,b), where V (x) denotes the number of changes
of sign in the sequence {s (x)}. A complex number & is a zero of multiplicity m
of p(2) if and only if € is a zero of multiplicity m — 1 of sy, (2). Thus, all zeros of
p(2) in (a,b) are simple if and only if sy, () has no zeros in (a,b).

Example Let p(z) = 2% — 222 + 2z + 1. Descartes’ rule of signs in Theorem 87

states that there are either 2 or 0 real positive zeros. The (modified) Euclidean
algorithm yields, with s (2) = p (2) and s1 (2) = p} (2),

so(e) =224z 41=(2)s () - <22—§z—1>

4 4
3 9
s1(2) =42° —4z+ 1= (42 +3) 52 (2) — —12—4
3 4z 91 283
= 2—— —_ fr— B — J— —
s2(2) =z 17 1 ( 9 +81)33(z) <1
9 729 324
sa(e) = —qz—d= (113QZ * 283> 5 (2)
283
4 —_ ——
=%

The corresponding continued fraction of the modified Euclidean algorithm is
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11.7 Real zeros and the sequence of coefficients 445

and, here,
so(2) = 1
s1(2) 4 4,z—i—3—_4_2+ﬂ_1 T
9 T8 T 2o 1321
1132 283
The sequence of signs in sg (2), 1 (2),...,54(2) at z = 0is +,+, —, —, — such that
V (0) = 1. For z — o0, the signs of the leading coefficients are +, 4+, +, —, — and

V (00) = 1, while V(—o0) = 3. There is no positive real zero, but two negative
zeros. The zeros are simple because s4 (z) is a constant. The zeros of p(z) are
z1 = —1.49, 20 = —0.52, 23 4 = 1.01 £ 0.51%.

11.7 Real zeros and the sequence of coefficients

We discuss a beautiful result of Newton on the sequence of the real coefficients
ag,ai, - --,a, of a polynomial with real zeros. Instead of starting with the usual
definition p, (2) = Y p_,arz® in (B.1) of a polynomial, Newton considers the
polynomial in two variables

n
T
tn ((L‘,y) = E akxkynik - anxn + anflxnily + e + a()yn = ynpn (;)
k=0

whose zeros z = % are all real.

327. 1If the zeros of the polynomial ¢, (x,y) are real, then also the polynomials
%L; and %L; possess real zeros by Rolle’s theorem (Hardy, 2006), provided n > 1.

Applying Rolle’s theorem recursively leads to the conclusion that any polynomial
87”+ltn a'm.«th
Doy wmoyr Of
degree n — (m +1) = 2,

with m 4+ [ < n has real zeros. In particular, all polynomials

o"'”——Qtn _ iak k! (n —k)! ph—mtl, m—k+1
Oxm—1loyn—1-m pors (k—m+1)!(m-k+1)
m+1
_ Z ar k! (n—k)! gh—m+lym—k+1
i (k—m=+D!'(m—-Ek+1)!
— D! (n— 1!
= Qm-1 (m ) (T; mt ) y2 + amm! (n — m)'xy
m+ 1) (n—m-—1)!
ta, D 2

2

n! [ Gy 2a a
=5 | T+ e+ e
(m—l) (m) (m+1)
possess real zeros, which is equivalent to the fact that all these polynomials for
1 <m < mn —1 have a non-negative discriminant (art. 298):

2
Qo 2 Um—1 Gm+1

(0~ G2 Gl
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446 Polynomials with real coefficients

Hence, we have shown

Theorem 97 (Newton) If p, (z) = Y p_,arz" is a polynomial with real coeffi-
cients and real zeros, then the coefficients satisfy the inequality
m+1ln—m+1

2
(40%Y > Am—10m+1 m n—m (B57)

For example, the inequality for m = n — 1 in (B.57) yields a2 _; > an_gan%.
Using a different argument, art. 300 concludes that, if a,_1; = 0, then a,, and a,_»
must have opposite sign.

328. Unimodal sequences. A real sequence vg,vq,...,v, is unimodal (Comtet,
1974) if there exist two integers | and m such that

v <vpypr for0<k<[-—2
Vg > Vg1 fork>m+41

and with an intermediate region where vi_1 < v} = Vi1 = ... = Uy > Uppy1-
If | < m, there is a plateau, else (I = m), there is a peak separating the non-
decreasing and non-increasing subsequence. A real sequence vy > 0 with 0 < k < n
is logarithmically convex on [a, b] if vi < vgp_1Ugy1 for a+1 <k <b—1, while a
real sequence wy, w1, ..., w, is convex on [a,b] if wy < % (wp—1 +wg) for a+1 <
k < b—1. The transform wy = log vy explains the logarithmic convexity inequality,
that is also rewritten as

U e

Vg—1 Vk

demonstrating that y, = v:—: is increasing in k on [a + 1,b]. Similarly, the loga-

Yt is decreasing on
Vg—1

[a + 1,0]. If the sequence is logarithmically concave and y;, > 1, then vy is increas-

rithmic concavity inequality v > vj_jvj41 implies that ys, =

ing in k, while if y,41 < 1, then v is decreasing. If y,41 > 1 and y, < 1, then vy
is unimodal. Finally, if the sequence is logarithmically strictly concave obeying the
inequality v,% > Vp_1VUk41 SO that yy is strictly decreasing, then there is at most one

value of k where y, = U;’f - = 1, which results in a plateau of two points. If there
is no such value of k, then the unimodal sequence has a peak.

This preparation is needed to conclude from Newton’s Theorem 97 that if all
coefficients ar > 0 and all zeros are real (and non-positive by Decartes’ Theorem
87), then the sequence aj > 0 is unimodal with either a plateau of two points or a
peak because

m+1ln—m+1

2
@, Z Am+10m—1 > Am—1Gm+1
m + m n—m +

Comtet (1974) illustrates that generating functions of many positive combinatorial
numbers, such as binomial and Stirling numbers of the second kind, are polynomials
with real zeros and the sequences of such combinatorial numbers are unimodal with
either a plateau of two points or a peak.
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11.8 Locations of zeros in the complex plane 447

329. Interlacing polynomials. A polynomial g,_1 (z) = 2;11 (z — i) interlaces a

polynomial p, (z) = [];_; (x — 2x) if their real zeros interlace
Zn S Yn—1 S Zn—1 S Yn—2 S et S Y1 S 21

A set of (monic) polynomials 1p, () ,2pn (), ... ,mPn (x) have a common inter-
lacing if there is a single polynomial g,_; () that interlaces each of them. If
ipn (2) = TTiZ; (z = 2j;k), then the polynomials 1p, () ,2 P (@) ;... ym Pn (z) pOs-
sess a common interlacing if there exist numbers 7, < v,_1 < --+ <71 < g so that
Zjk € [Yo—1,7&) for all k € [1,n] and all j € [1,m]. The numbers v,—1 < --- <y
can represent the zeros of a polynomial g, (x), while v, (70) is smaller (larger)
than any of the zeros of any polynomial ;p, (). Marcus et al. (2015, Lemma 4.2)
prove

Lemma 17 If the monic polynomials 1py, () 2 Pn (Z) ;- -« ym Pn (€) have a common
interlacing, then there exists a polynomial ;p, (x) with i € [1,m] for which the
largest zero z;1 is at most the largest zero ¢1 of the sum polynomial fp (z) =

>t P (2).
n—1

Proof: The monic polynomial g,—1 () = [[,_; ( — %) interlaces all monic
polynomials 1p,, (2) ,2 pr () ;. - . ,m Pn (x), implying that v1 < z;,1 < 7o and for z >
Zj1, jPn () > 0 because the leading coefficient is 1 for monic polynomials. Since
each polynomial ;p, (x) has exactly one zero 1 < z;.1, it holds that ;p,, (1) < 0 for
all 1 < j <m. Hence, f, (71) = Z;n:l ;Pn(11) <0 and f, (z) becomes eventually
positive for > 1. In other words, the sum polynomial f, (z) has a zero ¢; > 1.
Furthermore, there must be some ¢ € [1, m] for which polynomial ;p,, (¢1) > 0, else
fn (¢1) were negative, contradicting that ¢4 is a zero of f,, (x). Hence, there exists
a polynomial ;p, (z) with largest zero v1 < z;;1 < ¢1. O

A similar argument can be deduced for the second largest zero and, further, for
the k-th largest zero. Consequently, Lemma 17 implies that the sum polynomial
fa(x) = 3775, jpa (2) also interlaces the polynomial g, (x) and thus possesses
all real zeros.

In general, a sum polynomial of real-rooted polynomials does not possess neces-
sarily all real zeros, which underlines the strong property of interlacing. However,
even if all zeros of the sum polynomial are real, but interlacing is violated, Marcus
et al. (2015) consider the sum f5 (x) of the polynomials (z + 5) (x — 9) (x — 10) and
(x4 6) (z — 1) (z — 8), whose zeros are approximately —5.3,6.4 and 7.4, indicating
that both the largest zeros 10 and 8 are larger than 7.4 of the sum polynomial, in
contrast to Lemma 17.

11.8 Locations of zeros in the complex plane

330. Center of gravity. Consider the real numbers v1 > 0, v > 0,..., v, > 0 that
obey Z;‘L:1 v; =1, and let {2}, ., , denote the n complex zeros of a polynomial
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P (2), then the center of gravity is defined as
z= Z 2% (B.58)
j=1

and the number v; can be interpreted as a mass placed at the position z;. If we
consider all possible sets {v;},_,, of masses at the fixed points {2}, , in the
complex plane, then the corresponding centers of gravity cover the interior of a
convex polygon, the smallest one containing the points 21, 29,...,2,. The only
exception occurs if all zeros lie on a straight line. In that case, all the centers of
gravity lie in the smallest line segment that contains all the points z1, 29, ..., 2.

Any straight line through the center of gravity' separates the set {2k <ken
into parts, one on each side of the line, except if all the points z1, 22, . .., z, lie on
a lline. Indeed, since Y 7, v; = 1, we can write (B.58) with w; = v; (z —2) as
Z?:I w; = 0. If all the points wq, ws,...,w, are on the same side of a straight
line passing through the origin, then >7_; w; # 0 and 377, w% # 0. Indeed, we
can always rotate the coordinate axis such that the imaginary axis coincides with
the straight line through the origin. If all points are on one side, then they lie in
either the positive or negative half plane and Z?:1 Re (w;) = Re (Z?Zl wj) and
Z?:l Re (w;l) is non-zero. The argument shows that not all the points v; (z; — 2)
lie on the same side of a line. Translate the origin from the center of gravity z to
any other point in the plane and verify that the property still holds.

Theorem 98 (Gauss) No zero of the derivative pl, (z) of a polynomial p, (z) lies
outside the smallest convex polygon that contains all the zeros of p, (2).

Proof: Let 21, 29,. .., z, denote the zeros of p,, (z) and let w be a zero of p!, (2),
different from z1, 22, ..., z,, then
G|
I
=T

Since also the complex conjugate Z] 1 W () we have that " —2=24, — ().

J=1 |w— Z|2

This is equivalent to w) | —Lt— = > | —L—z;. With V ="

J=1 |lw—z;|? j=1 |w 2|

n 1
w = E o 3%j

S Viw =z

j=1 |w zj|??
we arrive at

which expresses a center of gravity if v; = e in (B.58) and, by construction,

1
] Viw—z;

Z;:I v; = 1. As shown above, any center of gravity lies inside the smallest convex
polygon formed by the points z1, 2o, ..., 2,. O

14 We may also interpret the vector z; —z as a force directed from z to z; with magnitude v;|z; —z|.
Then z represents an equilibrium position of a material point subject to repellant forces exerted
by the points z1,22,...,2n. If z were outside the smallest convex polygon that contains the
z;'s, the resultant of the several forces acting on z could not vanish: no equilibrium is possible.
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11.8 Locations of zeros in the complex plane 449

Any smallest convex polygon containing all zeros can be enclosed by a circular
disk C, because all zeros are finite. If ¢ is a point lying on the boundary of the
circle C, then the Mébius transform in art. 301 s(z) = —— maps the disk into a
half-plane containing the point at infinity, since s(¢) = co. Further considerations
of Gauss’s Theorem 98 and the Mobius transform are discussed in Henrici (1974).

331. Apolar polynomials. There exists a quite remarkable result that relates the
zeros of two polynomials, that satisfy the apolar condition (B.59). Two polynomials
pn (2) = Y h_oanz® and g, (2) = >p_, biz" are called apolar if they satisfy

n

> -yt =0 (B.59)
k=0 k

Let 8 = (_(12;{’"‘, then the Cauchy product of the polynomials p, (z) and ¢, (z) =
k
S hso Brz" s

2n k
Pn (2) Gn (2) = Z Z a;jBr—; 2
k=0 \j=0

which shows that the apolar condition (B.59) implies that the n-th coeflicient or
n-th derivative at z = 0 of the product p, (2) G, (2) is zero.

Theorem 99 (Grace) Let p, (2) = > p_, axz® and ¢, (z) = > ) _, biz" be apolar,
thus satisfying (B.59). If all zeros of py, (z) lie in a circular region R, then g, (2)
has at least one zero in R.

Proof: See, e.g., Szegd (1922), Henrici (1974, pp. 469-472). O

Example Consider ¢, (2) = 2" + b, _12" %, whose coefficient b, is chosen to
satisfy the apolar condition (B.59), such that ag + (—1)" (Z)_lakbn,k = 0. Thus,

for b,_p = (-1)"! (Z)Z—Z, the zeros of ¢, (2) are [0]"~* and (bn,k)l/k ek for

0 <1< k. All zeros of g, () lie at the origin or on the circle R around the origin

1/k
with radius ‘(Z)Z—Z’ . Grace’s Theorem 99 states that, there is at least one zero

of py, (z) that lies inside that circle R.

The example shows that, by choosing an appropriate polynomial ¢, (z) whose
zeros are known and that can be made apolar to p,, (z), valuable information about
the locations of some zeros of p, (z) can be derived. Related to Grace’s Theorem
99 is:

Theorem 100 (Szegd’s Composition Theorem) Suppose that all the zeros
of pn (2) = Yp_gar(})2" lie in a circular region R. If n is a zero of qn (2) =
o bi() 2", then each zero & of wy (2) = Y _arbi(})z" can be written as
& = —sn, where s is a point belonging to R.

Proof: See Szegb (1922). O
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332. A wvariation on Cauchy’s rule. Let us assume that there is no zero of the poly-
nomial p, (2) = Y _,ax2" in a disk around zy with radius p. After transforming
z — z — z9, we obtain the polynomial expansion p, (z) = Y ;_, bk (20) (z — zo)k
around zg, where by (z0) = pn (20) # 0, by the assumption. Further, we bound
Pn (2) for |z — 20| < p as

Ipn (2)] = [bo (20) + > i (20) (2 = 20)" | > [bo (20)] = D _ Ik (20)] (2 — 20)"

k=1 k=1
. b
>|b0 ZO Z ZO |p —‘bo Zo {1_Z||bs k}
b—1

Cauchy’s rule in art. 321 shows that we may deduce a sharper bound if all coef-
ficients by (29) are real. There is exactly one positive solution for p of |by (20)] =
S orey bk (20)] p* because the right-hand side is monotonously increasing from zero
at p = 0 on. Since finding such solution is generally not easy, we proceed as in
art. 321. Let 3, = \Z"Ezggllpk > 0, for each k where |by (z0)| > 0, then

n

pn ()] > [bo (20)[ 1= >~ B p >1bo(20) {125k}

k=13[br.(20)|>0

It suffices to require that Y ,_; Br < 1 to obtain |p, (z)| > 0. Hence, given a set
of positive numbers S, satisfying >}, Bx < 1, then there are no zeros in a disk
around zg with radius

1/k

bk (Zo)
bo (20)

Example 1 If 8, = 27% for which >p_, Be = > 5 ;278 <372 2% =1, then a
zero free disk around zg has radius

1/k
= min Bk/
1<k:<n,\bk(zo)|>0

bk (ZO) 1/k

bo (20)

Bxample 216 = (g (11" then Sy = S0, (1~ =1
and

p== min
2 1<k<n;|by (20)|>0

1/k
=7 1— )%
p 1—y lgkgnl;l\ll};fl(zo)|>0( v) ‘ (k) bo (z0)
If0 <y <1, then (1—y)* < (1 —y)" such that
1/k

> u(l—y)" ! min
p=y(l-y) 1<k<n;|br(20)|>0

()

Finally, the maximum of y (1 —y)" " occurs at y = Landis £ (1- %)7%1 > L.



https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core

11.8 Locations of zeros in the complex plane 451

<n> b, (20)
k’ bo (Zo)

Example 2 has another interesting property: Vieta's formula (B.13) applied to
P (2) = S 0_o bi (20) (2 — 20)" shows that

l;)o ((zo - )" Z Z ’ Z H

J1=1j2=71+1 Jm=Jm—1+11=1

Thus, a zero free disk around zy has radius

1/k

p=— min
ne 1<k<n;|bi(z0)|>0

where the multiple sum contains (7"”) terms as shown in art. 296. Now, let d =
ming<x<n |25 — 20| denote the distance of zp to the nearest zero of p, (z), then
|2k — z0|_1 < d~! for all 1 <k < n. Introduced in the above Vieta formula yields,

for 1 <m <mn,
n g™
m

m

-y > Y I

J1=1j2=71+1 Jm=jm-1+1i=1

()

Thus, we have shown that there is at least one zero in the disk around zy with
radius nep, while Example 2 demonstrates that there are no zeros in the disk with

—’"((j;’)) < (;;) d~™ into

77L

Ji

from which

1/k

d< min = nep
1<k<n;|bk(20)[>0

the same center zy but radius p. Finally, we use the bound
[bo (20)| = 2Z%—1 bk (20)| p* and find

n k n n p k p n
Sl < (0) (5 - 048"
> gt < () (5 = 0+
k=1 k=1
such that d < 52— Given the solution p of |by (z0)| = >_j_; |bk (20)| p*, the disk
around zo with radius 55— contains at least one zero of p, (2).

There exist theorems, for which we refer to Henrici (1974, pp. 457-462), that give

conditions for the radius of a disk to enclose at least m zeros.

333. If agp > a1 > --- > a, > 0, then the polynomial p, (z) = > _, arz® does not
have a zero in the unit disk |z| <1 nor on the positive real axis.

Proof: If z = r is real and positive, p, (r) > 0. For the other cases where
z =re'? and 0 # 0, consider

n
(= 2)pn (2)] = o - (Z (ap_1 —ag) 2" + anz”+1> ‘
k=1
n
2 a0 [S s )
k=1
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452 Polynomials with real coefficients

Further, with r» < 1,

n n
E ak L — ak Z + an E ak L — ak k: zk@ + anrnJrlez(nJrl)G
k=1 k=1

n
<Z Qf— 1—ak “+a, = ag
k=1
where the inequality stems from the fact that not all arguments e**? are equal,
because 0 # 0. Hence, |(1 — 2)p, (2)] > 0 for |z] < 1. O

Art. 333 also holds for a polynomial with alternating coefficients, t, (z) =

Z:O(—l)kakz where a9 > a3 > --- > a, > 0, because a zero z of t, (z) is
also a zero of p,, (—z) for which |—z| > 1. If a), > ap—1 > -+ > ap > 0, then all the
zeros of the polynomial p,, (2) = Y ;_, arz® lie within the unit disk |z| < 1. This
case is a consequence of art. 333 and (B.2) in art. 291.

334. Two extensions of art. 338 due to Aziz and Zargar (2012).

Theorem 101 (Aziz-Zargar) If za, > an—1 > -+ > ay > yap > 0 where x > 1
and 0 <y < 1, then all the zeros of the polynomial p, (z) = > 1_, apz® lie in the
closed disk |z +z — 1| <z + 2% (1 —y).

Proof: We rewrite ¢ (z) = (1 — 2)p, (2) as

n—1
q (Z) = _arbzn+1 + (a'n - an—l) zZ" + Z (ak - a'k—l) Zk + (al - aO) Z+ag
k=2
n—1
= —a, 2" 4 4, 2" — 20, 2" 4 (0 — an_1) 2" + Z (ag, — ak—1) 2k
k=2

+ (a1 —yao) z+ (y — 1) apz + aop

and further ¢ (2) = —A+ B, where A = a,,2" (z+ 2z — 1) and

n—1
B = (zan —an_1) 2" + Z (ar — ag—1) 2k 4 (a1 —yag)z+ (y — 1) apz + ag
k=2

Hence,

lg (2)] = |A] - |B|

1 — .
> |an| 2" {Iz +a—1]- Tl ((mn —an-1) + Y (ax —ap-) [2*

P

1 a

+(a1 —yao) —=x + 1y =D — =+ —m
|2 |2| |
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11.8 Locations of zeros in the complex plane 453

where in the last step, the inequality of the coefficients in the theorem has been
used. For |z| > 1, we have that

1 n—1 n—1
4 ()1 > lanl |2"] {z+x— -~ (m BB DL DL
n

k=2 k=2
+ay —yao + (1 —y)ao +ao)}

~leal 1 {Jz 42~ 11~ - (50— o + (1= D)o + a0}
If |z4+2—-1] > M and |z| > 1, then |¢(z)| > 0. Therefore, all the
zeros of ¢ (z) with modulus larger than 1 lie in the closed disk |z +2 — 1| < z +
2(1 —y) ¢*. Now, the zeros of ¢ (z) with modulus smaller than or equal to 1, also
satisfy [z +2 — 1] <z +2(1 —y) ¢*, because |z + 2 — 1| < [z| + 2 —1 < z. Since
all the zeros of p, (z) are also zeros of ¢ (z), the theorem is proved. O

When x =y = 1, Theorem 101 reduces to art. 333. Art. 333 cannot be applied
to the polynomial p,, (2) = az"+(a—1) > _ 11 2" +a with a > 1, whereas Theorem
101 with z = 1 and y = 2= shows that all the zeros of p, (z) lie in the disk
2] <1+ 2.

Theorem 102 (Aziz-Zargar) If a, < ap—1 < - < a1 < ap > ap_qg > -+ >
a1 > yag where 0 <1 <n—1and 0 <y <1, then all the zeros of the polynomml
pn (2) = Y p_oanz® lie in the closed disk

2a; — an—1 + (2 — y) lao| — yao

|an|

ap—1
QA

‘z—i— —1‘§

Proof: Similar as the one above and omitted (see Aziz and Zargar (2012)). O

335. If the polynomial p,, (z) = > p_o arz" has real, positive coefficients, then all
ak:) < |z| € maxi<p<n (a“l)-

Qg

its zeros lie in the annulus ming<p<y,

Proof: Consider p, (%) => o apr F2z* and we can always choose z such that
arz ™% < ap_12'F for each 1 < k < n. Indeed, it suffices that =t < a’;—;l for each

“’;;1) For those z, art. 333 shows that |p, (£)] >0

for |z| < 1, which implies that p,, (2) has no zeros within the disk with radius z 1,

thus |z;| > 27!, Applying the same method to z"py, (£) = Y p_jan—ry™ *zF
and choose y such that a,_xy" % < a,_py1y" ¥t for each 1 < k < n, or y =
maxi<k<n (a’;;l) For those ¥, art. 333 indicates that {pn (%)| > 0 for |z| <1,

k or that 71 = minj<x<y, (

which implies that all zeros of z"p, (%) lie outside the disk with radius y. In view
of art. 291, the zeros zj of p, (z) lie within that disk with radius y, thus |z;| < y.
Combining both bounds completes the proof. O

336. Upper bound for the number of real zeros of a polynomial p, (z). The square
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454 Polynomials with real coefficients

of the distance between the complex numbers z = e*¥ and w = pe’® equals
|z —w|> =1+ p* — 2pcos (0 — )

from which
|z —wf’

1
=p+——2cos(0 — )
|wl p

and the right-hand side is minimal when p = 1, so that

2
% >2—2cos(0— )= ‘zfeief

After applying this inequality to the n zeros z, = 1 for 1 < k < n of a
polynomial p,, (z), we obtain for z on the unit circle, i.e. |z| =1,

|HZ:1 (= > H (z _ ez‘ek) :

‘HZ:1 2| =

With the definition (B.1) of p, (#) and defining the polynomial

n
“II =)

whose zeros are all on the unit circle and each zero e+ of q,, () possesses precisely

the same phase 6}, as the zero z = rpe’’* of p, (z), we find

2 _ I (z W (@)
lan (2)]” < for any complex z with |z| =1
|a’n| |Hk 1Zk| |ana0|
Since |p, (2)° = P (eitp)|2 for any real ¢ and |p, (€%)| = [Sr_,ape’®?| <

r—o lak|, we arrive at Shur’s inequality, according to Erdés and Turdn (1950),

> k—o lax]
V |ana0|

The zeros of ¢, (z) lie on a known interval [0, 27| and, if p, (2) has m positive real

lgn (2)] < &2==— for any complex z with |z| =1

zeros, then g, (z) has a zero at z = 1 with multiplicity m. By using extremal prop-
erties of orthogonal polynomials, Erdés and Turdn (1950) derived a lower bound
for |g, ()| and established

Theorem 103 (Schmidt-Schur-Erd6s-Turan) The number r of real zeros of
the polynomial p, (2) = > _, axz® is upper bounded by

n
_o |ax|

k
V |ana'0|

r? < 4nlog (B.60)
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11.9 Iterative algorithms for the zeros

337. Method of Newton-Raphson. Assume that zy is a reasonably good approxi-
mation of a zero ¢ of f(z), so that ( — zp = h is sufficiently small. Then, Taylor’s

theorem f(2) =Y po o fr (20) (2 — 20)" with fr (20) = 5 % shows that

uU=zq

f(z0+h) = f(20) + f1(20) h + O (h?)

Since f (20 + h) = 0, a good approximation of h up to O (h2) can be computed as
h = 7% and the approximation of the zero { is z; = zg + h. Newton observed
that repeating the argument increasingly leads to a better approximation for the
zero (. If the first derivative can be computed in a range around zy, then the

Newton-Raphson iteration scheme for the zero is

S (Ze-1)
2k = Rp—1 — ———= B.61
R Y oy (B.61)
and the sequence zp, 21, 29, . . ., 2, converges to the correct zero ¢ of f(z). Indeed,
Taylor’s theorem indicates that f (z;) = f (Zk—l — %) is
f (zi-1) >2 (f(z“))S
2k) = fo(zo1) | ———% | +O0| | ———=
f o) = fa (o) <f1 (2k-1) fi(zr-1)
which implies, provided that h, = —% is small enough to ignore terms of
order 3 and higher, that
f2 (zk-1) 2
2g) = —(f (z_
f( k) f12 (Zkfl) (f( k 1))
If the derivatives f1 (zk—1) are not too small, nor f5 (zx—1) is too large, then the
sequence {f (zx)}>o converges quadratically: if f(zx—1) = 107 is small, then

f(zx) ~ 1072% and each iteration doubles the number of correct digits, which is
amazing!

338. Weierstrass’s iterative method. Weierstrass argues similarly. Ideally, all
w; + Aw; = z; for all zeros 1 < j < n such that the product form (B.1) of the
polynomial equals

pn (2) = ap H(z —w; + Awy)
j=1

Taylor’s Theorem in art. 200 of the n-dimensional function p, (2; 21, ..., z,) in the
vector (21, 22, . .., 2,) around the vector (wy,wa, ..., w,) yields

Aw; +7r

Zj=wWgj

n ) (2
pn(z) = Pn <Z§w17-~-7wn> +Z %—;)
j=1 J

where the remainder 7 contains higher order terms in Aw; such as (Aw)T HAw,
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456 Polynomials with real coefficients

where H is the Hessian. Ignoring the remainder as in Newton-Raphson’s rule
(art. 337) and computing the derivative yields

pn (2) = ap H(Z —w;) — ap Z H z — wg)Aw;
j=1

J=1 k=Lk#j
All increments Aw; for 1 < j < n are solved from this relation by subsequently
letting z = w,, for 1 < m < n, resulting in

n

D (W) _fanZAw] ﬁ (W — WE) = —anAwy, H (Wy, — wg)

k=1;k#j k=1;k#m

from which Weierstrass’ increments for 1 < m < n are obtained:

Awm — - —Pn (w’m) (B62)
Qn Hk:l;kz;ﬁm(wm - wk)
Iterations of w(kﬂ) = wgf) + Awgf) for 1 <m <nink =0,1,... converge also

quadratically in k to all the 1 < m < n zeros z, under much milder conditions
than the Newton-Raphson rule. McNamee (2007) demonstrates that Weierstrass’s
scheme nearly always converges, irrespective of the initial guesses wfq?, ) for 1 <m<
n.

There is an interesting alternative derivation of the Weierstrass increments (B.62).
The application of the Newton-Raphson rule (B.61) to the coefficients (B.11) of Vi-
eta’s formula expressed in terms of the zeros yields a set of linear equations in
Awy, that leads to (B.62). The simplest linear equation, 2=+ = — 37" | 2z for
k=n—1in (B.11), is linear in z; = wy + Awy, and shows that, at each iteration
P wyf ) —GZTI, meaning that the sum of approximations equals the exact
sum. Just as there are many improvements of the Newton-Raphson rule to enhance
the convergence towards the root, so are there many variants that improve Weier-
strass’s rule. Moreover, there are conditions for the initial values w,(g) to guarantee

convergence, which are discussed in McNamee (2007).

11.10 Zeros of complex functions

339. The argument principle.

Theorem 104 If f (2) is analytic on and inside the contour C, then the number
of zeros of f (z) inside C' is

IR G|
—%/Cf(z)dz—%Acargf(z)

where A¢ denotes the variation of the argument of f round the contour C.

Proof: See Titchmarsh (1964, p.116). O
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11.10 Zeros of complex functions 457

Since polynomials are analytic in the entire complex plane, Theorem 104 is valid
for any contour C' and can be used to compute the number of zeros inside a certain
contour as shown in Section 11.6.

340. Theorem of Rouché. The famous and simple theorem of Rouché is very
powerful.

Theorem 105 (Rouché) If f(z) and g(z) are analytic inside and on a closed
contour C, and |g (z)] < |f (2)] on C, then f(z) and f(z) + g (z) have the same
number of zeros inside C'.

Proof: See Titchmarsh (1964, p.116). O

Corollary 5 If at all points of a contour C around the origin, it holds that |a,z*| >
Z};O;j#k a;z’|, then the contour C encloses k zeros of p, (2) = > p_ axz".

Proof: A proof not directly based on Rouché’s Theorem is given in Whittaker
and Watson (1996, p.120). The result directly follows from Rouché’s Theorem
105 with f(z) = axz"®, which has a k-multiple zero at the origin and g (z) =

n
o
) =0ij ok Q7 (]

We give another application of Rouché’s Theorem to a polynomial p,, (z) with
real coefficients a9 > a1 > -+ > a, > 0. If R is such that a9 > Zzzl apRF,
then p,, (z) has no zeros in the disk around the origin with radius R. If R > 1, an
improvement of art. 333 is obtained.

341. Theorem of Jensen and bounds of Mahler.

Theorem 106 (Jensen) Let f (z) be analytic for |z| < R. Suppose that f (0) # 0,
and let 1y < rg < ... <1, < ... be the moduli of the zeros of f(z) in the circle
|z2| < R. Then, if r,, <r < rpyq,

n 2m
nlogr+log\f(0)|—210grj:%/O 10g|f(rei9)|d9
j=1

Proof: See Titchmarsh (1964, p. 125). O

Consider the polynomial p, (2) = Y p_, axz® with zeros, ordered as |z1| > |2z2| >
> Jzm| > 1 > |zmy1| > ... > |2zn|. Assuming that ag # 0, then Jensen’s

n

Theorem 106 states for 7 = 1 that 5= fOZTr log |pn (ei9)| df = —log ﬁ H ;]
Jj=m+1

Using ag = (—1)" ay, [[5_; 2 in art. 291 yields

1 2 4 m
g/o log |pn (ew)| df = log <|an| H |zk|> (B.63)
k=1
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458 Polynomials with real coefficients

With |p, ()| = |Yj_o axe™®| < Yp_o |lak|, we obtain the inequality of Mahler
(1960),

m n
Jan| T 126 < lax| (B.64)
k=1 k=0

Mahler (1960) also derives a lower bound for |a,|[],—, |zx|. Since |z1]| > |z2| >
> zm| > 12> |zme1] > ... > |zn], it holds, for 1 < jp < n and 0 < k < n, that
H 1 1251 <TI%q 2. Vieta’s formula (B.11) shows that, for each 0 < k < n,

a n n n k

k

- Z > H%<Z > oY s
1+1 Jk=Jjk—1+1i=1 J1=1j2=j1+1 Jk=Jk—1+1 li=1

j2=J1
SPIDVEEDS 1:(’;)sz|
1=1j2=71+1 Jk=Jr—1+1 =1

Multiplying by p"~* and summing over all k results in

n

S Jan ] 7 = Z|ak|p <an|H|zl|Z(> —(149) |an|lez|
=1

k=0
which gives Mahler’s lower bound when p = 1,

m

2" "j{:lak|<\an\IIIzA (B.65)

342. Lagrange’s series for the inverse of a function. Let the function w = f (z) be
analytic around the point zg and f’ (29) # 0. Then, there exists a region around
wo = f(20), in which each point has a unique inverse z = f~! (w) belonging to
the analytic region around zy. The Lagrange series for the inverse of a function
(Markushevich, 1985, 1, pp. 83),

1 4! z— 2 "
= *Z”Zn' dz- ( <z>—f<20>)

is a special case (for G(z) = z) of the more general result
(w — f(20))"

G(f~H(w)) = G(=0) +Z;| ddznn 11 { @) (ﬁ)n}
(B.67)

Provided that G (z) is analytic inside the contour C around zp, that encloses a
region where f (z) —wp has only a single zero, then the last series (B.67) follows
from expanding the integral definition of an inverse function

(w — f(20))" (B.66)

Z=20

Z=Z0

G w) = 5 [ G(z)ﬂ& -

27i (2) —w
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11.11 Bounds on values of a polynomial 459

in a Taylor series around wg = f(z0),

T N N L N DU
6t w) =3 |5 [ 6y ] (- o)

n=0

Applying integration by parts for n > 0 gives
1 f'(z) 1 G'(z)
il G dz = d
21, OG-

After rewriting,

1 G'(2) _ L (z — 20) " G(2) »
2mi /c 7@ = 7)) = 2 /c ((f(z) = f(Zo))) Gz

and invoking Cauchy’s integral formula (B.46) for the k-th derivative, we obtain
(B.67).

A zero ¢ of a function w = f(2), whose inverse is z = f~!(w), satisfies
¢ = f71(0). If the Taylor series f(2) = Y5> fx (20) (z — 20)" is known, the
Lagrange series (B.66) can be computed formally using characteristic coefficients

(Van Mieghem, 2007) to any desired order. Explicitly, up to order five in ;?Ezgg, we

2 () M| (Al

have

Jo(zo

C(20) ~ 20 — -

S—
o
=
N
o
SN—
7N
=
—~
N
o

(R fs(2) f(20)  fazo)| (folzo)\!

- 5(f1(20)) Jr5fl(zo f1(20) fl(Zo)] <f1(20)>

AN, fs(z0) (Fa(20)\* . (f3(z0) )’

| (f1(20)> 2 f1(20) <f1(20)> ’ <f1(20)>
(

_6 fa(20) f2(20) f5(zo)} (fo(zo

) 5
fl(Zo) f1(20) + fl(Zo) fl(Zo)) (B.68)

from which we observe that the two first terms are Newton-Raphson’s correction
(B.61) in art. 338. The formal Lagrange expansion, where only a few terms in
(B.68) are presented, only converges provided zj is chosen sufficiently close to the
zero ((zp), which underlines the importance of the choice for z5. Another observa-
tion is that, if all Taylor coeflicients fi (zo) are real as well as zp, the Lagrange series
only possesses real terms such that the zero ((zp) is real. Thus, for any polynomial
f(2) = pn (2) with given real coefficients, a converging Lagrange series for some
real zp identifies a real zero ((z).

11.11 Bounds on values of a polynomial

Milovanovié¢ et al. (1994) have collected a large amount of bounds on values of
polynomials. Here, we only mention the first contributions to the field by Pavnuty
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460 Polynomials with real coefficients

Chebyshev and refer to Borwein and Erdélyi (1995) and Rivlin (1974) for the deeper
theory. Properties of Chebyshev polynomials are studied in Section 12.7.

343. Chebyshev proved the following theorem:

Theorem 107 (Chebyshev) Let p, (z) = > p_,arz® be a monic polynomial
with real coefficients and a,, = 1, then, forn > 1,

_max pn (@)l 2 55

The equality sign is obtained for p, (z) = 52(,21), where T), (z) = cos (narccos z) are

the Chebyshev polynomials of the first kind.

Proof: See Aigner and Ziegler (2003, Chapter 18) and Rivlin (1974, p. 56). O

An immediate consequence of Chebyshev’s Theorem 107 is:

Corollary 6 If a real and monic polynomial p,, (z) obeys |p, (z)| < ¢ for all x €
[a,b], thenb—a <4 (g)l/n.
Proof: We map the z-interval [a,b] onto the y interval -1 1] by the linear
transform y = 2 — (2 —a) — 1. The polynomial ¢, (y) = px ( =2 (y4+1)+ a) has
|

maxa<x<b ‘pn ( )|

leading coefﬁment (b2“)n and satisfies max_j<y,<1 |qn (y)
|

Chebyshev’s Theorem 107 states that max_1<y<1 |gn (y)]| > (bT) 5=—. Hence,
b—a\"
< <
2( 4 > a<<b‘pn()‘_c
such that b—a < 4 (5)"/". 0

11.12 Bounds for the spacing between zeros

344. Minimum distance between zeros. Mahler (1964) proved a beautiful theorem
that bounds the minimum spacing or distance between any pair of simple zeros of
a polynomial. Only if all zeros are simple or distinct, the discriminant A (p,,) is
non-zero as shown in art. 298. Moreover, Mahler’s lower bound (B.69) is the best
possible.

Theorem 108 (Mahler) For any polynomial p,, (x) with degree n > 2 and distinct

zeros, ordered as |z1| > |z2] > ... > |zm| > 1> |2mg1] > ... > |2, the minimum
distance between any pair of zeros is bounded from below by
3|A 3|A
min |z, — 2| > 12 (pn)] > 14 (pn)| (B.69)

1sk<sn mo A\ B (T )"

n#+ | an| ] 121
j=1
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11.12 Bounds for the spacing between zeros 461

where A (py,) is the discriminant, defined in art. 298.

Proof: The relation (B.15) between the discriminant and the Vandermonde
determinant suggests us to start considering the Vandermonde matrix V, (z) in
(A.75) of the zeros, ordered as in Theorem 108. Subtract row s from row r and use
the algebraic formula 2% — y* = (z — y) Zf;é P17y such that

1 22 23 P
- 23 23 P
detV, (2) = (2, — 25 - ) ’ ’ 9
n( ) ( T é) 0 1 2 + 24 Z?—FZTZS"‘ZE Z;ﬂ 0 Zn 2— }ZJ
2 3 -1
L Loz, Zn Zn, Z:LL J

We now proceed similarly as in art. 225 by dividing the first m rows, corresponding
to the components with absolute value larger than 1, by z;.L_l for 1 < j <m. The
only difference lies in row 7, that consists of the elements

n—2 .
0 1 z+2s 224z2s+22 - ZJOZ”QJZJ ifr>m
o 5 5 n—2 n—2-j_j .
0 2P iz atmabn L Dee S TR frcm
zr 27 27

Since r < s, the ordering tells us that |z,.| > \z5| If r > m, then 1 > |z,| > |25, and
the k-th element in row r is bounded by ‘ZJ o 2h2 JzJ‘ <k —1, while if r <m,

I 2d

then |z,.| > 1 and the k-th element in row r is bounded by ‘Zk 2 ZZT <k-1.
Hadamard’s inequality (A.78) shows that

m
[det Vi, (2)] < |z — 2zl 0T [ 25"

Using > ,_ 1k2 = % < %3 (Abramowitz and Stegun, 1968, Section
23.1.4), we have

|Zr - Zs| nt2 e n—1
detV, (z)| < ——=—n"2 2 B.70
[det V2, ()] < === [ ] |2 (B.70)
This inequality (B.70) is nearly the best possible, because equality is attained
if z; = e2™% as shown in art. 225 and art. 242. Choosing 2z, = 1 and z5 =
e*, |2 — 2| = 2sin Z I, while we know from (A.79) that |det V}, (z)| = n™/? such
n e nt2 n42
that Ge¥el — ot — S (22 ) which tends to MetYall a2 for

large n. This illustrates that (B.70) cannot be improved, except perhaps for a
slightly smaller prefactor than % Since the inequality (B.70) holds for any r and
s, Theorem 108 now follows from the definition of the discriminant (B.15). The
last inequality in (B.69) follows from (B.64). O


https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core

462 Polynomials with real coefficients

Usually, the discriminant A (p,,) is not easy to determine. However, for a poly-
nomial with integer coefficients and thus also rational coefficients because p”T(Z)
and p,, (z) have the same zeros for any complex number « # 0, art. 298 shows
that A (py,) is a function of the coefficients aj, and, hence, an integer. In addition
A (pn) # 0, such that |A (p,,)| > 1. Thus, the minimum spacing between the simple

zeros of a polynomial with rational coefficients ay € Q is lower bounded by

. V3
mlp ) |Zk? - ZJ| > nq n n—1
1<k W (S, lax)

(B.71)

345. Lupas’ upper bound for the minimum spacing. An upper bound for the spacing
(Milovanovi¢ et al., 1994, p. 106) due to Lupas is

min_ |z — 2| <2 3 Var 2]

1<k<j<n n?2 —1 (B.72)

where the variance of the zeros of a real polynomial is defined as
1 n 1 n 2
V. == i

2
Using the Newton identities in art. 294 yields Var[z] = 25 {(n —1) %2t — 2"“—*2}

An

Equality in the upper bound (B.72) is attained for the polynomial

3 Var [2] )

n?—1

pn(2) =] (zE[z}(n2k+1)
k=1

an—1
nan °

where the mean of the zeros E[z] = L 370 | 2, = —

11.13 Bounds on the zeros of a polynomial

346. Bounds on the largest zero. Let w be a zero of the polynomial p, (z), then
—a,w" = Y120 apw® implies |a,|[w]” < SIRZ0 ag| [w]®. If Jw| > 1, then we can
further bound as |a,| [w|" < |w|["~" S237) |ax|. Thus, unless all zeros lie within
the unit disk and |w| < 1, the zero ( = maxi<g<y |2x| with largest modulus of

the polynomial p,, (z) obeys 1 < ¢ < ‘a—1| Z:;é |ak|. The Newton equation Z; =
Spo1 2k = —=== in (B.8) leads to ‘ag"l‘ < > k_ilzk] < n¢. Hence, the zero ¢

n

with largest modulus is bounded by
n—2
1 |ap— n— 1
max(L—'“ 1) <o ltmly LSy
nlan| |an| |an| =0

The difference between upper and lower bound illustrates that the bounds are rather
loose.
McNamee (2007) provides a long list of bounds on the modulus of the largest
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11.13 Bounds on the zeros of a polynomial 463

zero ( = maxXi<k<n |2k| of p, (2), where the coefficients a, € C and a,, = 1. By
testing over a large number of polynomials, he mentions that the relatively simple
formula, due to Deutsch (1970),

ar—1

C é ‘an71| +
ag

max
1<k<n—1 and ap#0

which is an extension of art. 291 to complex coefficients ay, derived from the com-
panion matrix (art. 242) using matrix norms, ended up as second best. The best
one is due to Kalantari,

1
2 E—1
< max |a Apy— — Qp—10p— — Ap—20p— +an—
C74§k§n+3| n—14n—k+3 n—10n—k+42 n—20n—k+3 n k+1{

347. Euler’s bounds. Let ( = maxi<i<n |2x| denote the zero with largest modulus
of the polynomial p,, (2) = 332, axz* and define o; = S°7_, |z1” > | Z,]|, where the
Newton equations (B.4) determine Z; in terms of the coefficients {aj}. Evidently,
¢? < ;. On the other hand, since ¢ > |z;| for any 1 < k < n,

n

n
g =y |zl |zl <Yzl = Co;
k=1

k=1

Combining both inequalities yields the bounds, for any j > 0,

ag;
In the limit for j — oo and for functions f with only real positive zeros where
Zy = >k 12" = 0m, both bounds tend to each other, because the radius of

convergence R of the Taylor series J;/((ZZ)) = % -3 (220:1 Z;n—lﬂ> 2™, which

is nothing else than ¢, can be calculated from (Buck, 1978, pp. 240) as % =

lim,,— 0o sup|Zm|# and % = lim,, 0 ‘Zg“ ‘, when the latter exists. Watson

(1995, pp. 500) mentions that Euler, already in 1781, has devised a similar method
to calculate the three smallest zeros of the Bessel function Jy(21/z).

348. Inequalities for o; = Zzzl |zk|j. For any integer m and j, we may write

0= 4y ’ziim‘ |z7*|. Applying the Holder inequality (A.10) gives

1—1
n P
(zw%)

k=1

3 =

k=1
where we require that p(j —m) = [ and % = h and both [ and m are integers.

All solutions satisfy m (I — h) = (I —j) h with [ > 0 and p = —- and we obtain

j—m

the recursion inequality

1 1-1 . ) m
0j < (o1)? (o) "7 with [ =p(j —m) and h = =
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464 Polynomials with real coefficients

For example, the solution h =1 = j and p = ]—7% returns, for any m and j, an
equality, namely the definition of o;. The case p =2 is

0]2 < (Z |Zk|2(jm)> (Z |Zk|2m> = 02(j—m)92m (B73)
k=1 k=1

which is particularly useful in the case where j is even and all zeros are real.

349. The next theorem sharpens the bounds in art. 347:

Theorem 109 If z1,...,z, are the real zeros of a polynomial p, (2) => 1 _, apz®
for which Zy =3} _, z = 0, then any zero ¢ € {z1,...,2,} is bounded for positive
integers 1 < m by

1 1
Z2TH 2m Z2TH 2m
- <—1 T ) <¢< <—1 T ) (B.74)
+ ozt + ozt

where Z; = ZZ:1 zi for 1 < j <n is uniquely expressed via the Newton recursion
(B.7) in terms of the coefficients ay.

As shown in art. 300, the condition Z; = 0, which is equivalent to the require-
ment that a,,—1 = 0 by (B.8), is not confining.

Proof: Let z; denote an arbitrary zero of p, (z), because we can always relabel
the zeros. Applying the Holder inequality (A.10) to z; = 1 and y; = 2z; € R for
2 < j < n, yields for even ¢ = 2m > 1,

2m
1 n n om
el Szl <Dzl (B.75)
(n_ ) j=2 j=2
Since ‘Z?ZZ zj‘ < Yiolzl and YU, 2 = —*2=t — 2, the inequality (B.75)
becomes for real zeros only,
1 an-1 m 2m
( 1)2m71 . + 21 < Zom — 27 (B.76)
n — n

Using the assumption that a,_1; = 0, we finally arrive, for any integer 1 < m, at
our bounds (B.74) for any zero of p, (z), and thus also for the largest real zero. O

Theorem 109 actually generalizes a famous theorem due to Laguerre in which
m = 1 and where the condition that Z; = 0 is not needed:

Theorem 110 (Laguerre) If all the zeros zi,...,z, of a polynomial p, (z) =
S ho arx® with a, =1 are real, then they all lie in the interval [y_,y.| where

apn—1 , n—1 2n
TS o

n n n—1
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11.13 Bounds on the zeros of a polynomial 465

Proof: Laguerre’s theorem follows immediately from (B.76) and the Newton
identities in art. 294 for m = 1. See also Aigner and Ziegler (2003, p.101). O

Since the quartic equation (m = 2 in (B.76)) is still solvable exactly, that case
can be expressed in closed form without the condition Z; = 0, as in the proof of
Laguerre’s Theorem 110. However, all other m > 2 cases are greatly simplified by
the condition Z; = 0, that relieves us from solving a polynomial equation of order
2m.

Theorem 111 If z1,. .., 2, are the real zeros of a polynomial p, (2) =Y p_q apz”,
then any zero ¢ € {z1,...,2,} is upper bounded, for positive integers m, by

1
m

¢ < Z2m +/(n @ - Zz’") (B.77)

and lower bounded for odd integer values of m, by

Z2m Z4m Z2m 2
= T‘V(”_l)\/T_<T) (B.78)

Proof: In a similar vein, application of (B.73) for j = 2m and m = [, gives
2
(Z2m - Zl ) (Z2(2m ) — Zl( l)) (ZQl - Z2l)

Ifi=2orl= , then 237, — 223" Zoy, + 20 Zsyn + 23, — Z3m Zm < 0, whose
exact solutlon via Cardano s formula is less attractive. For | = 0, the quadratic
inequality

2Z2m 2m Z2m - (TL — 1) Z4m

24m — Z2m y 2m <0
n n

is obeyed for any z{" lying in between

o A Zom \ 2
_ 2Lim\/47,_(2m)
n n n

The Cauchy—Schwarz inequality (A.12) shows that Z_;me - (anm)2 > 0, implying
that the roots are real. Thus, we find the upper bound (B.77) and the lower bound
(B.78), that always exists for odd m. O
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12

Orthogonal polynomials

The classical theory of orthogonal polynomials is reviewed from an algebraic point
of view. The book by Szegd (1978) is regarded as the standard text, although it
approaches the theory of orthogonal polynomials via complex function theory and
differential equations. The classical theory of orthogonal polynomials is remarkably
beautiful, and powerful at the same time. Moreover, as shown in Section 6.13, we
found interesting relations with graph theory.

An overview and properties of the classical orthogonal polynomials such as Legen-
dre, Chebyshev, Jacobi, Laguerre and Hermite polynomials is found in Abramowitz
and Stegun (1968, Chapter 22) and Rainville (1971). A general classification scheme
of orthogonal polynomials is presented by Koekoek et al. (2010) and by Koornwinder
et al. in Olver et al. (2010, Chapter 18). The theory of expanding an arbitrary
function in terms of solutions of a second-order differential equation, initiated by
Sturm and Liouville, and treated by Titchmarsh (1962) and by Titchmarsh (1958)
for partial differential equations, can be regarded as the generalization of orthogonal
polynomial expansions.

12.1 Definitions

350. The usual scalar or inner product between two vectors x and y, that is denoted
as o7y, is generalized to real functions f and g as the Stieltjes-Lebesgue integral®
over the interval [a, b]

b
(f.9) = / £ (w) g (u) AW (u) (B.79)

1 As mentioned in the introduction of Van Mieghem (2014, Chapter 2), the Stieltjes integral

unifies both continuous and differentiable distribution functions as well as discrete ones, in
which case, the integral reduces to a sum. If W is differentiable, then (B.79) simplifies to

b
(f.9) =/ £ () g (u) w () du

where the non-negative function w (u) = W’ (u) is often called a weight function. A broader
discussion is given by Szeg6 (1978, Section 1.4).

467
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468 Orthogonal polynomials

where the distribution function W is a non-decreasing, non-constant function in
[a,b]. As in linear algebra, the functions f and g are called orthogonal if (f,g) =0
and, likewise, the norm of f is || f|| = v/(f, f). Moreover, the generalization (B.79) is
obviously linear, (af + Bh,g) = a(f,g) + B (h,g) and commutative (f, g) = (g, f).
The definition thus assumes the knowledge of both the interval [a, b] as well as the
distribution function W. All functions f, for which the integral f; |f (w)|? dW (u)
in (B.79) exists, constitute the space L[Z%b].

351. An orthogonal set of real functions fq (z), f1 (2),..., fm () is defined, for
any k#£1€{0,1,...,m}, by

b
(fk,fl):/ Fo () £ (w) dW (1) = 0 (B.80)

When (fi, fr) = 1 for all &k € {0,1,...,m}, the set is normalized and called an
orthonormal set of functions. Just as in linear algebra, these functions { fi}<r<m
are linearly independent. Since polynomials are special types of functions, an or-
thogonal set of polynomials {7}, .~,, is also defined by (B.80), and we denote,
an orthogonal polynomial of degree n, by 7, or m, (z). In addition, the general
polynomial expression (B.1) is

™ (x) = Z ck;na:k (B.81)
k=0
The special scalar product my = (a:k , 1), or in integral form

my = / W () (B.82)

is called the moment of order k, and is further studied in art. 354.
If 7, (z) is an orthogonal polynomial, then 7, () = —(#) _ is an orthonormal

V (7"'7”7771)

polynomial. Although the highest coefficients c,., can be any real number, we may
always choose ¢,;, > 0 since any polynomial can be multiplied by a number without
affecting the zeros. The fact that c,,, > 0 is sometimes implicitly assumed.

352. The Gram-Schmidt orthogonalization process. Analogous to linear algebra,
where a set of n linearly independent vectors that span the n-dimensional space
are transformed into an orthonormal set of vectors, the Gram-Schmidt orthogo-
nalization process can also be used to construct a set of orthonormal polynomials,
defined by the scalar product (B.79). First, the constant polynomial of degree zero
mo () = mg is chosen to obey

b
1 = (mp,mo) = Wg/ dW (u) = Tgmo

a

where the moment of order zero in (B.82) equals

mo =W (b) — W (a) >0


https://doi.org/10.1017/9781009366793.017
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.017
https://www.cambridge.org/core

12.2 Properties 469

1
m

because the distribution function W (z) is non-decreasing in . Thus, 7 (z) =

E

The degree one polynomial, 71 (z) = ¢1,12 + co;1 must be orthogonal to mg (z)
and orthonormal, (71, 71) = 1. These two requirements result in

(m1,m0) = c1;1 (@, m0) + o1 (1,7m0) =0

such that co = —%ﬁgo), while normalization requires that 7 (z) = %

Combining both leads to

1 (2) = —HL (m _ (xﬂfo)>

(m1,71) (1,70)

Both m; and m are real polynomials.

We can continue the process and compute the degree two polynomial that is
orthogonal to both m; and 7y, and that is also orthonormal. Suppose now that we
have constructed a sequence of orthonormal polynomials 7g, 71, . .., T,—1, which are
all real, obey the orthogonality condition (B.80) and are normalized, (7, 7) = 1.
Next, we construct the polynomial 7, (z) that is orthogonal to all lower degree
orthonormal polynomials by considering

T (T) = Cpna”™ E apm (

Orthogonality requires for j < n that
0= (mp, ) = Cnpn (", 75) Zak Ty Tj) = Cnn (&7, ;) — a; (w5, 75)

such that
(xnvﬂj)
;i = Cpop———=
O

After normalization (m,,m,) = 1, we obtain the real, orthonormal polynomial of
degree n:

c = (™, )
Rule) = (m Y s <x>>

(T, Tn Py (Ths T

By induction on n, it follows that there exists an orthonormal set of polynomials
belonging to the scalar product (B.79).

12.2 Properties

353. Key orthogonality property. Let p, () be an arbitrary polynomial of degree
n, then p, (z) can be written as a linear combination of the linearly independent,
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470 Orthogonal polynomials

orthogonal polynomials {7y}, provided m > n,

DPn (33) = Z bk;nﬂ-k (37) (B83)
k=0

After multiplying both sides by m; (z), taking the scalar product, and using the
orthogonality definition in (B.80), we find that, for all 0 <1 < n,

(pm 7Tl)

bin =
g (1, m7)

Hence, any polynomial of degree n < m can be expressed in a unique way as a
linear combination of the set of orthogonal polynomials {7}, Because the
polynomial p,, (z) is of degree n, the fundamental theorem of algebra states that
the coefficients b, = 0 when [ > n. In summary, a key property of orthogonality
is

bi.n ||7rl||2 ifo<i<n
o) = ; B.84
(Pr 1) { 0 ifl>n (B.84)

Example If p, (z) = m, () = Y1 crm@®, then (pn, m) = > 1o Chn (¥, m) =
> p_i Ckin (z¥,m), because (B.84) indicates that (z%,7m,) = 0if [ > k. By or-
thogonality (B.80), it holds that (p,,m) = (mn,m) = dn = bin ||7rl||2. Thus,
> hei Chin (:rk, m) = 0 for | < n and, for n =, we find that b,.,, = 1, such that

(B.85)

354. A first interesting consequence of art. 353 arises for the special class of
polynomials p,, () = ™. In that case, if [ > n, then (2", m;) = 0, but (2", m,) # 0.
Introducing the polynomial form (B.81) and using (x”,xk) = (:r”"‘k, 1) = Mp4k N
(B.82) yields, for n <1,

l
(2", m) = ch;lmn+k
k=0

which is written in matrix form, taking into account that (z™,m;) = (2", 7y,) 0in
for 0 <n <l as

mip Mg s Myg 1y 0

mp oMy e My cui (!, m)
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12.2 Properties 471

The symmetric moment matrix

mo m1 my

mi ma mi+1
M, = .

m; M4 v map

is an (I + 1) x (I + 1) Hankel matrix?. The Gram-Schmidt orthogonalization process
(art. 352) shows that there always exists an orthogonal set of polynomials, such that
a set of not-all-zero coefficients {cg, } ., exists. This implies that the determinant
of the moment matrix M; is non-zero. By Cramer’s rule (A.68), the solution is

(xl, m) cofactor; 41, M;

it = det M,
In particular, the definition (A.36) of a cofactor in art. 212 shows that
det Ml—l l
= —_— B.
Cl;l det Ml (x ,7'('1) ( 86)

which is always different from zero.
By applying (B.86) for n = [, any polynomial p,, (z) = >_}_, apz® can be written

as
(pna ﬂ—n) = ’;]ak (xka ﬂ—n) = Gn (l,n’ ﬂ—n) = anﬁ
and the particular choice p,, () = m, (z) shows that
d t Mn s n
° _ ) (B.87)

det M,—1 2

nin

355. Another consequence of the orthogonality property in art. 353 is that for any
monic polynomial p,, (z) = >_j_, axz® with a,, = 1 and any set of monic orthogonal
polynomials 7, (z) with ¢,.,, = 1, it holds that

b b
/ﬁ@MWMz/ﬁ@mwmﬂmW (B.88)

with equality only if p, = m,. Among all monic polynomials of degree m, an
orthogonal polynomial has the smallest integral of its square with respect to its
weight function W (x) and its orthogonality interval [a, b].

Proof of (B.88): We consider

b b b
/%@ﬂWWMWP/ﬁ@MWH/ﬁ@Ww
a a b a
— 2/ P (x) 70y () AW ()

2 We refer for properties of the Hankel matrix to Gantmacher (1959a, pp. 338-348).
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472 Orthogonal polynomials

and the last integral equals with art. 351 and art. 353

b
/ P (&) T () AW (2) = (P Tn) = busn |72

Equating the coefficient of 2™ in p, (z) = >_}_ be:nmk (z) and (B. 81) shows with
the definition (B 81), that a,, = by,;cn. and, thus, by, = 1. With f x)dW (x) =
(T, Tn) = ||7Tn|| , We arrive at

b b b
[ @) = m @) aw @) = [ 5 @dW @)~ [ 7 @)aw (o)
and since the left-hand side is non-negative, we have established (B.88). g

The proof is generalized from a polynomial p,, (x) to a real function f (z) € L[Qa o

defined in art. 350. Similarly as above, we minimize f; (gn (z) — [ (x))* dW (),
where ¢, (x) is a polynomial of degree n with real coefficients, which can be ex-
panded by art. 353 as ¢, (z) = Y }_, ax7 (z). Hence,

b , b n b
[ @@-r@rave = [ £ aare- 23 / 7 (@) f (@) AW ()
n n b
+> a a; [ 7 (x x)dW (x)
kZ:O * 7=0 /a
By orthonormality (art. 351), f; 7j (x) T (x) AW (z) = 6k, and defining

b
b= (170 = [ @) @) dW (2) (B.89)

we find

b b n n
[ @)= s@Paw @ = [ 2 @dw @) -2 ad+ >
a a k=0 k=0
b n n
:/ F2@)dW (2) + ) (ax —he)® =) hi >0
a k=0 k=0

(B.90)

illustrating that the right-hand side is minimal when a; = hg, thus when ¢, (z) is
replaced by s, (z) = > _o heT (), which leads to Bessel’s inequality,

n b
S ohE< / 2 (2) dW (2) (B.91)
k=0 @

Since the right-hand side of (B.91) is independent of n and finite, >, h? con-
verges, implying that lim, .. h, = 0. Moreover, if f € L[Qa,bp then equality
holds in Bessel’s inequality (B.91) when n — oo by Weierstrass’s approxima-
tion theorem (art. 304): for e > 0, there exists a degree n such that the min-
imizer polynomial s, (z) obeys |f (z) — s, (z)] < € for all x € [a,b], so that
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12.3 The three-term recursion 473

ff (sn (z) — f (#))*dW (z) < £2. For e arbitrarily small, thus n arbitrarily large,
relation (B.90) reduces to Parseval’s equality

o0 b
hi= [ f*(x)dW (z)
>

12.3 The three-term recursion

356. The three-term recursion. Another, even more important application of
art. 353 follows from the polynomial p,, (x) = zm,_1 (x), that has an orthogonal
polynomial expansion

TTn—1 (.13) = Z bl;nﬂ-l (.13)
=0

where the coefficients are

_ (empa,m) (T, am)
’ (m, 1) (m1, 1)

Since zm is a polynomial of degree [+ 1, we know from art. 353 that b;,, = 0 when
n—1> 1+ 1, thus when [ < n — 2. Hence, we find that any set of orthogonal
polynomials possesses a three-term recursion for 2 < n <

ZTy—1 (2) = bpyn () + bp—1;0Tn—1 () + bp—2:nTn—2 () (B.92)

When n = 1, then m () is a constant and 7_1 (z) = 0. Observe that any other
polynomial p,, (z) = 2/7,_; (z) with j > 1 will result in a recursion with 2j + 1

IJTrnfj;ﬂ'l) (zjﬂ'laﬂ'nfj)

XD GED) =0ifn—j>1+j, thusl <n—2j.
The coefficients by, for n —2 <1 < n in the three-term recursion (B.92) can

terms because

be related to the coefficients ¢y, in art. 354 of the moment expansion. Taking the
scalar product in (B.92) with 2?2 yields

(xﬂ-n—h 33”72) = bn;n (7Tn7 33”72) + bn—l;n (7Tn—17 xn72) + bn—2;n (7Tn—2’ xn72)

Since (mrn_l,x””) = (ﬂn_l,xnfl) while (ﬂj,x”ﬂ) =0 for j > n — 2, we find,

beside b, _2.p, = %’ that
(7Tn—1,x"_1> Cp—1;n—1 det M,,_1 det Mn,3
bn—?;n = (71' xn_2> = > (B93)
n—2; Cn—Q;n—Q (det Mn—2)

where the last formula follows from (B.86). It demonstrates that b,_s.,, # 0.
Moreover, (B.87) shows that for monic polynomials, i.e., if ¢;,., = 1, that b,—2,, > 0
and, thus, (m,_1 (z),2xmp—2) > 0. Substituting (B.81) in

_ (CCWn72, 7Tn71> B 2;11 Ck—1;n—2 (xkaﬂ—n—l) _ Cn—2mn—2 (xnilaﬁn—l)

[ - _
" " (7Tn—2; 7Tn—2) (7Tn—2; 7Tn—2) (7Tn—27 7Tn—2)
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474 Orthogonal polynomials
leads with (B.85) to

bn72;n _ Cn—2;n—2 (71'”,1, ﬂ-’I’L*l) (B94)

Cn—1;n—1 (7Tn—27 7Tn—2)

Further,
(zﬂ'n—lﬂrn—l) 1 /b P
bp—1n = = um,_1 (u) dW (u B.95
b (ﬂ—nflaﬂnfl) (anlvﬂ-nfl) a 1( ) ( ) ( )
shows that b,_1,, is positive if b > a > 0 and negative, if b < a < 0. It can only be
zero provided symmetry holds, a = —b and w (u) = 9% = w (—u).

The coefficient b, can be rewritten as

b _ (mﬂn—l (LU) 5 7Tn) _ ZZ:l Ck—1n—1 (xkvﬂ-n) o Cn—1;n—1 (xnzﬂ-n)
nin — =

(’/Tnaﬂ—n) (’/Tnaﬂ—n) B (Wnyﬂn)

Using (B.85) leads to

b’n;n = Cn_l—ﬂ_l (B96)
Cnin
The expressions (B.93) and (B.96) simplify for monic polynomials where ¢, = 1.

357. Often, the three-term recursion (B.92) is rewritten in normalized form with
T () = T (@) \/ (T, ) as
_ . (7'(',,71717 7Tn71) ~ bn72'n <7Tn727 771’7/72)
Tn (z) = (T — bp— in) Tn—-1\T) ———F—— — Tp—2\T :
() = ( 1) Tn—1 (%) Y, e 2 (z) Y c

Substituting the expressions (B.96), (B.95) and (B.93) for the b-coefficients yields

T (x) = (- bnfl;n) Tn—1 (x) = Cn Tn—2 (x) M
Cn—1;n—1 Ch—1:n—1

Cnin

where ¢y, = \/ﬁ Thus, the normalized three-term recursion is

Tn () = (Apz + By) Tn—1 () — CpTrp—2 (z) (B.97)
where A, = #2252 B, = ~by_ 1zt and G, = Sgfetect = Au The

major advantage of the normalized expression is the relation C,, = A—’:’i, as illus-
trated in art. 358.

The converse is proven by Favard: if a set of polynomials satisfies a three-term
recursion as (B.92), then the set of polynomials is orthogonal. Favard’s theorem is
proven in Chihara (1978, p.22) for monic polynomials, where 4,, =1 and C,, > 0.

358. Christoffel-Darboux formula. Multiplying both sides of the normalized three-
term recursion (B.97) by T,—1 (y),

ﬁinfl (y) %n (SL‘) = (Anx + Bn) %nfl (.’L‘) %nfl (y) - Cn%n72 (LU) %nfl (y)
Similarly, letting © — y in (B.97) and multiplying both sides by 7,_1 (z) yields

Tn—1 (33) Tn (y) = (Any + Bn) Tn—1 (33) Tn—1 (y) — Cpp_2 (y) Tn—1 (33)
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12.8 The three-term recursion 475
Subtracting the second equation from the first results in

7’Fn—l (y) %n (.13) - 7~Tn—1 (l‘) %n (y) = An (l‘ - y) 7’Fn—l (33) 7~Tn—1 (y)
— Cp {Ttn—2 (2) Tp-1(y) — Tn—2 (y) Tn—1 (2)}

At this stage, we employ the relation C,, = A—’:ﬁ—l, that only holds for the normalized
three-term recursion (B.97) and not for (B.92). Defining

Tn—1 (y) T (x) — -1 (x) Tn (y)
An

gn =
leads to

(iE - y) %nfl (LU) %nfl (y) =9n — Yn-1
Summing both sides over n,

m—+1 m—+1 m—+1

(33 - y) Z 7fF’rL—l (J?) %n—l (y) - Z gn — Z In—1 = 9Gm+1 — 90 = Im+1
n=1 n=1 n=1

because m_; = 0. Hence, we arrive at the famous Christoffel-Darboux formula,

> @) ) = o 2T @ T W 0 ()
n=0 m

which can also be written as

e T () Tt (@) = Tt (1) Tt (1) T () = T (1)
Zﬂ—n(z)ﬂ—n(y)* Am+1 x—y Aerl r—Yy

n=0

The special case, where x = y, follows, after invoking the definition of the derivative,
as

Y 72 (z) = T (2) Ty (2) = T (&) T (2) _ 75, (x) d (Tmir (z)
7;) n () = A1 T Apy da ( T (2) )
(B.99)

359. Associated orthogonal polynomials. Similar to the derivation of the Christoffel-
Darboux formula in art. 358, we consider the difference at two arguments of the
three-term recursion (B.92) for n > 1,

TTn—1 (x) —ymn_1(y) = bn:n [ﬂ'n (x) — Tn (y)] +bn—1n [anl (x) — TTn—1 (y)]
+ bn—2;n [7T’n—2 (33) — TTp—2 (y)]
We rewrite the left-hand side as
TTp—1 (CL‘) — YTTn—1 (y) = [anl (iE) — TTp—1 (y)] + (ZL’ - y) Tn—1 (y)

and obtain

(.13 - y) Tn—1 (y) = b’n;n [7Tn (37) — Tn (y)} + (bn—l;n - l‘) [7T’n—1 (37) — TMTp—1 (y)]
+ bn72;n [71—7172 (LU) — Tp—2 (y)}
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476 Orthogonal polynomials

dW(y)

After multiplying both sides by and integrating over [a, b], we have

b b — T,
[ s @ aw @) = b, | T (@) =70 W) gy 9

r—=y
b JR—
+ (bn—l;n _ $)/ Tn—1 (l‘) Tn—1 (y) AW (y)
a r—=Yy
b J—
R gt
a r—=Yy

Since ff Tn—1 (y) dW (y) = (mp—-1,1) = 0 for n > 1 by orthogonality (art. 353), we
arrive, with the definition

b —

on (z) = / de (y) (B.100)
a r—y

at the same three-term recursion as (B.92) for n > 1,

TOn—1 (:E) = bn;nan (:E) + bn—l;nan—l (37) + bn—Z;nUn—Q (:]Z)

If n = 0, in which case 7 (z) is a constant, then (B.100) shows that oo (z) = 0.
For n = 1 where m (x) = c112 + o1, the integral (B.100) with (B.82) gives
o1 (x) = ¢1,1mp. By introducing (B.81) in (B.100), we have

n bk k n k—1 b
xk —y , L
0= [ LW ) =Yy o [y )
k=0 a k=0 j=0 a

Using (B.82) yields o, (2) = D1 _¢ Chin Z “o #/my_1_j. After reversal of the sum-
mation, we find that

n—1 n
On (.7,‘) = E E ChnMEk—1—j x’
=0 \k=j+1

is a polynomial of order n — 1. Since the polynomials o, (x) satisfy a three-term
recursion, Favard’s theorem (art. 356) states that these polynomials are also or-
thogonal. The polynomials o, (z), defined by the integral (B.100), are called or-
thogonal polynomials of the second kind or associated orthogonal polynomials. The
analysis shows that, by choosing other initial conditions, another set of orthogonal
polynomials can be obtained from the three-term recursion (B.92).

360. The integral (B.100) of o, (z) cannot be split into two integrals when = €
[a, b], due to the pole at z. However, when z € C\ [a, ], then we can write,

b b
o (@) = 7 (2) / W) / ”"(y)dwm

« T—Y -y

For |x| > max (|al, |b]), we expand —— = >~ | —= and interchange the integra-
tion and summation, which is valid when assuming absolute convergence. The first
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12.3 The three-term recursion 477

integral,
b
aw (y)
F(x)= B.101
(=) /a r—=y (B.101)

becomes

-3 s [ -3 2

k=0
while the second integral,
b
7rn( )
pn (T :/ —=dW B.102
@ = [ 2w (B.102)
reads
2 (v*,mn)
Pn ( Zxkﬂ Y ( (y) = ZW
k=n

because (y*,m,) = 0 for k < n, by orthogonality (art. 353). Hence, for large z, we
rewrite o, (z) = 7, (z) F (z) — pn (z) as

on (z) pn () —2n-1
=F(z)— =F(z)+0 (™" B.103
S =) - S =P @)+ 0 () (B.103)
whose consequences are further explored in art. 367. Convergence considerations
when n — oo are discussed in Gautschi (2004).

361. Computing the weight function w (x). The two functions F' (z) and p,, (z) are
analytic in C\ [a, b] and both integral representations resemble the Cauchy integral,
f(z)=5= fc(z L0 gy, where C () is a contour that encloses the point z € C. A

w—z

general theorem (Markushevich, 1985, p. 312) states that the integral of the Cauchy
type,

1 ¢ (w)
- d B.104
1) 2m'/Lw_Zw (B.104)
satisfies
lim z) — lim w) = @ (z B.105
ZHZO;ZEI(ZO)JC( ) wﬂzo;wEE(zo)f( ) SD( 0) ( )

where L is a not necessarily closed path in the complex plane and on which
lp(2) — ¢ (20)] < ¢z — 20)” for any point 2,z € L, and where ¢, 3 > 0 are con-
stants. The interior I (z) is a region enclosed® by a closed contour C; (zo) around
2o € L in which ¢ (w) is analytic. The exterior F (zg) is the region that is not
enclosed by a contour Cs (zp). The contours C (zg9) and Cs (zg) are here formed
by a circle around zy with a radius such that it intersects the path L in two points
z1 and 2 and such that ¢ (w) is analytic in the enclosed region. The first contour
(4 (z0) follows the path L in the positive direction from z; to zz and returns to

3 An observer traveling in the direction of the contour around zg in counter-clockwise sense finds
the interior on his left and the exterior on his right.
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478 Orthogonal polynomials

z1 along the circle in positive direction, whereas contour C5 (zp) similarly follows
the path L in the positive direction from z; to 2o, but it returns to z; along the
circle around zy in negative direction. Hence, any point z lying inside the contour
(4 (z0) is enclosed in positive direction, whereas any point w lying inside the con-
tour C5 (zp) is enclosed in negative direction. Finally, consider the circle C (zp)
around zg that passes through z; and z5. By Cauchy’s theorem and the fact that
¢ (w) is analytic inside the circle C (zg), we have that ¢ (z0) = 5= fc(zo) 2(w) ) .
By deforming the circle into the contour C (zp) = Ci (20) — C2 (20), we arrlve at
(B.105).

We apply this theorem to the integral (B.102). The path L is the segment [a, b]
on the real axis and zp = xg € [a,b]. The contour C' (zg) around zp = x is the path

from xo — 7 > a to o +7 < b along the real axis and the circle segment lying above
the real axis (with positive imaginary part). The contour C’ (zg) follows the same
segment from g — 7 > a to g + r < b, but returns along the semicircle below the
real axis. Hence,

lim o (2) = lim py, (20 + iy)

z—20;2€1(20)

lim Pn (’LU) = hH%) Pn (330 - Zy)
y*}

w—zo;wEE (20)

Since the complex conjugate p}; (2) = py (2*), by the reflection principle (Titch-
marsh, 1964, p. 155) because p,, (z) is real on the real axis, we have that

pn (o — iy) = Re py, (20 — i) + iIm py, (w0 — iy)
=Re Pn (l‘o + ’Ly) —ilm Pn (xO + ly)

Finally, (B.105) shows that

1
= Z¥1m Im p,, (zg + iy) = —7p (x0) w (20)

Similarly, from the integral (B.101), the density function is found at z¢ € [a, b] by

w(xg) = f; 1}11)11 Im F (zq + iy)

362. Cauchy transform. When the path of integration L in (B.104) coincides with
the real axis, art. 361 has demonstrated that the Cauchy transform TI'f (z) of a
function f,

possesses, for any x € [a, b], the inverse
1
f(z)=—=lmImT} (x + iy)
™ y—0

A short formal, but different demonstration of the inverse Cauchy transform is
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12.4 Zeros of orthogonal polynomials 479

based on the Dirac function. Indeed, for any x € [a, b], the characteristic property
of the Dirac function (see art. 172) shows that

b
f<x>=/ f ()6 (@ —u)du

Substituting the representation (7.3) of the Dirac function yields

1 b f(u) . .
f(x)——;;li%lm ’ mdu-—;%{r&lml}(m—kzy)

12.4 Zeros of orthogonal polynomials

We illustrate that a lot of information about the zeros of orthogonal polynomials
can be deduced. Both the orthogonal polynomial 7, () and its normalized version

70, ()

T, () = —====—= possess the same zeros.
”( ) V (T, 7n) P

363. Zeros of orthogonal polynomials.

Theorem 112 All zeros of the orthogonal polynomial 7 (u) are real, simple and
lie inside the interval [a, b].

Proof: Art. 354 has shown that (z”,m;) = 0if n < {. The particular case n =0
and [ > 1, written with the scalar product (B.79) as

b
/ 1 (w) AW (u) = 0

indicates that there must exist at least one point within the interval (a, b) at which
m (u) changes sign, because W (u) is a distribution function with positive density.
The change in sign implies that such a point is a zero with odd multiplicity. Let
21, %2, - . ., 2 be all such points and consider the polynomial g (x) = H;?:l (x — zj).
Art. 353 shows that (m, ) # 0 but that (7, qx) =0if | > k,

b k
/ m(u) [ (w—2) dW (u) =0

Jj=1

By construction, m; (u) H?Zl (u — z;) does not change sign for any u € [a,b] and,
hence, the integral cannot vanish. Orthogonality shows that the non-vanishing
of (m,qr) is only possible provided £ = I. The fundamental theorem of algebra
(art. 291) together with the odd multiplicity of each zero z; then implies that all
zeros are simple. O

Szegb (1978, p.45) presents other proofs. For example, the simplicity of the
zeros can be deduced by applying the Sturm sequence (art. 325) to the tree-term
recursion (B.97) assuming ¢, > 0. Theorem 112 shows that any orthogonal
polynomial only possesses real and simple zeros. An arbitrary polynomial with
real coefficients possesses zeros that, with high probability, do not all lie on a line
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480 Orthogonal polynomials

segment in the complex plane, which illustrates the peculiar nature of orthogonal
polynomials.
Let a < zpy < 2Zp—1;n < -+ < 21, < b denote the zeros of the orthogonal
polynomial 7, (). Combining Theorem 112 and (B.1) yields
n
7 (z) = can (x — zjn) (B.106)
j=1
Finally, if b < 0 and c¢,;, > 0, then all coefficients {cr.n}ycye, Of Tn () =
> h—o Ckina® in (B.81) are non-negative. As a consequence of Newton’s Theorem
97 in art. 328 and Theorem 112, the sequence {ck;, > 0}, of the coefficients

in (B.81) is unimodal with either a plateau of two points or a peak.

364. Interlacing property of zeros of orthogonal polynomials. The main obser-
vations are derived from the Christoffel-Darboux formula (B.99), which implies,
assuming A, 1 > 0,

o (@) B (@) = 7 () i (0) 2 7o > 0 (B.107)

because 7 (z) = \/7170 The simplicity of the zeros (Theorem 112) implies that the

derivative 7}, (x) cannot have the same zero as 7, (z). Hence, the above inequality
indicates that 7, (z) and 7,,41 () cannot have a same zero.

Theorem 113 (Interlacing) Let a < zpy < Zn—1m < -+ < 21, < b be the
zeros of the orthogonal polynomial m, (x). The zeros of m, () and m,11 (x) are
interlaced,

a< Zn41n+1 < Znin < Znsn41 < Zn—1;n << Z1;n < 2141 <b

In other words (art. 329), between each pair of consecutive zeros of 7, (), there
lies a zero of m,11 (), thus, 2k, < Zgnt1 < 2Zxk—1;n for all 1 < k < n, while the
smallest and largest zero obey a < zpt1:n+1 < Znin and 21 < 2141 < b.

Proof: Theorem 112 shows that the zeros are simple and real such that
T (2n) T (2k=1:0) < 0
On the other hand, the inequality (B.107) implies that
=70 (Zkn) Tt (Zkn) >0 and =7, (2k—1:) Tnt1 (Zk—1:n) > 0
Multiplying both and taking 7}, (2k.n) 7, (2k—1;n) < 0 into account yields
Tt (Zhim) Tt (Zk—1m) <0

which means that there is at least one zero z;,,41 between 2., < 2jin41 < Zx—1:n-
Since the inequalities hold for all 1 < k < n, the argument accounts for at least n—1
zeros of m,11 (z). With the convention that ¢, > 0 for all n > 0, we know that
Ty, (@) is increasing at least from the largest zero on, 7, (21,,) > 0. The inequality
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12.4 Zeros of orthogonal polynomials 481

(B.107) indicates that 7,41 (21,,) < 0. By the convention ¢, > 0 for all n > 0,
we have that m,41 (b) > 0 such that there must be a zero, in fact the largest z1.,41
of mp4+1 (x) in the interval [21,,,,b]. A similar argument applies for the smallest zero
Zn+1;n+1, thereby proving the theorem. O

If zn;n = a, the interlacing Theorem 113 implies that the set {7 (2)}i<p<,, 18
finite and that 7, (x) is the highest order polynomial of that finite orthogonal set
with a zero equal to zp,, = a. All other smallest zeros are larger, i.e., zi,; > a for
1<k<n-1.

Another noteworthy consequence of the interlacing Theorem 113 is the partial
fraction decomposition

37) n+1

Z /Bk m+1

Tt (@) = Zkjnt1
where the coefficients, in general, obey

Bk;n+1 = lim Tn (SL‘) (SL‘ _ Zk;nJrl) = 7,1-” (Zk;n+1)
T—Zk;n+1 Tn41 (IE) ﬂ-n+1 (Zk’;n—‘,-l)

Inequality (B.107) shows that all Sg.,+1 > 0. We include here a sharpening of the
interlacing property whose proof relies on the Gaussian quadrature Theorem 115
derived in Section 12.5.

Theorem 114 Between two zeros of m, (x), there is at least one zero of m (x) with
[>n.

Proof: Assume the contrary, namely 7 (z) has no zero between z,, and zx_1.,,
for some k € [1,n]. Then, the polynomial p,, (x) = m, (%) ¢n—2 (z) of degree m =
2n — 2, where

T ()
zr— Zk;n) (37 - Zk'—l;n)

qn*Q (LL') = (

is everywhere non-zero in [a, b], except in the interval (zj.p, 2k—1,n), Where p, (x) is
negative. The Gaussian quadrature Theorem 115 shows, for m = 2n — 2 < 21, that

b l
[ o @)W (@) = 3" (250) hja >0

because (a) the Christoffel numbers \A;,; are positive (art. 366), and (b) py, (z;;1)
cannot vanish at every zero zj; of m (x) and pm, (zj;1) > 0 since, by hypothesis,
2ji & [2kns Zk—1;n). But this contradicts the basic orthogonality property,

b
/ P (2) AW () = (7, gu_2) = 0

established in art. 353. O
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482 Orthogonal polynomials

Szegd (1978, p.112) mentions the following distance result between consecutive

zeros. If the density or weight function %ﬂim) = w(x) > Wmin > 0 and the zeros
are written as zj;, = "TH’ + b*Ta cos Op:pn, where 0 < Oy, < m, for 1 <k < n, then

it holds that
logn

9k+1;n - ok;n <o

where the constant o depends on wpin, a and b. If stronger constraints are imposed
on the weight function w, the logn factor in the numerator can be removed. More
precise results on the location of zeros only seem possible in specific cases and/or
when the differential equation of the set of orthogonal polynomials is known.

12.5 Gaussian quadrature

Lanczos (1988, pp.396-414) nicely explains Gauss’s genial idea to compute the
integral fil f (u) du with “double order accuracy” compared to other numerical
integration methods. The underlying principle of Gauss’s renowned quadrature
method is orthogonality and properties of orthogonal polynomials. Before giving
an example, we first focus on the theory.

365. We consider the Lagrange polynomial ¢,_1 of degree n — 1 (art. 303) that
coincides at n points, defined by their finite coordinates (z;,y;) for 1 < j < n, with
the arbitrary polynomial p,, (x) of degree m > n,

_ - . T TE) = - Fn—(w)

where F), (z) = [[j_, (z —z;) and y; = py, (v;). We further assume that the
abscissae coincide with the distinct zeros of the orthogonal polynomial 7, (), thus
xj = Zj,n. Then, from (B.106), it follows that Fo@) . _7al2) g a]] 1 <j<n

X Fl (zjin) — 75 (255n)
and we obtain

1 (z) = me (2jm) ( ™ ()

T — 2jin) T, (24;n)

The difference polynomial r,, () = pm () — ¢n—1 () has degree m and rp, (x)
vanishes at the n points z; = z;.,, taken as the zeros of m,, (). Thus,

Tm (x) =tm-n (x) T, (x)

where t,,_, () is some polynomial of degree m — n. Taking the scalar product
(m, 1) or multiplying both sides by dW (x) and integrating over [a, b] shows that

(Tm, 1) = (tm—m Wn)
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12.5 Gaussian quadrature 483

which, by art. 353, vanishes provided n > m —n, or 2n > m. In the case that m
is at most 2n — 1 and (rin, 1) = (Pm — ¢n-1,1) = 0, we find that

/abpm (z)dW (z) = /ab Qo1 (z) AW (z)

< 4 b, (z)dW ()
‘Z¥%““”/<x—qmwua¢

a

In summary, we have demonstrated Gauss’s famous quadrature formula,

Theorem 115 (Gauss’s quadrature formula) Let a < 2,4, < Zn—tn < 0 <
z1;n < b be the zeros of the orthogonal polynomial m, (z) on the interval [a,b] with
respect to the distribution function W (x). For any polynomial p,, (z) of degree m
at most 2n — 1,

b n
[ o @)W @) = Y b 50) A (B.108)
a j=1

where the Christoffel numbers are
Njon = / 7 (z) dW (2)
CJa (@ = zi) T (Zm)

The extension from a polynomial p,, (x) to a real function f(z) € L[Qa,b] may
suggest us to consider the remainder R, (z) = f (x) — ¢n—1 (z), which has n zeros
in [a,b] since f(2zjn) = gn-1 (%) for 1 < j < n and which, as in art. 304, can
be written as R, () = m, (z) g (x). However, since Gauss’s quadrature formula
(B.108) with n evaluations is exact for polynomials with degree at most 2n — 1, a
sharper error estimate is achieved by considering Hermite interpolation (art. 304).
After integration of the Hermite interpolating polynomial (B.21) at the interpola—
tion points z; = z;, for 1 < j < n and replacing F, (z) = W"("L) by (B.106), w
obtain

b b (2n) b
/ F (@) dW (z) = / hgn_l(x)dW(x)+(];n)$ / 2 () dWV ()

Using (B.108), we arrive at Gauss’s quadrature formula with remainder

(B.109)

b n (2n)
/ f(x)dW () ZZf(zjm)Aj.nJr / ,6(2) (Kl (B.110)

2 SRNCTIZ

where a < £ < b.

366. Christoffel numbers. The Christoffel numbers in (B.109) possess interesting
properties. First, let p,, (z) = {”"7@))}2 such that p,, (2x;n) = Okj, then

(z—2j5n) 7, (2jin

Gauss’s quadrature formula (B.108) reduces to

Ajm:/ab{(m - n)( i(zj n)}QdW(a:) (B.111)
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484 Orthogonal polynomials

demonstrating that all Christoffel numbers A;,,, are positive.

The integral (B.102), corresponding to the associated orthogonal polynomials
o, (x) and valid for z € C\ [a, b], actually is finite at the zeros of 7, (). Comparison
with (B.109) shows that

P (Zj;n) = _)‘j;nﬂé (#j;n)

Next, the Christoffel-Darboux formula (B.98), with y = zj,,, is

i: %k (517) %k (ZJ,n) _ y 1 _%n (fﬂ) %’TH*I (Zj,n)
k=0

n+1 T — Zj;n

Taking the scalar product (.,1) of both sides yields

T (zim) [* 7 (@)
S e 1) T (20) = — ot in / AW (x)
k=0 An+1 a T = Zjn

Art. 353 shows that (7, 1) = 0 except when k = 0. In that case, T (x) = \/7170

and (7p,1) = f; o (z) AW (z) = \/myg such that S7—) (71, 1) Tk (2j:m) = 1. The
definition (B.109) of the Christoffel numbers shows that

O m@dW (@) [P Ful@)dW (2)
A“”_/a (z >‘/a (@

= Zjin) T (25 — 2jin) T, (24:n)

such that

Jin

LT (i) /b (@) o gy = Tt Cin) o (i)
An+1 a T~ Zjn An+1

Thus, the Christoffel numbers obey

AnJrl A’ﬂ
Ajin = —= L == _ (B.112)
! Tnt1 (i) T (Zin) - Tn—1 (2m) T, (2530)
where the latter follows from (B.97).
Finally, the Christoffel-Darboux formula (B.99) evaluated at « = zj,, combined
with (B.112) gives

1
Ajn = SnT=3 (B.113)
k:é T (2j:n)

which again illustrates that all Christoffel numbers ., are positive.

o, (T)

367. Partial fraction decomposition of — OF

The associated orthogonal polyno-

mials (art. 359) are of degree n — 1, such that the fraction Z:Ezg can be expanded

as

n
On (37) _ Z Akin
T () T — Zhm

k=1
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12.5 Gaussian quadrature 485

where we need to determine the coefficients ay.,,. Substituting in (B.103)

on (2)
T ()

—F(z)=0 (z7*")

the partial fraction expansion and the integral (B.101) of F'(z) yields

i ki /ab aw (y) -0 (:L,—2n—1)

Xr — Zk. xr —
=1 kin Y

After expanding the left-hand side in a power series in z~! and after equating the
corresponding power of =" we obtain, for 0 < m < 2n — 1,

n b
Z QAf;n (Zk;n)m - / y"dW (y) =
k=1 a

Gauss’s quadrature formula (B.108) applied to p,, () = y™ for 0 < m < 2n —1
gives

b
/ rndW Z >\k nz’m

whence ay;n, = Ag;n. In summary, the partial fraction decomposition becomes

On (1’) o ~ )\k;n
T (2) Z T — Zkm

k=1

from which the Christoffel numbers follow as

Ajn = lim o () (T = 2j:n) _On (2j;n) (B.114)
’ T—Zjin Tn (SL‘) Tr’{’L (Zj;n)

368. Parameterized weight functions. Suppose that the distribution function W
is differentiable at any point of [a,b], and that W depends on a parameter ¢. In
addition, we assume that the density or weight function w (z,t) = dW(‘T B i positive
and that w (z,t) is also continuous and differentiable in ¢. The exphmt dependence
on the parameter ¢ in Gauss’s quadrature formula (B.108) is written as

b n
[ o @)@t ds =3 b i (0) A 1)

Jj=1

Differentiation with respect to ¢ yields

b
aw (, t
/pm( ) E p'rn Z]n ],n +§ pm Z]n J,n (t)
a

%n(m,t)

For the particular choice of p,, (z) = e T

that

we have that p,, (2;,, (t)) = 0 and

Vo G ) = 22D (1)) 6

=2j;n (1)
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486 Orthogonal polynomials

such that

bR (g w (x _ 2
/a x —nz(k;;t()t) & (‘;t 2 dr = (ﬂ-; (Zk;" (t) 1)) “kin (t) Akin (t)

On the other hand,

<%"’ %,m(t)) /j%wu,t)dxo

by orthogonality (art. 353). Subtraction from the previous integral yields

b
~ 2 B 72 (z,t) [ Ow (x,t)
(o G (00,8 S (O e () = [ T [ ORD)  (avt) fd
b ( ) chr(;r: ,t)
Z
= —¢pw(x,t)de
[0 { (0
If the constant £ is chosen equal to & = ﬁ% ©’ then the function
’ T=Zk;n(t

{ 1 Ow(z,t) 1 Ow(z,t)
w(z,t) Ot w(z,t) Ot

T=2p;n (t) } > (0

T — Zion (t)

provided that — (i ) awgf’t) is increasing in z. In that case, the integral at the right-

hand side is positive (because it cannot vanish at any point x € [a, b]) and, hence,
Zn (t) > 0: the zero zy, (t) of T, (2,1) is increasing in the parameter ¢.
An interesting application is the choice w (z,t) = (1 — t) wy (z) + tws (x), where
wy and wg are two weight functions on [a,b], both positive and continuous for
€ (a,b). In addition,

1 ow(x,t) wa (z) —ws (x) 1 1 1

w(z,t) ot  (I—thw (@) +tws(z) ¢ | w1y

w1 (x)

is increasing if zf(‘;) is increasing for 0 < ¢t < 1. Then, we have shown above that

the zero 2y, (t) of 7, (x,t) is increasing in ¢. Let {2100} <<, and {226} <pcpy
denote the set of zeros of the orthogonal polynomials corresponding to w; and wo,
respectively. Thus, 29.5:n = 2k (1) is larger than 21,4, = 2, (0) forall 1 < k < n,
because w (z,0) = w; (z) and w (z,1) = wy (x). In summary, if the ratio wQ%”C% of
two weight functions is increasing on x € [a,b], then the respective zeros obey
29:km > 21k for all 1 <k < n.

369. Numerical integration. Let us consider the integral f; f(x)dW (x), which
we evaluate by the Gaussian quadrature formula (B.110) with remainder. The
Christoffel numbers {Ajin}, ;- and the zeros {zj;n}, ;,, of the orthogonal poly-
nomial 7, () are independent of the function f(z). Theorem 115 states that
(B.110) is exact for any polynomial f (z) of degree at most 2n — 1. In fact, it can


https://doi.org/10.1017/9781009366793.017
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.017
https://www.cambridge.org/core

12.6 The Jacobi matrix 487

be shown (see Gautschi (2004)) that the Gaussian quadrature formula is the only
interpolating quadrature rule with n function evaluations with the largest possible
precision of 2n — 1.

Since dW (u) = du for Legendre polynomials P, (x), where a = —1 and b = 1,
the most straightforward numerical computation of the integral f; f (w) du uses
Legendre’s orthogonal polynomials. After substitution u = HT“ +bzay,

2
b _ 1 _
[ rwa= gt [ (e i

Gauss’s quadrature formula (B.110) gives us

b _b—a - b+a b-a ! P (z) d
/af(u)du_ 9 Zf( 2 +ij;n> /_1 (x_wj;n)Pl (ij)

j:1 n

where wj,,, is the j-th zero of P, (z). For Chebyshev polynomials 7}, (z) studied in
Section 12.7, the Gaussian quadrature formula (B.110) simplifies to

/_11 %dm = /OTr f (cosB)db = %jilf (Cos (25 2—n1)7r> + 22:_1 f(érl;)('g)

because the zeros zj,, are given in (B.126), c,., is specified in (B.124), (T5,,T,) = §
in art. 381 and the Christoffel numbers (B.109) are all equal to \;,, = . We refer
to Lanczos (1988, p.400-404) for a numerical example that illustrates the power of
the Gaussian quadrature formula.

12.6 The Jacobi matrix

370. The Jacobi matriz. The three-term recursion (B.92) is written in matrix form

by defining the vector 7 (z) = [ mo (z) m (x) -+ mpo1 () ]T as
™0 (1’) bO;l bl;l 0 (1’) 0
T1 (1’) bo;g b1;2 b2;2 1 (1’) 0
T = +
7Tn—2(x) bn—S;n—l b’n—2;n—1 bn—l;n—l 7Tn—2(~7:) 0
7Tn—1(x) bn—2;n bn—l;n 7Tn—1(~7:) bnﬂ'”(l‘)
Thus,

a7 (z) = Y7 () + by, () €, (B.115)
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488 Orthogonal polynomials

where the basic vector e, = [ o0 --- 0 1 ]T and the n x n matrix
bo;1 b1
bo.a b2 ba.o
T =

bnf?;;nfl bn72;n71 bnflgnfl
bn72;n bnfl;n

We observe that, when x = z; is a zero of m, (z), then (B.115) reduces to the
eigenvalue equation

Y7 (21) = 257 (21)

such that the zero zj is an eigenvalue of Y belonging to the eigenvector 7 (zy).
This eigenvector is never equal to the zero vector because the first component
0 (IE) = €050 7é 0.

There must be a similarity transform to make the matrix T symmetric, since all
zeros of m, (z) are real (Theorem 112). A similarity transform (art. 239) preserves

the eigenvalues. The simplest similarity transform is H = diag(hy, ha, ..., hy) such
that
bO;l Z_;bl;l
i2boz  bio Mbys
Y=HYH '=
hn — o
hn,; bn73;n71 bn72;n71 h7L1bn,1m,1
Ry bn—2;n b‘rl—l;n

hn_1

In order to produce a symmetric tri-band matrix T = TT, we need to require
that (T) = (T) for all 1 < ¢ < n, implying for ¢ > 2 that }%"—lbi_g;i =
i—1, i

ii—1

2

hi_ ; bi_1,i—

h_.lbi—l;i—17 whence (h—h‘—1> = Zbl—sl Art. 356 shows that bi—l;i—l and bi_gﬂ‘
i i — 1—2;51

bi—1,i-1
bi_2;;

have the same sign. Thus, h; = h;_1 for 1 < 4 < n and we can choose

h1 = 1 such that

The eigenvector belonging to the zero zj, equals 7 (z) = HT (z)). After the simi-
larity transform H, the resulting symmetric matrix Y is

bo;1 V/bo;2b1;1
v/ bo;2b1;1 b1;2 \/b1;3b2;2

\/bn—3;n—1bn—2;n—2 bn—2;’n—1 bn—2;nb’n—1;n—1
b’n—2;nbn—1;n—1 bn—l;n
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12.6 The Jacobi matrix 489

371. Similarly as in art. 370, the three-term recursion (B.97) of the normalized
polynomials {7; ()}, ;<,_, is written in matrix form as

o () i o () 0
71 (@) il el 7 (@) 0
x = +

~ 1 __Bp-a 1 ~

Tp—2(7) A, > A1 An_1 Tn—2(T) 0
Fno1() = I [[Fa(@) G

Thus, in the normalized case where C,, = AA"I, the matrix Y is symmetric,

o7 (2) = T7 (2) + Ai%n (@) en

where the vector 7 (x) = diag(||7rj||_1) T ().

If there exist two different similarity transforms H; and H, that transform
a matrix A into two different symmetric matrices, By = H;AH{ Land By =
HyAH; ', then H H, = H} H,. TIndeed, A = H;'B;H, = H;'ByH, from
which By = H1HnggH2Hf1. Since By = BY and B, = BI, we have that
B, = (H.H{Y) By (HiH;")". Hence, HiH;' = (H,H;")" and HpH;' =
(Hngl)T, which lead to HlTHl = HQTHQ. If H; and H, are, in addition, also
symmetric as in the case of a diagonal matrix, then H? = H2 or H; = +H,. Since
7j(z) = 7 (x) H7rj||71, both similarity transforms H; and H; must be the same.

This implies that H = diag(\/b;) = diag(||7rj||_1), thus b; = ||7;]| > = =—. In

B (Trjv"rj) ’

addition, in agreement with art. 356, we have

B;

bj_1 = _J

J J Aj
1
b"—l; '+1b";' = .
J J AY) A]

Hence, transforming T by a similarity transform H to a symmetric matrix T cor-
responds to normalizing the orthogonal polynomials.

372. Gerschgorin’s Theorem 65 tells us that there lies a zero z of m, (x) in a
disk centered around b;_1,; = f% with radius ﬁ + %. Overall, the symmetric
J J— J

matrix T leads to the sharpest bounds on the eigenvalues/zeros of m, () because
the above similarity transform H minimizes the off-diagonal elements. However,
not always. In particular, ignoring the attempt to symmetrize Y, we may choose hy
and h,, in such a way that (HYH™') , and (H'I”Hfl)nmi1
but not zero. But, by making h; and h,, very small, we increase the radius around
bo;1 and by,_1.,. Gerschgorin’s Theorem 65 indicates that there is a zero z close to
bo.1 and another zero close to b,_1.p.

are arbitrarily small
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490 Orthogonal polynomials

373. Continued fraction associated to orthogonal polynomials. By systematic row
multiplication and subtraction from the next one, we can eliminate the lower diag-

onal elements Tj—l; ; in the determinant det (T —xl ), which eventually results in

)

a continued fraction expansion of W,, = det (:f —xl ) = ‘:Iv’ —xl

_B 1
Ay z A
4 _ By _, L
1 A2 A2
W )
1 Bn_1 T 1
An_2 Apn—1 An_1
_Dn
An—1 . 7

We write the determinant W,, in block form,

_AedBr 1T

W, = Av A
" L W

a; €1 1in

where the basis vector is e; = (1,0,...) and where the matrix Wi, is obtained by
deleting the first row and the first column in T — z1,

Asz+Bs 1
Ag As
i A334 By 1
A, As A,
Wl;n - i .
1 _An_12+Bn_1 1
An—2 Ap—1 An—1
1 _Apx+B)
Anfl A"l

W, = _Al.lj + By Wi 1 616?
Ay ' Ay Avx + By

and ejel = 9] equals the zero matrix with same dimensions as W, _1, except for
the element O1; = 1. Thus,

_Apz4By | 1 1 1.7

W, — _Awt By A A At A4
n — 1

A1 A_261 WQ;n

where we denote by W, the matrix obtained by deleting the first j rows and the
first j columns in T — 2. Again invoking (A.57) yields, with C,, = AA—"

n—1"’

1 1 Asx+Bg 1 . T

Az + By Cs A o~ T T A 4, 61
W,=———Ax+Bys——— 2 AxetBo—r=tpy 3 3

A14s Ay + By el Wi,
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12.6 The Jacobi matrix 491

The next iteration

Al.Z‘ + Bl ( 02 03
W, =————|(Asx + By)——————— || (A3x + B3)— -
A1A2A3 All' + Bl AQLU + B2 — AlTJQrBl
_ Agw+By | 1 1 LT
A4 Ag AS-'L"'FB3_ [SF) e A4 1
X Azt B2 At By
tel W4;n
reveals the structure W,, = (ﬁiH:_IQk (z), where the continued fraction
Hk:1A’“
0. (z) equals
Cy
O () = Agx + By, — " B iy (B.116)
1T + 1 — —
bl bl Ag—22+Br—2— T2
7“‘2”52‘.71733—1
The continued fraction thus satisfies the recursion*
Ch
0p () = Apx + B, — —— B.117
(@) = Aua o+ B = 5 (B.117)

Art. 370 shows that the characteristic polynomial W,, = det (’Y’ —xl ) has the

same zeros as 7y, (z), such that W,, = (gll)n 7 (z), and

T (¢) = in—mHHk (z)
HAk k=1
k=1

from which,
Ancn—l;n—l 7TTL(:E) _ Tn :E)

Cnin Tn—1 (1') Tn—1 (1')

O (x) =
Introducing 6, (z) = ;i(ja)r) into the recursion (B.117) again leads to the normal-
ized three-term recursion (B.97).

More results on continued fractions are presented in Gautschi (2004) and in
Chihara (1978).

4 In most textbooks, a finite continued fraction is written in a differently labeled form as

b1
bo
ag——b3

On = ap —
a1 —

T
an,
from which the recursive structure is less naturally observed. If the determinant T3, is expanded
by the last row and last column, up to the first one, a same labeling would have been found.

The main purpose in classical treatment to use the highest index in the deepest fraction is to
study the convergence of limy, s 0.
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492 Orthogonal polynomials

374. If Y is positive semidefinite, then T can be considered as a Gram matrix
(art. 280), i.e. T = AT A where T, ; > 0. Art. 370 demonstrates that T is positive
semidefinite if all zeros of the orthogonal polynomials are non-negative. Theorem
112 guarantees semidefiniteness when the orthogonality interval [a,b] lies on the
non-negative real axis, i.e., if b > a > 0.

Since T is a three-band matrix, A is a two-band matrix with diagonal elements
Ajj = aj for 1 < j <n and upper diagonal elements A; ;41 =0b; for 1 <j <n—1.
Indeed,

:fij = Z (A" Ak = Z Api Ay

k=1
= A Aij + Ai—l,iAi—l,j =a;Aij +bi—14i-1,;

and
ai_lbi_l lfj =7—1
Yi;=1¢ a?+b?, ifj=i
a;b; ifj=i4+1
Hence, if ¢ = 1, comparison shows that Tn = a% and ;I"m = qa1b; such that
a; = —% and by = \/ﬁ. For the i-th row, we find the equations

1
i—1

T“—a —|—b —%

Tzz 1= a;— lbz 1= 7

, B 1
aj=—7-F Az
7 AjaBja - —
—2
Aj-2Bj-2— =
A ij?;*—]_s—
.—'l4r
A2B272—2—1B1
9 1
bj = A2
—A;Bj + 5
-1
Aj-1Bj1— A2
2
Aj—2Bj—2— a2

Ao Bo A5

2 B;j

satisfying the recursion i = —F - T Either the positive square root
] J j—1

1
14
(,/ aj,\/ j) or the negative square root ( ,/ —4/b ) are solutions. By com-
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12.6 The Jacobi matrix 493
parison with the continued fraction (B.116) where C,, = A—Ai"—l, we verify that

6, (0 1
23 dp2=———
K A, T T A6,(0)

~—

In summary, the matrix A, which satisfies T = AT A, is

ar b

0 An—1 bn—l
0 an

The eigenvalues of A are its diagonal elements a;. The eigenvector x; of A belonging
to A = a; can be written explicitly: just write out Az; = a;x;, starting with the
last component (z;),, = 1{;=p}, and iterate upwards. Thus, A = Xdiag(A (A4)) X!
can be explicitly written, where X is the matrix with its eigenvectors as columns,
and

T =ATA= (x4 diag (A (4)) X" Xdiag (A (4)) X!
After eigenvalue decomposition, the symmetric matrix
T = Udiag ()\k (T)) Ut

where UT = U~! is an orthogonal matrix (art. 247). The latter is a property
of symmetric matrices and does not hold in general. Hence, X is not necessarily
orthogonal, although the eigenvectors x1, s, ..., z, of A are linearly independent.

Since T is positive semidefinite, A\ (T) > 0 and, thus 4/ Ax (:f) is real such that
T = Udiag (/\k (?)) U~ = Udiag ( Ak(T)) YTy diag ( A,ﬂ)) uT

~ Uding ( )\k(T)> yT (Udiag ( M(T)) YT)T

where Y is an orthogonal matrix. Hence, we can construct the matrix A =

Ydiag( )\k(T)> UT, which is a singular value decomposition®. Obviously, the

simplest choice is Y = I, in which case, A = diag( )\k(T)) UT. However, mul-
tiplication by a diagonal matrix only multiplies row j in UT by 4/ )\j(T) and the
resulting structure should be the two-band structure of A. Since the two-band struc-
ture of A is not orthogonal (the column vectors in A are not orthogonal), Y =T

5 Although the singular values are unique, the singular vectors are not, and, hence A = UXV7T
is not unique.
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494 Orthogonal polynomials

is not a correct choice. Also, Y # U, because A is not symmetric. Applying QR-
decomposition (see, e.g., Golub and Van Loan (1996)) to A = Xdiag(\(A4)) X!
with X = QR and X! = R;QT yields

A = QRdiag () (A4)) B, QT

Since A = Ydiag( Ak(Y)) UT, it remains to show that Rdiag(\(A))R; is a

diagonal matrix. Unfortunately, the major difficulty is to find an orthogonalization
process for the eigenvectors X such that A = Xdiag(A(A4)) X! has a singular

value decomposition A = Ydiag( )\k(f) UT. There does not seem to exist a

general method to achieve this result. If it existed, we would have, at least for
the class of orthogonal polynomials with zeros on the positive real axis, a general
method to compute the exact zeros!

12.7 Chebyshev polynomials

Instead of the Legendre, Hermite or Jacobi polynomials, we have chosen the Cheby-
shev polynomials to exemplify an orthogonal set of polynomials, because Chebyshev
polynomials appear in the spectrum of the small-world graph (Section 6.2.2), the
cycle (Section 6.3) and the path (Section 6.4).

375. Definition. The Chebyshev polynomial of degree n is defined by
T, (x) = cos(nd)  with z = cosf (B.118)

For real 6, cosf ranges between —1 and 1 and (B.118) defines the Chebyshev
polynomial T;, (z) for z in the interval [—1,1]. The compact definition for z €
[—1,1], corresponding to 0 < 6 < 7, is

T, () = cos (narccos z)

For complex 6 = iy, then cosf = coshy which is larger than 1 for real y # 0 and
the corresponding compact definition for z > 1 is

T, (z) = cosh (n arccoshz)
A direct consequence of the compact definition is
T, (T, (z)) = cos (narccos cos (m arccos z)) = cos (nm arccos )

demonstrating the semi-group property or commutativity under composition of the
Chebyshev polynomials,

T (Tin (%)) = T () (B.119)
Rivlin (1974, p. 161) shows that no other polynomial than T} itself can commute

with T, if n > 2. Among all polynomials p,, (x), only the powers of 2" and T, ()
obey pn (pm (7)) = pmn ().
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12.7 Chebyshev polynomials 495

376. Polynomial form for T, (x). The Taylor expansion of the Chebyshev polyno-
mial T, (z) around zg is

2) =D tin (0) (x — z0)" (B.120)

Writing z — 29 = (& — 1) + (1 — o), substituting the binomial series in (B.120),
reversing the summations and equating corresponding powers in z — zq lead to

tk: n 56‘1 Ztk: in xO ( > (xl - m0>k_j

with the obvious inverse after replacing x; and x5. Choosing x¢ = 0 thus expresses
the Taylor coefficients t.,, (z1) around z; in terms of the Taylor coefficients ¢, (0)
around zy = 0. The Taylor coefficients ¢, (0) of T}, (x) around zy = 0 in (B.120)
are elegantly derived from Euler’s formula e’ = cos# + isin . Indeed, from

e™? = cosnf + isinnf = (cosf + isinh)"
the binomial expansion (cos 6 + isin6)" = >7'_, (})i* cos" " § sin ¥ 9 is split in even
and odd powers of i* using the general formula

n (3] (=]
SFe)y=>"f@k)+ > f(2k—1) (B.121)
k=1 k=1 k=1

+1 -
as e'? = cos™ 9+Zl[c ]1 (Qk)w—’—zg 1 } (21:11) cos %:11 9251“ = - Equat-

ing the real and imaginary part of both sides yields

cosnb = cos™ 6 + Zl[f]l (5%) (=1)" cos" =2k g sin®*

Ssi?nné9 - sm29 Zl[c 1 ] (2k 1) (_1>k71 COS”_2k+1 QSiDQk 9

Only even powers of sin § occur. With sin**6 = (1 —00829)k = Z?:o (’;) (—1)7cos9,

we obtain cosnf = Zl[@%:]o Z?:o (I;) (5%) (=1)"% cosn=2(k=3) § and, after reversing
the sums, cosnf = ZE]O ZL%:L (?) (5%) (=1)" cosn=2(k=0) 9. Let ¢ = k — j, then
0<q< [%] Moreover, j = k —q > 0 and 5 < k, so that k > ¢, while £ < [ﬂ]

2
Hence, we arrive at

E\(n
_ -1 q n—2q
cos nf 0( ) 2 (q) <2k) cos 0

The % counterpart can be treated similarly. However, we will later in art. 378
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see a more convenient way. With the definition (B.118), we find the Taylor expan-
sion around zy = 0,

T, (x) =S (1) Z(S) (;) g2 (B.122)

q=0 k=q

which demonstrates that T;, (z) = >-/_; tgn (0) 27 is a polynomial of degree n in z,
valid for any complex number z, with coefficients

tn_sqm (0) = (—1)q[ } <’;> <27;> (B.123)

k=q

w3

Since (B.122) only contains powers of 2" ~2%, we observe that
T (—x) = (=1)" T, (x)

The Chebyshev polynomials T;, (z) for first few degrees n are Tp (x) = 1 and

1.0
g
= 05
2
g
o
2 I
Z 00
S _
>
()
& 1
23 i
2 0.5
= i
U -
-1.0
-1.0 0.5 0.0 0.5 1.0

Fig. 12.1. The Chebyshev polynomials T, (z) for n =1,2,...10 in the interval [—1,1].

—

Ty (v) ==z Ty (z) =8z* — 822 + 1
Ty(z) =222 -1 Ty (x) = 162" — 202> + 5z
Ty (z) = 42® — 3z Ty (v) = 3220 — 482% 4+ 1822 — 1

The coefficient ¢, (0) of ™ in (B.123) equals, for n > 0,
%]
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12.7 Chebyshev polynomials 497
The binomial sum (1+ )" = > _ (})a* indicates that

n 3]
(1+2)" +(1—2)" Z( )( )k)x’“2k_0 (;ﬂ)ﬁk

k=0

from which the coeflicient c¢,,.,, = typ, (0) of the highest power in z in (B.81) equals
tnm (0) = 2771 (B.124)

6 —1i6

377. Closed form for T, (x). A closed form for T, (z) follows from cos § = “——Et—
and Euler’s formula as

1
cosnf = 3 {(cos @ +isinB)" + (cosf — isin )"}

= % {(coseﬂ-m)" + (cose—im)n}

For real 6, it holds that x = cos# is in absolute value smaller than or equal to 1,
ie. |z] <1 and the definition (B.118) of T, (x) shows that

-l WT T

which can be written, for |z| < 1, as

Tn(x)zl{(x—i—\/ﬂ—l)n—i—(x— x2—1)n} (B.125)

The closed form (B.125) straightforwardly extends to |z| > 1 as well and illustrates
that T, (1) = 1, T, (—1) = (—=1)" and T}, (0) = €2 8" — co5 2 = (—1)".
378. Zeros and extrema and Chebyshev polynomial U, (x). The definition (B.118)
with 0 < 6 < 7 shows that cosnf = 0 for § = W for k =1,2,...,n, so that
the zeros z1,, > 22.p > ... > 2z of Tp, () are

2k —1
Zk:n, = COS % for1<k<n (B.126)

which indicates that all zeros are real, different and lying in the interval (—1,1).
With ¢,.,, (0) = 2"~ in (B.124) and T, (z) = Y_/_ tg;n (0) 29, the product form in

(B.1) becomes
= g1 H <x —cos( (27;”_ U)) (B.127)

The zeros of cos (narccos z) — 1 = 0 are z,, = cos (221), for m = 1,...,n, so that

the definition T, (x) = cos (narccosz) and (B.1) leads to an alternative product

form
T, (z) —1=2""1 ﬁ (:c — cos (?)) (B.128)

m=1
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Similarly, the extrema of cosnf occur at nf = kx, for kK =0,1,...,n so that the

extrema of T), (), obeying T, (M) = (—1)k7 are

km
Misn =cos — for 0 <k <n
n

which also lie inside the interval (—1, 1), except for ng,, = 1 and 71,,, = —1. Those

extrema of T, (z) inside the interval (—1,1) are the zeros of T), (), which is a
polynomial of degree n — 1. By differentiating (B.118) with respect to x = cos 6,

1 sinnf

=n— B.129

) " g ( )

d df
/ = — _ = — i
T (z) = p7 (cosnb) T nsinnd ( -~
and the polynomial of degree n — 1, with zeros ny,, = cos —k: for1<k<n-—1,

Un 1 (2) = 177 (2) = 5070 (B.130)

n sin 6

is called the Chebyshev polynomial of the second kind.
379. Differential equations of T, (z). Differentiation of (B.129) yields
d (sinnf\ df n sin nf
TV(@)y=n—|—F+ | —=—F 0 — cos
w (@) =ng ( sin 0 ) dz ~ sin? (” ORI S )
from which we deduce with (B.129) that T), (z) satisfies the second-order linear
differential equation

(1—-2°)T) () — 2T, (z) + nT, (z) = 0 (B.131)
Remarkably, we can integrate this second-order linear differential equation once.
After multiplying both sides in (B.131) by T, (x),
(1-2®) T/ (@) Ty, (2) = 2 (T;, (2))° = 0T, (2) T, ()

and substituting 7}/ () T}, (z) = 34 (T}, (z))* and T, (z) T, (z) = 14(T, ()%,

T n
we obtain

(1=4%) 2 (T3, ) = 20 (T4 ()" = 2= (T, (@)
Let y = T, (2), then (1—2?) & (/) = 2¢(y')* = —n?4 (y?) and observing that
d% {(1 - 552) (y')2} = (1 — mz) d% ((y')2) -2z ((y')2> leads to

After integrating both sides
(=) () = =% +c
and using T}, (1) = 1, we find that the constant of integration is ¢ = n2. In summary,

the Chebyshev polynomials T), () also obey the first order non-linear differential
equation

(1—2) (T, (2))* = n? (1 — T2 (2)) (B.132)
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12.7 Chebyshev polynomials 499

Introducing the definition (B.130) of the Chebyshev polynomial of the second
kind U, (z), the first order non-linear differential equation (B.132) becomes

n

T2 (x) — (x2 -1) U (x)=1

2 —my? =1 in the

where we recognize the famous Pell diophantine equation z
unknown integers z and y, given the integer m. Hence, the integer z = T, (x)
and y = U, _1 (x), given that m = 22 — 1 is an integer, solves the Pell equation
in number theory. On the other hand, standard solution techniques for the Pell

equation can generate integer solutions for the pair (T), (z),U,—1 (x)).

380. Coefficients of T, (). We deduce a recursion for the Taylor coefficients
tgm (0) around zo = 0 in (B.120) from the second-order linear differential equation
(B.131) in art. 379. By substitution of Taylor expansion (B.120) into the differential
equation (B.131) and simplifying t,., (0) by t4, we obtain

n n n
(1 — z2) Zq(q -1 thq% — qutqazqfl +n? thxq =0
q=0 q=0 q=0

or

|
N}

n

(0+2) (g + D tgraa? + ) (n° — ¢*) tg2? = 0
q=0

Q
I
o

Equating corresponding powers of = yields,
(@+2)(g+Dtgya+ (n*—¢*)ty=0 for0<g<n-—2
and (n2 —(n— 1)2) tn—1 = 0. Hence, for 0 < ¢ < n — 2, we find the recursion

PP ek VA Gk
" (@+2)(g+1) “

and ¢,—1 = 0. The recursion illustrates that all odd coefficients to;_1 = 0. After
iterating the recursion p times, we have

(g—2p)!(n+q—2)...(n+q—2p)(n—q+2)...(n—q+2p)
q!

tq = (*1)1) tq—2p

With ¢, = 2"! in (B.124), we find with ¢ = n that
n! 9
(n=2p)!(2n—2)(2n—4)...(2n —2p)2.4...2p

—n(— P(n_p_l)' n—2p—1 _ ( 1\P n (’I’L—p)' n—2p—1
=n(=1) (n—2p)!p!2 = (=1 n—p(n—Qp)!p!2

n—1

t’n—2p - (_1)[1

In conclusion, for p=0,1,..., [%], the differential equation (B.131) leads to the
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more concise® Chebyshev coefficient of " ~2P

tn—2pm (0) = (=1)" n 71 p (n ]_) p> gt (B.133)

and the Taylor expansion (B.120) around z¢ = 0 is

3]

n (n—k n—2
kg(_nk — k( L ) (2z)" 2 (B.134)

The Chebyshev polynomial of the second kind, defined by (B.130), is

N

T, () = cos (narccosz) =

sin (n + 1) arccos e (n—Kk) n—2k
U, = = 1) (2 B.135
n () sin arccos k:()( ) El (n — 2k)! (22) ( )
and has zeros at z,, = cos nm—ﬂ for m =1,...,n such that

n ma
P = 2" — S B.l
Un () H (x cos — 1> (B.136)

m=1

381. Orthogonality and three-term recursion. The well-known orthogonality prop-
erty (B.80) in the theory of Fourier series is

/ cosmbcoskfdd =0 for k#m
0

and

/ﬂcos%ede: 3 fork#0
0 m for k=0

If we substitute § = cosz in these integrals and invoke the definition (B.118), then
we find the orthogonal relations for the Chebyshev polynomials

! dx
Ty () T; ———=0 fork
/_1 (33) k(x)m or k#m
and
T dx L fork=#0
2 — 2
/OTk(:C)\/l_x? {w for k=0

which shows that the set {7}, (z)},> is a sequence of orthogonal polynomials on

the interval [—1, 1] with respect to the weight function (1 — m2)71/2.

6 Comparison with (B.123) incidentally establishes the identity (Riordan, 1968)

[3]

> (fv) (a1) = nip(n;p)ﬂ*lﬂp

k=p
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12.7 Chebyshev polynomials 501

From the trigonometric identity, cosnf + cos (n — 2) 6 = 2cos (n — 1) f cos 0, the
definition (B.118) directly leads to the three-term recursion (art. 356)

T (x) = 22T, () — Th—a ()

with Tp () = 1 and T3 () = z. Favard’s theorem (art. 357) demonstrates again
that T, (z) is an orthogonal polynomial.

382. Generating functions. From the geometric series Y - 2kl — - Zew for

|z| < 1, we obtain for real z, after equating the real and imaginary part of both
sides,

o) k 1 (%)
Lico? coskl = =50
3 Z81n
Zk:O Z"sinkf = 1—2z cos 0422
With x = cos 6, the definition (B.118) provides us with the generating function

1—zx
E_
E Ty (z) 2" = T y—— (B.137)

while the definition Ui () = % in (B.130) of Chebyshev polynomial of the
second kind indicates

— 1
U T — B.138
Z K@)z 1—2zx 4 22 ( )
k=0
The real and imaginary part of both sides in Y- 2 ;w = ezew, that converges

for all z = re™, yields
{ Zk 0 2t C];)'b kO _ orcos(04w) ¢og (,,, sin (9 + w))

Zk 0 P sn'] kO _ e7-cos(9—i-w) sin (’I" sin (0 + w))

With z = cos 6 and (B.118), we obtain the exponential generating functions in the
real 7,

i M =¢e"? cos (rﬂ)

]
— k!
and

2 (k+ 1)! Y

From the generating function (B.137), the Cauchy integral representation for the
k-th derivative (B.46) gives

io: rkJrlUk (LZ‘) rT sin (T v 1 - JIQ)

Ty (2) = 1 1—2zx dz
:E —
b 210 Joo) 1 — 22w + 22 2F+1

where the contour C (0) encloses the origin. Since the integrand vanishes at |z| —
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502 Orthogonal polynomials

00, we deform the contour to enclose the entire z-plane, except for the origin.
Cauchy’s residue theorem (Titchmarsh, 1964) yields

. (l=zz)(z—2) 1 . (l=zz)(z—29) 1
Tp(z) = — 1 1
k(=) e Yo + 22 kil e Yo + 22 gkl

where 1 —2z2+22 = (2 — 21) (2 — 22) with 21 = 2 +V2? — L and 2 = 2 — Va2 — 1,
from which we find again the closed form (B.125).
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adjugate, 323
assortativity, 69, 161, 279

betweenness, 140

Catalan numbers, 262
chain of cliques, 178, 237
Cheeger constant, 152
Christoffel numbers, 481
Christoffel-Darboux formula, 327, 472
clique, 39, see complete graph
clique number, 81, 85, 101, 102
community, 153
complementary double cone, 228, 243
complete graph, 31, 35, 88, 125, 193
complex networks, 1, 271
reconstructability, 106, 287
complexity, 124, 191
weighted, 123
Courant-Fischer Theorem, 297, 361
current flow, 24, 175, 179
cut size, 152
cut-space of a graph, 22
cycle, 19, 21
Hamiltonian, 19, 41
cycle-space of a graph, 21-23

degree of a node, 16

in-degree, 17

out-degree, 17
determinant, 320
differences, 419, 432
Dirac function, 247, 359, 476
disjoint paths

Merger’s Theorem, 172
divided difference, 418

effective resistance matrix, 175
eigenvalues

adjacency matrix, 51

Laplacian matrix, 111
elementary orthogonal projector, 308
Euclid’s algorithm, 423, 441
expander, 152

Index

Fiedler eigenvector, 137
forest, 123

Gauss transformation, 309
Gaussian Unitary Ensemble, 264
Godsil-McKay switching, 47
graph

angle, 52, 64, 73
antiregular, 231
asymmetric, 43
automorphism of graph, 43
bipartite, 212, 281

bisector of a graph, 150
co-eigenvector graphs, 106
coclique of a graph, 96, 101
component, 119

cone of a graph, 91-93, 119, 171, 212
cospectral, 42, 47

cycle or circuit, 40, 201
enumeration, 44

Erdos-Rényi random graph, 261, 264, 265,

288
fundamental weight, 52, 65, 73, 105
isomorphic, 42
multipartite, 47, 219
Paley, 59
path, 40, 203
pendant (degree one node), 173
Petersen, 46, 59
power law, 10
scale free, 10
simple, 15, 16
symmetric, 43
threshold, 119, 231, 274, 375
Turan, 57, 219
uniform degree graph, 230
weighted, 18

graph connectivity, 28, 119

edge connectivity, 171
vertex connectivity, 171

graph metrics
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algebraic connectivity, 134, 218, 283
assortativity range, 285
diameter, 33, 75-77, 110, 151, 166
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distance (or hopcount), 19

effective graph resistance, 177
eigenvector centrality, 93, 162, 290
graph energy, 291

hopcount, 128, 192

reconstructability coefficient, 289, 290

Hadamard product, 19
Hadamard’s inequality, 53, 335
harmonic function, 26, 180
Householder reduction, 312
Householder reflections, 48, 311

independence number, 101
independent set, 70
inequality
Bessel, 470
Cauchy-Schwarz, 315, 463
Chebyshev’s sum, 70
Holder, 56, 71, 315, 354
Parseval, 470
integral of the Cauchy type, 268, 475
interlacing, 97, 101, 138, 145, 170, 371, 374,
376, 444
isoperimetric constant, 152

Kemeny constant, 183, 292
Kronecker product, 96, 227, 244, 390
Kronecker’s delta, xviii, 413

Lagrange interpolation polynomial, 335, 342,

413, 429
law
Kirchhoff’s current law, 24
Kirchhoff’s voltage law, 27
linear scaling law of the reconstructability
coefficient, 290
Marcenko-Pastur’s Law, 267
McKay’s Law, 259
Ohm’s law, 25
Wigner’s Semicircle Law, 261, 264
law of total probability, 315
levelset of a tree, 35, 215
line graph, 35, 38, 59, 201, 218, 272, 282
link weight structure, 19

majorization, 134, 383

matrix
adjacency matrix, 15
adjoint, 339, 371
circulant, 194
community matrix, 45, 154
companion matrix, 349, 350
distance matrix, 20
effective resistance, 176, 292
Gram, 386
h-hops matrix, 34
Hadamard, 336
Hermitian, 355
incidence matrix, 16
inverse, 324

Index

Jacobi, 485
Laplacian (admittance matrix), 17
modularity matrix, 154, 159
normalized Laplacian, 110
orthogonal, 42
permutation matrix, 41
pseudoinverse Laplacian, 128, 176
quotient matrix, 45, 239
resolvent of a matrix, 159, 326, 368, 371
signless or unsigned Laplacian, 41
Stieltjes, 387
stochastic
doubly, 43

stochastic matrix, 20, 108, 291, 384
Vandermonde matrix, 74, 333, 351, 407, 416
weighted Laplacian, 19

Matrix Tree Theorem, 121

min-cut problem, 147

minor, 323

modularity, 153, 269

multiplicity, 344, 399

neighbor of a node, 16
network
electrical resistor network, 24, 113, 122, 133,
302
functional brain network, 276
interdependent, 293

orthogonal polynomials, 238, 240, 261, 359,
370, 465
associated, 474
Chebyshev polynomials, 259, 491

partition, 44, 146
equitable, 46, 105
path, 19
perturbation theory, 274, 391
polynomial
annihilating, 338
apolar, 447
characteristic, 322, 344
discriminant of a polynomial, 407, 408
elementary symmetric, 406
Gaussian, 41
minimal, 59, 75, 338, 424
monic, 400, 458, 466, 469, 471, 472
Newton identities, 53, 401
self-inversive, 412
potential, 25, 175, 180
power method, 353

random walk, 108, 257
reflection principle, 258, 263
reducibility, 119, 377
regular graphs, 57, 79, 117, 126, 159, 160, 194,
198
strongly, 59
resistance
effective, 175, 179, 181, 187, 189
relative, 177, 183, 189, 297, 300
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Index

sampling, 414

scalar product, 112, 465

Schur complement, 328

separator, 147, 148

Sherman-Morrison-Woodbury formula, 330

shortest path, 19, 32, 75, 140, 167, 189

spacing, 88, 89, 458, 460

sparsification, 296

spectral gap, 77, 88, 109, 110, 117, 153, 187,
221, 225, 286

spectral radius, 51, 238

spectral similarity, 297

split graph, 96

Sylvester’s law of inertia, 314, 375

Tree
adjacency spectrum, 86, 106, 217
Laplacian spectrum, 218

triangle closure equation, 188

Unimodal sequence, 124, 444, 478

walk, 19
Eulerian, 19, 41
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