


GRAPH SPECTRA FOR COMPLEX NETWORKS

This concise and self-contained introduction builds up the spectral theory of graphs from

scratch, with linear algebra and the theory of polynomials developed in the later parts. The

book focuses on properties and bounds for the eigenvalues of the adjacency, Laplacian and

effective resistance matrices of a graph. The goal of the book is to collect spectral properties

that may help to understand the behavior or main characteristics of real-world networks.

The chapter on spectra of complex networks illustrates how the theory may be applied to

deduce insights into real-world networks.

The second edition contains new chapters on topics in linear algebra and on the effective

resistance matrix, and treats the pseudoinverse of the Laplacian. The latter two matrices

and the Laplacian describe linear processes, such as the flow of current, on a graph. The

concepts of spectral sparsification and graph neural networks are included.

PIET VAN MIEGHEM is Professor at the Delft University of Technology. His research

interests lie in network science: the modeling and analysis of complex networks such as

infrastructural networks (for example telecommunication, power grids and transportation)

as well as biological, brain, social and economic networks.
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Preface to the second edition

There is no place for ugly mathematics (G. H. Hardy)

After more than a decade, a new edition was felt needed. The interest in and

the role of networks is still increasing, although the landscape of graph spectra

is not dramatically changed, but is slowly evolving. New theory or theory that I

have missed in the first edition is added. For example, I include the matrix theory

of linear processes on a graph, whose dynamics is proportional to the underlying

topology, such as fluids flowing in a network of pipes or electrical current in a resistor

network. The vector of the injected current at nodes is connected to the vector

of potentials at those nodes by a weighted Laplacian as explained in art. 14, from

which the pseudoinverse of the Laplacian naturally arises. The physics and meaning

of the diagonal elements of the pseudoinverse as well as the effective resistance

matrix of a graph are treated in Chapter 5.

The computation of graph spectra, eigenvalues and eigenvectors requires the

theory of linear algebra and polynomials. In the first edition, the book was divided

into two parts, where the second part originated from exploded appendices. This

second edition consists of three parts. The core of the book is Part I on Spectra of

Graphs, which consumes more than half of the pages and seven chapters. The main

theory on the eigenvalue equation (1.3), that comprises matrix and determinant

operations in linear algebra, is summarized in the Eigensystem in Part II. The

theory of polynomials, which also belongs to function theory, is contained in Part

III. Those two last parts contain the general theory, which is applied to graphs in

Part I. The reason for the separation is the inclusion of many nice results that make

those two last parts self-contained. Parts II and III can be read independently of

Part I.

Apart from the correction of errors and the deletion of a few articles (art.) in

the first edition, many additions have been included in this second edition. Some

additions are new and not published before. The list of new material in this second

edition is:

in Chapter 2: art. 12, 13, 14 to 16, 28, 29, 33, 35, 38 to 40, 17, 19, 21 to 24;

in Chapter 3: art. 43, 44, 52 to 58, 61, 64, 70, 71, 81, 87 to 91, 93 98;

in Chapter 4: art. 118, 120, 128 to 132, 139, 160, 161;

Chapter 5 on the effective resistance matrix;

in Chapter 6: Sections 6.4.3, 6.11 and 6.12;

in Chapter 7: art. 172, 182 and Section 7.5.3;

in Chapter 8: Sections 8.8 to 8.11;

Chapter 9 contains matrix transformations and properties of the determinant;

xi
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xii Preface to the second edition

in Chapter 10: art. 240, 241, 248, 249, 253, 256, 257, 258, 259, 271, 281 and

Sections 10.2, 10.7 and 10.10;

in Chapter 11: art. 293, 304, 305, 308, 312, 334, 336 and Section 11.6;

and in Chapter 12: Section 12.7.

Just as in the first edition, the main focus is on undirected graphs, whose graph-

related matrices as the adjacency matrix and Laplacian are symmetric. For sym-

metric matrices, the eigenvalue decomposition is effective, simple and beautiful.

Asymmetic matrices such as the non-backtracking matrix and the Markovian tran-

sition probability matrix specifying the directed Markov graph are not treated. An-

other omission concerns eigenvectors of graph-related matrices. Apart from their

computation, relatively little is understood about eigenvectors, although we expect

that progress will occur in the near future. A reason for this belief is the discovery

of the geometric simplex representation of an undirected graph, which is a third

equivalent representation besides the topology and the spectral domain, explained

in the Preface to the first edition below. Any undirected graph, possibly weighted,

on  nodes is a simplex — a generalization of a triangle in higher dimensions than

two — in the  − 1 dimensional Euclidean space, as first deduced by Fiedler (2009)
and rediscovered by us (Devriendt and Van Mieghem, 2019a) while studying elec-

trical resistor networks. That simplex is intimately related to eigenvectors of the

Laplacian matrix, but we omit the simplex geometry of a graph and simplicial com-

plexes. A last omission is specific topics in the relatively new field of graph signal

processing, for which we refer to the recent book by Ortega (2022) and Section 8.11

for the concepts of graph neural networks. Graph signal processing analyzes data

generated by processes on graphs and its aim is similar to that of Network Science;

roughly the same topics are treated, only the approach and nomenclature differs

somewhat. Here, we follow the network science terminology. While this book con-

tains inequalities for eigenvalues of graph-related matrices, Staníc (2015) devotes

an entire book on eigenvalue inequalities, which complements ours.

Finally, I hope that this new edition is easier to read: cross-referencing between

articles art. is greatly improved and I have tried to fabricate many art.’s as more

independent blocks that can stand on their own. To increase the readability, the

equation labels in Part II and III contain as first indicator A and B, respectively,

instead of the chapter number that is maintained in the core Part I.

July 2023 Piet Van Mieghem
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Preface to the first edition

During the first years of the third millennium, considerable interest arose in com-

plex networks such as the Internet, the world-wide web, biological networks, utility

infrastructures (for transport of energy, waste, water, trains, cars and aircrafts),

social networks, human brain networks, and so on. It was realized that complex

networks are omnipresent and of crucial importance to humanity, whose still aug-

menting living standards increasingly depend on complex networks. Around the

beginning of the new era, general laws such as “preferential attachment” and the

“power law of the degree” were observed in many, totally different complex net-

works. This fascinating coincidence gave birth to an area of new research that is

still continuing today. But, as is often the case in science, deeper investigations

lead to more questions and to the conclusion that so little is understood of (large)

networks. For example, the rather simple but highly relevant question “What is

a robust network?” seems beyond the realm of present understanding. The most

natural way to embark on solving the question consists of proposing a set of metrics

that tend to specify and quantify “robustness”. Soon one discovers that there is

no universal set of metrics, and that the metrics of any set are dependent on each

other and on the structure of the network.

Any complex network can be represented by a graph. Any graph can be repre-

sented by an adjacency matrix, from which other matrices such as the Laplacian

are derived. These graph related matrices are defined in Chapter 2. One of the

most beautiful aspects of linear algebra is the notion that, to each matrix, a set of

eigenvalues with corresponding eigenvectors can be associated. The physical mean-

ing of an “eigen” system is best understood by regarding the matrix as a geometric

transformation of “points” in a space. Those “points” define a vector: a line seg-

ment from an origin that ends in the particular point and that is directed from

origin to end. The transformation (rotation, translation, scaling) of the vector is

again a vector in the same space, but generally different from the original vector.

The vector that after the transformation turns out to be proportional with itself is

called an eigenvector and the proportionality strength or the scaling factor is the

eigenvalue. The Dutch and German adjective “eigen” means something that is in-

herent to itself, a characteristic or fundamental property. Thus, knowing that each

graph is represented by a matrix, it is natural to investigate the “eigensystem”, the

set of all eigenvalues with corresponding eigenvectors because the “eigensystem”

characterizes the graph. Stronger even, since both the adjacency and Laplacian

matrix are symmetric, there is a one-to-one correspondence between the matrix

and the “eigensystem”, established in art. 247.

In a broader context, transformations have proved very fruitful in science. The

xiii
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xiv Preface to the first edition

most prominent is undoubtedly the Fourier (or Laplace) transform. Many branches

of science ranging from mathematics, physics and engineering abound with exam-

ples that show the power and beauty of the Fourier transform. The general principle

of such transforms is that one may study the problem in either of two domains:

in the original one and in the domain after transformation, and that there exists

a one-to-one correspondence between both domains. For example, a signal is a

continuous function of time that may represent a message or some information pro-

duced over time. Some properties of the signal are more appropriately studied in

the time-domain, while others are in the transformed domain, the frequency do-

main. This analogy motivates us to investigate some properties of a graph in the

topology domain, represented by a graph consisting of a set of nodes connected by

a set of links, while other properties may be more conveniently dealt with in the

spectral domain, specified by the set of eigenvalues and eigenvectors.

The duality between topology and spectral domain is, of course, not new and

has been studied in the field of mathematics called algebraic graph theory. Several

books on the topic, for example by Cvetkovíc et al. (1995); Biggs (1996); Godsil

and Royle (2001) and recently by Cvetkovíc et al. (2009), have already appeared.

Notwithstanding these books, the present one is different in a few aspects. First, I

have tried to build-up the theory as a connected set of basic building blocks, called

articles, which are abbreviated by art. The presentation in article-style was inspired

by great scholars in past, such as Gauss (1801) in his great treatise Disquisitiones

Arithmeticae, Titchmarsh (1964) in his Theory of Functions, and Hardy and Wright

(2008) in their splendid Introduction to the Theory of Numbers, and many others

that cannot be mentioned all. To some extent, it is a turning back to the past,

where books were written for peers, and without exercise sections, which currently

seem standard in almost all books. Thus, this book does not contain exercises.

Second, the book focuses on general theory that applies to all graphs, and much

less to particular graphs with special properties, of which the Petersen graph, shown

in Fig. 2.3, is perhaps the champion among all. In that aspect, the book does not

deal with a zoo of special graphs and their properties, but confines itself to a few

classes of graphs that depend at least on a single parameter, such as the number

of nodes, that can be varied. Complex networks all differ and vary in at least some

parameters. Less justifiable is the omission of multigraphs, directed graphs and

weighted graphs. Third, I have attempted to make the book as self-contained as

possible and, as a peculiar consequence, the original appendices consumed about

half of the book! Thus, I decided to create two parts, the main Part I on the

spectra, while Part II overviews interesting results in linear algebra and the theory

of polynomials that are used in Part I. Since each chapter in Part II discusses a

wide area in mathematics, in fact, separate books on each topic are required. Hence,

only the basic theory is discussed, while advanced topics are not covered, because

the goal to include Part II was to support Part I. Beside being supportive, Part II

contains interesting theory that opens possibilities to advance spectral results. For

example, Laguerre’s beautiful Theorem 91 may once be applied to the characteristic
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Preface to the first edition xv

polynomials of a class of graphs with the same number of negative, positive and

zero eigenvalues of the adjacency matrix.

A drawback is that the book does not contain a detailed list of references point-

ing to the original, first published papers: it was not my intention to survey the

literature on the spectra of graphs, but rather to write a cohesive manuscript on

results and on methodology. Sometimes, different methods or new proofs of a same

result are presented. The monograph by Cvetkovíc et al. (1995), complemented by

Cvetkovíc et al. (2009), still remains the invaluable source for references and tables

of graph spectra.

I would like to thank Huijuan Wang, for her general interest, input and help

in pointing me to interesting articles. Further, I am most grateful to Fernando

Kuipers for proofreading the first version of the manuscript, to Roeloef Koekoek

for reviewing Chapter 12 on orthogonal polynomials, and to Jasmina Omic for the

numerical evaluation of bounds on the largest eigenvalue of the adjacency matrix.

Javier Martin Hernandez, Dajie Liu and Xin Ge have provided me with many

nice pictures of graphs and plots of spectra. Stojan Trajanovski has helped me

with the -dimensional lattice and art. 153. Wynand Winterbach showed that

the assortativity of regular graphs is not necessarily equal to one, by pointing to

the example of the complete graph minus one link (Section 8.5.1.1). Rob Kooij

has constructed Fig. 4.1 as a counter example for the common belief that Fiedler’s

algebraic connectivity is always an adequate metric for network robustness with

respect to graph disconnectivity. As in my previous book (Van Mieghem, 2006),

David Hemsley has suggested a number of valuable textual improvements.

The book is a temporal reflection of the current state of the art: during the

process of writing, progress is being made. In particular, the many bounds that

typify the field are continuously improved. The obvious expectation is that future

progress will increasingly shape and fine-tune the field into — hopefully — maturity.

Hence, the book will surely need to be updated and all input is most welcome.

Finally, I hope that the book may be of use to others and that it may stimulate

and excite people to dive into the fascinating world of complex networks with the

rigorous devices of algebraic graph theory offered here.

October 2010

Ars mathematicae

Piet Van Mieghem
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Symbols

Only when explicitly mentioned, will we deviate from the standard notation and

symbols outlined here.

Random variables and matrices are written with capital letters, while complex,

real, integer, etc., variables are in lower case. For example,  refers to a random

variable,  to a matrix, whereas  is a real number and  is a complex number. Also

the element  of a matrix  is written with a small letter. Usually,     

are integers. Operations on random variables are denoted by [], whereas () is used

for real or complex variables. A set of elements is embraced by {}. The largest
integer smaller than or equal to  is denoted by bc, whereas de equals the smallest
integer larger than or equal to .

Linear Algebra

 × matrix

⎡⎢⎣ 11 · · · 1
...

1    

⎤⎥⎦
det =

¯̄̄̄
¯̄̄ 11 · · · 1
...

1    

¯̄̄̄
¯̄̄: determinant of a square matrix 

trace() =
P

=1  : sum of diagonal elements of 

diag() = diag(1 2     ): diagonal matrix with diagonal elements

equal to the components of the vector  = (1 2     )

while all off-diagonal elements are zero

 transpose of a matrix, the rows of  are the columns of 

∗ matrix in which each element is the complex conjugate of the

corresponding element in 

 = (∗) : Hermitian of matrix 
 () = det (− ): characteristic polynomial of 

adj = −1 det: adjugate of 

xvii
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xviii Symbols

 matrix product of × matrix  and ×  matrix 

with element () =
P

=1 

 ◦ Hadamard product of ×  matrix  and ×  matrix 

with element ( ◦) = 

 all-one matrix

 all-one vector

 diag(), identity matrix

 () =
()

− : adjoint of 
 basic vector: all components are zero, except component  is 1

 Kronecker delta,  = 1 if  = , else  = 0

Probability theory

Pr [] probability of the event 

 [] = : expectation of the random variable 

Var[] = 2 : variance of the random variable 

 () =
()


: probability density function of 

 () probability distribution function of 

 () probability generating function of 

 () = 
£

¤
when  is a discrete r.v.

 () = 
£
−

¤
when  is a continuous r.v.

{}1≤≤ = {12    }
() -th order statistics, -th smallest value in the set {}1≤≤
 transition probability matrix (Markov process)

1{} indicator function: 1{} = 1 if the event or condition {} is true,
else 1{} = 0. For example,  = 1{=}

Graph theory

L set of links in graph 

N set of nodes in graph 

 = |L|: number of links in graph 

 = |N |: number of nodes in graph 

 adjacency matrix of graph 

 incidence matrix of graph 

 =  Laplacian matrix of graph 

† pseudoinverse of the Laplacian matrix of graph 

Ω effective resistance matrix of graph 

 hopcount in a graph (random variable) or hopcount matrix

 () line graph of graph 

∆ = diag(): diagonal matrix of the nodal degrees

 degree vector of a graph 

 degree of node 

() the -th largest degree of node in graph 
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Symbols xix

max maximum degree in graph 

min minimum degree in graph 

 degree (random variable) in graph 

N () vertex (node) connectivity of graph 

L () edge (link) connectivity of graph 

 effective graph resistance

N the number of triangles in graph 

{}1≤≤ set of eigenvalues of  ordered as 1 ≥ 2 ≥ · · · ≥ 

{}1≤≤ set of eigenvalues of  ordered as 1 ≥ 2 ≥ · · · ≥ 

 total number of walks with length 

 number of closed walks with length 

 diameter of graph 

 degree assortativity of graph 

 clique number of graph 

 the complete graph with  nodes

 the complete bi-partite graph with  = +

 path on  nodes
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1

Introduction

Despite the fact that complex networks are the driving force behind the investi-

gation of the spectra of graphs, it is not the purpose of this book to dwell on

complex networks. A generally accepted, all-encompassing definition of a complex

network does not seem to be available. Instead, complex networks are understood

by instantiation: the Internet, transportation (car, train, airplane) and infrastruc-

tural (electricity, gas, water, sewer) networks, biological molecules, the human brain

network, social networks, software dependency networks, are examples of complex

networks. There is such a large literature about complex networks, predominantly

in the physics community, that providing a detailed survey is a daunting task. We

content ourselves here with referring to some review articles by Strogatz (2001);

Newman et al. (2001); Albert and Barabási (2002); Newman (2003b), and to books

in the field by Watts (1999); Barabási (2002); Dorogovtsev and Mendes (2003);

Barrat et al. (2008); Dehmer and Emmert-Streib (2009); Newman (2010), and to

references in these works. Application of spectral graph theory to chemistry and

physics are found in Cvetkovíc et al. (1995, Chapter 8).

A few years ago, the study of complex networks has been called Network Science

Barabási (2016); Newman (2018). Networks consists of two main ingredients: (a)

a dynamic process, such as transport of items from node  to node  and (b) an

underlying topology or graph, over which the process evolves over time. In general,

the graph of the network is not fixed, but can change over time steered by some

second process. In time-varying networks, there are thus at least two processes,

which may be either independent or coupled by a third interaction process. The

best example, as experienced during the Covid pandemic, is epidemic spread on

a human contact graph: (a) the epidemic is governed by a viral infection process

and (b) the human mobility process creates the contact graph. Both processes may

be coupled by a third process, when viral awareness information is distributed and

humans can change contacts depending on whether people in their surrounding are

infected or not. Usually, the process on a graph specifies the directions of links,

while the graph itself reflects only link existence and is undirected.

In summary, most networks contain dynamic processes beside the graph. Net-

1
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2 Introduction

work science studies the duality between process and graph and thus encompasses

graph theory.

1.1 Graph of a network

The graph of a network, denoted by , consists of a set N of  nodes connected

by a set L of  links. Sometimes, nodes and links are called vertices and edges,

respectively, and are correspondingly denoted by the set  and . Here and in

my book on Performance Analysis (Van Mieghem, 2014), a graph is denoted by

 (N L) or  () to avoid conflicts with the expectation operator  in proba-

bility theory. There is no universal notation of a graph, although in graph theory

 = () often occurs, while in network theory and other applied fields, nodes

and links are used and the notation  (N L) or  () appears. None of these

notations is ideal nor optimized, but fortunately in most cases, the notation  for

a graph seems sufficient. As explained in Devriendt and Van Mieghem (2019a)

and mentioned in the preface, any undirected, possibly weighted graph on  nodes

can be represented in the  − 1-dimensional Euclidean space by a simplex, whose
vertices represent the nodes of the graph , but the edges of the simplex differ from

the links! Therefore, we adhere to nodes and link in the topology domain and we

talk about vertices, edges, angles and faces in the geometric domain. Besides the

graph and geometric domain, the third domain is the spectral domain, which is the

main focus of this book. Between these three different representations of a graph

, there is a one-to-one correspondence for undirected graphs, implying that all

information about the graph in one domain is preserved in another domain.

Graphs, in turn, can be represented by a matrix (art. 1). The simplest among

these graph-related matrices is the adjacency matrix , whose entries or elements

are

 = 1{node  is connected to node } (1.1)

where 1 is the indicator function and equal to one if the event or condition  is true,

else it is zero. All elements  of the adjacency matrix are thus either 1 or 0 and 

is symmetric for undirected graphs. Unless mentioned otherwise, we assume in this

book that the graph is undirected and that  and other graph-related matrices are

symmetric.

1.2 Eigenvalues and eigenvectors of a graph

If the graph consists of  nodes and  links, then art. 247 demonstrates that the

 × symmetric adjacency matrix can be written as

 = Λ (1.2)

where the  × orthogonal matrix  contains as columns the normalized eigen-

vectors 1 2,...,  of  belonging to the real eigenvalues 1 ≥ 2 ≥    ≥  ,
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1.3 Interpretation and contemplation 3

represented by the eigenvalue vector  = (1 2      ), and where the matrix

Λ = diag(). The basic relation (1.2) is an instance of the general eigenvalue prob-

lem (art. 235) for an arbitrary square matrix  with eigenvalue , where  is not

necessarily an adjacency matrix,

 =  (1.3)

Assuming that the matrix  has  linearly independent eigenvectors, which implies

that the matrix  is not defective nor has a Jordan form (Meyer, 2000), then the

eigenvalue equation (1.3) can be written for each solution  =  in terms of

the orthogonal matrix  =
£
1 2 · · · 

¤
as

 = Λ

The assumption of  linearly independent eigenvectors also means that rank() =

 and that the inverse matrix −1 exists. Right-multiplying both sides by −1

yields

 = Λ−1

Art. 247 shows that symmetric matrices possess orthogonal eigenvectors, implying

that −1 =  , which brings us to (1.2). The eigenvalue equation (1.3) and

its specific form for symmetric matrices (1.2) form the cornerstone of this book.

Usually, although other definitions occur, the spectrum of a graph refers to the

set of eigenvalues {}1≤≤ of a graph-related matrix and an eigenmode of an

operator or matrix is the eigenvector belonging to an eigenvalue.

This basic relation (1.2) equates the topology domain, represented by the adja-

cency matrix, to the spectral domain of the graph, represented by the eigensystem

in terms of the orthogonal matrix  of eigenvectors and the diagonal matrix Λ with

corresponding eigenvalues. The major difficulty lies in the map from topology to

spectral domain,  → Λ , because the inverse map from spectral to topology

domain, Λ → , consists of straightforward matrix multiplications. Thus,

most of the efforts in this book lie in computing or deducing properties of  and Λ,

given . Even more confining, most endeavors are devoted to the diagonal matrix

Λ of eigenvalues and the distribution and properties of the eigenvalues {}1≤≤
of  and of other graph-related matrices. It is fair to say that not too much is

known about the eigenvectors and the distribution and properties of eigenvector

components. A state of the current art is presented by Cvetkovíc et al. (1997).

1.3 Interpretation and contemplation

One of the most studied eigenvalue problems is the stationary Schrödinger equation

in quantum mechanics (see, e.g., Cohen-Tannoudji et al. (1977)),

 () =  ()
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4 Introduction

where  () is the wave function,  is the energy eigenvalue of the Hamiltonian

(linear) differential operator

 = − }
2

2
∆+  ()

in which the Laplacian operator is ∆ = 2

2
+ 2

2
+ 2

2
, } = 

2
and  ' 662 ×

10−34Js is Planck’s constant,  is the mass of an object subject to a potential

field  () and  is a three-dimensional location vector. The wave function  ()

is generally complex, but | ()|2 represents the density function of the probability
that the object is found at position . The mathematical theory of second-order

linear differential operators is treated, for instance, by Titchmarsh (1962, 1958).

While the interpretation of the eigenfunction  () of the Hamiltonian , the

continuous counterpart of an eigenvector with discrete components, and its corre-

sponding energy eigenvalue  is well understood, the meaning of an eigenvector of

a graph is rather vague and not satisfactory. An attempt is as follows. The basic

equation (1.3) of the eigenvalue problem, combined with the zero-one nature of the

adjacency matrix , states that the -th component of the eigenvector  belonging

to eigenvalue  can be written as

 () = () =

X
=1

 () =
X

∈ neighbors()
() (1.4)

where neighbors() = { ∈ N :  = 1} denotes the set of all direct neighbors of
node . In a simple graph (art. 1), there are no self-loops, i.e.  = 0, and the

eigenvector component () multiplied by the eigenvalue  equals the sum of the

other eigenvector components () over all direct neighbors  of node . Since all

eigenvectors of the adjacency matrix  are orthogonal1 (art. 247), each eigenvector

can be interpreted as describing a different inherent property of the graph. The

precise meaning of that property depends upon the graph-related matrix viewed

as an operator that acts upon a vector or points in the  -dimensional space. The

eigenvalue basic equation (1.2) says that there are only  such inherent properties

and the orthogonality of or of the eigenvectors tells us that these inherent proper-

ties are independent. The above component equation (1.4) then expresses that the

value () of the inherent property , belonging to the eigenvalue  and specified

by the eigenvector , at each node  equals a weighted sum of those values ()
over all its direct neighbors  and each such sum has a same weight −1 (provided

 6= 0, else the average over all direct neighbors of those values () is zero).

Since both sides of the basic equation (1.3) can be multiplied by some non-zero

number or quantity, we may interpret that the value of property  is expressed in

own “physical” units. Perhaps, depending on the nature of the complex network,

some of these units can be determined or discovered, but the pure mathematical

1 Mathematically, the eigenvectors form an orthogonal basis that spans the entire -dimensional
space. Each eigenvector “adds” or specifies one dimension or one axis (orthogonal to all others)
in that -dimensional coordinate frame.
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1.3 Interpretation and contemplation 5

description (1.3) of the eigenvalue problem does not contain this information. Al-

though the focus here is on eigenvectors, equation (1.4) also provides interesting

information about the eigenvalues, for which we refer to art. 273.

Equation (1.4) reflects a local property with value () that only depends on

the corresponding values () of direct neighbors. But this local property for node

 holds globally for any node , with a same strength or factor . This local

and global aspect of the eigenstructure is another fascinating observation, that is

conserved after “self-replication”. Indeed, using (1.4) with index  =  into (1.4)

yields

2 () =

X
1=1

1

X
2=1

12 ()2 =

X
2=1

¡
2
¢
2
()2

=  () +
X

2 is a second hop neighbor of 

()2

because art. 19 shows that
¡
2
¢

=  , where  is the degree, i.e. the number of

neighbors, of node . The idea can be continued and a subsequent substitution of

(1.4) leads to an expression that involves a sum over all three hops nodes away from

node . Subsequent iterations relate the expansion of the graph around node  in

the number  of hops, further elaborated in art. 6 and art. 65, to the eigenvalue

structure as n
 − ()

o
() =

X
 is an -th hop neighbor of 

() (1.5)

The larger , the more globally the environment around node  is extended.

The alternative representation (A.138) of  = Λ ,

 =

X
=1





shows that there is a hierarchy in importance of the properties, specified by the

absolute value of the eigenvalues, because all eigenvectors are scaled to have equal

unit norm. In particular, possible zero eigenvalues contain properties that the graph

does not possess, because the corresponding eigenvectors do not contribute to the

structure — the adjacency matrix  — of the graph. In contrast, the properties

belonging to the largest (in absolute value) eigenvalues have a definite and strong

influence on the graph structure.

Another observation2 is that the definition of the adjacency matrix  is somewhat

arbitrary. Indeed, we may agree to assign the value  to the existence of a link and

 otherwise, where  and  6=  can be any complex number. Clearly, the graph is

then equally well described by a new adjacency matrix  ( ) = (− )+  ,

where  is the all-one matrix. Unless  = 1 and  = 0, the eigenvalues and

eigenvectors of  ( ) are different from those of . This implies that an entirely

2 Communicated to me by Dajie Liu.
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6 Introduction

different, but still consistent theory of the spectra of graphs can be built. We have

not pursued this track here, although we believe that for certain problems a more

appropriate choice of  and  than  = 1 and  = 0 may simplify the solution.

Fig. 1.1. A realization of an Erdős-Rényi random graph  () with  = 400 nodes,

 = 793 links and average degree 2

of about 4. The link density  ' 10−2 equals the

probability to have a link between two arbitrary chosen nodes in  (). The size of a
node is drawn proportional to its degree.

When encountering the subject for the first time, one may be wondering where all

the energy is spent, because the problem of finding the eigenvalues of , reviewed in

Chapter 10, basically boils down to solving the zeros of the associated characteristic

polynomial (art. 235). In addition, we know (art. 1), due to symmetry of , that

all zeros are real (art. 247), a fact that considerably simplifies matters as shown

in Chapter 11. For, nearly all of the polynomials with real coefficients possess

complex zeros and only a very small subset has zeros that are all real. This suggests

that there must be something special about these eigenvalues and characteristic

polynomials of . Orthogonal polynomials form a fascinating class of polynomials

with real coefficients whose zeros are all real, which are studied in Chapter 12 and

which are related to orthogonal eigenvectors.

Much of the research in the spectral analysis of graphs is devoted to understand

properties of the graph by inspecting the spectra of mainly two matrices, the ad-

jacency matrix  and the Laplacian , defined in art. 4. For example, how does

the spectrum, the set of all eigenvalues, show that a graph is connected? What

is the physical meaning of the largest and smallest eigenvalue, how large or small

can they be? How are eigenvalues changing when nodes and/or links are added
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1.4 Outline of the book 7

Fig. 1.2. An instance of a Barabási-Albert graph with  = 400 nodes and  = 780 links,
which is about the same as in Fig. 1.1. The size of a node is drawn proportional to its
degree.

to the graph? Deeper questions are, “Is Λ alone, without  in (1.2), sufficient to

characterize a graph?”, “How are the spacings, the differences between consecu-

tive eigenvalues, distributed and what do spacings physically mean?”, or, extremal

problems as “What is the class of graphs on  nodes and  links that achieves the

largest second smallest eigenvalue of the Laplacian?”, and so on.

1.4 Outline of the book

Chapter 2 introduces some definitions and concepts of algebraic graph theory, which

are needed in Part I. We embark on the spectrum in Chapter 3, that focuses on

the eigenvalues of the adjacency matrix . In Chapter 4, we continue with the

investigation of the spectrum of the Laplacian . As argued by Mohar, the theory

of the Laplacian spectrum is richer and contains more beautiful achievements than

that of the adjacency matrix. Mohar’s view is supported by the effective resistance

matrix Ω in Chapter 5, that is closely related to the Laplacian matrix . In Chapter

6, we compute the entire adjacency spectrum and sometimes also the Laplacian

spectrum of special types of classes containing at least one variable parameter

such as the number of nodes  or/and the number of links . Chapter 6 thus

illustrates the theory of Chapter 3 and Chapter 4 by useful examples. In fact,

the book originated from Chapter 6 and it was a goal to collect all spectra of

graphs (with at least one parameter) that can be computed analytically. The

underlying thought was to explain the spectrum of a complex network by features
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8 Introduction

Fig. 1.3. The Watts-Strogatz small-world graph on  = 100 nodes and with nodal degree
 = 4 (or  = 2 as explained in Section 6.2) and rewiring probability  =

1
100
.

appearing in “known spectra”. Chapter 7 complements Chapter 6 asymptotically

when graphs grow large,  → ∞. For large graphs, the density or distribution of
the eigenvalues (as nearly continuous variables) is more appealing and informative

than the long list of eigenvalues. Apart from the three marvelous scaling laws by

Wigner, Marc̆enko-Pastur and McKay, we did not find many explicit results on

densities of eigenvalues of graphs. Finally, Chapter 8, the last chapter of Part I,

applies the spectral knowledge of the previous chapters to gain physical insight into

the nature of complex networks.

As mentioned in the Preface (first edition), the results derived in Part I have

been built on the general theory of linear algebra and of polynomials with real

coefficients, summarized in Part II and Part III, respectively.

1.5 Classes of graphs

The main classes of graphs in the study of complex networks are: the class of

Erdős-Rényi random graphs (Fig. 1.1), whose fascinating properties are derived

in Bollobás (2001); the class of Watts-Strogatz small-world graphs (Fig. 1.3) first

explored in Watts (1999); the class of Barabási-Albert power law graphs (Fig. 1.2

and Fig. 1.4) introduced by Barabási and Albert (1999); and the regular hyper-

lattices in several dimensions.

The Erdős-Rényi random graph is the simplest random model for a network. Its

analytic tractability in a wide range of graph problems has resulted in the richest

and most beautiful theory among classes of graphs. In many cases, the Erdős-Rényi

random graph serves as a basic model that provides a fast benchmark for first order

estimates and behaviors in real networks. Usually, if a graph problem cannot be
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1.5 Classes of graphs 9

Fig. 1.4. A Barabási “fractal-like” tree with  = 1000 nodes, grown by adding at each
step one new node to nodes already in the tree and proportional to their degree.

solved analytically for the Erdős-Rényi random graph or for hyper-lattices, little

hope exists that other classes of (random) graphs may have a solution. However,

in particular the degree distribution of complex networks does not match well with

the binomial degree distribution of Erdős-Rényi random graphs (drawn in Fig. 1.5)

and this observation has spurred the search for “more realistic models”.

After random rewiring of links, the Watts-Strogatz small-world graphs in Section

6.2 possess a relatively high clustering and short hopcount. The probability  that

a link is rewired is a powerful tool in Watts-Strogatz small-world graphs to balance

between “long hopcounts” ( is small) and “small-worlds” ( → 1).

The most distinguishing property of large Barabási-Albert power law graphs is

the power law degree distribution, Pr [ = ] ≈ − where3  =
³P−1

=1 −
´−1
≈

1
()

for large  , which is observed as a major characteristic in many real-world

complex networks. Fig. 1.5 compares the degree distribution of the Erdős-Rényi

random graph shown in Fig. 1.1 and of the Barabási-Albert power law graph in

Fig. 1.2, both with the same number of nodes ( = 400) and almost the same

average degree ( [] = 4). The insert illustrates the characteristic power law of

the Barabási-Albert graph, recognized by a straight line in a log-log plot. Most

nodes in the Barabási-Albert power law graph have small degree, while a few nodes

have degree larger than 10 (which is the maximum degree in the realization here of

3 The Dirichlet series  () =
∞

=1
1


defines the Riemann-Zeta function (Titchmarsh and

Heath-Brown, 1986) for complex numbers  with Re ()  1.
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Fig. 1.5. The probability density function (pdf) of the nodal degree in the Erdős-Rényi
random graph shown in Fig. 1.1 and in the Barabási-Albert power law graph in Fig. 1.2.

the Erdős-Rényi random graph with the same number of nodes and links), and even

one node has 36 neighbors. A power law graph is often called a “scale-free graph”,

meaning that there is no typical scale for the degree. Thus, the standard deviation

 =
p
Var [] is usually larger than the average  [], such that the latter is not

a good estimate for the random variable  of the degree, in contrast to Gaussian

or binomial distributions, where the bell-shape is centered around the mean with,

usually, small variance. Physically, power law behavior can be explained by the

notion of long-range dependence, heavy correlations over large spacial or temporal

intervals and of self-similarity. A property is self-similar if on various scales in time

or space or aggregation levels (e.g., hierarchical structuring of nodes in a network)

about the same behavior is observed. The result is that a local property is magnified

or scaled-up towards a global extent. Mathematically, if Pr [ = ] = −− ,
then Pr

£
−1 = 

¤
= − Pr [ = ]: scaling a property — here, the degree  — by

a factor −1 leads to precisely the same distribution, apart from a proportionality

constant − . Thus, on different scales, the behavior “looks” similar.

There is also a large number of more dedicated classes, such as Ramanujan

graphs and the Kautz graphs, shown in Fig. 1.6, that possess interesting extremal

properties. We will not further elaborate on the different properties of these classes;

we have merely included some of them here to illustrate that complex networks are

studied by comparing observed characteristics to those of “classes of graphs with

known properties”.
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1.6 Outlook 11

Fig. 1.6. The Kautz graph of degree  = 3 and of dimension  = 3 has (+ 1)  nodes and
(+ 1) +1 links. The Kautz graph has the smallest diameter of any, possibly directed,
graph with  nodes and degree .

1.6 Outlook

I believe that we still do not understand “networks” sufficiently well. For example,

if the adjacency matrix of a large graph is given, it seems quite complex to tell

without visualization of the graph by computing graph metrics only, what the

properties of the network are. A large number of topological metrics may be listed

such as hopcount, eccentricity, diameter, girth, expansion, betweenness, distortion,

degree, assortativity, coreness, clique number, clustering coefficient, vertex and edge

connectivity and others. We humans see a pile of numbers, but often miss the overall

picture and understanding.

The spectrum, that is for a sufficiently large graph a unique fingerprint as con-

jectured in van Dam and Haemers (2003), may reveal much more. First, graph

or topology metrics are generally correlated and dependent. In contrast, eigen-

values weigh the importance of eigenvectors, that are all orthogonal, which makes

the spectrum a more desirable device. Second, earlier research on photolumines-

cence spectra (Borghs et al., 1989) provided useful and precise information about

the structural properties of doped GaAs substrates. By inspecting carefully the

differences in peaks and valleys, in gaps and in the broadness of the distribution

of eigenvalues, that physically represented energy levels in the solid described by

Schrödinger’s equation in Section 1.3, insight gradually arose. A similar track may

be followed to understand real-world networks. We hope that the mathematical

properties of spectra, presented here, may help in achieving this goal.
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Part I

Spectra of graphs

                     

https://doi.org/10.1017/9781009366793.004
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.004
https://www.cambridge.org/core


                     

https://doi.org/10.1017/9781009366793.004
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.004
https://www.cambridge.org/core


2

Algebraic graph theory

The elementary basics of the matrix theory for graphs  () is outlined. The

books by Cvetkovíc et al. (1995) and Biggs (1996) are standard works on algebraic

graph theory.

2.1 Graph related matrices

1. Adjacency matrix . The adjacency matrix  of a graph  with  nodes is

an  × matrix with elements  = 1 only if the pair of nodes ( ) is connected

by a link  of , otherwise  = 0. If the graph is undirected, the existence of

the link  implies that  =  and the adjacency matrix  =  is a symmetric,

zero-one matrix. It is assumed further in this book that the graph  does not

contain self-loops ( = 0) nor multiple links between two nodes. Graphs without

self-loops and without multiple links between two nodes are called simple.

The complement  of the graph  consists of the same set of nodes but with

a link  between ( ) if there is no link  = ( ) in  and vice versa. Thus,

()

=  and the adjacency matrix  of the complement  is  =  −  −,

where  is the all-one matrix (() = 1) and  is the identity matrix. The links in

1

42

6 5

3

Fig. 2.1. A directed graph with  = 6 and  = 9. The links are lexicographically ordered,
1 = 1→ 2 2 = 1→ 3 3 = 1←− 6 4 = 2→ 3 etc.

a graph can be numbered in some way, for example, lexicographically as illustrated

in Fig. 2.1. Due to different node labeling, the same graph structure can possess

many different adjacency matrices (see Section 2.5 below).

15
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16 Algebraic graph theory

2. Incidence matrix . Information about the direction of the links is specified by

the incidence matrix , an  ×  matrix with elements

 =

⎧⎨⎩
1

−1
0

if link  =  −→ 

if link  = ←− 

otherwise

If  is the -th  × 1 basic vector of the  -dimensional space with () = 1 if

 =  and otherwise () = 0, then the -th column vector of , associated to link

 =  −→ , equals −  . Each column in  has only two non-zero elements. The
adjacency matrix and incidence matrix of the graph in Fig. 2.1 are

=


0 1 1 0 0 1
1 0 1 0 1 1
1 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 1 0 0 1 0

  =


1 1 −1 0 0 0 0 0 0
−1 0 0 1 −1 1 0 0 0
0 −1 0 −1 0 0 1 0 0
0 0 0 0 0 0 −1 −1 0
0 0 0 0 1 0 0 1 −1
0 0 1 0 0 −1 0 0 1


An important property of the incidence matrix  is that the sum of each column

equals zero,

 = 0 (2.1)

where  = (1 1     1) is the all-one vector, also written as an  × 1 matrix  =£
1 1 · · · 1

¤
.

An undirected graph can be represented by an  × (2) incidence matrix ,

where each link ( ) is counted twice, once for the direction  →  and once for

the direction  → . In that case, the degree of each node is just doubled. A link

 = ( ) between node  and  in an undirected graph is also denoted as  =  ∼ 

or  = ¿ . Instead of using the incidence matrix, the unsigned incidence matrix

, defined in art. 25, is more appropriate for an undirected graph.

3. Degree of a node. By the definition of the adjacency matrix , the row sum 

of  equals the degree  of node ,

 =

X
=1

 (2.2)

A neighbor  of a node  is a node in the graph  connected by a link to node

, thus obeying  = 1. The degree  is the number of neighbors of node  and

0 ≤  ≤  − 1. However, only  − 1 degree values are possible in a simple graph,
because the existence of  = 0 for some node  excludes the existence of a degree

equal to  − 1 and vice versa. Consequently, in any graph  with  nodes, there

are at least two nodes with the same degree.

Since
P

=1

P
=1  = 2, where  is the number of links in the graph , the

basic law for the degree follows as

X
=1

 = 2 (2.3)
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2.1 Graph related matrices 17

Probabilistically, when considering an arbitrary nodal degree1 , the basic law for

the degree becomes

 [] =
2



meaning that the average degree or expectation of  in a graph  is twice the ratio

of the number  of links over the number  of nodes. Especially in large real-world

networks, a probabilistic approach is adequate as illustrated in Chapter 8.

The basic law of the degree (2.3) implies that any graph  possesses an even

(possibly zero) number of nodes with odd degree. Indeed, the sum in (2.3) can be

split over nodes with even and odd degree so that

X
=1


()
 = 2−

X
=1


()


where 
()
 is an odd integer if the degree of node  is odd, otherwise 

()
 = 0

(and similarly for the even degree 
()
 ). The right-hand side is always even, which

implies that each simple graph must contain an even number of odd degree nodes.

Let us define the degree vector  =
£
1 2 · · · 

¤
, then both (2.2) and

(2.3) have a compact vector presentation as

 =  (2.4)

and

 =  =  = 2 (2.5)

For a directed graph, the in-degree in and out-degree 
out
 of node  are defined

as the number of links entering and leaving, respectively, node . From the incidence

matrix , the number of “1” elements in row  equals out , while the number of

“−1” elements in row  equals in . From an asymmetric adjacency matrix  (where

 = 1 only if there is link from node  −→ , otherwise  = 0), we find that

 = out and  =
¡
in
¢

If  is symmetric, then  =  = ()

and out = in = .

4. Laplacian matrix . The relation between adjacency and incidence matrix is

given by the admittance matrix or Laplacian ,

 =  = ∆− (2.6)

where ∆ = diag(1 2      ) is the degree matrix. Indeed, if  6=  and recalling

that each column in the incidence matrix  has precisely two non-zero elements,

 =
¡


¢

=

X
=1

 =

½ −1
0

if ( ) are linked

if ( ) are not linked

1 The random variable  of the degree in a graph  is equal to one of the possible realizations
or outcomes 1 2      of the degrees in .
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18 Algebraic graph theory

from which the “link decomposition” of the Laplacian, derived in (4.5), follows as

 =
X

()∈L
( − ) ( − )



If  = , then
P

=1 
2
 =  in (2.6) is the number of links that have node  in

common. If self-loops are allowed in a graph, then the right-hand side of definition

(2.6) shows that self-loops do not influence the Laplacian .

The basic property  = 0 in (2.1) of the incidence matrix  leads in (2.6) to

 = 0

Consequently, each row sum
P

=1  = 0, which shows that  is singular, implying

that det = 0.

Since  is symmetric, so is  and . Hence, although the incidence matrix 

specifies the direction of links in the graph, (2.6) loses information about directions

and  in (2.6) only reflects the existence of links between a pair of nodes, corre-

sponding to an undirected graph. Consequently, if  is asymmetric and specifies,

just like , the direction of links in a directed graph, then (2.6) does not hold.

Moreover, the asymmetric matrix ∆− does not define an asymmetric Laplacian,

because the row sum of ∆−  is not everywhere zero. By replacing the degree in

∆ by the in-degree or out-degree, either the column sum or the row sum of ∆−

is zero, so that we may define two different asymmetric “Laplacian” matrices. The

arguments illustrate that, generally, directed graphs possess less elegant properties2

than undirected graphs and give rise to a more complicated analysis.

The Laplace matrix  can be viewed as a discrete operator acting on a vector.

The relation with its continuous counterpart, the Laplacian differential operator, is

explained by Merris (1994) for a lattice graph.

5. Matrices of weighted graphs. Weighted graphs often appear in practice, where

a link between node  and node  in the graph  is specified by one or more real

numbers that reflect e.g. a delay, a monetary cost when using the link, the energy

needed when traveling over that link, a performance loss, a geographic distance,

a quality of service metric in telecommunication networks, like packet loss, jitter,

etc.. We call any such real number, that specifies a link characteristic, a weight 

of the link between node  and  and the  × weighted matrix  represents the

weights between all pairs ( ) of adjacent nodes. In most cases, analyses are limited

2 Perhaps the major disadvantage of directed graphs is that the eigenvalues are not necessarily
real (since art. 247 does not apply). Even worse, the asymmetric adjacency matrix  may not
be diagonalizable and may possess a Jordan canonical form (art. 239).
From a physical point of view, flows in networks (art. 14) can propagate in either direction,
depending on the driving force or potential difference; the incidence matrix  specifies the
direction of the flow in the link, while the adjacency matrix  =  determines the existence
of a link. If the adjaceny matrix is asymmetric, then some links only allow propagation of flows
in one direction and forbid the flow in the other direction. Physically, such an asymmetric
situation requires non-linear elements (such as diodes in an electrical network or water tubes
with directional shutters), which seriously complicate “linear” theory. Nevertheless, asymmetry
naturally occurs in www-links, social relations and the Markov graph of a Markov process.
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2.1 Graph related matrices 19

to one link weight, but multiple-parameter routing explained in Van Mieghem and

Kuipers (2004) is an example where each entry in the matrix  is a vector, rather

than a single real number. The link weight structure, the set of all link weights of

graph , is usually specified by a process or a function on the network, so that link

weight  may depend upon link weight . Since a process on a graph typically

introduces directions,  is generally not a symmetric matrix.

We will denote graph matrices of a weighted graph by a tilde to distinguish them

from graph matrices of the unweighted graph. For example, the element e of the
weighted adjacency matrix e represents the weight  of a link between node 

and  and e = 0 for all 1 ≤  ≤  . Using the Hadamard3 product ◦, the weighted
adjacency matrix e equals e = ◦, where e =  and  is an element of

the adjacency matrix . Hence, the unweighted case can be regarded as a special

case where the weighted matrix  =  is the all-one matrix.

A particular class of weighted graphs are undirected weighted graphs, where the

corresponding weighted adjacency matrix is symmetric, e = e . The weighted

degree of node  is e =P
=1 e , while the degree vector is e = e. Similarly, the

corresponding weighted Laplacian can be defined as e = diag
³e´ − e = e∆ − e,

thus e = −e if  6= , else, e = −P
=1;6= e and e = e .

6. Walk, path and cycle. A walk of length  from node  to node  is a succession

of  links (arcs) or  hops of the form (0 → 1)(1 → 2) · · · (−1 → ), where

node label 0 =  and  = . A closed walk of length  is a walk that starts in

node 0 =  and returns, after  hops, to that same node  = . A path is a walk

in which all nodes are different, i.e.  6=  for all 0 ≤  6=  ≤ . A cycle of

length  is a closed walk with different intermediate nodes, i.e.  6=  for all

0 ≤  6=   . For an undirected walk, path or cycle, we replace the directed link

 →  by the undirected link  ∼  . An Eulerian walk (circuit) is a closed walk

containing each link of the graph  once, while a Hamiltonian cycle contains each

node of  exactly once.

7. A shortest path. We consider only additive link weights such that the weight

of a path P is (P) = P
∈P , i.e., ( ) equals the sum of the weights of the

constituent links of the path P. The shortest path P∗→ from node  to node  is

the path with minimal weight, thus,  (P∗→) ≤  (P→) for all paths P→. The

shortest path weight matrix  has elements  = 
¡P∗→

¢
. If all link weights are

equal to  = 1 as in an unweighted graph, shortest paths are shortest hop paths

and 
¡
 ∗→

¢
=  is the hopcount, i.e. the length in hops or links of the shortest

path between node  and node , also called the distance between nodes  and , or

sometimes, the length of P∗→ . In weighted graphs, the hopcount  is generally

different from the weight  = 
¡P∗¢ of a shortest path.

In man-made infrastructures, two major types of transport exist: either a packet

3 The Hadamard product (Horn and Johnson, 1991) is the entrywise product of two matrices:
( ◦) =  . If  and  are both diagonal matrices, then  =  ◦.
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20 Algebraic graph theory

(e.g. car, parcel, IP-packet, container) or a flow (e.g. electric current, water, gas).

Transport is either flow-based or path-based. Packets follow a single path from

source to destination, whereas a flow spreads over all possible paths. Generally,

packets in a weighted network follow shortest paths. The flow analogon of the

shortest path weight matrix  is the effective resistance matrix Ω in Chapter 5.

There exist many routing algorithms to compute shortest paths in networks.

The most important of these routing algorithms are explained, for example, in

Van Mieghem (2010) and Cormen et al. (1991).

8. Graph matrices and distance matrices. Many other graph-related matrices, in

short graph matrices, can be defined and we mention only a few. The effective

resistance matrix Ω is studied in Chapter 5. The modularity matrix  is defined

and discussed in art. 151. The probability transfer matrix  = ∆−1 of a random
walk on a graph is a stochastic matrix, because all elements of  lie in the interval

[0 1] and each row sum is 1. Graph matrices can be scaled or normalized, e.g.,

normalized Laplacians are ∆−1 or ∆−
1
2∆−

1
2 .

A distance matrix  is a non-negative matrix, where element  specifies a

distance measure between node  and  in a graph. For example, if the distance

measure is equal to the hopcount  , then  = 0. Thus, distance matrices possess

a zero diagonal and contain the distances between each pair ( ) of nodes in a

graph. Any element of a distance matrix obeys the triangle inequality (art. 201):

0 ≤  ≤  + . The spectrum of distance matrices is reviewed by Aouchiche

and Hansen (2014). Both ,  and Ω are distance matrices.

The hopcount matrix  of the directed graph in Fig. 2.1,

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 3 2

2 0 1 2 2 1

× × 0 1 × ×
× × × 0 × ×
3 1 2 1 0 2

1 2 2 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
illustrates asymmetry in directed graphs as well as the possibility of the non-

existence, marked by × in the above matrix, of a path between two nodes, although
the graph is connected. For these reasons, we usually confine to undirected, con-

nected graphs. Since  =  in an undirected, connected graph, the correspond-

ing distance matrix  is symmetric, with positive integer off-diagonal elements and

with zero elements on the diagonal.

2.2 The incidence matrix 

The  × incidence matrix  in art. 2 transforms an × 1 vector  of the “link”-
space to an  × 1 vector  of the “nodal” space by  = . Physically, this

transformation is best understood when  is a flow or current vector through links
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2.2 The incidence matrix  21

in a network, while  is the externally injected current in nodes of the graph  as

discussed in art. 14 below. We first concentrate on mathematical properties of the

incidence matrix .

9. Rank of the incidence matrix .

Theorem 1 If the graph  is connected, then rank() =  − 1.
Proof: The basic property  = 0 in (2.1) implies that rank() ≤  − 1.

Suppose that there exists a non-zero vector  6=  for any real number  such

that  = 0. Under that assumption, the vector  and  are independent and

the kernel (or zero space of ) consisting of all vectors  such that  = 0 has

at least rank 2, and consequently rank() ≤  − 2. We will show that  is not
independent, but proportional to . Consider row  in  corresponding to the non-

zero component  . All non-zero elements in the row vector () are links incident

to node . Since each column of  only consists of two elements (with opposite

signs), for each link  incident to node , there is precisely one other row  in  with

a non-zero element in column . In order for the linear relation  = 0 to hold,

we thus conclude that  = , and this observation holds for all nodal indices 

and  because  is connected. This implies that  = , which shows that

the rank of the incidence matrix cannot be lower than  − 1. ¤

An immediate consequence is that rank() =  −  if the graph has  disjoint

but connected components, because then (see also art. 116) there exists a relabeling

of the nodes such that  can be partitioned as

 =

⎡⎢⎢⎢⎢⎣
1     

 2
...

...
. . .

    

⎤⎥⎥⎥⎥⎦
10. The cycle-space and cut-space of a graph . The cycle-space of a graph 

consists of all possible cycles in that graph. A cycle (art. 6) can have two cycle

orientations. This means that the orientation of links in a cycle either coincides with

the cycle orientation or that it is the reverse of the cycle orientation. For example,

the cycle (1− 2) (2− 6) (6− 1) in Fig. 2.1 corresponds to the links (columns in )

1 6 and 3 and all links are oriented in the same direction along the cycle. When

adding columns 1 3 and 6, the sum is zero, which is equivalent to  = 0 with

 = (1 0 1 0 0 1 0 0 0). On the other hand, the triplet (1− 2) (2− 3) (3− 1),
corresponding to the links 1 4 and 2, is not a cycle, because not all links are oriented

in the same direction such that  = (1−1 0 1 0 0 0 0 0) has now negative sign
components.

In general, if  = 0, then the non-zero components of the vector  are links of

a cycle. Indeed, consider the -th row () =  . If node  is not incident with
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22 Algebraic graph theory

links of the cycle, then  = 0. If node  is incident with some links of the cycle,

then it is incident with precisely two links, with opposite sign such that  is again

zero.

Since the rank of  is  − , where  is the number of connected components,

the rank of the kernel (or null space) of  is −+. Hence, the dimension of the

cycle-space of a graph equals the rank of the kernel of , which is − + . The

orthogonal complement of the cycle-space is called the cut-space, with dimension

 − . Thus, the cut-space is the space consisting of all vectors  for which  =

 6= 0. Since  = 0 by (2.1), the non-negative components of  are the nodes

belonging to one partition and the negative components define the other partition.

These two disjoint sets of nodes thus define a cut in the graph, a set of links whose

removal separates the graph  in two disjoint subgraphs. For example in Fig. 2.1,

 =
£
1 0 −1 −2 1 1

¤
defines a cut that separates nodes 3 and 4 from

the rest. Section 4.4 further investigates the partitioning of a graph.

11. Cycles and cuts in a connected graph . A spanning tree  in the graph  is a

connected subgraph of  that contains all  nodes of . Any tree on  nodes has

 − 1 links, whose set is denoted by T ⊂ L, and a tree does not contain a cycle.
The definition of a spanning tree T of the graph  leads to an interesting prop-

erty: If a link  ∈ L, but  ∈ T , is added to the spanning tree  , then there is a
unique cycle in the graph T ∪ {}. Indeed, let  be a link between node  and .

Since  does not belong to the spanning tree  , the nodes  and  are not directly

connected, but there is a path from node  to node  in spanning tree  , because

 is connected. The addition of  to  results in two different paths from node  to

node . By the definition of a cycle, the graph T ∪ {} contains one cycle  ( ),
which is unique by construction and to which we can associate a vector  obeying

 = 0 by art. 10. The length of that cycle contains at most  links, because the

longest shortest path in the spanning tree has at most  − 1 links.
The companion property is: if a link  ∈ T (clearly,  ∈ L) is removed, then

there is a unique cut  ( ), that contains link  and links  ∈ L, but  ∈ T .
Similarly, we can associate a vector  to the cut  ( ) that obeys  6= 0.
Since there are − + 1 links of  that do not belong to the spanning tree  ,

we can construct − + 1 cycles and the set of cycles { ( )}∈L\T forms an
independent set, because a link  belongs to a cycle  ( ), but not to another

cycle  ( ) for  6= . Moreover, − + 1 is the dimension of the cycle-space

of  (art. 10) and the set of vectors , obeying  = 0, for  ∈ L\T represents a
basis for the cycle-subspace of . Analogously, the set of cuts { ( )}∈T with
associated set of vectors , obeying  6= 0, for  ∈ T represents a basis for the

cut-subspace of .

12. Spanning trees and the incidence matrix . Consider the incidence matrix 

of a graph  and remove an arbitrary row in , corresponding to a node . Let

 be one of the
¡


−1

¢
square ( − 1) × ( − 1) submatrices of  without row

 and let  denote the subgraph of  on  − 1 nodes formed by the links in
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2.2 The incidence matrix  23

the columns of . Since there are  − 1 columns in , the subgraph  has

precisely  − 1 links, where some links may start or end at node , outside the
node set of . We will now investigate det.

(a) Suppose first that there is no node with degree 1 in , except possibly for ,

in which case  is not a tree spanning  − 1 nodes. Since the number of links is
 () =  − 1, the basic law of the degree (2.3) shows that there must be a zero
degree node in . If the zero degree node is not , then  has a zero row and

det = 0. If  is the zero degree node, then each column of  contains a 1 and

−1. Thus, each row sum of  is zero and det = 0.

(b) In the other case,  has a node  with degree 1. Then, the -th row in 

only has one non-zero element, either 1 or −1. After expanding det by this

-th row, we obtain a new ( − 2) × ( − 2) determinant ; corresponding to

the graph :, formed by the links in the columns of ;. For det;, we can

repeat the analysis: either : is not a tree spanning the  − 2 nodes of  except

for nodes  and , in which case det; = 0 or det; = ±det;;.

Iterating this process shows that the determinant of any square submatrix  of

 is either 0, when the corresponding graph formed by the links, corresponding to

the columns in  is not a spanning tree, or ±1, when that corresponding graph is
a spanning tree. Thus, we have shown:

Theorem 2 (Poincaré) The determinant of any square submatrix of the incidence

matrix  is either 0, 1, or −1.
If the determinant of any square submatrix of a matrix is 0, 1, or −1, then that

matrix is said to be totally unimodular. Hence, the incidence matrix  is totally

unimodular.

13. The matrix C representing cycles in . Art. 11 suggests to write the incidence

matrix  of the graph  as

 =

∙
 \



¸
(2.7)

where the ( − 1)× ( − 1) square matrix  has as columns the (partial
4) links

of the spanning tree  of , the ( − 1) × (− + 1) matrix \ contains

the remaining links of  not belonging to  and the 1 ×  vector  is linearly

dependent on the  − 1 first rows of , because rank() =  − 1 by Theorem 1.

The × (− + 1) cycle matrix , in which a column represents a cycle of , is

defined by

 =

∙


−+1

¸
where the ( − 1) × (− + 1) matrix  contains elements of the vectors ,

obeying  = 0, for  ∈ L\T . The basic property  = 0 of a cycle  translates to
4 The row  , corresponding to node  , is not included in  and links to or from node  in
the columns of  only contain a 1 or −1.
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24 Algebraic graph theory

the matrix equation  = 0, from which  +\ = 0. Art. 12 demonstrates
that det = ±1, implying that the inverse of  exists, thus

 = −−1 \ (2.8)

Analogously for the cut-subspace of , the  × ( − 1) matrix  whose columns

contain the  − 1 vectors , obeying  6= 0, for  ∈ T ,

 =

∙
−1


¸
Since each column of  belongs to the orthogonal complement of the cycle-subspace

of , it holds that  = 0, from which 
 +  = 0 and, with (2.8),

 = −
 =

¡
−1 \

¢
(2.9)

In summary, the basic cycle matrix  in (2.8) and the basic cut matrix  in

(2.9) can be expressed in terms of the incidence matrix  for each spanning tree 

in . The idea to concentrate on a spanning tree  of  originates from Kirchhoff

(1847), who found the solution of the current-voltage relations in a resistor network

in terms of  .

14. Electrical resistor network. The importance of the incidence matrix  and

the Laplacian matrix  of a graph  is nicely illustrated by the current-voltage

relations in a resistor network. The flows of currents in a network, steered by forces

created by potential differences between nodes, is an example of a linear process,

where the dynamic process is proportional to the network’s graph. Other examples

of processes, that are “linear” in the graph, are water (or fluid or gas) networks,

where water flows through pipes and the potential of a node corresponds with its

height, heat diffusion in a network, where the nodal potential is its temperature,

and mechanical networks where springs connect nodes and nodal displacements are

related to potentials.

The  × 1 flow vector  possesses a component  =  = −, which denotes
the electrical current flowing through the link  =  ∼  from node  to node .

Kirchhoff’s current law

 =  (2.10)

is a conservation law. The -th row in (2.10),  = () =
P

=1, states

that, at each node  in the network , the current  leaving ( ≤ 0) or entering
( ≥ 0) must equal the sum of currents over links incident to . If current  ≥ 0
is injected at node , the flow conservation at node  is also written as

 =
X

∈ neighbors()
 =

X
=1

 (2.11)

Thus, if no current ( = 0) is injected nor leaving the node , then the net current

flow, the sum of the flows over links incident at node , is zero. If  = 0, then
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2.2 The incidence matrix  25

art. 10 shows that the non-zero components of  form a cycle. Left-multiplying

both sides of  =  in Kirchhoff’s current law (2.10) by  and using (2.1) yields

 = 0, which means that the net flow, influx plus outflow, in the network is zero.

Thus,  =  reflects a conservation law : the demand  offered at node  in the

network is balanced by the sum of currents or flows at node  and the net demand

of influx and outflow to the network is zero.

Each link  =  ∼  between node  and node  contains a resistor with resistance

 =  . A flow  is said to be physical if there is an associated potential function

 on the nodes of the network such that

 −  =  (2.12)

In electrical networks, the potential function is called the “voltage”, whereas in

hydraulic networks, it is called the “pressure”. The relation (2.12), known as the

law of Ohm, reflects that the potential difference  −  generates a force that

drives the current  from node  to node  (if  −   0, else in the opposite

direction) and that the potential difference is proportional to the current  . The

proportionality constant equals the resistance5   0 between node  and . For

other electrical network elements such as capacitors and inductances, the relations

between potential and current are more complicated than Ohm’s law (2.12) and

can be derived from the laws of Maxwell (see e.g. Feynman et al. (1963)). We

rewrite Ohm’s law (2.12) in terms of the current  =
1

( − ) flowing through

the link  = ( ), which becomes in matrix form

×1 = diag

µ
1



¶
×

¡

¢
× ×1 (2.13)

where the ×1 vector  contains as elements the voltage  at each node  in  and
diag

³
1


´
has diagonal elements

³
1
1
     1


     1



´
where  =  is the resistance

of link  = ( ). Substituting Ohm’s law (2.13) into Kirchhoff’s conservation law

(2.10) yields

 = diag

µ
1



¶
 

Similar to the unweighted Laplacian decomposition  =  in (2.6), we define

the  × weighted, symmetric Laplacian matrix6

e = diag

µ
1



¶
 (2.14)

5 If  = 0, then the potential  of node  and  of node  are the same by Ohm’s law (2.12).
From an electrical point of view, both nodes cannot be differentiated and we can merge node
 and  in the graph to one node. Therefore, we further assume that   0 in the graph .

6 Since   0, we can write  = diag


1



 = diag


1√



diag


1√



and may

consider the  ×  matrix  = diag


1√



as a “weighted incidence” matrix and the unit

of the element  is
1√
Ohm

. The law of Ohm in (2.13) transforms to  = diag


1√


  , so

that  apparently lacks a physical interpretation.
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26 Algebraic graph theory

The weighted Laplacian e also generalizes the definition (2.6) of the Laplacian

 = ∆− to e = e∆− e, where the × weighted, symmetric adjacency matrix e
with elements e = 


possesses a corresponding weighted degree diagonal matrixe∆ = diag

³e1 e2     e´ with e = ³ e´

introduced in art. 8. Alternatively,

substitution of Ohm’s law  =
1

( − ) into the nodal conservation law (2.11)

for node  yields

 =

X
=1




( − ) = 

X
=1




−

X
=1




 = 

X
=1

e − X
=1

e
which is, in matrix form,  =

³ e∆− e´  = e, where the weighted degree ise =P
=1 e . While link  =  ∼  contains a resistor with resistance  = , the

link weight is  =  =
1

.

In summary, we arrive at the fundamental relation between the  × 1 injected
current flow vector  into nodes of the network and the  × 1 voltage vector  at
the nodes

 = e (2.15)

Clearly, if all resistances equal  = 1 Ohm, then the unweighted case with the

standard matrices  and  is retrieved. Most properties transfer to the weighted

graph related matrices: the weighted Laplacian e = diag
³
1


´
 = e e is pos-

itive semidefinite (as follows from art. 101) and the conservation of total injected

flows  =  e = 0, due to the basic property (2.1) of the incidence matrix .

The power, the energy per unit time (in watts), dissipated in a resistor network is

the sum of power dissipated in each resistor, which equals P = . The funda-

mental relation (2.15) leads to the quadratic form P =  e =P∈L
³

+
−

−√


´2
,

which will allow us in art. 103 to relate the power P to eigenvalues of the weighted
Laplacian e.
15. Harmonic functions. The continuous description of  = e in (2.15) is the
Poisson equation∇2 () = −()

0
, where the potential  () is a continuous function

of the position  = (1 2     ) of a point in an-dimensional space, the Laplace

operator is ∇2 = 2

21
+ 2

22
+· · ·+ 2

2
, the charge density  () specifies the location

of electrical charges and the permittivity constant 0 balances the physical units at

the left- and right-hand side. The Poisson equation is related to Gauss’s divergence

law of the electrical field, that appears as the first Maxwell equation (see, e.g.,

Feynman et al. (1963), Morse and Feshbach (1978)). If the potential  () is defined

at some boundary or surface  that encloses a volume without charges inside, then

∇2 () = 0 for  ∈  and the solution  () of the Laplace differential equation is

called a harmonic function. Harmonic functions possess many nice properties and

are the fundamental corner stone, via the Riemann-Cauchy equations, of analytic

functions in the complex plane (Titchmarsh, 1964). In the discrete setting, the
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2.2 The incidence matrix  27

Laplace operator ∇2 in a continuous space is replaced by a Laplacian matrix e
on a graph and this powerful association results in more properties of and deeper

insight in the Laplacian than the adjacency matrix.

If the current  is injected in some nodes S ⊂ N , equivalent with the boundary ,
while  = 0 if  ∈ S, then

³ e´

= 0 and  =

1
P

=1 e is a weighted average
of the potential of its direct neighbors. The voltage vector  in  = e is called
a harmonic at node  if

³ e´

= 0. Similar to the continuous setting, known

as Dirichlet’s boundary problem, Doyle and Snell (1984) prove that a harmonic

function  (), defined on the nodes  ∈ N of the graph, achieves its maximum and

minimum value at the boundary S. This important property of harmonic functions
follows physically from the voltages as potentials in electrical networks (see also

Section 5.3.2).

If  = 0, then (2.15) indicates that e = 0, which is an eigenvalue equation.

If the graph  is connected (see art. 116), the (weighted) Laplacian has one zero

eigenvalue belonging to eigenvector proportional to the all-one vector , so that

the potential or voltage vector  = , for a non-zero real . The law of Ohm

(2.13) and the basic property (2.1) of the incidence matrix  then show that  = 0,

thus all currents are zero. Another consequence of the basic property (2.1) of the

incidence matrix  is that det e = 0 and that the general relation (2.15) cannot

be directly inverted as  = e−1. In Section 4.2, the inversion problem is analyzed

and a general method based on the pseudoinverse e† of the Laplacian matrix e is

presented.

16. Electrical resistor network revisited. Kirchhoff (1847) considered a variant of

the setting in art. 14, where the external current vector  is replaced by an external

voltage difference vector ext over links of . The law of Ohm in (2.13) becomes

 = diag()  + ext , where the link potential difference vector is  =  .

If  = 0, then art. 10 shows that the non-zero components of  form a cycle.

Kirchhoff (1847) demonstrated7 that   = 0: the sum of the voltage differences

over a cycle is zero, which is Kirchhoff’s voltage law.

Considering a spanning tree  as explained in art. 10 and 13, we write the link

current vector  and potential difference vector  as

 =

∙

\

¸
and  =

∙

\

¸
Since there are no external currents, i.e.  = 0 and  = 0, the link current vector

 with (2.7) obeys∙
 \



¸ ∙

\

¸
=   +\ \ = 0

7 More generally, if the magnetic field is time-invariant (see, e.g., Feynman et al. (1963)), the

Maxwell equation ∇ × −→ = 0, where
−→
 is the electric field vector, and Stokes’ theorem then

state that
 −→

−→
 = 0, implying that any closed contour over the electric field is zero.
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28 Algebraic graph theory

and, invoking (2.8),

 = −−1 \ \ =  \

Thus,

 =

∙

\

¸
=

∙


−+1

¸
\ = \

illustrating that the whole current vector only depends on those current vector

components, associated with links that are not in the spanning tree  . Similar,

  = 0 leads to diag()  = − ext. Substituting  = \ then yields¡
diag ()

¢
\ = − ()ext

Finally, the (− + 1)× (− + 1) matrix diag() has rank − + 1

and is invertible,

\ = −
¡
diag ()

¢−1
 ext

which is Kirchhoff’s solution. In fact, Kirchhoff (1847) evaluates the solution further

in terms of all spanning trees, reviewed without proof by Schnakenberg (1976).

Section 5.6 expresses the effective resistance in terms of spanning trees.

2.3 Connectivity, walks and paths

17. Connectivity of a graph. A graph  is connected if there exists a walk (art. 6)

between each pair of nodes in .

Theorem 3 If a graph  is disconnected, then its complement  is connected.

Proof: Since a graph  is disconnected,  possesses at least two connected

components 1 and 2. There are two situations: (a) If node  ∈ 1 and node

 ∈ 2, then no link in  connects them. By the definition of the complement

of a graph (art. 1), there will be a link  ∼  in . (b) If node  and  are

in the same connected component in , then consider any node  in a different

connected component. The argument in situation (a) shows that the link  ∼ 

and the link  ∼  exist in . Consequently,  and  are connected by the path

 =  ∼  ∼ . Combining the two possible situations demonstrates that any two

nodes are reachable in , implying that the graph  is connected. ¤

The converse of Theorem 3, “If  is connected, then its complement  is discon-

nected” is not always true. For example, if  is a tree (except for the star 1−1),
then  is connected. Section 4.1.1 gives additional properties of a graph’s connec-

tivity.

18. The number of -hops walks. Art. 6 has defined a walk. Due to its importance,

Lemma 1 is proved in two ways.

                     

https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core


2.3 Connectivity, walks and paths 29

Lemma 1 The number of walks of length  from node  to node  is equal to the

element
¡

¢

.

Proof by induction: For  = 1, the number of walks of length 1 between

node  and node  equals the number of direct links between  and , which is by

definition the element  in the adjacency matrix . Suppose the lemma holds

for  − 1. A walk of length  consists of a walk of length  − 1 from  to some

node  which is adjacent to . By the induction hypothesis, the number of walks

of length − 1 from  to  is
¡
−1¢


and the number of walks with length 1 from

 to  equals  . The total number of walks from  to  with length  then equalsP
=1

¡
−1¢


 =

¡

¢

(by the rules of matrix multiplication). ¤

Proof by direct computation: After  iterations in  of the matrix multipli-

cation rule
¡


¢

=
P

−1=1

¡
−1¢

−1
−1 for any matrix  , we obtain

¡


¢

=

X
−1=1

X
−2=1

· · ·
X

−=1

¡
−¢

−
−−(−1)   −2−1−1

When  =  − 1, then ¡−¢
−

= 1 and it holds for any matrix  that

¡


¢

=

X
1=1

X
2=1

· · ·
X

−1=1

112 · · ·−2−1−1

and applied to the adjacency matrix ,

¡

¢

=

X
1=1

X
2=1

· · ·
X

−1=1

112 · · · −2−1−1 (2.16)

With the convention 0 =  and  = , (2.16) can be written as

¡

¢

=

X
1=1

X
2=1

· · ·
X

−1=1

−1Y
=0

+1 (2.17)

where the indicator function
Q−1

=0 +1 = 112 · · · −2−1−1 is one if
and only if all links in the walk ( = 0 → 1)(2 → 3) · · · (−1 →  = ) exist

(i.e. +1 = 1 for all values of  in [0  − 1]), otherwise it is zero. The ( − 1)-
fold multiple summation in the explicit expressions (2.16) and (2.17) ranges over

all possible, directed walks ( = 0 → 1)(2 → 3) · · · (−1 →  = ) with 

hops (art. 6) between node  and  and enumerates, out of all possible walks, the

existing walks in the graph, reflected by
Q−1

=0 +1 = 1. ¤

The maximum possible number of walks with  hops between two nodes in a

graph with  nodes is attained in the complete graph  , whose adjacency matrix

is 
=  − , and equals ( − )


 . Invoking Newton’s binomium, which is
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30 Algebraic graph theory

allowed because  and  commute, we have

( − )

=

X
=0

µ




¶
 (−)−

Since  = −1 for  0, then ( − )

=(−1) +P

=1

¡



¢
−1(−1)− .

The binomium gives ( − )

= (−1) + 1



³
( − 1) − (−1)

´
 , from which the

maximum possible number of walks with  hops between node  and node  in any

graph follows as

( − )

 =

⎧⎨⎩
1


³
( − 1) − (−1)

´
for  6= 

1


³
( − 1) − (−1)

´
+ (−1) for  = 

(2.18)

19. Lower bounds for
¡

¢

. For any integer 0 ≤  ≤ , the matrix multiplication

form ¡

¢

=

X
=1

¡
−¢


() (2.19)

reduces, for  = 1 and taking into account the absence of self-loops, i.e.  = 0, to

¡

¢

=

X
=1; 6=

¡
−1¢




illustrating for each node  that
¡

¢

does not depend on

¡
−1¢


. For  = 2,

symmetry in the adjacency matrix,  =  , yields

¡
2
¢

=

X
=1

 =

X
=1

2 =

X
=1

 =  (2.20)

The off-diagonal element
¡
2
¢

=
P

=1  counts the number of nodes  that

have a link to both node  and ; i.e. the number of joint neighbors of node 

and node , so that 0 ≤ ¡2¢

≤ min ( ). Hence,

¡
2
¢

obeys both (A.185)

and (A.186) in art. 279, because of the basic inequality between the arithmetic and

geometric mean of two non-negative real numbers  and : min ( ) ≤ √ ≤ +
2
.

For  = 2 and   2 in (2.19), we find¡

¢

=
¡
−2¢



¡
2
¢

+
¡
−2¢


 +

P
=1; 6={}

¡
−2¢



¡
2
¢


for  6= ¡

¢

=
¡
−2¢


 +

P
=1; 6=

¡
−2¢



¡
2
¢


for  = 

The last equation leads to the recursion inequality
¡

¢

≥ ¡

−2¢

 for

 ≥ 2, that, after iteration, results for even  = 2 into¡
2

¢

≥  (2.21)

                     

https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.005
https://www.cambridge.org/core


2.3 Connectivity, walks and paths 31

but, for odd  = 2 + 1, we can only deduce
¡
2+1

¢

≥ 0 and equality can

occur, e.g. in the path graph, studied in Section 6.4. Similarly, the first equation

for  6=  when  = 2 leads, for  ≥ 2, to the recursion inequality¡

¢

≥ ¡−2¢



¡
2
¢

+ 

¡
−2¢



After  iterations, we have¡

¢

≥ ¡2¢



(
X

=0

³
−2(+1)

´





)
+ 

+1


³
−2(+1)

´


For odd  = 2+ 1 and  = − 1, we can conclude from the lower bound

¡
2+1

¢

≥ ¡2¢



(
−1X
=0

³
2(−(+1)+1)

´





)
+  

that ¡
2+1

¢

≥  

Even  = 2 and  =  − 1 give us ¡2¢

≥ ¡2¢



P−1
=0 




¡
2(−1−)

¢

.

Invoking the lower bound (2.21) yields

¡
2

¢

≥ ¡2¢



−1X
=0





−1−
 =

¡
2
¢


 − 

 − 

In conclusion, the properties in the number
¡

¢

of walks from node  to node

 with odd and even length  differ quite significantly, as will be supported by the

spectral investigations in art. 58. The reason is that 2 is a positive semidefinite

matrix (art. 278), while 2+1 is not.

20. The number of -hops paths. The number of paths with  hops between node

 and node  follows from (2.16) by excluding possible same nodes in the walk,

( ;) =
X

1 6={}

X
2 6={1}

· · ·
X

−1 6={1−2}
112 · · · −1

valid for   1 and   2, while the number of paths with  = 1 hop between the

node pair ( ) is 1 ( ;) =  . Symmetry of the adjacency matrix  implies

that  ( ;) =  ( ;). The definition of a path restricts the first index

1 to  − 2 possible values, the second 2 to  − 3, etc., such that the maximum
number of -hop paths, which is attained in the complete graph  , where  = 1

for each link ( ), equals

−1Y
=1

( − 1− ) =
( − 2)!

( −  − 1)!
whereas the total possible number of walks with  hops is given in (2.18). If we

allow self-loops ( 6= 0), then (2.16) with
Q−1

=0 +1 = 1 leads to the total

possible number of walks with  hops equal to −1.
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32 Algebraic graph theory

The total number  of paths between two nodes in the complete graph is

 =

−1X
=1

( − 2)!
( −  − 1)! = ( − 2)!

−2X
=0

1

!
= ( − 2)!−

where the remainder

 = ( − 2)!
∞X

=−1

1

!
=

∞X
=0

( − 2)!
( − 1 + )!

=
1

 − 1 +
1

( − 1) +
1

( − 1)( + 1)
+ · · ·



∞X
=1

µ
1

 − 1
¶
=

1

 − 2

implying that for  ≥ 3, the remainder   1. But  is an integer. Hence, the

total number of paths in  is exactly equal to

 = [( − 2)!] (2.22)

where  = 2.718 281 and [] denotes the largest integer smaller than or equal to .

Since any graph is a subgraph of the complete graph, the maximum total number

of paths between two nodes in any graph is upper bounded by [( − 2)!].
21. Hopcount  in a connected graph. A graph  is connected if there exists

a walk between each pair of nodes in . Lemma 1 shows that connectivity is

equivalent to the existence of some integer   0 for which
¡

¢

6= 0 for each

nodal pair ( ). The lowest integer  =  , where  6= , for which
¡

¢

6= 0,

but () = 0, for all 0 ≤   , equals the number of hops in the shortest

walk — which is then a path — from node  to node . Thus, for  6= , the vec-

tor
³
 

¡
2
¢

    

¡
−1¢



¡

¢


´
with  =  components equals

¡

¢

,

where  is the -th basic vector of the -th dimensional space. If  = , then we

define the hopcount of the shortest path to be  = 0. Hence, the element  in

the distance matrix , defined in art. 8, equals  = 1{min:() 6=0 } for  6= 

and  = 0. The hopcount  of the shortest path P∗ between node  and node 
is a unique integer, although there can be multiple shortest paths between node 

and node , so that
¡


¢

≥ 1.

Each off-diagonal ( 6= ) element in the hopcount matrix  obeys

 = min
1≤≤

µ
1


+ 

¶
(2.23)

Indeed, if node  is a direct neighbor of node , then  = 1 and the hopcount of the

remaining path from node  to node  equals  . The minimum-hop (or shortest)

path travels over that neighbor  of node  with the minimum remaining hops to

the destination node . If  =  and  = 1, then we find, with  = 0, hopcount

1 for the direct neighbor path. If  is not a neighbor of , then 1


= ∞, which
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2.3 Connectivity, walks and paths 33

removes the index  =  entry 1

+  from the minimal set

n
1

+ 

o
1≤≤

in (2.23). Since  is connected, thus excluding isolated nodes, there is at least one

element  = 1 in that minimal set. The non-linear recursion (2.23) can also be

written as

 = 1 + min
∈ neighbors()



22. Diameter of a graph. The diameter of the graph, denoted by  and sometimes

by  or  (), is the number of hops in the longest shortest path in  and equals

 = max1≤≤ ;1≤≤  . In a connected graph, the diameter is upper bounded

by  ≤  − 1, the hopcount  − 1 of the longest possible shortest path in any
connected graph on  nodes. The maximal diameter  =  − 1 occurs in a path
on  nodes. The diameter of a connected graph  is lower bounded by  ≥ 1

and the minimal diameter  = 1 only occurs in the complete graph  . If  is

disconnected, the diameter is not defined, but sometimes put as    or →∞
or, even  = 0; in principle, any integer outside the interval [1  − 1] can serve as
an indication of the non-existence of the diameter. We remark that  −  is not

necessarily a non-negative matrix, because
¡
+1

¢

can be zero8, even though¡


¢

≥ 1.

Lemma 2 Let   0 for any  ≥ 0 and  be the adjacency matrix of a connected

graph , then all elements of the matrix
P

=0 
 are positive for  ≥ . If

  , the non-negative matrix
P

=0 
 contains at least one zero element.

Proof: The definition of the diameter implies that, for each node pair ( ) in

a connected graph , there exists a path with hopcount at most equal to . This

means that
¡

¢

is non-zero for at least one integer  ∈ [0 ]. In addition, there

exists a pair ( ), separated by the longest shortest path in , for which
¡

¢

= 0

for all   . Since each coefficient   0, it follows that
P

=0 
¡

¢

 0 for

each node pair ( ), but
P

=0 
 with   contains at least one zero element,

namely
P

=0 
¡

¢

= 0. ¤

When  = −
¡



¢
with   0, then

P
=0 

 =
P

=0

¡



¢
− =

( +)

, which leads to the known result that the diameter  is the smallest

integer for which the matrix ( +)

has positive elements. Since

¡

¢

are inte-

gers, it also follows that ( +)
 −  is a non-negative matrix (see Section 10.6).

We infer from Lemma 2 that, for each node pair ( ), at least one of the matrices

in the sequence {}0≤≤ =
©
2     

ª
contains a non-zero ( ) element,

8 For example, in a path graph, studied in Section 6.4, with  = 3 and adjacency matrix

 =

 0 1 0
1 0 1
0 1 0

 , there is not a walk with length 2 (nor any even number) between node 1
and node 2 (i.e.


2


12
= 0 for   1), while there is a walk of odd length, thus


2+1


12

 0

for   0. The diameter  = 2, but 2 −  contains negative elements.
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34 Algebraic graph theory

while there is at least one node pair ( ), corresponding to the longest shortest

path in  with  hops, whose entries in the sequence {}0≤ are zero. The

next Lemma generalizes this observation.

Lemma 3 For any diagonal matrix  and for each node pair ( ), at least one of

the matrices in the sequence {(+)
}0≤≤ contains a non-zero ( ) element.

Proof: Let  and 0 denote the graph represented by the adjacency matrix
 without self-loops ( = 0 for any node ) and the same graph with weighted

self-loops (equal to  for node ), respectively. As explained in art. 21, the

smallest integer  =  , where  6= , for which
¡

¢

6= 0, but () = 0, for

all 0 ≤   , is the hopcount of the shortest path in  from node  to node .

The expression (2.16) indicates that
¡


¢

6= 0 does not depend on any diagonal

element of , because a path is a walk with all nodes different. This means that³
(+)


´

=
¡


¢

6= 0. In addition, for    , there is no path in 

from  to  with  hops. Since a diagonal element, associated to a self-loop in 0,
cannot help to reach node  from  if there is no path from  to  in the graph  and

thus also not in 0, there also holds that ((+)

) = (

) = 0 for   .

These facts demonstrate Lemma 3. Only when    , then (+)

 can differ

from () . ¤

An interesting consequence of Lemma 3 is that, also for the Laplacian  = ∆−,
one of the matrices in the sequence {}0≤≤ contains a non-zero ( ) element.
Finally, combining Lemma 2 and 3 leads to the statement that there exists a matrix

polynomial  (+) of degree  ∈ [0 ], whose ( )-th element is non-zero.
23. h-hops adjacency matrix. Analogous to Estrada (2012), who defines a path-

Laplacian, we define the -hops graph  on  nodes as the graph that contains

a link between  and  if their distance in an original graph  is  hops. The

corresponding -hops adjacency matrix  has elements

() = 1{=} (2.24)

We define 0 =  and, clearly, 1 = . Art. 21 shows that a walk with  =

min

n¡

¢

6= 0

o
is also the shortest path between  and  and that, for  6= ,

() = 1{{∀∈[1):()=0}∩ {()0}} (2.25)

while the diagonal elements () in (2.24) are zero for   0. Art. 22 il-

lustrates that the composed event
n
∀ ∈ [1 ) : () = 0

o
is also equal to the

event
nP−1

=1 (
) = 0

o
, because all elements in  are non-negative. For the

same reason, the last event is also equal to the event
nP−1

=1  (
) = 0

o
, where

  0 for each index . Hence, the number of conditions to be checked in (2.25)
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2.4 The line graph 35

is reduced to two in

() = 1{{−1
=1 (

)=0}∩ {()0}} = 1{−1
=1 (

)=0}1 {()0}
(2.26)

Finally, we can choose  =
¡



¢
so that

P
=1  (

) =
³
(+ )


´

for  6= 

and (2.26) simplifies to

() = 1((+)−1)

=0
1 {()0}

Lemma 2 states that
P

=0  (
)  0 for all  ≥  and, consequently, (2.26)

implies that  =  for all    as well as

−1X
=0

 =

X
=0

 = 

The relation with the distance matrix  in art. 8 and art. 21 is

 =

X
=1

 

The number of links 1
2
  in the graph  equals the number of node pairs

connected by an -hop shortest path.

The sequence of -hops adjacency matrices {}1≤≤ = {12    } de-
fines a multi-layer network where, in each -plane, the graph  is depicted and

along the -axis, the number  of hops is varied. Such multi-layer network may

visualize how the links () around node  to any other node  in  vary with

hop  and it allows to construct the levelset (Van Mieghem, 2014, Sec. 16.2.2), the

set containing the number of nodes () at each level  in a shortest path tree

rooted at node  of  and depicted in Fig. 6.4.

24. Effects of link removals on the diameter. Schoone et al. (1987) have derived

bounds for the maximum diameter of a still connected graph , obtained from

an original graph  with diameter  after the removal of  links. For undirected

graphs , Schoone et al. (1987) prove an upper bound for the diameter in  of

( + 1) and a lower bound of ( + 1) − , for even , and of ( + 1) − 2 + 2,
for odd  ≥ 3. For the special cases of  = 2 and  = 3, the exact bounds are

 (2) ≤ 3−1 and  (3) ≤ 4−2, respectively. In addition, Schoone et al. (1987)
prove that the problem of finding  by removing  links in  so that  () is at

least  as well as the related problem of finding the graph  by adding  links to

 so that  () ≤  is NP-complete.

2.4 The line graph

25. The line graph  () of the graph  () has as set of nodes the links of 

and two nodes in the line graph  () are adjacent if and only if they have, as links
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36 Algebraic graph theory

in , one node of  in common. Given the graph , the definition thus specifies the

line graph operator  (). The line graph  () of  is sometimes called the “dual”

or “interchanged” or “derived” graph of . For example, the line graph of the star

1 is the complete graph  and the line graph of the example graph in Fig. 2.1

is drawn in Fig. 2.2. When  is connected, then also  () is connected as follows

from the definition9 of the line graph  ().

1

4

2

6 5

3
7

8
9 1

4

2

6 5

3
7

8
9

Fig. 2.2. The line graph of the undirected variant of the graph drawn in Fig. 2.1.

We denote by  the absolute value of the incidence matrix , i.e.,  = | |. In
other words,  = 1 if node  and link  are incident, otherwise  = 0. Hence, the

unsigned incidence matrix  ignores the direction of links in the graph, in contrast

to the incidence matrix . Analogously to the definition of the Laplacian in art. 4,

we may verify that the  ×  adjacency matrix  of the graph  is written in

terms of the unsigned  ×  node-link incidence matrix  as

 =  −∆ (2.27)

The × adjacency matrix of the line graph  () is similarly written in terms of

 as

() = − 2 (2.28)

The matrix  is generally a (−1 0 1)-matrix. Taking the absolute value of its
entries equals , whereas the Laplacian matrix  = 2∆− =  .

In a graph , where multiple links with the same direction between two nodes

are excluded, we consider

¡


¢

=

X
=1

 =

⎧⎨⎩
1 if both link  and  either start or end in node 

−1 if either link  or  starts or ends in node 

−2 if link  and  have two nodes in common

The latter case, where
¡


¢

= −2, occurs for a bidirectional link between two

nodes. If the links at each node of the graph  either all start or all end, then

9 In a connected graph , each node is reachable from any other node via a path (a sequence of
adjacent links, art. 6). Similarly, in the dual setting corresponding to the line graph, each link
in  is reachable from any other link via a path (a sequence of adjacent nodes or neighbors).
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2.4 The line graph 37

we observe that
¡


¢

= 1 for all links  and  and, in that case, it holds that

 = . An interesting example of such a graph is the general bipartite

graph, studied in Section 6.8, where the direction of the links is the same for each

node in the setM to each node in the other set N\M.

26. Basic properties of the line graph. The number of nodes in the line graph  ()

equals the number  of links in . The number of links in the line graph  () is

computed from the basic law of the degree (2.5) and (2.28) with the × 1 all-one
vector  as

() =
1

2
() =

1

2
− 

=
1

2
kk22 − 

It follows from the definition of the unsigned incidence matrix  that 1× =

2×1 or

 = 2 (2.29)

which is the companion of (2.1), and that

 =  (2.30)

because the row sum of
P

=1 = , the number of links in  incident to node

. Hence, we find that the number of links in the line graph  () equals

() =
1

2
−  =

1

2

X
=1

2 −  (2.31)

Alternatively, each node  in  with degree  generates in the line graph  ()

precisely  nodes that are all connected to each other as a clique, corresponding

to
¡

2

¢
links. The number of links in  () is thus also

() =

X
=1

µ


2

¶
Art. 4 indicates that the average degree of a node in the line graph  () is


£
()

¤
=
2()

()

=
1



X
=1

2 − 2

The degree vector of the line graph  () follows from (2.4) as

() = ()×1 = − 2
= − 2

Each column of  (as in the incidence matrix ) contains only two non-zero ele-

ments and the vector component
¡


¢

= + + − , where + denotes the node
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38 Algebraic graph theory

at the start and − the node at the end of the link . Hence, the maximum (and

similarly minimum) degree of the line graph  () equals

max () = max
1≤≤

(+ + − − 2) ≤ (1) + (2) − 2

where () denotes the -th largest degree in  and (−1) ≥ () for 2 ≤  ≤  .

Example The degree vector of a regular graph with degree  is  = ×1. The
degree vector of the corresponding line graph is () =  − 2 =  − 2
and with (2.29), we find () = 2 ( − 1)×1. The line graph of a regular graph
with degree  is also a regular graph with degree 2 ( − 1). The total number of
links follows from () =

P
=1

¡

2

¢
= 

(−1)
2

or from the basic law of the degree

(2.5), () =
1
2

()

 = ( − 1) = ( − 1) 
2
 .

The sum of all off-diagonal elements in 2 equals

X
=1

X
=1; 6=

¡
2
¢

=

X
=1

X
=1; 6=

X
=1

 =

X
=1

X
=1



X
=1; 6=



=

X
=1

X
=1

 ( − ) =

X
=1

Ã


X
=1

 −
X
=1



!
and, thus

X
=1

X
=1; 6=

¡
2
¢

=

X
=1

 ( − 1) = 2() (2.32)

where the last equality follows from (2.31) and
P

=1

P
=1; 6=

¡
2
¢

equals twice

the total number of two-hop walks with different source and destination nodes. In

other words, the total number of connected triplets of nodes in , which is half of

(2.32), equals the number of links in the line graph  () .

The ×  Laplacian matrix () of the line graph  () is, by definition (2.6),

() = diag
¡
()

¢−()

= diag
¡


¢−

which illustrates that the relation between the Laplacian  of the graph  and the

Laplacian () of its line graph  () is less obvious.

27. Since  is a Gram matrix (art. 280), all eigenvalues of  are non-

negative. Hence, it follows from (2.28) that the eigenvalues of the adjacency matrix

of the line graph  () are not smaller than −2.
The adjacency spectra of the line graph  () and of  are related by Lemma 11

in art. 284 since

det
³¡


¢
× − 

´
= − det

³¡


¢
× − 

´
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2.4 The line graph 39

Using the definitions (2.28) and (2.27) in art. 25 yields

det
¡
() − (− 2) 

¢
= − det (∆+− )

or

det
¡
() − 

¢
= (+ 2)

−
det (∆+− (+ 2) ) (2.33)

The eigenvalues of the adjacency matrix of the line graph  () are those of the

unsigned Laplacian ∆+ in art. 30 shifted over −2 and an eigenvalue at −2 with
multiplicity − .

If  = , then Lemma 11 indicates that

det
³¡


¢
× − 

´
= − det

³¡


¢
× − 

´
from which

det (− ) = − det
¡
() − (− 2) 

¢
or

det
¡
() − 

¢
= (+ 2)

−
det (− (+ 2) ) (2.34)

In graphs , where  = , the eigenvalues of the adjacency matrix of the

line graph  () are those of the Laplacian  = ∆ −  shifted over −2 and an
eigenvalue at −2 with multiplicity − .

The restriction, that all eigenvalues of an adjacency matrix are not less than −2,
is not sufficient to characterize line graphs (Biggs, 1996, p. 18). The state-of-the-art

knowledge about line graphs is reviewed by Cvetkovíc et al. (2004), who treat the

characterization of line graphs in detail. Referring for proofs to Cvetkovíc et al.

(1995, 2004), we mention here only:

Theorem 4 (Krausz) A graph is a line graph if and only if its set of links can

be partitioned into “non-trivial” cliques, namely (i) two cliques have at most one

node in common and (ii) each node belongs to at most two cliques.

Theorem 5 (Van Rooij and Wilf) A graph is a line graph if and only if (i) it

does not contain the star 13 as an induced subgraph and (ii) the remaining (or

opposite) nodes in any two triangles with a common link must be adjacent and each

of such triangles must be connected to at least one other node in the graph by an

odd number of links.

28. Inverse line graph. Given a line graph  (), it is possible to reconstruct the

original graph  by the inverse line graph operation −1 (), so that −1 ( ()) = 

returns the original graph .

Each link  in  connects two nodes  and  and is transformed in the line graph

 () to a node  that belongs to two cliques b and
b , where a clique, denoted

by b, contains the complete graph  and additional links to other nodes outside
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40 Algebraic graph theory

the complete graph. If a line graph  () can be partitioned into cliques (Krausz’

Theorem 4), then the number of those cliques equals the number  of nodes in 

and each node  in  (), belonging to two cliques  and , corresponds to a link  in

 between two nodes  and . Apart from the line graph  () = 3, that has two

original graphs, the triangle 3 and the star 13 on four nodes, the reconstruction

or inverse line graph −1 () is unique by a theorem of Whitney (1932).

Algorithms to compute the original graph  from the line graph  () are pre-

sented by Lehot (1974) and Roussopoulos (1973). Our inverse line graph algorithm

ILIGRA complements and has advantages over Lehot’s and Roussopoulos’ algo-

rithm, as explained in Liu et al. (2015).

29. Repeated line graph transformations. The Cauchy-Schwarz inequality (A.72),³P
=1 

´2
≤ 

P
=1 

2
 with equality only for regular graphs where  =  for

each node , the basic law of the degree (2.3) and (2.31) indicate that

() ≥ 

µ
2


− 1
¶

(2.35)

The number () of links in the line graph can only be equal to the number

 of links in the original graph if the average degree 2

= 2 and the graph is

regular. Hence, the line graph of a cycle  on  nodes is again the cycle  , i.e.

 ( ) =  .

For  ≥ 1, van Rooij andWilf (1965) have constructed the sequence0 1     

of graphs, where the graph  =  (−1) has  nodes and  links and where the

original graph 0 is possibly the only non-line graph. The -th line graph iterate

    | {z }
 times

(0) is denoted by  =  (0). The line graph of the path  on  nodes

is  ( ) = −1. Hence, the -th iterate  ( ) = − becomes the empty
graph for  =  − 1, while the cycle, obeying  ( ) =  , is invariant under a

line graph transformation.

The basic property (art. 26) of the line graph shows that  = −1 and (2.35)
becomes

+1



≥ 2 

−1
− 1

Let  =
+1


, then +1 ≥ 2 − 1, equivalent to +1 − 1 ≥ 2 ( − 1) and after

 iterations, we obtain

 − 1 ≥ 2 (−1 − 1) ≥ 22 (−2 − 1) ≥    ≥ 2 (− − 1)
If  −  = 0, then, with 0 =



, we find that  =

+1


≥ 2 ¡ 


− 1¢+ 1. With

 = 

− 1, iterating +1 =  downwards yields

 ≥ 

−1Y
=0

¡
1 + 2

¢
= 2

(−1)
2

−1Y
=0

µ
1 +

1

2

¶
(2.36)
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2.4 The line graph 41

If  is regular, then all  with    are also regular graphs (art. 26), in which

case the equality sign in (2.36) holds. Hence, if 0 is a regular graph with degree ,

then  = 
2
− 1 and equality holds in (2.36) so that  = 

Y−1
=0

¡
1 + 2

¡

2
− 1¢¢.

Since the degree of a node in any graph with   3 is smaller than or equal to

 =  − 1 in the complete graph, we find an upper bound

 ≤ 

−1Y
=0

µ
1 + 2

µ
 − 1
2
− 1
¶¶

In summary, for any graph with  = 

− 1  0,   3 (but excluding the star

13, because  (13) = 3) and at least one nodal degree  ≥ 3, the number 

of nodes in  is increasing in  rapidly10 as 
³
2

(−1)
2

´
.

Xiong (2001) has shown for a connected graph 0 different from a path that

 (0) is Hamiltonian if  ≤ − 1, where  is the diameter (art. 22) of 0, while
Harary and Nash-Williams (1965) prove that, if 0 is Eulerian (art. 6), then 

3 (0)

is Hamiltonian and conversely.

30. Unsigned Laplacian. The unsigned or signless Laplacian  = ∆+, studied by

Cvetkovíc et al. (2007), possesses a number of interesting properties. The definition

(2.27) shows that  =  is a positive semidefinite matrix and all its eigenvalues

are non-negative (art. 27). The smallest eigenvalue of  of a connected graph is

only equal to zero if the graph is bipartite. Indeed,  = 0 implies that  = 0,

which is only possible if  = − for every link  =  ∼  in the graph, i.e. only

if  is bipartite (art. 25). Cvetkovíc et al. (2007) show that this zero eigenvalue is

simple in a connected graph and that the multiplicity of the zero eigenvalue of 

in any graph equals the number of bipartite components. The smallest eigenvalue

of the signless Laplacian can be regarded as a measure of the non-bipartiteness of

a graph. Staníc (2015) devotes a chapter on inequalities of the signless Laplacian.

10 The fundamental cornerstone in the theory of Gaussian polynomials, defined as




() =


=1(1− )

=1(1− )
−
=1(1− )

=


=1

(1− −+1)
(1− )

(2.37)

is

( ) =

−1
=0

(+  ) =


=0






() (−1)2  − (2.38)

which bears a striking resemblance to Newton’s binomium (Rademacher, 1973; Goulden and

Jackson, 1983) for  = 1 so that






(1) =






. We define (− ) = 0 in correspondence

to the first factor for = 0 in the product. The so-called -analog (2.38) of Newton’s binomium
is derived via induction from the recursion ( ) = ( + −1 )−1( ) for   0 and
0( ) = 1. When  tends to infinity, (2.38) leads for ||  1 to

∞
=0

(1 +  ) =

∞
=0

(−1)2
=1(1− )

 (2.39)
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42 Algebraic graph theory

2.5 Permutations, partitions and the quotient graph

31. Permutation matrix  . Consider the set N = {1 2     } of nodes of ,
where  is the label of node . The most straightforward way is the labeling  = .

Suppose that the nodes in  are relabeled. This means that there is a permutation,

often denoted by , that rearranges the node identifiers  as  =  (). The

corresponding permutation matrix  has, on row , element  = 1 if  =  (),

and  = 0 otherwise. Thus, in each row there is precisely one non-zero element

equal to 1 and, consequently, it holds that

 = 

For example, the set of nodes {1 2 3 4} is permuted to the set {2 4 1 3} by the
permutation matrix

 =

⎡⎢⎢⎣
0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

⎤⎥⎥⎦
If the vector  = (1 2 3 4), then the permuted vector  =  = (2 4 1 3). Next,

 =  =  2 = (4 3 2 1), then  =  =  3 = (3 1 4 2), and, finally,  =

 4 = . Thus,  4 = . The observation  =  holds in general for each  ×

permutation matrix  : each node can be relabeled to one of the {1 2     }
possible labels and the permutation matrix maps each time a label  →  () =

, where, generally,  6=  , else certain elements are not permuted
11. After 

relabelings, we arrive again at the initial labeling and  = . The definition

(A.27) of the determinant shows that det = ±1, because in each row there is

precisely one non-zero element equal to 1.

Another example of a permutation matrix is the unit-shift relabeling transfor-

mation in Section 6.2.1.

32. A permutation matrix  is an orthogonal matrix. Since a permutation matrix

 relabels a vector  to a vector  = , both vectors  and  contain the same

components, but in a different order (provided  6= ), such that their norms

(art. 201) are equal, kk = kk. Using the Euclidean norm kk22 = , the

equality   =  implies that  = , such that  is an orthogonal matrix

(art. 247).

If 1 and 2 are two directed graphs on the same set of nodes, then they

are called isomorphic12 if and only if there is a permutation matrix  such that

1
 = 2

. Since permutation matrices are orthogonal, −1 =  , the spec-

tra of 1 and 2 are identical (art. 247) : the spectrum (set of eigenvalues) is

an invariant of the isomorphism class of a graph. However, the converse “if the

spectrum (set of eigenvalues) is the same, then the graph is isomorphic” is not true

11 The special permutation  =  does not, in fact, relabel nodes.
12 The word “isomorphism” stems from  (isos: same) and  (morphei: form).
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2.5 Permutations, partitions and the quotient graph 43

in general. There exist nonisomorphic graphs that have precisely the same set of

eigenvalues and such graphs are called cospectral graphs.

33. A permutation matrix  is a doubly-stochastic matrix. Left-multiplying both

sides of  =  with  and using  =  in art. 32 leads to  = . Since

each element  ∈ [0 1] and the row sum of  equals 1, i.e.  = , we conclude

that  is a stochastic matrix and property  =  makes  a doubly-stochastic

matrix.

34. Automorphism. We investigate the effect of a permutation  of the nodal set

N of a graph on the structure of the adjacency matrix . Suppose that  =  ()

and  =  (), then we have with the definition of  in art. 31,

() =

X
=1

 = 

( ) =

X
=1

 = 

In order for  and  to commute, i.e.  =  , we observe that, between each

node pair (  ) and its permutation ( ()   ()) there must be a link such that

 = 1 = . An automorphism of a graph is a permutation  of the nodal set N
such that ( ) is a link of  if and only if ( ()   ()) is a link of . Hence,

if the permutation  is an automorphism, then  and  commute. In fact, an

automorphism is an isomorphism of the graph  to itself and represents a form of

symmetry that maps the graph onto itself. A classical example is the Peterson graph

in Fig. 2.3: by rotating the five nodes (both inner as outer ring) over 72 degrees,

we obtain again a Peterson graph. All possible such permutations, that preserve all

details of its structure, constitute the automorphism group of a graph , denoted

by Aut(). A graph is called symmetric if there are non-trivial, i.e. excluding

 = , automorphisms (|Aut()|  1), and asymmetric if the trivial permutation

 =  is the only automorphism (|Aut()| = 1). Determining Aut() or testing

whether a graph has a non-trivial automorphism is a “hard” problem, likely NP-

complete, but its hardness class is still unknown, just as the graph isomorphism

problem (art. 38).

The consequences of the commutation  =  for the spectrum of the adja-

cency matrix  are interesting. Suppose that  is an eigenvector of  belonging to

the eigenvalue , then

 =  =  = 

which implies that  is also an eigenvector of  belonging to eigenvalue . If 

and  are linearly independent, then  cannot be a simple eigenvalue. Thus, an

automorphism produces multiple eigenvectors belonging to a same eigenvalue.

35. Enumeration of graphs. The total number of undirected graphs  () with
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44 Algebraic graph theory

 nodes and  links equals

() =

µ¡
2

¢


¶
(2.40)

which is the number of ways that we can distribute the  ones, corresponding to the

 links, in the upper (or lower) triangular part of an  × symmetric adjacency

matrix, containing
¡

2

¢
possible positions. The total number of undirected graphs

with  nodes then follows by summing (2.40) over all possible number of links,

0 ≤  ≤ ¡
2

¢
, as

() = 2
(2 ) (2.41)

The enumeration has implicitly assumed that all nodes are distinguishable. For

example, each node has a certain characteristic property (i.e. a label, a color,

a size, etc.). In many cases, the nodes of a graph are all of the same type and

indistinguishable, which means that, if we relabel two nodes, the resulting graph

is still the same or isomorphic to the former. The number of ways in which we

can relabel the  nodes is  !. However, the number of graphs isomorphic to a

given graph  is  !|Aut()|. Therefore, for any class  of graphs closed under

isomorphism (e.g. all graphs, or all regular graphs), the number of isomorphism

classes is |()| !, where |()| is the average size of the automorphism
group of a graph in . Hence, the total number of undirected, nonisomorphic

graphs is

nonisomorphic () =
2(


2 )

 !
|( ())| (2.42)

where |( ())| is the average number of automorphisms among all graphs on
 nodes and the complicating factor in (2.42).

In some cases, the enumeration of graph properties (such as the number of walks

(art. 59), the number triangles in (3.8) and spanning trees (art. 117)) can be

efficiently computed from the spectrum of the graph, while in other cases, enumer-

ation leads to a challenging combinatorial problem (such as the number of regular

or cospectral graphs (art. 40)). Techniques for enumeration of graph properties,

including a proof of (2.42), are discussed in depth in the book by Harary and Palmer

(1973).

36. Partitions. A generalization of a permutation is a partition that separates

the nodal set N of a graph in disjoint, non-empty subsets of N , whose union is
N . The  ∈ {1 2     } disjoint, non-empty subsets generated by a partition are
sometimes called cells, and denoted by {1 2     }. If  =  , the partition

reduces to a permutation. We also denote a partition by .

Let {1 2     } be a partition of the set N = {1 2     } of nodes and let
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 be a symmetric matrix, that is partitioned as

 =

⎡⎢⎣ 11 · · · 1
...

...

1 · · · 

⎤⎥⎦
where the block matrix  is the submatrix of  formed by the rows in  and the

columns in  . For example, the partition 1 = {1 3}, 2 = {2 4 6} and 3 = {5}
of the nodes in Fig. 2.1 leads to the partitioned adjacency matrix

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∙
0 1

1 0

¸ ∙
1 0 1

1 1 0

¸ ∙
0

0

¸
⎡⎣ 1 1

0 1

1 0

⎤⎦ ⎡⎣ 0 0 1

0 0 0

1 0 0

⎤⎦ ⎡⎣ 1

1

1

⎤⎦
£
0 0

¤ £
1 1 1

¤
[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
which is obtained from the matrix  on p. 16 by relabeling nodes according to

1 =  (1)  2 = (3) 3 =  (2)  4 =  (4)  5 =  (6)  6 =  (5). The characteristic

matrix  of the partition, also called the community matrix , is the  ×  matrix

whose columns are the vectors  labeled in accordance with . Thus, in the

example, the partition 1 = {1 3}, 2 = {2 4 6} and 3 = {5}, translates after
relabeling into 1 = { (1) = 1 (3) = 2}, 2 = { (2) = 3  (4) = 4  (6) = 5}
and 3 = { (5) = 6}, respectively, with corresponding matrix 

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 2 0 0

0 3 0

0 0 1

⎤⎦

where  is the all one vector of dimension . Clearly,  = diag(2 3 1).

In general,  = diag(|1|  |2|      ||), where || equals the number of
elements in the set . Each row of  only contains one non-zero element, which

follows from the definition of a partition: a node can only belong to one cell or

community of the partition and the union of all cells is again the complete set N
of nodes. Thus, the elements of the  × community matrix  after relabeling are

 =

½
1 if node  belongs to the community 

0 otherwise

or compactly,  = 1{−1()∈}. The columns of  are orthogonal and trace
¡


¢
=

 .

37. Quotient matrix. The quotient matrix corresponding to the partition specified
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46 Algebraic graph theory

by {1 2     } is defined as the  ×  matrix

 =
¡


¢−1
 () (2.43)

where
¡


¢−1
= diag

³
1
|1| 

1
|2|     

1
||

´
. The quotient matrix of the matrix 

of the example in art. 36 is

 =

⎡⎣ 1 2 0
4
3

2
3

1

0 3 0

⎤⎦
We can verify that () denotes the average row sum of the block matrix ().

An example of the quotient matrix  of a Laplacian  is given in Section 6.13.

If the row sum of each block matrix  is equal to the same constant, then

the partition  is called equitable or regular. In that case,  = ()  or

 = . Also, a partition  is equitable if, for any  and , the number of

neighbors that a node in  has in the cell  does not depend on the choice of a

node in .

For example, consider a node  in the Petersen graph shown in Fig. 2.3 and

construct the three cell partitions as 1 = {}, 2 is the set of the neighbors of 
and 3 is the set of nodes two hops away from . The number of neighbors of  in

Fig. 2.3. The Petersen graph.

2 is three and zero in 3, while the number of neighbors of a node in 2 with 3
is two such that

 =

⎡⎣ 0 3 0

1 0 2

0 1 2

⎤⎦
A distance partition with respect to node  is the partition of N into the sets of
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nodes in  at distance  from a node . A distance partition is, in general, not

equitable.

If  is an eigenvector of  belonging to the eigenvalue , then  is an eigen-

vector of  belonging to the same eigenvalue . Indeed, left-multiplication of the

eigenvalue equation  =  by  yields

 =  = ()

This property makes equitable partitions powerful.

For example, the adjacency matrix of the complete bipartite graph  (see

Section 6.7) has an equitable partition with  = 2. The corresponding quotient

matrix is  =

∙
0 

 0

¸
whose eigenvalues are ±√, which are the non-zero

eigenvalues of . The quotient matrix of the complete multipartite graph is

derived in Section 6.9. Exact solutions of the epidemic mean-field equations in

Prasse et al. (2021) rely on equitable partitions.

The quotient graph of an equitable partition, denoted by , is the directed

graph with the cells of the partition  as its nodes and with () links going

from cell/node  to node  . Thus, (
) equals the number of links that join a

node in the cell  to the nodes in cell  . In general, the quotient graph contains

multiple links and self-loops. The subgraph induced by each cell in an equitable

partition is necessarily a regular graph because each node in cell  has the same

number of neighbors in cell  .

2.6 Cospectral graphs

Cospectral graphs are nonisomorphic graphs that possess the same set of eigenval-

ues, as earlier defined in art. 32. Since the spectrum of graphs is the main theme

in this book, we cannot avoid devoting some attention to cospectral graphs.

38. Checking whether two graphs have the same adjacency eigenvalues is a poly-

nomial, thus “easy” problem. However, determining whether two cospectral graphs

are isomorphic can be non-polynomial, thus “hard”, but it is currently unknown

(McKay and Piperno, 2014) whether the graph isomorphism problem is NP-hard.

Almost all non-star-like trees are not determined by the spectrum of the ad-

jacency matrix (van Dam and Haemers, 2003). Godsil and Royle (2001) start

by the remark that the spectrum of a graph does not determine the degrees, nor

whether the graph is planar and that there are many graphs that are cospectral,

i.e., although graphs are different (nonisomorphic), their spectrum is the same.

Cvetkovíc et al. (2009) devote a whole chapter on the characterization of graphs

by their spectrum. They list theorems on graphs that are determined by their

spectrum such as regular graphs with degree  = 2 and complete bipartite graphs,

but they also present counter examples. Finally, van Dam and Haemers (2003)

conjecture that sufficiently large graphs are determined by their spectrum, roughly
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48 Algebraic graph theory

speaking because the probability of having cospectral graphs becomes vanishingly

small when the number of nodes  increases. A major tool to construct cospectral

graphs is Godsil-McKay switching.

39. Godsil-McKay switching for cospectral graph construction. Godsil and McKay

(1982) have invented an ingenious way to construct cospectral graphs by using a

certain partitioning  of a graph and by rewiring a specific set of links, which is

called “switching”. They start by proposing the partition  = {1 2      },
where (a) any two nodes in  have the same number of neighors in  , for 1 ≤
  ≤  and  can be the same as ; (b) a node  ∈  has either zero, 2 or 
neighbors in , where the number of nodes in  is  = ||. Any graph  with

 nodes can be partitioned in this way, in particular, if  = {} and  = {}.
Of course, the interest lies in finding non-trivial partitions where   1, for at

least some . The adjacency matrix corresponding to this partition  is denoted as

a block matrix

 =

⎡⎢⎢⎢⎢⎢⎢⎣
11 12 · · · 1 1


12 22 · · · 2 2

...
...

. . .
...

...


1 

2 · · ·  


1


2

· · · 




⎤⎥⎥⎥⎥⎥⎥⎦
where  is the  ×  adjacency matrix of the set of nodes belonging to 

and the adjacency matrix  and  describe the interlinking between the sets

 and  and between the sets  and  , respectively. By construction, the row

sum of each block matrix  is constant, thus  = , where  denotes

the number of neighbors in  that each node in  has. The row sum of  ,

i.e.  = , where  is either 0, 2 or  . Since all block matrices of

 are adjacency matrices and symmetric, the column sums are constant as well.

Next, Godsil and McKay (1982) introduce the × matrix  =
2

× − ,

where the all-one × matrix × = 

. The matrix  features interesting

properties, because  is a Householder reflection (see art. 197). First, using

×× = 

 


 and   =  so that ×× = ×, we find that

 2
 =  (2.44)

Next, for an ×  matrix  with constant row sum  and column sum , it holds

that

 =  (2.45)

Indeed,  = 2




 − = 2





 − from which

 =

µ
2





 −

¶µ
2





 − 

¶
=

µ
2


− 2



¶



 +
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2.6 Cospectral graphs 49

The sum of all elements in  equals  = , from which 

= 


, demonstrating

(2.45). Finally, if the 2×1 vector  contains zero elements and one elements,

then the definition  =
2




 −  directly shows that

2 = 2 −  (2.46)

This last property (2.46) motivates the Godsil-McKay construction of the graph

∗ obtained from  with adjacency matrix  as follows. For all those sets ,

where each node  ∈  is connected to 2 nodes in , these 2 links are

deleted and each node  ∈  is reconnected to the other 2 nodes in the set

. The fascinating relation between  and ∗ is that ∗ and , as well as their

complements ∗ and , have the same adjacency eigenvalues. Hence,  and

∗ are cospectral with cospectral complement. The proof is surprisingly easy, the
adjacency matrix of ∗ satisfies


∗ =  () (2.47)

where the block-diagonal matrix  = diag
¡
1  2      | |

¢
. Property (2.45) illus-

trates that 
∗ is the same as , except for the last block row and block column.

Property (2.46) switches in  all zero entries into one and vice versa. Finally,

left-multiplying both sides of (2.47) by  and invoking property (2.44) shows that

the eigenvalue equation 
∗ =  is equivalent to  ( ) =  ( ). Hence,


∗ and  possess the same eigenvalues with the corresponding eigenvectors 

and  . Since the adjacency matrix of the complement  is also a block matrix

with constant row and column sums and of similar block structure as , the same

arguments also demonstrate that ∗ and  are cospectral.

The Godsil-McKay construction of the cospectral graph ∗ illustrates that the
main difficulty lies in finding a non-trivial Godsil-MacKay partition  with corre-

sponding adjacency matrix . The useful properties of  for cospectral graph

constructions result from the fact that the labeling of nodes in any cell  and

 does not influence a sum as  =
P

=1 , so that only constant row (and

column) sums are required in the Godsil-McKay construction.

40. Although cospectral graphs are not easy to construct, they should not be ig-

nored. The following theorem, due to Brendan McKay, implies that the probability

to draw a regular graph (art. 55) out of the set of all nonisomorphic graphs with

 nodes is substantially lower than randomly choosing a cospectral graph.

Theorem 6 (McKay) For sufficiently large  , the number of cospectral graphs

exceeds the number of regular graphs.

Proof13: The number of pairs of cospectral graphs, conjectured by Godsil and

McKay (1982) and proved by Haemers and Spence (2004, Theorem 3), is at least¡
1
24
−  (1)

¢
3−1, where  = nonisomorphic () in (2.42) is the number of

13 Private communication with Brendan McKay.
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nonisomorphic graphs with  nodes (art. 35). Since pairs of cospectral graphs are

a subset of all cospectral graphs and since most graphs are asymmetric (art. 34), we

find with (2.42), for large  , that the number of cospectral graphs is lower bounded

by cospectral graph ≥ 4 2
(−12 )
 !

, where  is a constant. The total number of regular

graphs was determined, for large  , by McKay and Wormald (1990, Corollary 1),

regular graphs ∼
√
2

2
2

2

()

2

where  , specified in McKay and Wormald (1990, Corollary 1), has a different

value depending on whether  is even, 1mod 4 or 3mod 4. Let the constant  =

max
√
2 so that  ≈ 42 Most regular graphs are shown in Krivelevich et al.

(2001) to be asymmetric. The total number of nonisomorphic regular graphs is, for

large  , at most

nonisomorphic regular graphs ≤ 0
2
2

2

()

2  !

where the constant 0 is slightly larger than . The ratio

nonisomorphic regular graphs

cospectral graph
≤ 0



1

()

2 42−

3
2
+1

= 

Ã
−


2
(ln+ln−3 ln 2)

4

!
rapidly tends to zero with  . ¤
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3

Eigenvalues of the adjacency matrix

Only general results of the adjacency eigenvalue spectrum of an undirected graph

 are treated. The spectrum of special types of graphs is computed in Chapter 6.

3.1 General properties

41. For an  ×  symmetric, possibly weighted, adjacency matrix , art. 247

shows that  has  real eigenvalues, which we order as  ≤ −1 ≤ · · · ≤ 1.

Apart from a similarity transform (art. 239), the set of eigenvalues {1 2     }
with corresponding set of eigenvectors {1 2     } is unique. A relabeling of
the nodes in the graph, which is a permutation discussed in Section 2.5 and a special

type of similarity transform, obviously does not alter the structure of the graph,

but merely expresses the eigenvectors in a different base.

The classical Perron-Frobenius Theorem 75 in art. 269 for non-negative, irre-

ducible matrices states that the largest eigenvalue 1 is a simple and non-negative

root of the characteristic polynomial in (A.95) possessing the only eigenvector of 

with non-negative components. The largest eigenvalue 1 is also called the spectral

radius of the graph.

42. Range of eigenvalues of the adjacency matrix. Gerschgorin’s Theorem 65

applied to the adjacency matrix states that any eigenvalue of  lies in the interval

[−max max], where max is the maximum degree in the graph . Hence, 1 ≤
 − 1 and this maximum is attained in the complete graph (see Section 6.1).

Theorem 109, with = 1 and using (3.7) below, indicates that all the eigenvalues

of  are contained in the interval
h
−
q

2

( − 1)

q
2

( − 1)

i
. In terms of the

average degree  =
2

and combining both Theorems 65 and 109, any adjacency

eigenvalue of an undirected graph obeys

 ∈
h
−min

³
max

p
 ( − 1)

´
min

³
max

p
 ( − 1)

´i

43. Fundamental weights. Left-multiplying the eigenvalue equation  =  in

51
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(1.3) by the all-one vector  and invoking  =  in (2.4) yields

 =



=

X
=1


()P

=1 ()

(3.1)

which expresses the -th eigenvalue as a weighted sum of the nodal degrees. Due

to its appearance in many spectral relations,

 =  =

X
=1

() (3.2)

is called the -th fundamental weight of the graph . Fundamental weights are

related to graph angles (3.31) and can be regarded as graph metrics.

44. Let  denote the eigenvector of  belonging to the eigenvalue  that satisfies

the normalization   = 1. Art. 251 shows that  = . Writing out the

quadratic form yields

 =  =

X
=1

X
=1

 () () = 2

−1X
=1

X
=+1

 () ()

which can be written as

 = 2

X
=1

()+ ()− (3.3)

where a link  ∈ L joins the nodes + and −. The expression (3.3) shows that any
eigenvalue  of the adjacency matrix  can be written as a sum of products of

eigenvector components over all links in the graph . An analogous representation

for the Laplacian is given in art. 103. In particular, for the largest eigenvalue 1,

all terms in (3.3) are non-negative (art. 41).

By invoking 0 ≤ ( − )
2
, we observe that 2 ≤ 2 + 2 ≤

P
=1 

2
 =

 . Hence, when considering normalized vectors such that   = kk22 = 1,

any term in (3.3) is bounded by one, 2 ()+ ()− ≤ 1. Moreover, the equality
2 ()+ ()− = 1 is only possible if and only if ()

2
+ + ()

2
+ = 1, in which

case ()+ = ()− =
1√
2
and all the other eigenvector components are zero. For

the largest eigenvector 1, this situation can only occur for a graph  consisting

of 2 and  − 2 disjoint nodes and (3.3) indicates that 1 = 1. In summary, for
any connected graph , the Perron-Frobenius Theorem 75 in art. 269 shows, for

  2, that 0  2 (1)+ (1)−  1.

3.2 Characteristic polynomial () of the adjacency matrix 

This section applies the general theory in Chapter 10 to the adjacency matrix  and

mainly investigates the coefficients  () of the characteristic polynomial ().
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3.2 Characteristic polynomial () of the adjacency matrix  53

45. Eigenvalues are either integer or irrational. The characteristic polynomial

() = det (− ) =

X
=0

 ()
 (3.4)

defined in art. 235, has integer coefficients  () and  () = (−1) . Art. 292
demonstrates that the only rational zeros of (), i.e., zeros belonging to Q, are
integers. This property also holds for the Laplacian matrix . For example, 3

4
is

never an eigenvalue of  nor .

Art. 293 gives additional methods to check from the integer coefficients  () in

(3.4) whether () can be factored into two lower degree polynomials with integer

coefficients.

46. Since  = 0, we have that trace() = 0. From (A.99), the coefficient −1 ()
of the characteristic polynomial () is

−1 () =
X
=1

 = 0 (3.5)

47. Newton identities. Applying the Newton identities (B.4) or (B.8) in art. 294

to the characteristic polynomial (A.95) and (A.97) of the adjacency matrix with

 = ,  =  () and using −1 () = 0 from (3.5) yields for the first few

values,

(−1) −2 () = −1
2

X
=1

2

(−1) −3 () = −1
3

X
=1

3

(−1) −4 () =
1

8

⎛⎝Ã X
=1

2

!2
− 2

X
=1

4

⎞⎠
48. The coefficient 0 () follows from (A.98) as 0 () = det =

Q
=1 . Ap-

plying the Hadamard inequality (A.78) for the determinant of a matrix yields, with

(2.2),

|det| ≤
Y
=1

Ã
X
=1

2

! 1
2

=

Y
=1

Ã
X
=1



! 1
2

=

Y
=1

p


Hence, with det =
Q

=1  in (A.98), we find

(det)
2
=

Y
=1

2 ≤
Y
=1

 (3.6)
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54 Eigenvalues of the adjacency matrix

49. The coefficient −2 () follows from (A.96) as −2 () = (−1)
P
all2 and

is explicitly given as −2 () = (−1)
P

=1

P
=+1 ( − ) in art. 210.

Since  = 0, the double sum is − 1
2
 and (2.5) leads to

(−1) −2 () = −
The Newton identities in art. 47 show that the number of links  equals

 =
1

2

X
=1

2 (3.7)

Since [] = 1


P
=1  = 0 in art. 46, the variance Var[] =

1


P
=1 ( − [])

2

of the adjacency eigenvalues equals, invoking the basic law of the degree (2.3),

Var [] =
1



X
=1

2 =
2


=  []

This stochastic interpretation is helpful to understand the density function of the

adjacency eigenvalues in Section 8.

50. Each principal submatrix 3×3 of the adjacency matrix  is of the form

3×3 =

⎡⎣ 0  

 0 

  0

⎤⎦
and the corresponding minor 3 = det3×3 = 2 is only non-zero for  =  =

 = 1. That form of 3×3 corresponds with a subgraph of three different nodes
that are fully connected in a triangle. Since (A.96) reduces to (−1) −3 () =
−P3 and −3 () = −2× the number N of triangles in . From art. 47,

it follows that the number of triangles in  is

N =
1

6

X
=1

3 (3.8)

51. Coefficient  of the characteristic polynomial  () =
P

=0 
. From

(A.96) and by identifying the structure of a minor  of the adjacency matrix 

of an undirected graph, any coefficient − () can be expressed in terms of graph
characteristics,

(−1)− () =
X
G∈

(−1)(G) (3.9)

where  is the set of all subgraphs of  with exactly  nodes and  (G) is
the number of cycles in a subgraph G ∈ . The minor  is a determinant of the

× submatrix of  and defined (see art. 208) as

 =
X


(−1)()1122 · · · 
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3.2 Characteristic polynomial () of the adjacency matrix  55

where the sum is over all ! permutations  = (1 2     ) of (1 2     ) and

() is the number of interchanges of (1 2     ) to obtain (1 2     ). Only

if all the links (1 1)  (2 2)      ( ) are contained in , then 1122     is

non-zero. Since  = 0, the sequence of contributing links (1 1)  (2 2)      ( )

is a set of disjoint cycles such that each node in  belongs to exactly one of these

cycles and () depends on the number of those disjoint cycles. The minor  is

constructed from a specific set G ∈  of  out of  nodes and in total there are¡



¢
such sets in , which is rewritten as (3.9).

Directed graphs. Harary (1962) discusses the determinant det of a directed

graph, from which another expression than (3.9) for the coefficients  () of the

characteristic polynomial  () can be derived. An elementary subgraph H of 

on  nodes is a graph in which each component is either a link between two distinct

nodes or a cycle. Here, a cycle is thus of at least length 3, possessing at least three

nodes or links. Harary observes that, in the determinant of the adjacency matrix

 (or in each of its minors) of a directed graph, each directed cycle of even (odd)

length contributes negatively (positively) to det. Let  denote the number of

even components in an elementary subgraph, i.e. containing an even number of

nodes. Each cycle in an undirected graph corresponds to the two directions in its

directed companion. Harary (1962) shows that the coefficient of the characteristic

polynomial  () of the adjacency matrix of a directed graph can be written as

(−1)− () =
X
H∈

(−1)(H) 2|(H)|

where  (H) is the set of components that are cycles in H and  denotes the set

of all elementary subgraphs H of  with  nodes.

Undirected trees. Confining to trees, where the only cycles are directed cycles

of length 2 corresponding to the links of the tree, Mowshowitz (1972) further ex-

plores (3.9) and shows for the characteristic polynomial  () = det ( − ) =P
=0  ( )

 of a tree  that the coefficient  = (−1)− ( ) = (−1)  ( )
if  = 2 is even,  = 0 if  is odd and 0 = 1, where  ( ) obeys the recursion,

as a special case of (3.106) below,

 ( + ) = −1 ( ) + −1
¡
\{}

¢
where  +  is the tree  to which a link  with end point  is added at node 

and \{} is the tree from which a node  is removed. Mowshowitz (1972) mentions
that || is the number of sets consisting of  pairwise non-incident links of  (i.e.
links that do not share common nodes), which equals the number of independent

sets of links of size  in  , also called the number of matchings of size  in tree  .

52. Characteristic polynomials of graphs with one node removed. If \{} is the
graph obtained from the graph  after the removal of node , then its adjacency
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56 Eigenvalues of the adjacency matrix

characteristic polynomial (art. 45) is

\{}() = det
¡
\{} − 

¢
=

X
=0


¡
\{}

¢


After equating corresponding powers in  in formula
()


= −P

=1 \{} () in

(A.46) in art. 213, we obtain, for 0 ≤  ≤  − 1,

+1 () = − 1

 + 1

X
=1


¡
\{}

¢
(3.10)

The case  =  − 1 and  − 2 are identities. For  =  − 3, we obtain with
−2 () = − in art. 49 the relation  = 1

−2
P

=1 \{} between the number

of links in  and \{}. Similarly, for  =  −4 and invoking art. 50, we find that
the corresponding relation N = 1

−3
P

=1 N\{} for the number of triangles.

Hence, the average number of links 1


P
=1 \{} and of triangles

1


P
=1 N\{}

is always smaller than the number of links  and triangles N in , respectively.

The relation (3.10) can be understood by considering two ensembles of graphs.

The first 1 = {     } contains  times the original graph , while the

second ensemble is 2 =
©
\{1} \{2}     \{}

ª
. An enumeration, such as

the number of links or triangles, in 1 simply equals  times that enumeration,

while in 2 each link is affected twice, a triangle three times, etc. by removing in

total  (different) nodes. Hence, we find that  −
P

=1 \{} = 2 and

N −
P

=1N\{} = 3N.

53. Newton’s inequalities. Since the characteristic polynomial  () has real

coefficients and real zeros, Newton’s Theorem 97 in art. 327 provides the inequality,

for 1 ≤  ≤  − 1,

2 () ≥ +1 () −1 ()
 + 1



 −  + 1

 − 
(3.11)

Because −1 () = 0 in art. 46, the Newton inequality (3.11) for  =  − 1 and
 − 2 does not yield a useful bound. For  =  − 3, on the other hand, we have,
using −2 () = − in art. 49 and −3 () = −2 N in art. 50, that

3 ( − 3)
( − 2) (N)

2 ≥ −−4 ()

Finally, with −4 () = 1
8

³
42 − 2P

=1 
4


´
from art. 47 and art. 49, we find

the inequality

X
=1

4 ≤
12 ( − 3)
( − 2) (N)2 + 22 (3.12)

54. Eigenvalue bounds for triangles. From the inequality (A.14) for Hölder -

norms, we find for     0 that, if
P

=1 ||  Λ, then
P

=1 ||  Λ.
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3.3 Regular graphs 57

Since
P

=1  = 0, not all  can be positive and combined with
¯̄̄P

=1 



¯̄̄
≤P

=1 ||, we also have that
¯̄̄P

=1 



¯̄̄
 Λ. Applied to the case where  = 2

and  = 3 gives the following implication: if
P

=2 
2
  21 then

¯̄̄P
=2 

3


¯̄̄
 31.

In that case, the number of triangles given in (3.8) is

N =
1

6
31 +

1

6

X
=2

3 ≥
1

6
31 −

1

6

¯̄̄̄
¯
X
=2

3

¯̄̄̄
¯  0

Invoking (3.7) to the implication: if 2 =
P

=2 
2
 + 21  221, then the number

of triangles N in  is at least one. In summary1, if 1 
√
, then the graph 

contains at least one triangle.

Theorem 7 (Mantel) A graph  with  nodes and more than
h
2

4

i
links contains

at least one triangle.

Proof : If   2

4
≥
h
2

4

i
, which is equivalent to   2

√
, then the classical

lower bound on the largest eigenvalue (3.63) in art. 72 is 1 ≥ 2


 2

2
√

=
√


and 1 
√
 is precisely the condition above to have at least one triangle. ¤

Mantel’s Theorem 7 is best possible, because the complete bipartite graph
2

2
,

with  even, contains  = 2

4
links, but no triangle. Its generalization due to

Turán for any clique size is stated in Section 6.9, where the Turán graph is studied.

Nikiforov (2021) proves a related, but more complicated result: if 1 ≥
√
, then

the maximum number of triangles with a common edge in the graph , called the

booksize  () of , is  ()  1
12

4
√
, unless  is a complete bipartite graph

with possibly some isolated nodes. Nikiforov (2021) also proves the instance  = 2

of his conjecture with Bollobás: If a graph  with  links and  ≥  + 1 nodes

does not contain a clique +1, then 21 + 22 ≤ 2
¡
1− 1



¢
.

3.3 Regular graphs

The class of regular graphs possesses a lot of specific and remarkable properties

that justify the discussion of some spectrum related properties here.

55. Regular graphs. Every node  in a regular graph has the same degree  = 

and relation (2.2) indicates that each row sum of  equals . The basic law of the

degree (2.3) reduces for regular graphs to 2 = , implying that, if the degree 

is odd, then the number of nodes  must be even.

1 Nikiforov (2021) remarks that Eva Nosal in her master thesis at the University of Calgary in
1970 has proved this elegant result. Mantel’s Theorem 7 of 1907 has been greatly extended by
Turán in 1941 as mentioned in Bollobás (1998, p. 6), who gives a non-spectral proof.
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58 Eigenvalues of the adjacency matrix

Theorem 8 The maximum degree max = max1≤≤  is the largest eigenvalue

of the adjacency matrix  of a connected graph  if and only if the corresponding

graph is regular, i.e.  = max =  for all .

Proof: If  is an eigenvector of  belonging to eigenvalue  = max so is each

vector  for each complex  (art. 235). Thus, we can scale the eigenvector  such

that the maximum component, say  = 1, and  ≤ 1 for all . The eigenvalue
equation  = max for that maximum component  is

max = max =

X
=1

 =
X

∈ neighbor()


which implies that all  = 1 whenever  = 1, i.e., when the node  is adjacent

to node . Hence, the degree of node  is  = max. For any node  adjacent

to  for which the component  = 1, a same eigenvalue relation holds and thus

 = max. Proceeding with this process shows that every node  ∈  has same

degree  = max because  is connected. Hence,  =  where  = [1 1 · · · 1]
and the Perron-Frobenius Theorem 75 shows that  is the eigenvector belonging

to the largest eigenvalue of . Conversely, if  is connected and regular, thenP
=1  = max =  for each  such that  is the eigenvector belonging to

eigenvalue  = max, and the only possible eigenvector (art. 41). Hence, there is

only one eigenvalue max = . ¤

Theorem 8 shows that, for a regular graph,  = , and, thus,  =  . After

taking the transpose, ()

=  =  , we see that  = . Thus,  and 

commute if  is regular.

Theorem 9 (Hoffman) A graph  is regular and connected if and only if there

exists a polynomial  such that  =  ().

Proof: (a) If  =  (), then  and  commute and, hence,  is regular. (b)

Since the largest eigenvalue  is simple (art. 41), the Laplacian  =  −  has a

zero eigenvalue with multiplicity 1. Theorem 21 then states that a regular graph 

is connected. Conversely, let  be connected and regular. We can diagonalize the

adjacency matrix  of  by using an orthogonal matrix formed by its eigenvectors

(art. 247). This basis of eigenvectors of  also diagonalizes  as diag( 0     0),

because  and  commute (art. 284). Consider the polynomial

 () =
 ()

− 
=

Y
=2

( ()− )

where  () is the characteristic polynomial of , then  = 
()

()
, because the

projections on the basis vectors are  () = 0 if  6=  and  () =  (),

while  = . Thus, the polynomial  () = 
()

()
satisfies the requirement. ¤
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3.3 Regular graphs 59

The proof shows that, if  () is the minimal polynomial (art. 228) associ-

ated to the characteristic polynomial  () and 
() =


()

− , the polynomial


() = 

 ()

 ()
of possibly lower degree can be found (see art. 229).

56. Strongly regular graphs. Following Cvetkovíc et al. (1995), we first define

 ( ) as the number of nodes adjacent to both node  and node  6= . In other

words,  ( ) is the number of common neighbors of both  and . A regular

graph  of degree   0, different from the complete graph  , is called strongly

regular if  ( ) = 1 for each pair ( ) of adjacent nodes and  ( ) = 2
for each pair ( ) of non-adjacent nodes. A strongly regular graph is completely

defined by the parameters (  1 2).

Examples The Petersen graph in Fig. 2.3 is a strongly regular graph with para-

meters (10 3 0 1). Cvetkovíc et al. (2009) show how many strongly regular graphs

can be constructed from line graphs. The line graph  ( ) of the complete graph is

strongly regular with parameters
³
(−1)

2
 2 − 4  − 2 4

´
for   3. The cor-

responding eigenvalues of the
¡

2

¢×¡
2

¢
adjacency matrix of  ( ) are  = 2−4,

[(−2)](−12 )−1 and [( − 4)]−1, for   3. Another example is the class of Paley

graphs , whose nodes belong to the finite field F of order , where  is a prime
power congruent to 1 modulo 4, and whose links ( ) are present if and only if

 −  is a quadratic residue (see Hardy and Wright (2008)). The Paley graph 
is strongly regular with parameters

¡|F|  −12  −5
4
 −1

4

¢
. Bollobás (2001, Chap-

ter 13) discusses properties of the Paley graph and its generalizations, the Cayley

graphs and conference graphs.

The number of common neighbors of two different nodes  and  is equal to the

number of 2-hop walks between  and . Thus, Lemma 1 states that  ( ) =¡
2
¢

if  6= . Art. 19 shows that

¡
2
¢

=  = . The condition for strong

regularity states that, for different nodes  and ,
¡
2
¢

= 1 + 2 (1− ),

because  ( ) = 1 if node  and  are neighbors, hence,  = 1 and  ( ) = 2,

if they are not, i.e.  = 0. Adding the two mutual exclusive conditions together

with  ( ) =
¡
2
¢

demonstrates the relation. Combining all entries into a

matrix form yields

2 = 1+ 2
 + 

Finally, using  =  −  − in art. 1, we obtain the matrix relation that charac-

terizes strong regularity,

2 = (1 − 2)+ 2 + ( − 2) 

from which  = 1
2

¡
2 + (2 − 1)+ (2 − ) 

¢
. Hence, the polynomial  =

 () in Hoffman’s Theorem 9 is the quadratic polynomial

2 () =
1

2

¡
2 + (2 − 1)  + (2 − )

¢
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60 Eigenvalues of the adjacency matrix

from which we deduce that the minimal polynomial  () =
()


(− ) 2 ()

is of degree 3. The definition of a minimal polynomial in art. 310 implies that

the adjacency matrix  of  possesses precisely three distinct eigenvalues 1 = ,

2 and 3, where 2 and 3 are zeros of 2 (), related by 1 − 2 = 2 + 3
and 2 −  = 23. The property that strongly regular graphs have three different

eigenvalues explains why the complete graph  must be excluded in the definition

above. In summary, we have proved:

Theorem 10 A connected graph  is strongly regular with degree   0 if and only

if its adjacency matrix  has three distinct eigenvalues 1 = , 2 and 3, which

satisfy

1 =  + 2 + 3 + 23

2 =  + 23

where 1 and 2 are the number of common neighbors of adjacent and non-adjacent

nodes, respectively.

3.4 Powers of the adjacency matrix

Before concentrating on the total number of walks in a graph in Section 3.5, we

review the eigenvalue equation  =  in Section 1.1, which reads in matrix

form,  = Λ, where the orthogonal matrix , satisfying  =  = ,

contains the eigenvectors in its columns.

57. Eigenvalue relation Λ = . Formula Λ =  allows us to

express the eigenvalue  in terms of the elements of the matrix  as

 =

X
=1

X
=1

¡

¢

() () (3.13)

which is equivalent to(
 =

P
=1

P
=1

¡

¢

() ()

0 =
P

=1

P
=1

¡

¢

() () if  6= 

Only if node  and  are connected by a -hop walk (art. 18) and
¡

¢


 0,

then (3.13) shows that their corresponding components of the -th eigenvector

( = ) contribute in (3.13) to . Thus, (3.13) is another representation of

(1.5). For  = 1, we directly find (3.3) again in art. 44. We rewrite (3.13) as

 =
P

=1

P
=1

¡

¢

() () +

P
=1

P
=+1

¡

¢

() () , reverse

the summations in the first term and split off the  =  terms for a symmetric

matrix  =  to obtain

X
=1

¡

¢

()

2
 =  − 2

X
=1

X
=+1

¡

¢

() () (3.14)
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3.4 Powers of the adjacency matrix 61

and for  6= 

X
=1

¡

¢

() () = −

X
=1

X
=+1

¡

¢


n
() () + () ()

o
These relations reduce for  = 0 with 0 =  to the orthogonality conditions of

eigenvectors in (A.124). For  = 1, the Perron-Frobenius Theorem 75 tells us that

(1) ≥ 0 and (3.14) leads, for all integer  ≥ 0, to the bound
X
=1

¡

¢

(1)

2
 ≤ 1

(a) Substituting  =
(2+2)−(−)2

2
in (3.13) and, denoting

P
=1 (

) =

() , gives us

 =

X
=1

¡


¢

()

2
 −

1

2

X
=1

X
=1

¡

¢


³
() − ()

´2
(3.15)

where each term in a sum is non-negative, while (b)  =
(+)2−(2+2)

2
results in

 =
1

2

X
=1

X
=1

¡

¢


³
() + ()

´2
−

X
=1

¡


¢

()

2


which reduces for  = 1 to

 =
X
∈L

(()+ + ()−)
2 −

X
=1

 ()
2
 (3.16)

Relation (3.16) is also obtained from the unsigned incidence matrix  in art. 25,

that obeys  =  −∆,
 =  = 

 − ∆ =
°°

°°2
2
− ∆

(c) Invoking  =
(+)2−(−)2

4
in (3.13) yields

4 =

X
=1

X
=1

¡

¢


³
() + ()

´2
−

X
=1

X
=1

¡

¢


³
() − ()

´2
which reduces for  = 1 to

 =
1

2

X
∈L

(()+ + ()−)
2 − 1

2

X
∈L

(()+ − ()−)2 (3.17)

and expresses an eigenvalue of the adjacency matrix as a difference of two sums of

squares.

58. Eigenvalue relation  = Λ . The reverse  = Λ of Λ =
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62 Eigenvalues of the adjacency matrix

 in art. 57 expresses the number of walks
¡

¢

with  hops (art. 18) in

terms of the eigenvalues 1  

2      


 of  as

¡

¢

=

X
=1

 () () (3.18)

whose matrix form is

 =

X
=1



 (3.19)

The expression (3.18) can be generalized to a function  of the matrix , via

Taylor series in art. 231, resulting in ( ()) =
P

=1  () () () . When

applying art. 257 to  () = , then (A.142), (A.143) and (A.144) translate to,

respectively,

¡

¢

=
1

2

X
=1



³
() + ()

´2
−
¡

¢

+
¡

¢


2

¡

¢

=

¡

¢

+
¡

¢


2
− 1
2

X
=1



³
() − ()

´2
(3.20)

¡

¢

=
1

4

X
=1



³
() + ()

´2
− 1
4

X
=1



³
() − ()

´2
The corresponding bounds (A.145) and (A.146) are

(1 + ) min
1≤≤

 ≤
¡

¢

+
¡

¢


2
+
¡

¢

≤ (1 + ) max

1≤≤
 (3.21)

(1− ) min
1≤≤

 ≤
¡

¢

+
¡

¢


2
− ¡

¢

≤ (1− ) max

1≤≤
 (3.22)

while (A.147) leads to the bound¯̄̄̄¡

¢

− 

2

µ
min

1≤≤
 + max

1≤≤


¶¯̄̄̄
≤ 1
2

µ
max

1≤≤
 − min

1≤≤


¶
(3.23)

Since the row vectors (A.125) in  are orthogonal (A.126) and excluding the

empty graph, (3.20) for  = 2 and  6=  leads to the strict inequality

¡
2

¢



¡
2

¢

+
¡
2

¢


2

which is a general property of positive semidefinite and symmetric matrix (art. 279).

The bound (3.23) indicates that each non-diagonal element is bounded by

0 ≤ ¡
¢

≤ 1
2

µ
1 − min

1≤≤


¶
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3.5 The number of walks 63

while each diagonal element is bounded by

max

µ
0 min
1≤≤



¶
≤ ¡

¢

≤ 1

Alternatively, the Perron-Frobenius theorem, as explained in art. 41, states that all

eigenvector components are non-negative, which leads in (1.5) to the same bound

¡

¢

≤ 1 (3.24)

Writing (3.18) as
¡

¢

= 1 (1) (1)

µ
1 +

P
=2

³

1

´ ()()
(1)(1)

¶
leads,

for large  and provided 1  | |, thus excluding bipartite graphs in Section 6.7,
to the asymptotic form ¡


¢

∼ 1 (1) (1) for  →∞ (3.25)

which also means lim→∞
()



1
= (1) (1) . The diagonal elements of 

 for

even  = 2 follow from (3.18) as

¡
2

¢

=

X
=1

()
2
 

2


consists of all non-negative terms, illustrating that
¡
2

¢

is always positive in a

connected graph because (1)  0, in agreement with art. 19. Art. 257 indicates

that
¡

¢

≤ 1

2

¡
1 −min1≤≤ 

¢
for  6= , illustrating sharper upper bounds

for even  = 2,
¡
2

¢

≤ 1

2
21 , than for odd  = 2 + 1,

¡
2+1

¢

≤ 2+11 ,

but diagonal elements are bounded by
¡

¢

≤ 1 . Thus, apart from

¡
2

¢

∼

21 (1)
2
 in (3.25) for large , it follows for any finite  that

(1)
2
 

2
1 

¡
2

¢

 21

For  = 2+ 1, (3.18) is

¡
2+1

¢

=

X
=1;0

()
2
 

2+1
 −

X
=1;0

()
2


¯̄
2+1

¯̄
which can be zero as demonstrated in art. 19.

3.5 The number of walks

59. The total number  of walks of length  in a graph follows from Lemma 1 as

 =

X
=1

X
=1

() =  (3.26)
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64 Eigenvalues of the adjacency matrix

where  is the all-one vector. For example, 0 =  and 1 = 2. If the graph is

undirected, i.e.  =  , each walk () with  6=  is counted twice in (3.26).

Invoking (2.4) and  = , we can write

 = −2 = −2

If  = 2, we obtain

2 =  =

X
=1

2 = 
³
( [])

2
+Var []

´
(3.27)

The number of walks {0 1     10} in the graph of Fig. 2.1 ignoring directions
and up to  = 10 is {6 18 56 174 542 1688 5258 16378 51016 158910 494990}.
Substituting  =

P
=1 





 in (3.19) into (3.26) expresses the total number

 =  of walks of length  in terms of the eigenvalues of  as

 =

X
=1

¡


¢2
 (3.28)

where  =
P

=1 () is the -th fundamental weight in art. 43. When the

normalized eigenvector 1 =
√

as in regular graphs (art. 55) of degree , where

1 = , the number of all walks with  hops in (3.28) simplifies to

;regular graph =  (3.29)

due to orthogonality (A.124) of eigenvectors.

Since  = − = ()
 ¡

−
¢
, the Cauchy-Schwarz inequality

(A.12) shows that¯̄̄
()

 ¡
−

¢¯̄̄2 ≤ ¡2¢ ³2(−)´
from which we obtain, for integers 0 ≤  ≤ , the inequality

2
 ≤ 22−2 (3.30)

Equality only holds for regular graphs. In particular for  = 0, it holds that

2
 ≤ 2.

60. Graph angles. Geometrically, the scalar product  =
P

=1 () is the

projection of the eigenvector  onto the vector ,

 = kk2 kk2 cos  =
√
 cos  (3.31)

where  is the angle between the eigenvector  and the all-one vector . The

total number  of walks of length , written in terms of the “graph angles” as

coined by Cvetkovíc et al. (1997), is

 = 

X
=1

 cos
2  (3.32)
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3.5 The number of walks 65

Since 0 =  , (3.28) becomes in terms of fundamental weights  =  in

(3.2)

 =

X
=1

¡


¢2
=

X
=1

2 (3.33)

which is equivalent with (3.32) for graph angles to

X
=1

cos2  = 1

61. Probabilistic interpretation. Besides graph angles in art. 60, we add a proba-

bilistic approach, based on the general property (see e.g. Van Mieghem (2014, p.

13)) of the expectation operator  [] on a function  of a discrete random variable

Λ, that can have  possible outcomes 1 2      ,

 [ (Λ)] =

X
=1

 () Pr [Λ =  ]

Comparison of  =
P

=1

¡


¢2
 in (3.28) and (3.33) then suggest us to de-

fine Pr [Λ =  ] =
()

2


so that 

£
Λ
¤
= 


. The corresponding probability

generating function is

Λ () = 
£
Λ
¤
=

X
=1

Pr [Λ =  ] 


which holds for any symmetric matrix  , where Λ reflects an arbitrary eigenvalue

of  .

If the function  is convex, then Jensen’s inequality (see e.g. Van Mieghem (2014,

Section 5.2)) tells us that

 ( [Λ]) ≤  [ (Λ)] (3.34)

Since  () = 2 is convex for any real  and real , whereas  () =  is convex

for non-negative real , Jensen’s inequality (3.34) translates to

( [Λ])
2
=

µ
1



¶2
= 2 ≤ 

£
Λ2

¤
=

2



Only for a positive semidefinite matrix (see Section 10.8), it holds for any integer

 that

 ≥ 
1

−1 = 

For even  = 2 number of hops, equality in 2 ≤ 2


is reached for regular

graphs with average degree  =  as shown in (3.29). Thus, the total number 

of walks with even length  = 2 in any graph is at least as large as in a regular

graph with the same (integer) average degree.
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66 Eigenvalues of the adjacency matrix

62. The generating function  (). The generating function of the total number

of walks in a graph  is defined as

 () =

∞X
=0


 (3.35)

The two different expressions in art. 59 result in two different expressions for

 (). First, substituting the definition (3.26) into (3.35) yields

 () = 

Ã ∞X
=0



!
 =  ( − )

−1
 (3.36)

where ||  1
1
in order for the infinite series to converge (art. 231). Since  is

symmetric, there holds for any analytic function  (), possessing a power series

expansion around some point, that  () = ( ())

. Thus, we have that

 ( − )
−1

 = 
³
( − )

− 1
2

´
( − )

− 1
2  =

°°°( − )
− 1
2 
°°°2
2

which shows that

 () =
°°°( − )

− 1
2 
°°°2
2
≥ 0

for all real  obeying ||  1
1
. The zeros of  () are simple and lie in between

two consecutive eigenvalues of  as follows from interlacing in art. 263.

Second, invoking (3.28) gives, for ||  1
1
,

 () =

X
=1

¡


¢2 ∞X
=0


 =

X
=1

¡


¢2
1− 

(3.37)

For regular graphs (art. 55), where 1 =
√

is the eigenvector belonging to 1 = ,

the generating function (3.37) of the total number of walks simplifies to

regular graph () =


1− 
(3.38)

Cvetkovíc et al. (1995, p. 45) have found an elegant formula2 for  () by rewrit-

ing  ( − )
−1

 using (A.65). Indeed, for  = 1 in (A.65) and ×1 =  and

2 The characteristic polynomial of the complement  is

det ( − ) = det ( −− (+ 1) )
= (−1) det


(+ (+ 1) )


 − (+ (+ 1) )−1 


= (−1) det ((+ (+ 1) )) det


 − (+ (+ 1) )−1 


where we have used that  =  . Using the “rank 1 update” formula (A.66), we find

det ( − ) = (−1)

1−  (+ (+ 1) )−1 


det (+ (+ 1) ) (3.39)

With the definition  () =  ( − )−1  in (3.36) of the generating function  (), we
arrive again at Cvetkovic’s formula (3.40).
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3.5 The number of walks 67

×1 = , we obtain with  =  ,

det (+ ) = detdet
¡
1 + −1

¢
=
¡
1 + −1

¢
det

Replacing →  −  results in

 ( − )
−1

 =
1



µ
det ( +  ( −))

det ( − )
− 1
¶

The right-hand side can be written in terms of the complement  =  −  − as

 ( − )
−1

 =
1



Ã
(−1) det

¡
 + +1



¢

det
¡
− 1



¢ − 1

!
Finally, using the characteristic polynomial  () = det (− ) of a matrix ,

we arrive at Cvetkovic’s formula, for ||  1
1
,

 () =
1



Ã
(−1) 

¡− 1

− 1¢


¡
1


¢ − 1
!

(3.40)

which shows that  () + 1 is a ratio of two real polynomials, both with real

zeros and of degree at most  .

Combining (3.37) and (3.40) yields, with  = 1

,

(−1)  (−− 1)
 ()

= 1 +

X
=1

¡


¢2
− 

The right-hand side can be written as a fraction of two polynomials, in which the

denominator polynomial has only simple zeros. From this observation, Cvetkovíc

et al. (1995) deduced that, if  () has an eigenvalue  with multiplicity   1,

then the characteristic polynomial of the complement  () contains an eigenvalue

−− 1 with multiplicity − 1 ≤  ≤ + 1.

63. The total number of walks  and the sum of degree powers. Fiol and Garriga

(2009) have proven the inequality

 ≤
X
=1

 (3.41)

Equality in (3.41) for all  ≥ 0 is only achieved for regular graphs, because

;regular graph =  in (3.29). For  ≤ 2, equality in (3.41) holds in general,

because 0 =  =
P

=1 
0
 , 1 = 2 =

P
=1  and 2 =  =

P
=1 

2
 .

Proof of (3.41): For   2, the total number  of walks of length  is

 = −2 = −2 =
X
=1

X
=1


¡
−2¢




=

X
=1

¡
−2¢


2 + 2

X
=1

X
=+1

¡
−2¢



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68 Eigenvalues of the adjacency matrix

where the last sum holds by symmetry of  =  . From 0 ≤ (− )
2
= 2+2−2,

we bound as 2
P

=1

P
=+1

¡
−2¢


 ≤

P
=1

P
=+1

¡
−2¢



©
2 + 2

ª
and

 ≤
X
=1

¡
−2¢


2 +

X
=1

X
=+1

¡
−2¢



©
2 + 2

ª
=

X
=1

X
=1

¡
−2¢


2

= −22

where the vector  =
³


1 


2     




´
. This derivation suggests the induction

argument

 ≤ − ≤ −−1+1 (3.42)

which has been demonstrated already for  = 0 1 and 2. Assume now that it holds

for  =  ≥ 0, then the induction inequality (3.42) is proved when we can show
that it also holds for  =  + 1. Using  =  in (2.4) and  =  ,

− = −−1 = −−1 =
X
=1

X
=1


¡
−−1¢




=

X
=1

¡
−−1¢


+1 +

X
=1

X
=+1

¡
−−1¢



¡



 + 




¢
Fiol and Garriga (2009) cleverly use the inequality for positive numbers  and ,

+  = +1 + +1 − ¡ − 
¢
(− ) ≤ +1 + +1

with equality if and only if  = , and obtain

− ≤
X
=1

¡
−−1¢


+1 +

X
=1

X
=+1

¡
−−1¢



¡
+1 + +1

¢
=

X
=1

X
=1

¡
−−1¢


+1 = −(+1)+1

which establishes the induction inequality (3.42) and proves (3.41). ¤

The fundamental form of the Laplacian (4.3) in art. 101, applied to  = ,

 =
X
∈L

(+ − −)
2

and  =  (∆−)  =
P

=1 
3
 −  lead to

X
=1

3 −3 =
X
∈L

(+ − −)
2
=
1

2

X
=1

X
=1

( − )
2
 (3.43)

where the right-hand side sums, over all links  in the graph, the square of the

difference between the degrees at both sides of the link . Section 8.5 relates this
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3.5 The number of walks 69

expression to the linear correlation coefficient of the degrees in a graph and to the

(dis)assortative property of a graph.

64. Inequalities for the sum of degree powers. Cioabă (2006) writes the sum of

degree powers in terms of a node  of the graph  as

X
=1

 =  +

X
=1



 +

X
=1

() 



where  is a real number and where () is the element ( ) of the complement

 =  −  − of the adjacency matrix . The first sum contains the -th powers

of the degrees of direct neighbors of node, while the second sum contains the -th

powers of the degrees of nodes that are not adjacent to . With the definitions of

the averages

 () =
1



X
=1



 ≤ (max) (3.44)

and

 () =
1

 − 1− 

X
=1

() 

 ≥ (min) (3.45)

where the inequalities hold for   0 and imply the bound

 ()− () ≤ (max) − (min)

and  [] = 1


P
=1 


 , the above relation can be recast as

 + ( − 1) () =  [] + ( − 1− ) ( ()− ())

≤  [] + ( − 1− ) ((max)
 − (min))

and produces for   0 the bound of Cioabă (2006)


 − 1 + () ≤ 

 − 1 [
] +

µ
1− 

 − 1
¶
((max)

 − (min))

Furthermore, summing  () in (3.44) over all  yields

X
=1

 () =

X
=1

X
=1



 =

X
=1

Ã
X

=1



!
 =

X
=1

+1 (3.46)

Multiplying both sides in Cioabă’s bound by  and denoting  = ((max)
 − (min)),

+1

 − 1 +  () ≤ 

⎧⎨⎩ 1

 − 1
X
=1

 + 

⎫⎬⎭− 

 − 1
2


and summing over all nodes  yields for   0, after invoking (3.46) and (2.3) and
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70 Eigenvalues of the adjacency matrix

after multiplying both sides by −1

, Cioabă’s recursive inequality in

P
=1 


 is

X
=1

+1 ≤ 2


X
=1

 +
((max)

 − (min))


⎧⎨⎩2 ( − 1)−
X
=1

2

⎫⎬⎭ (3.47)

If   0 and the graph is connected (i.e. min ≥ 1), then  () −  () ≥
(max)

 − (min) and

X
=1

+1 ≥ 2


X
=1

 −
((min)

 − (max))


⎧⎨⎩2 ( − 1)−
X
=1

2

⎫⎬⎭ (3.48)

Cioabă (2006) shows that equality in (3.47) is obtained for regular graphs and for

connected graphs with exactly  nodes of degree  − 1 and the remaining  − 

nodes form an independent set3 for 1 ≤  ≤  .

If two sequences are non-increasing, 1 ≥ 2 ≥ · · · ≥  and 1 ≥ 2 ≥ · · · ≥ ,

then the Chebyshev’s sum inequality, proved in Van Mieghem (2014), is

1



X
=1

 ≥
⎛⎝ 1


X
=1



⎞⎠⎛⎝ 1


X
=1



⎞⎠ (3.49)

If one sequence is non-increasing and the other is non-decreasing, then the opposite

inequality sign holds. Application of Chebyshev’s sum inequality (3.49) results in

the lower bound

X
=1

+1 ≥ 2


X
=1

 (3.50)

Comparing the Chebyshev lower bound (3.50) with Cioabă’s upper bound (3.47),

indeed, illustrates that equality holds for regular graphs.

When  = 1 in (3.47) and in (3.50), we find the bounds

(2)
2


≤

X
=1

2 ≤ 2
2+ (max − min) ( − 1)

 + max − min

For  = −1 in (3.48), we obtain
X
=1

1


≤ 2

2
+

µ
1

min
− 1

max

¶(
( − 1)−

P
=1 

2


2

)

≤ 2

2
+

µ
1

min
− 1

max

¶½
( − 1)− 2



¾
3 There are no links between the nodes of an independent set.
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3.5 The number of walks 71

while the Chebyshev lower bound4 (3.50) yields

2

2
≤

X
=1

1


(3.51)

Hence, the harmonic mean 
£
1


¤
= 1



P
=1

1

is bounded by

1

 []
≤ 

∙
1



¸
≤ 1

 []
+
1



µ
1

min
− 1

max

¶
 []

where  [] =  − 1−  [] is the average degree in the complementary graph.

The bound (3.51) is generalized, for graphs with degree  ≥ 1, by the Hölder

inequality (A.10), for  =  ,  =
1

,   1 and   0, to the lower bound

³P
=1 


−1


´−1 ≤ X
=1

1





65. Number of closed walks . The number of closed walks  of length  in

graph  is defined in art. 6; Lemma 1 and art. 243 show that

 =

X
=1

() = trace
¡

¢
=

X
=1

 (3.52)

Art. 46 shows that the mean  [] = 1


P
=1  = 0. The definition (3.52) demon-

strates that all centered moments of the adjacency eigenvalues are non-negative and

equal to


h
(− [])


i
=





Hence, the centered -th moment is equal to the number of closed walks of length

 per node. The special case for  = 2 is Var[] = 2

, which is deduced in art. 49.

If  = 3, then (3.8) indicates that


h
(− [])

3
i
=
6N


The skewness , that measures the lack of symmetry of the distribution around

the mean, is defined as the normalized third moment,

 =

h
(− [])

3
i

³

h
(− [])

2
i´32 = 3N


p
 []

Since a tree does not have triangles, N = 0, the minimum possible skewness,

 = 0, in the distribution of adjacency eigenvalues is achieved for a tree. In

4 Similarly, (3.51) follows from the Cauchy-Schwarz inequality (A.72) with  =

 and  =

1√

.
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72 Eigenvalues of the adjacency matrix

Section 6.8, we will indeed show that only the adjacency spectrum of a tree is

symmetric around the mean (or origin  = 0). For  = 4, the inequality (3.12)

bounds the number 4 of closed walks of length 4.

66. Generating function of the number of closed walks . The number of closed

walks  of length  in graph  has a nice generating function, which is derived

from Jacobi’s general identity (art. 215). Using the Taylor series (art. 231) of

( − )
−1
, convergent for ||  1

1
, into Jacobi’s trace formula (A.53) yields

1



∞X
=1

trace
¡

¢
 =




log det ( − )

With  = trace
¡

¢
and 0 =  , the generating function of the number of

closed walks  in  and convergent for ||  1
1
is

 () =

∞X
=0


 =  + 




log det ( − ) (3.53)

Substitution of the last equality in (3.52) into the generating function (3.53)

yields, for ||  1
1
,

 () =

X
=1

∞X
=0

 
 =

X
=1

1

1− 
(3.54)

In terms of the characteristic polynomial  () =
P

=0 
 of , which is

 () = det (− ) = (−) det ¡ − 1


¢
, we have

det ( − ) = (−) 
¡
−1

¢
=

X
=0

(−1)−

with (−1)  = 1. Then, we deduce from (3.53) that

X
=0

(−1)− = exp
Ã ∞X
=1







!
from which, by Taylor’s theorem,

(−1)− = 1

!




exp

Ã ∞X
=1






!¯̄̄̄
¯
=0

(3.55)

Relation (3.55) is equivalent to the Newton identities (art. 47). By applying our

characteristic coefficients defined in (B.10) in art. 47 or in Van Mieghem (2007),

the above derivatives can be explicitly computed for any finite .

67. The generating function of the number of closed walks of length  that start
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3.5 The number of walks 73

and terminate at node  (art. 6), is defined as

 (; ) =

∞X
=0

¡

¢

 (3.56)

Substituting the -th diagonal element of (3.19) into (3.56) yields, for ||  1
1
,

 (; ) =

X
=1

¡





¢


∞X
=0


 =

X
=1

¡





¢


1− 

Art. 255 indicates that
¡





¢

=
³
()

´2
, such that

 (; ) =

X
=1

³
()

´2
1− 

(3.57)

By definition, we have that  () =
P

=1 (; ).

Combining (A.52) and (A.162) in art. 262 yields

det
¡
 −\{}

¢
det ( −)

=

X
=1

¡





¢


 − 

where \{} is the ( − 1)×( − 1) adjacency matrix obtained from  by deleting

the -th row and column. Thus, \{} is the adjacency matrix of the subgraph
\ {} of  obtained from the graph  by deleting node  and all its incident links.
Hence,

det
¡
 −\{}

¢
det ( −)

=
1




µ
1


; 

¶
and written in terms of the characteristic polynomial of a matrix ,  () =

det (− ), we obtain

 (; ) = −
\{}

¡
1


¢


¡
1


¢
The relation between the characteristic polynomials \{} () and  () is further

studied in art. 85.

68. Relations between  and . Let  be the maximizer of the fundamental

weights  =   in art. 43 over all 1 ≤  ≤  eigenvectors such that  ≥  

for any 1 ≤  6=  ≤  . Geometrically, the “graph angle” representation in (3.31),


√

= cos (), reflects that all orthogonal eigenvectors 1 2      start at

the origin and end on an  -dimensional unit sphere centered at the origin. The

graph angle between  and
√

is largest for 1, by the Perron-Frobenius Theorem

75 in art. 269, because 1 and
√

lie in the same  -dimensional “quadrant” as

both their components are non-negative. Any other vector  must be orthogonal to

1, implying that  cannot lie in the “opposite”  -dimensional “quadrant”, where
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74 Eigenvalues of the adjacency matrix

all components or coordinates are negative, and in which the resulting cos () also

can be large. Another, though less transparent, argument follows from the Cauchy

identity (A.71),

2 =
¡


¢2
=  − 1

2

X
=1

X
=1

³
() − ()

´2
=  −

X
=1

−1X
=1

³
() − ()

´2
which illustrates that the maximizer over all 2 =

¡


¢2
has minimum difference

between its components. Thus, it is the eigenvector  that is as close as possible

to the vector 1√

 with all components exactly the same. In conclusion,  = 1 and

1   for all 1   ≤  . Art. 60 demonstrates that 1 ≥ 1. This result also
follows from art. 203, because 1 = 1  =

P
=1 (1) =

P
=1

¯̄̄
(1)

¯̄̄
= k1k1

and k1k1 ≥ k1k2 = 1. A much sharper lower bound (3.114) for 1 is derived in
art. 93 as a consequence of the Motzkin-Straus Theorem 17.

Likewise, let  be the index that minimizes
¡
 

¢2 ≥ ¡ ¢2 for any 1 ≤  6=
 ≤  . Recall that   = 0 for a regular graph. Then, the total number of walks

 in (3.28) is lower and upper bounded for even  as

¡
 

¢2 X
=1

 ≤
X
=1

¡


¢2
 ≤

¡
1 

¢2 X
=1



Invoking the number of closed walks  of length  in graph  (art. 65),  =P
=1 


, and the total number  of walks (3.28), leads to the inequality (only

for even ) ¡
 

¢2
 ≤  ≤

¡
1 

¢2
 ≤ 

where the last inequality follows from (3.33), with equality for regular graphs.

The  × 1 total walk vector N =(1 2     −1) can be written with
(3.28) as⎡⎢⎢⎢⎢⎢⎣



1

...

−2
−1

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1

1 2
... −1 

...
... · · · ...

...

−21 −22 · · · −2−1 −2

−11 −12 · · · −1−1 −1

⎤⎥⎥⎥⎥⎥⎥⎦ 
⎡⎢⎢⎢⎢⎢⎢⎣

¡
1

¢2¡
2

¢2
...¡

−1
¢2¡


¢2

⎤⎥⎥⎥⎥⎥⎥⎦
and, in matrix notation,

N =  () 

where  () is the Vandermonde matrix (A.75) in art. 224 and where the  × 1
vector  has 

2
 =

¡


¢2
as its -th component. Similarly, the closed walk vector

W = (012    −1) is written as

W =  ()
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3.6 Diameter of a graph 75

3.6 Diameter of a graph

Lemma 1 implies that
¡

¢

is non-zero if and only if node  and  can be joined

in the graph by a walk of length . Thus, if the shortest path from node  to 

consists of  hops or links, then
¡

¢

6= 0, while ¡

¢

= 0 for 1 ≤   . Art.

22 defines the diameter  of the graph  as the number of hops  =  in the longest

shortest path in  and equals  = max1≤≤;1≤≤  , where  is the hopcount

between node  and  in a connected graph (art. 21).

69. Diameter of a graph.

Theorem 11 The number of distinct eigenvalues of the adjacency matrix  is at

least equal to + 1, where  is the diameter of the graph.

First proof: Art. 21 and 22 indicate that the matrix  cannot be written

as a linear combination of 2     −1. By definition of the diameter  as
the longest shortest path, we thus conclude that the matrices 2      are

linearly independent. Art. 254 shows that the matrix , that represents the

orthogonal projection onto the eigenspace of , is a polynomial in . Thus, the

vector space spanned by 2      is also spanned by a corresponding set

of matrices , which obey  = 1{=}. Let  =
P+1

=1 , then  =

 is only zero if all  are linearly independent. The matrices  and  are

only linearly independent if they belong to a distinct eigenvalue of . The linear

independence of the set 2      thus implies that at least +1 eigenvalues

of  must be distinct. ¤

We may rephrase Theorem 11 as: “The diameter  of a graph  obeys  ≤ −1,
where  is the number of different eigenvalues of ”. The second proof may be

found easier and more elegant.

Second proof: Suppose that the adjacency matrix  has precisely  distinct

eigenvalues. Art. 228 shows that  obeys  () = , where the minimal poly-

nomial  () =
P

=0 
 has degree . Hence, we may write

¡

¢

= − 1



−1X
=0


¡

¢


(3.58)

which shows that the diameter  ≤  − 1. For, assume that    − 1, then there
is at least one pair ( ) for which

¡

¢

= 0 for 0 ≤  ≤  − 1. But, the minimal

polynomial in (3.58) then shows that also
¡

¢

= 0 and, further any

¡
+

¢

= 0

for any integer  ≥ 0, because  () =  implies that any power  of  higher

than  ≥  can be written as a linear combination of powers  with  not exceeding

. The definition of the diameter, equivalent to () 6= 0, while
¡

¢

= 0 for

1 ≤   , contradicts that    − 1. ¤

Third proof (limited to a regular graph): Let us denote the  distinct

eigenvalues of the adjacency matrix  of a regular graph  with degree  by  =
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76 Eigenvalues of the adjacency matrix

1  2  · · ·  . The Lagrange polynomial −1 () =
Q

=2
−
− of degree

 − 1 in art. 303 passes through the points ( 0) for 2 ≤  ≤  and ( 1). If the

 = |V| nodes in the set V and the  = |W| nodes in the set W in a regular graph

 with degree  are separated by at least  hops, the van Dam-Haemers inequality

(4.103) in art. 161 shows that



( − ) ( − )
≤ 0

implying that there are no nodes in  at a distance of  hops from each other, which

is equivalent to a diameter   . ¤

As an example, consider the complete graph  whose adjacency matrix has

precisely  = 2 distinct eigenvalues, 1 =  − 1 and 2 = −1, as computed in
Section 6.1. Theorem 11 states that the diameter is at most  =  − 1 = 1. Since
the diameter is at least equal to  = 1, we conclude from Theorem 11 that the

diameter in the complete graph equals  = 1, as anticipated. If there is only  = 1

eigenvalue, then the diameter is at most equal to  = 0 and this situation (e.g.

from (3.5)) corresponds to the empty graph only, where each eigenvalue  = 0.

It follows from Lemma 3 that Theorem 11 also holds for the Laplacian matrix

: If a connected graph  has  distinct adjacency or Laplacian eigenvalues, then

its diameter  is at most  − 1, i.e.  ≤  − 1.

70. Spectral upper bound for the diameter of a graph. Chung (1989) has proven:

Theorem 12 (Chung) Let  = min1≤≤ (1), then the diameter  of a graph,
in which |2| ≥ | |, is upper bounded by

 ≤
⎡⎢⎢⎢
log
³
1
2
− 1
´

log 1 − log |2|

⎤⎥⎥⎥ (3.59)

Proof: We bound
¡

¢

=
P

=1 

 () () in (3.18) as

¡

¢

≥ 1 (1) (1) −

¯̄̄̄
¯
X
=2

 () ()

¯̄̄̄
¯

because the largest eigenvalue is always positive and the Perron-Frobenius Theo-

rem 75 in art. 269 states that the eigenvector components of 1 are non-negative.

Further, we have that¯̄̄̄
¯
X
=2

 () ()

¯̄̄̄
¯ ≤

X
=2

¯̄

¯̄ ¯̄̄
() ()

¯̄̄
≤ max
2≤≤

¯̄

¯̄ X
=2

¯̄̄
() ()

¯̄̄
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where max2≤≤
¯̄

¯̄
= max

¡¯̄
2
¯̄

¯̄

¯̄¢
= |2|, because the graph features

|2| ≥ | |. Invoking the Cauchy-Schwarz inequality (art. 222),

X
=2

¯̄̄
() ()

¯̄̄
≤

vuut X
=2

|()|2
X
=2

¯̄̄
()

¯̄̄2
and the eigenvector normalization   = 1 in (A.124), such that

P
=2 |()|2 =

1− (1)2 , leads to
¯̄̄P

=2 

 () ()

¯̄̄
≤ |2|

r³
1− (1)2

´³
1− (1)2

´
so that¡


¢

≥ 1 (1) (1) − |2|

r³
1− (1)2

´³
1− (1)2

´
. The diameter  is the

smallest value of  for which
¡

¢

 0 for each element in . Requiring that

the above inequality is strictly larger than zero amounts to

µ
1

|2|
¶



r³
1− (1)2

´³
1− (1)2

´
(1) (1)

≥ 1− 2

2

which proves the theorem. ¤

Theorem 12 shows that, when 1
|2| is large implying that the spectral gap 1−2

of the graph is large, the diameter  is small. Equality in (3.59) is reached for the

complete graph, where  = 1√

, 1 =  −1 and |2| = | | = 1. Theorem 12 does

not apply to the complete bipartite graph  (Section 6.7), where  = −1 =√
 and all other eigenvalues are zero.

71. The spectral radius 1 and the diameter . Communications networks are

designed to possess a small diameter, that results in efficient transport of packets

with low end-to-end delay and packet loss. In order to be less vulnerable to epidemic

malware, the spectral radius of the graph should be minimal, which corresponds to

a high epidemic threshold, as demonstrated in Van Mieghem et al. (2009). Inspired

by those requirements, van Dam and Kooij (2007) proposed to find those graphs

with minimum spectral radius 1 given the diameter  of the graph. A few years

later, Cioabă et al. (2010) proved

Theorem 13 If  is the diameter of a graph  with  nodes, then the spectral

radius is lower bounded by

1 ≥ ( − 1)
1
 (3.60)

Moreover, Cioabă et al. (2010) showed that equality in (3.60) holds for  = 1

if and only if  is the complete graph  and for  = 2 if and only if  is the

star 1−1, the pentagon, the Petersen graph (Fig. 2.3), the Hoffman—Singleton
graph, or a putative 57-regular graph on 3250 = 572 − 1 nodes. These cases for
 = 1 and  = 2 were earlier found in van Dam and Kooij (2007).
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78 Eigenvalues of the adjacency matrix

Proof of (3.60): The diameter equals the number of hops in the longest shortest

path in the graph  and a finite diameter implies that  is connected (art. 22).

This means that each node  is reachable from another node  in  by a shortest

path possessing  hops, with  ≤ , of the form5 P∗∼ = 0 ∼ 1 ∼ 2 ∼ · · · ∼
−1 ∼ , where 0 =  and  =  (art. 6) and where each node  in the path

is different. If  = , then the shortest path P∗∼ is also a walk with  hops. If

  , then there exists a walk W∼; = 0 ∼ 1 ∼ 2 ∼ · · · ∼ −1 ∼  =  ∼
−1 ∼ −2 ∼ · · · with  hops, in which the walk segment from node  up to node

 is unique, because it is the shortest path between  and . Hence, for each node

, we can reach each other node  by a walk W∼; with  hops. Thus, there are

at least  − 1 different walks with  hops from  to another node  in . This

holds for each source node , so that the total number of walks with  hops obeys

 ≥  ( − 1). The lower bound (3.60) then follows from (3.65). ¤

Although Theorem 13 indicates that 1

(−1)
1


≥ 1 for any graph, Cioabă et al.
(2010) made the interesting claim that, for any graph class with   1 in which the

number  of nodes can grow unboundedly, there holds that

lim
→∞

1

( − 1) 1
= 1 (3.61)

They showed that their claim (3.61) is related to the degree-diameter problem that

asks for the graph with a maximum number (max) of nodes, given the maximum

degree max and the diameter . Bollobás (2004) has conjectured, for   3, that

lim
→∞

inf
(max)



max

= 1 (3.62)

Cioabă et al. (2010) demonstrated that (3.61) is true if the conjecture (3.62) is true.

3.7 The spectral radius 1

The largest eigenvalue 1 of the adjacency matrix , also called the spectral radius

of a graph , appears in many applications. In dynamic processes on graphs, the in-

verse of the largest eigenvalue 1 characterizes the threshold of the phase transition

of both virus spread (Van Mieghem et al., 2009) and synchronization of coupled os-

cillators (Restrepo et al., 2005) in networks. If the effective viral strength   1
1
,

the epidemic spreads over the network. If   1
1
, then6 the epidemic dies out.

Sharp bounds or exact expressions for 1 are desirable to control these processes.

Bounds for 2 and  in connected graphs follow from the general bounds (A.175)

5 Since the graph  is assumed to be undirected, a link between node  and +1 is denoted
by  ∼ +1, which reflects both possible directions  ¿ +1.

6 The basic reproduction number 0 = 1 separates the two epidemic phases: if 0  1, an
epidemic dies out, else it spreads. We assume here a mean-field approximation. The more
precise analysis can be found in Van Mieghem and van de Bovenkamp (2013) and Prasse et al.
(2021).
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3.7 The spectral radius 1 79

and (A.176), respectively, on eigenvalues of non-negative, irreducible, symmetric

matrices in art. 273.

Due the importance of the spectral radius in complex networks, Stevanovíc (2015)

recently collected a large variety of results, mostly bounds on 1, into a book.

We remark that the largest eigenvalue of a non-negative matrix, that is not

necessarily symmetric, also obeys the Rayleigh principle (A.130) as can be verified

from art. 251 by incorporating the Perron-Frobenius Theorem 75. Hence, most

of the deduced bounds in this Section 3.7 also apply to directed graphs, whose

adjacency matrix is generally non-symmetric.

3.7.1 Lower bounds for the spectral radius 1

72. Classical lower bound. The Rayleigh inequalities in art. 251 indicate that

1 = sup
 6=0





and that the maximum is attained if and only if  is the eigenvector of  belonging

to 1, while for any other vector  6= , it holds that 1 ≥ 
 

. By choosing the

vector  = , we obtain, with (2.5), the classical bound

1 ≥ 


=
2


(3.63)

Equality is reached in a regular graph, because the average degree is  [] = 2

= 

since  =  for each node , and because  is the largest eigenvalue of  belonging

to the eigenvector  (Theorem 8). The differences 1− [] and max−1 can be

considered as measures for the irregularity of a graph.

Combining the relation 2 =
P

=1 
2
 in (3.7) with the classical lower bound

(3.63) indicates, for any graph, that

1 ≥
X
=1

2

with equality only for a regular graph. Hence, we can determine from the spectrum

of the adjacency matrix that the graph is regular if it holds that 1 =
P

=1 
2
.

73. Variations on the Rayleigh inequality. A series of other bounds can be deduced

from the Rayleigh inequality 1 ≥ 
 

. Applying the Rayleigh inequalities to ,

invoking art. 243, and choosing  =  in Rayleigh’s inequality 1 ≥ 
2

leads, for non-negative integers  and , with the definition  =  in (3.26)

of the total number of walks to

1 ≥
2+

2

(3.64)
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For  = 0 in (3.64), we find

1 ≥
µ




¶ 1


(3.65)

The particular case of  = 2 in (3.65) becomes with 2 =  in art. 59

1 ≥

vuut 1



X
=1

2 =

q
Var [] + ( [])

2
=
2



s
1 +

Var []

( [])
2

(3.66)

Since the variance Var[] ≥ 0 and Var[] = 0 only for regular graphs, the lower

bound (3.66) is thus always better than the classical bound (3.63) for non-regular

graphs. Beside regular graphs, equality in (3.66) also occurs in complete bipartite

graphs − (Section 6.7).

74. Exact expression for the spectral radius of irregular graphs. From the inequality

(3.30) in art. 59, we deduce for irregular graphs thatµ




¶ 1




µ
2



¶ 1
2

Thus, the sequence 1



¡
2



¢ 1
2 
¡
4



¢ 1
4     is increasing7, while each term is bounded

by the spectral radius 1 and we find

lim
→∞

µ




¶ 1


= 1 (3.67)

which complements art. 58. The Fiol-Garriga inequality  
P

=1 

 in (3.41)

for   2 indicates thatµ




¶ 1




⎛⎝ 1



X
=1



⎞⎠ 1


=
¡

£

¤¢ 1

 =
kk


1


(3.68)

illustrating that
¡

£

¤¢ 1

 is increasing in , while the Hölder norm kk by (A.14)
is non-increasing in . Since lim→∞

³
1


P
=1 




´ 1


= max, we find with (3.67)

and (3.68) again the upper bound 1 ≤ max in art. 42 with equality only for

regular graphs. Combined with (3.66), it holds that
¡

£
2
¤¢ 1

2 ≤ 1  lim→∞¡

£

¤¢ 1

 . Since ( [])
1
 is continuous and increasing in real   0, there exists

one value of  ≥ 2 for irregular graphs that satisfies

1 =

⎛⎝ 1



X
=1





⎞⎠ 1


(3.69)

7 Regular graphs with degree  have 1 =




 1

=  by (3.29), independent of .
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Formula (3.69) was proved differently by Hofmeister (1988). Computations of (3.69)

on Erdős-Rényi random graphs show, for most instances, that  ∈ (2 5). Hofmeister
(1988) has proved for  ∈ N that if  = 2+1 in (3.69), then 1 is an integer and if
 = 2, then 21 is an integer. Indeed, if  =  ∈ N, then (3.69) shows that 1 ∈ Q+.
But 1 ∈ Q\Z (art. 45), so that 1 ∈ N, implying that 1 satisfies  − = 0 for

 = 1 ∈ N. If  is odd,  − = 0 has only one real zero, 1; if  is even, then

 − = 0 has two real zeros, ±1, and thus 21 ∈ N.
75. Spectral radius in subgraphs. The Interlacing Theorem 71 states that 1 is

larger than or equal to the largest eigenvalue of any subgraph  of :

1 ≥ max
all ⊂

(1 (
)) (3.70)

The lower bounds deduced in this Section 3.7, such as (3.63) and (3.66), also apply

to each individual subgraph . It is a matter of ingenuity to find that subgraph

 with highest largest eigenvalue 1 (
). The lower bound (3.70) can also be

deduced from the Rayleigh inequality by choosing zero components in the vector 

such that  = 
, where the vector  contains the non-zero components

of  and 
is the subgraph obtained by deleting those rows and columns that

correspond to the zero components in .

Examples The spectral radius of the star 1 is computed in Section 6.7 as

1
¡
1

¢
=
√
 . Since any node  in a connected graph is locally a star 1

with  + 1 nodes and 1

³
1

´
=
p
 , we find that the lower bound in (3.70)

1 ≥ max
all ∈N

³
1

³
1

´´
=
p
max

Another derivation follows from the bound
¡

¢

≤ 1 in (3.24), which holds for

any node  and any integer  ≥ 1,

1 ≥ 

r
max
1≤≤

() (3.71)

The largest eigenvalue 1 of the adjacency matrix is at least as large as the -th

root of the largest number of -hop cycles around a node in the graph. For  = 2

and with
¡
2
¢

=  in (2.20), we again find

1 ≥
p
max

with equality in the star 1−1.
If  is the largest clique in  containing  nodes, then 1 (

) =  − 1 and
(3.70) leads to

1 ≥  − 1
where  is clique number (see art. 92).

76. Rayleigh’s inequality and the walk generating function. Continuing as in
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art. 73, we propose to choose in the Rayleigh inequality 1 ≥ 
 

, the vec-

tor

 =

∞X
=0

  = ( −)
−1

 = + + 2+   

which converges for ||  −11 (art. 62). The quadratic form

 =  ( −)
−1

 ( −)
−1



is only a norm for even  = 2, 2 =
°°° ( −)

−1

°°°2
2
≥ 0 and non-

negative for all ||  −11 . Further, using the matrix norm inequality (A.25),

2

 
=

°°° ( −)
−1


°°°2
2°°°( −)

−1

°°°2
2

≤ kk22 = 21

where the last inequality follows from (A.23). The Cauchy product of power series

yields

 =

∞X
=0

 
∞X
=0

+  =

∞X
=0

⎛⎝ X
=0

−+

⎞⎠ 

=

∞X
=0

(+ 1)+  =

∞X
=0

(+ 1)+ 

We write the sum  =
P∞

=0 (+ 1)+  in terms of the generating

function  () =
P∞

=0
 in (3.35) of the total number of walks in a graph 

 () =

∞X
=0


 =

∞X
=−

+
+ = 

Ã −1X
=−

+
 +

∞X
=0

+


!

=

X
=1

−− + 
∞X

=0

+


and

 =

∞X
=0

(+ 1)+
 =





Ã
1− ()−

X
=1

−1−
!

=

¡
1− ()

¢


+

X
=2

(− 1)−−

Rayleigh’s inequality becomes, for ||  −11 ,

1 ≥ −

()


+ (1− ) () +

P−2
=0 ( − 1− )




()


+ ()
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which simplifies most for  = 1,

1 ≥
()




( ())

=

()




()


+ ()

(3.72)

This general lower bound (3.72) can be written in terms of the logarithmic derivative

of the generating function  () as
1
1
≤  + 1

 log()



.

77. Deductions from the walk generating function lower bound (3.72). Differentiat-

ing the right-hand side the Rayleigh quotient 1 () =

 

=
()




(())

in (3.72)

with respect to  gives

1 ()


=

 ()
2()

2
− 2

³
()



´2
¡


( ())

¢2
illustrating that if  ()

2()

2
− 2

³
()



´2
 0, then 1 () is increasing and

until its maximum at
1()


= 0. The solution of the differential equation

1()


= 0

as well as (3.72) with equality sign is precisely the generating function (3.38) of

regular graphs.

(a) When  = 0, (3.72) reduces to 1 ≥ 1


, which is the classical lower bound

(3.63).

(b) For small , we substitute the power series of  () up to order three in 

in the right-hand side of (3.72),

1 ≥
1 + 22 + 33

2 +
¡
3
¢

0 + 21 + 322 + (3)

Maximizing the lower bound for  yields, after a tedious calculation,

1 ≥ 03 −12 +
p
2
0

2
3 − 60123 − 32

1
2
2 + 4 (

3
13 +0

3
2 )

2 (02 −2
1 )

(3.73)

Numerical results in Table 3.1 and Fig. 8.6 show that the bound (3.73) is better than

(3.66), which is not surprising because (3.73) includes via 3 additional information

about the graph.

(c) For large, positive and real , the Rayleigh quotient is

 () =


 
=

P∞
=0 (+ 1)+ P∞
=0 (+ 1) 

= lim
→∞

P
=0 (+ 1)+ P
=0 (+ 1) 

= lim
→∞

+



lim
→∞

1 +
P−1

=0
(+1)+

(+1)+
−

1 +
P−1

=0
(+1)

(+1)
−

and

 () = lim
→∞

+



lim
→∞

1 +
+−1
(+1)+

−1 +
¡
1
2

¢
1 +

−1
(+1)

−1 +
¡
1
2

¢
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Air transport Random ER Complete bipartite

1 exact 809576 193405 1055557

bound (3.63) = 2


183079 183304 178701

bound (3.66) 427942 188005 1055557

bound (3.73) 759029 192867 1055557

Table 3.1. Comparison of a few lower bounds for 1. All networks have  = 1247

nodes. The European direct airport-to-airport traffic network is obtained from

Eurostat, while the Erd̋os-Rénji graph is defined in Section 1.5 and the complete

bipartite graph  in Section 6.7.

which illustrates that  () = lim→∞
+


= 1 for sufficiently large, positive

, because then the last limit tends to 1. Although the series  =
P∞

=0
 

only converges for ||  −11 , the Rayleigh quotient  () =

 

exists for all

non-negative real .

78. Another improvement of the classical bound (3.63) in terms of the total number

(3.26) of walks  is derived in Van Mieghem (2007) and improved in Walker and

Van Mieghem (2008),

1 ≥ 1


+ 2

µ
3

2
− 12

2
+

3
1

23

¶
−20 +(−4) (3.74)

where  ≥  , 0 = 
√
 ,

 =
1√


max
1≤≤

( +
X
6=

| |) (3.75)

Since 1 =  = 2, the first term in (3.74) is the classical bound (3.63). The

Lagrange series (3.74) with terms containing powers of 
−2
0 for   0 measures the

irregularity 1 − [] of the graph.

The basic idea in Walker and Van Mieghem (2008) starts from the matrix func-

tion  () of any symmetric matrix  , where  () is an arbitrary increasing

function in the real number , whose inverse function −1 () around 1


exists.

A function of a matrix (see art. 232) can be written in terms of a Taylor series,

 () =
P∞

=0 
, where  is a scalar, properly chosen to guarantee conver-

gence of the Taylor series. The classical bound (3.63) applied to the matrix  ()

with largest eigenvalue  (1 ()) (see art. 257) yields

  ()


≤  (1 ())
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3.7 The spectral radius 1 85

Since −1 () is also increasing in , it holds that

1 () ≥ 1

−1

µ
  ()



¶
=
1


−1

Ã ∞X
=0







!
(3.76)

where the inverse function −1 can be expanded in a Langrange series. The func-
tion  () =  returns the classical bound (3.63). An interesting property of (3.76)

for positive semidefinite matrices is that any real increasing function  (), dif-

ferent than  () = , provides a tighter lower bound than the classical bound

(3.63). Indeed, using 


≥
³



´
for any integer  as demonstrated in

art. 61, we find that
P∞

=0 



 ≥ P∞=0  ³



´
= 

³




´
and

1

−1

³P∞
=0 





´
≥ 


, which demonstrates the property.

3.7.2 Upper bounds for the spectral radius 1

79. A sharper upper bound than 1 ≤
q
2
¡
1− 1



¢
in art. 42

1 ≤
s
2

µ
1− 1



¶
(3.77)

where  ≤  is the clique number (art. 92), is deduced by Nikiforov (2002),

using the Motzkin-Straus Theorem 17 in art. 93. Squaring (3.3) and applying the

Cauchy-Schwarz inequality (A.72) yields

21 = 4

Ã
X
=1

(1)+ (1)−

!2
≤ 4

X
=1

(1)
2
+ (1)

2
−

After substituting the vector component + → (1)
2
+ into the Motzkin-Straus

Theorem 17, so that the requirement 1 =
P

=1  =
P

=1 (1)
2
 is satisfied, we

find (3.77).

More generally, combining Theorem 109, art. 42 and art. 73 gives for any integer

 ≥ 1, µ
2



¶ 1
2

≤ 1 ≤ min
⎧⎨⎩
Ã

2

1 + ( − 1)1−2
! 1

2

 max

⎫⎬⎭ (3.78)

where  is the number of closed walks with  hops. For  = 1, (3.78) reduces to

2



s
1 +

Var []

( [])
2
≤ 1 ≤ min

(r
2 ( − 1)


 max

)
(3.79)

When we assume that
¯̄̄

1

¯̄̄
 1 for all 2 ≤  ≤  , which, as mentioned in
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art. 73, excludes bipartite graphs, the definition of  in art. 65 indicates that

 = 1

⎧⎨⎩1 +
X
=2

µ


1

¶⎫⎬⎭  1

(
1 + ( − 1)

¯̄̄̄
max (2  )

1

¯̄̄̄)

This implies that 
1

 is decreasing in , because (1 + )
1

is for   0 and, in

addition,
³
max(2 )

1

´
is exponentially decaying in . Hence, lim→∞

1

 = 1.

While the left-hand side of (3.78) is increasing in  (art. 73), the right-hand side

is decreasing in . Together, they provide increasingly sharp bounds for 1 when 

increases.

An upper bound, related to the lower bound (3.71),

1 ≤ max
≥1



vuut max
1≤≤

X
=1

()

follows from (A.26) and (A.21). Since  =
P

=1 (
) , the above upper bound

is different from (3.78).

80. Bounds for connected graphs. A connected graph has an adjacency matrix that

is irreducible (Section 10.6). We apply the bounds (A.171) in art. 270 to 2 by

choosing  = ,

min
1≤≤

¡
2

¢

≤ 21 ≤ max

1≤≤
¡
2

¢


where
¡
2

¢

= () =

P
=1  =

P
∈neighbors()  . Thus,

min
1≤≤

s X
∈neighbors()

 ≤ 1 ≤ max
1≤≤

s X
∈neighbors()

 (3.80)

Invoking the basic law of the degree (2.3), we have¡
2

¢

= 2−  −

X
 ∈neighbors()

 ≤ 2−  − ( − 1− )

where the inequality arises from the connectivity of the graph, which implies that

the degree  of each node  is at least one. Thus, max1≤≤
¡
2

¢

= 2− +1

and this maximum is reached in the complete graph  and in the star 1−1.
Hence, for any connected graph, we obtain the bound

1 ≤
√
2− + 1 (3.81)

which is sharper than 1 ≤
q
2− 2


in art. 42, but the latter bound did not

assume connectivity of the graph. In particular, for any tree where  =  − 1, the
upper bound (3.81) shows that 1 ≤

√
 − 1. When the maximum degree in a tree

is known, this bound is complemented by Theorem 19 in art. 95.
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When choosing  =  in (A.171) in art. 270, we obtain a companion of (3.80)

for connected graphs:

min
1≤≤

1



X
∈neighbors()

 ≤ 1 ≤ max
1≤≤

1



X
∈neighbors()

 (3.82)

81. Upper bounds for 1 in irregular graphs. Since the largest eigenvalue in a

regular graph with degree  equals 1 = max = , we omit regular graphs here.

We consider the Laplacian matrix  = ∆ −  with eigenvalues 1 ≥ 2 ≥ · · · ≥
 = 0 and their corresponding normalized eigenvectors 1 2     = √


such

that   = 1. The definition of an eigenvalue in terms of its corresponding,

normalized eigenvector shows that

1 = 1 1 =

X
=1

 (1)
2
 − 2

X
=1

(1)+ (1)− =

X
=1

((1)+ − (1)−)2

where the last equality follows from art. 102. Similarly, using Rayleigh’s principle

(art. 251), we have the bound

1 ≥ 1 =

X
=1

 (1)
2
 − 1 () =

X
=1

((1)+ − (1)−)2

from which we deduce that

max − 1 () =

X
=1

(max − ) (1)
2
 +

X
=1

((1)+ − (1)−)2

The last sum can be lower bounded in a similar vein as in art. 138 by considering a

path as a subgraph of a connected graph. After bounding skillfully the right-hand

side of the last equality, Stevanovíc (2004) derived the upper bound for irregular

graphs

1  max − 1

2 (max − 1) 2max
Stevanovíc’s upper bound has been improved several times. A discussion of several

improvements is given in Stevanovíc (2015, p. 54-62). Using the diameter  of the

graph , the two best improvements so far are

max − 1 
1


(3.83)

due to Cioabă (2007) and

max − 1 
1

( − min) +
1

max−[] −
¡

2

¢ (3.84)

due to Shi (2009). For more regular graphs, Cioabă’s (3.83) bound is better, while

Shi’s (3.84) expression is sharper for more irregular graphs. Both proofs use similar

ingredients as in Section 4.3, in particular art. 138, and are omitted.
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3.8 Eigenvalue spacings

The difference  − +1, for 1 ≤  ≤  − 1, between two consecutive eigenvalues
 and +1 of the adjacency matrix  is called the -th eigenvalue spacing of .

Only basic and simple, but general relations are deduced. Higher order differences

(see art. 306) are not considered, nor the combination with the powerful Interlacing

Theorem 71 in art. 263. Recently, Kollár and Sarnak (2021) study eigenvalue gap

intervals in cubic graphs, connected regular graphs with degree  = 3, and list gap

intervals
¡
2
√
2 3
¢
in cubic Ramanujan graphs, [−3−2) in line graphs and (−1 1)

in planar graphs.

82. Spectral gap. The difference between the largest eigenvalue 1 and second

largest 2, called the spectral gap, is never larger than  :

1 − 2 ≤  (3.85)

Indeed, since 1  0 as indicated by the bounds (3.79), it follows from (3.5) that

0 =

X
=1

 = 1 +

X
=2

 ≤ 1 + ( − 1)2

such that 2 ≥ − 1
−1 . Hence,

1 − 2 ≤ 1 +
1

 − 1 =
1

 − 1
Art. 42 states that the largest possible eigenvalue is 1 =  − 1, attained in the
complete graph, which proves (3.85). The equality sign in (3.85) occurs in case

of the complete graph (see Section 6.1). When a link is removed in the complete

graph, the spectral gap drops by at least 1 (see Section 6.10). The spectral gap

plays an important role in the dynamics of processes on graphs (art. 99) and

it characterizes the robustness of a graph due to its relation with the algebraic

connectivity (art. 110 and Section 4.3).

83. Eigenvalue spacings. The sum over all spacings between two consecutive

eigenvalues equals

−1X
=1

( − +1) = 1 −  (3.86)

Since each spacing  − +1 ≥ 0, the largest possible spacing occurs when all

but one spacing is zero, in which case max1≤≤−1  − +1 is equal to 1 −  .

However, each spacing consists of two consecutive eigenvalues, which implies that

 = 2 or −1 = 1. Art. 82 shows that the largest possible spacing is attained

in the complete graph and is equal to  , the largest possible spectral gap.

Let ∆ denote an arbitrary spacing between two consecutive eigenvalues, then

the telescoping series (3.86) shows that its average equals

 [∆] =
1 − 

 − 1 ≤
2max

 − 1
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3.8 Eigenvalue spacings 89

Abel’s partial summation

X
=1

  =

−1X
=1

Ã
X
=1



!
( − +1) + 

Ã
X
=1



!
(3.87)

applied to
P

=1  = 0 in (3.5) shows that

−1X
=1

 ( − +1) = −

The inequality (Hardy et al., 1999)

min
1≤≤




≤ 1 + 2 + · · ·+ 

1 + 2 + · · ·+ 
≤ max
1≤≤




(3.88)

where 1 2      are positive real numbers and 1 2      are real numbers,

yields  =  ( − +1) and  =  bounds for the minimum and maximum

spacing between consecutive eigenvalues of the adjacency matrix :

0 ≤ min
1≤≤−1

( − +1) ≤ −2
 − 1 ≤ max

1≤≤−1
( − +1) (3.89)

Relation (A.176) in art. 273 implies that

− ≤
»


2

¼
such that the minimum spacing is never larger than

min
1≤≤−1

( − +1) ≤ 

 − 1
With Var[] = 2


in art. 49, Lupas’ upper bound (B.72) in art. 345 is

min
1≤≤

| −  | ≤ 2
s

¡
−1
3

¢ ≤ 2
√
3

 − 1
p
 []

84. Inequalities for  . Besides the general bounds in art. 273, new bounds for

the smallest eigenvalue  of the adjacency matrix  can be deduced, when known

relationships are rewritten in terms of the spacings.

Partial summation (3.87) of the total number of closed walks (3.52) yields, for

any integer 0 ≤  ≤ ,

 =

X
=1

 =

−1X
=1

Ã
X

=1



!
(− − −+1 ) + −  (3.90)

while the generalization of the telescoping series (3.86) is, for any ,

−1X
=1

¡
 − +1

¢
= 1 −  (3.91)
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90 Eigenvalues of the adjacency matrix

The difference  − +1 can be negative when eigenvalues are negative and  is

even. The sum
P

=1 

 is always positive for    , which is immediate for even

. For odd  and denoting by  the index such that  ≥ 0 and +1  0, we can

write for   

X
=1

 =

X
=1

 +

X
=+1



where the first sum is strictly positive and maximal
P

=1 

 ≥

P
=1 


 for any

1 ≤  ≤  and the second is strictly negative. The second sum decreases with

increasing  and is thus larger than or equal to
P−1

=+1 

 . However, in that

extreme case where  =  − 1, the sumP−1
=1  =−  0. The minimum

value of the sum
P

=1 

 is attained for even  at  = 1 and for odd  at either

 = 1, if 1   −  , or at  =  − 1, if 1   −  . If  = 1, the

minimum occurs at  =  − 1 provided 1  | |, which excludes, as in art. 73,
bipartite graphs.

With this preparation, the inequality (3.88), with  = 
P

=1 

 ,  = − −

−+1  0 and  − is odd, becomes, using (3.90) and (3.91),

 − − 

−1 − −

≥ min
1≤≤−1

X
=1

 = min ( −   

1 ) 1{ is odd}+


1 1{ is even}

from which we arrive at the bound, for even  and for odd  provided− 

1 ,

 − 1
 − 1

≥ − (3.92)

and, for odd  provided  −   1 ,

 − 
 − 

≥ −1 (3.93)

For example, for − = 1 and excluding bipartite graphs, (3.93) reduces for  = 2

and  = 1 and using (3.7) to
2−2
− ≥ 1, from which the lower bound follows

 ≥ 1
2

µ
1 −

q
21 + 8

¶
For  = 3 and  = 2, and using (3.8), (3.92) generates the upper bound

6N − 31
2− 21

≥ 

Since we can only compute the sum
P−1

=1

³P
=1 




´
for  = 0, the inequality

(3.88), with  = (

 −+1) and  = , yields for all integer  ≥ 0, using (3.90),

min
1≤≤−1

¡
 − +1

¢ ≤ 2 ¡ −
¢

 ( − 1) ≤ max
1≤≤−1

¡
 − +1

¢
(3.94)
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3.9 Adding or removing nodes or links 91

which is the generalization of (3.89).

3.9 Adding or removing nodes or links

This section relates the adjacency eigenvalues of the original graph to those in

the resulting graph after topology changes such as node and link additions and

removals.

85. Addition of a node to a graph. When node  + 1 is added to a graph  to

form the graph +1, the adjacency matrix of the latter is expressed as

+1 =

"
 ×1¡


¢
1× 0

#
(3.95)

where ×1 is the zero-one connection vector of the new node  + 1 to any other

node in  . The degree of node  + 1 is +1 =  . The matrix (3.95) is

a special case of (A.154) in art. 259. The analysis in art. 259-261 and art. 264

readily applies to relate the spectrum of  and +1.

Suppose that  is an eigenvector of the adjacency matrix  with eigenvalue

, then  = max ( ) = 1 by the Perron-Frobenius Theorem 75 because  has

non-negative components8. Hence, if  is the eigenvector belonging to the largest

eigenvalue, then  = 1 and ( − )
−1

 = (1 − )
−1

 for  6= 1 such

that

 ( − )
−1

 =
+1

1 − 

The general determinant equation (A.157) becomes

det (+1 − ) =
¡
2 − 1− +1

¢ det ( − )

1 − 

Hence, if  is the (unscaled) eigenvector of  belonging to the largest eigenvalue

whose norm is kk22 =   = +1, then the spectrum of +1 consists of all

eigenvalues of  , except for  = 1 and two new eigenvalues,

1

2

Ã
1±

s
1 + 4

+1

21

!
In other words, the largest eigenvalue 1 of  is split up into a slightly larger

one and a smaller one with strength related to the degree +1. Such a vector

 exists, for example, when  =  and  is the adjacency matrix of a regular

graph (art. 55). The node  +1 is then the cone of the regular graph with degree

+1 =  (see art. 86 and art. 166 for the Laplacian spectrum of the cone).

Moreover, the analysis also holds for weighted, undirected graphs.

8 If  has zero components, then  is reducible, which implies that the graph  is disconnected.
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92 Eigenvalues of the adjacency matrix

86. Cone of a graph. Invoking the Schur complement (A.59), we obtain the

alternative expression for the determinant

det

∙
 −  

 −
¸
= −det

µ
 −  +





¶
(3.96)

For any complex number , the determinant det (+1 − ) in (3.95) can be

split into two others by (A.32):

det

∙
 −  

 −
¸
= det

∙
 −  

 −  −− 

¸
+ det

∙
 −  

 

¸
When choosing  = , then

det

∙
 −  

 −
¸
= −det

∙
 −  

01× + 

¸
+ det

∙
 −  

 

¸
= − (+ ) det ( − )−  det

µ
 −  +





¶
where the Schur complement (A.59) is used. The particular case of the cone, where

 = , then reduces, with  =  , to

det (+1 − ) =  det

µ
 − 1


 − 

¶
− (+ ) det ( − ) (3.97)

Since the adjacency matrix of the complement  equals  =  −  −, choosing

 = 1 in (3.97) results in

det (+1 − ) = (−1) det (
 + (+ 1) )− (+ 1) det ( − )

When a node that connects to all other nodes in  is added such that  = ,

the resulting graph +1 is called the cone of  . The cone is always a con-

nected graph. The cone construction is useful to convert a reducible matrix into

an irreducible one, or to connect a graph with several disconnected clusters of com-

ponents. An interesting application occurs in Google’s PageRank as discussed in

Van Mieghem (2014, pp. 251-255).

87. Removing  nodes from a graph. Let N denote the set of the  nodes

that are removed from , and (N ) = \N is the resulting graph after the

removal of  nodes from . We can always relabel the nodes, without affecting

the eigenvalues (art. 239), in such a way that the adjacency matrix  of  has the

form

 =

∙
1 

 2

¸
where 1 is the adjacency matrix of (N ) and 2 is the adjacency matrix of

the removed subgraph on  nodes. Lemma 10 shows that 1 ()  1 (1) and

1 ()  1 (2) for   0, provided the graph is connected, else the upper bound

is not strict. We assume here that  is connected. Invoking (A.152) in art. 258
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3.9 Adding or removing nodes or links 93

where 1 is the eigenvector of  belonging to 1 () and writing out the quadratic

form leads to

1 ()  1 (1) ≥
1 ()

³
1− 2P∈N

(1)
2


´
+
P

∈N

P
∈N

(1)(1)

1−P∈N
(1)

2


(3.98)

which sharpens9 the inequality in Li et al. (2012), where the denominator is absent.

The upper bound in (3.98) of 1 (1) states that the spectral radius 1 of a graph

 is always larger than or equal to the largest eigenvalue of any subgraph  of ,

1 ≥ max
all ⊂

(1(
))

which is another proof for (3.70) in art. 72. If only  = 1 node is removed, then

(3.98) simplifies, because  = 0, to

1 ()  1
¡
\{}

¢ ≥ 1 ()
1− 2 (1)2
1− (1)2

(3.99)

The highest lower bound in (3.99) occurs for the removal of node  with smallest

principal eigenvector component, which is positive in a connected graph (art. 269).

The addition of a node to a graph  was discussed in art. 85. In particular,

when +1 is the cone of a regular graph  , the spectral radius 1(+1) of

+1 equals
1( )

2

³
1 +

q
1 + 4 

1()2

´
, where 1( ) is the spectral radius of

 and  =  is the degree of the added cone node. Hence, the increase of the

spectral radius is related to the degree . The lower bound in (3.99) underlines the

interpretation of a principal eigenvector component as an importance or centrality

measure (see Section 8.7.1). For, the more important the node  is, the higher the

value of (1), and the larger the possible decrease in spectral radius when this

node  is removed.

Applying (A.153) and interlacing (art. 263) leads to

 () ≤  (1) ≤

³
1− 2P∈N

( )
2


´
 () +

P
∈N

P
∈N

( )( )

1−P∈N
( )

2


(3.100)

which sharpens the upper bound in Xing and Zhou (2013).

88. Removing  links from a graph. After removing the set L of the  links

from , the resulting graph is (L) = \L. The adjacency matrix (L) of
(L) is still a symmetric matrix. The eigenvector 1 of (L), corresponding
to the largest eigenvalue 1((L)) in the graph (L), is normalized such that
1 1 = 1. Let  be a base vector in the  -dimensional space, where the -th

component equals () =  and  is the Kronecker delta. Then, the adjacency

9 A similar observation was made in Stevanovíc (2015, p. 42).
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94 Eigenvalues of the adjacency matrix

matrix that represents the single link between nodes  and  equals

̂ = 

 + 


 (3.101)

Thus, ̂ equals the zero matrix, except that
³
̂

´

=
³
̂

´

= 1. Clearly,

det
³
̂ − 

´
= (−1) −2

¡
2 − 1¢, such that the largest eigenvalue of ̂ is

1. For any vector , we have

 ̂ = 
¡



 + 




¢
 =  


  +  


  = 2 (3.102)

Art. 44 shows that 2 ≤ 1.
After these preliminaries, we now provide a general bound on the difference

between the largest eigenvalues in  and (L), where  links are removed.

Lemma 4 For any graph  and (L) = \L, it holds that

2
X
∈L

(1)+ (1)− ≤ 1 ()− 1 ((L)) ≤ 2
X
∈L

(1)+ (1)− (3.103)

where 1 and 1 are the eigenvectors of  and  corresponding to the largest

eigenvalues 1 () and 1 (), respectively, and where a link  joins the nodes 
+

and −.

Proof: Since  = −P∈L ̂+− where the left-hand side (or start) of the

link  is the node + and the right-hand side (or end) of the link  is the node −

and with the normalization 1 1 = 1, art. 44 shows that

1 () = 1 1 = 1

Ã
 +

X
∈L

̂+−

!
1 = 11 +

X
∈L

1 ̂+−1

Using (3.102) yields 1 ̂+−1 = 2 (1)+ (1)− and we arrive at

1 () = 11 + 2
X
∈L

(1)+ (1)−

The Rayleigh principle (art. 251) states that, for any normalized vector  with

 = 1, it holds that  ≤ 1 (), where equality is only attained if  equals

the eigenvector of  belonging to 1 (). Hence, using 11 ≤ 1 () leads

to

1 () = 11 + 2
X
∈L

(1)+ (1)− ≤ 1 () + 2
X
∈L

(1)+ (1)−

from which the upper bound in (3.103) is immediate. When repeating the analysis

from the point of view of  rather than from , then

1 () = 1 1 = 1

Ã
−

X
∈L

̂+−

!
1 = 1 1 − 2

X
∈L

(1)+ (1)−
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3.9 Adding or removing nodes or links 95

By invoking the Rayleigh principle again, we arrive at the lower bound. ¤

For connected graphs  and , it is known that 1 () − 1 ()  0 (see

Lemma 10). The same conclusion also follows from Lemma 4 because the Perron-

Frobenius Theorem 75 states that all vector components of 1 (and 1) are posi-

tive in a connected graph . Lemma 4 indicates that, when those  links are

removed that maximize 2
P

∈M
(1)+ (1)− , then the upper bound in (3.103)

is maximal, which may lead to the largest possible difference 1 () − 1 ().

However, those removed links do not necessarily also maximize the lower bound

2
P

∈M
(1)+ (1)− . Hence, the greedy strategy of removing consecutively the

link  with the highest product (1)+ (1)− is not necessarily guaranteed to lead

to the overall optimum. The fact that the problem to find  links in , whose

removal minimizes 1 (), is NP-hard as proved in Van Mieghem et al. (2011),

underlines this remark.

89. Graphs that optimize the spectral radius. Given the class G of all graphs with
 nodes and  links, which graph in this class has the lowest, respectively, highest

spectral radius? The first question is answered in Theorem 14. Surprisingly, the

second problem of finding the connected graph with the largest spectral radius in

that class G turns out to be difficult.

Theorem 14 Among all graphs  with  nodes and  links, the regular graph has

the lowest spectral radius.

Proof: We give two proofs. (a) Let  be the adjacency matrix of a regular

graph and consider, with the definition (3.101),e = + ̂ − ̂

which is the adjacency matrix of the graph, constructed from the regular graph

by adding the link ( ) and removing the link ( ). After applying the Rayleigh

inequality (art. 251), we obtain

1

³ e´ ≥  e


= 1 ()

where we have used 
³
̂ − ̂

´
 = 0, which follows from (3.102) and the fact

that  is the eigenvector belonging to the largest eigenvalue of the adjacency matrix

 of a regular graph (Theorem 8). The argument also shows that any construction

leading from  to e by adding and removing links from a regular graph maintains

the inequality 1

³ e´ ≥ 1 (), because 

³P



n
̂ − ̂

o´
 = 0.

(b) Theorem 14 follows directly from the inequality (3.66), because Var[] = 0

for a regular graph and equality in (3.66) is only reached for a regular graph. ¤

We now discuss the second problem. Among all graphs  with  nodes and 

links, Rowlinson (1988) proved that the graph with largest spectral radius consists

of a clique and a node adjacent to at least one node of the clique, possibly all, and
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96 Eigenvalues of the adjacency matrix

a certain number of isolated nodes. Thus, when  and  is fixed, there is only

one such graph that maximizes the spectral radius. However, when we require, in

addition, that the graph must be connected, the problem becomes more difficult as

outlined by Simíc et al. (2010). The general subclass of connected graphs in G that
maximizes the spectral radius are nested split graphs. The set of nodes in a split

graph can be divided into a coclique and a clique (art. 92) with some cross links

joining a node from the coclique to a node in the clique. Simíc et al. (2010) draw

the structure of a connected nested split graph and they provide a set of lower and

upper bounds for the spectral radius of nested split graphs.

90. A link joining two disjoint graphs. The graphs 1 and 2 are disjoint graphs

implying that the nodal set N1 of 1 and N2 of 2 are disjoint sets. Let  = |N1|
and  = |N2|. Consider the graph  that is created after connecting the disjoint

graphs 1 and 2 by one link. The link  =  ∼  that connects the separate

graphs 1 and 2 is the link between nodes  ∈ N1 and  ∈ N2. The corresponding
adjacency matrix of the graph  is

 =

"
(1

)×
¡





¢
×¡





¢
× (2

)×

#
where the nodal set N1 is numbered from 1 to  and the set N2 from  + 1 to

+ and where  is an × 1 basic vector and  is an × 1 basic vector. The
× matrix 


 has zero elements, except for the element on row  and column

 that equals 1. This matrix can be written as a Kronecker product (art. 286) as



 =  ⊗  .

Theorem 15 (Heilbronner) The characteristic polynomial  () of the ad-

jacency matrix  of the graph  consisting of two disjoint graphs 1 and 2
connected by a link between the nodes  ∈ 1 and  ∈ 2 is

 () = det ( − )

= det (1
− ) det (2

− )− det ¡1\{} − 
¢
det

¡
2\{} − 

¢
(3.104)

Theorem 15 appears in Cvetkovíc et al. (1995, Section 2.3) and is attributed to

Heilbronner (1953). We give our own proof and show below that generalizations to

graphs that connect two disjoint graphs by two and more links are not obvious to

derive.

Proof: The characteristic polynomial of  is

det ( − ) =

¯̄̄̄
¯ (1

− )×
¡





¢
×¡





¢
× (2

− )×

¯̄̄̄
¯

Invoking the Schur complement (A.57) yields

det ( − ) = det (1
− ) det

³
2

−  − 

 (1

− )
−1





´
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3.9 Adding or removing nodes or links 97

For any ×  matrix  , it holds that 

  


 = 


 , which equals the zero

matrix, except that the -th diagonal element is . Thus,



 (1

− )
−1



 = (1

− )
−1
 


 =

det
¡
1\{} − 

¢
det (1

− )





where we have used (A.52) and where \ {} represents the graph  from which

node  and all incident links are removed. Hence,

det ( − ) = det (1
− ) det

Ã
2

−  − det
¡
1\{} − 

¢
det (1

− )





!
(3.105)

and

 +
det

¡
1\{} − 

¢
det (1

− )



 = diag

Ã
      +

det
¡
1\{} − 

¢
det (1

− )
      

!
Using the column addition property of the determinant (A.32) in art. 209, we can

write the last determinant in (3.105) as

 = det

Ã
2

−  − det
¡
1\{} − 

¢
det (1

− )





!

= det (2
− ) + det

Ã
2:col =0 − diag

Ã
    

det
¡
1\{} − 

¢
det (1

− )
     

!!

= det (2
− )− det

¡
1\{} − 

¢
det (1

− )
det

¡
2\{} − 

¢
so that (3.105) reduces to (3.104). ¤

For the special case where the graph 2 = {} is a single node connected to node
 in 1, (3.104) reduces to

 () = −det
¡
\{} − 

¢− det ¡\{} − 
¢

(3.106)

which can be computed directly by expanding det ( − ) in cofactors along row

 using Theorem 59. Formula (3.106) is useful for graphs with degree 1 nodes (like

node  here), in particular, in trees as shown in Section 6.4 for the path graph  .

If the link ( ) is absent, then the last sum in (3.104) is absent as well and (3.104)

reduces to the well-known case of the characteristic polynomial of two disjoint

graphs (art. 116). The largest eigenvalue of two disjoint graphs is 1 (1 +2) =

max (1 (1)  1 (2)), where  = 1 + 2 is the direct sum of two graphs

1 (N1L1) and2 (N2L2) where  (N L) satisfiesN = N 1∪N2 and L = L1∪L2.
By the Interlacing Theorem 71, we know that 1 (1) ≥ 1

¡
1\{}

¢
and 1 (2) ≥

1
¡
2\{}

¢
, so that the largest zero of the second polynomial in (3.104) obeys

1
¡
1\{} +2\{}

¢
= max

¡
1
¡
1\{}

¢
 1

¡
2\{}

¢¢ ≤ max (1 (1)  1 (2))
The zeros of the characteristic polynomial  () lie at the intersections of
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98 Eigenvalues of the adjacency matrix

det (1
− ) det (2

− ) and det
¡
1\{} − 

¢
det

¡
2\{} − 

¢
. Since the

eigenvalues of 1\{} interlace those of 1
, the zeros of  are, in general, dif-

ferent from either of the zeros of the polynomials in (3.104). The sign of  ()

evaluated at  = 1 (1 +2) equals (−1)+−1, which is minus the sign of the sec-
ond polynomial for →∞. The sign of the first polynomial for →∞ is (−1)+,
which shows that the largest eigenvalue 1 () is larger than 1 (1 +2). The

adjacency matrix that represents the single link between node  and  equals



 +


 , whose largest eigenvalue is 1

¡



 + 




¢
= 1. Lemma 7 shows that

1 () ≤ 1 (1 +2) + 1. In conclusion, the largest eigenvalue of  is bounded

by

1 (1 +2)  1 () ≤ 1 (1 +2) + 1 (3.107)

91. Two links joining two disjoint graphs. Only the addition of one link between

the disjoint graphs 1 and 2 leads to a simple expression as (3.104). Indeed,

consider the addition of an additional link ( ) between 1 and 2. Then,

 =

"
(1

)×
¡



 + 




¢
×¡



 + 




¢
× (2

)×

#
and the Schur complement (A.57) indicates that

det ( − )

det (1
− )

= det
³
2

−  − ¡ +  



¢
(1

− )
−1 ¡



 + 




¢´
Since ¡



 +  




¢

¡



 + 




¢
= 


 + 


 + 


 + 




and invoking the structure of the inverse of a matrix (art. 262), we need to interpret

(1
− )

−1
 = (−1)+ det

¡
1\ row \ col − 

¢
det (1

− )

The adjacency matrix 1\ row \ col is not symmetric anymore and represents a
graph where the out-degree links of node  and the in-degree links of node  are

removed. A node is only removed if all its in- and out-degree links are removed.

Thus,

∗ = − ¡ +  



¢
(1

− )
−1 ¡



 + 




¢
= −det

¡
1\{} − 

¢
det (1

− )



 −

det
¡
1\{} − 

¢
det (1

− )





− (−1)+ det
¡
1\ row \ col − 

¢
det (1

− )





− (−1)+ det
¡
1\ row \ col − 

¢
det (1

− )





Since the matrices 

 and 


 contain off-diagonal elements, the matrix ∗

                     

https://doi.org/10.1017/9781009366793.006
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.006
https://www.cambridge.org/core


3.9 Adding or removing nodes or links 99

has four non-zero elements on rows and columns with the same indices  and .

Moreover, as \ row \ col =
¡
\ row \ col

¢
for a symmetric matrix  and det =

det
¡

¢
, we find that det

¡
1\ row \ col − 

¢
= det

¡
1\ row \ col − 

¢
and

that ∗ is a symmetric matrix, with non-zero elements

∗ = −
det

¡
1\{} − 

¢
det (1

− )

∗ = −
det

¡
1\{} − 

¢
det (1

− )

∗ = ∗ = − (−1)+
det

¡
1\ row \ col − 

¢
det (1

− )

When writing the matrix ∗ as a row of column vectors,

 =
£
1 · · ·  · · ·  · · · 

¤
all vectors  are zero, except for  and  that both contain two non-zero elements

on row  and row .

Using the column addition property of the determinant (A.32) in art. 209, we

obtain

det (2
−  +∗) = det (2

− ) + det
³
2

− |
´

+ det
¡
2

− |
¢
+ det

³
2

− | 
´

where in the matrix 2
− | , the -th column is replaced by the vector 

and 2
− |  has column  and  replaced by the vector  and the vector

, respectively. Expanding the determinant det
³
2

− |
´
in cofactors of the

-th column yields

det
³
2

− |
´
= ∗ det

¡
2\{} − 

¢
+(−1)+∗ det

¡
2\ row \ col − 

¢
and, similarly,

det
¡
2

− |
¢
= ∗ det

¡
2\{} − 

¢
+(−1)+∗ det

¡
2\ row \ col − 

¢
Expanding det

³
2

− | 
´
first in cofactors of the -th column gives

det
³
2

− | 
´
= ∗ det

³
2\{} − 

¯̄


´
+ (−1)+∗ det

³
2\ row \ col − 

¯̄


´
The determinant det

³
2\{} − 

¯̄


´
contains a single element on the -th row

and column so that det
³
2\{} − 

¯̄


´
= ∗ det

¡
2\{} − 

¢
and, similarly,

taking into account the sign due to size reduction,

det
³
2\ row \ col − 

¯̄


´
= (−1)+−1∗ det

¡
2\{} − 

¢
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100 Eigenvalues of the adjacency matrix

Collecting all pieces in det ( − ) = det (1
− ) det (2

−  +∗) and
using det

¡
2\ row \ col − 

¢
= det

¡
2\ row \ col − 

¢
yields

det ( − ) = det (1
− ) det (2

− )

− det ¡1\{} − 
¢
det

¡
2\{} − 

¢
− det ¡1\{} − 

¢
det

¡
2\{} − 

¢
− 2 (−1)+++ det ¡1\ row \ col − 

¢
det

¡
2\ row \ col − 

¢
+
det

¡
1\{}−

¢
det

¡
1\{}−

¢−det2 ¡1\ row \ col−
¢

det (1
− )

× det ¡2\{} − 
¢

Symmetry in  — we can repeat the analysis with 1 and 2 interchanged by

(A.59) — requires that

 = det
¡
1\{} − 

¢
=
det

¡
1\{} − 

¢
det

¡
1\{} − 

¢− ¡det ¡1\ row \ col − 
¢¢2

det (1
− )

(3.108)

The identity (3.108) can be used to compute the characteristic polynomial  ()

of a graph when the characteristic polynomials \{} (), \{} (), \{} ()

and det
¡
1\ row \ col − 

¢
are easier to determine, due to the flexibility to choose

an arbitrary pair of different nodes  and  of . In fact, (3.108) is a special case

of (A.51) for symmetric matrices, which in turn is a special case of Jacobi’s famous

Theorem 61 in art. 214. Invoking identity (3.108), we finally arrive at

Theorem 16 The characteristic polynomial  () of the adjacency matrix  of

the graph  consisting of two disjoint graphs 1 and 2 connected by two different

links ( ) and ( ), where the nodes   ∈ 1 and   ∈ 2, is given by

det ( − ) = det (1
− ) det (2

− )

− det ¡1\{} − 
¢
det

¡
2\{} − 

¢
− det ¡1\{} − 

¢
det

¡
2\{} − 

¢
− 2 (−1)+++ det ¡1\ row \ col − 

¢
det

¡
2\ row \ col − 

¢
+ det

¡
1\{} − 

¢
det

¡
2\{} − 

¢
(3.109)

The method can be generalized to any number of links between two disjoint

graphs, although the resulting expression will be prohibitively complex. If  = ,
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3.10 Additional properties 101

then (3.108) shows that det
¡
1\{} − 

¢
= 0 and (3.109) reduces to

det ( − ) = det (1
− ) det (2

− )− det ¡1\{} − 
¢

× ©det ¡2\{} − 
¢
+ det

¡
2\{} − 

¢
+2 (−1)+ det ¡2\ row \ col − 

¢o
If  =  and  = , then (3.109) reduces to Heilbronner’s formula (3.104).

3.10 Additional properties

92. Cliques and cocliques. A clique of size  in a graph  with  ≥  nodes is

a set of  pairwise adjacent nodes. Only when  =  or the clique is a disjoint

subgraph of , the clique is a complete graph and each node has degree  − 1.
A coclique, the complement of a clique, is a set of pairwise non-adjacent nodes.

The clique number  is the size of the largest clique in , while the independence

number is the size of the largest coclique.

Suppose that has a coclique of size . We can always relabel the nodes such that

the nodes belonging to that coclique possess the first  labels. The corresponding

adjacency matrix  has the form

 =

"
× ×(−)


(−)× e(−)×(−)

#
(3.110)

Since the principal matrix × has  eigenvalues equal to zero, the Interlacing
Theorem 71 shows that, for 1 ≤  ≤ ,

−+ () ≤ 0 ≤  ()

Hence, the adjacency matrix  has at least  non-negative and−+1 non-positive
eigenvalues. The converse is that the number + = { :  () ≥ 0} of non-negative
eigenvalues of  provides an upper bound for the independence number. Also,

the number − = { :  () ≤ 0} of non-positive eigenvalues of  bounds the

independence number by  − −.
Only for the complete graph  , where  = 1 in (3.110), there is only one

positive eigenvalue. If one link (e.g. between node 1 and 2) in the complete graph

is removed, the coclique has size  = 2, and two eigenvalues are non-negative.

Consequently, the second largest eigenvalue 2 in any graph apart from  is at

least equal to zero. Another argument is that, apart from the complete graph,

any graph possesses the star 12 as a subgraph, whose adjacency eigenvalues are

computed in Section 6.7. It follows then again from the Interlacing Theorem 71

that 2 ≥ 0.
Similarly, if  has a clique of size , then, after relabeling, the adjacency matrix
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102 Eigenvalues of the adjacency matrix

has the form

 =

"
( − )× ×(−)

(−)× e(−)×(−)

#

Since the principal matrix ( − )× has an eigenvalue − 1 and (−1)[−1] eigen-
values by (6.1), the Interlacing Theorem 71 shows that,

−+1 () ≤ − 1 ≤ 1 ()

and, for 2 ≤  ≤ ,

−+ () ≤ −1 ≤  ()

The bounds for the clique are less elegant than those for the coclique.

93. The clique number. The determination of the clique number in a given graph 

is an NP-complete problem. Motzkin and Straus (1965) found a remarkable result

that specifies the clique number  in a graph :

Theorem 17 (Motzkin-Straus) For a given graph , the maximum value of

 () =
P

∈L −+ subject to  =
P

=1  = 1 and  ≥ 0 for 1 ≤  ≤ 

equals 1
2

¡
1− 1



¢
.

The Motzkin-Straus Theorem 17 can be reformulated (art. 44) asµ
1− 1



¶
= max

∈S
 (3.111)

where the simplex S contains all vectors  that lie in the hyperplane  = 1 and
possess non-negative components.

Before concentrating on the proof of Motzkin-Straus Theorem 17, we consider

the Lagrangian

 (1 2      ) =  (1 2      )− 

⎛⎝ X
=1

 − 1
⎞⎠

where

 (1 2      ) =
1

2

X
=1

X
=1

 =
1

2
 =

X
∈L

−+

The partial derivative with respect to  obeys, since  = 0 and  =  ,




=




−  =

X
=1

 − 

A necessary condition for the extremal vector ∗ is that 


¯̄̄
=∗

= 0 or 


¯̄̄
=∗

=
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 for all 1 ≤  ≤  . When the constraint is the usual normalization  = 1, the

corresponding Lagrangian

e (1 2      ) =  (1 2      )− 

⎛⎝ X
=1

2 − 1
⎞⎠

has the partial derivatives 


= 

−2 =

P
=1 −2, and the extremal

vector ∗ needs to obey the eigenvalue equation ∗ = 2∗. The Lagrangian
method thus provides another demonstration that equality in the Rayleigh inequal-

ities (art. 251) is achieved for the eigenvectors.

Proof of the Motzkin-Straus Theorem 17: We denote the maximal vector

by ∗, so that max∈S  () =  (∗) =  (∗1 
∗
2     

∗
 ).

a) Lower bound. We can always relabel nodes in , so that 1 2      =  are

the nodes in the largest clique of  (art. 92). After choosing  =
1

for 1 ≤  ≤ 

and  = 0 for + 1 ≤  ≤  , we obtain

 =
1

2

h
1


¡

¢
1× 0

i " ( − )× ×(−)

(−)× e(−)×(−)

# ∙
1

×1
0

¸
=

1

22

¡

¢
1× ( − )× ×1

Further, using  =  ,

 =
1

22

³¡


¢2 − 
´
=

2 − 

22
=
1

2

µ
1− 1



¶
With this choice of the vector , we arrive with  =  at the lower bound

 (∗) ≥ 1
2

µ
1− 1



¶
b) Upper bound. The remainder of the proof consists of demonstrating  () ≤

1
2

¡
1− 1



¢
for any vector  ∈ S. First, if  is the complete graph  , then

 () =
1

2
 ( − ) =

1

2

³¡


¢2 − 
´

The constraint shows that  = 1, while the Cauchy-Schwarz inequality (A.12)

indicates that 1

≤  so that

 () =
1

2

¡
1− 

¢ ≤ 1
2

µ
1− 1



¶
=
1

2

µ
1− 1



¶
and the theorem holds for the complete graph  . Second, for a graph with  = 1

node,  () = 0 as well as 1
2

¡
1− 1



¢
, because  = 1. Suppose now that for a graph

0 with  − 1 nodes, it holds that

 (∗0) =
1

2

µ
1− 1

0

¶
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104 Eigenvalues of the adjacency matrix

which is the induction hypothesis. There are now two cases to consider for a graph

 with  nodes. If ∗ lies on the boundary of the simplex S, then one of the
coordinates ∗ = 0 and  (

∗
) =  (∗0), where 0 is obtained from  by deleting

node . By the induction hypothesis, the theorem holds for 0 so that

 (∗) =  (∗0) =
1

2

µ
1− 1

0

¶
≤ 1
2

µ
1− 1



¶
which illustrates that the theorem holds in general when ∗ lies on the boundary
of S. It remains to focus on the case where ∗ lies in the interior of S and  is

different from the complete graph  . After evaluating the Taylor series (A.8)

in art. 200 at the vector  = ∗ +  for  = (−  0     0), which obeys the
constraint  = 1 and  ≥ 0 provided  ≤ ∗1,

 (∗1 −  ∗2 +      ∗ ) =  (∗1 
∗
2     

∗
 )− 



1

¯̄̄̄
=∗

+ 


2

¯̄̄̄
=∗

− 1
2

2X
=1

2X
=1


2

and taking into account the Lagrangian condition 


¯̄̄
=∗

= , for all 1 ≤  ≤  ,

we find, for any 0 ≤  ≤ ∗1,

 (∗1 −  ∗2 +      ∗ ) =  (∗1 
∗
2     

∗
 )− 12

2

Since  6=  , there is always a link absent, which we label to be between node 1

and 2 such that 12 = 0 and, for any 0 ≤  ≤ ∗1,

 (∗1 −  ∗2 +      ∗ ) =  (∗1 
∗
2     

∗
 ) ≡  (∗)

which illustrates that there is a continuum of optimal vectors ∗ as long as 0 ≤
 ≤ ∗1, where  = 0 is the trivial case. Finally, if  = ∗1, then

 (0 ∗1 + ∗2     
∗
 ) =  (∗)

which means that the maximum is attained for the subgraph 0 by deleting node 1
from . By the induction hypothesis, the theorem holds for 0 and the induction
principle then states that the theorem holds for  as well. ¤

For vectors  normalized as  = 1, the Rayleigh inequalities (art. 251) demon-

strate that  ≤ 1, with equality only if  = 1 is the (normalized) eigenvector

of  belonging to the spectral radius 1. When choosing  =
1

1
in (3.111), Wilf

(1986) found that µ
1− 1



¶
= max

∈S
 ≥ 1 1

(1)
2
=

1

21
(3.112)

where 1 = 1 is the fundamental weight (3.2) in art. 43. Hence, the clique
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3.10 Additional properties 105

number is lower bounded by

 ≥ 21
21 − 1

≥ 

 − 1
(3.113)

where the last inequality stems from 1 = 1 ≤
√
 (art. 68). Alternatively,

Wilf’s bound leads to a lower bound for the fundamental weight 1, besides 1 ≥ 1
(art. 43 and art. 68),

max

Ã
1

s
1

1− 1


!
≤ 1 ≤

√
 (3.114)

The Motzkin-Straus Theorem 17 for  = 

yieldsµ

1− 1


¶
≥ 

2
=
2

2

If a connected graph  does not possess triangles, then  = 2, so that  ≤ 2

4
,

which provides another proof of Mantel’s Theorem 7.

94. Equitable partitions. If  is an equitable partition of the connected graph ,

then the adjacency matrix  and the corresponding quotient matrix  have the

same spectral radius.

Indeed, art. 37 shows that the eigenvalues of the quotient matrix  correspond-

ing to an equitable partition are a subset of the eigenvalues of the symmetric matrix

. Moreover, any eigenvector  of  belonging to eigenvalue  is transformed to

an eigenvector  with the same eigenvalue . The Perron-Frobenius Theorem 75

states that the eigenvector belonging to 1 is the only one with non-negative com-

ponents. Both  and  are non-negative matrices. Since the characteristic matrix

 of the partition (art. 36) has non-negative elements, both the eigenvector  and

 have non-negative vector components and, thus, must belong to the spectral

radius.

In the terminology of art. 263, the eigenvalues of the quotient matrix  corre-

sponding to an equitable partition interlace tightly the eigenvalues of the symmetric

matrix  and of any permuted matrix . An interesting consequence is Hoffman’s

coclique bound for regular graphs:

Theorem 18 (Hoffman) Consider a regular graph  with degree  and smallest

adjacency eigenvalue  , then the size  of the coclique obeys  ≤ | |
+| | .

Proof: The quotient matrix  in art. 37 of the adjacency matrix  in (3.110)

is

 =

∙
0 


−  − 
−

¸
and  has eigenvalues  and − 

− . The Interlacing Theorem 71 indicates that

 ≤ − 
− , from which the bound  ≤ 

− follows. ¤
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106 Eigenvalues of the adjacency matrix

Any node in  outside a Hoffman coclique is adjacent to 
− nodes of the

Hoffman coclique.

95. Spectral radius of a tree.

Theorem 19 The spectral radius 1 of any tree with maximum degree max  1 is

smaller than 2
√
max − 1.

There are several proofs of Theorem 19 for which we refer to Stevanovíc (2015,

Sec. 3.3.1). The upper bound (3.81) for any connected graph (art. 80) shows that,

in any tree, 1 ≤
√
 − 1 with equality for the star 1−1.

96. Eigenvalue equation of Ξ =  ◦ . Art. 274 relates the diagonal elements
of a symmetric matrix to its eigenvalues. Since  = 0, the matrix equation

(A.179) becomes Ξ = 0, where the eigenvalue vector  = (1 2      ) and

where the non-negative, asymmetric matrix Ξ in (A.178) consists of column vectors

 =
³
()

2
1  ()

2
2      ()

2


´
, where () is the -th component of the -th

eigenvector of  belonging to . Geometrically, Ξ = 0 means that the vector

 is orthogonal to all  vectors  and, in order to have a non-zero solution for

, it must hold that detΞ = 0. This means that the matrix Ξ corresponding to

the adjacency matrix  has a zero eigenvalue, while all other eigenvalues of Ξ lie,

as shown in art. 274, within the unit circle and the largest eigenvalue is precisely

equal to 1. The eigenvector  of the asymmetric Ξ belonging to eigenvalue 1 and the

eigenvector  of Ξ belonging to eigenvalue 0 are orthogonal, i.e.  = 0, agreeing

with trace() =
P

=1  = 0 in (3.5). In addition, detΞ = 0 implies that the

set of vectors 1 2      is linearly dependent and rank(Ξ)   . Since the -th

row of Ξ equals the vector  =
³
(1)

2
  (2)

2
      ( )

2


´
, the property detΞ =

detΞ = 0 also implies that the vectors 1 2      are linearly dependent.

Since
¡
2
¢

=  , another instance of (A.180) gives

Ξ2 = 

where the vector 2 =
¡
21 

2
2     

2


¢
and  = (1 2      ) is the degree vector.

97. Co-eigenvector graphs. If the orthogonal matrix  of the adjacency matrix 

is known and if rank(Ξ) =  − 1, then art. 96 shows that the eigenvalue equation
Ξ = 0 has a unique eigenvector . In that case, the orthogonal matrix  specifies

the symmetric adjacency matrix  = Λ of the graph  uniquely, where Λ =

diag().

If rank(Ξ) =  −    − 1, then the kernel space of Ξ has dimension 

and contains, apart from the eigenvalue vector , precisely  − 1 other linearly
independent vectors. Those − 1 other independent vectors may generate one or
more eigenvalue vectors  for which  = Λ

 is an adjacency matrix of a

graph  . All such graphs  are called co-eigenvector graphs of the graph .

98. The adjacency matrix and Hadamard products. Since  is a symmetric 0-1
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3.10 Additional properties 107

matrix, the Hadamard product  ◦ =  and, more general, the -fold Hadamard

product ◦ = . If there would exist a relation between the eigenvalues of the

matrix 1 ◦2 in terms of the eigenvalues of the matrix 1 and 2, then the

eigenvalues of the adjacency matrix are invariant under the Hadamard product in

the sense that 
¡
◦¢ =  () for any integer  ≥ 1 and 1 ≤  ≤  .

An alternative derivation of Ξ2 =  uses the Hadamard product  =  ◦ and
its spectral decomposition (A.140) in art. 256,

 =

X
=1

X
=1

 ( ◦ ) ( ◦ )

Since ( ◦ )  =   =  due to orthogonality (A.124) of the eigenvectors

of a symmetric matrix (art. 248) and with  =  in (2.4), it holds that

 =

X
=1

X
=1

 ( ◦ )  =
X
=1

2 ( ◦ )

which is written in matrix form as Ξ2 = .

We generalize the above method and compute  = 3◦ as

 =
¡
3◦

¢

=

X
=1

X
=1

X
=1



³
( ◦ ) ( ◦ )

´


¡





¢


Using
¡





¢


¡





¢

=
³
( ◦ ) ( ◦ )

´

in art. 256 yields

 =
¡
3◦

¢

=

X
=1

X
=1

X
=1



³
( ◦  ◦ ) ( ◦  ◦ )

´


The procedure is readily generalized to  = ◦ resulting in the -fold Hadamard
product decomposition

 =

X
1=1

X
2=1

· · ·
X

=1

⎛⎝ Y
=1



⎞⎠ (1
◦ 2

◦ · · · ◦ 
) (1

◦ 2
◦ · · · ◦ 

)


(3.115)

With
³
(1

◦ 2
◦ · · · ◦ 

) (1
◦ 2

◦ · · · ◦ 
)

´

=
Q

=1 (
) (

),

we verify that the corresponding ( )-th element is

 =

X
1=1

X
2=1

· · ·
X

=1

Ã
Y

=1


(

) (
)

!
=

Ã
X

=1

 () ()

!

= 

Right-multiplication of both sides in (3.115) by the all-one vector  presents, for

any integer  ≥ 1, the degree vector

 =

X
1=1

X
2=1

· · ·
X

=1

⎛⎝ X
=1

Y
=1



¡


¢


⎞⎠ (1
◦ 2

◦ · · · ◦ 
)
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108 Eigenvalues of the adjacency matrix

as a linear combination of the vectors 1
◦2

◦ · · ·◦
and generalizes  = Ξ2,

corresponding to  = 2, in art. 96. However, only for  = 2, the orthogonality of

the eigenvectors applies and leads to an elegant result.

3.11 The stochastic matrix  = ∆−1

99. The stochastic matrix  = ∆−1, introduced in art. 8, characterizes a random
walk on a graph. A discrete-time random walk is a stochastic process that starts

at a node  at discrete time  = 0, moves in the next step  = 1 to node  with

probability  =
1

 , then at  = 2 to node  with probability  and so continues,

at each discrete time , to jump to nodes in the graph. A random walk is described

by a finite Markov chain that is time-reversible10. If  [] denotes the 1× state

vector at discrete time  with component  [] = Pr [ = ], where  ∈ N is the

random variable of the random walk at discrete time , then the Markov governing

equation is  [ + 1] =  [] as derived in Van Mieghem (2014, Section 9.2), where

the transition probability is  = Pr [+1 = | = ]. Random walks on graphs

have many applications in different fields (see, e.g., the survey by Lovász (1993)

and the relation with electric networks by Doyle and Snell (1984)); perhaps the

most important application is randomly searching or sampling.

The combination of Markov theory and algebra leads to interesting properties of

 = ∆−1. In a connected graph, the left-eigenvector of  belonging to eigenvalue
 = 1 is the steady-state vector  (which is a 1× row vector, see Van Mieghem

(2014)). The corresponding right-eigenvector is the all-one vector . These eigen-

vectors obey the eigenvalue equations  =  and  =  and the orthogo-

nality relation  = 1 (art. 237). If  = (1 2      ) is the degree vector, then

the basic law for the degree (2.5) is rewritten as
¡

2

¢
 = 1. The steady-state

eigenvector  of an aperiodic, irreducible Markov chain is unique (Van Mieghem,

2014, Chapter 9) such that the equations  = 1 and
¡

2

¢
 = 1 imply that the

steady-state vector is  =
¡

2

¢
or

 =


2
(3.116)

In general, the transition probability matrix  is not symmetric, but, after a simi-

larity transform  = ∆12, a symmetric matrix  = ∆12∆−12 = ∆−12∆−12

is obtained whose eigenvalues are the same as those of  (art. 239). The powerful

property (art. 247) of symmetric matrices shows that all eigenvalues are real and

that  = diag()
 , where the columns of the orthogonal matrix  consist of

the normalized eigenvectors  that obey   = . Explicitly written in terms

10 Alternatively, a time-reversible Markov chain can be viewed as a random walk on an undirected
graph.
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3.11 The stochastic matrix  = ∆−1 109

of these eigenvectors gives (art. 254)

 =

X
=1

 ( ) 



where, with the Perron-Frobenius Theorem 75, the real eigenvalues are ordered as

1 = 1 ( ) ≥ 2 ( ) ≥ · · · ≥  ( ) ≥ −1. If we exclude bipartite graphs, where
the set of nodes is N = N1 ∪N2 with N1∩ N2 = ∅ and where each link connects
a node in N1 and in N2, and reducible or periodic Markov chains (art. 268), then
| ( )|  1, for   1. Art. 239 shows that the similarity transform  = ∆12

maps the steady state vector  into 1 = −1 and, with (3.116),

1 =
∆−12°°∆−12°°

2

or

1 =

√


2sP
=1

µ√


2

¶2 =
r



2
=
√


Finally, since  = ∆−12∆12, the spectral decomposition of the transition prob-
ability matrix of a random walk on a graph with adjacency matrix  is

 =

X
=1

 ( )∆
−12∆

12 =  +

X
=2

 ( )∆
−12∆

12

The -step transition probability is, with
¡





¢

=  and (3.116),


 =



2
+

r




X
=2

 ( ) 

The convergence rate towards the unique steady state  in a connected graph, also

coined the “mixing rate”, can be estimated from

¯̄

 − 

¯̄
≤
r





X
=2

| ( )| || | | 
r





X
=2

| ( )|

Denoting by  = max (|2 ( )|  | ( )|)  1 and by 0 the largest element of the

reduced set {| ( )|} \ {} with 2 ≤  ≤  , we obtain¯̄

 − 

¯̄


r



 + (0 )

Hence, the smaller  or, equivalently, the larger the spectral gap |1 ( )|−|2 ( )| ≥
1− , the faster the random walk converges to its steady-state.

100. The stochastic matrix  = ∆−1 can also be expressed in terms of the

Laplacian  = ∆ −  as  =  − ∆−1. This shows that the eigenvector 
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110 Eigenvalues of the adjacency matrix

of  with corresponding eigenvalue  ( ) is the same as that of the normalized

Laplacian ∆−1 belonging to e = 1 −  ( ) and 0 ≤ e ≤ 2. Hence, the spectral
gap of a stochastic matrix  also equals the second smallest eigenvalue of normalized

Laplacian ∆−1. Moreover, trace( ) = trace() = 0 and trace
¡
 2
¢
= trace

¡
2
¢

implies, with () =
√


, that

X
=1

2 ( ) =

X
=1

X
=1

p


p


=

X
=1

X
=1





With 1


= 1
2

½
1
2
+ 1

2
−
³
1

− 1



´2¾
, we obtain that

X
=1

X
=1




=
1

2

X
=1

1

2

X
=1

 +
1

2

X
=1

1

2

X
=1

 − 1
2

X
=1

X
=1



µ
1


− 1



¶2

=

X
=1

1


−

X
=1

−1X
=1



µ
1


− 1



¶2
Thus,

X
=1

2 ( ) =

X
=1

1


−

X
=1

−1X
=1



µ
1


− 1



¶2
which shows that

P
=1 

2
 ( ) ≤

P
=1

1

, where 1



P
=1

1

= 

£
1


¤
is the har-

monic mean of the degree set {}1≤≤ . Only for regular graphs where  = ,

the double sum disappears and
P

=1 
2
 ( ) =



. Since

X
=1

2 ( ) =

X
=1

¡
1− 

¡
∆−1

¢¢2
= 1 +

−1X
=1

(1− e)2 ≤ 1 + ( − 1) (1− e2)2
we find, for regular graphs, an upper bound for the spectral gap e2 ≤ 1−q −

(−1) .

A tight upper bound

e2 ≤ 1− 2√max − 1
max

µ
1− 2



¶
+
2



for a graph with diameter  ≥ 4 is derived by Nilli (1991) using Rayleigh’s equation
(4.21) and some ingenuity.
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4

Eigenvalues of the Laplacian 

In the sequel, we denote the eigenvalues and eigenvectors of the  × Laplacian

matrix  by  and , respectively, to distinguish them from the eigenvalues  and

eigenvectors  of the adjacency matrix . The Laplacian eigenvalue equation is

 = , where the eigenvalue  belongs to the eigenvector .

4.1 General properties

101. The Laplacian matrix is defined by  =  = ∆ −  in (2.6) in art. 4,

from which symmetry =  follows. Eigenvalues and eigenvectors of a symmetric

matrix are real (art. 247). The spectral decomposition of any symmetric matrix in

art. 254 shows that

 = diag () =

X
=1



 (4.1)

where  is the orthogonal matrix with the Laplacian eigenvectors 1 2     in

its columns, obeying  =  = . We order the  real eigenvalues of the

Laplacian  as  ≤ −1 ≤ · · · ≤ 1. Similarly as for the adjacency matrix

(art. 45), none of the eigenvalues of the Laplacian  is a fraction of the form 

,

where  and  are coprime and   1. A Laplacian eigenvalue can only be an integer

or an irrational number.

102. The quadratic form in art. 199,

 =  =
°°

°°2
2
≥ 0 (4.2)

is positive semidefinite, which implies that all eigenvalues of the Laplacian  are

non-negative and at least one is zero because det = 0 as shown in art. 4. Thus,

the zero eigenvalue is the smallest eigenvalue of . Since  = 0, because the row

sum
P

=1  = 0 for each row 1 ≤  ≤  , is an instance of the eigenvalue equation

(1.3), the eigenvector belonging to the zero eigenvalue is the all-one vector .

The -th component of
¡


¢

= − , where the link  = →  connects node

111
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112 Eigenvalues of the Laplacian 

 and , starting at node  = + and ending at node  = −, allows us to write

 =
°°

°°2
2
=
X
∈L

(+ − −)
2

(4.3)

If a link  contains a weight , then e = diag()
 , as shown in art. 14 for

an electrical resistor network where  =
1

, and the quadratic form

 e =X
∈L

 (+ − −)
2

(4.4)

generalizes (4.3). In terms of the basic vectors {}1≤≤ , the -th component is¡


¢

= +−− = (+ − −)


 and (+ − −)

2
=  (+ − −)(+ − −)


.

Substitution into (4.4) produces the link decomposition of the weighted Laplaciane =X
∈L

 (+ − −) (+ − −)


(4.5)

which complements the eigenvalue decomposition (4.1) as a sum over the nodes.

Since (4.3) holds for any real vector , we may consider the component  as a

real function  () acting on a node . With + =  (+) and − =  (−), we
alternatively have

( ) =
X
∈L

¡

¡
+
¢− 

¡
−
¢¢2

where ( ) =
P

∈N  ()  () denotes the scalar product in art. 350 of two real

functions  and  belonging to 2 (N ), the space of all real functions on the set of
nodes N for which the norm kk2 = ( ) exists.
103. Since  is a symmetric matrix, all eigenvectors 1 2      are orthogonal

(art. 247). Art. 102 shows that the eigenvector  =
√

belonging to the smallest

eigenvalue  = 0, such that, for all 1 ≤  ≤  − 1,

  =

X
=1

() = 0

Thus, the sum of all vector components of a Laplacian eigenvector, different from

 = √

, is zero. When these eigenvector components are ranked in increasing

order, then the smallest and largest eigenvector component of  6= √

, with

1 ≤  ≤  − 1, have a different sign.
If  in (4.3) is the normalized eigenvector  belonging to eigenvalue , satisfying

  = , then the -th largest Laplacian eigenvalue  =  ,

 =
X
∈L

(()+ − ()−)2 (4.6)

equals the sum over all links in the graph of the square differences of the eigenvector

components over the end points of a link . The weighted analogue e = e ee
in (4.4) suggests a physical interpretation of a Laplacian eigenvalue as an energy,
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4.1 General properties 113

e.g. the energy dissipated in a resistor network (art. 14), and a similar energy

interpretation also follows from the Schrödinger equation in Section 1.3. Since the

eigenvector  is normalized, any component lies within the interval () ∈ (−1 1)
and the square (()+ − ()−)2 ∈ (0 2). The eigenvalue  in (4.6) increases from
zero at  =  , because all components ( ) =

1√

are the same, to 1 at  = 1,

where the eigenvalue components at both sides of a link have largest probability

to be of different sign. This observation means that () as a function  () of

the node  oscillates, on average over all links of the graph, increasingly heavily

with decreasing index . Thus, as well-known in Fourier analysis of functions and

illustrated by the spectrum of the circulant matrix in Section 6.2.1, the higher the

eigenfrequency (eigenvalue), the more the corresponding eigenfunction (eigenvector)

oscillates and (4.6) is the discrete analogue of that spectral property.

104. Gerschgorin’s Theorem 65 states that each eigenvalue  of the Laplacian

 = ∆− lies in an interval |−  | ≤  around a degree -value. Hence,

0 ≤  ≤ 2
which shows that Gerschgorin’s Theorem 65, alternatively to art. 101, demonstrates

that  is positive semidefinite. Moreover, 1 ≤ 2max. This same bound (4.20) is
also found by considering the non-negative matrix max − whose largest eigen-

value is max and smallest eigenvalue is max−1. The Perron-Frobenius Theorem

75 states that the positive largest eigenvalue is larger than the absolute value of

any other one eigenvalue, whence max ≥ |max − 1|. This inequality is essentially
the same as Gerschgorin’s.

A tighter bound than 1 ≤ 2max for the largest Laplacian eigenvalue 1 follows
from Gerschgorin’s Theorem 65 applied to the matrix , that possesses the same

non-zero eigenvalues as  by Lemma 11 in art. 284. Indeed, it follows from art. 25

that
¡


¢

=
P

=1 
2
 = 2, while the radius  in Gerschgorin’s Theorem 65

equals

 =

X
=1; 6=

¯̄


¯̄

=

X
=1

¯̄


¯̄

− 2 ≤

X
=1

¡


¢

− 2 = () − 2

where the matrix  is the unsigned incidence matrix. Art. 26 shows for a link 

with end nodes + and − that () = + + − so that

1 ≤ max
∈L

(+ + −) ≤ 2max

Hence, the spectral radius 1 of the Laplacian  is smaller than or equal to the

largest sum of the nodal degrees on both sides of a link in the graph . This

inequality appears in Anderson and Morley (1985), but is proved differently, based

on the Perron-Frobenius Theorem 75.

105. The definition of  = ∆ −  shows that trace() = trace(∆) =
P

=1 .
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114 Eigenvalues of the Laplacian 

The basic law of the degree (2.3) and the general trace formula (A.99) combine to

X
=1

 = 2 (4.7)

Hence, the average value of a Laplacian eigenvalue equals the average degree,

 [] =  [].

Corollary 4 or (A.181) shows that any partial sum with 1 ≤  ≤  ordered

eigenvalues satisfies

X
=1

() ≤
X

=1

 (4.8)

where () denotes the -th largest degree in the graph, i.e., () ≤ (−1) ≤ · · · ≤
(1).

106. Applying the general trace relation (A.118) to the Laplacian  yields

X
=1

2 = trace
¡
2
¢

The square equals 2 = (∆−)
2
= ∆2 + 2 −

³
∆+ (∆)


´
and trace

¡
2
¢
=P

=1 
2
+ trace

¡
2
¢
. Using (A.118) and (3.7) leads to

X
=1

2 =

X
=1

2 + 2 (4.9)

Stochastically1, when considering the eigenvalue  and the degree  in a graph as

a random variable, (4.9) translates with  [] =  [] in art. 105 to

Var [] = Var [] + []

where the variance Var[] = 
£
2
¤− ( [])2 for any random variable . Since

 []  0 (excluding graphs without links), the variability of the Laplacian eigen-

values is larger than that of the degree  in the graph, i.e. Var[] ≥ Var[].

Furthermore, since Var[] ≥ 0 and  [] =  [] from (4.7), we find for any graph

the inequality  [] ≤ Var[], which is written in terms of the Laplacian eigenvalues
as Ã

X
=1



!2
≤ 

X
=1

¡
2 − 

¢
(4.10)

Equality in (4.10) and  [] =Var[] only holds for a regular graph with Var[] = 0.

Hence, similarly as for the adjacency eigenvalues in art. 72, we conclude that the

1 Each of the values 1 2      is interpreted as a realization (outcome) of the random

variable  and the mean of the -th powers is computed as  [] = 1



=1 



.
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4.1 General properties 115

Laplacian spectrum can determine whether a graph is regular if
³P

=1 

´2
=


P

=1

¡
2 − 

¢
holds.

Applying Corollary 4 yields, for 1 ≤  ≤  ,

X
=1

2() +

X
=1

() ≤
X

=1

2 (4.11)

where () denotes the -th largest degree in the graph. Hence, for  = 1, we find

the bound p
max (max + 1) ≤ 1 (4.12)

107. The case for the third powers in (A.118) needs the computation of the trace

of

3 = (∆−)
3

= ∆3 −∆2−∆∆+∆2 −∆2 +∆+2∆−3

Since  = 0, all matrices to first power in  have a vanishing trace. By computing

the product of the matrices, we find that

trace
¡
∆2

¢
= trace (∆) = trace

¡
2∆

¢
=

X
=1

2

Hence,

trace
¡
3
¢
=

X
=1

3 + 3

X
=1

2 − trace
¡
3
¢

where trace
¡
3
¢
=
P

=1

P
=1

P
=1  =

P
=1 

3
 and (3.8) shows that

trace
¡
3
¢
equals six times the number of triangles in the graph, which we denote

by N. Combining all yields
X
=1

3 =

X
=1

3 + 3

X
=1

2 − 6N (4.13)

For the complete graph, we have that trace
¡
3
¢
=  ( − 1) ( − 2) andP

=1 
2
 =

 ( − 1)2 such that, for   3,

3

X
=1

2 − 6N = 3 ( − 1) (3−)  0

while for a tree, where N = 0, the last two sums are 3
P

=1 
2
 − 6N  0. Thus,

the sum of the third powers of the Laplacian eigenvalues can be lower and higher

than the corresponding sum of the degrees.
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116 Eigenvalues of the Laplacian 

Stochastically, the third centered moment, which quantifies the skewness of the

distribution, follows from (4.13), (4.9) and  [] =  [] as


h
(− [])

3
i
= 

h
( − [])

3
i
+ 3Var []− 6N



The third centered moment of the Laplacian eigenvalue  differs from that of the

degree  by an amount 3
¡
Var []− 2N



¢
.

108. Due to the non-commutativity of the matrices  and ∆, it is difficult to

extend the computation

trace () = trace ((∆−)

)

to the case   3, because the trace operator only preserves cyclic permutations

trace () = trace () = trace () (4.14)

but not arbitrary permutations,

trace () 6= trace () 6= trace ()
In general, we can expand the matrix product as

(+)

=

2−1X
=0

−1Y
=0

{ ()+ (1−  ())} (4.15)

where  () =
1
2

³
1− (−1)b 

2
c´ is the -binary digit of the number of  =Pblog2 c

=0  () 2
 and the matrix product operator on the right-hand side is non-

commutative. If  and  commute, we readily verify that (4.15) reduces to the

binomial formula (+)

=
P

=0

¡



¢
−. For = 4, formula (4.15) yields

(+)
4
= 4 +3 +2 +22 +2 + +2 +3

+3+2++2+22 +2 +3 +4

from which we find

trace (+)
4
= trace

¡
4
¢
+ 4 trace

¡
3

¢
+ 4 trace

¡
22

¢
+ 4 trace

¡
3

¢
+ 2 trace () + trace

¡
4
¢

where trace() 6= trace¡22
¢
causes a deviation from the binomial formula.

Only in regular graphs, ∆ and  commute and the binomial expansion yields,

for any integer ,

trace ((∆−)

) =

X
=0

µ




¶
(−1)− trace ¡∆−¢

Since ∆ = diag
¡
1  


2      




¢
, we then have

trace
¡
∆−¢ = X

=1

¡
∆−¢


=

X
=1


¡
−¢


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4.1 General properties 117

and

trace () =

X
=0

µ




¶
(−1)−

X
=1


¡
−¢



Taking into account that  = 0 and using (A.118), the -th moment of the

Laplacian eigenvalues of a regular graph with degree  are expressed in terms of the

number of closed walks  in (3.52) in art. 65 of length  starting and returning

at node  (art. 6), as

X
=1

 =  +

µ


2

¶
−1 + (−1)

−2X
=0

µ




¶
(−)− (4.16)

109. Art. 274 relates the diagonal elements of a symmetric matrix to its eigenvalues

and so provides another relation between the degree  of node  and the set of

Laplacian eigenvalues 0 =  ≤ −1 ≤ · · · ≤ 1. The matrix equation (A.179)

applied to the degree vector  = (1 2      ) becomes

 = Ξ (4.17)

where the eigenvalue vector  = (1 2     ) and where the stochastic matrix

Ξ in (A.178) consists of column vectors  =
³
(1)

2
  (2)

2
      ( )

2


´
, where

() is the -th component of the -th eigenvector of  belonging to .

Analogously to the adjacency matrix in art. 96, also for the Laplacian the deter-

minant is singular, detΞ = 0. This follows from orthogonality (A.124) of eigen-

vectors and the fact that  =
1√

, because the sum of the first  −1 columns in

Ξ is a multiple of the last column. Hence, beside the largest eigenvalue at 1, Ξ
and Ξ have also a zero eigenvalue. The obvious consequence is that Ξ =  in

(4.17) cannot be inverted. However, when deleting the last column, corresponding

to  = 0, and the last row, the resulting matrix eΞ can be inverted and the

eigenvalues 1 2     −1 can be determined if the degree vector  is known.

110. If  is regular, where all nodes have the same degree,  =  for all 1 ≤  ≤  ,

then the eigenvalues of the Laplacian  and the adjacency matrix  are directly

connected because det (− ) = det (( − )  −). Thus, for all 1 ≤  ≤  ,

 () =  − +1− () (4.18)

Since  () = 0, we find again as in art. 55 that the largest eigenvalue of the

adjacency matrix in a regular graph equals 1 () = .

From (4.18), the difference for all 1 ≤  ≤  ,

−1 ()−  () = +1− ()− +2− ()

shows that the spectral gap (art. 82) in a regular graph equals 1 () − 2 () =

−1 (). This relation might suggest that the spectral gap in any graph is related
to the second smallest eigenvalue −1 of the Laplacian, whose properties are
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118 Eigenvalues of the Laplacian 

further explored in Section 4.3. However, Section 8.5.2 exhibits a graph with large

spectral gap and small −1.

111. A direct application of Lemma 7 to  = ∆ −  yields, for any eigenvalue

1 ≤  ≤  ,

min −  () ≤  () ≤ max −  ()

and

() − 1 () ≤  () ≤ () −  ()

Equality is only reached when min = max =  as in a regular graph (art. 110).

112. The Laplacian spectrum of the complement  of . From the adjacency

matrix  =  −  − of the complement  of a graph  (art. 1), the Laplacian

of the complement  is immediate as

 = ∆ − = ( − 1)  −∆−  +  +

=  −  −

Let 1 2      =  denote the eigenvectors of  belonging to the eigenvalues

1 2   , and  = 0, respectively. The eigenvalues of  are  and [0]
−1

as

shown in (6.1). Since  =  and  = 0 for 1 ≤  ≤  − 1 as demonstrated in
art. 125, we observe that  = 0 and

 = ( − ) 

Hence, the set of eigenvectors of  and of the complement  are the same, while

the ordered eigenvalues, for 1 ≤  ≤  − 1, are

 (
) =  − − () (4.19)

Art. 101 and alternatively art. 104 indicate that all eigenvalues of a Laplacian

matrix are non-negative, hence  (
) ≥ 0 for all 1 ≤  ≤  such that (4.19)

implies that  − − () ≥ 0. Thus, all Laplacian eigenvalues must lie in the
interval [0  ]. Hence, the upper bound for 1 in art. 104 needs to be refined to

1 ≤ min
µ
max

∈L
(+ + −)

¶
(4.20)

Several other upper bounds for 1 are discussed in Brankov et al. (2006).

113. Art. 103 shows that the eigenvector  of  belonging to −1 must satisfy
 = 0. By requiring this additional constraint and choosing the scaling of the

eigenvector such that   = 1, Rayleigh’s principle (art. 251) applied to the second

smallest eigenvalue of the Laplacian results in

−1 = min
kk22=1 and =0

 (4.21)
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4.1 General properties 119

Applied to the complement  and with (4.19), we obtain

−1 () =  − 1 () = min
kk22=1 and =0



Since  =  ( −  −) =  −  as follows from art. 112, we have

 − 1 () = min
kk22=1 and =0

¡
 − 

¢
=  − max

kk22=1 and =0


Hence, the largest eigenvalue of  obeys

1 () = max
kk22=1 and =0

 =  − −1 ()

114. Threshold graphs. A weighted threshold graph on  nodes, coded by the

vector  = (2 3      ), is constructed, starting from node 1, by sequen-

tially adding a node  ∈ {2 3     }, which is connected to all previous nodes
1 2      − 1 with link weight . Hence, the weighted degree (art. 5) of node

 is e = (− 1) +
P

=+1 . An example of a threshold graph is the uni-

form degree graph in Section 6.11. If all link weights  ∈ {0 1}, then Hammer
and Kelmans (1996) prove that the Laplacian eigenvalues of a threshold graph are

integers (which follows from iterates of the cone of a graph in art. 166) and that

the Laplacian eigenvalue vector  is almost the same as the ordered degree vector

 of the threshold graph.

4.1.1 Eigenvalues and connectivity

115. Disconnectivity is a special case of the reducibility of a matrix (art. 268) and

expresses that there is no walk nor path between two nodes in a different component

or cluster. A component of a graph  is a largest or maximally connected subgraph

of .

Theorem 20 The graph  is connected if and only if −1  0.

Proof: The theorem is a consequence of the Perron-Frobenius Theorem 75 for a

non-negative, irreducible matrix. Indeed, consider the non-negative matrix −,
where  ≥ max. If  is connected, then  −  is irreducible and the Perron-

Frobenius Theorem 75 states that the largest eigenvalue  of  −  is positive

and simple, the corresponding eigenvector  has positive components and satis-

fies  = (− ). Since eigenvectors of a symmetric matrix are orthogonal

(art. 247) while   0, the eigenvector  must be proportional to the all-one

vector , and thus  =  −  = 0. Since there is only one such eigenvector 
and since the eigenvalue  exceeds all others, all other eigenvalues of  must exceed

zero, otherwise  − would have a larger eigenvalue than . ¤
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120 Eigenvalues of the Laplacian 

116. A graph  has  components or clusters, if there exists a relabeling of the

nodes such that the adjacency matrix has the structure

 =

⎡⎢⎢⎢⎢⎣
1     

 2
...

...
. . .

    

⎤⎥⎥⎥⎥⎦
where the square submatrix  is the adjacency matrix of the connected component

. The corresponding Laplacian is

 =

⎡⎢⎢⎢⎢⎣
1     

 2
...

...
. . .

    

⎤⎥⎥⎥⎥⎦
Using (A.57) indicates that

det (− ) =

Y
=1

det ( − )

Since each block matrix  is a Laplacian, whose row sum is zero and det = 0,

the characteristic polynomial det (− ) has at least a -fold zero eigenvalue. If

each block matrix  is irreducible, i.e., the -th cluster is connected, Theorem

20 shows that  has only one zero eigenvalue. Hence, we have proved:

Theorem 21 The multiplicity of the smallest eigenvalue  = 0 of the Laplacian 

is equal to the number of components in the graph .

If  has only one zero eigenvalue with corresponding eigenvector  (art. 101),

then the graph is connected; it has only one component. Theorem 21 as well as

Theorem 20 also imply that, if the second smallest eigenvalue −1 of  is zero,

the graph  is disconnected.

The following Corollary for the maximum possible eigenvalue 1 =  appeared

in Anderson and Morley (1985):

Corollary 1 If 1 =  in a graph  on  nodes, then  is connected.

Proof: If 1 =  , then the Laplacian complement formula (4.19) indicates that

−1 () =  − 1 () = 0. Theorem 20 applied to the complement graph 

then states that  is disconnected. Theorem 3 then implies that ()

=  is

connected. ¤

The converse of Corollary 1 is not true, as can be verified for the path graph,

whose Laplacian spectra is given in (6.15).
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4.1 General properties 121

4.1.2 The number of spanning trees and the Laplacian 

117. Matrix Tree Theorem. The coefficients { ()}0≤≤ of the characteristic

polynomial of the Laplacian

 () = det (− ) =

X
=0

 ()
 (4.22)

can be expressed in terms of sums over minors (see art. 235). Apart from  =

(−1) , we apply (A.96) for 0 ≤    to the Laplacian  = 

(−1)−− () =
X


minor
¡


¢
=
X


det
¡¡


¢


¢
where () =

¡


¢

denotes an × submatrix of  obtained by deleting the

same set of − rows and columns and where the sum is of over all
¡



¢
=
¡


−

¢
ways in which  − rows can be deleted among the  rows. Since  =  and

 =
P

=1 , deleting a row  in  translates to deleting row  in . Thus,

() is an × submatrix of  in which the same  − rows in  as in  are

deleted.

We apply (A.70) in the Binet-Cauchy Theorem 62 to det
¡


¢

,

det
¡


¢

=

X
1=1

X
2=1+1

· · ·
X

=−1+1

¯̄̄̄
¯̄̄ 11 · · · 1

... · · · ...

1 · · · 

¯̄̄̄
¯̄̄
2

which illustrates that det
¡


¢

is non-zero and (−1) () is non-negative

integer. Hence, the characteristic polynomial  (−) =
P

=0 (−1)  () has
all non-zero integer coefficients and  (−)  0 for real   0. Descartes’ rule of

signs in Theorem 87 shows that  (−) has no positive real zeros, i.e.  () has
only non-negative zeros, in agreement with the positive semidefinite nature of the

Laplacian (art. 101).

Poincaré’s Theorem 2 in art. 12 tells us that the square of the above determinant

in the multiple sum is either zero or one. It remains to investigate for which set

(1 2     ) the determinant is non-zero, hence, of rank . Art. 12 shows that,

only if the subgraph formed by the  links (columns in the matrix of the above

determinant) is a spanning tree, the determinant is non-zero.

To conclude, det
¡


¢

equals the total number of trees with  links that can

be formed in the graph on + 1 given nodes. The coefficient (−1)−− ()
then counts all these spanning trees with  links over all possible ways of deleting

 − nodes in the graph. In summary, we have demonstrated the famous Matrix

Tree Theorem:

Theorem 22 (Matrix Tree Theorem) In a graph  with  nodes, the coefficient
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122 Eigenvalues of the Laplacian 

(−1)−− () of the characteristic polynomial of the Laplacian  equals the

number of all spanning trees with  links in all subgraphs of .

Clearly, 0 () = det = 0 because there does not exist a tree with  links that

spans the  nodes in a graph. The other extreme is, by convention, (−1) () =
1. Further, (−1)−1 −1 () = 2, equals the number of spanning trees in 

each consisting of one link, which equals twice the number of links in . In-

deed, det
¡


¢
1
=
P

1=1
|11 | is the number of neighbors of node 1; taking

the sum over all possible ways to delete one row results in (−1)−1 −1 () =P
=1

P
=1

| |, which is the sum of the absolute value of all elements in . This
result also follows from the general relation (A.99) for the second highest degree

coefficient in any polynomial and art. 105. When  =  − 1, art. 12 shows that
det

¡


¢
−1 equals the number of all spanning trees with  − 1 links in the

graph . Since there are precisely  ways to remove one node (i.e. one row in ),

the coefficient −1 () counts  times all trees spanning all  nodes in .

The characteristic polynomial of the Laplacian of the example graph in Fig. 2.1

with  = 6 nodes and  = 9 links is

 () = 6 − 185 + 1254 − 4163 + 6592 − 396

= 

Ã
− 7−

√
13

2

!Ã
− 7−

√
5

2

!
(− 4)

Ã
− 7 +

√
5

2

!Ã
− 7 +

√
14

2

!
The example graph has 18 spanning trees with one link, 125 consisting of two links,

. . . , and 66 spanning trees with five links (396 = 6× 66) spanning all  = 6 nodes.

118. Matrix Tree Theorem for a weighed Laplacian e. Art. 14 has introduced
the weighted Laplacian e = e e , with  ×  weighted incidence matrix e =

diag
³

1√


´
, in the context of electrical resistor networks, where the link weight

 =
1

is the inverse of the resistance  =  of the link  between node  and

. The weighted incidence matrix e has the same zero elements as the incidence

matrix , but the non-zero elements are different.

Similar to art. 117 for det
¡


¢

, the Binet-Cauchy Theorem 62 becomes

det
³ e e

´

=

X
1=1

X
2=1+1

· · ·
X

=−1+1

Y
=1

1



¯̄̄̄
¯̄̄ 11 · · · 1

... · · · ...

1 · · · 

¯̄̄̄
¯̄̄
2

Poincaré’s Theorem 2 in art. 12 then shows that the remaining determinant is only

non-zero when the corresponding × submatrix corresponds to a tree  with 

links spanning + 1 nodes in the graph (art. 11). If the set of all spanning trees

on  nodes is denoted by T () with cardinality |T ()|, then

det
³ e e

´

=

X
∈T (+1)

Y
∈

1



                     

https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core


4.1 General properties 123

In contrast to the common, additive definition
P

∈  of the weight in art. 7, we

define here the weight of a tree  as the product of the weight  =
1

of each link

 in the tree  ,

 ( ) =
Y
∈



and define the “weighted” complexity ase () = X
∈T ()

 ( ) (4.23)

If all link weights  = 1, then the complexity  () = |T ()| of an unweighted
graph  equals the total number of spanning trees on all  nodes of .

119. There is another Matrix Tree Theorem variant for the coefficients of the

characteristic polynomial of  due to Kelmans and Chelnokov (1974) based on the

notion of a forest. A forest is a collection of trees. A -forest, denoted by , is a

forest consisting of  components and a 1-forest is a tree. A component  is a set

N of nodes of  and two different components possess different nodes such that

N ∩N = ∅ for each component  and  of a -forest. A -spanning forest of  is

a -forest whose union of components consists of all nodes of , thus ∪=1N = N ,
and a -spanning forest of  has  −  links. Two -spanning forests are different

if they have different sets of links.

Theorem 23 (Matrix Tree Theorem according to Kelmans) In a graph 

with  nodes, the coefficient (−1) () of the characteristic polynomial of the
Laplacian  equals 0 () = 0 for  = 0 and, for 1 ≤  ≤  ,

(−1) () =
X
al l 

 ()

where the sum is over all possible -spanning forests of the graph  with precisely

 components and where  () =
Q

=1  with  = |N|.
Kelmans’ Theorem 23 is used in art. 127. Besides −1 () =  () and

(−1)−1 −1 () = 2, Kelmans and Chelnokov (1974) also give2

(−1)−2 −2 () = 22 − − 1
2

X
=1

2

(−1)−3 −3 () = 4

3
3 − 22 − (− 1)

X
=1

2 +
1

3

X
=1

3 − 2N

where N is the number of triangles in . Invoking the Newton identities in

art. 294, we may verify that these expressions for the coefficients  () are con-

sistent with (4.9) and (4.13).

2 The first result is presented without proof, but a reference to the Russian PhD thesis of Kelmans
is given, while the second result is obtained by using special types of graphs.
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124 Eigenvalues of the Laplacian 

120. The sequence (−1)  () ≥ 0 is unimodal. The Matrix Tree Theorem

22 indicates that the characteristic polynomial  (−) has positive coefficients
(−1)  () ≥ 0. The symmetric Laplacian matrix has real eigenvalues (art. 247).
Thus, the zeros of  () are real. Art. 328 shows that the sequence of the coeffi-

cients (−1)  () ≥ 0 is unimodal with a plateau of two points or a peak. Newton’s
Theorem 97 in art. 327 provides the inequality, for 1 ≤  ≤  − 1,

2 () ≥ +1 () −1 ()
 + 1



 −  + 1

 − 
(4.24)

For example, for  =  − 1, we find with  () = (−1) and −1 () =
(−1)−1 2 that

22
 − 1


≥ (−1)−2 −2 ()

121. Spacing between Laplacian eigenvalues. If all the eigenvalues of the Laplacian

 are distinct, then Mahler’s lower bound (B.71) in art. 344 for their spacing is

min
1≤≤

| −  | 
√
3



2
+1 ( (−1))−1

where  (−1) = det (+ ) in (4.22), while Lupas’ upper bound (B.72) in art. 345

is

min
1≤≤

| −  | ≤ 2
r
3 Var []

2 − 1
where Var[] =Var[] + [] in art. 106.

4.1.3 The complexity

122. As defined in art. 118, the complexity  () of the graph  equals the number

of all possible spanning trees in the graph. Let  denote the all-one matrix with

() = 1 and  =  , then

adj =  () (4.25)

where −1 = adj
det

. Indeed, if rank()   − 1, then every cofactor of  is

zero, thus adj = 0 and (4.25) shows that  () = 0 implying that the graph

is disconnected. If rank() =  − 1, then adj =  det = 0 which means

that each column vector of adj is orthogonal to the  − 1 dimensional space
spanned by the row vectors of . Thus, each column vector of adj belongs to

the null-space or kernel of , which is one-dimensional and spanned by , since

 = 0. Hence, each column vector of adj is a multiple of the vector . Since 

is symmetric, so is adj and all the multipliers must be equal such that adj =  .

Since adj = det
³¡


¢
−1

´
, the Matrix Tree Theorem 22 in art. 117 shows
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4.1 General properties 125

that  () equals the total number of trees that span  nodes. Equation (4.25)

demonstrates that all elements of adj are equal to  ().

Example We apply (4.25) to the complete graph  with Laplacian 
=

− . It suffices to compute one suitable element of adj, for example, (adj)11,
which is equal to the determinant of the ( − 1)× ( − 1) principal submatrix of
 obtained by deleting the first row and column in ,

(adj)11 = det

⎡⎢⎢⎢⎣
 − 1 −1    −1
−1  − 1    −1
...

. . .
...

−1 −1     − 1

⎤⎥⎥⎥⎦
Adding all rows to the first and subsequently adding this new first row to all other
rows gives

(adj)11 = det


1 1    1
−1  − 1    −1
...

. . .
...

−1 −1     − 1

 = det

1 1    1
0     0
...

. . .
...

0 0    

 = 
−2

Hence, the total number of spanning trees in the complete graph  , which is the

largest number of possible spanning trees in any graph with  nodes, equals

 ( ) = −2 (4.26)

which is a famous result of Cayley of which many proofs exist, see, e.g., Lovász

(2003), van Lint and Wilson (1996, Chapter 2) and Van Mieghem (2014, p. 631-

633).

123. Equation (4.25) shows that all  minors −1 of  are equal to  ().

Application of the general relation (A.96) for the coefficients of the characteristic

polynomial then gives 1 = − (), as earlier established in art. 117. Using

(A.100) and the fact that  = 0 (see art. 101) yields 1 = −
Q−1

=1  . By

combining both, the total number of spanning trees  () in a connected graph is

expressed in terms of the eigenvalues of the Laplacian  as

 () =
1



−1Y
=1

 (4.27)

124. The complexity of  is also given by

 () =
det ( +)

2
(4.28)

for any number  6= 0. Indeed, observe that  = () = 0 since  = 0 as

follows from  =  and from (2.1) in art. 1. Hence, taking into account that

 = 0 and 2 =  , we have

( − ) ( +) =  +− 2 −  = 
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126 Eigenvalues of the Laplacian 

and

adj (( − ) ( +)) = adj ( +) adj ( − ) = adj ()

Since 
=  −  and as shown in art. 122, adj( − ) = −2 and since

adj() = −1adj = −1 () , where we have used (4.25),

adj ( +) =  () 

Left-multiplication with  + finally gives

( +) adj ( +)  = 2 ()

which proves (4.28) for  6= 0, after invoking the definition (A.43) of the inverse

−1 = adj
det

, written as adj = det.

125. Since  = 0, we also have that  =  and, after taking the transpose,

 =  = . Hence, the Laplacian  = ∆ −  commutes  =  with

the all-one matrix  . Art. 55 shows that the adjacency matrix  and the all-one

matrix  only commute if the graph is regular. Since commuting matrices have a

common, not necessarily complete set of eigenvectors on Lemma 13,  and  have

a common basis of eigenvectors. The all-one vector  is also an eigenvector of 

with eigenvalue  () =  . The eigenvalues (6.1) of the  × rank 1 symmetric

matrix  =  are  and zero with multiplicity  − 1. If  is the matrix

containing as columns the eigenvectors 1 =  2      of  and  = , then

diag( ()) = . However, there are infinitely many sets of basis vectors

that are also eigenvectors of  , but not necessarily of . Hence, the difficulty lies

in finding  among all those of  .

Art. 193 indicates that the matrix  =  − 1

 projects any vector onto the

space orthogonal to the vector . Hence, a set of eigenvectors of  consists of −1
columns of  and the vector . Moreover, the Laplacian of the complete graph 

is 
=  − and the projector matrix  =  − 1


 = 1




will reappear in

pseudoinverse † of the Laplacian in art. 128.

126. Vice versa, if  is an eigenvector of  belonging to   0, then it is also an

eigenvector of  , because  = 0 for any  orthogonal to . This means that the

eigenvalues of  +  with  6= 0 consist of the eigenvalue  with eigenvector

 and the set 0    −1     1 where  ≤  − 1. Since −1  0, Theorem

21 shows that the graph is connected. Invoking (A.98), a connected graph satisfies

det ( +) = 
Q−1

=1  and the complexity via (4.28) leads again to (4.27).

If  is a regular graph where all nodes have degree , then art. 110 shows that

 =  − +1− . Substituted in (4.27) yields

 () = −1
−1Y
=1

( − +1−) = −1
Y

=2

( − )
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4.1 General properties 127

The characteristic polynomial  () of the adjacency matrix of  equals

 () = (− )

Y
=2

(− )

from which we deduce that

 ()



¯̄̄̄
=

=

Y
=2

( − ) =  ()

127. Since 0 () = det = 0, the characteristic polynomial of the Laplacian is

 () = 

−1X
=0

+1 ()


Applying the Newton equations (art. 294) to
()


gives

−1X
=1

1


= −2 ()

1 ()

Since all zeros of
P−1

=0 +1 ()
 for a connected graph are positive and

−1


=

−2 (art. 117), art. 294 provides the bound

−2 ()
1 ()

≥ ( − 1)
2

2

Art. 123 shows that 1 () = − (), while the Matrix Tree Theorem 22 in

art. 117 indicates that 2 () equals the number of all spanning trees with  − 2
links in all subgraphs of  that are obtained after deleting any pair of two nodes

in .

For a tree  =  , we have that  () = 1 and 1 () = − , while Kelmans’
Theorem 23 states that

2 () =
X
all 2

 (2)

where the sum is over all possible 2-spanning forests of the graph  with precisely

two components. A 2-spanning forest 2 is constructed from a spanning tree of 

in which one link is deleted such that two disjoint trees 1 on 1 = |1| nodes and
2 with 2 = |2| nodes are obtained. Now,  (2) = 12 is also equal to the

number of ways of choosing a node 1 in tree 1 (component 1) and a node 2 in 2
(component 2). Since  is a tree, the number of pairs (1 1) and (2 2) equals

the distance  (1 2) in hops between node 1 and node 2, because (1 1) and

(2 2) can only be obtained by deleting one of the links in  on the single path

from 1 to 2. Thus,

2 () =
X
1∈N

X
2 6=1∈N

 (1 2) =
( − 1)

2
 [ ]
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128 Eigenvalues of the Laplacian 

where  is the hopcount in the tree  . Hence, the average hopcount in any tree

satisfies

 [ ] =
2

 − 1
−1X
=1

1


(4.29)

Mohar (1991) has attributed formula (4.29) to Brendan McKay, who provided me

with the above derivation. Section 5.2 demonstrates, via inequality (5.46), that the

right-hand side of (4.29) is a lower bound for the average hopcount in any graph.

4.2 The pseudoinverse matrix † of the weighted Laplacian e
We study the inversion problem of the fundamental relation  = e in (2.15) of
art. 14 between the  × 1 injected current flow vector  into nodes of the network
and the×1 voltage vector  at the nodes, where e is a weighted Laplacian matrix.
To simplify the notation, we omit the tildes in the eigenvalues and eigenvectors ofe. In fact, the subsequent algebraic manipulations equally hold for the Laplacian
 and the weighted Laplacian e.
128. The pseudoinverse †. Due to the zero eigenvalue  = 0 leading to det e =
0 in art. 101, the matrix equation  = e cannot be inverted. We write the spectral
decomposition (4.1) as

e = −1X
=1



 + 

√


√

=

−1X
=1





If the graph  is connected, all eigenvalues   0 of e for 1 ≤    so that the

 × symmetric matrix

† =
−1X
=1

−1 

 (4.30)

exists. Furthermore, we verify that e† = † e and invoking the orthogonality of

the eigenvectors   =  yields

e† = −1X
=1

−1X
=1





¡
 

¢
 =

−1X
=1



 =

X
=1



 −

√


√


With
P

=1 

 =  =  and using the all-one matrix  =  , we arrive at

e† = † e =  − 1


 (4.31)

Relation (4.31) illustrates that the matrix † commutes with the weighted Lapla-
cian e and that the product † e equals the orthogonal projector  =  − 1




onto the hyperplane through the origin that is orthogonal to the vector  in

art. 125. The matrix † is also called the Moore-Penrose pseudoinverse. Since
the vector  is orthogonal to any other eigenvector, it follows from (4.30) that
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4.2 The pseudoinverse matrix † of the weighted Laplacian e 129

† = † = 0. For any positive real number   0, the above argument and

(4.30) show that e =
P−1

=1 




 ,
³ e

´†
=
P−1

=1 
−
 


 =

¡
†
¢
ande

¡
†
¢
=
¡
†
¢ e =  − 1


 .

Multiplying both sides of the injected current-voltage relation  = e by the
pseudoinverse † of the weighted Laplacian e and using (4.31) yields

 = †+
 


 (4.32)

where the average voltage in the network equals av =
 

. The solution (4.32),

indeed, coincides physically with the fact that only the potential difference matters

and that a voltage is only determined with respect to a reference. In other words,

we can always choose the voltage reference at will and by choosing av = 0, the

solution (4.32) is most close to the standard inversion.

129. We present an alternative expression to (4.30) for the pseudoinverse † of
the (possibly weighted) Laplacian e. Since † = † =  because † = 0,
we observe for any number  that³ e+ 

´
† =  − 1


 (4.33)

The  ×  matrix e +  =
P−1

=1 

 +  =

P
=1 


 , with 

here meaning e =  and  = √

, has an inverse, provided e 6= 0 and thus

 6= 0, as for any connected graph (art. 126). The general determinant formula

(A.98) indicates that det
³ e+ 

´
= 

Q−1
=1 . Since the inverse

³ e+ 
´−1

exists for  6= 0, the general formula (A.88) shows that
³ e+ 

´−1
=

X
=1

−1 

 =

−1X
=1

−1 

 +

1

2
 (4.34)

Thus, for any non-zero real number , we obtain from (4.33) an alternative expres-

sion to (4.30) for the pseudoinverse of the weighted Laplacian e,
† =

³ e+ 
´−1µ

 − 1




¶
(4.35)

We can also write (4.35) in terms of the Laplacian 
=  −  of the complete

graph  as e† = 
³ e+ 

´−1


. Additionally, comparing (4.30) and (4.34)

leads to

† =
³ e+ 

´−1
− 1

2
 (4.36)

which illustrates that the right-hand side of (4.36) is independent of  6= 0, because
(4.30) is.
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130 Eigenvalues of the Laplacian 

The definition (A.44) of the inverse matrix in art. 212, applied to (4.36), shows

that


†
 = (−1)+

det
³ e\ row \ col  + −1−1

´
det

³ e+ 
´ − 1

2

Using the “rank one update” formula (A.65) in art. 219

det
³ e\ row \ col  + −1−1

´
= det

" e\ row \ col  −−1
−1 1

#

= det
³ e\ row \ col 

µ́
1+

³ e\ row \ col 
´−1



¶
and det

³ e+ 
´
= 

Q−1
=1  yields


†
 =

1



⎛⎝det
³ e\ row \ col 

´
(−1)+Q−1

=1 
− 1



⎞⎠+ det
³ e\ row \ col 

´

³ e\ row \ col 

´−1


(−1)+ Q−1
=1 

Since the right-hand side must hold for any  6= 0, we conclude that

(−1)+ det
³ e\ row \ col 

´
=
1



−1Y
=1

 (4.37)

which generalizes the complexity  () in (4.27) and art. 124 to weighted Lapla-

cians. Section 8.8 shows that any principal submatrix of a (weighted) Laplacian

is positive definite. Moreover, (4.37) indicates that the removal of any row and

column in the (weighted) Laplacian leads, apart from the factor (−1)+ , to the
same result, similar as (4.25). With (4.37), we arrive at


†
 =


³ e\ row \ col 

´−1


2
(4.38)

Again the definition (A.43) of the inverse matrix shows that


†
 =


³
adj e\ row \ col 

´


2 det
³ e\ row \ col 

´ =

P−1
=1

P−1
=1 (−1)+ det e\ row()\ col()


Q−1

=1 

(4.39)

Yet another representation


†
 = (−1)+

det

" e\ row \ col  −−1
−1 1

#


Q−1
=1 

− 1

2

simplifies most for  = −1, which bears resemblance with Fiedler’s block inverse
in (5.17). We proceed further in Section 5.1, where the effective resistance of a
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4.2 The pseudoinverse matrix † of the weighted Laplacian e 131

(weighted) graph is introduced. The element 
†
 can be expressed in terms of the

effective resistance as shown in (Van Mieghem et al., 2017, Appendix B), which

demonstrates that 
†
 ≥ 

†
 for each  and .

Example Consider the weighted adjacency matrix  =  ( − ) of the com-

plete graph  , where  6= 0. The corresponding weighted Laplacian equals e =

( − 1)  −  ( − ) =  ( − ) and e +  =  + (− ) . Since (4.35)

holds for any  6= 0, the easiest choice is  =  leading to the inverse
³ e+ 

´−1
=

1


. Hence, a pseudoinverse of the weighted Laplacian e =  ( − ) for the

complete graph  follows from (4.35) as

† =
1



µ
 − 1




¶
=

1

2
( − ) =

1

2


(4.40)

which is again a weighted Laplacian e† = † ( − ) of the complete graph 

with † = 1
2

.

130. Cramer’s method. We solve  = e by Cramer’s method in art. 220. We
assume that the graph is connected, i.e. −1  0 by Theorem 21. The rank

of the  ×  weighted Laplacian e is  − 1, because of a vanishing smallest
eigenvalue,  = 0, belonging to the eigenvector . We recall from art. 14 that

 =  e = 0, physically meaning that the sum of injected currents in the graph
is zero. We ignore the trivial case  = 0 in which the potential vector  =  and

thus assume that at least two components of  are non-zero. There are basically

two approaches3 to determine the  unknowns 1 2      : (i) one of the 

equations/rows in  = e can be replaced by an additional equation as explored
below and (ii) the set is rewritten in  − 1 unknowns in terms of one of them, say
 . The analysis of (ii) is omitted, because the resulting expressions for  are less

general as those in (i).

We replace an arbitrary equation or row in the set e =  by a new linear

equation   =
P

=1  , where  is a real vector. Following art. 128, we choose

 = 

so that av =  , which we can choose at will. Without loss of generality,

we first replace the  -th equation in e =  by   = av and the resulting set

of linear equations becomes" e\ row



#
 =

∙
\ row

av

¸

where e\ row is the ( − 1) ×  matrix obtained from e by removing row  .

Clearly, the potential  = av −
P−1

=1  . Cramer’s solution (A.68) in art. 220

3 These two approaches are similar to computing the adjoint matrix  () =  () ( −)−1,
whose columns are eigenvectors (see art. 230).
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132 Eigenvalues of the Laplacian 

yields, for 1 ≤    ,

 =

¯̄̄̄
¯ e\ row



¯̄̄̄
¯
col =

 \ row

av

¯̄̄̄
¯ e\ row



¯̄̄̄
¯

=


det
³ erow=

´

and4 det
³ erow=

´
=  det

³ e\ row\ col
´
is the same factor, appearing in each

 for 1 ≤    and equal to
Q−1

=1  =  () by (4.37), where  () in (4.27)

is the complexity in a weighted graph. The numerator  in  is

 =

¯̄̄̄
¯̄̄̄
¯̄̄

e11 · · · e1;−1 1 e1;+1 · · · e1e21 · · · e2;−1 2 e2;+1 · · · e2
...

...
...

...
...e−1;1 e−1;−1 −1 e−1;+1 e−1;

1 · · · 1 av 1 · · · 1

¯̄̄̄
¯̄̄̄
¯̄̄

We use the basic rules for determinants in art. 209. After5 adding all columns in

 , except for column , to the last one and using
P

=1 e = 0, the last column

becomes −e , except for the last row, which is  − 1. After changing the sign in
the last row and interchanging column  and  , we obtain

 =
1

 ()

¯̄̄̄
¯̄̄̄
¯̄̄

e11 · · · e1; · · · e1;−1 1e21 · · · e2; · · · e2;−1 2
...

...
...

...e−1;1 e−1; e−1;−1 −1
1 · · · 1− · · · 1 av

¯̄̄̄
¯̄̄̄
¯̄̄ (4.41)

=
1

 ()
det

Ã e\ row()\ col() \ row

 av

!
where the ( − 1)× 1 vector  has all ones, except for component () = 1− .

Only the element () for  differs from () for each  when both    and

   .

4 Add all columns in row= to the last column, which becomes zero due to  = 0, except
the last row element equals  . Expand the determinant to the last row (Theorem 59).

5 After adding all rows to the last one, using
−1

=1
 = − and

−1
=1

 = − because

 = 0, the ( )-th element is av −  , while ( )-th element, with  6= , is 1− ;.
Splitting the resulting determinant along the last row into two determinants leads to a determi-

nant equal to  and another det
 col =, that must be zero. Expanding det col = = 0

along column  gives


=1 (−1)+  det
 \ row()\ col() = 0, which is only possible for

any vector  obeying  = 0, if (−1)+ det
 \ row()\ col() is a constant. This demon-

strates (4.37) again.
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4.2 The pseudoinverse matrix † of the weighted Laplacian e 133

We apply twice Theorem 59: first, we expand the determinant in the numerator

of  in (4.41) with respect to column  and then to row  . We arrive, for

1 ≤    , at

 = av − 1

 ()

−1X
=1

(−1) 
−1X
=1

() (−1)

det

³ e\ row()\ col()´ (4.42)

which gives the solution of  = e and equals  = ³ e†´

if av = 0. Since

() − () =
⎧⎨⎩

 for  = 

− for  = 

0 if  6= { }
the potential difference between node  and  is

−=
P−1

=1(−1)
n
(−1)det

³e\row()\col()´−(−1)det³e\row()\col() ó
 ()

(4.43)

We will compute the effective resistance  from (4.43) in Section 5.6, from which

a triangle closure equation (5.37) for effective resistances is deduced.

131. The pseudoinverse † is not always a Laplacian. The pseudoinverse † of the
weighted Laplacian e is not necessary a Laplacian, because off-diagonal elements of
† can be positive, in contrast to the Laplacian e. We demonstrate the observation
by an example of the path graph6, whose explicit pseudoinverse † is computed in
Section 6.4.3. From (6.19),  () =  (−) and (6.18), it follows that

(path)
†
+1

=
1



½
2 −  + ( − 1) 2 − 1

6

¾
Thus, (path)

†
+1

= (path)
†
+1

 0 if

2 −  + ( − 1) 2 − 1
6

 0

The discriminant of this quadratic equation is −1
3

¡
2 − 6 + 2

¢
, which is negative

if   5, implying that there is no intersection with the real axis and all solutions

in  are positive. Hence, from  = 6 on, the pseudoinverse † of the path graph
has positive elements in the band one below until one above the diagonal.

We give a physical argument. Consider an electrical resistor network (art. 14)

where a current  is injected in node , while all other nodes are sinks, which leads

to a current vector  = 
¡
 − 1



¢
. The potential vector  = † in (4.32) then

equals for a unit current  = 1 ampere

 = †
³
 − 



´
= † = col †

6 A similar verification holds for the cycle graph.
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134 Eigenvalues of the Laplacian 

and

 = 
†
  0 (4.44)

is the largest positive potential (art. 129) in col 
†, because † ≥ 

†
 for any

1 ≤  ≤  as shown in Corollary 2. It is possible for a node  6=  that its potential

 = 
†
  0 if the resistance  is small.

132. The diagonal elements of the pseudoinverse †. Similarly as for the Lapla-
cian  and the weighted Laplacian e, the positive diagonal elements † of the

pseudoinverse † play an important role, as shown in Section 5.1. From (4.30), a

diagonal element of the pseudoinverse † equals

† =

−1X
=1

1


()

2


Using the doubly stochastic matrix Ξ for the Laplacian, defined in (A.178) and

in art. 109, the vector with the diagonal elements  =
³

†
11 

†
22     

†


´
is

 = Ξ
1


(4.45)

where the vector 1

=
³
1
1
 1
2
     1

−1
 0
´
. Relation (4.45), which corresponds to

that of the degree vector  = Ξ in (4.17), implies (see art. 275) that the vector
1

majorizes the vector , while the vector  majorizes the degree vector .

4.3 Second smallest eigenvalue of the Laplacian 

The second smallest eigenvalue −1 of the Laplacian has many interesting prop-
erties and was coined by Fiedler (1973), the algebraic connectivity of a graph. After

Fiedler’s seminal paper of 1973, results on the algebraic connectivity up to 2006 are

reviewed by de Abreu (2007). In this section, mainly general bounds are presented,

whereas art. 144 provides the major motivation to focus in depth on the algebraic

connectivity −1. Bounds on −1 in trees are given in Section 6.8.4.

4.3.1 Upper bounds for −1

133. The all-one eigenvector  of the Laplacian belongs (art. 350) to the smallest

eigenvalue  = 0. In the terminology of art. 101 and art. 350, any constant

function  () =  is an eigenfunction of  . Rayleigh’s theorem (art. 251) states

that −1 ( ) ≤ ( ) for any function  orthogonal to a constant function 

and that the minimizer, for which equality holds, is the eigenfunction belonging to

the second smallest eigenvalue −1. With art. 101, we obtain

−1 ≤
P

∈L ( (
+)−  (−))2P

∈N 2 ()
(4.46)

                     

https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core


4.3 Second smallest eigenvalue of the Laplacian  135

for any  that satisfies ( ) = 
P

∈N  () = 0. The latter condition is always

fulfilled if we choose  () =  () − 1


P
∈N  (), where the last term can be

interpreted as an average of  over all nodes of the graph. In addition, for such a

choice, ( (+)−  (−)) = ( (+)−  (−)) such that

−1 ≤
P

∈L ( (
+)−  (−))2P

∈N 2 ()− 1


¡P
∈N  ()

¢2
for any non-constant function .

For example, choose the vector or eigenfunction  as  () = 1,  () = −1 and
 () = 0 for any node  6=  6= . This vector is orthogonal to the constant,

( ) = 0. Inequality (4.46) then gives

−1 ≤  + 

2

A sharper bound using the same method is obtained in (4.51).

Invoking the Koebe-Andreev-Thurston Theorem7 of planar graphs and (4.46),

Spielman and Teng (2007) shows that the algebraic connectivity of a planar graph

with maximum degree max is bounded by −1 ≤ 8max


.

134. Fiedler’s expressions for −1. There is an alternative representation for
( ) or for   = kk22 due to Fiedler. From the special case of Cauchy’s identity

(A.71) as explored in art. 68,

X
=1

X
=1

( − )
2
=

X
=1

X
=1

2 − 2
X
=1



X
=1

 +

X
=1

X
=1

2 = 2  − 2 ¡ ¢2
we find that

  =
1

2

X
=1

X
=1

( − )
2

because any Laplacian eigenvector  that does not belong to  = 0 is orthogonal

to . If  = −1 is the eigenfunction of  belonging to −1, equality holds in
(4.46) and introducing the above, we arrive at Fiedler’s expression for the algebraic

connectivity

−1 =
2

P
∈L ( (

+)−  (−))2P
∈N

P
∈N ( ()−  ())

2
(4.47)

Fiedler’s formula (4.47) can also be written in terms of the adjacency matrix

elements as

−1 = 

P
∈N

P
∈N  ( ()−  ())

2P
∈N

P
∈N ( ()−  ())

2
(4.48)

7 For a planar graph with  nodes, there exists a set of disks {1 2    } in the plane
with disjoint interiors such that  touches  if and only if ( ) ∈ L.
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136 Eigenvalues of the Laplacian 

from which

−1 = 

Ã
1−

P
∈N

P
∈N (1− ) ( ()−  ())

2P
∈N

P
∈N ( ()−  ())

2

!
= 

µ
1− 1 (

)



¶
agreeing with the general relation (art. 112) between Laplacian eigenvalues of the

graph  and of its complement . Further, we have

−1 =


1 +


∈N


∈N (1−)(()−())2
∈N


∈N (()−())2

=


1 +


∈L((
+)−(−))2

∈L((
+)−(−))2

(4.49)

where the sum over links in the graph  generally contains all different non-negative

terms than the sum over links in its complement . In a dense graph , where

 = |L| is large and thus  = |L| is small, we expect a large algebraic connectivity
−1, but not larger than  . That maximum −1 =  can only occur if  = 0,

thus only if the complement  is the empty graph and  is the complete graph

 .

The numerator and denominator in (4.47) are invariant to the addition of a

constant. If  is orthogonal to the constant eigenfunction  of  belonging to  ,

Rayleigh’s principle in art. 251 states that

−1 ≤
2

P
∈L ( (

+)−  (−))2P
∈N

P
∈N ( ()−  ())

2
(4.50)

The advantage of Fiedler’s inequality (4.50) is, that explicit orthogonality ( ) = 0

for  to the constant function , is not required anymore since it is implicitly

incorporated into the denominator. For example, choosing now the eigenfunction

 as  () = 1{=} leads, with ( ()−  ())
2
= 1{=} + 1{=} provided  6= 

and X
∈N

X
∈N

( ()−  ())
2
=
X
∈N

X
∈N\{}

1{=} +
X
∈N

X
∈N\{}

1{=}

= 2
X
∈N

1{=}
X

∈N\{}
1 = 2 ( − 1)

to −1 ≤ 
−1. Since the inequality holds for any node , the sharpest bound

is reached when  = min and we find Fiedler’s inequality for the second smallest

eigenvalue of the Laplacian

−1 ≤ 

 − 1min (4.51)

Since equality is attained for the complete graph  as shown in Section 6.1, the

bound (4.51) is generally the best possible. This inequality also follows from (A.189)

in Fiedler’s Theorem 80 for symmetric, positive semidefinite matrices. The bound

(4.51) is also derived from the Alon-Milman inequality (4.73) as shown in art. 144.

135. Fiedler eigenvector. The eigenvector −1 of the Laplacian  belonging to
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4.3 Second smallest eigenvalue of the Laplacian  137

the algebraic connectivity −1 is called the Fiedler eigenvector, with component
(−1) =  () for node . We know already that the Fiedler eigenvector must be

orthogonal ( ) = 0 to the all-one vector , which is equivalent to
P

∈N  () =

0. Art. 112 shows that the Fiedler eigenvector −1 () is also the eigenvector
1 (

) of the Laplacian  of the complementary graph  belonging to the largest

eigenvalue 1 (
).

Suppose that ( ()−  ())
2
= , where  is a positive constant, holds for all

nodes  and , then (4.49) shows that

−1 =


1 + 



=


1 + 1


³¡

2

¢− 
´ = 2

 − 1 =


 − 1 []

which is contradicted by Fiedler’s upper bound (4.51) in non-regular graphs, be-

cause then  []  min. Hence, in non-regular graphs, the absolute value of the

difference of the Fiedler eigenvector components cannot be the same for all node

pairs ( ). Thus,  ()−  () = ±√ cannot hold!
136. Lower bound for 1. We apply (4.51) to the complement 

 of a graph ,

−1 () ≤ 

 − 1min (
) =



 − 1 ( − 1− max ()) =  − 

 − 1max ()

Using (4.19) yields a lower bound for the largest eigenvalue of the Laplacian



 − 1max ≤ 1 ≤ min ( 2max) (4.52)

where the upper bound follows from (4.20). The weaker lower bound, 1 ≥ max,

is immediate from (4.8), but the lower max

q
1 + 1

max
≤ 1 in (4.12) can be better

than (4.52) for small max.

Grone and Merris (1994) succeeded in improving Fiedler’s lower bound (4.52):

1 ≥ max + 1 (4.53)

which is a strict inequality when max   − 1 and excludes8 the complete graph
 . Rayleigh’s principle (art. 251) applied to the largest eigenvalue 1 of the

Laplacian  yields for any vector  6= 0, using (4.3),

1 ≥ 


=

P
∈L (+ − −)

2



The particular choice of the vector , where  =  and  = −1 for each node
 ∈ neighbor() else  = 0, obeys  = 0 and we find that

1 ≥ 


=

 ( + 1)
2

2 + 
=  + 1

Since the inequality 1 ≥  + 1 holds for any node , we arrive at (4.53).

8 In the complete graph  , all non-zero Laplacian eigenvalues are equal (see p. 193) to  =  ,
for   0.

                     

https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core


138 Eigenvalues of the Laplacian 

Applying (4.53) to the complement  then shows that

1 (
) ≥ max (

) + 1 =  − min ()

and, with (4.19), that

−1 () ≤ min () (4.54)

valid for any graph , except for  . Equality in (4.54) is reached, for example,

in the star 1 (see Section 6.7). Clearly, the Grone-Merris upper bound (4.54)

is sharper than Fiedler’s upper bound (4.51).

4.3.2 Lower bounds for −1

137. Lower bounds for any Laplacian eigenvalue. Brouwer and Haemers (2008)

have impressively extended the Grone-Merris lower bound (4.53):

Theorem 24 (Brouwer and Haemers) For any graph but  + ( −)1,

the disjoint union of the complete graph  and  − isolated nodes, the -th

largest Laplacian eigenvalue is lower bounded, for 1 ≤  ≤  , by

 ≥ () −  + 2 (4.55)

where () is the -th largest nodal degree.

Proof: The proof of Brouwer and Haemers (2008) cleverly combines the gener-

alized interlacing Theorem 72 applied to a specific quotient matrix , defined in

art. 37. The proof is rather complex and omitted. ¤
Brouwer and Haemers (2008) also discuss graphs for which equality in (4.55) is

reached. Also, unweighted threshold graphs (art. 114) possess integer Laplacian

eigenvalues close to the degrees (Hammer and Kelmans, 1996, Theorem 5.3).

Since  ≥ 0, the bound (4.55) becomes useless when ()   − 2. In fact, we
may introduce slack variables  ≥ 0 in (4.55) to obtain the equality

 = () −  + 2 + 

Substitution into the -th moment formula (4.16) specifies the moments
P

=1 

 .

For example, for  = 1, we find from (4.7), using
P

=1 () =
P

=1  ,

X
=1

 =
 ( − 3)

2

which shows that the average of the  ’s increases linearly with  . The cases for

higher values of  are more involved, as illustrated for  = 2, which is derived

from (4.9),

X
=1

2 =

¡
22 − 9 + 13

¢
6

+ 2+ 2

X
=1

2 + 2

X
=1

 ( − )− 2
X
=1


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4.3 Second smallest eigenvalue of the Laplacian  139

The last sum is related to the covariance  [] −  [] [] and, in general,

difficult to assess. The above method of equating moments (see also art. 354)

suggests to consider  = () + ̃ , where the difference ̃ can be negative as well

as positive, but the average difference is zero.

In their book, Brouwer and Haemers (2012) conjecture, for any integer 1 ≤  ≤
 , the upper bound

X
=1

 ≤ +

µ
 + 1

2

¶
(4.56)

The Brouwer conjecture (4.56) on the partial sum of the largest Laplacian eigen-

values of a graph seems hard to prove in general, but it has been verified for many

graph types, like regular graphs. Moreover, the inequality (4.56) seems to hold for

weighted Laplacians as well.

138. Lower bounds for −1. We apply the functional framework of art. 102 to
derive a lower bound for the second smallest eigenvalue of the Laplacian. Assume

that  is the eigenfunction of  belonging to −1 for which the equality sign holds
in (4.46),

−1 =

P
∈L ( (

+)−  (−))2P
∈N 2 ()

Let node  for which | ()| = max∈N | ()|  0. Clearly,
P

∈N 2 () ≤
2 (). Since

P
∈N  () = 0 due to  −1 = 0 as shown in art. 133, there

exists a node  for which  ()  ()  0. Since −1  0 for a connected graph,

it means that there exists a path P ( ) from  to  with hopcount  (P ( )).
The minimum number of links to connect a graph occurs in a minimum spanning

tree (MST) consisting of  − 1 links. Only if the diameter  ≥  (P ( )) of  is

smaller than  − 1, we have a strict inequality inX
∈L

¡

¡
+
¢− 

¡
−
¢¢2 ≥ X

∈MST

¡

¡
+
¢− 

¡
−
¢¢2 ≥ X

∈P()

¡

¡
+
¢− 

¡
−
¢¢2

By the Cauchy-Schwarz inequality (A.12), we have

 (P ( ))
X

∈P()

¡

¡
+
¢− 

¡
−
¢¢2 ≥

⎛⎝ X
∈P()

¡

¡
+
¢− 

¡
−
¢¢⎞⎠2

and with
P

∈P() ( (
+)−  (−)) =  ()−  (), we find

 (P ( ))
X

∈P()

¡

¡
+
¢− 

¡
−
¢¢2 ≥ ( ()−  ())

2
(4.57)

Using ( ()−  ())
2 ≥ 2 () because  ()  ()  0, we obtainX

∈P()

¡

¡
+
¢− 

¡
−
¢¢2 ≥ 2 ()

 (P) ≥
2 ()


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Combining all inequalities leads to −1 ≥ 1

.

139. Betweenness and weighted betweenness. The bound −1 ≥ 1


can be

improved by summing the Cauchy-Schwarz bound (4.57) over all node pairs,X
∈N

X
∈N

( ()−  ())
2 ≤

X
∈N

X
∈N

 (P ( ))
X

∈P()

¡

¡
+
¢− 

¡
−
¢¢2

=
X
∈N

X
∈N

 (P ( ))
X
∈L

¡

¡
+
¢− 

¡
−
¢¢2

1{∈P()}

=
X
∈L

¡

¡
+
¢− 

¡
−
¢¢2 X

∈N

X
∈N

 (P ( )) 1{∈P()}

and X
∈N

X
∈N

( ()−  ())
2 ≤ 2

X
∈L

¡

¡
+
¢− 

¡
−
¢¢2

 (4.58)

where we define

 =
1

2

X
∈N

X
∈N

 (P ( )) 1{∈P()} (4.59)

which is an integer, measuring the importance of a link . Hence, we deduce from

Fiedler’s definition (4.47) that

−1 ≥

P

∈L ( (
+)−  (−))2P

∈L ( (+)−  (−))2 
(4.60)

Since the definition (4.59) holds for any path P ( ) between a node pair ( ),
there will exist a set of particular paths that minimizes or maximizes . That

minimum or maximum of  can be regarded as a “centrality” metric for a link 

defined as the minimum or maximum of the sum of all hopcounts of paths P ( )
between all pairs of nodes ( ) that contain that link . Also, it does not necessarily

hold that the shortest hopcount paths9 between a node pair ( ) will lead to the

minimum of . It also follows from the definition (4.59) that

min
P

 (P) ≤
X
∈N

X
∈N

 (P ( )) 1{∈P()} ≤ maxP  (P)

where the betweenness of a link , defined as

 =
1

2

X
∈N

X
∈N

1{∈P()} (4.61)

equals the total number of shortest paths in the graph that traverse or contain link

. In a connected graph, the minimum hopcount is minP  (P) = 1, namely the

direct link between any two nodes, because  (P ( )) = 0 as P ( ) cannot be a
9 Generally, there are several shortest hopcount paths between a node pair in a graph with unit
link weights.
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4.3 Second smallest eigenvalue of the Laplacian  141

path in absence of self-loops, and the maximum hopcount maxP  (P) =  equals

the diameter of the graph, so that

 ≤  ≤  (4.62)

In view of the correspondence with the betweenness , defined in (4.61) below, we

may call  a weighted betweenness of the link . By summing (4.59) over all links

and using
P

=1 1{∈P()} =  (P ( )), we find
X
=1

 =
1

2

X
∈N

X
∈N

 (P ( )) =
µ


2

¶
 []

and

X
=1

 =
1

2

X
∈N

X
∈N

2 (P ( ))

from which the average weighted betweenness av =
1


P
=1  follows as

av =
1

2

X
∈N

X
∈N

2 (P ( )) =  ( − 1)
2


£
2
¤
=
( − 1) £2

¤
 []

With 
£
2
¤
= ( [])

2
+ Var and the average betweenness av =

1


P
=1,

we find that

av =
 []

( − 1)
2
av +

( − 1)
 []

Var

In general, the right-hand side in (4.58) can be bounded as

min
∈L


X
∈L

¡

¡
+
¢− ¡−¢¢2 ≤X

∈L

¡

¡
+
¢− ¡−¢¢2  ≤ max

∈L

X
∈L

¡

¡
+
¢− ¡−¢¢2

While the smallest value  of
P

∈L ( (
+)−  (−))2  would yield in (4.60)

the largest lower bound for −1, we cannot guarantee that  can attain the

lower bound min∈L 
P

∈L ( (
+)− (−))2 nor that the ensuing substitution in

(4.60) leading to 
min∈L 

will still lower bound −1. Simulations in Martin-

Hernandez et al. (2014) have led us to consider the average weighted betweenness

av =
1


P
=1  to approximate the algebraic connectivity as −1 ≈ 

av
and

−1 ≈  []

( − 1) [2]
(4.63)

where  is the hopcount of an arbitrary path in . For the complete graph  ,

equality holds in (4.63). For a path graph on  nodes, 
£
2
¤
= 2−1

6
(as follows

from Van Mieghem (2014, p. 629)) and the algebraic connectivity follows from

(6.15) as −1 = 2
¡
1− cos ¡ 



¢¢
= 2

2 + 
¡
1
4

¢
so that, for large  , −1 ∼
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2

2 
[]

(−1)[2]
= 12

2−1 ∼ 12
2 . Since 

£
2
¤ ≤ 2 and

[]

(−1)[2]


[]

[2]
, we

deduce from the estimate (4.63) the “approximate” inequality

−1 '
 []

2

and the suggestion that the diameter may be “close” to  ≈
√
[]√
−1

. For sparse

graphs, −1 ≈ []

2
seems accurate. However, the right-hand side in (4.63) can

be lower and larger than the algebraic connectivity −1 and, even for large  ,
the example of the path graph disproves asymptotic equality. These considerations

force us to continue with the worst alternative, max∈L , so that

−1 ≥ 

max∈L 
(4.64)

Furthermore, using the inequality  ≤  from (4.62) into (4.58) yieldsX
∈L

¡

¡
+
¢− 

¡
−
¢¢2

 ≤ 
X
∈L

¡

¡
+
¢− 

¡
−
¢¢2



As shown by Wang et al. (2008), the maximum betweenness in any graph is

 =
1

2

X
∈N

X
∈N

1{∈P()} ≤
∙
2

4

¸
(4.65)

and X
∈L

¡

¡
+
¢− 

¡
−
¢¢2

 ≤
∙
2

4

¸

X
∈L

¡

¡
+
¢− 

¡
−
¢¢2

Since
h
2

4

i
≤ 2

4
, introduction in (4.60) leads to

−1 ≥ 4


(4.66)

which is clearly inferior to (4.64). Nevertheless, equality in this lower bound (4.66)

can be reached. As mentioned by Mohar (1991), McKay has shown that in a tree

of diameter  = +2, obtained from a -hop path, where  nodes are connected to

each of its end-nodes such that  = + 1 + 2, (4.66) is sharp if 

→∞.

140. We present another interpretation, deduced from art. 139, by rewriting the

definition (4.59) as

2 =
X
∈N

X
∈N

 (P ( )) 1{∈P()}

replacing 1{∈P()} =
¡
1{∈P()} − 1 + 1

¢
and splitting the sums

2 =
X
∈N

X
∈N

 (P ( ))−
X
∈N

X
∈N\{}

 (P ( )) ¡1− 1{∈P()}¢

                     

https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core
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because  (P ( )) = 0. In all other cases where nodes  and  are different,

 (P ( )) ≥ 1, such that the last sum is lower bounded:

e = X
∈N

X
∈N\{}

 (P ( )) ¡1− 1{∈P()}¢ ≥ X
∈N

X
∈N\{}

¡
1− 1{∈P()}

¢
= 2

µ


2

¶
−
X
∈N

X
∈N\{}

1{∈P()} ≥ 2
µ


2

¶
− 2

2

4
=

( − 2)
2

where in the last line (4.65) has been used. With the definition of the average

hopcount,
P

∈N
P

∈N  (P ( )) =  ( − 1) [], we find

2 =
X
∈N

X
∈N

 (P ( )) 1{∈P()} ≤  ( − 1) []− ( − 2)
2

The lower bound −1 ≥ 
max∈L 

in (4.64) shows that

−1 ≥ 2

( − 1) []− (−2)
2

or

 [] ≥ 2

( − 1)−1 +
1

2
− 1

2 ( − 1)

141. Another type of lower bound for −1. Let  be the eigenfunction of the
Laplacian  belonging to −1, then the eigenvalue equation in (1.3) is  () =
−1 () for each nodal component  ∈ N . Since  is non-zero and orthogonal to
the constant function,

0 =
X
∈N

 () =
X

+∈N

¡
+
¢− X

−∈N

¯̄

¡
−
¢¯̄

where, for + ∈ N ,  (+)  0 and − ∈ N ,  (−) ≤ 0. Let us define the set of
positive nodes N+ = { ∈ N :  ()  0} and N− = N\N+. Similarly, let L+ =
{++ ∈ N : + + ∈ N+} denote the set of all links between positive nodes and
L− = {+− ∈ N : + ∈ N+ − ∈ N−} denote the set of all links between positive
nodes and negative nodes. Multiplying both sides of the eigenvalue equation by

 () and summing over positive nodes yields

−1 =

P
∈N+  ()  ()P

∈N+ 2 ()
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Using the definition in art. 4 of the Laplacian  = ∆−,X
∈N+

 ()  () =
X
∈N+

 () (∆ −) ()

=
X
∈N+

 ()

⎛⎝ ()  ()−
X

∈neighbors()
 ()

⎞⎠
=
X
∈N+

X
∈neighbors()

 () ( ()−  ())

Further, after splitting the neighbors into positive and negative nodes,X
∈N+

 ()  () =
X

++∈L+
 () ( ()−  ()) +

X
+−∈L−

 () ( ()−  ())

Since the graph is bidirectional, i.e.,  = , the link ++ = ++ appears twice

in the sum such thatX
++∈L+

 () ( ()−  ()) =
X

++∈L+
{ () ( ()−  ()) +  () ( ()−  ())}

=
X

++∈L+
( ()−  ())

2

where a link ++ ∈ L+ is only counted once. Similarly as before, we denote the
link  = ++ by the head of link as + = + and by the tail as − = +. Thus, we

arrive atX
∈N+

 ()  () =
X
∈L+

¡

¡
+
¢− 

¡
−
¢¢2

+
X

+−∈L−
 () ( ()−  ())

and

−1 =

P
∈L+ ( (

+)−  (−))2 +
P

+−∈L−  () ( ()−  ())P
∈N+ 2 ()

Since  (+) ( (+)−  (−))  0, the last sum in the numerator is non-negative,

which leads to a lower bound

−1 ≥
P

∈L+ ( (
+)−  (−))2P

∈N+ 2 ()
(4.67)

The lower bound (4.67) resembles the upper bound (4.46), except that only positive

nodes and links are considered and that  is not arbitrary, but the eigenfunction of

 belonging to the eigenvalue −1.
We can improve this lower bound (4.67) by incorporating positive terms inP
+−∈L−  () ( ()−  ()), that we have neglected. This means that also links

outside the positive cluster are taken into account. Following Alon (1986), we can

define  () =  () 1{∈N+} such thatX
+−∈L−

 () ( ()−  ()) ≥
X

+−∈L−
( ()−  ())

2
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4.3 Second smallest eigenvalue of the Laplacian  145

With this function, the first sum remains unaltered,X
∈L+

¡

¡
+
¢− 

¡
−
¢¢2

=
X
∈L+

¡

¡
+
¢− 

¡
−
¢¢2

=
X
∈L

¡

¡
+
¢− 

¡
−
¢¢2

and, also
P

∈N+ 2 () =
P

∈N+ 2 () =
P

∈N 2 (). Thus, the improved

lower bound is

−1 ≥
P

∈L ( (
+)−  (−))2P

∈N 2 ()
(4.68)

142. Let + {} denote a graph obtained from  by adding a link  between two

nodes of . For any  orthogonal to a constant function, we have thatP
∈L(+{}) ( (

+)−  (−))2P
∈N 2 ()

=

P
∈L() ( (

+)−  (−))2P
∈N 2 ()

+
( (+)−  (−))2P

∈N 2 ()

If  = +{} is an eigenfunction of +{} corresponding to −1 (+ {}), then
(4.46) shows that

−1 (+ {}) ≤ −1 () +

¡
+{} (+)− +{} (−)

¢2P
∈N 2

+{} ()

On the other hand, if  =  is an eigenfunction of  corresponding to −1 (),
then

−1 (+ {}) ≥ −1 () +
( (

+)−  (
−))2P

∈N 2 ()

In the first bound,

 =

¡
+{} (+)− +{} (−)

¢2P
∈N 2

+{} ()

=
2+{} (

+) + 2+{} (
−)− 2+{} (+) +{} (−)

2
+{} (

+) + 2
+{} (

−) +
P

∈N\{+−} 
2
+{} ()

≤
2
+{} (

+) + 2
+{} (

−) + 2
¯̄
+{} (+)

¯̄ ¯̄
+{} (−)

¯̄
2
+{} (

+) + 2
+{} (

−)
≤ 2

because max≥0≥0
2

2+2
= max= 


≥0 2

1+2
= 1. With

((+)−(−))2
∈N 2


()

≥ 0 in
the second bound, we arrive at

−1 () ≤ −1 (+ {}) ≤ −1 () + 2 (4.69)

The same bounds (4.69) are elegantly proved by invoking interlacing (art. 267)

on +{} =  +{}. Indeed, the Laplacian {} of a link  between node

 and  has precisely four non-zero elements:  =  = −1 and  =  = 1.
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146 Eigenvalues of the Laplacian 

The eigenvalues of {} are obtained from det
¡
{} − 

¢
after expanding the

determinant in cofactors over row  (or ),

det
¡
{} − 

¢
= (−1)2 (−)−2 (1− )

2 − (−1)+(−1)+ (−)−2

= (−)−1 (− 2)

The eigenvalues of {} are thus [0]
−1

and 2; the interlacing inequality (A.165)

leads to (4.69).

Art. 105 shows that, by adding one link, the sum of all eigenvalues increases

by 2. Hence, when the upper bound in (4.69) is achieved, all other eigenvalues of

+{} are precisely equal to those of .

4.4 Partitioning of a graph

The problem of graph partitioning consists of dividing the nodes of a graph into a

number of disjoint groups, also called partitions (see art. 36), such that a certain

criterion is met. The most popular criterion is that the number of links between

these disjoint groups is minimized. Sometimes, the number of those partitions and

their individual size is prescribed. Most, but not all (see art. 143) variants of the

graph partitioning problem are NP-hard. We refer to Spielman and Teng (2007)

for the history of spectral methods for graph partitioning.

143. Graph partitioning into two disjoint subsets. When confining to a graph

partitioning into two disjoint subsets (subgroups, clusters, partitions,...), an index

vector  can be defined with vector component  = 1 if the node  belongs to one

partition and  = −1 if node  belongs to the other partition. The number of links
 between the two disjoint subsets, also called the cut size or size of the separator,

elegantly follows from the characteristic property (4.3) of the Laplacian,

 =
1

4

X
∈L

(+ − −)
2
=
1

4
 (4.70)

because, only if the starting node + and the ending node − of a link  belong to

a different partition, (+ − −)
2
= 4, else + = − . The minimum cut size is

min = min
∈Y

1

4


where Y is the set of all possible index vectors of the  -dimensional space with

either −1 or 1 components.
Since all eigenvectors {}1≤≤ of the Laplacian  are orthogonal (art. 247),

any vector can be written as a linear combination. Let  =
P

=1  , then

 =
1

4

X
=1



X
=1



 
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4.4 Partitioning of a graph 147

and using the orthogonality property (A.121) in art. 247, we obtain

 =
1

4

X
=1

2 (4.71)

Since  = 0 and all other eigenvalues are larger than zero for a connected graph

(Theorem 20), the alternative eigenvalue expression (4.71) shows that  is a sum

of positive real numbers.

Although Stoer and Wagner (1997) have presented a highly efficient, non-spectral

min-cut algorithm with a computational complexity of 
¡
+2 log

¢
, which

demonstrates that the min-cut problem is not NP-hard, the minimization of (4.71)

is generally difficult. However, if one chooses in (4.70)  = −1−1, then  =
1
4
2−1−1, which is, in view of (4.71), obviously the best possible to minimize

. Unfortunately, choosing the index vector  parallel to the Fiedler vector −1
is generally not possible, because −1 ∈ Y. A good strategy is to choose the sign
of the components in  according to the sign of the corresponding component in

the Fiedler vector. A slightly better approach is the choice  = + −1, since
the eigenvector  belonging to  = 0 does not affect the value of  in (4.71) and

it provides a higher degree of freedom to choose the size of each partition. This

strategy agrees with Fiedler’s graph partitioning explained in art. 150.

144. The Alon-Milman inequality. Another approach to the separator problem

is to establish useful bounds. As we will demonstrate here, it turns out that the

algebraic connectivity −1 plays an important role in such bounds. Our starting
point is the upper bound in (4.46) for −1. The ingenuity lies in finding a function
 , introduced in art. 133, satisfying ( ) = 0 that has both a graph interpretation

and that provides a tight bound for −1 in (4.46). Alon and Milman (1985) have
proposed the function

 () =
1


−
µ
1


+
1



¶
min (  ())



where ( ) 6= 0 such that  = − ̄ in art. 133, with ̄ = 1


P
∈N  (). Further,

 is the distance (in hops) between two disjoint subsets  and  of N ,  () is
the shortest distance of node  ∈ N to a node of the set  and  = 


and  = 


,

where  = | N| is the number of nodes of set N. If  ∈ , then  () = 1

, while,

if  ∈ , then  () =  and  () = −1

. Moreover, if  and  are adjacent, i.e.,

they are either head ( = +) or tail ( = −) of a link , then

| ()−  ()| ≤ 1



µ
1


+
1



¶
(4.72)

Indeed, if  and  belong to the same set, then  ()− () = 0. If  ∈  and  ∈ ,

then  () = 1, because  and  are adjacent and  () −  () =
¡
1

+ 1



¢
1

. If
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148 Eigenvalues of the Laplacian 

both  and  do not belong to , then | ()−  ()| ≤ 1 and

| ()−  ()| = 1



µ
1


+
1



¶
|−min (  ()) + min (  ())|

where the difference of the min-operator is largest and equal to 1 if not both ()

and  () are larger than . This proves (4.72). Using this bound (4.72), the

numerator in (4.46) isX
∈L

¡

¡
+
¢− 

¡
−
¢¢2

=
X
∈L

¡

¡
+
¢− 

¡
−
¢¢2

=
X

∈L\{∪}

¡

¡
+
¢− 

¡
−
¢¢2

≤ 1

2

µ
1


+
1



¶2
(−  − )

where  and  are the number of links in the sets  and , respectively. The

denominator of (4.46) isX
∈N

2 () ≥
X

∈(∪)
2 () =

X
∈

( ()− ̄)
2
+
X
∈

( ()− ̄)
2

= 

µ
1


− ̄

¶2
+

µ
1


+ ̄

¶2
= 

µ
1


+
1


+ (+ ) ̄2

¶
≥ 

µ
1


+
1



¶
Finally, with (4.46), Alon and Milman (1985) arrive at

−1 ≤ 1

2

µ
1



+
1



¶
(−  − ) (4.73)

The Alon-Milman inequality (4.73) shows that a large algebraic connectivity −1
leads to a high number of links between the two clusters  and . Indeed, consider

all subsets  and  in a graph  with a fixed number of nodes  and  and

same separation , then a large −1 implies a large number of links −−
between any pair — thus also minimal pairs — of subsets  and . Hence, a large

−1 means a higher inter-twined subgraph structure and, consequently, it is more
difficult to cut away a subgraph from . A graph with large second smallest

Laplacian eigenvalue −1 is thus more “robust”, in the sense of being better
connected or interlinked. Just this property of −1 has made the second smallest
Laplacian eigenvalue a fundamental characterizer of the robustness of a graph.

However, the algebraic connectivity −1 should not be viewed as a strict dis-
connectivity or robustness metric. Fig. 4.1 depicts two graphs 1 and 2, each

with  = 7 nodes,  = 10 links and diameter  = 4, but with different al-

gebraic connectivity −1 (1) = 06338 and −1 (2) = 05858. Although

−1 (1)  −1 (2), it is easier to disconnect 1 than 2, because one link

removal disconnects 1, while two links need to be deleted in 2.

145. Bounds for the separator. The Alon-Milman method of art. 144 can be
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G1
G2G1G1
G2G2

Fig. 4.1. Two graphs 1 and 2, each with  = 7 nodes,  = 10 links and diameter
 = 4, but with different algebraic connectivity.

extended to deduce bounds for the separator  of two disjoint subsets  and ,

that are at a distance  from each other. The separator  is the set of nodes at a

distance less than  hops from  and not belonging to  nor ,

 = { ∈ N\ :  ()  }

and  ∪  ∪  = N . Sometimes, when  = 1, the separator is called the cut size,

since there is a cut that splits the graph into two partitions. As in art. 144, we

define  = 


,  = 


and  = 


, where  is the number of nodes in the set .

Instead of using the inequality (4.46), Pothen et al. (1990) start from the Fiedler

inequality (4.50) in which they use

 () = 1− 2

min (  ())

which is recognized as the Alon-Milman function  () with  =  = 1. If  ∈ ,

then  () = 1 − 2

 () and 1 − 2


≥  () ≥ 1 − 2(−1)


= − ¡1− 2



¢
. The

numerator in (4.50) is computed precisely as in art. 144 with  =  = 1,

X
∈L

¡

¡
+
¢− 

¡
−
¢¢2 ≤ µ 2



¶2
(−  − ) ≤

µ
2



¶2
max

The denominator  = 1
2

P
∈N

P
∈N ( ()−  ())

2
in (4.50) is

 =

ÃX
∈

X
∈

+
X
∈

X
∈

+
X
∈

X
∈

+
X
∈

X
∈:

!
( ()−  ())

2

≥
ÃX
∈

X
∈

+
X
∈

X
∈

+
X
∈

X
∈

!
( ()−  ())

2

≥
µ
1−

µ
1− 2



¶¶2
2+ (1− (−1))22+

µ
−1 +

µ
1− 2



¶¶2
2

=

µ
2



¶2
2

©
 (+ ) + 2

ª
With  = 1− − , we arrive at

−1 ≤ max

 (1− ) + (1− − )2
(4.74)
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150 Eigenvalues of the Laplacian 

which provides a quadratic inequality in , from which a lower bound for  can be

derived.

146. Pothen et al. (1990) present another inequality for the normalized size 

of the separator, that is a direct application of the Wielandt-Hoffman inequality

(A.168) for symmetric matrices. We can always relabel the nodes in the graph 

corresponding to the sets  and  such that the Laplacian becomes

 =

⎡⎣ × × ×

× × ×

(×)


(×)


×

⎤⎦
The idea, then, is to consider another matrix, whose eigenvalues are all known,

such as  = diag(× × ×), where  is the all-one matrix. The

eigenvalues of  are those of the separate block matrices, that follow from (6.1)

as  and all the others are zero. Let us assume that  ≥  ≥ . We

apply the Wielandt-Hoffman inequality (A.168) to  and − (to have consistent

ordering in the eigenvalues) such that

X
=1

 (−) () = −
X

=1

+1− () = − (0+ −1+ −2)

while trace(−) = −trace() and, with the shorter notation for the square

matrix × = ,

trace () = trace () + trace () + trace ()

=

ÃX
∈

+
X
∈

+
X
∈

!
( − ∗)

= 2 (−  −  − )

where ∗ is the number of links incident to the node  and with end node in the
same set as . Substituting both in (A.168) yields

−1+ −2 ≤ 2 (−  −  − )

≤ 2 (−  − ) ≤ 2max

from which, using  = 1− − , a lower bound for the size of the separator follows

as

 ≥ (1− )−1
2max − (−2 − −1)

This inequality, that contains beside the algebraic connectivity −1 also the gap
−2 − −1, complements the inequality (4.74).

147. Applications of the Alon-Milman bound (4.73). Alon and Milman (1985)

mention the following applications of the bound (4.73).

First, let  = {} and  = N\{}, then  = 1 and  −  −  = , the
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4.4 Partitioning of a graph 151

degree of node . Since this inequality holds for any node , the tightest bound

is obtained by choosing a node  with minimum degree min = min∈N , which

leads again to (4.51).

Second, let  =  = 1
2
, then the set of all links connecting a node in  to a node

in  is called the bisector of . The minimum number of the bisector is related to

min-cut, max-flow problems. The Alon-Milman bound (4.73) shows a lower bound

for the bisector,



4
−1 ≤ bisector ()

Third, if   1, then every link in the set L\ (L∪L) is incident with at least
one of the−− nodes of the set  = N\ (N∪N), such that −− ≤
( − −) max. The Alon-Milman bound (4.73) becomes, using +   1,

−1 ≤ 1

2

µ
1


+
1



¶
(1− − ) max ≤ 1

2
(1− − ) max

=
max

 (1− − )2

which is clearly weaker than (4.74) because 0    1. It provides a lower bound

for the fraction  = 


as

 ≤ 1− 

1 +
2−1
max

(4.75)

where   1.

Based on (4.75), Alon and Milman (1985) also derive a second bound

 ≤ (1− ) exp

µ
− ln (1 + 2)

¹


r
−1
2max

º¶
(4.76)

where bc denotes10 the largest integer smaller than or equal to .
Proof: The idea is to construct subsets  of N that include, beside the orig-

inal subset , additional nodes of N within distance  ∈ R hops from , i.e.,

 = { ∈ N :  () ≤ }. We construct a sequence on distance  =  for

 = 0 1      of those subsets such that  and N\(+1) are more than   1

hops separated, which requires that     1. For those subsets  ⊂  ⊂ 2 ⊂
· · · ⊆ N , application of (4.75) yields

1− (+1) =
1− 

1 +
2−1

max

≤ 1− 

1 + 
2−1
max

The largest possible  is such that  ≤ , where  is the diameter of the graph.

With (4.51), we observe that, for  ≥ 2,
1

−1
≥  − 1



1

min
≥ 1

2max

10 Likewise, de denotes the smallest integer larger than or equal to .
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152 Eigenvalues of the Laplacian 

such that 2max
−1

 1. Let 2 = 2max
−1

 1, then 1 − (+1) ≤ (1− )
1

1+2
for

0 ≤   . Multiplying those inequalities yields

1−  ≤ (1− )
1

(1 + 2)

= (1− )− ln(1+2)

and by construction  ⊆ N\ or   1 −  and   

= 

q
−1
2max

. This

proves (4.76) for any   . ¤

148. Isoperimetric constant . If we choose the set  equal to N\N, then

L − L − L is the set of links with one end in  and the other in . Thus,

 =  −  −  is the number of links between  and its complement N\N

and  is called the cut size . The isoperimetric constant of the graph  is defined11

as

 = min
N





(4.77)

where the minimum is over all non-empty subsets N of N satisfying  ≤
¥

2

¦
.

The isoperimetric constant is also called the Cheeger constant .

The Alon-Milman bound (4.73) reduces (with  = 1) to

−1 ≤ 

µ
1



+
1

 −

¶
If we denote  = minN

n



¯̄̄
 = 

o
, then −1 ≤ 




− and this inequality
holds for any set , also for the minimizer of the right-hand side. Thus, −1 ≤



− and

 − 


−1 ≤ 

We may further minimize both sides over all  = 1 2    
¥

2

¦
. Observe that

 = min
1≤≤b2 c . Hence, the Alon-Milman bound (4.73) leads to a lower bound

for the isoperimetric constant
−1
2
≤ 

Using Alon’s machinery of art. 141 that led to the lower bound (4.68), Mohar

(1989) showed that, for   3,

 ≤
p
−1 (2max − −1)

Tighter, though more complex, bounds for the cut size as well as for the isoperi-

metric constant are derived in Devriendt and Van Mieghem (2019b).

149. Expanders. A graph  with  nodes is a -expander if every subset N

with  ≤
¥

2

¦
nodes is connected to its complement N\N by at least  links.

11 The computation of the isoperimetric constant is an NP-complete problem as shown by Mohar
(1989).
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4.5 The modularity and the modularity matrix  153

Since  ≥ , art. 148 indicates that  = . Expanders are thus difficult to

disconnect because every set of nodes in  is well connected to its complement.

This “robustness” property makes expanders highly desirable in the design of fault

tolerant networks such as man-made infrastructures like communications networks

and electric power transmission networks. A part of the network can only be cut

off by destroying a large number of individual connections. In particular, sparse

expanders, graphs with few links, have great interest, because the cost of a network

usually increases with the number of links.

A well-studied subclass of expanders are regular graphs. In Govers et al. (2008),

Wigderson mentions that almost every regular graph with degree  ≥ 3 is an ex-
pander. The proof is probabilistic and does not provide insight how to construct

a regular -expander. Although nearly any regular graph is an expander, it turns

out that there are only few methods to construct them explicitly. It follows from

the bounds in art. 148 and  =  that

1

2
−1 ≤  ≤

p
−1 (2 − −1)

where −1 =  − 2 () also equals the spectral gap (art. 82 and art. 110).

The larger the spectral gap or the smaller 2 (), the larger  and the stronger

or the more robust the expander is. A remarkable achievement is the discovery

that, for all -regular graphs, 2 () ≥ 2
√
 − 1 and that equality is only attained

in Ramanujan graphs, where  − 1 is a prime power, as shown by Lubotzky et al.
(1988).

150. Graph partitioning. Since  − is a non-negative matrix for   max, a di-

rect application of Fiedler’s Theorem 77 in art. 272 for  = 2 shows that a connected

graph  can be partitioned into two distinct, connected components 1 and 2,

where the nodes of 1 = \2 are elements of the setM=
n
∈N : (−1) ≥ 

o
,

where −1 is the eigenvector belonging to the second smallest eigenvalue −1
of the Laplacian  and  is some threshold value that specifies different disjoint

partitions. If   max1≤≤ (−1) or if   min1≤≤ (−1) , there is only the
“trivial” partition consisting of the original graph  itself. Fiedler (1975) demon-

strates that, by varying the threshold  ≥ 0, all possible cuts that separate the

graph  = 1 ∪2 into two distinct (1 ∩2 = ∅) connected components 1 and
2 can be obtained in this way.

Art. 103 indicates that the sum over all positive vector components equals the

sum over all negative ones. This means that the value  = 0 in Fiedler’s partitioning

algorithm divides the graph into two “equivalent” partitions, where “equivalent” is

measured with respect to the second smallest Laplacian eigenvector. It does not

imply, however, that both partitions have the same number of nodes.

4.5 The modularity and the modularity matrix 

151. Modularity. The modularity, proposed by Newman and Girvan (2004), is
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154 Eigenvalues of the Laplacian 

a measure of the quality of a particular division of the network. The modularity

is proportional to the number of links falling within clusters or groups minus the

expected number in an equivalent network with links placed at random. Thus, if

the number of links within a group is no better than random, the modularity is zero.

A modularity approaching one reflects networks with strong community structure:

a dense intra-group and a sparse inter-group connection pattern.

If links are placed at random, then the expected number of links between node

 and node  equals

2
. The modularity  is defined by Newman (2006) as

 =
1

2

X
=1

X
=1

µ
 − 

2

¶
1{ and  belong to the same cluster} (4.78)

We consider first a network partitioning into two clusters or subgraphs as in art. 143.

The indicator function is rewritten in terms of the  vector, defined in art. 143, as

1{ and  belong to the same cluster} =
1

2
( + 1)

so that

 =
1

4

X
=1

X
=1

µ
 − 

2

¶


because, by the basic law for the degree (2.3) and by (2.2),

X
=1

µ
 − 

2

¶
=

X
=1

 − 

2

X
=1

 = 0 (4.79)

If there is only one partition to which all nodes belong, then  =  and the modu-

larity is  = 0 as follows from (4.79).

After defining the symmetric modularity matrix

 = − 1

2
 (4.80)

with elements  =  − 
2
, we rewrite the modularity , with respect to a

partitioning into two clusters specified by the vector , as a quadratic form

 =
1

4


which is analogous to the number of links  in (4.70) between the two disjoint

partitions.

152. A graph with  communities. For a partitioning of the network into  clusters,

instead of the vector , the  ×  community matrix , defined in art. 36, can be

used to rephrase the condition as

1{ and  belong to the same cluster} =
X

=1


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4.5 The modularity and the modularity matrix  155

which leads to the matrix representation of the modularity (Van Mieghem et al.,

2010)

 =
1

2

X
=1

X
=1

X
=1

 =
trace

¡


¢
2

(4.81)

We define the community vector  as the -th column of the community matrix

, which specifies the -th cluster: all components of , corresponding to nodes

belonging to cluster , are equal to one, otherwise they are zero. For  = 2

clusters, the vector  = 1 − 2 and only one vector suffices for the partitioning,

instead of 1 and 2.

Using the eigenvalue decomposition (art. 254) of the symmetric modularity ma-

trix  =diag( ())
 , where  is the orthogonal  × matrix with the

-th eigenvector  belonging to  () in column , the general spectral expression

for the modularity  for any number of clusters  follows from (4.81) as

 =
trace

³¡


¢
diag ( ())

´
2

=
1

2

X
=1

Ã
X

=1

¡

 

¢2!
 () (4.82)

because
¡


¢

=
P

=1 = 
 . The scalar product 


  =

P
∈ ()

is the sum of those eigenvector components of  that belong to cluster . If we

write the community vector  =
P

=1  as a linear combination of the eigen-

vectors of  , then the orthogonality of eigenvectors indicates that the coefficients

equal  = 
 . Moreover, art. 36 shows that the vectors 1 2      are or-

thogonal vectors, and, by definition, that
P

=1  = . Since  is an eigenvector

of  belonging to the zero eigenvalue as follows from (4.79), we observe that

X
=1


  = 0

provided the eigenvector  6= . Using the Cauchy identity (A.71)



X
=1

¡

 

¢2 −Ã X
=1


 

!2
=

X
=2

−1X
=1

¡

 ( − )

¢2
we find that

 =
1

2

X
=1

Ã
X

=2

−1X
=1

¡

 ( − )

¢2!
 ()

which reduces for  = 2 and  = 1 − 2 to (4.99) below.

Since =  (art. 247), we have that trace
³¡


¢


´
= trace

¡


¢
=
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 (art. 36), such that we obtain a companion of (4.82)

X
=1

X
=1

¡

 

¢2
=  (4.83)

Let  =
√

denote the eigenvector of  belonging to the eigenvalue  () = 0,

then
X

=1

¡

 

¢2
=
1



X
=1

¡
 

¢2
=
1



X
=1

2

where  is the number of nodes in cluster . Invoking the inequality (3.88) to

(4.82) subject to (4.83) yieldsP
=1; 6=

³P
=1

¡

 

¢2´
 ()P

=1; 6=
P

=1

¡

 

¢2 ≤ max
1≤≤

³P
=1

¡

 

¢2´
 ()P

=1

¡

 

¢2 = 1 ()

from which we find, with  [] = 2

, a spectral upper bound for the modularity

 ≤ 1 ()

 []

Ã
1− 1

2

X
=1

2

!
(4.84)

This bound can also be written as

 ≤ 1 ()

 []

µ
1− 1


− 

2
Var [ ]

¶
where  is the number of nodes in an arbitrary cluster, because  [ ] =

1
P

=1  =


. The spectrum of the non-back tracking matrix can accurately

determine the number  of clusters in a graph as shown in Budel and Van Mieghem

(2021).

153. Upper bound for the modularity. Newman’s definition (4.78) is first rewritten

as follows. We transform the nodal representation to a counting over links  =  ∼ 

such that
X
=1

X
=1

1{ and  belong to the same cluster} = 2
X

=1



where  is the number of links of cluster , and the factor 2 arises from the

fact that all links are counted twice, due the symmetry  =  of the adjacency

matrix. If we denote by inter the number of inter-community links, i.e. the number

of links that are cut by partitioning the network into  communities or clusters, then

 =
P

=1  + inter . Similarly,

X
=1

X
=1

1{ and  belong to the same cluster} =
X

=1

ÃX
∈



!⎛⎝X
∈



⎞⎠ =

X
=1

2


where  =
P

∈  is the sum of the degrees of all nodes that belong to cluster
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4.5 The modularity and the modularity matrix  157

. Clearly,  ≥ 2, because some nodes in cluster  may possess links

connected to nodes in other clusters. The basic law of the degree (2.3) then shows

that
P

=1 = 2. Substituting these expressions in the definition (4.78) leads

to an alternative expression12 for the modularity

 =

X
=1

Ã



−
µ


2

¶2!
(4.85)

Subject to the basic law of the degree,
P

=1 = 2, the sum
P

=1
2

is

maximized when =
2

for all 1 ≤  ≤ . Indeed, the corresponding Lagrangian

L =

X
=1

2

+ 

Ã
X

=1

 − 2
!

where  is a Lagrange multiplier, supplies the set of equations for the optimal

solution, L


= 2 +  = 0 for 1 ≤  ≤  and L

=
P

=1 − 2 = 0, which
is satisfied for  = −4


and  =

2

for all 1 ≤  ≤ . Hence,

P
=1

2

≤ (2)2


.

The modularity in (4.85) is minimized, for   1, if  = 0 for 1 ≤  ≤  andP
=1

2

is maximized such that  ≥ −1


. In conclusion, the modularity of any

graph is never smaller than −1
2
, and this minimum is obtained for the complete

bipartite graph.

Invoking the Cauchy identity (A.71) and
P

=1 = 2,

X
=1

2

=
(2)

2


+
1



X
=2

−1X
=1

¡
 −

¢2
results in yet another expression for the modularity

 = 1− inter


− 1


− 1



X
=2

−1X
=1

µ
 −

2

¶2
(4.86)

Since the double sum is always positive, (4.86) provides us with an upper bound

for the modularity,

 ≤ 1− 1

− inter


(4.87)

The upper bound (4.87) is only attained if the degree sum of all clusters is the same.

In addition, the upper bound (4.87) shows that  ≤ 1 and that a modularity of 1 is
only reached asymptotically, when the number of clusters →∞ and inter =  (),

implying that the fraction of inter-community links over the total number of links

 is vanishingly small for large graphs ( →∞ and →∞).
154. Lower bound for the modularity. Let ∆ = max{ }

¯̄
 −

¯̄
, then

12 Newman (2010) presents still another expression for the modularity.
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158 Eigenvalues of the Laplacian 

a lower bound of the modularity, deduced from (4.86), is

 ≥ 1− inter


− 1


− (− 1)

2

µ
∆

2

¶2
(4.88)

Only if ∆ = 0, the lower bound (4.88) equals the upper bound (4.87) and the

equality sign can occur. Excluding the case that ∆ = 0, then not all 

are equal, and we may assume an ordering 1 ≥ 2 ≥    ≥  , with at

least one strict inequality. We demonstrate that, for   2, not all differences

 −  = ∆  0 for any pair ( ). For, assume the contrary so that

1 −2 = 2 −3 = 1 −3 = ∆  0, then ∆ = 1 −3 =

(1 −2) + (2 −3) = 2∆ , which cannot hold for ∆  0. Hence, if

∆  0, the inequality in (4.88) is strict; alternatively, the lower bound (4.88) is

not attainable in that case.

In order for a network to have modular structure, the modularity must be posi-

tive. The requirement that the lower bound (4.88) is non-negative, supplies us with

an upper bound for the maximum difference ∆ in the nodal degree sum between

two clusters in a “modular” graph

∆ ≤ 2
s

2

− 1
µ
1− inter


− 1



¶
(4.89)

For   1, (4.89) demonstrates that ∆  2. Ignoring the integer nature of ,

the lower bound (4.88) is maximized with respect to the number of clusters  when

∗ =
2
√
2

∆

√
2 (4.90)

resulting in

 ≥ 1− inter


−
√
2

µ
∆

2

¶
+
1

2

µ
∆

2

¶2
The right-hand side in this lower bound is positive provided that 1  ∆

2


√
2

µ
1−

q
i n t e r


¶
. When this lower bound for ∆

2
is satisfied, the modularity 

is certainly positive, implying that the graph exhibits modular structure.

155. Spectrum of the modularity matrix  . Since the row sum (4.79) of the

modularity matrix  is zero, which translates to  = 0, the modularity matrix

has a zero eigenvalue corresponding to the eigenvector , similar to the Laplacian

matrix (art. 4). Unlike the Laplacian , the modularity matrix  always has

negative eigenvalues. Indeed, from (A.99) and art. 46, the sum of the eigenvalues

of  equals

X
=1

 () = − 1

2

X
=1

2 = −
2

1

(4.91)
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4.5 The modularity and the modularity matrix  159

where  is the total number of walks of length  (art. 59). The second order mo-

ment of the modularity eigenvalues are
P

=1 
2
 () = trace

¡
2
¢− 1


trace

¡


¢
+

1
(2)2

P
=1 

2
trace

¡


¢
. Using (A.99) and art. 59, we have

X
=1

2 () = 2− 1


+

⎛⎝ 1

2

X
=1

2

⎞⎠2

= 1 − 23

1

+

µ
2

1

¶2
(4.92)

In general,  and  do not commute. Hence, art. 284 shows that the set of

eigenvectors {}1≤≤ of  is different from the set of eigenvectors {}1≤≤
of .

The eigenvalues of the modularity matrix  =  − 1
2
 are zeros of the

characteristic polynomial

det ( − ) = det

µ
−  − 

2

¶
= det (− ) det

µ
 − (− )

−1 

2

¶
Using the “rank one update” formula (A.66), we have

det ( − ) = det (− )

µ
1− 1

2
 (− )

−1


¶
(4.93)

We invoke the resolvent  (− )
−1

 =
P

=1

()
2

− in (A.162) in art. 262,

where  is the eigenvector of  belonging to eigenvalue . Using  =

 = 
, 1 = 2 and (3.28) produces

1− 1

2
 (− )

−1
 =

1

2

(
X

=1


¡


¢2 − X
=1

2
¡


¢2
 − 

)

=
−
2

X
=1

¡


¢2


 − 

which can, in view of (3.37), be written in terms of the generating function  ()

of the total number of walks (art. 62). Thus, we arrive at13

det ( − ) =


2
det (− )

µ


µ
1



¶
−

¶
(4.94)

Since lim→0

¡
1


¢
= 0, the characteristic polynomial (4.94) of illustrates that

 = 0 is an eigenvalue of  , corresponding to the eigenvalue  as shown above. By

a same argument as in art. 263, the function 

¡
1


¢− has simple zeros that lie

in between two consecutive eigenvalues of the adjacency matrix .

In summary, the eigenvalues of the modularity matrix  interlace with the

13 Invoking (3.40) and () = det (− ), another expression is

det ( − ) =


2


(−1)  (−− 1)− (+) ()


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160 Eigenvalues of the Laplacian 

eigenvalues of adjacency matrix : 1 () ≥ 1 () ≥ 2 () ≥ 2 () ≥    ≥
 () ≥  ().

156. Spectrum of the modularity matrix  for regular graphs. For regular graphs,

where each node has degree  and  =  (art. 55), we have that (− ) =

( − ) from which (− )
−1

 = ( − )
−1

. Substituted in (4.93) yields, with

the degree vector  = ,

det ( − ) = det (− )
³
1− 


 (− )

−1

´

= det (− )

µ
1− 

 ( − )


¶
=



− 
det (− )

After invoking the basic relation (A.97), we arrive at

det ( − ) =


− 

Y
=1

( ()− ) = −
Y
=2

( ()− )

In summary, the eigenvalues of the modularity matrix  of a regular graph are

precisely equal to the eigenvalues of the corresponding adjacency matrix , except

that the largest eigenvalue 1 () =  is replaced by the eigenvalue at zero.

157. The largest eigenvalue of the modularity matrix. Since 

¡
1


¢ −   0 in

(4.94) for  ≥ 1 as follows from (3.35) in art. 62, 1 () ≤ 1 (). This inequality

is also found from the interlacing property of  and  derived in art. 155. We

will show here that 1 ()  1 ().

Since  = 0 is always an eigenvalue of  (art. 155), there cannot be a smaller

largest eigenvalue than zero. The interlacing property bounds the largest eigen-

value from below, 1 () ≥ 2 (), and art. 92 demonstrates that all graphs have

a non-negative second largest eigenvalue 2 () ≥ 0, except for the complete graph.
The modularity matrix of the complete graph  is 

= 1

 − , whose char-

acteristic polynomial is det ( − ) = (−1)  (1 + )
−1

as follows from (6.1).

This illustrates that the largest eigenvalue of the complete graph is 1 (
) = 0,

which is also the smallest possible largest modularity eigenvalue of all graphs.

The eigenvector 1 of  belonging to 1 () has negative components (in con-

trast to the largest eigenvector 1 of ), because 
1 = 0, which is similar to the

eigenvectors of the Laplacian  (art. 103). The Rayleigh equation (A.130) and the

Rayleigh inequalities in art. 251 demonstrate that

1 () =

11


1 1

=

1 1


1 1

− 1

2

¡

1 
¢2


1 1

≤ 1 ()− 1

2

¡

1 
¢2

(4.95)

because 
1 1 = 1 as the orthogonal eigenvectors are normalized (art. 247). The

scalar product 
1  is only zero for regular graphs, where each node has degree

, because the degree vector is  =  and 
1  = 0, provided 1 6= √


(as

in the complete graph). However, art. 156 shows that the largest eigenvalue for

regular graphs equals 1 () = max (0 2 ())  1 (), where the subscript
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4.5 The modularity and the modularity matrix  161

 explicitly refers to regular graphs. Due to interlacing (art. 155), of all graphs,

the regular graph has the smallest largest eigenvalue of the modularity matrix.

Because the last term in the above upper bound is always strictly positive for non-

regular graphs, we obtain the range of 1 () for any graph: 0 ≤ 1 ()  1 ().

In summary, the largest eigenvalue of the modularity matrix  is always strictly

smaller than the largest eigenvalue of the corresponding adjacency matrix .

We apply the Rayleigh principle to the adjacency matrix ,

1 () =
11

1 1
=

11

1 1
+
1

2

¡
1 

¢2 ≤ 1 () +
1

2

¡
1 

¢2
(4.96)

Combining both Rayleigh inequalities (4.96) and (4.95), we obtain bounds for the

difference 1 ()− 1 ()  0,

1

2

¡

1 
¢2 ≤ 1 ()− 1 () ≤ 1

2

¡
1 

¢2
Since 1  = 1 

 = (1)

 = 1 ()


1  and invoking interlacing, we arrive

from (4.96) at the lower bound

max

Ã
2 ()  1 ()

(
1−

¡
1 

¢2
2

1 ()

)!
≤ 1 ()

which is only useful when the fundamental weight
¡
1 

¢2
can be determined accu-

rately. On the other hand, the scalar product 1  is maximal if 1 =
√
 
, such

that, using (4.91),

1

2

¡
1 

¢2 ≤ 

2
=

2

1

= −
X
=1

 ()

from which we obtain, together with (4.96), the upper bound

1 () ≤ −
X
=2

 ()

158. Bounds for the largest eigenvalue of the modularity matrix. Applying  =

− 1
2

¡


¢2
= 3 − 2

2

1
, we obtain with  =

P
=1 , where  = ,

the decomposition

3 − 2
2

1

=

X
=1

2 () (4.97)

As shown in Section 8.5, the sign of (4.97) determines whether a graph is assortative

(positive sign) or disassortative (negative sign). Similarly, from 2, we deduce

that

4 − 232

1

+
3
2

2
1

=

X
=1

2
2
 ()
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162 Eigenvalues of the Laplacian 

By applying the inequality (3.88), we obtain

3

2

− 2

1

=

P
=1 

2
 ()P

=1 
2


≤ max
1≤≤

2 ()

2
= 1 ()

and

4

2

− 23

1

+

µ
2

1

¶2
≤ 21 ()

Application of Laguerre’s Theorem 110, combined with art. 294 and trace rela-

tions (4.91) and (4.92), yields the rather complicated upper bound

1 () ≤ − 1


µ
2

1

¶
+

 − 1


sµ
2

1

¶2
− 

 − 1
µ
23

1

−1

¶
(4.98)

For regular graphs where  =  and 0  1 () = 2 (), the bound (4.98)

provides an upper bound for the second largest eigenvalue of the adjacency matrix,

2 () ≤ − 


+
1



p
 ( − 1)

p
2 − ( + 1) 

For the complete graph  , where  =  −1 and 1 (
) = 0, the bound (4.98)

is exact. In view of the upper bound (4.84) for the modularity, the bound (4.98)

is only useful when the right-hand side is smaller than the average degree  [].

Numerical evaluations indicate that the bound (4.98) is seldom sharp.

159. Maximizing the modularity. Maximizing the modularity  consists of finding

the best  ×  community matrix  in either definition (4.81) or (4.82). Numerous

algorithms exist, that approximate the best community matrix , for which we

refer to Newman (2010). Here, we concentrate on a spectral method.

Starting from the quadratic form  = 1
4
 for the modularity, where the

number of clusters  = 2, Newman (2006) mimics the method in art. 143 by writing

the vector  =
P

=1  with  =  as a linear combination of the orthogonal

eigenvectors 1 2      of  ,

 =
1

4

X
=1

2 () (4.99)

Maximizing the modularity  is thus equal to choosing the vector  as a linear

combination of the few largest eigenvectors, such that components of  are either

−1 and +1, which is difficult as mentioned above in art. 143. Newman (2006)
proposes to maximize 1 = 1 and the maximum 1 =

P
=1

¯̄̄
(1)

¯̄̄
is reached

when each component  = −1 if (1)  0 or  = 1 if (1) ≥ 0. Moreover,

using properties of norms (art. 203), we find that 1 = k1k1 ≥ k1k2 = 1, and
by construction and the orthogonality of the eigenvectors,   kk1.
This separation of nodes into two partitions according to the sign of the vector

components in the largest eigenvector 1 of  is similar in spirit to Fiedler’s
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4.6 Bounds for the diameter 163

algorithm (art. 150). Apart from the sign considered so far, a large eigenvector

component contributes more to the modularity in (4.99) than a small (in absolute

value) component. Thus, the magnitude (in absolute value) of the components

in 1 measures how firmly the corresponding node in the graph belongs to its

assigned group, which is a general characteristic of a class of spectral measures

called “eigenvalue centralities”, defined in Section 8.7.1.

Since  is the eigenvector belonging to  () = 0, the trivial partition of the

network in one group is excluded from modularity, because  () = 0 does not con-

tribute to the sum in (4.99) and that any other eigenvector, due to the orthogonality

(art. 247), must have at least one negative component. In contrast to the Fiedler

partitioning based on the Laplacian, the situation where all non-zero eigenvalues

of  are negative might occur (as in the complete graph, for example; art. 157),

which indicates that there is no partition, except for the trivial one, and that the

modularity  in (4.99) is negative. This observation is important: Newman (2006)

exploits the fact that   0 to not partition a (sub)network.

4.6 Bounds for the diameter

160. Exponential growth of a graph. Mohar (1991) has derived a beautiful formula

that relates the algebraic connectivity −1 with the “growth” of a graph . Let

 () be the set of nodes of  lying at a distance of at most  hops from an

arbitrary node  ∈ N and denote the cardinality of  () by  = | ()|. Mohar
(1991) defines the growth of the graph  by the increase of the numbers  with

the number of hops  from .

Mohar (1991) starts by applying Fiedler’s inequality (4.50) for the algebraic

connectivity in art. 134 to the eigenfunction

 () =

⎧⎨⎩
1 if  ∈ −1
0 if  ∈ \−1
−1 if  ∈ 

Executing the sums in (4.50) yieldsX
∈N

X
∈N

( ()−  ())
2
=

X
∈−1

X
∈\−1

1 + 4
X

∈−1

X
∈

1

+
X

∈\−1

X
∈−1

1 +
X

∈\−1

X
∈

1

+ 4
X
∈

X
∈−1

+
X
∈

X
∈\−1

1

= 2−1 + 2 ( − ) + 8−1( − )

where  =
P

∈\−1 1 =  − −1, the number of nodes at  hops from an
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164 Eigenvalues of the Laplacian 

arbitrary node , and X
∈L

¡

¡
+
¢− 

¡
−
¢¢2

= −1 + 

where  is the number of links  = (+ −) with one end node + ∈  and the

other end node − ∈ +1\. Introducing the above summations into Fiedler’s

inequality (4.50) for the algebraic connectivity −1 results in the inequality

(−1 + ) ≥ −1 (−1 + ( − ) + 4−1( − ))

= −1
¡
2( − ) + 2−1( − −1)− +2



¢
where the last equality is readily verified by working out the products. After rewrit-

ing the inequality as



µ
−1 + 

−1

¶
+ −2

 ≥ 2 {( − ) + −1( − −1)}

Mohar (1991) bounds −1 +  ≤ max, so that



µ
max

−1
+ 1

¶
 −2

 ≥ 2 [( − ) + −1( − −1)]

He further omits the quadrate2
 because

³
max
−1

+ 1
´
 ≥ 

³
max
−1

+ 1
´
−

2
 and, finally, arrives at a lower bound for the number  of nodes at  hops

from an arbitrary node ,



µ
max

−1
+ 1

¶
 ≥ 2 [( − ) + −1( − −1)] (4.100)

Mohar (1991) proposes the function  () with the property at integer values

 =  that  () = . By a remarkable insight
14, he further relates the inequality

(4.100) of  =  − −1 to the logistic differential equation

0 () =



 () ( −  ())

where  =
4−1

max+−1
. The solution for the number  () of nodes at distance 

with the initial condition  (0) = 1 is

 () =


1 + ( − 1) −
14 Mohar (1991) expands −1 =  ( − ) =  () − 0 () +  () to first order in , thus
treating  as arbitrarily small and ignoring terms of the order  (), while actually  = 1. The
replacement in (4.100) results in a differential inequality




max

−1
+ 1


0 () ≥ 2  () ( −  ()) +


 ()− 0 ()


( −  () + 0 ())


= 4 () ( −  ())− 2 ( − 2 ()) 0 ()+  ()

which led Mohar to the logistic differential equation.
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Mohar (1991) proves for a connected graph (−1  0) that,

if   1 and  ≤ 

2
 then    () . (4.101)

The inequality (4.101) implies that the graph  has exponential growth until about

half of the nodes in  are reached. From then on, i.e. when  

2
, the finite size

 of  limits the exponential law. When  () = 
2
so that  = 1


ln ( − 1), it

holds15 that  

2
and more than half of the nodes are reached from an arbitrary

node , which leads to the bounds for the diameter: bc ≤  ≤ 2 de. Explicitly,
Mohar bounds for the diameter as¹

−1 + max

4−1
ln ( − 1)

º
≤  ≤ 2

»
−1 + max

4−1
ln ( − 1)

¼
(4.102)

161. Distance between non-overlapping subgaphs. van Dam and Haemers (1995)

ingeniously apply interlacing (art. 266) and the definition (art. 21) of the hopcount

or distance between nodes in terms of powers of the adjacency matrix . They start

by defining two sets of nodes, V with  = |V| nodes and W containing  = |W|
nodes, whose nodes are separated by at least+1 hops (see art. 23). The union of

both sets, V ∪W = N , comprises all nodes in the graph . Art. 21 shows for node
 ∈ V and  ∈W that ( ()) = 0 for any polynomial  () of degree . By a

suitable node relabeling V = {1 2     } andW = { −  + 1  −  + 2     },
the matrix  () can be written as block matrix

 () =

∙
×(−) ×

(−)×(−) (−)×

¸
Next, van Dam and Haemers (1995) concentrate on a regular graph (art. 55) with

degree  and construct the polynomial such that  () = 1. Since  = 

and  () =  () = , working-out the block matrix  () with corre-

sponding block vector  =
£
1×(−) 1×

¤
yields (−)×1 = ×1 and

(−)×1 + ×1 = (−)×1, but also from ( ())

 = , we find that

×1+(−)×1 = (−)×1 and (−)×1 = ×1. Inspired by the quo-
tient matrix (art. 37) of a graph, the average row sums of the block matrices are

determined as
1×(−)×1


= 1 and

1×(−)(−)×1
− +

1×(−)×1
− = 1. With

1×(−)×1 =
¡
1×(−)×1

¢
= , we find that

1×(−)×1
− = 

− and
1×(−)(−)×1

− = 1− 
− . Rather than continuing with the matrix  (), van

Dam and Haemers (1995) continue with the larger, symmetric, general bipartite

matrix

 =

∙
  ()

 () 

¸
15 Indeed, assume the opposite, namely that  ≤ 

2
, then (4.101) shows that    () = 

2
,

which leads to a contradiction.
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166 Eigenvalues of the Laplacian 

whose eigenvalues are ± () for 1 ≤  ≤  and whose corresponding average

row sum matrix is

 =

⎡⎢⎢⎣
0 0 1 0

0 0 1− 
−


−


− 1− 

− 0 0

0 1 0 0

⎤⎥⎥⎦
The eigenvalues of the matrix  (see Section 6.8) are 1 () = −4 () and
2 () = −3 () =

q


(−)(−) . The general interlacing Theorem 72 in art. 266

states that the eigenvalues of the matrices  and  interlace, thus

2 () ≤ 2 () = max
1

| ()|

In summary, if the  = |V| nodes in the set V and the  = |W| nodes in the set
W in a regular graph  with degree  are separated by at least + 1 hops, then

the van Dam-Haemers inequality states that



( − ) ( − )
≤ max

1
2 () (4.103)

for each polynomial  () of degree  obeying  () = 1.

162. Diameter . Another consequence of the Alon-Milman bound (4.73) is:

Theorem 25 (Alon-Milman) The diameter  of a connected graph is at most

 ≤
$s

2max

−1
log2

%
+ 1 (4.104)

Proof: If  is the set of all nodes of  at a larger distance than  from  and

 contains at least half of the nodes ( ≥ 1
2
), then (4.76) gives

 ≤ 1
2
exp

µ
− ln (2)

¹


r
−1
2max

º¶
If we require that exp

³
− ln (2)

j

q

−1
2max

k´
≤ 1


, then

 ≤
s
2max

−1
log2 

$s
2max

−1
log2

%
+ 1

By construction, for such , it holds that   1

or  = ∅, which implies that

 = N . Next, if  ∈ N , then the subset {} of nodes that is reached within 

hops of node  contains more than 2 nodes. Indeed, suppose the converse and

define  = N\{}. Then  =   1
2
. But, we have shown that, if  = , then

 = N . This contradicts the hypothesis. Hence, all nodes in  are reached from

an arbitrary node within  =  hops, where  is specified in (4.104). ¤
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4.6 Bounds for the diameter 167

For   1, Mohar (1991) has derived the bound

 ≤ 2
&r

1

−1

r
2 − 1
4

+ 1

'»
log



2

¼
(4.105)

which can be minimized for . Mohar (1991) showed that (4.105) is sharper than

Alon-Milman’s bound (4.104), because 1 ≤ 2max as shown in art. 104.

Theorem 26 (Mohar) The diameter  of a connected graph is at most

 ≤ 2
⎡⎢⎢⎢ log 

2

log
³
max+
max−

´
⎤⎥⎥⎥ (4.106)

where  is the isoperimetric constant.

Proof: Mohar (1989) considers the subsets  () = { ∈ N :  ( ) ≤ } at
distance  of node . The definition (4.77) shows that, for | ()| ≤

£

2

¤
,

 (| ()|+ | ( − 1)|) ≤  () +  ( − 1)
where  () contains all the links between the set  () \ ( − 1) and the
set  ( + 1) \ (). Hence,  () +  ( − 1) contains all links in two-hop
shortest paths between the set  ( − 1) \ ( − 2) and the set  ( + 1) \ (),

which equals

 () +  ( − 1) =
X

∈()\(−1)
 ≤ max (| ()|− | ( − 1)|)

Thus,  (| ()|+ | ( − 1)|) ≤ max (| ()|− | ( − 1)|) from which, for

| ()| ≤
£

2

¤
,

| ()| ≥ max + 

max − 
| ( − 1)|

Since | (0)| = 1 and | (1)| = , iterating the inequality yields

| ()| ≥
µ
max + 

max − 

¶
provided | ()| ≤

£

2

¤
, which restricts max ≤

»
log 

2

log( max+max− )

¼
. This maximum

hopcount reaches half of the nodes. To reach also the other half of nodes in the

complement, at most 2max hops are needed, which proves (4.106). ¤

Theorem 27 (Chung, Faber and Manteuffel) The diameter  of a connected

graph is at most

 ≤
⎢⎢⎢⎣ arccosh ( − 1)
arccosh

³
1+−1
1−−1

´
⎥⎥⎥⎦+ 1 (4.107)
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168 Eigenvalues of the Laplacian 

Proof: Chung et al. (1994) start from the characterization of the diameter 

in art. 22: the diameter  is the smallest integer such that, for any given node

pair ( ) in the graph , there exists a polynomial  () =
P

=0 
 of degree

 ≤  in  such that the element ( ) in the corresponding matrix polynomial

 () is non-zero. Alternatively, if ( ())  0 for each node pair ( ), then

the diameter  ≤ .

First, Chung et al. (1994) derive an upper bound for any element of an  ×

matrix  with zero row sum and zero column sum, thus  = 0 and  = 0,

where  is the all-one vector. Chung et al. (1994) propose the vector  =  − 

,

which satisfies 
√

= 0 and kk22 =   = 1 − 1


. Then, invoking norms

(art. 205),

 =   =   ≤ kk2 kk2 kk2 = kk2
µ
1− 1



¶
(4.108)

The Laplacian  is a special case of the matrix , but  () =
P

=0 
 =

0 is not zero, unless 0 = 0. Because properties of the Chebyshev polynomials

 () = cos ( arccos ) in Section 12.7 will be used later, Chung et al. (1994)

consider  =  () − 1

 and 0 =  (0) = 1, which satisfies (4.108) and thus

possesses a zero eigenvalue, while all other eigenvalues (art. 243) are  () for

 − 1 ≤  ≤ 1. Using the inequality ||− || ≤ |+ | and (4.108) shows that

( ()) =  +
1


≥ 1


− | | = 1


− kk2

µ
1− 1



¶
In order for ( ())  0 for any node pair ( ) such that  ≤ , we must require

that kk2 =
°° ()− 1



°°
2
 1

−1 . Applying (A.23) yields
°° ()− 1



°°
2
=

max−1≤≤1 | ()|  1
−1 . It remains to find a polynomial  () with  (0) =

1 that is bounded on the interval [−1 1] by 1
−1 . The Chebyshev polynomials

 () possess optimality properties (art. 343) on an interval [ ] such that the

polynomial

 () =


³
+−2
−

´


³
+
−

´ (4.109)

satisfies  (0) = 1 and max∈[] | ()| = 1

( +−)
. Applying the latter expres-

sion to the requirement max−1≤≤1 | ()|  1
−1 gives the bound



µ
1 + −1
1 − −1

¶
  − 1

Finally, using the definition  () = cosh (arccosh) in art. 375 leads to

 
arccosh ( − 1)

arccosh
³
1+−1
1−−1

´
Since  is an integer and  ≤ , we arrive at (4.107). ¤
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4.7 Eigenvalues of graphs and subgraphs 169

Chung et al. (1994) remark that the more “aesthetically pleasing” inequality

 ≤
⎡⎢⎢⎢ arccosh ( − 1)
arccosh

³
1+−1
1−−1

´
⎤⎥⎥⎥

fails for graphs with diameter  = 1 +, where  =
arccosh(−1)

arccosh

1+−1
1−−1

 , but ques-
tioned whether such graphs exist. The affirmative answer was published by Merris

(1999), who found that the cocktail party graph is a member of such graphs that

do not obey the above inequality. At about the same time of the work by Chung

et al. (1994), van Dam and Haemers (1995) found almost the same bound (4.110)

for the diameter as (4.107).

Theorem 28 (van Dam-Haemers) The diameter  of a connected graph is at

most

 ≤
$

log (2 ( − 1))
log
¡√

1 +
√
−1

¢− log ¡√1 −√−1¢
%
+ 1 (4.110)

Proof: The van Dam-Haemers inequality (4.103) in art. 161 is sharpest for the

polynomial that minimizesmax1 
2
 (). By “relaxing” this criterion to the min-

imization of max∈[ 2] | ()|, we arrive at the Chebyshev polynomials  ()
(see art. 343 and Section 12.7). In particular, van Dam and Haemers (1995) find a

similar polynomial (4.109) as in Chung et al. (1994), namely  () =
(+−2− )
(+−2− )

with  = 2 and  =  . The diameter  corresponds to  =  − 1 in the van
Dam-Haemers inequality (4.103) for at least two nodes so that  =  = 1, from

which, similarly as in the proof of Theorem 27, the upper bound for the diameter

follows as

 ≤
⎢⎢⎢⎣ log (2 ( − 1))
log
³√

−+
√
−2√

−−
√
−2

´
⎥⎥⎥⎦+ 1

van Dam and Haemers (1995) remark that any non-regular graph can be made reg-

ular with degree  by the addition of self-loops, that (a) do not alter the Laplacian

(art. 4) and (b) allow to substitute − by  based on the Laplacian  = −
of a regular graph. After substitution, (4.110) is found. ¤

4.7 Eigenvalues of graphs and subgraphs

163. Laplacian eigenvalues of a subgraph. If 1 and 2 are link-disjoint graphs on

the same set of nodes, then the union  = 1 ∪2 possesses the adjacency matrix
 = 1

+2
and the Laplacian  = 1

+2
. Interlacing in art. 267 then
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170 Eigenvalues of the Laplacian 

states that, for each eigenvalue 1 ≤  ≤  ,

 (1) +  (2) ≤  () ≤  (2) + 1 (1)

 (2) ≤  () ≤  (2) + 1 (1)

This shows that the Laplacian eigenvalues  () are non-decreasing if links are

added in a graph, or, more generally, if 2 ⊆  and both have the same number of

nodes, 2
= , then  (2) ≤  ().

164. Addition of a link. The general result in art. 163 can be sharpened for the

specific case of adding one link to a graph. If+{} is the graph obtained from by

adding a link , then the incidence matrix +{} consists of the incidence matrix
 with one added column containing the vector , that has only two non-zero

elements, 1 at row + =  and −1 at row − = ,

+{} = 

 +  =  +  (4.111)

In the terminology of art. 90,  = − − 

 + 


 + 


 , where  is a

 × 1 base vector. Further, an application of Schur’s complement (A.65) leads to
det

¡
+{} − 

¢
= det

¡
 +  − 

¢
= det ( − ) det

³
 +  ( − )

−1

´

Applying the “rank one update” formula (A.66) yields

det
³
 +  ( − )

−1

´
= 1 +  ( − )

−1


The same argument as in art. 263 shows that the strictly increasing rational

function
det(+{}−)
det(−) only possesses simple poles and zeros that lie in between

the poles. From the common zero  () =  (+ {}) = 0 on, the function
det(+{}−)
det(−) increases implying that first the pole at −1 () is reached before

the zero at −1 (+ {}). Hence, interlacing results in
 () ≤  (+ {}) ≤ −1 () (4.112)

for all 1   ≤  and 1 () ≤ 1 (+ {}) for  = 1. Comparing this bound for
 =  − 1 with (4.69) in art. 142 yields

−1 () ≤ −1 (+ {}) ≤ min (−2 ()  −1 () + 2)

165. Addition of a link without changing −1. Let  denote the Fiedler eigen-
vector of  belonging to the algebraic connectivity −1 (), normalized such
that   = 1. For any vector , there holds that   =

¡
 

¢2
= ( − )

2

and (4.111) indicates that +{} = 
¡
 + 

¢
 = −1 () + (− )

2.

Art. 113 shows that +{} ≥ −1 (+ {}) and using (4.112), we obtain
( − )

2 ≥ −1 (+ {})− −1 () ≥ 0

                     

https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.007
https://www.cambridge.org/core


4.7 Eigenvalues of graphs and subgraphs 171

which demonstrates that the algebraic connectivity does not change when a link

 =  ∼  is added between two nodes  and  with equal Fiedler eigenvector

components, i.e.  =  .

166. Laplacian spectrum of the cone of a graph. When a node  + 1 is added to

a graph  with  nodes, a similar analysis as in art. 85 applies. The Laplacian,

corresponding to the adjacency matrix (3.95), is

(+1)×(+1) =

"
× + diag () −×1
− ¡ ¢

1× +1

#
The special case  = , where the new node with label  +1 is connected to all

nodes in graph  , forms the cone of the graph  . Let  be the eigenvector of

× belonging to  for 1 ≤    , then, for the vector  =
£

 0

¤
,

(+1)×(+1) =

"
× +  −×1
− ¡ ¢

1× 

# ∙


0

¸
=

∙
( + 1)

−

¸
Any eigenvector  of × , orthogonal to  so that  = 0, results in an

eigenvector  of (+1)×(+1) belonging to  + 1. Hence, in addition to the

zero Laplacian eigenvalue,  − 1 eigenvalues of the Laplacian of the cone of  are

{ + 1}1≤ . The largest eigenvalue  + 1 follows from (4.7) or is determined

by Corollary 1.

Alternatively, as shown by Das (2004), the entire spectrum can be deduced by

considering the complement 
+1 of the cone of  . Since the cone node has

degree  , the complement 
+1 is disconnected. Theorem 20 states that the

Laplacian of 
+1 has at least two eigenvalues 


 = −1 = 0, while art. 116

tells us that the remaining Laplacian eigenvalues of 
+1 are those of 


 . Using

(4.19) then shows that the eigenvalues
©

¡
(+1)×(+1)

¢ª
1≤≤+1 of the cone

of a graph are  + 1,  (× ) + 1 for 1 ≤  ≤  − 1 and zero.
167. Removal of a node. Let us consider the graph \ {} obtained by removing an
arbitrary node  and its incident links from . Art. 166 shows that the Laplacian

eigenvalues of the cone of \ {} equal  , 1 (\ {}) + 1, 2 (\ {}) + 1, . . . ,
−2 (\ {})+1 and 0. The original graph  is a subgraph of the cone of \ {}.
Since the Laplacian eigenvalues are non-decreasing if links are added to the graph

(art. 163), we conclude that, for all 1 ≤  ≤  − 2,
 (\ {}) + 1 ≥ +1 ()

168. Vertex connectivity N (). The vertex connectivity of a graph, N (), is the
minimum number of nodes whose removal (together with adjacent links) disconnects

the graph . The Rayleigh principle (art. 251) shows, for any other connection

vector  6=  in art. 166, that (+1)×(+1) ≥ −1
¡
(+1)×(+1)

¢
such that

−1
¡
(+1)×(+1)

¢ ≤ −1 (× ) + 1
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172 Eigenvalues of the Laplacian 

Repeating the argument gives −1
¡
(+)×(+)

¢ ≤ −1 (× ) + . If

N () = , the above relation shows that (Fiedler, 1973)

−1 ≤ N () (4.113)

Indeed, for a disconnected graph −1 (× ) = 0 and the addition of minimum
 () =  nodes connects the graph, i.e., −1

¡
(+)×(+)

¢
 0.

169. Edge connectivity L (). The edge connectivity of a graph, L (), is
the minimum number of links whose removal disconnects the graph . For any

connected graph , it holds that

N () ≤ L () ≤ min() (4.114)

Indeed, let us concentrate on a connected graph  that is not a complete graph.

Since min() is the minimum degree of a node, say , in , by removing all links

of node ,  becomes disconnected. By definition, since L() is the minimum
number of links that leads to disconnectivity, it follows that L() ≤ min() and

L() ≤  − 2 because  is not a complete graph and consequently the minimum

nodal degree is at most  − 2. Furthermore, the definition of L() implies that
there exists a set  of L() links whose removal splits the graph  into two

connected subgraphs 1 and 2, as illustrated in Fig. 4.2. Any link of that set 

connects a node in 1 to a node in 2. Indeed, adding an arbitrary link of that set

makes  again connected. But  can be disconnected into the same two connected

subgraphs by removing nodes in1 and/or2. Since possible disconnectivity inside

either 1 or 2 can occur before L() nodes are removed, it follows that N ()
cannot exceed L(), which establishes the inequality (4.114).

G1
G2

A B

C

G1
G2

A B

C

Fig. 4.2. A graph  with  = 16 nodes and  = 32 links. Two connected subgraphs 1

and 2 are shown. The graph’s connectivity parameters are N () = 1 (removal of node
), L() = 2 (removal of links from  to 1), min() = 3 and  [] = 2


= 4.

Let us proceed to find the number of link-disjoint paths between  and  in a

connected graph . Suppose that  is a set of links whose removal separates 

from . Thus, the removal of all links in the set  destroys all paths from  to .

The maximum number of link-disjoint paths between  and  cannot exceed the

number of links in . However, this property holds for any set , and thus also
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4.7 Eigenvalues of graphs and subgraphs 173

for the set with the smallest possible number of links. A similar argument applies

to node-disjoint paths. Hence, we end up with Theorem 29:

Theorem 29 (Menger’s Theorem) The maximum number of link- (node)-disjoint

paths between  and  is equal to the minimum number of links (nodes) separating

or disconnecting  and .

The edge connectivity L() (analogously the vertex connectivity N ()) is
the minimum number of links (nodes) whose removal disconnects . By Menger’s

Theorem, it follows that there are at least L() link-disjoint paths and at least
N () node-disjoint paths between any pair of nodes in .

170. Edge connectivity L () and the algebraic connectivity −1. Fiedler (1973)
has proved a lower bound for −1 in terms of the edge connectivity L ().

Theorem 30 (Fiedler) For any graph  with  links and  nodes,

−1 ≥ 2L ()
³
1− cos 



´
(4.115)

Proof: Consider the symmetric, stochastic matrix  = − 1
max

 in Theorem 79.

The spectral gap of  equals 1−2 ( ) = −1
max

, and is lower bounded in (A.184) by

 ( ( )) ≤ 1−2 ( ), where  () = 2
¡
1− cos 



¢
for  ≤ 1

2
and the measure of

irreducibility  ( ), defined in (A.169), equals  ( ) =
L()
max

. Indeed, by Merger’s

Theorem 29, the maximum number of link-disjoint paths between node  and 

equals the minimum number of links that separates  from . Hence, there are at

least L () link-disjoint paths between any pair of nodes in . ¤

The function  () in Theorem 79 on p. 387 provides a second bound

−1 ≥ 2L ()
µ
cos




− cos 2



¶
− 2max

³
1− cos 



´
cos





which is only better than (4.115) if and only if 2L ()  max. The algebraic

connectivity −1 ( ) = 2
¡
1− cos 2



¢
of a circuit  follows from (6.6), while

−1 ( ) = 2
¡
1− cos 



¢
for a path  follows from (6.10). Also, L ( ) =

N ( ) = 2 and L ( ) = N ( ) = 1 show that equality is achieved in the

bound (4.115) for the path  . However, in most cases as verified for example from

Fig. 4.1, the lower bound (4.115) is rather weak.

171. Pendants in a graph. A node with degree one is called a pendant. Many

complex networks possess pendants. If a connected graph  has a pendant, then

the second smallest eigenvalue −1 ≤ 1 as follows from (4.53) in art. 136.

Theorem 31 If pendants are not adjacent to the highest degree node, then −11.

Proof : Let node  be a pendant, connected to node  in . The complement

 of  has at least one node of degree  − 2, namely the pendant  in ,
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174 Eigenvalues of the Laplacian 

while the degree  ≥ 1, because node  is not the highest degree node. We

can construct a spanning tree  from the star 1−2 with center at node  by

precisely adding one link at a leaf node of the star to node  in . Art. 164

shows for  = 1−2 + {} that 1 ( )  1 (1−2) and 1 (1−2) =  − 1
is computed in Section 6.7. Since the spanning tree  is a subtree graph of ,

art. 163 implies that 1 (
) ≥ 1 ( )   − 1, such that we arrive, with the

complement formula (4.19), at −1 ()  1. ¤

The following theorem is due to Das (2004):

Theorem 32 (Das) If  is a connected graph with a Laplacian eigenvalue 0 

  1, then the diameter of  is at least 3.

Proof: Let  denote the eigenvector of the Laplacian  belonging to , then the

eigenvalue equation (1.3) for the -th component is

 =

X
=1

 =  −
X
=1

 =  −
X

∈neighbors()


which we rewrite for a particular neighbor  of node  as

 = ( − )  −
X

∈neighbors()\


If  = min∈neighbors()  = min(), then
P

∈neighbors()\  ≤ ( − 1) max() ≥
( − 1) max, where max = max1≤≤ , and

min() ≥ ( − )  − ( − 1) max
If we now choose node  such that  = max, then we obtain the bound min() ≥
(1− ) max. Art. 103 shows that the sign of max is positive. Hence, if 0    1,

all eigenvector components corresponding to the neighbors of the node  with largest

eigenvector component, have the same sign as  = max.

Similarly, if  = max∈neighbors() = max(), then
P

∈neighbors()\  ≥
( − 1) min() ≥ ( − 1) min, where min = min1≤≤ , and

max() ≤ ( − )  − ( − 1) min
Choosing node  such that  = min, then yields max() ≤ (1− ) min. Art. 103

shows, for  6=  = 0, that the sign of min is negative. Hence, if 0    1, all

eigenvector components corresponding to the neighbors of the node  with smallest

eigenvector component, have the same sign as  = min, opposite to max. This

implies that the nodes with largest and smallest eigenvector component are not

neighbors (not directly connected), nor have neighbors in common. Since  is

connected, this means that the diameter in  is at least 3. ¤
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5

Effective resistance matrix

After the adjacency matrix and the Laplacian matrix of a graph, we believe that

the effective resistance matrix deserves a third position of importance. The effective

resistance matrix is a distance matrix and intimately related to the pseudoinverse

† of the Laplacian matrix introduced in Section 4.2. Geometrically, as shown in
Devriendt and Van Mieghem (2019a), the elements in the effective resistance matrix

equal the squared distances between vertices in the simplex of the graph. For more

details on the effective resistance matrix, we refer to Fiedler (2009) and Devriendt

(2022b).

5.1 Effective resistance matrix Ω

We confine ourselves to a connected resistor network (art. 14) in which the injected

nodal current vector is specified by  = e in (2.15) in terms of the nodal potential
vector . The weight of link  = ( ) between node  and  is  =  =

1

, where

 is the resistance of link . The inverse relation  = † in (4.32) in Section 4.2
assumes that the reference potential is chosen equal to the average voltage in the

network av =
 


= 0. We aim to determine the effective resistance matrix Ω

with elements  that, for a constant current   0, satisfy − = , which

is Ohm’s law (2.12). The effective resistance  is a generalization of the classical

series and parallel formulas for the resistance to any graph configuration.

Due to the linearity of the flow dynamics in art. 14, any nodal current vector 

can be decomposed in several, elementary current injections with some magnitude

  0 at some node  and leaving the network at some node . Such elementary

current injection is represented by  =  ( − ), where  is the basic vector

with components () = 1{=} and generates a potential at each node in the
network, specified by the inverse relation  = † in (4.32) as

 = 
† ( − ) (5.1)

Ohm’s law (2.12) states that the resistance is the proportionality constant or ratio

between the potential difference  −  at the nodes  and  in a graph and the

current  injected at node  and leaving at node . The ratio
−


thus measures

175
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176 Effective resistance matrix

the resistance of a subgraph over which the injected current  in node  spreads

towards node  and  is called the “effective” resistance between nodes  and

. The pseudoinverse † can be computed in different ways, by (4.30) in art. 128
and by (4.36) and related formulas in art. 129. The definition  −  =  of

effective resistance and  −  = ( − )

 combined with (5.1) then leads to

the quadratic form

 = ( − )

† ( − ) (5.2)

Multiplying (5.2) out yields

 = † +
†
 − 2† (5.3)

from which the symmetric effective resistance matrix Ω is obtained as

Ω =  +  − 2† (5.4)

where the vector  =
³

†
11 

†
22     

†


´
. All diagonal elements of Ω are zero,

as follows from the definition  −  =  or from (5.2). The explicit form of

the  × matrix  +  is

 +  =

⎡⎢⎢⎢⎢⎢⎣
21 1 + 2 1 + 3 · · · 1 + 

1 + 2 22 2 + 3 · · · 2 + 
1 + 3 2 + 3 23 · · · 3 + 
...

...
...

. . .
...

1 +  2 +  3 +  · · · 2

⎤⎥⎥⎥⎥⎥⎦
Example The Laplacian pseudoinverse of the complete graph with  = 

for

each link  is 
†


= 1


¡
 − 1



¢
in (4.40), with 

=
(1− 1

 )


. Formula (5.4)

provides the effective resistance matrix Ω
= 2


( − ) = 2


e

, where each

link has link weight  =
1


in the weighted adjacency matrix e

.

Substituting the spectral decomposition † =
P−1

=1 −1 

 in (4.30) in the

definition (5.2) yields, with ( − )

 = () − (),

 =

−1X
=1

1


(() − ())2

illustrating that  ≥ 0 and that the effective resistance  between node  and
 increases with increasing difference between the vector components of Laplacian

eigenvectors. For a small algebraic connectivity −1, the Fiedler vector −1
contributes significantly. Since † e† = †

¡
 − 1



¢
= † and substituting e =

diag
³
1


´
 in (2.14), the quadratic form (5.2) is transformed to a Euclidean

norm,

 = ( − )

† e† ( − ) =

°°°°diagµ 1√


¶
† ( − )

°°°°2
2

(5.5)
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5.2 Effective graph resistance 177

The effective resistance  of a link  = ( ) between node  and  in graph 

equals the “parallel resistor formula”

1


=
1


+

1¡
\

¢


(5.6)

where
¡
\

¢

is the effective resistance between node  and  in the graph \

obtained from the graph  after deletion of the link  = ( ). Indeed, the current

 =  ( − ) injected in node  and leaving at node  flows through the resistor

 of direct link  and through the remaining part of the network. Applying the

law of Ohm and the definition  −  =  of effective resistance leads to (5.6),

from which
¡
\

¢

≤ () = . If the direct link is absent, then collapse

all intermediate nodes between node  and  6=  to a single node , resulting in

the graph b with
¡
 ¢ ≤ () , because all resistances among the intermediate

nodes are put to zero in the graph b. The parallel resistor formula indicates that¡
 ¢−1 =

P
=1

1


and
¡
 ¢−1 =

P
=1

1

, while the series connection gives¡

 ¢ = ¡ ¢ + ¡ ¢ . If all links have a unit resistance  = 1 and  = 0,

then we arrive at

 ≥ 1


+
1


no direct link between  and  (5.7)

Coppersmith et al. (1996) elegantly show that

 ≥ 1

1 + 
+

1

1 + 

between any two nodes  and  in a graph .

The parallel resistor formula (5.6) shows that the relative resistance 

≤ 1,

with equality only if
¡
\

¢

→ ∞, implying that the removal of link  in 

disconnects the graph. The relative resistance  , coined by Devriendt and

Lambiotte (2022), appears in Foster’s theorem in (5.20), in spanning trees (Sec-

tion 5.6), in sparsification (Section 8.9) and in the resistance curvature  = 1 −
1
2

P
=1  at node  where  =

1

, defined and studied by Devriendt and

Lambiotte (2022).

5.2 Effective graph resistance

The effective graph resistance, defined as

 =
1

2

X
=1

X
=1

 =
1

2
Ω (5.8)

can be regarded as a graph metric that measures the difficulty of transport in a

graph . The smaller , the better transport is facilitated in the graph. In

a nicely written book, Doyle and Snell (1984) extensively treat the connection

between electric resistor networks and random walks, for which we also refer to
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178 Effective resistance matrix

Chandra et al. (1997), Ellens et al. (2011) and Ghosh et al. (2008). In chemical

graph theory, the effective graph resistance  is called the Kirchhoff index.

The effective graph resistance  =
1
2
Ω in (5.8) becomes with (5.4)

 =
1

2
 +

1

2
− † =   = trace

¡
†
¢

(5.9)

because † = 0 as the vector  is orthogonal to each other eigenvector of .

The trace-formula (A.99) leads to

 = 

−1X
=1

1


(5.10)

The vector  =
³

†
11 

†
22     

†


´
is a graph metric vector and as important

as the degree vector  = (11 22     ). As shown in Van Mieghem et al.

(2017), the component  of the vector , that satisfies 
†
 ≤ 

†
 for 1 ≤  ≤  ,

can be regarded as the best spreader node in the graph or as the node lying in the

center of gravity of the graph.

For the undirected version of the graph in Fig. 2.1, the effective resistance matrix

Ω, computed from (5.4), is

Ω=
1

66

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 31 37 64 49 36

31 0 34 55 34 31

37 34 0 45 48 49

64 55 45 0 45 64

49 34 48 45 0 37

36 31 49 64 37 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and the corresponding effective graph resistance (5.10) is  =

659
66
. A more inter-

esting example is the effective resistance of the chain of cliques∗(1 2  +1),
defined in Section 6.13. By using Theorem 45, art. 127 and the explicit relations

for the coefficients 2 () and 1 () of the characteristic polynomial  () in

Van Mieghem and Wang (2009), the effective resistance of the chain of cliques

∗(1 2  +1) is

∗

=

+1X
=2

³
 −P−1

=1 

´
−1

−1X
=1

 +

+1X
=1

 − 1
−1 +  + +1

(5.11)

where 0 = +2 = 0, the number of nodes  =
P+1

=1  in (6.50) and the

number of links  =
P+1

=1

¡

2

¢
+
P

=1 +1 in (6.51). Theorem 41 shows that

the minimum effective resistance in any graph with  nodes and diameter  is

achieved in the class ∗(1 2  +1). Hence, minimizing (5.11) with respect
to 1 2     +1 subject to (6.50) yields the smallest possible effective resistance

in any graph with  nodes and diameter . An extreme case is the path +1
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5.3 Properties of the effective resistance 179

with -hops (see the end of Section 6.13), for which all  = 1 such that  = +1

and the effective graph resistance, computed via (5.11) and (5.10) with (6.15), is

P+1 =
 ( + 1) ( + 2)

6
=

 + 1

2

X
=1

1

1− cos 
+1

5.3 Properties of the effective resistance

5.3.1 The effective resistance  and
√
 are both a metric

The effective resistance matrix Ω is a distance matrix (art. 8) obeying (a) non-

negativity,  ≥ 0,  = 0, (b) symmetry  =  and (c) the triangle in-

equality,  ≤  + , which follows from the simplex representation of an

undirected graph (Fiedler, 2009; Devriendt, 2022a). This metric property of Ω has

been discovered by Klein and Randíc (1993) and by Gvishiani and Gurvich (1987)

(in Russian).

Indeed, injecting a current  in node , which leaves the network at node ,

translates to  −  = . The potential of any other node  lies in between

 ≥  ≥ , else node  would be the source node if    or a sink node if

  . This property is known as the maximum principle of harmonic functions

(art. 15): the potential  is a harmonic function with boundary conditions at node

 and . If  is the current flowing from node  to node , then  −  =

 and, similarly,  −  = , so that  −  =  + 

and  = 


+ 




. The law of current conservation tells that both the

current  ≤  and  ≤  cannot exceed , resulting in

 ≤  + 

which proves the triangle inequality. Equality for  6=  nor  6=  only holds if

 =  and  = , meaning that the effective resistances  and  are

in series and  is a “cut” node. In Section 5.6, we deduce the triangle closure

 +  −  in (5.37).

The spectral decomposition of the Laplacian  =  , where  = diag(),

and its positive semidefiniteness allow us to write  = diag
¡√


¢
diag

¡√

¢
 =

 with  = diag
¡√


¢
 and similarly for the pseudoinverse. From the Gram

decomposition † =
¡
†
¢

†, the square of the Euclidian distance between two
vertices  and  with coordinates  = † and  = † in the inverse simplex
(Devriendt and Van Mieghem, 2019a) equals k − k2 = ( − )


( − ) =

( − )
 ¡

†
¢

† ( − ). The definition (5.2) indicates that k − k2 = 
and, by the triangle inequality k − k ≤ k − k+ k − k, we arrive1 at

√
 ≤

√
 +

√


1 A direct demonstration (art. 203) follows from
√
 =

diag  1√



† ( − )


2
in

(5.5).
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180 Effective resistance matrix

In summary, the effective resistances obey two triangle inequalities. Thus, both 
and
√
 are a metric.

5.3.2 The effective resistance  as minimization of electrical power

The power, the energy per unit time (in watts), dissipated in a resistor network is

the sum of the power dissipated in each resistor, which equals P = . The voltage

vector  = † in (4.32) gives P = †, while the injected current vector  = e
in (2.15) leads to P =  e. The effective resistance matrix Ω =  + −2†
in (5.4) and the conservation law  = 0 of current in art. 14 expresses the power

in P = † as

P = −1
2
Ω = −1

2

X
=1

X
=1

 = −
X
=1

−1X
=1

 (5.12)

where at least one component  of the injected current  is negative. Since the

voltage is specified with respect to a voltage reference, the power equals P =

2 (∗) e∗ for  =  (∗ + ) for any real  and .

If we inject a current  in node , which leaves the resistor network at node ,

then the potential difference at the nodes  and  is − =  =  (∗ − ∗ ). If
we choose  = 1


, then 

∗
 =

1

( − ) =

1

 and 

∗
 = 0. Finally, we choose

 =  so that 
∗
 = 1 and 

∗
 = 0 and the normalized vector 

∗ = 1


( − )

is dimensionless. Using (4.4) and  =
1

, the dissipated power is

P =  e =X
∈L

1


(+ − −)

2
=

X
=1

X
=+1




( − )

2

The power P is minimized (art. 200) with respect to the nodal voltages if the

corresponding gradient ∇P = 0, i.e. each partial derivative P


= 0 for  ∈ N .
Now,

P =
X

=1;6=

X
=+1; 6=




( − )

2
+

X
=+1




( − )

2
+

−1X
=1




( − )

2

and

P


= 2

X
=+1




( − )− 2

−1X
=1




( − ) = 2

X
=1




( − ) = 2

where the last equality follows from the flow conservation law in (2.11). By con-

struction, the injected current is  = 0 in all nodes  ∈ N , except for node  and
, where  = − = . But, in those nodes  and , the voltage  and  is

given and is not variable, i.e. P cannot be varied over those voltages. This means
that the vector ∗ = 1


( − ) minimizes the power P = ()2 (∗) e∗,

given the normalized voltage ∗ = 1 and 
∗
 = 0, and consistent with the maximum
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5.3 Properties of the effective resistance 181

principle of harmonic functions (art. 15). Invoking (5.1) in ∗ = 1


( − ),

the minimized power is

Pmin = ()2 (∗) e∗ = 2 ( − )

† e† ( − ) = 

2


where the last equality follows from (5.5). Hence, the effective resistance  is

proportional to the minimized power Pmin, given the injected current vector  =
 ( − ). On the other hand, since

−


=  and Pmin = (−)2


, the effective

resistance  is inversely proportional to the minimized power Pmin, given the
potential  and . Explicitly as in Batson et al. (2013), we find that 

−1
 =

min
∗:∗=1;

∗

=0
(∗) e∗.

5.3.3 Eigenvalue equation of the matrix eΩ
From the definition (5.4) of the effective resistance matrix Ω, we obtain eΩ =e + e − 2 e† and using the basic inversion product e† =  − 1


 in

(4.31) and Laplacian characterizing eigenvalue equation e = 0,
eΩ = e − 2µ − 1




¶
(5.13)

Right-multiplication of (5.13) with any vector  orthogonal to the all-one vector ,

thus satisfying  = 0, leads for a weighted Laplacian matrix e with correspond-

ing effective resistance matrix Ω to the eigenvalue equation

eΩ = −2 (5.14)

Since each column of a weighted Laplacian matrix e sums to zero, (5.14) leads to

eΩ e = −2 e (5.15)

The eigenvalues of the  ×  asymmetric matrix eΩ in (5.13) are the zeros
(art. 235) in  of the characteristic polynomial  Ω () = det

³ eΩ− 
´
, which

is, with  =  and (5.13),  Ω () = det
³³ e + 2



´
 − (+ 2) 

´
. Invoking

the “rank one update” formula (A.66), det
¡
 + 

¢
= 1 +  , yields

 Ω () = (−1)  (+ 2)
−1

Hence, the matrix eΩ has  − 1 eigenvalues equal to  = −2, belonging to
each possible external current  orthogonal to , and one zero eigenvalue whose

eigenvector must be a linear combination2 of the eigenvector  and . Hence,eΩ (+ ) =  e−2 = 0, so that  = 
2
e and the eigenvector belonging

2 Since Ω is not symmetric, the eigenvectors are not necessarily orthogonal, but independent.
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182 Effective resistance matrix

to  = 0 equals + 
2
e. Since  ³+ 

2
e´ =  , it is convenient to scale that

eigenvector of eΩ belonging to the single zero eigenvalue as
 =

1

2
e + 


(5.16)

which satisfies   = 1 and

Ω = 2

Ã
 e
4

+

!


Alternatively, a solution for  in eΩ = e (Ω) = 0 is immediate from e = 0 as
Ω =  for some constant  6= 0. Devriendt and Lambiotte (2022) demonstrate

that the vector  has several fundamental properties and that  
4
+ = 2 can

be interpreted as a variance of a distribution on a graph. The above properties of

 are recast into the matrix equationµ
0 

 Ω

¶µ −22


¶
=

µ
1

0

¶
which has been generalized by Fiedler (2009) to Fiedler’s block matrix identity,µ

0 

 Ω

¶Ã −22 

 −1
2
e
!
= 

which is verified taking into account the definition (5.16) of  and Ω e in (5.13).

Since
³
Ω e´ = eΩ, Fiedler’s block matrix identity shows that

eΩ = 2 − 2
Fiedler’s block matrix identity, equivalent3 toµ

0 

 Ω

¶−1
=

Ã
−22 

 −1
2
e
!

with Ω = 22 (5.17)

relates the effective resistance matrix Ω to the (weighted) Laplacian e of a graph

and possesses many deep, geometric properties of the simplex geometry of a graph,

for which we refer to Fiedler (2009); Van Mieghem et al. (2017); Devriendt and

Van Mieghem (2019a); Devriendt (2022a). Applying the block inverse (A.61) to

Fiedler’s block matrix identity (5.17) indicates that 22 = 1
Ω−1 and the vector

 = 1
Ω−1Ω

−1, while the inverse of the effective resistance matrix is

Ω−1 =
1

22
 − 1

2
e (5.18)

which was earlier found by Bapat (2004)[Theorem 3] after a longer computation

without resorting to Fiedler’s block matrix identity (5.17).

3 The nice identity (5.17) has independently been derived and studied by Subak-Sharpe (1990).
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5.3 Properties of the effective resistance 183

5.3.3.1 Foster’s Theorem

Applying the trace-formula (A.99) to the eigenvalue equation (5.14) yields

trace

µ³ eΩ´¶ = (−1) 2 ( − 1) (5.19)

for any non-negative integer . For any two  ×  matrices  and , it holds

that trace
¡


¢
=
P

=1

P
=1  =  ( ◦), where an element of the

Hadamard product  ◦  equals ( ◦) =  . Hence
4, for  = 1 in (5.19),

trace( eΩ) = P
=1

P
=1 e and since  = 0, we find with e = e∆ − e that

trace( eΩ) = −P
=1

P
=1 e , which maps (5.19) to

1

2

X
=1

X
=1





=  − 1 (5.20)

In summary, the sum (5.20) over all weighted links of the relative resistances equalsP
∼



=
P

∈L


= −1 or, in terms of the Hadamard product, 

³ e ◦ Ω´ =
2 ( − 1). Klein (2002)[Corollary C] mentions that (5.20) was first discovered by
Foster (1949) and (5.20) is known as Foster’s Theorem. The (weighted) effective

graph resistance (5.8) is written in terms of the Hadamard product as

e =
1

2
Ω =

1

2
 ( ◦ Ω) = 1

2

³³

 − e+ e´ ◦ Ω´
=
1

2

³³

 − e´ ◦ Ω´+ 1
2

³ e ◦ Ω´

Foster’s formula (5.20) expresses the (weighted) effective graph resistance as

e =  − 1 + 1
2

³³

 − e´ ◦ Ω´ (5.21)

5.3.3.2 Beyond Foster’s Theorem

Klein and Randíc (1993) have considered the matrix eΦ eΩ, where Φ is an arbitrary
 × symmetric matrix, which equals with (5.13)

eΦ eΩ = −2 eΦ+ eµΦ e + 2


Φ

¶


After taking the trace,

trace
³ eΦ eΩ´ = −2trace³ eΦ´+ traceµeµΦ e + 2


Φ

¶

¶

4 For  = 2 in (5.19), we find after tedious computations the less physically interpretable relation

4 ( − 1) =

=1


=1

2 − 2 
=1


=1

 
=1

 + 
=1


=1


=1


=1



where the quadratic form


=1


=1 

2
 =  (Ω ◦ Ω)  and the vector  =

(11 22      ) with  =
=1



. The quadratic form Ω is related to the Kemeny

constant Ω
4

, as shown in Wang et al. (2017, Corollary 1).
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184 Effective resistance matrix

and using the cyclic permutation property (4.14) of the trace, we obtain

trace
³ eΦ eΩ´ = −2trace³ eΦ´ (5.22)

because trace
³ e³Φ e + 2


Φ
´

´
= trace

³³
Φ e + 2


Φ
´
 e´ = 0. If Φ =

Ω
³ eΩ´−2, then (5.22) shows that traceµ³ eΩ´¶ = −2traceµ³ eΩ´−1¶, which

leads, after iteration in , to (5.19), illustrating that (5.22) is a generalization of

(5.19).

5.4 The pseudoinverse † and the effective resistance matrix Ω

We rewrite 
†
 =  

† with the property that † = 0 as


†
 =  

† =
³
 − 



´
†
³
 − 



´
Using † = −1

2
Ω in (5.12) for any vector  obeying  = 0, we obtain


†
 = −

1

2

³
 − 



´
Ω
³
 − 



´
=

Ω

2
( + )− 1

2
 − Ω

22

With the definition (5.8) of the effective graph resistance e =
Ω
2
, the elements

of the Laplacian pseudoinverse are expressed in terms of those of the effective

resistance matrix


†
 =

1

2

Ã
1



X
=1

 +
1



X
=1



!
− 1
2
 − 

2
(5.23)

Corollary 2 In each row (or column) of the pseudoinverse †, the diagonal element
is the largest: 

†
 ≥ 

†
 for each row 1 ≤  ≤  .

Proof: The difference 
†
 −

†
 in (5.23) with  = 0 gives


†
 −

†
 =

1

2
 +

Ω

2
( − ) =

1

2

X
=1

{ +  − }

Section 5.3.1 shows that each element in the effective resistance matrix Ω satisfies

the triangle inequality  +  ≥ , so that 
†
 −

†
 ≥ 0, for any . ¤

5.5 The spectrum of the effective resistance matrix Ω

Let us denote the eigenvalue equation of the  × symmetric, non-negative effec-

tive resistance matrix Ω by

Ω =  (5.24)
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5.5 The spectrum of the effective resistance matrix Ω 185

where  is the -th eigenvalue belonging to the normalized eigenvector , i.e.

  = 1. The real eigenvalues are ordered as usual: 1 ≥ 2 ≥ · · · ≥  . The

eigenvalue decomposition in matrix form is

Ω =    (5.25)

where  is an orthogonal matrix, the ×1 vector  = (1 2 · · ·   ) with eigen-
values of Ω and  = diag (). Invoking the definition (5.4) of Ω in the eigenvalue

equation (5.24) leads to

  +   − 2† =  (5.26)

Taking into account that † = 0, we obtain    +   = 
 .

The definition (5.8) of the effective graph resistance  =
1
2
Ω, complemented

by   = 

, shows that

 =



+

 

 
(5.27)

In a connected graph, the effective resistance matrix Ω has full rank, i.e. detΩ 6=
0, because the inverse Ω−1 exists as shown in (5.18). Hence, we conclude that
the effective resistance matrix Ω does not possess a zero eigenvalue in a connected

graph and  6= 0 for 1 ≤  ≤  . A powerful theorem, that has appeared already

in Fiedler (2009, Corollary 6.2.9), is

Theorem 33 In a connected graph, the eigenvalues 2 3      of the effective

resistance matrix Ω interlace with those of the Laplacian matrix as

0  − 2
1
≥ 2 ≥ − 2

2
≥ · · · ≥ − 2

−2
≥ −1 ≥ − 2

−1
≥  (5.28)

Proof : We include the proof of Sun et al. (2015). Let the ( − 1) × 1 vector
 = (1 2     −1) denote the positive eigenvalues of the weighted Laplacian
of a connected graph (Section 4.1.1). The spectral decomposition (4.1) is thene = 

∙
diag () 0

0 0

¸
 . Let the matrix b = Ω, then Ω =  b , which we

write as Ω = 

∙
 

 

¸
 , where  is a symmetric ( − 1) × ( − 1) ma-

trix. Combining eΩ e = −2 e in (5.15) shows that diag()diag() = −2diag().
Hence,  = −2 (diag ())−1 is the principal submatrix of Ω and the Interlacing

Theorem 71 then leads to (5.28). ¤

Theorem 34 In a connected graph, the effective resistance matrix Ω has one pos-

itive and  − 1 negative eigenvalues.

Proof : Theorem 34 follows from Theorem 33 and the Perron-Frobenius Theorem
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186 Effective resistance matrix

75 for non-negative matrices as Ω. We add a second proof. For any vector ,

definition (5.4) of Ω indicates that

Ω = 2
¡
 

¢ ¡


¢− 2† (5.29)

If  = 0 or   = 0, then Ω ≤ 0, because † is positive semidefinite. In other
words, for any vector  orthogonal to the all-one vector  or to the vector , the

quadratic form Ω is negative, but 1
2
Ω = 2  0 and Ω  0. Since Ω

is of full rank  and has no zero eigenvalue, there are ( − 1) negative eigenvalues
and one positive eigenvalue. ¤

We now concentrate on the largest eigenvalue 1. A consequence of Theorem 34

and (A.99) with the zero diagonal in Ω lead to

1 = −
X
=2

 and 1 =

X
=2

||

Gerschgorin’s Theorem 65 states that each eigenvalue  lies in a circle around the

origin — each diagonal element of Ω is zero — with radius (Ω) for 1 ≤  ≤  . It

follows from the definition (5.4) and  = 

in (5.9) that

Ω =  + 



(5.30)

and Gerschgorin’s Theorem 65 becomes, for a certain  and ,

|| ≤ 


+ (5.31)

In particular, Gerschgorin’s Theorem 65 provides the upper bound

1 ≤ 


+ max


 (5.32)

Theorem 33 or the Rayleigh inequality 1 ≥ Ω
 

in (A.129) for  =  give the

lower bound

1 ≥ Ω


=
2


(5.33)

Combining  =


+  

 
in (5.27) and Gerschgorin’s bound (5.31) implies

that there exists a component  in  so that
| |
| | ≤

2
2 +  for   1. Since

the components of the principal eigenvector 1 are non-negative by the Perron-

Frobenius Theorem 75, it holds that

 1

 1
=

P
=1 P
=1 

≤ max




where equality only holds if  =  and relation  = 

in (5.9) implies that

 = 
2 and  = 

2 .
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5.6 The effective resistance and spanning trees 187

Theorem 35 If  = 
2 , then the eigenvalues of effective resistance matrix Ω are

1 =
2


and  = − 2

for   1.

Proof : If  = 
2 , then Ω =  + 


in (5.30) reduces to the eigenvalue

equation Ω = 2


 illustrating that 1 =
2


and 1 =
√

. For  = 

2 , the

eigenvalue equation (5.26) becomes

2

µ


2
 −†

¶
 = 

which we rewrite with † =
³ e+ 

´−1
− 1

2 in (4.36) after choosing  = −

as −2
³ e−

´−1
 = , equivalent to − 2


 =

³ e−
´
. For   1,

the orthogonality of eigenvectors of the symmetric matrix Ω implies that   = 0

and  = 0. Thus, we arrive at the eigenvalue equation − 2

 = e, which

indicates, for   1, that  = − 2

if  = 

2 . ¤

Earlier, Zhou et al. (2016, Theorem 12) have demonstrated that equality in (5.28)

only holds if Ω is “resistance regular”, i.e. Ω = , equivalent to  = 0, for
some positive real numbers  and 0.
With− 2

1
≥ 2 ≥ − 2

2
in (5.28), the spectral gap 1−2 of the effective resistance

matrix Ω is bounded by 1 +
2
1
≤ 1 − 2 ≤ 1 +

2
2
. With the lower (5.33) and

upper (5.32) bound, the spectral gap lies between

2


+
2

1
≤ 1 − 2 ≤ 


+ max


 +

2

2

Since 1 ≤  by (4.20), the spectral gap of Ω is always larger than

1 − 2 ≥ 2 ( + 1)


(5.34)

Theorem 35 shows that (1 − 2)
= 2 and equality in (5.34) occurs in the com-

plete graph  . The spectral gap of Ω in  is smallest among all graphs.

5.6 The effective resistance and spanning trees

As explained in art. 16, Kirchhoff (1847) has proposed an explicit solution of a

variant of the inversion problem of the fundamental relation  = e in (2.15).
Here, we present another method and deduce two forms (5.35) and (5.36) for the

effective resistance  .

Fiedler’s inverse block matrix (5.17) elegantly5 leads to

 =
det e\{}
det e\{} =

det
³ e\ row()\ col()´

 ()
(5.35)

5 The derivation is based on computations of Karel Devriendt.
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188 Effective resistance matrix

where \{1} is the ( −)× ( −) submatrix obtained from the  ×

matrix  by removing the rows and same columns 1     . Indeed, we rewrite

(5.17) as ⎛⎝ 0 1 

1 0 
  Ω\{}

⎞⎠−1 =
⎛⎜⎝ −22  

 −1
2
e

e

 e −1
2
e\{}

⎞⎟⎠
The Schur block matrix inverse formula (A.60) in art. 217 shows that

−1
2
e\{} =

Ã
Ω\{}−

£
 

¤∙ 0 1

1 0

¸−1∙




¸!−1
=
¡
Ω\{} − 

 − 
¢−1

from which, after inversion, the element −2 = −2
³ e\{}´−1


is found and the

definition (A.43) of the inverse of matrix and det e\{} =  () by (4.37) then

demonstrates (5.35).

If  = 1 and  = −1 in the potential difference (4.43) in art. 130, then the
definition of the effective resistance between node  and  shows that  −  = 
and we find

 =
det

³ e\ row()\ col()´+ det³ e\ row()\ col()´
 ()

−
(−1)+

³
det

³ e\ row()\ col()´+ det³ e\ row()\ col()´´
 ()

Since e = e , it holds that det
³ e\ row()\ col()´ = det³ e\ row()\ col()´.

Cramer’s method in art. 130 holds for an arbitrarily removed row in e =  and

we arrive, after replacing row  by a row  6= { }, at

 =
det
³e\row()\col()́ +det³e\row()\col()́ −2 (−1)+det³e\row()\col()́

 ()
(5.36)

We rewrite (5.36) with (5.35) as a triangle closure equation for the distance matrix

Ω,

( + )−  = 2 (−1)+
det

³ e\ row()\ col()´
 ()

≥ 0 (5.37)

where6 the last inequality is due to the triangle inequality (see Section 5.3.1).

6 Comparing the definition (5.3) of effective resistance  = 
†
 +

†
 − 2† and (5.36) would

hint to 
†
 =

(−1)+ det( \ row()\ col())
det( \{})

, which corresponds to the definition of the inverse

(A.43), apart from an arbitrary row and column deletion (due to det  = 0). But, 
†
 ≥ 0 is

not true in general. The correct expression for 
†
 is given in (4.39).
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5.6 The effective resistance and spanning trees 189

The Matrix Tree Theorem for the weighted Laplacian in art. 118 additionally

tells us that

det
³ e\ row \ col 

´
=

X
∈T ()

 ( ) with  ( ) =
Y
∈

1



where T () is the set of trees spanning all  nodes in weighted graph with weight

 =
1

of link  and the total number of such spanning trees equals the complexity

 () = |T ()| in art. 122.
The numerator det

³ e\ row()\ col()´ in (5.35) can also be expressed in terms
of spanning trees. The idea is to merge a pair of linked nodes ( ) of the graph 

into a new node  by letting  → 0 or  =
1

→∞ so that the voltages  = .

The merging transforms the graph  into a new graph 0 with weighted Laplacian
0, where row  and  and column  and  in e are replaced by a row and column

for node , containing the links from node  and  to the other nodes in . The

link weights from node  to node  in the graph 0 is 0 =  +  for all

nodes  ∈ N\{ }. Then, we obtain that 0\{} = e\{}, which does not contain
row ; thus, neither 0 link weights nor the link weight  =

1

. The Matrix Tree

Theorem for the weighted Laplacian in art. 118 then states that

det
³ e\ row()\ col()´ = det³0\{}´ = X

∈T 0(−1)
 ( )

where T 0 ( − 1) is the set of spanning trees on all−1 nodes in the weighted graph
0, thus also node . Since node  is the merger of the linked nodes ( ), this means
that each spanning tree of T 0 ( − 1) in 0 contains the link ( ) in the original
graph , but the link ( ) is not weighted. In other words, T 0 ( − 1) = T() ()
is the set of spanning trees in  that contain the link ( ) and the weight of a tree

 0 ∈ T 0 ( − 1) and its corresponding tree  ∈ T () are related by  ( 0) = ( )


.

In summary, we have proved

Theorem 36 The effective resistance between node  and  in (5.35) equals

 =
1



P
∈T()() ( )P
∈T () ( )

=

P
∈T()()

Q
∈ ;6=()

1
P

∈T ()
Q

∈
1


(5.38)

where T () is the set of trees spanning all  nodes in weighted graph with weight

 =
1

and T() () is the set of spanning trees in  that contain the link ( ).

The relative resistance  in (5.38), the effective resistance  =  of the

link  = ( ) multiplied by its weight  =  =
1

, equals the probability that

the link  appears in a random spanning tree of . The relative resistance 
reflects the importance of a link for connectivity of the graph. For unit resistances

 = 1, the effective resistance in (5.38) simplifies to  =
|T()()|
|T ()| =

|T()()|
()

,

which is a rational number, and equals the fraction of all spanning trees of the

graph  on  nodes that contain the link ( ).
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5.7 Bounds for the effective resistance matrix Ω

A constrained system can never reach a lower global minimum of the system dy-

namics than a system without constraints. Hence, transport restricted to a single

path is never more efficient than unrestricted transports over all possible paths,

which implies (art. 7) that the weight 
¡P∗¢ of the shortest path P∗ between

nodes  and  is lower bounded by the effective resistance:

 ≤  = 
¡P∗¢ (5.39)

In other words, the× difference matrix −Ω is a non-negative matrix. Equality
in (5.39) occurs for trees, where there is only a single path between nodes.

Besides the upper bound  ≤  in (5.39), Theorem 37 presents a lower bound,

given in Lyons and Peres (2016, ex 2.129; p. 602):

Theorem 37 The effective resistance  can be lower-bounded by the hopcount 
of shortest path P∗ as

1


2 ≤  (5.40)

where  =
P

∈L
−1
 is the sum over all links of the inverse link weights.

Equality in (5.40) occurs in an unweighted graph, where two nodes  and  are

connected by  paths of  hops.

Proof : For a pair of nodes  and , an − cut consists of a set of links such that
removing these links from the graph disconnects  from . If C is a collection of
−  cuts which are independent, i.e. no two cuts share a link, then the inequality

of Nash-Williams (1959) states thatX
∈C

() ≤  (5.41)

where () =
³P

()∈ −1
´−1

is the weight of a cut  ∈ C . Nash-Williams’
inequality (5.41) follows from Rayleigh’s monotonicity law by identifying the start

and end nodes of all links in each of the cuts. For two nodes  and  which are

 hops removed from each other, we consider the following collection of  − 

cuts C = {}−1=0 , where the cut  = {( ) ∈ L :  =   =  + 1}
contains all links between one node at shortest path hop distance  from  and the

other node at distance  + 1. Nash-Williams’ inequality (5.41) shows that  ≥P−1
=0 (). After multiplying both sides with  =

P
∈L

−1
 and noticing that

 ≥P−1
=0 −1(), because the right-hand side only counts the weights of links

in the cuts, we obtain

 ≥
−1X
=0

()

−1X
=0

−1() ≥ 2
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5.8 Lower and upper bound for the effective graph resistance  191

where the last step follows from the Cauchy-Schwarz inequality (A.72) in art. 222

that erases the link weights. This proves the lower bound in (5.40). ¤

5.8 Lower and upper bound for the effective graph resistance 

We end this chapter by establishing a lower and upper bound for the effective graph

resistance . Art. 127 demonstrates that

 =
2 ()

 ()
≥ ( − 1)

2

 []
(5.42)

where the complexity  () of the graph  equals the number of all possible span-

ning trees in the graph and where 2 () equals the number of all spanning trees

with −2 links in all subgraphs of  (see the Matrix Tree Theorem 22). The lower
bound in (5.42) for the effective graph resistance  is attained by the complete

graph  , for which 
=  − 1. This lowest value of the effective graph resis-

tance  follows from (5.21) in the unweighted case, where
³
 − e´ ◦Ω =  ◦Ω,

 =  − 1 + 1
2
 ( ◦ Ω) =  − 1 +

X
∼∈

 (5.43)

because  ◦Ω is a non-negative matrix, which reduces to the zero matrix only for
the complete graph  .

Applying Schur’s argument in art. 276 for a convex function  to the degree

vector  = Ξ in (4.17) in art. 109 and the diagonal element vector  = Ξ
1

in

(4.45) in art. 132 yields⎧⎨⎩
P

=1 
³


−1

´
≤ 

−1
P−1

=1  ()P
=1 

³


−1
†


´
≤ 

−1
P−1

=1 
³
1


´
For example,  () = 1


is convex for   0 and, hence,(

−1


P
=1

1

≤ 

−1
P−1

=1
1

= 

−1
−1


P
=1

1


†


≤ 
−1

P−1
=1  =

2
−1

The harmonic, geometric and arithmetic mean inequality (6.38) indicates that 
2

2
=


[]

≤ P
=1

1


= 
£
1


¤
. Finally, we obtain the inequality, differently found

in Van Mieghem et al. (2017),

( − 1)2
 []

≤ ( − 1)2
∙
1



¸
≤  (5.44)

which is slightly sharper than (5.42). Combining (5.43) and (5.7) shows that

 ≥  − 1 +
X

∼∈

µ
1


+
1



¶
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192 Effective resistance matrix

Now,
P

∼∈

³
1

+ 1



´
= 1

2

P
=1

P
=1;6= (1− )

³
1

+ 1



´
and

X
=1

X
=1;;6=

(1− )

µ
1


+
1



¶
=

X
=1

1



X
=1;;6=

(1− ) +

X
=1

1



X
=1;6=

(1− )

= 2

X
=1

 − 1− 


= 2

Ã
( − 1)

X
=1

1


−

!
lead to a lower bound, tighter than (5.44),

 ≥ ( − 1)
X
=1

1


− 1 (5.45)

that appeared in Zhou and Trinasjtíc (2008).

An upper bound  ≤  follows from (5.39), where the distance matrix  is

defined in art. 8. This bound in (5.8) yields

 ≤
µ


2

¶
 []

where  [] is the average hopcount in the graph. With  = 
P−1

=1
1

in

(5.10), this bound is equivalent to

 [] ≥ 2

 − 1
−1X
=1

1


(5.46)

where equality is obtained for a tree as shown in (4.29) of art. 127.
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6

Spectra of special types of graphs

This chapter presents spectra of graphs that are known in closed form.

6.1 The complete graph

The eigenvalues of the adjacency matrix of the complete graph  are 1 =  − 1
and 2 =    =  = −1. Since  is a regular graph (art. 110), the eigenvalues

of the Laplacian are, apart from  = 0, all equal to  =  for 1 ≤  ≤  − 1.
The adjacency matrix of the complete graph is 

=  −  and  =  . A

direct computation of the determinant det (
− ) in (A.94) is

det ( −  − ) = det
¡
 − (+ 1) ¢ = (− (+ 1)) detµ − 

+ 1

¶
Using the “rank 1 update” formula (A.66) and  =  , we obtain

det ( −  − ) = (−1) (+ 1)−1 (+ 1−)

from which the eigenvalues of the adjacency matrix of the complete graph  are

immediate. In summary,

det ( − )× = (−1)−1 (− ) (6.1)

A computation of det (
− ) follows the same determinant manipulations

as in the example in art. 122, after replacing  − 1 by  − 1 − , to obtain

det (
− ) = − ( − )

−1
.

6.2 A small-world graph

In a small-world graph SW; , each node is placed on a ring as illustrated in

Fig. 6.1 and has links to precisely  subsequent neighbors and, by the cyclic struc-

ture of the ring, also to  previous neighbors. The small-world graph has been

proposed by Watts and Strogatz (1998) — and is further discussed in Watts (1999)

— to study the effect of adding random links to a regular network or of rewiring links

randomly. The thus modified small-world graphs are found to be highly clustered,
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194 Spectra of special types of graphs

like regular graphs. As mentioned in Section 1.5, depending on the rewiring process

of links, typical paths may have a large hopcount, unlike in random graphs.

The adjacency matrix SW; is of the type of a symmetric circulant, Toeplitz

matrix whose eigenvalue structure (eigenvalues and eigenvectors) can be exactly

determined by the Fourier matrix.

Fig. 6.1. A Watts-Strogatz small-world graph SW; with  = 2 is a regular graph on
 = 16 nodes with degree  = 4.

6.2.1 The eigenvalue structure of a circulant matrix

A circulant matrix  is an ×  matrix with the form

 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −1 −2 · · · 1
1 0 −1 · · · 2

2 1 0
. . . 3

...
...

. . .
. . .

...

−1 −2 −3 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
Each column is precisely the same as the previous one, but the elements are shifted

one position down and wrapped around at the bottom. In fact,  = (−)mod,
which shows that diagonals parallel to the main diagonal contain the same elements.

The elementary circulant matrix  has all zero elements except for 1 = 1,

 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1

1 0 0 · · · 0

0 1 0
. . . 0

...
...
. . .

. . .
...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
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6.2 A small-world graph 195

and represents a unit-shift relabeling transformation of nodes: 1→ 2 2→ 3     →
1. Thus, the unit-shift relabeling transformation, which is a particular exam-

ple of a permutation (art. 31), maps the vector  = (1 2     ) into  =

( 1 2     −1). Again applying the unit-shift relabeling transformation maps
 into 2 = (−1  1     −2), which is a two-shift relabeling transforma-
tion, and

2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0    1 0

0 0 0 · · · 0 1

1 0 0
. . .

. . . 0

0 1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Hence, we observe that 2 equals the circulant matrix  with all  = 0, except for

2 = 1. In general,  represents a -shift relabeling transformation, where each

node label  → (+)mod and  equals  with all  = 0, except for  = 1.

Alternatively, a general circulant matrix  can be decomposed into elementary

-shift relabeling matrices , with 0 =  and  = , as

 = 0 + 1 + 2
2 + · · ·+ −1−1 =

−1X
=0




Denoting the polynomial  () =
P−1

=0 
, we can write that  =  ().

The eigenstructure of  can be found quite elegantly. Indeed, the eigenvalue

equation  =  is equivalent to solving the set, for both  and each component

 of the × 1 eigenvector ,

 = 1

1 = 2

2 = 3

...

−1 = 

After multiplying all equations, we find
Q

=1  = 
Q

=1  , from which  = 1

and  = 
2
 , for  = 0 1      − 1. The roots of unity  = 

2
 obey

∗ = −
2
 , ∗ = ||2 = 1 and, thus with (A.98) in art. 235, we obtain

det =
Q−1

=0  = (−1)−1. Since any eigenvector is only determined apart

from a scaling factor, we may choose the first vector component 1 =  and, after

backsubstitution in the above set, we find that  = 1− for all  = 1     − 1
and  =  = 1−, because  = 1. Thus, the eigenvector  of  belonging to the

eigenvalue  equals  = 
¡
1 −1  −2      −+1

¢
and the matrix  containing
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196 Spectra of special types of graphs

the eigenvectors of  as column vectors is, with  = −
2
 ,

 = 

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1

1  2 · · · −1

1 2 4 · · · 2(−1)
...

...
...

1 −1 2(−1) · · · (−1)(−1)

⎤⎥⎥⎥⎥⎥⎦ (6.2)

where () = (−1)(−1). We observe that  = . If  and  are the eigenvec-

tors belonging to eigenvalue  and  , respectively, then the inner product 


(art. 246) is

 =

X
=1

∗  = 2
X
=1

¡
1−

¢∗
1− = 2

2(−)


X
=1

³
−

2(−)


´
= 2

−1X
=0

³
−

2(−)


´
= 2

1− −2(−)

1− −
2(−)



Since 2 = 1 for any integer , we find that  = 0 if  6= , and  = 2

if  = , which suggests the normalization 2 = 1. Hence, with  = 1√

, we have

shown that in (6.2) is a unitary matrix (art. 247), that obeys =  = .

The matrix  is also called the Fourier matrix. The eigenvalue equation, written

in terms of the matrix , is  = Λ, where

Λ = diag
³
1 

2
  

4
      

2
      

2(−1)


´
= diag

³
1 −1 −2     −(−1)

´
Clearly, Λ =  confirming the general property  =  of an  ×  permutation

matrix  in art. 31. Using the unitary property results, after left multiplication of

both sides in  = Λ by  , in

 = diag
³
1 −1 −2     −(−1)

´
and

 = diag
³
1 − −2     −(−1)

´
Since det 6= 0, the inverse −1 exists and is found as

−1 = diag
³
1  2     (−1)

´


Explicitly,¡
−1

¢

=
1



X
=1

() −1
¡


¢

=
1



X
=1

(−1)(−1)+(−1)−(−1)(−1)

=
1



−1X
=0

−
2(−+1)


 =

1



1− −2(−+1)

1− −
2(−+1)



= 1{=−1}
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6.2 A small-world graph 197

from which we find −1 = −1, which corresponds to a unit-shift relabeling
transformation in the other direction: 1→ , 2→ 1,. . . , → − 1.
Finally, the eigenvalue structure of a general circulant matrix  =  () =P−1
=0 

 is

 = 

Ã
−1X
=0




!
 =

−1X
=0




=

−1X
=0

diag
³
1 − −2     −(−1)

´
= diag

Ã
−1X
=0



−1X
=0


−

−1X
=0


−2    

−1X
=0


−(−1)

!

In terms of the polynomial  () =
P−1

=0 
, we arrive at the eigenvalue decom-

position of a general circulant matrix ,

 = diag
³
 (1)  

¡
−1

¢
 
¡
−2

¢
     

³
−(−1)

´´
(6.3)

Remark: Let  =
1√


¡
1 −1  −2      −+1

¢
with  = 

2
 be the eigen-

vector of  belonging to eigenvalue 
¡
−

¢
= 

³

2


´
, so that  = 

³

2


´
.

If  is real and 
³

2


´
is real, then separating both real and imaginary parts of

 in the eigenvalue equation gives us two equations⎧⎨⎩  (Re) = 
³

2


´
(Re)

 (Im) = 
³

2


´
(Im)

Hence, the real eigenvalue 
³

2


´
of the real matrix  possesses two real, or-

thogonal eigenvectors Re and Im, satisfying (Re)

(Im) = 0, and must

have multiplicity at least two.

6.2.2 The spectrum of a small-world graph

The adjacency matrix SW; of a small-world graph where each node, placed on

a ring, has links to precisely  subsequent and  previous neighbors (see Fig. 6.1),

is a symmetric circulant matrix where − =  and 0 = 0,  = 1{∈[1]}, where
1 is the indicator function. Since the degree of each node is 2 and the maximum

possible degree is  − 1, the value of  is limited to  ≤ −1
2
. The corresponding

polynomial is denoted as SW; () =
P−1

=0 
 . Since 0 = 0, we have that

SW; () =

−1X
=1


 =

X
=1


 +

−1X
=+1



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198 Spectra of special types of graphs

Changing the -index in the last summation to  =  −  yields
P−1

=+1 
 =P−−1

=1 −− and invoking symmetry − = , we find, for any integer

 ∈ [1  − 1], that SW; () =
P

=1 
 +

P−−1
=1 

− . When choosing
 = , the bound 2+1 ≤  implies that  − − 1 =  − − 1 ≥ . Introducing

 = 1{∈[1]} and  = , we obtain

SW; () =

X
=1

 + 
X

=1

− = 
1− 

1− 
+ −1

1− −

1− −1

An eigenvalue (SW; ) of SW; , belonging to eigenvector

−1 =
1√


¡
1 −1−1 

−2
−1     

−+1
−1

¢
with  = 

2
 , follows for  = 1     from (6.3) as

(SW; ) = SW;

¡
1−

¢
= 1−

1− (1−)

1− 1−
+ (1−)(−1)

1− (−1)

1− −1

= 2Re

Ã

2

(−1) 1− 

2

(−1)

1− 
2

(−1)

!

After rewriting 1− 2 (−1)

1− 2 (−1) = 


(−1)(−1) sin(

(−1)
 )

sin((−1) )
, the eigenvalue with index

 of SW; is

(SW; ) = 2
sin
³
(−1)



´
sin
³
(−1)



´ cosµ (− 1) ( + 1)


¶

Finally, using 2 sin () cos ( ( + 1)) = sin ((2 + 1)) − sin (), the unordered1
eigenvalues of SW; are, for 1 ≤  ≤  ,

(SW; ) =
sin
³
(−1)(2+1)



´
sin
³
(−1)



´ − 1 (6.4)

We find from (6.4) that the spectral radius (SW; )1 = 2, which is equal to

the degree in a regular graph (art. 55). The complete spectrum for  = 101 is

drawn in Fig. 6.2, which is representative for values of  roughly above 50. Fig. 6.2

illustrates the spectral evolution (as function of  in the abscissa) from a circuit

( = 1) towards the complete graph ( =
£
−1
2

¤
). If 2 + 1 =  in which case

SW; =  − , then we obtain from (6.4) that lim2+1→ (SW;) = −1 for all
 6= 1, while (SW; )1 =  − 1, agreeing with the computations in Section 6.1.
1 The -th ordered eigenvalue (SW)(), satisfying (SW)() ≥ (SW)(+1), for 1 ≤  

 , is not easy to determine as Fig. 6.2 suggests.
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6.2 A small-world graph 199

Fig. 6.2. The complete spectrum (6.4) for  = 101. The -axis plots all values of  from
1 to


−1
2


= 50, and for each , all 1 ≤  ≤  values of (SW; ) are shown.

In terms of the Chebyshev polynomial of the second kind (B.135), we can write

(6.4) as

(SW; ) = 2

µ
cos

µ
 (− 1)



¶¶
− 1

Applying sin (+ ) = (−1) sin (), valid for any integer , we find additional
symmetry in the eigenvalue spectrum,

(SW; ) =
sin
³
(2+1){−(−1)}



´
sin
³
{−(−1)}



´ − 1 = (SW; )+2−

for 2 ≤  ≤  . In general, deducing more symmetry is difficult because, if 

is a prime, precisely
£

2
+ 1
¤
eigenvalues are distinct for any   −1

2
. Theorem

11 on p. 75 states that the diameter of SW; is at most
£

2

¤
when  is prime.

Fig. 6.3 reflects the irregular dependence of the number of different eigenvalues,

which reminds us of the irregular structure of quantities in number theory, such as

the number of divisors and the prime number factorization.

Since a small-world graph is a regular graph, the Laplacian SW; = 2 −
SW; and the corresponding unordered spectrum is (art. 110)

(SW; )+1− = 2 − (SW; ) = 2 + 1−
sin
³
(−1)(2+1)



´
sin
³
(−1)



´
As Theorem 20 on p. 119 prescribes for a connected graph, there is precisely one

zero eigenvalue (SW; ) = 0. Art. 110 demonstrates that (SW; )−1 equals
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Fig. 6.3. The number of different eigenvalues in SW; as a function of  for different
values of  = 1 2 3 4 5 and  = 10 20 30 40 50. The insert shows the number of different
eigenvalues for  = 200 versus .

the spectral gap, the difference between the largest and second largest eigenvalue

at each  as illustrated in Fig. 6.2.

The largest negative eigenvalue of (SW;) lies between 
2+1

  − 1 
2
2+1

and, by symmetry  →  + 2 − , 2
2+1

  − 1 
(2−1)
2+1

. Indeed, if

we let  =
(−1)


and  ∈ [0 ), then the function  () =

sin(2+1)

sin
− 1 has

the same derivative as ̃() =
sin(2+1)

sin
, which has zeros at  = 

2+1
∈ [0 )

for  = 1 2     2. By Rolle’s Theorem,  0 () has always a zero in an interval
between two zeros of  (), because  () is continuous. Since sin has the same

sign in  ∈ (0 ), the largest absolute values of  () will occur near  → 0 and

 → , where sin has zeros. A good estimate for the value at which the largest

negative eigenvalue occurs is half of the interval, hence, min =
h

3
2(2+1)

+ 1
i
. The

corresponding eigenvalue is, approximately,

(SW; )min
≈ − 1

sin
³

3
2(2+1)

´ − 1  −2
Numerical values indicate that min =

h
3

2(2+1)
+ 1
i
is, in many cases, exact.

Hence, the eigenvalues SW; of the adjacency matrix SW; lie in the intervalh
(SW; )min

 2
i
, and most of them lie in the interval

h
(SW; )min

 0
i
. This

interval is, to a good approximation, independent of the size of the graph  , but
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6.3 A cycle on  nodes 201

only a function of the degree of each node, which is 2. The approximation fails

for the complete graph  when 2 + 1 =  and (SW; )min
= −1.

6.3 A cycle on  nodes

A circuit or cyle  is a ring topology on  nodes, where each node on the ring is

connected to its previous and subsequent neighbor on the ring. Hence, the circuit

is a special case of the small-world graph for  = 1. The adjacency matrix of the

circuit is C =  +−1 =  + ,

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 1

1 0 1 · · · 0 0

0 1 0
. . . 0 0

...
...
. . .

. . .
. . .

...

0 0 0 · · · 0 1

1 0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The eigenvalues of the adjacency matrix C of the circuit follow directly from

(6.4) as

(C) =
sin
³
3
(−1)



´
sin
³
(−1)



´ − 1
Using the identities sin 3 = 3 sin − 4 sin3  and 1 − 2 sin2  = cos 2 yields, for

 = 1      ,

(C) = 2cos

µ
2 (− 1)



¶
(6.5)

which shows that (C) = (C)−+2 and that −2 ≤ (C) ≤ 2. The lower

bound of −2 is only attained if  is even. Art. 29 shows that the line graph of

the circuit is the circuit itself:  ( ) =  . Since the number of links  = 

in the circuit  , the prefactor (+ 2)
−

in the general expression (2.33) of the

characteristic polynomial of a line graph vanishes. Nevertheless, only if  is even,

this line graph  () still has an eigenvalue equal to −2, while all other eigenvalues
are larger (art. 27).

The real eigenvectors  of the adjacency matrix C belonging to eigenvalue

(C ) = 
2

(−1) + −

2

(−1) follow from the eigenvector matrix  of the cir-

culant matrix in (6.2) as mentioned in the remark of Section 6.2.1. Indeed, let us

denote the eigenvector  belonging to the eigenvalue  = 
2

(−1) with vector

components () =  = (−1)(−1) for 1 ≤   ≤  with  = −
2
 . Then,

the unscaled eigenvectors

 =
³
1 −

2(−1)
  −

4(−1)
  −

6(−1)
      −

2(−1)(−1)


´
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202 Spectra of special types of graphs

and

− = ∗ =
³
1 

2(−1)
  

4(−1)
  

6(−1)
      

2(−1)(−1)


´
obey the eigenvalue equations (see Section 6.2.1)

 = 
2

(−1)

−1∗ = −
2

(−1)∗

We obtain after addition and after addition of the conjugates

 +−1∗ = 
2

(−1) + −

2

(−1)∗

∗ +−1 = −
2

(−1)∗ + 

2

(−1)∗

Again, adding and subtracting yields¡
 +−1

¢
( + ∗) =

³

2

(−1) + −

2

(−1)

´
( + ∗)¡

 +−1
¢
( − ∗) =

³

2

(−1) + −

2

(−1)

´
( − ∗)

Since C =  + −1 and (C ) = 
2

(−1) + −

2

(−1), we find that both

Re (∗)√


=
1√


µ
1 cos

2 (− 1)


 cos
4 (− 1)


     cos

2 ( − 1) (− 1)


¶
and

Im (∗)√


=
1√


µ
0 sin

2 (− 1)


 sin
4 (− 1)


     sin

2 ( − 1) (− 1)


¶
are two real, orthogonal eigenvectors belonging to the same real eigenvalue (C) =

(C )+2− in (6.5). If  = 2 + 1 is odd, then with 1 ≤  ≤  + 1, there are

2+1 eigenvectors, because
Im(∗0)√


= 0 is never an eigenvector. If  = 2, then the

range 1 ≤   + 1 contains 2− 1 eigenvectors and Re(∗+1)√


is the eigenvector

belonging to (C)+1 = −2.
The corresponding Laplacian C possesses the spectrum (art. 110),

(C)+1− = 2− 2 cos
µ
2 (− 1)



¶
 = 1      (6.6)

and contains the same eigenvectors as the adjacency matrix C.

The characteristic polynomial of the circuit  is

C () =

Y
=1

µ
2 cos

µ
2 (− 1)



¶
− 

¶
=

−1Y
=0

µ
2 cos

µ
2



¶
− 

¶
Since

Q−1
=0

¡
2 cos

¡
2


¢− 
¢
= (2− )

Q−1
=1

¡
2 cos

¡
2


¢− 
¢
, we have

C () =

Y
=1

µ
2 cos

µ
2



¶
− 

¶
= (−1) 2

Y
=1

µ


2
− cos

µ
2



¶¶
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6.4 A path of  − 1 hops 203

Using the product form  ()− 1 = 2−1
Q

=1

¡
− cos ¡2



¢¢
in (B.128) of the

Chebyshev polynomial in (B.127) shows that

C () = 2(−1)
µ


µ


2

¶
− 1
¶

6.4 A path of  − 1 hops
6.4.1 The adjacency matrix  of the path graph

A path  on nodes, consisting of−1 hops, has an adjacency matrix , where

each row has precisely one non-zero element in the upper triangular part. There

exists a relabeling transformation that transforms the  × adjacency matrix 

of the path graph  on  nodes in a tri-diagonal Toeplitz matrix, where each

non-zero element appears on the line parallel and just above the main diagonal.

The eigenstructure of the general  × tri-diagonal Toeplitz matrix,

 (  ) =

⎡⎢⎢⎢⎢⎢⎣
 

  

. . .
. . .

. . .

  

 

⎤⎥⎥⎥⎥⎥⎦ (6.7)

is computed in Van Mieghem (2014, Section A.6.2.1). The matrix  (  ) has

 distinct eigenvalues , for 1 ≤  ≤  ,

 = + 2
√
 cos

µ


 + 1

¶
(6.8)

The components () of the eigenvector  belonging to  are, for 1 ≤  ≤  ,

() = 2
³ 


´ 
2

sin

µ


 + 1

¶
(6.9)

Since the eigenvalues are invariant under a similarity transform such as a relabeling

transformation (art. 239), the complete eigenvalue and eigenvector system of 

follows, for  =  = 1 and  = 0, from the eigenstructure of the general  × 

tri-diagonal Toeplitz matrix for  = 1     , as

 () = 2 cos

µ


 + 1

¶
(6.10)

Formula (6.10) shows that  ( ) = −+1− ( ) and that all eigenvalues of
the−1 hops path  are strictly smaller than 2, in particular, −2   ()  2.

The largest eigenvalue of the path  is the smallest largest adjacency eigenvalue

among any connected graph as proved by Lovász and Pelikán (1973). We provide

another reasoning: Lemma 10 shows that a tree has the smallest 1, because it is

the connected graph with the minimum number of links. Further, the tree with
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204 Spectra of special types of graphs

minimum maximum degree (max = 2) and minimum degree variance is the path.

According to the bound (3.79) and  = −1 in any tree, the bounds for the largest
eigenvalue of the path satisfies

2

µ
1− 1



¶
≤ 2

r
1− 6


≤ 1 ( ) ≤ 2

and the lower bound even tends to the upper bound for large  . Any other tree has

a larger variance, thus a larger lower bound in (3.79), while also the upper bound

1 ≤ max in art. 42 is larger, because max  2.

The characteristic polynomial of the path is

 () =

Y
=1

µ
2 cos

µ


 + 1

¶
− 

¶
= (−1)

µ


2

¶
(6.11)

where the Chebyshev polynomial  () of the second kind (B.135) has been used.

The characteristic polynomial  () is elegantly derived by Harary et al. (1971)

from the corresponding generating function  () =
P∞

=0  () 
 . The recur-

sion

 () = −−1 ()− −2 () (6.12)

follows directly from (3.106). Since 1 () = − and 2 () = 2− 1 and defining
0 () = 1, we multiply both sides of the recursion (6.12) by  and sum over

 ≥ 2,
∞X

=2

 () 
 = −

∞X
=2

−1 () 
 −

∞X
=2

−2 () 


In terms of  () =
P∞

=0  () 
 , we obtain the generating function

 () =
1

1 +  + 2

The generating function
P∞

=0  () 
 = 1

1−2+2 in (B.138) again leads to
(6.11).

6.4.2 The Laplacian matrix  of the path graph

After a suitable relabeling, the Laplacian  of an  − 1 hops path is, except for
the first and last row, a Toeplitz matrix,

 =

⎡⎢⎢⎢⎢⎢⎣
1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎦ (6.13)
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6.4 A path of  − 1 hops 205

We compute here the eigenstructure of  analogous to the derivation of the eigen-

structure of the general × tri-diagonal Toeplitz matrix in Van Mieghem (2014,

Section A.6.2.1) by considering a pseudo tri-diagonal Toeplitz matrix

e =
⎡⎢⎢⎢⎢⎢⎣

 

  

. . .
. . .

. . .

  

 

⎤⎥⎥⎥⎥⎥⎦ (6.14)

6.4.2.1 Laplacian eigenvalues of the path graph

An eigenvector  corresponding to eigenvalue  satisfies
³e − 

´
 = 0 or, written

per component,

(− )1 + 2 = 0

−1 + (− ) + +1 = 0 2 ≤  ≤  − 1
−1 + (− ) = 0

We consider the generating function  () =
P

=1 
, where all  are real

because all eigenvalues  of e are real (art. 370). After multiplying the -th vector
component equation by  and summing over all  ∈ [2  − 1], the above difference
equation is transformed into



−2X
=1


 + (− )

−1X
=2


 + −1

X
=3


 = 0

and, in terms of  (),


¡
 ()−−1−1−

¢
+(−) ¡ ()−1−¢+ ()−22−1


= 0

Thus, ¡
2 + (− ) + 

¢
 () = −1+1 + 

+2 + (− )1
2

+ (− )
+1 + 2

2 + 1

= 
+1

½

 − 


+ (− ) + 

¾
+ 1

½
+

µ

 − 


+ (− )

¶


¾
where in the last step 2 =

−

1 and −1 =

−

 have been substituted from

the first and last vector component equation. Solving for  () yields

 () = 



n
 +

³
1

− 1



´
 + 


− 



o
+ 1


1

n³³


− 1
´
 + − 



´
 + 

o
 ( − 1) ( − 2)
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206 Spectra of special types of graphs

where 1 and 2 are the roots of the polynomial 
2 + −


 + 


= 0, thus obeying

1+ 2 =
−

and 12 =



6= 0. These roots 1 and 2 cannot be zero and depend

on the yet unknown eigenvalue . Since  () is a polynomial of order  , the zeros

1 and 2 must also be zeros of the numerator

 () = 


½
 +

µ
1


− 1



¶
 +




− 



¾
+
1


1

½µµ



− 1
¶
 + − 



¶
 + 

¾
Proceeding is only possible if the zeros of  () are known. With  6= 0, we can

factor  () as

 () =

µ


 +
1


1

¶
( + )

whose zeros are −, and
³
− 1



´1

2
 for  = 0 1      − 1, provided that⎧⎨⎩  =

³


− 1
´
 + − 




³³

1

− 1



´
 + 


− 



´
= 

which is only possible for any eigenvalue  if  =  and  = . Then, the above

requirement on elements of the pseudo tri-diagonal Toeplitz matrix e in (6.14)

simplifies to (
−  = 

−  = 


or (− ) (− ) = , which is fulfilled for  , where  =  = −1,  = 2 and

 =  = 1.

We confine ourselves in the sequel to the Laplacian  , in which case, 1 and

2 must be either 1 or
³
1


´1

2
 for  = 0 1      − 1. If 1 = 1, then also

2 = 1 in which case  = 0 and 1 =  as follows by raising
³
1


´1

2
 =

1 to the power  . In that case,  () =
(−1)

(−1) = 
P

=1 
 such that

the corresponding eigenvector is, indeed, the scaled all-one vector  with  =

 (art. 101). All positive eigenvalues   0 correspond to distinct zeros 1 =³
1


´1

2
 for  = 0 1 2     − 1. But, since 2 = −11 , the zero 2 also

must be of this form, 2 =
³
1


´1

2
 for some 0 ≤  6=  ≤  − 1. Thus, the

product

12 =

µ
1



¶2

2(+)

 = 1

raised to the power  , shows that 1


= ±1 =  such that 1 = 
(2+)



and 2 = 
(2+)

 . Requiring that 2 = −11 results in 1 = 
(−)

 and 2 =


(−)

 = −
(−)

 . Now, 1 changes with , while 2 with . For each  =
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6.4 A path of  − 1 hops 207

1 2      − 1, there must correspond to  = −  in the exponent of 1, a value

− = − (− ) in 2, only by changing  6= , thus  =  − . The extent over

which the integer  can range is − ( − 1) ≤  ≤  − 1 and to each  there must

correspond a −. Hence, for  = 1 2     −1, we finally find that  = 2−(1 + 2)

and

 = 2−
³


 + −




´
= 2

µ
1− cos

µ




¶¶
= 4 sin2



2

and to  = 0, the case 1 = 2 = 1 corresponds with 0 = 0. In summary, the

ordered Laplacian eigenvalues of the  − 1 hops path are

(P)− = 2
³
1− cos

³


´´
 = 0 1     − 1 (6.15)

All Laplacian eigenvalues of the path are simple, while most of the cycle Laplacian

eigenvalues in (6.6) have double multiplicity. Moreover, the Laplacian eigenvalues

of the path  are the same as the Laplacian eigenvalues of the cycle 2 .

6.4.2.2 Laplacian eigenvectors of the path graph

We now determine the Laplacian eigenvectors 1 2     −1 and use the notation
() for the -th component of the eigenvector , where 1 ≤  ≤  points

towards node  in the path graph  . The eigenvector  corresponding to  =

(P)−  0 has the generating function  () =
P

=1 () 
,

 () =
() ( − 1)

³
 − ()1

()

´
³
 − 




´³
 − −




´
Invoking art. 313 to the polynomial

0 () = () ( − 1)
µ
 − ()1

()

¶
= () +2 − () +1 − ()12 + ()1

yields, with 0 () =
P+2

=0 
 where all coefficients  = 0 are zero, except for

+2 = −+1 = () and 1 = −2 = ()1,

 () =
1



 − −




X
=0

⎧⎨⎩
+2X
=+1



³
(−−1)


 − −(−−1)




´⎫⎬⎭

=
1

sin 


X
=0

⎧⎨⎩
+2X
=+1

 sin
³

( −  − 1)

´⎫⎬⎭

Equating corresponding powers in  in  () =
P

=1 () 
 yields () =

1
sin 



P+2
=+1  sin

¡


( −  − 1)¢ for 0 ≤  ≤  . Since ()0 = 0, introducing
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208 Spectra of special types of graphs

the coefficients  reduces to

0 =

+2X
=1

 sin
³

( − 1)

´
= () sin

³
+





´
− ()1 sin

³


´
such that () = (−1) ()1. For   0 and +2 = −+1 = () , we have
that

() =
1

sin 


+2X
=+2

 sin
³

( −  − 1)

´
=
()
sin 



n
sin
³

( −  + 1)

´
− sin

³

( − )

´o
=
2 ()
sin 



sin
³
2

´
cos
³
2

(2 − 2 + 1)
´

Using () = (−1) ()1, we finally find the -th component of the eigenvector
 belonging to the eigenvalue  = (P)−  0,

() =
()1
cos 

2

cos
³
2

(2 − 1)
´

A proper normalization of the eigenvectors, obeying   =  as in art. 247, is

readily obtained for 1 ≤  ≤  − 1 as

() =

r
2


cos



2
(2 − 1) for 1 ≤  ≤  (6.16)

which illustrates the Laplacian property in art. 103 of more oscillations in the

eigenvector  with higher frequencies . For  = 0 in (6.15), the eigenvector

belonging to  = 0 is  =
√

.

6.4.3 The pseudoinverse matrix † of the Laplacian of the path graph

For a path graph with equal link weights , the weighted Laplacian in (6.13) equalse =  . The positive eigenvalues  of the weighted Laplacian e of the path

graph follow from (6.15) as (e )− = 2
¡
1− cos ¡



¢¢
= 4 sin2

¡

2

¢
where

1 ≤  ≤  − 1 (and 0 = (e ) = 0). The normalized eigenvector elements of the
Laplacian  of the path graph, corresponding to  = (e )−, are specified in
(6.16). The elements of the pseudoinverse of the path graph Laplacian follow from

(4.30) as


†
 =

−1X
=1

() ()


=

1



−1X
=1

cos
¡


− 

2

¢
cos
³


− 

2

´
1− cos ¡



¢
=

1

2

−1X
=1

cos
³
(+−1)



´
+ cos

³
(−)



´
1− cos ¡



¢
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6.4 A path of  − 1 hops 209

which is rewritten as (6.19) by

Theorem 38 If we define the trigonometric sum

 () =

−1X
=1

cos
¡



¢
1− cos ¡



¢ = 1

2

−1X
=1

cos
¡



¢
sin2

¡

2

¢ (6.17)

which is an even function in , i.e.  () =  (−) and equal, for 0 ≤  ≤ 2 ,
to

 () =
2

2
−

µ
 +

1

2

¶
+
(2+ 1) + (−1)+1

4
+

2 − 1
3

(6.18)

then we can compactly express each element ( ) of the symmetric pseudoinverse

matrix 
†
path of the path graph as

(path)
†

=

1

2
{ (+  − 1) +  (− )} (6.19)

In fact, (6.19) shows that the symmetric pseudoinverse matrix † is the sum of

two symmetric matrices 1 and 2, where all elements in 1 along parallels of the

anti-diagonal are the same, whereas all elements in2 along parallels of the diagonal

are the same. Since cos
¡


(+ 2)

¢
= cos

¡


+ 2)

¢
= cos

¡



¢
for any

integer , we find periodicity  () =  (+ 2) in  . Invoking an identity,

proved in (Van Mieghem et al., 2017, Appendix), we have

 (0) =
1

2

−1X
=1

1

sin2
¡

2

¢ = 2 − 1
3

(6.20)

which is the maximum value of  (), because | ()| ≤ 1
2

P−1
=1

|cos( )|
sin2( 2 )

≤
1
2

P−1
=1

1

sin2( 2 )
=  (0).

Proof of Theorem 38: The trigonometric sum  () in (6.17) is evaluated

by first deriving a difference equation for  (), which is then solved.

(a) Difference equation for  (). Using

cos

µ




¶
− cos

µ
(− 1)



¶
= −2 sin

µ



− 

2

¶
sin

µ


2

¶
the difference ∆ () =  ()−  (− 1) is

∆ () =
1

2

−1X
=1

cos
¡



¢− cos³(−1)


´
sin2

¡

2

¢ = −
−1X
=1

sin
¡


− 

2

¢
sin
¡

2

¢
from which we find that ∆ ()|=0 =  (0)− (−1) =  (0)− (1) = −1.
Observing that

sin

µ
 (+ 1)


− 

2

¶
− sin

µ



− 

2

¶
= 2 sin

µ


2

¶
cos

µ




¶
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210 Spectra of special types of graphs

the second order difference∆2 (+ 1) =∆ (+ 1)−∆ () =  (+ 1)−
2 () +  (− 1) is

∆2 (+ 1) = −
−1X
=1

sin
³
(+1)


− 

2

´
− sin ¡


− 

2

¢
sin
¡

2

¢ = −2
−1X
=1

cos

µ




¶

Taking the real part of the geometric sum
P−1

=0  = −1
−1 = 

(−1)
2

sin(2 )
sin(2 )

,

−1X
=0

cos  =
sin
¡

¡
 − 1

2

¢¢
2 sin

¡

2

¢ +
1

2
(6.21)

and evaluating at  = 


 0 yields
P−1

=1 cos 
¡



¢
= 1

2

³
(−1)−1 − 1

´
, whileP−1

=1 cos 
¡



¢
=  − 1 for  = 0. The second order difference ∆2 (+ 1) =

 (+ 1)− 2 () +  (− 1) becomes for  6= 0,
 (+ 1)− 2 () +  (− 1) = 1 + (−1) (6.22)

while, for  = 0,

 (1)− 2 (0) +  (−1) = 2 ( (1)−  (0)) = −2 ( − 1) (6.23)

(b) Solving the difference equation (6.22) for  (). The general solution of the

difference equation  (+ 1)− 2 () +  (− 1) =  () for integers  6= 0
and an arbitrary function of  () can be deduced with generating functions,

 () =

∞X
=0

 () 
 (6.24)

After multiplying both sides by  and summing over all   0, the difference

equation becomes

∞X
=1

 (+ 1)  − 2
∞X

=1

 () 
 +

∞X
=1

 (− 1)  =
∞X

=1

 () 

Written in terms of  () =
P∞

=0  () 
 and  (),

1


( ()−  (1)  −  (0))− 2 ( ()−  (0)) +  () =  ()−  (0)

Rearranged,µ
1


− 2 + 

¶
 () =  () + { (1)−  (0)− 2 (0)}+  (0)



invoking the conditions (6.23) and  (0)− ( − 1) =  (1) yields

 () =


(1− )
2
 ()− {( − 1) +  (0) +  (0)} 

(1− )
2
+

 (0)

(1− )
2
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6.5 A path of  hops 211

After expanding the Taylor series around  = 0 and using the Cauchy productP∞
=0 


P∞

=0 
 =

P∞
=0 (

P
=0 −) 

, we obtain

 () =

∞X
=0

(
X
=0

 (− )− {( − 1) +  (0) +  (0)}+  (0) (+ 1)

)


where we have used the derivative of the geometric series, 


1
1− = 1

(1−)2 =P∞
=1−1. Equating corresponding powers in  yields the general solution

as a function of  () and the initial conditions  (0),

 () =

X
=0

 (− )− {( − 1) +  (0)}+  (0) (6.25)

For  () = 1 + (−1), the sum in the general solution (6.25) becomes

X
=0

 (− ) =

X
=0


³
1 + (−1)−

´
=

 (+ 1)

2
+
(2+ 1) + (−1)+1

4

and (6.25) reduces to

 () =
 (+ 1)

2
− ( + 1) +

(2+ 1) + (−1)+1
4

+  (0)

Finally, with (6.20), we arrive at (6.18), for 0 ≤  ≤ 2 due to periodicity and

 (−) =  (). ¤

6.5 A path of  hops

A path of   0 hops/links in a graph with  nodes has  non-zero rows with one

non-zero element in the upper triangular part. After a similarity transform, the

corresponding adjacency matrix can be transformed into

-hop path =

"
( )(+1)×(+1) (+1)×(−−1)
(−−1)×(+1) (−−1)×(−−1)

#
where  is the tri-diagonal Toeplitz adjacency matrix of an  hops path in a graph

with +1 nodes. Invoking (6.10), the spectrum of an  hops path possesses a zero

eigenvalue of multiplicity  − − 1 and + 1 eigenvalues for  = 1     + 1,

(-hop path) = 2cos

µ


+ 2

¶

6.6 The wheel +1

The wheel graph +1 is the graph obtained by adding to the circuit graph one

central node  with links or “spokes” to each node of the circuit. Thus, the wheel
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212 Spectra of special types of graphs

graph is the cone of the circuit graph. The adjacency matrix is a special case of

art. 85,

 =

∙
 ×1
1× 0

¸
Since  is an eigenvector of  belonging to  = 2 because the circuit is a

regular graph, all eigenvalues of  are the same as those of +1
, except for

the largest eigenvalue  = 2, which is replaced by two new ones, 1 ± √1 + ,

as derived in art. 85. Hence, the spectrum of the wheel with  + 1 nodes is

−√1 + + 1,
n
2 cos

³
2(−1)



´o
2≤≤

and 1 +
√
1 + .

The Laplacian spectrum follows from art. 166 and (6.6) as, (W )+1 = 0,

(W )1 =  + 1 and (W )+2− = 3− 2 cos
³
2(−1)



´
for  = 2      .

6.7 The complete bipartite graph 

The complete bipartite graph  consists of two setsM and N with  = |M|
and  = |N | nodes respectively, where each node of one set is connected to all
other nodes of the other set. There are no links between nodes of a same set. The

adjacency matrix of  is, with  = + ,


=

∙
× ×
× ×

¸
(6.26)

and the characteristic polynomial is

det
¡


− 
¢
=

¯̄̄̄ −× ×
× −×

¯̄̄̄
Invoking (A.57) and ×× = × gives

det
¡


− 
¢
= (−) det

µ
−× + 1


××

¶
= (−) det

³

 − 

´
×

= (−)
³


´
det

µ
 − 2




¶
×

Using det ( − )× = (−1)−1 (− ) in (6.1), the characteristic polynomial

of  is

det
¡


− 
¢
= (−1)+−1+−2 ¡2 −

¢
(6.27)

from which the eigenvalues2 follow as −max [0]−2 and max =
√
. With

 =  + , the spectrum of a star topology 1 for  = 1 is −√ − 1 [0]−2
and max =

√
 − 1.

2 We denote the multiplicity  of an eigenvalue  by []
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6.7 The complete bipartite graph  213

The Laplacian of the complete bipartite graph  is


=

∙
× −×
−× ×

¸
and the characteristic polynomial is

det
¡


− 
¢
=

¯̄̄̄
(− ) × −×
−× (− ) ×

¯̄̄̄
A derivation similar to the above results in

det
¡


− 
¢
= (− )

−1
(− )

−1
((− ) (− )− )

The eigenvalues of 
are 0 []−1 []−1 and +  =  . In the case of the

star 1, the eigenvalues of 1
are 0 [1]−1 and + 1. The complexity  (),

the number of trees in , is found from (4.27) as


() =

1



−1Y
=1

 = −1−1

and clearly, for the star where  = 1, 1
() = 1.

The eigenvector 1 =
£
×1 ×1

¤
belonging to the largest eigenvalue

max =
√
 obeys∙

× ×
× ×

¸ ∙
×1
×1

¸
=

∙
×
×

¸
= max

∙



¸
Thus, the -th component of  must satisfy

P
=1 () =

√
 () for 1 ≤  ≤

 and similarly, the -th component of  must satisfy
P

=1 () =
√
 ()

for 1 ≤  ≤ . This implies that all vector components of  and  are the same,

i.e. () =  for 1 ≤  ≤  and () =  for 1 ≤  ≤ . The eigenvalue

equation simplifies to ½
 =

√


 =
√


whose unscaled solution is  = 1 and  =
p



. Finally, normalizing the eigen-

vector so that 1 1 = 1 yields

1 =
h

1√
2

×1 1√
2
×1

i
(6.28)

Alternatively, we may solve the block eigenvalue equations by left-multiplying

× =  by ×. Using ×× = × yields × = × .
With the second equation × =  , we find that × = 2


 . The

eigenvector of × belonging to the only non-zero eigenvalue  is . Hence,

 = ×1 and 2


=  or  = ±√. Substituted into the first equation gives

 =
1√


××1 =
p



×1. After normalization, we arrive again at (6.28)
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214 Spectra of special types of graphs

for  =
√
. This approach also leads to the normalized eigenvector belonging to

 = −√,

 =
h

1√
2

×1 − 1√
2
×1

i
(6.29)

It follows from  =
P

=1 




 in (3.19) that




= 1

n
1


1 + (−1) 

o
Introducing the eigenvectors in (6.28) and (6.29),




= ()

2

("
×
2

×
2
√


×
2
√


×
2

#
+ (−1)

"
×
2

− ×
2
√


− ×
2
√


×
2

#)
leads to an explicit form for the integer powers  of the adjacency matrix of the

complete bipartite graph 




= ()
−1
2

"
1+(−1)

2

p


×

1−(−1)
2

×
1−(−1)

2
×

1+(−1)
2

p


×

#
(6.30)

illustrating the alternating bipartite structure for even , which is a general property

of bipartite graphs as shown in Section 6.8.

6.8 A general bipartite graph

6.8.1 Undirected bipartite graph

Instead of connecting each of the  ≤  nodes in the setM to each of the  nodes

in the other set N , we may consider an arbitrary linking between the two sets
represented by a matrix ×, resulting in a general bipartite graph  with

adjacency matrix


=

∙
× ×

× ×

¸
Using (A.59) when  ≤ , the characteristic polynomial is

det
¡


− 
¢
= (−) det

µ
−× + 1


×

×

¶
= (−)− det ¡×

× − 2×
¢

while, using (A.57) when   , we obtain

det
¡


− 
¢
= (−)− det ¡

×× − 2×
¢

These two forms for  ≤  and    are an illustration of Lemma 11. In the

sequel, we confine to the case where  ≤  without loss of generality.

The singular value decomposition of  is  = × (Σ)× 

×, where Σ =

diag(1      0     0), because the rank of  cannot be larger than  ≤ 
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6.8 A general bipartite graph 215

and where  and  are orthonormal matrices (art. 247). From  =  and

 = ×Σ2×

×, we see that

det
¡
×

× − 2×
¢
= det

¡
×

¡
Σ2× − 2

¢

×

¢
=

Y
=1

¡
2 − 2

¢
Hence, the spectrum of the general bipartite graph is

det
¡


− 
¢
= (−1)− −

Y
=1

¡
2 − 2

¢
which show that, apart from the zero eigenvalues, it is completely determined by

the singular values of , because  = ± for  = 1    .
Since

2
=

∙
×

× ×
× 

××

¸
and, further for any integer  ≥ 1,

2
=

" ¡
×

×
¢

×
×

¡

××

¢
#

and

2+1
=

"
×

¡
×

×
¢

×¡

××

¢

× ×

#

the even powers 2
are reducible non-negative matrices (art. 268), while the

odd powers again represent a “bipartite” matrix structure.

6.8.2 Directed bipartite graph

A general directed bipartite graph  has an adjacency matrix,

 =

∙
× ×
× ×

¸
(6.31)

Any tree  on  =  + nodes can be represented in the form of a levelset.

Denote by
n

()



o
the -th levelset of a tree  , which is the set of nodes in the

tree  at hopcount  from the root in a graph with  nodes (art. 23), and by


()

 the number of elements in the set
n

()



o
. Then, we have 

(0)

 = 1 because

the zeroth level can only contain the root node itself. For all   0, it holds that

0 ≤ 
()

 ≤  − 1 and that
−1X
=0


()

 =  (6.32)
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Fig. 6.4. An instance of a tree with  = 26 nodes organized per level 0 ≤  ≤ 4. The
nodes in the tree are arbitrarily labeled.

Nodes 
()

 at a same level  are not interconnected. Fig. 6.4 draws a tree organized

per level.

The levelset can be folded level by level to form a general bipartite graph. Indeed,

the root connects to the nodes 
(1)

 at hop 1; those 
(1)

 are the ancestors of all

the nodes on levelset 
(2)

 . We may arrange these 
(2)

 nodes at the side of the

root. Next, these 
(2)

 are the ancestors of all 
(3)

 nodes, which we move to the

other side of the 
(1)

 node. In this way, all even levels are placed at the side of the

root and all odd levels at the other side, thus creating a general directed bipartite

graph. Hence, the adjacency matrix of any tree can be recast in the form of (6.31),

where  =
P−1

2

=0 
(2)

 and  =
P−2

2

=0 
(2+1)

 =  −. In a stochastic setting,

where 
h

()



i
=  Pr [ = ], we observe that the average multiplicity of the

zero eigenvalue of  in (6.33) equals (assuming   )

 [−] = 

−1X
=0

Pr [ = ] (−1) = 
(−1)

where the probability generating function of the hopcount in a random tree is


() = 

£


¤
=
P−1

=0 Pr [ = ] .

If  =
£
 

¤
is an eigenvector belonging to eigenvalue , which means

that ∙
× ×
× ×

¸ ∙
×1

×1

¸
=

∙



¸
=

∙



¸
then also  =

£
 −

¤
is an eigenvector belonging to the eigenvalue −,

which shows that the spectrum is symmetric around  = 0. The same result can
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6.8 A general bipartite graph 217

be derived from (A.57) analogously to the spectrum of 
above as

det ( − ) = (−1)− − det ¡×× − 2×
¢

(6.33)

Hence,  has, at least, − zero eigenvalues. Consequently, we have demon-

strated:

Theorem 39 The spectrum of the adjacency matrix of any tree is symmetric around

 = 0 with, at least, − zero eigenvalues.

6.8.3 Symmetry in the spectrum of an adjacency matrix 

Theorem 39 can also be proven as follows. If the spectrum of  is symmetric, then

the characteristic polynomial  () =  (−) is even, which implies that the odd
coefficients 2+1 of the characteristic polynomial  () are all zero. Thus, for

each eigenvalue  =   0 of , there is an eigenvalue  = − of  with the same

multiplicity. Art. 51 shows that the product 1122     of a permutation

 = (1 2     ) of (1 2     ) in a tree is always zero for odd . Hence, (3.9)

indicates that the spectrum of the adjacency matrix of any tree is symmetric.

Indeed, the only non-zero product 1122     in a tree is obtained when a

link is traversed in both directions. Loops longer than two hops are not possible

due to the tree structure and the permutation requirement for the determinant.

The latter only admits paths of  hops as subgraphs  in art. 51 because all first

as well as second indices need to differ in 1122     , because  = 0. A

longer even loop containing more than two hops will visit the intermediate nodes

of the -hop path twice, which the determinant structure does not allow.

The skewness , defined in art. 65, is zero for a tree, which again agrees with

Theorem 39. The reverse of Theorem 39 is:

Theorem 40 If the spectrum of an adjacency matrix  is symmetric around  = 0,

then the corresponding graph is a bipartite graph.

Proof: Consider the adjacency matrix

 =

∙
× ×
× ×

¸
where  =  if the graph is undirected. Any adjacency matrix can be written in

this form for  ≥ 1, because  = 0. The characteristic polynomial det (− )

follows from (A.57) as

det (− ) = (−)− det ¡× − 2× − ××
¢

The determinant on the right-hand side is only a symmetric polynomial in  if

 = . In that case,  equals the adjacency matrix (6.31) of a bipartite graph. ¤
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6.8.4 Laplacian spectrum of a tree

We have shown in Section 6.8.2 that any tree can be represented by a general

bipartite graph after properly folding the levelsets. Art. 25 indicates that the

unsigned incidence matrix  and the incidence matrix  satisfy  = ,

provided the links are directed from a node at an even levelset 
(2)

 to a node at

an odd levelset
(2+1)

 (or all in the opposite direction), for all levels 0 ≤   −1.
Under this condition, the relation (2.34) in art. 27 applies such that, with  = −1
in any tree  ,

 ( ) = 
¡
( )

¢
+ 2 (6.34)

for 1 ≤    and  ( ) = 0, as for any graph. Hence, the -th Laplacian

eigenvalue of a tree  equals the -th eigenvalue of the ( − 1)×( − 1) adjacency
matrix of its corresponding line graph  ( ).

Petrovíc and Gutman (2002) have elegantly proven that the path with  − 1
hops is the tree with smallest largest Laplacian eigenvalue. Their arguments are

as follows. When adding a link to a graph, the Laplacian eigenvalues are non-

decreasing as shown in art. 164 such that, among all connected graphs, some tree

will have the smallest largest Laplacian, because a tree has the minimum number of

links of any connected graph. Now, (6.34) shows that the smallest largest Laplacian

in any tree is attained in the tree whose line graph has the smallest largest adjacency

eigenvalue. This line graph has  − 1 nodes. The line graph of any tree on   4

nodes possesses cycles, except for the path  with  − 1 hops. Any connected
cycle-containing graph  on  − 1 nodes has a spanning tree that contains the
minimum number of links and whose largest adjacency eigenvalue is smaller than

1 () by Lemma 10. As shown in Section 6.4, the path −1 has the smallest
largest adjacency eigenvalue among all trees on  − 1 nodes. Since the line graph
of the path  is the path −1, we conclude that the path  has the smallest

largest Laplacian eigenvalue among connected graphs. Combining (6.10) for −1
and (6.34) yields 1 ( ) = 2

¡
1 + cos

¡



¢¢
 4 , which agrees, indeed, with (6.15).

Kolokolnikov (2015) has proved that, in any tree  on  nodes and with max-

imum degree max fixed and not a function of  , the algebraic connectivity −1
obeys, for large  ,

−1 ≤ 2(max − 1)


+

µ
ln

2

¶
Moreover, Kolokolnikov (2015) conjectures that the upper bound can be likely

sharpened by replacing the factor 2 by max
max−1 , in which case equality is achieved

for a maximally balanced tree3. For large  , the algebraic connectivity −1 of
a tree with fixed max (because, in the star, −1 (1 ) = 1) tends to zero as


¡
−1

¢
.

3 A maximally balanced tree is a tree whose leaves are all at the same distance from the root
node and whose non-leaves have the same degree. Examples are well-balanced Bethe trees and
Cayley trees.

                     

https://doi.org/10.1017/9781009366793.009
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.009
https://www.cambridge.org/core


6.9 Complete multipartite graph 219

6.9 Complete multipartite graph

Instead of two partitions, we now consider the complete -partite graph, where

each partition of  nodes with 1 ≤  ≤  is internally not connected, but fully

connected to any other partition. The corresponding adjacency matrix is

-partite =

⎡⎢⎢⎢⎣
1 1×2 · · · 1×

2×1 2 · · · 2×
...

. . .
...

×1 · · · · · · 

⎤⎥⎥⎥⎦
This complete -partite graph is denoted as {12} and possesses  =P

=1  nodes and  =
P

=1

P
=+1  links. The complement of the -partite

graph is the union of  cliques 1 2      , whose spectrum is the union of

the eigenvalues of each clique, given by (6.1). Thus, the eigenvalues of 
-partite

are { − 1}1≤≤ and [−1]−, where  =
P

=1  . As we will see below, the

eigenvalues of 
-partite via (3.39) are not quite helpful to derive those of -partite .

If all  = , then -partite = 
⊗ ×, whose corresponding spectrum fol-

lows from art. 286 as { (
) (×)}1≤≤1≤≤, where, according to (6.1),

 (
) ∈

n
− 1 [−1]−1

o
and  (×) ∈

n
 [0]

−1
o
. Thus, when all par-

titions are equal,  =  for 1 ≤  ≤  , the regular, complete -partite graph has

 =  nodes,  = 2
¡

2

¢
=
¡
1− 1



¢
2

2
links and degree  =

¡
1− 1



¢
 = −.

Moreover, the eigenvalues of -partite are (− 1) , [0]− and [−]−1.
When the number  of nodes and the number  of partitions is given, then

the most regular complete -partite graph is called the Turán graph  ().

Specifically, if the number of nodes is  =  + , where 0 ≤    so that

 =  mod and  =
¥



¦
, then the Turán graph  () contains  partitions

with  + 1 nodes, each of degree  − ( + 1), and  −  partitions with  nodes,

each of degree  − . The number of links in  () equals  =
j¡
1− 1



¢
2

2

k
=

 ( + 1) ( − ( + 1)) + (− )  ( − ). The Turán graph  () is the graph

on  nodes with the highest numbers of links that does not contain a clique +1.

This property of  () was proved
4 by Pál Turán in 1941 and has marked the

beginning of extremal graph theory (see e.g. Bollobás (2004)). An interesting

corollary is: Any graph  on  nodes with more than
¡
1− 1



¢
2

2
links or average

degree larger than
¡
1− 1



¢
 contains a clique +1. The special case for trian-

gles ( = 2) was encountered in Mantel’s Theorem 7. A more general result, due

to Nikiforov et al. (2018), states that if a graph  on  nodes does not contain

a graph  and 1 () ≥ 1−1, then  contains an induced copy of  for

 ≥  ≥ 3, where  ≥ ( ())
2

 () and  () is the Ramsey number

of  versus .

The eigenvalues of the general complete multipartite graph {12} can be

4 A proof in English, close to the original of Pál Turán, is given in Diestel (2010). Five different
proofs are given in Aigner and Ziegler (2003, Chapter 32).
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220 Spectra of special types of graphs

obtained using the quotient matrix (art. 37). Since the row sum of each block

matrix in -partite is the same, the partition is equitable, with corresponding

quotient matrix

()-partite =

⎡⎢⎢⎢⎣
0 2 · · · 
1 0 · · · 
...

. . .
...

1 2 · · · 0

⎤⎥⎥⎥⎦ = ( − )× diag ()

The eigenvalues of ()-partite are the non-trivial eigenvalues of -partite . The

remaining  −  eigenvalues of -partite are zero, because, only when  = 0,

the matrix -partite −  has in each block  identical rows. The eigenvalues of

()-partite are obtained by subtracting the first row from all the others, which

results in

det
³
()-partite − 

´
=

¯̄̄̄
¯̄̄̄
¯̄̄
− 2 3 · · · 

1 +  − (+ 2) 0 · · · 0

1 +  0 − (+ 3) · · · 0
...

...
...

...

1 +  0 0 · · · − (+ )

¯̄̄̄
¯̄̄̄
¯̄̄

=

¯̄̄̄ − 

(1 + ) diag (− (+ ))

¯̄̄̄
where the vector  = (2 3     ). Using the Schur-complement (A.59),

det
³
()-partite − 

´
= (−1)

Y
=2

(+ ) det

µ
+ diag

µ −1
+ 

¶
(1 + )

¶

= (−1)
Y
=2

(+ )

⎛⎝− (1 + )

X
=2



+ 

⎞⎠
replacing  by (1 + )− 1 leads to

det
³
()-partite − 

´
= (−1)

Y
=1

(+ )

⎛⎝1− X
=1



+ 

⎞⎠ (6.35)

and the polynomial of degree  in 

det
³
()-partite − 

´
= (−1)

Y
=1

(+ )− (−1)
X
=1



Y
=1; 6=

(+ )

When multiplying out, we find that all coefficients  in

det
³
()-partite − 

´
= (−1)−1

X
=0



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6.9 Complete multipartite graph 221

are positive, except for  = −1 and −1 = 0. Explicitly, we have

0 = (−1)−1 det
³
()-partite

´
= (− 1)

Y
=1



and

 = (−  − 1) − (1 2     )

for 0 ≤  ≤  − 2, where  is the elementary symmetric polynomial (art. 297).
Art. 320 demonstrates that det

³
()-partite − 

´
has only one positive zero,

while all others are negative. Equation (6.35) shows that all eigenvalues of ()-partite
satisfy

X
=1

1

1 + 


= 1 (6.36)

The partial fraction  () =
P

=1


+
in (6.36) has simple poles at  = −

with  (− − )  0 and  (− + )  0 and,  (0) =  and lim→±∞  () = 0,

and  () is strictly decreasing for all, finite real , because 0 ()  0. These

properties indicate that, if all  are different and ranked as (1)  (2)  · · ·  (),

then the eigenvalues as a solution of  () = 1 lie between () and (−1) for
1     and only one eigenvalue is strict positive. That largest eigenvalue of

-partite and (
)-partite is the unique, positive solution of (6.36) which shows

that (− 1)min1≤≤  ≤  ≤ (− 1)max1≤≤  .

The spectral gap of -partite is equal to the largest eigenvalue of (
)-partite ,

because 2 (-partite) = 0. Therefore, an explicit expression for the largest eigen-

value 1 (-partite) is desirable to estimate the influence of the partitions  on the

spectral gap. Below, we devote some effort and present two different expansions for

1 (-partite). If all  = , then, as found above,

det
³
()-partite − 

´
= (−1) (+ )

−1
(− (− 1) )

which reduces to the characteristic polynomial (6.1) of the complete graph  if

 = 1. The spectral gap is  −  =  − , which equals that of the complete

graph  minus . When not all  are equal, the spectral gap is smaller than

 −  as verified from Lagrange optimization of (6.36) for all  subject to  =P
=1  . This underlines that regularity in a graph’s structure scores highest in

terms of robustness.

We can rewrite (6.36) as

 =
− 1P
=1

1
+

(6.37)

from which the positive   −1

=1

1


. Iterating (6.37) once gives a sharper lower
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bound

 
− 1P

1=1
1

1+
−1

2=1
1
2

=
− 1³P

2=1
1
2

´ÃP
1=1

1

−1+
2=1

1
2

!
After -times iterating the equation, we obtain a finite continued fraction expansion

1 (-partite) 
− 1P

1=1
1

1+
−1

2=1
1

2
+

−1
... −1

=1
1


that approaches 1 (-partite) arbitrarily close from below for sufficiently large .

Finally, for real positive numbers 1 2     , the harmonic, geometric and

arithmetic mean inequality (Hardy et al., 1999) is

P
=1

1


≤ 

vuut Y
=1

 ≤ 1



X
=1

 (6.38)

with equality only if all  are equal. Applied to (6.37) yields

 =
− 1


P
=1

1
+

≤ − 1


1



⎛⎝ X
=1

+

X
=1



⎞⎠ =
− 1


µ
+





¶
from which an upper bound is deduced

1 (-partite) ≤
µ
1− 1



¶


where the right-hand side equals the degree of the regular complete-partite graph

when all  = . Only when  =  in case all  = 1, the largest eigenvalue

1 (-partite) equals that of the complete graph  .

6.10 An -fully meshed star topology

In the complete bipartite graph , the  star nodes are not interconnected

among themselves. The opposite variant, which we now consider, is essentially

 where all nodes in the  set are fully connected. We denote this topology by

star. The adjacency matrix of a graph of  stars, in which node 1 up to node

 has degree  − 1 while all other nodes have degree , is

star =

∙
( − )× ×(−)
(−)× (−)×(−)

¸
Observe that star = 

+ ̌
, where

̌
=

∙
( − )× ×(−)
(−)× (−)×(−)

¸
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6.10 An -fully meshed star topology 223

The characteristic polynomial is

det (star − ) = det

∙
( − (+ 1) )× ×(−)

(−)× −(−)×(−)

¸
which will be solved in two ways by applying (A.57) first and then (A.59).

Applying (A.57) and using

× = ( − (+ 1) )× (6.39)

gives det (star − ) = det () det
¡− − (−)×

−1
××(−)

¢
. We

first need to compute the inverse −1 = adj
det

of × = ( − (+ 1) )×,
where the adjoint matrix adj() is the transpose of the matrix of the cofactors of

 in art. 212. An inspection of the matrix  shows that there are precisely two

types of cofactors. The cofactor ̊ of a diagonal element of  equals

̊ = det

⎡⎢⎢⎢⎣
− 1    1

1 −    1
...

. . .
...

1 1    −

⎤⎥⎥⎥⎦ = det ( − (+ 1))(−1)×(−1)
The off-diagonal cofactor ̊ (with  6= ) is

̊ = (−1)+ det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1   
-th col

1    1

1 −    1    1
...

...
. . .

...
...

1 1    1    1
...

...
...

. . .
...

1 1    1    −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the -th row and the -th column consist of all ones. Subtracting row  from

all other rows yields

̊ = (−1)+ det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−− 1 0   
-th col

0    0

0 −− 1    0    0
...

...
. . .

...
...

1 1    1    1
...

...
...

. . .
...

0 0    0    −− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The -th column now has only one non-zero element at row , such that the deter-

minant is equal to (−1)+ times the minor of element ( ), which is (−1)−2(+
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224 Spectra of special types of graphs

1)−2. Hence, the adjoint matrix has all elements equal to (−1)−2(+1)−2 ex-
cept for the diagonal elements that are equal to (−1)−2 (+ 1)−2 (+ 2−),

adj () = (−1)−2(+ 1)−2
+
³
−(−1)−2(+ 1)−2 + (−1)−2 (+ 1)−2 (+ 2−)

´


= (−1)−2(+ 1)−2 ( + (+ 1−) )

and, since det = (−1)−1 (+ 1)−1 (+ 1−), the inverse matrix of  =

 − (+ 1)  is

−1 = ( − (+ 1) )−1 = −1
(+ 1) (+ 1−)

( + (+ 1−) )× (6.40)

We now compute  = (−)×
−1
××(−),

 = − 1

(+ 1) (+ 1−)
(−)× (× + (+ 1−) ×)×(−)

Using ×× = × gives

 = − 1

(+ 1) (+ 1−)

¡
2(−)×(−) + (+ 1−)(−)×(−)

¢
whence

 = − 

(+ 1−)
(−)×(−) (6.41)

Combining all in det (star − ) = det () det (− −  ) yields

det (star − ) = det ( − (+ 1) )× det
µ



+ 1−
 − 

¶
(−)×(−)

Finally, using (6.1) leads to

det (star − ) = (−1) (+ 1)−1 −−1 ( (+ 1−)− ( −))

= (−1) (+ 1)−1 −−1 (− −) (− +) (6.42)

where

± =
− 1
2

±
s
 ( −) +

µ
− 1
2

¶2
The eigenvalues of star are − [−1]−1  [0]−1−, and (max)star = +, which

is larger than (max)
=
p
 ( −) as was expected from Gerschgorin’s

Theorem 65 on p. 355. When viewing the complete spectrum, we observe that the

spectrum is not symmetric in  anymore for   1.

If  =  − 1, the star topology equals  . It is readily verified that, indeed,

for  =  − 1, the spectrum reduces to that of  . If  =  − 2, then the star
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6.10 An -fully meshed star topology 225

topology equals  minus one link, for which the eigenvalues are − [−1]−3  0,
and

(max)star = + =
 − 3
2

(
1 +

s
1 +

8 ( − 2)
( − 3)2

)

=  − 1− 2(
2 − 2 − 1)
( − 3)3

+
¡
−2

¢
Hence, by deleting one link in the complete graph  , the spectral gap (art. 82)

reduces from  to +   − 1. The spectral gap of the complete multipartite
graph (Section 6.9) equals  − 2, when  = 2 and  = 2. In that case,  links

are removed from the complete graph  in such a way that each node has still

degree  − 2.
The second, considerably more efficient way of computing det (star − ) is

based on (A.59),

det (star − ) = (−)− det
µ
( − (+ 1) )× +

1


×(−)(−)×

¶
Using ×× = × and (6.1) leads, after some manipulations, to (6.42). The
first, elaborate computation supplies us with the matrices −1 in (6.40) and  in

(6.41), that will be of use later in Sections 6.10.2 and 6.10.3.

The spectrum of star can be determined in yet another way
5. Since star

has  − identical rows, it has an eigenvalue 0 with multiplicity at least  −−
1. Further, since star +  has  identical rows, it follows that star has an

eigenvalue −1 with multiplicity at least equal to  − 1. The remaining two other
eigenvalues are obtained after determining the eigenvector that is orthogonal to the

eigenvector (with constant components) belonging to  = 0 and that belonging to

 = −1.
The remainder of this section computes the spectra of several subgraphs of

star.

6.10.1 Fully-interconnected stars linked to two separate groups

In stead of the ×(−) matrix in star of Section 6.10, a next step is to consider

some matrix . Thus, instead of connecting each of the fully interconnected stars

to all other non-star nodes, each such star does not necessarily need to connect to

all other nodes, but to a few.

Let us consider

star =

"
× ×(−)


(−)× (−)×(−)

#
5 This method was pointed out to me by E. van Dam.
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226 Spectra of special types of graphs

where

 =

∙
× ×(−−)

(−)× (−)×(−−)

¸
which means that  stars all reach the same  nodes and  −  stars all reach

 −−  other nodes. The eigenvalue analysis is simplified if we consider  = .

Then, using (A.57) gives

det (star − ) = (−) det
µ
− + 1




¶
where

 =

"
× 

(−)×

×(−−) 

(−)×(−−

# ∙
× ×(−−)

(−)× (−)×(−−)

¸
=

∙
× ×(−−)

(−−)× (− ) (−−)×(−−)

¸
With the dimensions of ×(−) and

¡


¢
(−)×(−), we have

 = det

µ
− + 1




¶
= − det

¡
 − 2

¢
= − det

∙
× − 2 ×(−−)
(−−)× (− )(−−)×(−−) − 2

¸
= − det

¡
× − 2

¢
det

¡
(− )(−−)×(−−) − 2

¢
= − (− )

−−
det

µ
× − 2




¶
det

µ
(−−)×(−−) −

2

− 


¶
With (6.1), we arrive at

det (star − ) = (−1)−4 ¡2 − 
¢ ¡
2 − ( −− ) (− )

¢
and the eigenvalues of star are ±

√
±

p
( −− ) (− ) and [0]

−4
.

For  =  = 0, the spectrum reduces to that of −.

6.10.2 Star-like, two-hierarchical structure

We compute the spectrum of a classical star-like, two-hierarchical telephony network

where

doublestar =

"
( − )× ×(−)

(−)× (−)×(−)

#
where

 =

⎡⎢⎢⎢⎣
1 · · · 1 0 · · · 0 0 · · · 0

0 · · · 0 1 · · · 1 0 · · · 0
...

...
...

0 · · · · · · 1 · · · 1

⎤⎥⎥⎥⎦ = × ⊗ 1×
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6.10 An -fully meshed star topology 227

with 1× is the  component long all-one vector and the Kronecker product is

defined in art. 286. Thus, the dimension of  is  ×  and  − = , and

the number of nodes in doublestar is  = ( + 1). All  fully interconnected

nodes (× = ( − )×) may represent the highest level core in a telephony
network. Each of these  nodes connects to  different lower level nodes, the local

exchanges, in the telephony network.

Applying (A.57) and denoting × = ( − (+ 1) )×, the characteristic
polynomial is

det (doublestar − ) = det () det
³
− −

(−)×
−1
××(−)

´
In Section 6.10, the inverse of × = ( − (+ 1) )× is computed in (6.40),


(−)×

−1
××(−) = −


(−)× ( + (+ 1−) )××(−)

(+ 1) (+ 1−)

Using properties of the Kronecker product (Meyer, 2000, p. 598),

××(−) = × (× ⊗ 1×) = (× ⊗ 1×1) (× ⊗ 1×)

= (×× ⊗ 1×11×) = × ⊗ 1× = ×

and, similarly,


(−)×× = (× ⊗ ×1) (× ⊗ 1×) = × ⊗ ×11×

= × ⊗ × = ×

the matrix  = 
(−)× ( + (+ 1−) )××(−) is

 = × + (+ 1−)
(−)××(−)

Further, 
(−)××(−) = (× ⊗ ×1) (× ⊗ 1×) = × ⊗ ×

and, with × = ×⊗×, we have  = {× + (+ 1−) ×}⊗×.
Hence,

 = det
³
− −

(−)×
−1
××(−)

´
= det

µ
− + 1

(+ 1) (+ 1−)
{× + (+ 1−) ×}⊗ ×

¶
=
det (− (+ 1) (+ 1−)  + {× + (+ 1−) ×}⊗ ×)

(+ 1)

(+ 1−)



The eigenvalues of×⊗× are the numbers { () ()}1≤≤1≤≤
(art. 286). The eigenvalues of  = ×+(+ 1−) × follow from (6.1) as

 () =
n
[+ 1−]

−1
 + 1

o
, while the eigenvalues of  = × are  () =n

[0]
−1

 
o
. With  =  (+ 1) (+ 1−), det (× ⊗× − ) = 0 has the

zeros [0]−  (+ 1) and [ (+ 1−)]
−1

and the same as the polynomial

− ( −  (+ 1)) ( −  (+ 1−))
−1
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228 Spectra of special types of graphs

such that the polynomial  in  is

 =
− ( −  (+ 1)) ( −  (+ 1−))

−1

(+ 1)

(+ 1−)



¯̄̄̄
¯
=(+1)(+1−)

Combining all and using (6.1), yields

det (doublestar − ) = (−1) (+ 1)−1 (+ 1−)

× − ( −  (+ 1)) ( −  (+ 1−))
−1

(+ 1)

(+ 1−)



which simplifies with  =  (+ 1) (+ 1−) to

det (doublestar − ) = (−1)− ( (+ 1−)− ) ( (+ 1)− )
−1

The eigenvalues of doublestar with  = ( + 1) nodes are, beside a high-

multiplicity root at zero [0]
−

, −1
2
±1
2

p
(− 1)2 + 4 and £−1

2
± 1

2

√
1 + 4

¤−1
.

The number of different eigenvalues equals four, which implies that the diameter

is three (art. 69). The largest eigenvalue of the double star with  = 2 and

 = 2 ( + 1)was given earlier by Das and Kumar (2004),

max (2doublestar) =

s
( − 1) +√2 − 3

2
=
1

2
+
1

2

√
2 − 3

6.10.3 Complementary double cone

We consider a complete graph  to which two nodes, labeled by +1 and +2,

are connected. Node  + 1 is connected to  nodes in  and node  + 2 to the

 − other nodes. The corresponding adjacency matrix of this “complementary

double cone” (CDC) on  is

 =

∙
( − )× ×2


2× 2×2

¸
(+2)×(+2)

where

×2 =
∙

×1 0×1
0(−)×1 (−)×1

¸
The CDC graph has diameter 3 and each other graph with diameter 3 is a subgraph

of CDC (see also art. 56 on strongly regular graphs). The corresponding Laplacian

is

 =

∙
 − ( − )× −×2

−
2× diag ( −)

¸
whose eigenvalues follow from

det ( − ) = det

∙
( + 1− )  − × −×2

−
2× diag (−  −− )

¸
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6.10 An -fully meshed star topology 229

We apply the Schur complement (A.59) with  = diag(−  −− ) and

−1 = ×2diag
³
(− )

−1
 ( −− )

−1
´

2×

=

∙
×1 0×1

0(−)×1 (−)×1

¸" 1
− 0

0 1
−−

# ∙
1× 01×(−)
01× 1×(−)

¸

=

"
1

−× ×(−)
(−)× 1

−−(−)×(−)

#
such that

 = ( + 1− )  − × −−1

=

⎡⎣ ( + 1− ) × −
³

1
− + 1

´
 −×(−)

−(−)× ( + 1− )  −
³

1
−− + 1

´


⎤⎦
Hence,

det ( − ) = det det = (− ) ( −− ) det

The determinant of  is computed with (A.57). The computation is similar to those

of  fully connected stars in Section 6.10. Using (6.39), we express the matrix as

( + 1− ) × − 1 +− 

− 
× = −1 +− 

− 
×

where + 1 = −
1+− ( + 1− ). With (6.41), we have

− − 

1 +− 
(−)×

−1×(−) =
(− )

(1 +− )



(+ 1−)
(−)×(−)

and with  =
(−)
(1+−)


(+1−) +

−−+1
−− ,

det = det

µ
−1 +− 

− 
×

¶
det

¡
( + 1− ) (−)×(−) − 

¢
=

µ
1 +− 

−

¶
(−)− det ( − (+ 1) ) det

µ
 −  + 1− 




¶
Using (6.1) yields

det =

µ
1 +− 

− 

¶
(+ 1−) ( + 1− )

−2
( + 1− − ( −) )

After simplification, we find that

 =
 ( −) ( + 1)− 

n
( + 1)

2 −+ ( −)
o
+ 2 ( + 1)2 − 3

( ( −)−  ( + 1) + 2) ( −− )

We now compute  + 1− − ( −)  =
()


, where

 =
¡
 ( −)−  ( + 1) + 2

¢
( −− )
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230 Spectra of special types of graphs

The result is

 () = 
¡
3 − 22 ( + 1) + 

©
( + 1)2 + ( −)

ª−( −) ( + 2)
¢

The polynomial
()


has degree 3 in  and the sum of its zeros is 2 ( + 1), while

the product is ( −) ( + 2). Combining all factors yields

det =
1

(− ) ( −− )
( + 1− )

−2
 ()

and

det ( − ) = det det = ( + 1− )
−2

 ()

In summary, the eigenvalues of ()(+2)×(+2) are 0, [ + 1]
−2

, and the

three real positive roots of  ().

6.11 Uniform degree graph

We define the uniform degree graph Υ by the adjacency matrix

Υ =

"
( − )[2 ]×[2 ] ∇[2 ]×[+1

2 ]

∇

[+1
2 ]×[2 ]

[+1
2 ]×[+1

2 ]

#
(6.43)

where ∇× is square and symmetric Hankel matrix for even  = 2

∇× =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
...
...
... 0

1 1 1 0

1 1 0

1 0

⎤⎥⎥⎥⎥⎥⎦
but ∇×(+1) is non-square and asymmetric for odd  = 2+ 1,

∇×(+1) =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1
...
...
... 0

1 1 1 0

1 1 0

1 1

⎤⎥⎥⎥⎥⎥⎦
The uniform degree graph Υ consists of a union of

£

2

¤
stars with different size,

Υ = ∪
=[+1

2 ]
1−1. Indeed, the star 1−1 with center at node 1 spans all

nodes, the star 1−2 with center at node 2 spans all nodes but node  , the

star 1−3 with center at node 3 spans all nodes but node  and  − 1 and so
on. Except for two nodes (art. 3), each node in a uniform degree graph Υ has a

different degree and the degree vector is

 =

µ
1 2    

∙


2

¸


∙


2

¸


∙


2

¸
+ 1      − 1

¶
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6.11 Uniform degree graph 231

Behzad and Chartrand (1967) prove that there exist only two graphs with two nodes

of equal degree (also called antiregular graphs):  with equal degree
£

2

¤
and its

complement 
 with equal degree

£
−1
2

¤
. Bapat (2013) states that antiregular

graphs are threshold graphs (art. 114). Hence, the uniform degree graph Υ is a

special case of an unweighted threshold graph. The number of links in Υ equals

Υ =
h
2

4

i
, while the number of triangles (art. 50) is NΥ2 = (−1)(2−1)

6
and

NΥ2+1 = 2
¡
+1
3

¢
. The complement of the uniform degree graph Υ is a uniform

degree graph Υ−1 and one isolated node (with degree 0). Finally, the bipartite
graph eΥ derived from the uniform degree graph Υ , without the major clique of

size
£

2

¤
and with adjacency matrix

Υ =
"

[2 ]×[2 ] ∇[2 ]×[+1
2 ]

∇

[+1
2 ]×[2 ]

[+1
2 ]×[+1

2 ]

#
(6.44)

has the property, for even6  , that each degree from 1 2    
£

2

¤
occurs precisely

twice.

6.11.1 The characteristic polynomial of Υ2 and eΥ2
We confine ourselves to the even case with  = 2 and let  = 1 for Υ2 and  = 0

for eΥ2. The computation of the eigenvalues of Υ2 and Υ2 is based on (A.59),
det

³
(Υ2+(1−)Υ2) − 

´
= det

∙


−  ∇×
∇
× −

¸
= (−) det

µ


−  +
1


∇2×

¶
= det

¡
2 − 

−∇2×
¢

since ∇
× = ∇×. The matrix ∇2× has the particular form

∇2× =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

 − 1 − 2 · · · 2 1

− 1 − 1 − 2 · · · 2 1

− 2 − 2 − 2 · · · 2 1
...

...
...

. . .
...
...

2 2 2 · · · 2 1

1 1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
6 When  is odd, Υ2+1 is a disconnected graph with one isolated node, and apart from the
isolated nodes, each degree occurs still twice.
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232 Spectra of special types of graphs

Denoting  () = (−1) det
³
(Υ2+(1−)Υ2) − 

´
yields

 () =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

− 2 − 1 +  − 2 +  · · · 2 +  1 + 

− 1 +  − 1− 2 − 2 +  · · · 2 +  1 + 

− 2 +  − 2 +  − 2− 2 · · · 2 +  1 + 
...

...
...

. . .
...

...

2 +  2 +  2 +  · · · 2− 2 1 + 

1 +  1 +  1 +  · · · 1 +  1− 2

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

We first subtract in the determinant (art. 209) column  from  − 1, starting from
 = 2 to  = , and obtain

 () =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

1− − 2 1 1 · · · 1 1 + 

2 +  1− − 2 1 · · · 1 1 + 

0 2 +  1− − 2 · · · 1 1 + 
...

...
...

. . .
...

...

0 0 0 · · · 1− − 2 1 + 

0 0 0 · · · 2 +  1− 2

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

Next, we repeat the same action on the rows and subtract row  from row  − 1,
starting from  = 2 to  = , and find, with  = 2 + , that the determinant

 () =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

1− 2  0 · · · 0 0

 1− 2  · · · 0 0

0  1− 2 · · · 0 0
...

...
. . .

. . .
. . .

...

0 0 0 · · · 1− 2 

0 0 0 · · ·  1− 2

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

has a tri-diagonal Toeplitz form (6.7), except for the element  = 1 − 2. The

eigenvalues of this pseudo tri-diagonal Toeplitz matrix of the form (6.14) cannot

straightforwardly be solved with the generating function method of Section 6.4.

The determinant  () can be expanded in a continued fraction as in art. 373.

6.11.2 The characteristic polynomial of ∇−2
As shown in Section 6.8, the eigenvalues of the bipartite matrix Υ2 are plus and
minus those of ∇×. Let us concentrate on the eigenvalues of ∇×. The -th
row of the eigenvalue equation ∇ =  yields

+1−X
=1

 = 

Subtracting row  + 1 from row  gives us

+1− =  ( − +1) (6.45)
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6.11 Uniform degree graph 233

which is valid for 1 ≤  ≤  with the assumption that +1 = 0, because 1 = .

After the index transformation  → + 1− , we obtain

 =  (+1− − +2−) (6.46)

Assuming the existence of the inverse ∇−1, the eigenvalue equation becomes  =
∇−1, and comparison with (6.46) illustrates that the inverse ∇−1 of the Hankel
matrix ∇,

∇−1× =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1
...

...
... Á −1

0 0 1 Á 0

0 1 −1 0
...

1 −1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦
is again a Hankel matrix. Moreover, ∇−1 exists so that the eigenvalue  6= 0. Iter-
atively applying the cofactor expansion (art. 212) with respect to the last element

of the first row, the determinant is evaluated as det∇−1× = (−1)[

2 ] = det∇×,

while trace
¡∇−1×¢ = (−1)−1 and trace(∇×) =

£

2

¤
. Art. 235 then indicates

that Q
=1  (∇) = (−1)[


2 ]

P
=1  (∇) =

£

2

¤ P
=1

1
(∇) = (−1)

−1

More interestingly, ∇−2 is a pseudo tri-diagonal Toeplitz matrix (6.14), equal
to the Laplacian matrix  of the path on p. 204, except for the last diagonal

element that is
¡∇−2¢


= 2 instead of ( ) = 1, thus ∇−2 =  + 


 . This

difference is also manifested in det∇−2× = 1 and trace
¡∇−2×¢ = 2 − 1, while

det = 0 and trace( ) = 2− 2, and is in agreement with the analysis of  ()
above. Alternatively with the Toeplitz matrix (6.7), ∇−2 =  (−1 2−1)− 1


1 .

By interlacing (Lemma 7) and 1
¡
1


1

¢
= 1, but 

¡
1


1

¢
= 0 for   1, the

eigenvalues are upper bounded by (6.8) those of  (−1 2−1),

1 + 2 cos

µ


+ 1

¶
≤ −2 ≤ 2 + 2 cos

µ


+ 1

¶
We now evaluate the characteristic polynomial  () = det

¡∇−2× − 
¢
in

closed form. Expanding the determinant  () = det
¡∇−2× − 

¢
towards the

first row yields

 () = (1− ) |−1 (−1 2− −1)|− |−2 (−1 2− −1)|
Invoking (A.98) with (6.8),

 () = (1− )

−1Y
=1

µ
2− + 2 cos





¶
−

−2Y
=1

µ
2− + 2cos



− 1
¶

= (1− ) (−1) −1
µ
− 2
2

¶
− (−1)−2 −2

µ
− 2
2

¶
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234 Spectra of special types of graphs

After introducing the series representation (B.135) of the Chebyshev polynomial

 () of the second kind and some manipulations, we find that the characteristic

polynomial  () of ∇−2× is

 () =

X
=0

µ
+ 

2

¶
(−) (6.47)

Since the binomial coefficients are non-negative, Descartes’ rule of signs (Theorem

87) states that  () has only positive real zeros. The same result also follows from

the eigenvalue equation ∇−2 = −2. The interval of eigenvalues  = −2 of ∇−2
is [0 4], where the maximum eigenvalue follows from Gerschgorin’s Theorem 65.

Introducing
¡



¢
= 1

2

R
(0)

(1+)

+1
 into (6.47) yields

 () =
1

2

Z
(0)

X
=0

(1 + )
+

2+1
(−) 

= −(−)
+1

2

Z
(0)

(1 + )
2+1

( (1 + ) + 2) 2+1
 +

1

2

Z
(0)

(1 + )



 (1 + ) + 2


If  = 0, the first term vanishes and the second term equals one. If  6= 0,

the second term is zero, because the integrand is analytic at  = 0. The first

integral can be closed over the entire complex plane, except for the origin, thereby

enclosing the simple poles of  (1 + ) + 2 = ( − 1) ( − 2) at 1 =
−+√2−4

2

and 2 =
−−√2−4

2
in clockwise sense. By Cauchy’s residue theorem, it holds

that

1

2

Z
(0)

(1 + )
2+1

( − 1) ( − 2) 2+1
 =

1

(2 − 1)

(µ
1 + 1

1

¶2+1
−
µ
1 + 2

2

¶2+1)

By using properties of the zeros of a quadratic equation, we arrive, after some

manipulations, to the closed form of the characteristic polynomial  () of ∇−2×
with  (0) = 1 and for  6= 0,

 () =

¡
+
√
2 − 4¢ ¡2−−√2 − 4¢−¡−√2 − 4¢ ¡2−+√2 − 4¢

2+1
√
2 − 4

(6.48)

which bears resemblance to Chebyshev polynomials (art. 377). After invoking

the polar representation of complex numbers, the alternative form of characteristic

polynomial  () = det
¡∇−2× − 

¢
is

 () =
1q
1− 

4

sin

Ã
arccos

√


2
−  arccos

µ
1− 

2

¶!
(6.49)
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6.12 A link joining two disconnected graphs 235

6.12 A link joining two disconnected graphs

We consider two applications of Theorem 15 in art. 90. Another application on

the kite graph , that consists of a complete graph  and a path graph 
attached to one of the nodes of , is presented in Van Mieghem (2015b).

Example 1 We consider the complete graphs 1 =  and 2 = , where

 ≥ , that are connected by one link. Then 1\ {} = −1 and2\{} = −1,
because a removal of node in the complete graph is a complete graph with size

minus 1. By using (6.1) into (3.104), the graph  with  = + nodes has the

characteristic polynomial in  = + 1

det ( − ) = (−1)+ +−4
©
2 ( − ) ( −)− ( − + 1) ( −+ 1)

ª
= (−1)+ +−4 ()

where

 () = 4 − (+) 3 + (− 1) 2 + (+− 2)  − (− 1) (− 1)
The zeros 1 ≥ 2 ≥ 3 ≥ 4 of the fourth degree polynomial  () can be com-

puted exactly. Unfortunately, the algebraic expressions are cumbersome and fail to

provide insight.

The sum of zeros equals 1+2+ 3+4 = + =  , while the product equals

1234 = − (− 1) (− 1). Since 1 () =  − 1, we know from (3.107) that

the largest zero lies7 between   1  + 1. We note that

 () = −1− (−)  () = −1 + (−)  (− 1) = − (− 1)2  ()
and

 (1) =  − 3  (0) = − (− 1) (− 1)  (−1) =  + 1

If − = 1, then  () = 0 and 2 =  is the second highest zero. If −  1,

then  ()  0 and  ()  0 indicate that there is at least one zero between 

and . If  = , the second largest zero 2 lies between  − 1 and , because

 (− 1) = − (− 1)2  (). The fact that  (0)  0 and  (1)  0 illustrates that

3 must lie in between 0 and 1 (for  ≥ 2). The fact that  (0)  0 and  (−1)  0
illustrates that 4 must lie in between −1 and 0 and 4 is the only negative zero.

Moreover, in case  − ≥ 1, 1 + 2   + so that 3 + 4  0, which shows

that |4|  3. In summary for   , the zeros of  () obey   1   + 1,

  2  , 0  3  1 and −1  4  0.

Next, we consider the Lagrange expansion (art. 342) around  = . We expand

the polynomial  () in a Taylor series around  =  and obtain, with  =  − ,

 (+ ) = 4 + {3−}3 + ©32 − 2− 1ª2
+
©
3 −2 − (−)− 2ª− {1 + (−)}

7 Numerical computations show that 1  + 1
2
for  ≥   2.
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236 Spectra of special types of graphs

Application of the general Lagrange series (B.68) and recalling that  =  + 1,

yields, up to third order in  =
1+(−)

2(−)−(−)−2 ,

1 () = − 1 +  − 32 − 2− 1
3 −2 − (−)− 2

2

+

"
(3−)

¡
3 −2 − (−)− 2¢− 2 ¡32 − 2− 1¢2

3 −2 − (−)− 2

#
3 +

¡
4
¢

This Lagrange series converges rapidly for large  and large −, since  is then

small, but diverges for  = . Since the second order term is positive, we find for

− ≥ 1 that

∆1 = 1 ()− 1 (\ { ∼ }) ≤  =
1 + (−)

2 (−)− (−)− 2
which is also satisfied for  =  ≥ 2 when the absolute value is taken. This bound
is increasingly sharp in  − and shows that ∆1 is decreasing with  −. In

other words, the maximum ∆1 is obtained for the symmetrical case where  = .

Example 2 The case where both 1 = 1 and 2 = 1 are stars can also

be evaluated exactly with (6.27). We have that 1\ {} = 1−1 and 2\{} =
1−1 when  and  are not the center node. (a) Application of (3.104) yields

det ( − ) = (−1)++−4 ©2¡2 − 
¢¡
2 −

¢−¡2 − + 1
¢¡
2 −+ 1

¢ª
= (−1)+ +−4

¡
2
¢

where

 () = 3 − (++ 1)2 + (+ +− 2)− (− 1) (− 1)
The zeros of the third degree polynomial  () in 2 again can be computed exactly.

Cardano’s explicit expressions are unfortunately still unattractively complex.

(b) If  is a center node, then 1\ {} consists of  − 1 disconnected nodes and
1\{} = ; then

det ( − ) = (−1)+ +−2
©¡
2 − 

¢ ¡
2 −

¢− ¡2 −+ 1
¢ª

= (−1)+ +−2
©
4 − (++ 1)2 + (+ 1)− 1ª

The zeros of the quadratic polynomial in 2 are

2± =
1

2

½
(++ 1)±

q
(+ 1−)

2
+ 4

¾
from which

1 () =

s
1

2

½
(+ 1 +) +

q
(+ 1−)

2
+ 4

¾

=

vuut+ 1 +
1

+ 1−
+

Ã
1

(+ 1−)
3

!
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6.13 A chain of cliques 237

This eigenvalue is largest when  =  and equal to 1 () =

q
+ 1+

√
5

2
.

(c) In case both  and  are center nodes of the star, we have

det ( − ) = (−1)+ +−2
¡
2 − 

¢ ¡
2 −

¢− (−1)+ +

= (−1)+ +−2
©
4 − (++ 1)2 + 

ª
and with roots 2± =

1
2

½
(++ 1)±

q
(−)

2
+ 2 (+) + 1

¾
. In case  =

, we find 1 () =

q
+ 1+

√
4+1
2

.

6.13 A chain of cliques

A chain of  + 1 cliques is a graph ∗(1 2  +1) consisting of  + 1 com-

plete graphs  or cliques with 1 ≤  ≤  + 1, where each clique  is fully

interconnected with its neighboring cliques −1 and +1 . Two graphs 1 and

2 are fully interconnected if each node in 1 is connected to each node in 2. An

example of a member of the class ∗(1 2  +1) is drawn in Fig. 6.5. The

K8

K1
K3

K4

K8

K1
K3

K4

Fig. 6.5. A chain of cliques ∗4(8 1 3 4).

total number of nodes in ∗(1 2  +1) is

 =

+1X
=1

 (6.50)

The total number of links in ∗ is

 =

+1X
=1

µ


2

¶
+

X
=1

+1 (6.51)

where the first sum equals the number of intra-cluster links and the second the

number of inter-cluster links. The main motivation to study the class of graphs
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238 Spectra of special types of graphs

∗(1 2  +1) with  ≥ 1 is its extremal properties, which are proved in

Wang et al. (2010):

Theorem 41 Any graph () with  nodes and diameter  is a subgraph of

at least one graph in the class ∗(1 = 1 2   +1 = 1)

Theorem 42 The maximum of any Laplacian eigenvalue (
∗
) for  ∈ [1  ]

achieved in the class ∗(1 = 1 2   +1 = 1) is also the maximum among

all the graphs with  nodes and diameter .

Theorem 43 The maximum number of links in a graph with given size  and

diameter  is max() =
¡
−+2

2

¢
+  − 3, which can only be obtained by

either ∗(1  1  =  −  1  1) with  ∈ [2] where only one clique has
size larger than one, or by ∗(1  1   1 +1  1 1  1) with  ∈ [2 − 1]
where only two cliques have size larger than one and they are next to each other.

Another theorem, due to van Dam (2007) and related to Theorem 43, is:

Theorem 44 The graph ∗(1 2  +1) with [+12 ]
=  − and all other

 = 1 is the graph with the largest eigenvalue of the adjacency matrix among all

graphs with a same diameter  and number of nodes  .

Here, we will compute the Laplacian spectrum of ∗(1 2  −1  +1):
we will show that  −  eigenvalues are exactly known, while the remaining 

eigenvalues are the positive zeros of an orthogonal polynomial. The adjacency

matrix ∗

of ∗(1 2  −1  +1) is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1×1 1×2
2×1 e2×2 2×3

. . .

×−1 e× ×+1
. . .

+1×+1 e+1×+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where e =  − .

Theorem 45 The characteristic polynomial of the Laplacian ∗

of the class of

graphs ∗(1 2  +1) equals

det
¡
∗


− 

¢
=  ()

Q+1
=1 ( + 1− )

−1 (6.52)

where  = −1 +  + +1 − 1 denotes the degree of a node in clique . The

polynomial  () =
Q+1

=1  is of degree +1 in  and the function  =  (;)
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6.13 A chain of cliques 239

obeys the recursion

 = ( + 1− )−
µ
−1
−1

+ 1

¶
 (6.53)

with initial condition 0 = 1 and with the convention that 0 = +2 = 0.

The proof below elegantly uses the concept of a quotient matrix, defined in

Section 2.5. An elementary, though more elaborated proof, which is basically an

extension of the derivation in Section 6.10.3, is found in Van Mieghem and Wang

(2009). Consider the -partition of a graph  that separates the node set N of 

into  ∈ [1 ] disjoint, non-empty subsets {N1N2 N}. Correspondingly, the
quotient matrix  of the adjacency matrix of  is a × matrix, where 

 is the

average number of neighbors in N of nodes in N. Similarly, the quotient matrix

 of the Laplacian matrix  of  is a  ×  matrix, where


 =

( −
 , if  6= X
6=


 if  = 

As defined in art. 37, a partition is called regular or equitable if for all 1 ≤   ≤ 

the number of neighbors in N is the same for all the nodes in N. The eigenvalues

derived from the quotient matrix  () of the adjacency  (Laplacian ) matrix

are also eigenvalues of  (Laplacian ) given the partition is equitable (see art. 37).

Proof: The partition that separates the graph ∗(1 2  +1) into the
 + 1 cliques 1 2  +1 is equitable. The quotient matrix  of the

Laplacian matrix  of  is

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2
−1 1 + 3 −3

−2 2 + 4 −4
. . .

−−1 −1 + +1 −+1
− 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.54)
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240 Spectra of special types of graphs

We use (A.57) to det ( − )

=

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

2 −  −2
−1 1 + 3 −  −3

−2 2 + 4 −  −4
. . .

−−1 −1 + +1 −  −+1
−  − 

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

= (2 − )

¯̄̄̄
¯̄̄̄
¯
1 + 3 − − 12

2− −3
−2 2 + 4 −  −4

. . .

 − 

¯̄̄̄
¯̄̄̄
¯

We repeat the method and obtain

det ( − ) = (2 − )

µ
1 + 3 − − 12

2 − 

¶
×

det

⎡⎢⎢⎢⎢⎣
2 + 4 − − 23

1+3−− 12
2−

 −4
. . .

−−1 −1 + +1 −  −+1
−  − 

⎤⎥⎥⎥⎥⎦
Eventually, after subsequent expansions using (A.57), we find

det ( − ) =
Y+1

=1
 =  ()

where  follows the recursion

 = (−1 + +1 − )− −1
−1

with initial condition 0 = 1 and with the convention that 0 = +2 = 0. When

written in terms of the degree  = −1 +  + +1 − 1, we obtain (6.53).
Any two nodes  and  in a same clique of

∗
 are connected to each other and

they are connected to the same set of neighbors. The two rows in det
¡
∗


− 

¢
corresponding to node  and  are the same when  = +1, where  is the degree

of all nodes in clique  . In this case, det
¡
∗


− 

¢
= 0 since the rank of

∗

−  is reduced by 1. Hence,  =  + 1 is an eigenvalue of the Laplacian

matrix ∗

. The corresponding eigenvector  has only two non-zero components,

 = − 6= 0. Since the  + 1 partitions of ∗(1 2  +1) are equitable,
the  + 1 eigenvalues of , which are the roots of det ( − ) = 0 are also

the eigenvalues of the Laplacian matrix ∗

. Each eigenvector of ∗


, belonging

to the  + 1 eigenvalues, has the same elements  =  if the nodes  and 

belong to the same clique. Hence, the Laplacian matrix ∗

has +1 non-trivial
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6.13 A chain of cliques 241

eigenvalues, which are the roots of det ( − ) = 0 and trivial eigenvalues  +1

with multiplicity  − 1 for 1 ≤  ≤  + 1. ¤

6.13.1 Orthogonal polynomials

In the sequel, we will show that the polynomial  () in Theorem 45 belongs to

a set of orthogonal polynomials (see Chapter 12). The dependence of  on the

diameter  and on  is further on explicitly written.

Lemma 5 For all  ≥ 0, the functions  (;) are rational functions

 (;) =
 (;)

−1 (;)
(6.55)

where  () is a polynomial of degree  in  = − and 0 (;) = 1.

Proof: It holds for  = 1 as verified from (6.53) because 0 (;) = 1. Let us

assume that (6.53) holds for −1 (induction argument). Substitution of (6.55) into
the right-hand side of (6.53),

 (;) =

(
(+−1++1)−1(;)−−1−2(;)

−1(;)
1 ≤  ≤ 

(+)(;)−+1−1(;)
(;)

 =  + 1

indeed shows that the left-hand side is of the form (6.55) for . This demonstrates

the induction argument and proves the lemma. ¤
The polynomial of interest,

 () =
Q+1

=1  (;) =

+1X
=0

 ()
 =

+1Y
=1

( − ) (6.56)

(where the product with the zeros +1 ≤  ≤ · · · ≤ 1 follows from the definition

of the eigenvalue equation (A.97)) equals with (6.55)

 (−) =
Q+1

=1  (;)Q+1
=1 −1 (;)

= +1 (;)

We rewrite (6.55) as  (;) =  (;) −1 (;) and with (6.53), we obtain
the set of polynomials⎧⎨⎩

+1 (;) = (+ )  (;)− +1−1 (;)
 (;) = (+ −1 + +1) −1 (;)− −1−2 (;) for 1 ≤  ≤ 

1 (;) = (+ 2) 0 (;)

(6.57)

where 0 (;) = 1. Art. 357 demonstrates that, for a fixed , the sequence

{ (;)}0≤≤+1 is a set of orthogonal polynomials because (6.57) obeys Favard’s
three-term recurrence relation. By Theorem 112, the zeros of any set of orthogonal
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242 Spectra of special types of graphs

polynomials are all simple, real and lie in the orthogonality interval [ ], which is

here for the Laplacian equal to [0  ].

By iterating the equation upwards, we find that

 (; 0) =

⎧⎪⎨⎪⎩
+1Y
=2

 1 ≤  ≤ 

0  =  + 1

(6.58)

Thus, +1 (; 0) = 0 and thus +1 (; 0) = 0 implies that  () must have a

zero at  = 0, which is, indeed, a general property of any Laplacian (art. 101).

From (6.55), it then follows that  (; 0) = +1  0. The eigenvalues of the

Jacobi matrix (art. 370),

 =

⎡⎢⎢⎢⎢⎢⎣
−2 1

12 − (1 + 3) 1

. . .
. . .

. . .

−1 − (−1 + +1) 1

+1 −

⎤⎥⎥⎥⎥⎥⎦ (6.59)

are equal to the zeros of  (−). Moreover, we observe that also the quotient
matrix  in (6.54) possesses the same eigenvalues as the Jacobi matrix  . Since

the eigenvalues of are simple, art. 239 shows that there exists a similarity trans-

form that maps the Jacobi matrix  into the quotient matrix  (and vice versa).

Moreover, the matrix  can be symmetrized by a similarity transform,

 = diag

⎛⎜⎜⎜⎜⎜⎝1
1√
12

    
1

√
1

−1Y
=2



    
1

√
1+1

Y
=2



⎞⎟⎟⎟⎟⎟⎠
and the eigenvector belonging to zero equals

e (; 0) =  (; 0) =
h
1
q

2
1

· · ·
q

−1
1

q

1

i
After the similarity transform , the result is f = −1,

f =

⎡⎢⎢⎢⎢⎢⎣
−2 √

12√
12 − (1 + 3)

√
23

. . .
. . .

. . .√
−1 − (−1 + +1)

√
+1√

+1 −

⎤⎥⎥⎥⎥⎥⎦
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The corresponding square root matrix  of the Gram matrix − =  can be

computed explicitly as

 =

⎡⎢⎢⎢⎢⎢⎣

√
2 −√1
0

√
3 −√2
. . .

. . .
. . .

0
√
+1 −√
0 0

⎤⎥⎥⎥⎥⎥⎦
in contrast to the general theory in art. 374, where each element is a continued

fraction.

In summary, all non-trivial eigenvalues of ∗

are also eigenvalues of the simpler

matrices , − or −f . Properties and bounds on those non-trivial eigenvalues
and zeros of  () as well as the spectrum of the corresponding adjacency matrix

are studied in Van Mieghem and Wang (2009). We mention the asymptotic scaling

law:

Theorem 46 For a constant diameter  and a large number  of nodes, all non-

trivial eigenvalues of both the adjacency and Laplacian matrix of any graph in the

class ∗(1 2  +1) scale linearly with  , the number of nodes.

All coefficients  () of  () in (6.56) can be computed explicitly in terms
of the clique sizes 1 2     +1 for which we refer to Van Mieghem and Wang

(2009). We merely list here the first few polynomials  () =
()

− :

1 () = − (−)

2 () = 2 − ( + 2)+2 = (−) (− 2)

3 () = −3 + (2 − 1 − 4)
2 − 22 + 23 + 12 + 13 + 14 + 323 + 24 + 34




+23

4 () = 4 − (2 − 1 − 5)
3 +


22 +

2
3 +

2
4 +45 +3(34 +5)


2

+(2(33 + 34 + 25) + 1(2 + 3 + 24 + 5))
2

− 34 (3 + 4 + 5) + 2

23 + 24 + 434 + (3 + 4)5 + 2 (3 + 4 + 5)


+ 1 (2 + 4) (3 + 4 + 5))+234

For increasing , the explicit expressions rapidly become involved without a simple

structure. There is one exception: ∗(1 2  +1) with all unit size cliques,
 = 1, is a -hop line topology, whose spectrum is exactly given in (6.15), such

that



³
; { = 1}1≤≤+1

´
=

Y
=1

µ
2

µ
1− cos

µ


 + 1

¶¶
− 

¶
Finally, we mention that 3 () appears as the polynomial  () in the Laplacian

spectrum of the complementary double cone (CDC) in Section 6.10.3. The CDC,

written as ∗3 (1 − 1), is clearly a member of the class ∗(1 2  +1)
with

P4
=1  =  + 2.
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244 Spectra of special types of graphs

6.14 The lattice

Consider a rectangular lattice with size 1 and 2 where at each lattice point with

two integer coordinates ( ) a node is placed. A node at ( ) is connected to its

direct neighbors at ( + 1 ), ( − 1 ), (  + 1) and (  − 1) where possible. At
border points, nodes only have three neighbors and at the four corner points only

two. The number of lattice points (nodes) equals  = (1 + 1)(2 + 1) and the

number of links is  = 212+(1 + 2). Meyer (2000) nicely relates the Laplacian

of the lattice La() to the discrete version of the Laplacian operator,

2

2
+

2

2

In a similar vein, Cvetkovíc et al. (2009, Chapter 9) discuss the Laplacian oper-

ator and its discretization in the solution of the wave equation with rectangular

boundary.

The adjacency matrix, following Meyer (2000), is

La() =

⎡⎢⎢⎢⎢⎢⎢⎣

(1+1)×(1+1) (1+1)×(1+1)
(1+1)×(1+1) (1+1)×(1+1) 

(1+1)×(1+1)
. . .

. . .

. . . (1+1)×(1+1) (1+1)×(1+1)
(1+1)×(1+1) (1+1)×(1+1)

⎤⎥⎥⎥⎥⎥⎥⎦
where the Toeplitz matrix

(1+1)×(1+1) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

1 0 1

1
. . .

. . .

. . . 0 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
is the adjacency matrix of a 1 hops path whose eigenvalues are given by (6.10) with

 → 1 + 1. The Laplacian La() is not easily given in general form because the

sum of the rows in La() or the degree of a node is not constant. The adjacency

matrix La() is a block Toeplitz matrix whose structure is most elegantly written

in terms of a Kronecker product. We may verify that8

La() = (2+1)×(2+1) ⊗ (1+1)×(1+1) + (2+1)×(2+1) ⊗ (1+1)×(1+1) (6.60)

The eigenvalues of La() are immediate from art. 286. For 1 ≤  ≤ 1 + 1 1 ≤
 ≤ 2 + 1, it holds that 

¡
La()

¢
= 

¡
(1+1)×(1+1)

¢
+ 

¡
(2+1)×(2+1)

¢
8 When applying the identity (1 ⊗1) (2 ⊗2) = (12 ⊗12) in (Meyer, 2000, p. 597) to
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6.14 The lattice 245

and with (6.10), we arrive at


¡
La()

¢
= 2cos

µ


1 + 2

¶
+ 2 cos

µ


2 + 2

¶
where 1 ≤  ≤ 1 + 1 1 ≤  ≤ 2 + 1.

Several extensions are possible. For a cubic or three dimensional lattice, the

adjacency matrix generalizes to

La() = (3+1)×(3+1) ⊗ (2+1)×(2+1) ⊗ (1+1)×(1+1)
+ (3+1)×(3+1) ⊗ (2+1)×(2+1) ⊗ (1+1)×(1+1)
+ (3+1)×(3+1) ⊗ (2+1)×(2+1) ⊗ (1+1)×(1+1)

with spectrum


¡
La()

¢
= 2 cos

µ


1 + 2

¶
+ 2cos

µ


2 + 2

¶
+ 2 cos

µ


3 + 2

¶
where 1 ≤  ≤ 1+1 1 ≤  ≤ 2+1 1 ≤  ≤ 3+1. The Kronecker product where

the Toeplitz matrix  of the path is changed for the circulant Toeplitz matrix of

the circuit represents a lattice on a torus (Cvetkovíc et al., 1995, p. 74).

We end this section by considering the -dimensional lattice La with lengths

1 2      in each dimension, respectively, and where at each lattice point with

integer coordinates a node is placed that is connected to its nearest neighbors whose

coordinates only differ by one in only one component. The total number of nodes

in La is  = (1+1)× (2+1)×   × (+1). The lattice graph can be written
as a Cartesian product (Cvetkovíc et al., 1995) of  path graphs, which we denote

by La = (1+1)¤(2+1)¤   ¤(+1). According to Cvetkovíc et al. (1995),
the eigenvalues of La can be written as a sum of one combination of eigenvalues

of path graphs and the corresponding eigenvector is the Kronecker product of the

corresponding eigenvectors of the same path graphs,

12 (La) =
P

=1 
¡
(+1)

¢
12 (La) = 1

¡
(+1)

¢⊗ 2
¡
(2+1)

¢ ⊗   ⊗ 
¡
(+1)

¢ (6.61)

where  ∈ {1 2      + 1} for each  ∈ {1 2    }. Since both the adjacency
and the Laplacian spectrum of the path  graph are completely known (Section

compute the square of 2
La()

given by (6.60), powers of the Toeplitz matrix appear. However,

2(1+1)×(1+1) =



1 0 1

0 2 0
. . .

1 0
. . .

. . . 1

. . .
. . . 2 0
1 0 1


shows that the Toeplitz structure is destroyed.
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246 Spectra of special types of graphs

6.4), the corresponding spectra of the -dimensional lattice La can also analyt-

ically be computed from (6.61) by substituting  =  + 1 in the derivations in

Section 6.4.

Lemma 6 The number  of links in the -dimensional lattice La is, for  ≥ 1,

 =

Y
=1

( + 1)

X
=1



 + 1

Proof: We will prove the lemma by induction. Let the number of links in the

-dimensional lattice La be (1 2     ). For  = 1, we have a path graph

1+1 and its number of links is  = (1) = 1 = (1+1)
1

1+1
. Let us assume that

the lemma holds for -dimensional lattices. We consider the ( + 1)-dimensional

lattice La+1, which is constructed from  different -dimensional lattices

La(1+1)×(2+1)××(+1), where 1 2      ∈ {1 2     ( + 1)}
in the following way. We position a total of

¡
+1 + 1

¢
such -dimensional lat-

tices La(1+1)×(2+1)××(+1) next to each other in the direction of dimension
+1. In this way, every link is counted -times in each dimension. Intuitively, this

construction is easier to imagine in three dimensions, where the three dimensional

lattice La(1+1)×(2+1)×(3+1) is constructed by (3+1) consecutive two dimensional
La(1+1)×(2+1) planes that are positioned next to each other in the direction of the
third dimension, (2 + 1) consecutive two dimensional La(1+1)×(3+1) planes that
are positioned next to each other in the direction of the second dimension and,

finally, (1 + 1) consecutive two dimensional La (2+1)×(3+1) planes that are po-
sitioned next to each other in the direction of the first dimension. All links in this

process are counted twice. Returning to the -dimensional case, we thus deduce

that

(1 2     +1) =
1



+1X
=1

( + 1)(1  2      )

where  6=  for each  = 1 2      + 1 and  = 1 2     . Introducing the

induction hypothesis for -dimensional lattices, we obtain

(1 2     +1) =
1



+1X
=1

( + 1)

+1Y
=1 6=

( + 1)

+1X
=1 6=



 + 1

=
1



+1Y
=1

( + 1)

+1X
=1

+1X
=1 6=



 + 1

=
1



+1Y
=1

( + 1)

+1X
=1



 + 1

which illustrates that the induction hypothesis is true for  + 1, and consequently,

the lemma is true for each dimension  ≥ 1. ¤
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7

Density function of the eigenvalues

General properties of the density function of eigenvalues are studied. Most articles

in this chapter implicitly consider the eigenvalues of the adjacency matrix . Es-

pecially for large graphs and random graphs, a probabilistic setting in terms of the

density function is more suitable than the list of eigenvalues.

7.1 Definitions

172. The Dirac function. The Dirac function, also called impulse or delta function,

is the continuous counterpart of the Kronecker delta or indicator function. The

Dirac function is a generalized function with characteristic property

 () =

Z


 ()  (− )  (7.1)

where  is a path in the complex plane containing  and  is a function that is

defined and finite along . For example, when  is the real axis and  = 1, we

find the well-known property that
R∞
−∞  ()  = 1. Since the Dirac function is a

generalized function, there exist several representations.

A first class of representations is deduced from integral transform pairs. For

example, from the double-sided Laplace transform pair

 () =
R∞
−∞  () − ⇔  () = 1

2

R +∞
−∞  () 

where  is the smallest real part of  for which
R∞
−∞  () − exists, we find

formally after a reversal in integration that

 () =

Z ∞
−∞

 ()

µ
1

2

Z +∞

−∞
(−)

¶
Comparison with the property (7.1) leads to the representation of the Dirac function

as a complex integral

 () =
1

2

Z +∞

−∞
 (7.2)
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248 Density function of the eigenvalues

valid for any finite real number . If Re ()  0 (similarly Re ()  0), the contour

in (7.2) can be closed over the negative (positive) Re ()-plane. Since  is analytic

inside the contour, Cauchy’s integral theorem (see e.g. Titchmarsh (1964)) states

that the integral vanishes; except if  = 0, then the integral is unbounded.

A second class represents the Dirac function as the limit of a sequence of func-

tions. For example, executing the integral (7.2) as  () = lim→∞ 1
2

R +
− 

leads to

 () =
1

2
lim
→∞

(+) − (−)


=




lim
→∞

sin 

but the latter limit with a value in [−1 1] does not exist, although1 R∞−∞  ()  = 1,

and illustrates difficulties, which has led to the development of a theory of gener-

alized functions. A particularly interesting class of functions are probability den-

sity functions  () of a continuous random variable , because of their prop-

erty
R∞
−∞  ()  = 1. For example (see e.g. Van Mieghem (2014)), the limit of

Gaussian probability density functions with variance tending to zero yields

 () = lim
→0

−
2

22√
2

while the limit of Cauchy probability density functions with width  tending to

zero leads to

 () = lim
→0

1





2 + 2

which is written in complex notation as

 () = − 1

lim
→0

Im
1

+ 
(7.3)

This representation (7.3) is related to the Cauchy transform (see art. 361).

173. The density function of the eigenvalues {}1≤≤ is defined by

 () =
1



X
=1

 (− ) (7.4)

Using the representation (7.2) of the Dirac function, we have for   0,

 () =
1

2

Z +∞

−∞
 ()  (7.5)

1 Indeed, ∞
−∞

 ()  =
1

2
lim
→∞

 +∞

−∞

 

−
 =

1

2
lim
→∞

 +∞

−∞

 − −


 = 1

where the latter integral follows from Cauchy’s integral theorem because, for   0,
1
2

 +∞
−∞




 = 1 if Re ()  0, else it is zero.
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7.1 Definitions 249

where, analogous to the definition of a probability generating function (pgf),

 () =
1



X
=1

exp (−) (7.6)

can be interpreted as the generating function of the density function of the eigen-

values {}1≤≤ .
The representation (7.3) of the Dirac function leads to

 () = − 1


lim
→0

Im

X
=1

1

−  + 

Invoking
P

=1
1

− = trace( −)
−1
in (A.163) of the resolvent ( −)

−1
in

art. 262 yields

 () = − 1


lim
→0

Im trace
³
((+ )  −)

−1
´

(7.7)

where 1

trace

³
( −)

−1
´
is called the Stieltjes transform of the matrix .

174. Probabilistic setting. The eigenvalues 1 2      , now ordered as 1 ≤
2 ≤ · · · ≤  , can be regarded as a complete set of all realizations of the random

variable , in which case the probability that  is smaller than or equal to a real

number  equals

Pr [ ≤ ] =
1



X
=1

1{≤}

which shows, for  =  , that
2

Pr [ ≤  ] =




Usually only a limited set of realizations of a random variable can be measured

and the above representation for its probability is then approximate and called the

empirical distribution (see e.g. (Van Mieghem, 2014, p. 580-581)).

By applying Abel summation (3.87) to the pgf in (7.6)

 () =
1



−1X
=1

 (exp (−)− exp (−+1)) + exp (− )

replacing exp (−)− exp (−+1) = −
R 
+1

−,

 () = 

−1X
=1





Z +1



−+ exp (− )

2 Our usual ordering  ≤ −1 ≤ · · · ≤ 1 results in Pr [ ≤  ] =
+1−


and unnecessarily

complicates the derivations below.
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250 Density function of the eigenvalues

we introduce Pr [ ≤  ] =


in the -sum

−1X
=1





Z +1



− =
−1X
=1

Z +1



Pr [ ≤ ] −

=

(Z 2

1

+

Z 3

2

+ · · ·+
Z 

−1

)
Pr [ ≤ ] −

and arrive, for the ordering 1 ≤ 2 ≤ · · · ≤  , at

 () = exp (− )− 

Z 1



Pr [ ≤ ] −

After partial integration with the probability density function  () =


Pr [ ≤ ],

the usual expression for the probability generating function of the real random vari-

able −     is found

 () =
−1


+

Z 

1

− ()  =
Z ∞
−∞

− () 

175. Trace representation of  (). Art. 234 shows that 
− =

P∞
=0



!
(−).

Introducing  = diag
¡

¢
 in the Taylor series, where the orthogonal matrix

 has the eigenvectors of as columns (art. 247), yields − = diag
¡
−

¢
 .

Hence, if {}1≤≤ are the eigenvalues of a symmetric matrix × , then©
−

ª
1≤≤ are the eigenvalues of − and the eigenvector of  belonging

to the eigenvalue  is also the eigenvector of − belonging to the eigenvalue

− . After cyclic permutation (4.14) with  = , we arrive at the trace

representation

 () =
1


trace

¡
−

¢
(7.8)

The relation with a probability generating function,  () = 
£
−

¤
, suggests

that the moments  [] = (−1)() (0), and with (7.8) that

 [] =
1


trace () (7.9)

Relation (7.9) lies at the basis of Wigner’s moment approach in art. 187 to com-

puting the eigenvalues of random matrices.

176. Lower bound  () ≥ 1 for real . Since − is convex for real , the
general convexity bound (Van Mieghem, 2014, eq. (5.5)), from which also Jensen’s

inequality 
£
−

¤ ≥ −[] is derived, gives

 () =
1



X
=1

exp (−) ≥ exp
Ã
− 



X
=1



!
= 1

because  [] = 1


P
=1  = 0 for the adjacency matrix  (art. 46).
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7.2 The density when  →∞ 251

7.2 The density when  →∞
Usually analysis simplifies in limit cases. For a few graphs, where the number

of nodes  tends to infinity, the spectrum can be computed, which requires the

evaluation of ;∞ () = lim→∞ 1


P
=1 exp (−).

177. Replacing a sum by an integral. The basic summation formula (Titchmarsh

and Heath-Brown, 1986, p. 13),X
≤

 () =

Z 



 () +

Z 



µ
− []− 1

2

¶
 ()


+

µ
− []− 1

2

¶
 ()

−
µ
− []− 1

2

¶
 () (7.10)

is valid for any function  () with continuous derivative in the interval [ ]. We

define the continuous eigenvalue function Λ () on [0  ] such that Λ () = .

Since, for any integer  ∈ [1 ], art. 42 shows that − ( − 1)   ≤  − 1
and since  ≤ −1 ≤  ≤ 1, the eigenvalue continuous function |Λ ()| is
bounded on [1  ] by  − 1 and Λ () ≤ Λ (− 1) for any . Thus, we assume

that Λ () is continuous and not increasing on [0  ]. The continuous eigenvalue

function Λ () can be obtained by Hermite or Bernstein interpolation (art. 304),

but not by Lagrange interpolation (art. 303), because the Lagrange interpolating

polynomial is not necessarily increasing at each real  ∈ [1  ].
Application of the summation formula (7.10) to the pgf (7.6) yields

 () =
1



Z 

0

−Λ()−  () +
−Λ() − −Λ(0)

2

where

 () =




Z 

0

µ
− []− 1

2

¶
−Λ()

Λ ()




Since − 1
2
≤ − []− 1

2
≤ 1

2
and

Λ()


≤ 0, we may bound  () for real  as,



2

Z 

0

−Λ()
Λ ()


 ≤  () ≤ − 

2

Z 

0

−Λ()
Λ ()




With
R 
0

−Λ() Λ()


 =
R Λ()
Λ(0)

−Λ()Λ () = −Λ(0)−−Λ()


, we have that

−Λ(0) − −Λ()

2
≤  () ≤ −Λ() − −Λ(0)

2

Thus, for real , we obtain the bounds for the pgf  () in (7.6)

1



Z 

0

−Λ() ≤  () ≤ 1



Z 

0

−Λ()+
−Λ() − −Λ(0)



The density function  () involves a line integration (7.5) over Re () =   0.
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If, for Re ()  0,

lim
→∞

−Λ() − −Λ(0)


= lim

→∞
−Λ()


= 0

then the limit

lim
→∞

 () = lim
→∞

1



Z 

0

−Λ()

exists and, hence, also lim→∞  (). The condition means that the absolute value

of the smallest eigenvalue Λ () =   0 grows as | | =  (log) at most, for

Re () =   0, but arbitrarily small. This condition is quite restrictive and suggests

to consider the spectrum of normalized eigenvalues.

178. Moments. We start from  [] = 1

trace() in (7.9) and the number of

closed walks  = trace(
) in art. 65 and use the Stieltjes integral (art. 350),

 [] =

Z ∞
−∞

 ( ) =
1


trace

¡

×

¢
If lim→∞ 1


trace

¡

×

¢
=  () exists and the distribution  ( ) tends to

∞, then Z ∞
−∞

∞ =  () (7.11)

which implies that the limiting distribution ∞ of the eigenvalues of the infinitely

large graph ∞ = lim→∞ exists. Assuming that this distribution is also

differentiable, then
R∞
−∞ ∞ =

R∞
−∞ ∞ () . Since trace(×) = 0

and trace
¡
2×

¢
= 2, we find, beside

R∞
−∞ ∞ ()  = 1, thatZ ∞

−∞
∞ ()  = 0Z ∞

−∞
2∞ ()  =  []

Multiplying both sides in (7.11) by
(−)
!

and summing over all integers  yields

again the pgf

∞ () =

Z ∞
−∞

−∞ =
∞X

=0

(−)
!

 () (7.12)

7.3 Examples of spectral density functions

Only for a few graphs, the spectral density functions can be computed analytically

with the methods art. 175-178.

179. Infinite line topology. Applying (7.6) to a path  on  nodes with eigenvalue

 ( ) = 2 cos
³


+1

´
for 1 ≤  ≤  in (6.10) yields the pgf of the eigenvalues of
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the path 

 () =
1



X
=1

exp

µ
−2 cos

µ


 + 1

¶¶

Since Λ () = 2 cos
³


+1

´
and lim→∞ −Λ()


= lim→∞ 

−2 cos( 
+1)


= 0,

art. 177 shows that the limit generating function exists,

lim
→∞

 () = lim
→∞

1



Z 

0

−2 cos(

+1 ) = lim

→∞
 + 1



Z 
+1

0

−2 cos 

Hence,

lim
→∞

 () =
1



Z 

0

exp (−2 cos )  = 0 (−2) = 0 (2)

where  () is the modified Bessel function (Abramowitz and Stegun, 1968, Section

9.6.19); (Olver et al., 2010, Chapter 10). The inverse Laplace transform is

lim
→∞

 () =
1

2

Z +∞

−∞
0 (2)  =

1

22

Z +∞

−∞
(+2)

©
−20 (2)

ª


and with the Laplace pair in Abramowitz and Stegun (1968, Section 29.3.124), we

arrive at the spectral density function of an infinitely long path:

lim
→∞

 () =
1



1√
4− 2

1||2 (7.13)

180. The spectrum of an arbitrary path in a graph with  nodes can be computed

if the distribution of the hopcount   0 of that path is known. Indeed, using

the law of total probability (Van Mieghem, 2014, p. 23) yields

Pr [arbitrary path ≤ ] =

−1X
=1

Pr [arbitrary path ≤ | = ] Pr [ = ]

=

−1X
=1

Pr [-hop path ≤ ] Pr [ = ]

Differentiation gives us the density,

a rb i t ra r y p a th
() =

−1X
=1

-h o p p a th
() Pr [ = ]

Introducing the definition (7.4) combined with the spectrum specified in Section

6.5,

-h o p p a th
() =

 −  − 1


 () +
1



+1X
=1



µ
− 2 cos

µ


 + 2

¶¶
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254 Density function of the eigenvalues

gives

a rb it r a r y p a th
() =

 − 1− [ ]


 ()

+
1



−1X
=1

+1X
=1



µ
− 2 cos

µ


 + 2

¶¶
Pr [ = ]

The spectral peak at  = 0 has a strength equal to
−1−[ ]


. Just as for the −1

hop path, the spectrum lies in the interval (−2 2) at discrete values  = 2 cos
³

+2

´
that range over more possible values than a constant hop path. Moreover, the

strength or amplitude of a peak is modulated by the hopcount distribution.

181. Small-world graph SW ; . Applying (7.6) to the small-world graph SW; ,

with (6.4), gives

SW ;
() =





X
=1

exp

⎛⎝− sin
³
(−1)(2+1)



´
sin
³
(−1)



´
⎞⎠

Since Λ () =
sin((−1)(2+1) )

sin((−1) )
− 1 and Λ () = sin((−1)(2+1) )

sin((−1) )
− 1 ≥ (SW; )min,

which is independent of  , the limit generating function exists

lim
→∞

SW ;
() = lim

→∞




Z 

0

exp

⎛⎝− sin
³
(−1)(2+1)



´
sin
³
(−1)



´
⎞⎠ 

After the substitution  = −1


and executing the limit, we find

SW ;∞ () =




Z 

0

exp

µ
− sin(2 + 1)

sin 

¶
 (7.14)

In terms of the Chebyshev polynomial  () of the second kind,

SW ;∞ () =




Z 

0

exp (−2 (cos )) 

Since
sin(2+1)

sin
=

sin(2+1)(−)
sin(−) , the definition (B.135) shows that 2 (cos ) =

2 (cos ( − )) and

SW ;∞ () =
2



Z 
2

0

exp (−2 (cos ))  (7.15)

With 2 (cos ) =
sin(2+1)

sin 
= 1 + 2

P
=1 cos 2, we have

SW ;∞ () =
1



Z 

0

exp

⎛⎝−2 X
=1

cos 2

⎞⎠ 
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Applying the generating function (Abramowitz and Stegun, 1968, Section 9.6.33)

of the modified Bessel function  () = − () for integer ,

 cos  =

∞X
=−∞

 () 


and

exp

⎛⎝−2 X
=1

cos 2

⎞⎠ =

Y
=1

−2 cos 2 =

Y
=1

∞X
=−∞

 (−2) 2

=

∞X
1=−∞

1 (−2) · · ·
∞X

=−∞
 (−2) 2


=1

yields

SW ;∞ () =

∞X
1=−∞

∞X
2=−∞

· · ·
∞X

=−∞

Y
=1

 (−2)
1



Z 

0

2


=1

The integral 1


R 
0
2


=1 = 1{

=1=0}. Translating that condition
as 1 = −

P
=2 for   1, we arrive at

SW ;∞ () =

∞X
2=−∞

· · ·
∞X

=−∞


=2
(−2)

Y
=2

 (−2) (7.16)

while for  = 1,

SW =1;∞ () = 0 (−2) = 0 (2)

which shows that the limit density of the infinite cycle ( = 1) is the same as

that of the infinite path in (7.13). If  = 2, then (7.16) becomes with  (−) =
(−1)  (),

SW =2;∞ () =

∞X
=−∞

 (−2) 2 (−2) = 20 (2) + 2

∞X
=1

(−1)  (2) 2 (2)

Unfortunately, we cannot evaluate the inverse Laplace transform of SW ;∞ () in

(7.16) for   1, but art. 182 computes the Taylor expansion of SW ;∞ () around

0 = 0 exactly.

182. Moments of the small-world graph SW ;∞. Taylor expansion of the pgf

 () = 
£
−

¤
in (7.6) shows that  [] = 1



P
=1 


 = (−1) 

()

 (0).

Expanding the exponential in (7.14) in a Taylor series,

SW ;∞ () = 
∞X

=0

(−)
!

1



Z 

0

µ
sin(2 + 1)

sin 

¶

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256 Density function of the eigenvalues

indicates that 
£
−(SW ;∞+1)

¤
=
P∞

=0
(−)
!

1


R 
0

³
sin(2+1)

sin 

´
 and that, by

equating corresponding powers in , the centered moments around  = −1 are

 [(SW;∞ + 1)

] =

1



Z 

0

µ
sin(2 + 1)

sin 

¶


Since
R 2


³
sin(2+1)

sin 

´
 =

R 
0

³
sin(2+1)

sin

´
, it holds that

Z 

0

µ
sin(2 + 1)

sin 

¶
 =

1

2

Z 2

0

µ
(2+1) − −(2+1)

 − −

¶


The complex transformation  =  isZ 2

0

µ
(2+1) − −(2+1)

 − −

¶
=
1



Z
||=1

µ
4+2 − 1
2 − 1

¶
−2−1

The integrand is analytic inside the unit circle, except for a pole of order 2+1 at

the origin  = 0. By Cauchy’s integral theorem 1
!

()



¯̄̄
=0

= 1
2

R
(0)

() 

(−0)+1 ,

we find that

1



Z
||=1

µ
4+2 − 1
2 − 1

¶
−2−1 =

2

(2)!
lim
→0

2

2

µ
4+2 − 1
2 − 1

¶
Invoking the binomial series (1 + )


=
P∞

=0

¡



¢
 yields

¡
1− 4+2

¢ ¡
1− 2

¢−
=

∞X
=0

∞X
=0

µ




¶µ−


¶
(−1)+ 2+4+2

Using 


 = !

(−)!
− and

¡−


¢
= (−1) Γ(+)

!Γ()
= (−1) ¡−1+



¢
leads to

lim
→0

2

2

µ
4+2 − 1
2 − 1

¶
=

∞X
=0

∞X
=0

(−1) ¡


¢¡
−1+



¢
(2+ 4 + 2)!

(2+ 4 + 2 − 2)! 1

The condition  is {+ 2 +  −  = 0} and specifies  =  − (2 + 1) .
Since  ≥ 0 or − (2 + 1)  ≥ 0, it holds that  ≤ 

2+1
and we arrive at

Z 

0

µ
sin(2 + 1)

sin 

¶
 = 

b 
2+1cX
=0

µ




¶µ
( + 1)− 1− (2 + 1) 

− 1
¶
(−1)

In summary, the pgf of the eigenvalues of an infinitely large small-world graph

SW;∞ with degree  = 2 is

SW ;∞ () = 
∞X

=0

(−)
!

 [(SW;∞ + 1)

]
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7.4 Density of a sparse regular graph 257

where the centered moments  [(SW;∞ − )

] around  = −1,

 [(SW;∞ + 1)

] =

b 
2+1cX
=0

µ




¶µ
( + 1)− 1− (2 + 1) 

− 1
¶
(−1) (7.17)

are positive integers. We find that  [(SW;∞ + 1)] = 1, 
h
(SW;∞ + 1)

2
i
=

2 + 1 and 
h
(SW;∞ + 1)

3
i
=
¡
3+2
2

¢− 3¡+1
2

¢
. The moments


£
SW;∞

¤
= (−1)

X
=0

µ




¶
(−1)

h
(SW;∞ + 1)


i

being the average number of walks , are also all positive integers and can be

computed from (7.17):  [SW;∞] = 0, 
h
2SW;∞

i
= 2, 

h
3SW;∞

i
= 6

¡

2

¢
.

For   3, we did not find simple expressions.

7.4 Density of a sparse regular graph

We present the ingenious method of McKay (1981), who succeeded in finding the

asymptotic density of the eigenvalues of the adjacency matrix of a regular, sparse

graph.

183. A large sparse, regular graph. Consider a regular graph  (;), where each

node has degree . The sparseness of  (;) is here understood in the sense that

 (;) has locally a tree-like structure. In other words, for small enough integers

, the graph induced by the nodes at hop distance 1 2      from a certain node

 is a tree, more specific a -ary, regular tree with the out-degree  =  − 1. We
will first determine the moments via trace(), as explained in art. 178, where

each element () equals the number of closed walks of  hops starting at node

 and returning at  (art. 6). The regularity of  (;) suggests for any node 

that, for  →∞,

1


trace () =

1



X
=1

() → ()

Hence, for large  and fixed , the local structure around any node  is almost the

same. In addition, as long as the contribution () of cycles to trace() is small,

i.e., () = (), the above limit is unaltered, for 1


³P
=1 (

) ±  ()
´
→

(). The fact that the number of cycles in  (;) grows less than propor-

tionally with  is an alternative way to define the sparseness of  (;).

184. Random walks and the reflection principle. McKay (1981) had the fortu-

nate idea to relate the computation of the number of closed walks to the powerful

reflection principle, primarily used in the theory of random walks.

The largest hop distance reached in a -ary tree by a closed walk of  hops is
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258 Density function of the eigenvalues£

2

¤
. The length  of all closed walks in a -ary tree is even. Moreover, all walks

travel some hops down and return along the same path back to the root . Due

to the regular structure, the analogy with a path in a simple random walk is very

effective.

In a simple random walk, an item moves along the (vertical) -axis over the

integers during  epochs, measured along the horizontal -axis. At each epoch

, the item jumps either one step to the right ( = −1 + 1) or one step to the
left ( = −1 − 1). Assuming that the item starts at the origin at epoch 0, then

0 = 0, its position at  =  equals  = − , where  and  are the total number

of right and left steps, respectively. Geometrically, plotting the  distance versus

discrete time , the sequence 1 2      represents a path from the origin to the

point ( ). In general,  can be either negative, positive or zero. The number of

such paths with  right steps is
¡



¢
=
¡


−

¢
=
¡



¢
, which is thus equal the number

of paths with  left steps, because  +  = . Writing in the sequel  for  and

combining  =  −  and  +  =  leads to  = +
2
. Hence, the number of paths

from the origin to the point ( ) is

() =

µ


+
2

¶
1{+2 ∈N} (7.18)

The reflection principle states that:

Theorem 47 (Reflection principle) The number of paths from the point  =

( ||) to the point  = ( ||) that cross or touch the -axis is equal to the number
of all paths from − = (− ||) to that same point .
The reflection of a point ( ) is the point (−).
Proof: The reflection principle is demonstrated by showing a one-to-one cor-

respondence with the subpath from  = ( ||) to  = ( 0) and the reflected

subpath from − = (− ||) to . For each subpath from  to , there corre-

sponds precisely one subpath from − to  (and the sequel of  to  is the same in
both cases). ¤

A direct consequence of Theorem 47 is the so-called ballot theorem:

Theorem 48 (Ballot) The number of paths from the origin to ( ), where   ∈
N0, that never touch the discrete time -axis equals 


().

Never touching the -axis implies that 1  0 2  0      =   0. The

proof is too nice to not include.

Proof: Since 1  0, the first step in such a path is necessarily the point

(1 1). Hence, the number of paths from the origin above the -axis to the point

( ) is equal to the number of paths from (1 1) to ( ) lying above the -

axis. The total number of paths from (1 1) to ( ) is (−1−1). All paths

from (1−1) to ( ) cross the -axis and their number equals (−1+1). By
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7.4 Density of a sparse regular graph 259

the reflection principle, the number of paths that does not touch the -axis equals

(−1−1) − (−1+1) = 

(), where the last equality follows from (7.18) and¡

−1
−1
¢− ¡−1



¢
= 2−



¡



¢
. ¤

With this preparation, we can determine (). Each walk of  hops or

 links, starting at epoch 0 at the origin where the root node  is placed, can

be represented by the sequence of points (0 0)  (1 1)  (2 2)     (), where

 ≥ 0 is the distance in hops from the root node . A closed walk of  hops

returns to the root, which means that  = 0. Each such walk of  hops may

consist of smaller walks of  hops, each time when  = 0 for 0    . In the

language of a random walk, each time , that the path starting from the origin

and returning back to the origin, but only lying above the -axis, it touches the

-axis at (  = 0). We thus need to compute the number of such paths with

 points touching the -axis. Feller (1970, pp. 90-91) proves that this number of

paths equals 
−

¡
−
[2 ]

¢
1{≤

2
∈N}. An elementary closed walk of  ∈ [1 ] hops

consists of one excursion to some maximum level  and back along the same

track. The total number of such elementary closed walks of  hops is  ( − 1)−1,
because the root has degree , and from hop level 1 on, each node has outdegree

 − 1. Only the upwards steps towards the local maxima at level  contribute

to the determination of the total number of walks in a -hop closed walk. Walk

excursions that do not reach  are subwalks of elementary closed walks reaching

the maximum level . Since there are  such elementary closed walks, their total

is
Q

=1  (1− )
−1 =  ( − 1)− ( − 1)


=1 . Now, each closed walk has an

even number of hops and precisely as many up as down in the -ary tree. Hence,P
=1 =

£

2

¤
, the highest possible level to be reached. Thus, we end up with

a total of 
−

¡
−
[2 ]

¢
1{2 ∈N}

 ( − 1)[2 ]− walks with  touching points. Finally,

summing over all possible  yields McKay’s basic result¡
2

¢

=

X
=1

µ
2− 



¶


2− 
 ( − 1)− (7.19)¡

2+1
¢

= 0

185. Asymptotic density ∞ (). The next hurdle is the inversion of (7.11) in
art. 178. We assume that the limit density exists and is differentiable such thatZ ∞

−∞
2∞ ()  =

X
=1

µ
2− 



¶


2− 
 ( − 1)−

and ∞ () = ∞ (−) is even to satisfy
¡
2+1

¢

= 0. Recall from Theorems

39 and 40 that symmetry in the spectrum of  is the unique fingerprint of a bipartite

structure of which a tree is a special case. McKay succeeded in finding ∞ () by

inverting this relation, using a rather complicated method.

He presents various alternative sums of (7.19) without derivation. Then he de-

rives an asymptotic form of (7.19) for large to conclude that the extent of ∞ ()
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Fig. 7.1. The spectral density ∞ () of a large sparse regular graph for various values of
the degree .

is bounded, i.e., ∞ () exists only for || ≤ 2
√
 − 1. After normalizing the -

range to the interval [−1 1], he employs Chebyshev polynomials (Section 12.7) and
their orthogonality properties to execute the inversion, resulting in:

Theorem 49 (McKay’s Law) The asymptotic density ∞ () of the eigenvalues

of the adjacency matrix of a large, sparse regular graph with degree  equals

∞ () =

p
4 ( − 1)− 2

2 (2 − 2)
1{||≤2√−1} (7.20)

The corresponding distribution function ∞ () = Pr [∞ ≤ ] is, for −2√ − 1 ≤
 ≤ 2√ − 1,

∞ () =
1

2
+



2

Ã
arcsin



2
√
 − 1 −

 − 2


arctan
−2

p

4 ( − 1)− 2

!
The spectral density (7.20) is plotted in Fig. 7.1. For  = 2, we again find the

spectral density (7.13) of an infinitely long path.

7.5 Random matrix theory

186. Random matrix theory investigates the eigenvalues of an  ×  matrix 

whose elements  are random variables with a given joint distribution. Even if
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7.5 Random matrix theory 261

all elements  are independent, there does not exist a general expression for the

distribution of the eigenvalues. However, nice results exist in particular cases, e.g.

when the elements  are Gaussian random variables. Moreover, if the elements

 are properly scaled, in various cases the spectrum in the limit  → ∞ seems

to converge rapidly to a deterministic limit distribution. The fascinating results of

random matrix theory and applications from nuclear physics to the distributions of

the non-trivial zeros of the Riemann Zeta function are reviewed by Mehta (1991).

Recent advances in random matrix theory, discussed by Edelman and Raj Rao

(2005), present a general framework that relates, among others, the laws of Wigner

(Theorem 50), McKay (Theorem 49) and Marc̆enko-Pastur (Theorem 54) to Her-

mite, Jacobi and Laguerre orthogonal polynomials (see Chapter 12), respectively.

A rigorous mathematical treatment of random matrix theory has appeared in An-

derson et al. (2010).

Random matrix theory immediately applies to the adjacency matrix of the Erdős-

Rényi random graph  (), where each element  is 1 with probability  and

zero with probability 1− .

7.5.1 Wigner’s Semicircle Law

187. Wigner’s Semicircle Law is the fundamental result in the spectral theory of

large random matrices.

Theorem 50 (Wigner’s Semicircle Law) Let  be a random  × real sym-

metric matrix with independent and identically distributed elements  with 2 =

Var[ ] and denote by ( ) an eigenvalue of the set of the  real eigenvalues of

the scaled matrix  = √

. The probability density function ( ) () tends for

 →∞ to

lim
→∞

() () =
1

22

p
42 − 2 1||≤2 (7.21)

Since the first proof of Theorem 50 by Wigner (1955) and his subsequent general-

izations (Wigner, 1957, 1958) many proofs have been published. However, none of

them is short and easy enough to include here. Wigner’s Semicircle Law illustrates

that, for sufficiently large  , the distribution of the eigenvalues of √

does not de-

pend anymore on the probability distribution of the elements  . Hence, Wigner’s

Semicircle Law exhibits a universal property of a class of large, real symmetric ma-

trices with independent random elements. Mehta (1991) suspects that, for a much

broader class of large random matrices, a mysterious yet unknown law of large

numbers must be hidden. Generalizing Wigner’s Semicircle Law to asymmetric

complex matrices, Tao and Vu (2010) have proved:

Theorem 51 (Circular Law) Let  be the × random matrix whose entries

are i.i.d. complex random variables with mean 0 and variance 1. The empirical
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262 Density function of the eigenvalues

spectral distribution of √

converges (both in probability and in the almost sure

sense) to the uniform distribution on the unit disk.

The adjacency matrix of the Erdős-Rényi random graph satisfies the conditions

in Theorem 50 with 2 =  (1− ) and its eigenvalues grow as 
³√


´
, apart from

the largest eigenvalue (see art. 190). In order to obtain the finite limit distribution

(7.21) scaling by 1√

is necessary.

188. The moment relation (7.9) for the eigenvalues suggests us to compute the

moments of Wigner’s Semicircle Law (7.21),

 [] =

Z ∞
−∞

 lim
→∞

() ()  =
1

22

Z 2

−2

p
42 − 2

Thus,

 [] = 

where

 =
2+1



Z 1

−1

p
1− 2 (7.22)

shows that  = 0 for odd values of , because of integration of an odd function

over an even interval. Using the integral of the Beta-function (Abramowitz and

Stegun, 1968, Section 6.2.1) for Re ()  0 and Re ()  0,

 ( ) =

Z 1

0

−1 (1− )
−1

 =
Γ ()Γ ()

Γ ( + )

we execute the integral in (7.22) for  = 2,Z 1

0

2
p
1− 2 =

Z 1

0

−
1
2 (1− )

1
2  =

Γ
¡
 + 1

2

¢
Γ
¡
3
2

¢
Γ ( + 2)

Using the functional equation Γ ( + 1) = Γ (), Γ
¡
1
2

¢
=
√
 and the duplication

formula Γ (2) = 2
2− 1

2√
2
Γ ()Γ

¡
 + 1

2

¢
in (Abramowitz and Stegun, 1968, Section

6.1.18), finally gives

2 =
(2)!

( + 1)!!
=

¡
2


¢
 + 1

(7.23)

The numbers 2 are known as Catalan numbers (Comtet, 1974). Reversely, since

all moments uniquely define a probability distribution, the only distribution, whose

moments are Catalan numbers, is the semicircle distribution, with density function

given by (7.21).

Another derivation, that avoids the theory of the Gamma function, rewrites the

integral (7.22) as

 =
2+1



Z 1

−1

p
1− 2 = −2

+1



Z 1

−1

−√
1− 2

©
−1

¡
1− 2

¢ª

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7.5 Random matrix theory 263

Since 


√
1− 2 = −√

1−2 , partial integration gives

 =
2+1



Z 1

−1

p
1− 2

©
(− 1) −2 − (+ 1) ª 

= 4 (− 1)−2 − (+ 1)

which leads, with 0 = 1 and 1 = 0, to the recursion  =
4(−1)
+2

−2. Iteration
gives

 = 2
2− 1
+ 2

− 3


− 5
− 2 · · ·

− (2− 1)
− (2− 4)−2

If  is odd,  = 0 as found above, while if  = 2 and  = , then

2 = 2
2 2 − 1
2 + 2

2 − 3
2

2 − 5
2 − 2 · · ·

1

4

= 22
2

2

2 − 1
2 + 2

2 − 2
2 − 2

2 − 3
2

2 − 4
2 − 4

2 − 5
2 − 2 · · ·

1

4
=

(2)!

( + 1)!!

which again results in the Catalan numbers (7.23).

The Catalan numbers appear in many combinatorial problems (see e.g., Comtet

(1974)). For example, the number of paths in the simple random walk that never

cross (but may touch) the -axis and that start from the origin and return to the

origin at time  = 2, is deduced from the reflection principle (Theorem 47) as

(20) − (2−2) =
µ
2



¶
−
µ
2

− 1
¶
= 2

Indeed, the number of paths from the origin to (2 0) that never cross the -axis

equals the total number of paths from the origin to (2 0), which is (20), minus

the number of paths from the origin to (2 0) that cross the -axis at some point.

A path that crosses the -axis, touches the line  = −1. Instead of considering
the reflection principle with respect to the  = 0 line (i.e. the -axis), it evidently

applies for a reflection around a line at  =  ∈ Z. Thus, the number of paths
from (2 0) to the origin that touch or cross the line at  = −1 is equal to the
total number of paths from (2−2) to the origin. That latter number is (2−2),
which demonstrates the claim.

189. Extensions of Wigner’s Semicircle Law. A single eigenvalue has measure zero

and does not contribute to the limit probability density function (7.21). By using

Wigner’s method, Füredi and Komlós (1981) have extended Wigner’s Theorem 50.

Theorem 52 (Füredi-Komlós) Let  be a random × real symmetric matrix

where the elements  =  are independent, not necessarily identically distributed,

random variables bounded by a common bound . Assume that, for  6= , these

random variables possess a common mean  [ ] =  and common   [ ] = 2,

while  [] = .
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264 Density function of the eigenvalues

(a) If   0, then the distribution of the largest eigenvalue 1 () can be approxi-

mated to within order 
³

1√


´
by a Gaussian distribution with mean

 [1 ()] ' ( − 1)+  +
2



and bounded variance

Var [1 ()] ' 22

In addition, with probability tending to 1,

max
1

| ()|  2
√
 +

³
13 log

´
(7.24)

(b) If  = 0, then all eigenvalues of , including the largest, obey the last bound

(7.24).

The Füredi-Komlós Theorem 52 has been sharpened tomax1 | ()|  2
√
+


¡
14 log

¢
by Vu (2007). The so-called Gaussian Unitary Ensemble (GUE) is

defined by an  ×  Hermitian Wigner matrix  , where the diagonal elements

 are i.i.d. real Gaussian random variables  (0 1), while both the real and the

imaginary part of the complex off-diagonal elements  are i.i.d. Gaussian random

variables 
¡
0 1

2

¢
. Among many results, Tao and Vu (2011) mention a theorem

of Gustavsson, illustrating that, for large  , an eigenvalue  ( ) of a random

Hermitian Wigner matrix  has Gaussian fluctuation:

Theorem 53 (Gustavsson) If  varies with  such that  → , as  → ∞,
for some 0    1, then the scaled -th eigenvalue of an  × random Hermitian

Wigner matrix  tends, for  →∞, in distribution tos
4− ¡−1

¡



¢¢2
2



³

√

´
−−1

¡



¢
√
log

→  (0 1)

where −1 () is the inverse function of the normalized ( = 1 in (7.21)) Wigner

semi-circle distribution function,

 () =
1

2

Z 

−2

p
4− 2

Loosely speaking, Gustavsson’s Theorem 53 states that

 ( ) ≈ −1

µ




¶√
 +

⎛⎝0 2 log³
4− ¡−1

¡



¢¢2´


⎞⎠
190. Spectrum of the Erd̋os-Rényi random graph. We apply the powerful Füredi-

Komlós Theorem 52 to the Erdős-Rényi random graph  (). Since  = ,

 = 0 and 2 =  (1− ), Theorem 52 states that the largest eigenvalue 1 is
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7.5 Random matrix theory 265

a Gaussian random variable with mean  [1] = ( − 2)  + 1 + 
³

1√


´
and

Var[1 ()] ' 2 (1− ), while all other eigenvalues are smaller in absolute value

than 2
p
 (1− ) +

¡
14 log

¢
, the latter due to Vu (2007).
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Fig. 7.2. The probability density function of an eigenvalue in (50) for various .
Wigner’s Semicircle Law, rescaled and for  = 05 (2 = 1

4
), is shown in bold. We

observe that the spectrum for  and 1−  is similar, but slightly shifted. The high peak
for  = 01 reflects disconnectivity, while the high peak at  = 09 shows the tendency to
the spectrum of the complete graph where  − 1 eigenvalues are precisely −1.

The spectrum of  (50) together with the properly rescaled Wigner’s Semicircle

Law (7.21) is plotted in Fig. 7.2. Already for this small value of  , we observe

that Wigner’s Semicircle Law is a reasonable approximation for the intermediate -

region. The largest eigenvalue 1 for finite  , which is almost Gaussian distributed

around  ( − 2)+1 with variance 2 (1− ) by Theorem 52 and shown in Fig. 7.2,

but which is not incorporated in Wigner’s Semicircle Law, influences the average

 [] = 1


P
=1  = 0 and causes the major bulk of the pdf around  = 0 to shift

leftward compared to Wigner’s Semicircle Law, which is perfectly centered around

 = 0.

The finite size variant of the Wigner Semicircle Law for the eigenvalue distribu-

tion of the adjacency matrix of the Erdős-Rényi random graph  () is

 () '

q
4 (1− )− (+ )

2

2 (1− )
 || ≤ 2 (1− )

√
 (7.25)
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266 Density function of the eigenvalues

The expression (7.25) for the bulk density of eigenvalues, thus also ignoring the

largest eigenvalue 1, agrees very well with simulations for finite  . Below, we

sketch the derivation of (7.25). The probabilistic companion of (3.5) is

 [] =
∞P

=−∞
Pr [ = ] = 0

while the discrete random variable  needs to satisfy
∞P

=−∞
Pr [ = ] = 1. The

Perron-Frobenius Theorem 75 states that any connected graph has one largest

eigenvalue 1 with multiplicity one, such that Pr [ = 1] =
1

. Both the mean and

the law of total probability can be written, for one realization of an Erdős-Rényi

random graph, as

 [] = 1
1


+

P
All others

Pr [ = ] = 0 (7.26)

and
P

All others

Pr [ = ] = 1− 1

. Fig. 7.2 suggests us to consider the Semicircle Law

for finite  shifted over some value ,

 (; ) =

q
4 (1− )− (+ )

2

2 (1− )
 || ≤ 2 (1− )

√


Denoting the radius  = 2 (1− )
√
 and passing to the continuous random

variable, relation (7.26) becomes

0 = 1
1


+

Z −

−−
 (; ) 

= 1
1


+

Z −

−−
(+ )  (; ) − 

Z −

−−
 (; ) 

Since
R −
−− (+ )  (; )  = 0 due to symmetry and

R −
−−  (; )  =

1 − 1

, we obtain 1

1

− 

¡
1− 1



¢
= 0. Finally, Theorem 52 states that 1 =

( − 2) + (1) such that  = +
¡
−1

¢
leading to (7.25).

The complement of  () is (())

= 1− (), because a link in () is

present with probability  and absent with probability 1− and (())

is also a

random graph. For large  , there exists a large range of  values for which both  ≥
 and 1− ≥  such that both  () and (())


are connected almost surely.

Fig. 7.2 shows that the normalized spectra of  () and 1− () are, apart from
a small shift and ignoring the largest eigenvalue, almost identical. Equation (3.39)

and art. 62 indicate that the spectra of a graph and of its complement tend to each

other if  → 0, except for the largest eigenvector 1 which will tend to . This

seems to suggest that  () and 1− () are tending to a regular graph with
degree  ( − 1) and (1− ) ( − 1) and that these regular graphs, even for small
 , have nearly the same spectrum, apart from the largest eigenvalue  ( − 1)
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Fig. 7.3. The spectrum of the adjacency matrix of (100) (full lines) and of the corre-
sponding matrix with i.i.d. uniform elements (dotted lines). The small peaks at higher
values of  are due to 1.

and (1− ) ( − 1) respectively: 1−√

' − √


− 1√


where  is an eigenvalue of

 ().

Fig. 7.3 shows the probability density function  () of the eigenvalues of the

adjacency matrix  of  () with  = 100 together with the eigenvalues of

the corresponding matrix  where all one elements in the adjacency matrix of

 (100) are replaced by i.i.d. uniform random variables on [0 1]. Since the elements

of  are always smaller with probability 1 than those of , the matrix norm

kk  kk and the inequality (A.26) imply that 1 ( )  1 (). In addition,

relation (3.7) shows that
P

=1 
2
 ( )  2 such that Var[ ( )]  Var[ ()],

which is manifested by a narrower and higher peaked pdf centered around  = 0.

7.5.2 The Marc̆enko-Pastur Law

The last of the classical laws in random matrix theory with an analytic density

function for the eigenvalues is given in the next theorem without proof:

Theorem 54 (The Marc̆enko-Pastur law) Let  be a random  ×  matrix

with independent and identically distributed complex elements  with finite 
2 =

  [ ] and zero mean  [ ] = 0, or the complex elements  are independently
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268 Density function of the eigenvalues

distributed with a finite fourth-order moment. Let  = 

as  → ∞ and define

 () = 2
¡
1−√¢2 and  () = 2

¡
1 +
√

¢2
, and denote by () an eigenvalue

of the set of the  real eigenvalues of the scaled Hermitian matrix  = 1

∗. The

probability density function () () tends for →∞ to

lim
→∞

() () =
1{()≤≤()}
22

p
(−  ()) ( ()− ) +

µ
1− 1



¶
 () 1{1}

(7.27)

Marčenko and Pastur (1967) prove Theorem 54 by deriving a first-order partial

differential equation, from whose solution the unique Stieltjes transform  (; ) of

 () = lim→∞ () () is found. The Cauchy or Stieltjes transform (art. 362) of

a function  (), defined by

 ( ) =

Z ∞
−∞

 ()

 − 


is a special case of an integral of the Cauchy type, that is treated, together with

its inverse, in art. 361. The method of Marčenko and Pastur (1967) is different

from the moments method used by McKay, sketched in Section 7.4, and earlier by

Wigner (1955).

3 .5

3 .0

2 .5

2 .0

1 .5

1 .0

0 .5

0 .0

f 
(S

)(x
)

4321

 eigenvalue x

 y  =  1
 y  =  0 .5
 y  =  0 .25
 y  =  0 .1
 y  =  0 .01

Fig. 7.4. The Marc̆enko-Pastur probability density function (7.27) for various values of .
Each curve starts at  =  (), which is increasing from 0 to 1 when  decreases from 1
to 0, and ends at  =  (), which decreases from 4 to 1 when  decreases from 1 to 0.
When  → 0, the Marc̆enko-Pastur probability density function tends to a delta function
at  = 1.

The last term in (7.27), the point mass at  = 0, is a consequence of the non-

square form of . The rank(∗) ≤ min () such that, for   1, the  ×
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matrix ∗ has − = 
³
1− 1



´
zero eigenvalues, while all  other eigenvalues

are the same as those of ∗, which follows from art. 284.

In the case  =  and  = 1, and  =  = √

, the eigenvalues of  are the

squares of those of √

. Since the latter eigenvalues obey Wigner’s Semicircle Law

(7.21) and since the density 2 () =
(
√
)+(−

√
)

2
√


for any random variable 

as shown in Van Mieghem (2014, p. 50), we find, indeed for  = 1, that

() =
() (

√
) + () (−

√
)

2
√


=
() (

√
)√



Also, in that case, the matrix  represents a square covariance matrix. In general

for  real random  × 1 vectors,  represents the  ×  covariance matrix, that

appears in many applications of signal and information theory and physics. Fig. 7.4

illustrates the Marc̆enko-Pastur probability density function () () for various

values of  ≤ 1.

7.5.3 Density of random graphs with arbitrary expected degrees

Raj Rao and Newman (2013) consider the configuration model that generates a ran-

dom graph with a given degree distribution. The degree  of a node  is visualized

as  stubs or half-links incident to node . Given a degree sequence 1 2     ,

after a pairwise matching of stubs of different nodes, in which each matching ap-

pears with equal probability, the final configuration graph is obtained. Thus, each

joining of two uniformly chosen and not yet paired stubs creates a link in the con-

figuration graph and the process continues until all stubs have been joined. The

expected number of links between nodes  and  equals

2

for large  . This

property of the configuration graphs relates naturally to the modularity matrix 

defined by (4.80) in art. 151. However, the links in the configuration graph are not

independent and to avoid this major complication, Raj Rao and Newman (2013)

consider a modified graph in which the number of links between each pair ( ) of

nodes is an independent Poisson random variable with mean

2
. In particular,

instead of the specific degree, they treat  as the expected degree of node , which

is, for large  , a good approximation because the actual degree is then narrowly

peaked around the mean degree. These expected degrees, that are now real numbers

 instead of integers, are drawn from the continuous probability density function

 (). The corresponding adjacency matrix of the modified configuration graph is

 =
1

2
 +

where 1
2
 is the ensemble average of  and the modularity matrix  is the

deviation from that ensemble average, whose elements are, by construction, inde-

pendent but not identically distributed random variables with zero mean. Moreover,

since the variance Var[ ] = Var[ ] and since  are Poisson random variables,

we have that Var[ ] =  [ ] =

2

and 
£
2


¤
=


2
, because  [ ] = 0.
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270 Density function of the eigenvalues

After using (7.7) for the density () () of the eigenvalues of the modularity

matrix  , repeatedly approximating  [ ()] by  ( []) justified by construc-

tion of the modified configuration graph and for large  and using the Cauchy or

Stieltjes transform (see art. 361), Raj Rao and Newman (2013) end up with

() () = −



Im2 ()

where the average degree  =
2[]


and where the function  () satisfies the

integral equation

 () =
1



Z ∞
0

 () 

 −  ()
(7.28)

Due to interlacing (art. 155) of eigenvalues of the adjacency and modularity

matrix, the spectral density of the modularity matrix equals that of the adjacency

matrix, () () = () (), except for the largest eigenvalue 1 of the adjacency

matrix . The largest eigenvalue 1 = 1 () is shown to satisfy (1 − 1) (1) = 1,
where  obeys (7.28).

Generally, for an arbitrary degree density function  (), the resulting spectral

density () () deviates from Wigner’s Semicircle Law (7.21). The spectrum still

consists of a main band, but nodes with exceptionally high degree, the so-called

hubs, may give rise to eigenvalues that lie outside that band, akin to the energy of

impurity states in solid state materials.
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8

Spectra of complex networks

This chapter presents examples of the spectra of complex networks, which we have

tried to interpret or to understand using the theory of previous chapters. In contrast

to the mathematical rigor of the other chapters, this chapter is more intuitively

oriented and it touches topics that are not yet understood or that lack maturity.

Nevertheless, the examples may give a flavor of how real-world complex networks

are analyzed as a sequence of small and partial steps towards, hopefully, complete

understanding.

8.1 Simple observations

When we visualize the density function  () of the eigenvalues of the adjacency

matrix of a graph, defined in art. 173, peaks at  = 0,  = −1 and  = −2 are
often observed. The occurrence of adjacency eigenvalue at those integer values has

a physical explanation. Integer eigenvalues are special (art. 45).

8.1.1 A graph with eigenvalue  () = 0

Amatrix has a zero eigenvalue if its determinant is zero (art. 235). A determinant is

zero if two rows are identical or if some of the rows are linearly dependent (art. 209).

For example, two rows are identical resulting in  () = 0, if two not mutually

interconnected nodes are connected to a same set of nodes. Since the elements 
of an adjacency matrix  are only 0 or 1, linear dependence of rows occurs every

time the sum of a set of rows equals another row in the adjacency matrix. For

example, consider the sum of two rows. If node 1 is connected to the set 1 of

nodes and node 2 is connected to the distinct set 2, where 1 ∩ 2 = ∅ and

1 6= 2, then the graph has a zero adjacency eigenvalue if another node 3 6= 2
and 3 6= 1 is connected to all nodes in the set 1 ∪ 2. These two types of zero
eigenvalues occur when a graph possesses a “local bipartiteness”. In real networks,

this type of interconnection often occurs.

271
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272 Spectra of complex networks

8.1.2 A graph with eigenvalue  () = −1
An adjacency matrix  has an eigenvalue  () = −1 every time a node pair 1
and 2 in the graph is connected to a same set  of different nodes and 1 and 2
are mutually also interconnected. Indeed, without loss of generality, we can relabel

the nodes such that 1 = 1 and 2 = 2. In that case, the first two rows in  are of

the form

0 1 13 14 · · · 1
1 0 13 14 · · · 1

and the corresponding rows in det (− ) of the characteristic polynomial are

− 1 13 14 · · · 1
1 − 13 14 · · · 1

If two rows are identical, the determinant is zero. In order to make these rows

identical, it suffices to take  = −1 and det (+ ) = 0, which shows that  = −1
is an eigenvalue of  with this particular form. This observation generalizes to a

graph where  nodes are fully meshed and, in addition, all  nodes are connected

to the same set  of different nodes. Again, we may relabel nodes such that the

first  rows describe these  nodes in a complete graph configuration, also called a

clique. Let  denote a ( − ) × 1 zero-one vector, then  is a matrix with all

rows identical and equal to . The structure of det (− ) is

det (− ) =

¯̄̄̄
¯ ( − (+ 1) )× 

(−)× ( − )(−)×(−)

¯̄̄̄
¯

which shows that the first  rows are identical if  = −1, implying that the mul-
tiplicity of this eigenvalue is  − 1. Observe that the spectrum in Section 6.1 of

the complete graph  , where  =  , indeed contains an eigenvalue  = −1 with
multiplicity  − 1. We can also say that a peak in the density of the adjacency
eigenvalues at  = −1 reflects that a set of interconnected nodes all have the same
neighbors, different from those in the interconnected set.

8.1.3 A graph with eigenvalue  () = −2
If the graph is a line graph (art. 25), then art. 27 demonstrates that the adjacency

matrix has an eigenvalue equal to  () = −2 with multiplicity  − . However,

it is in general rather difficult to conclude that a graph is a line graph. Each node

with degree  — locally, a star 1 — is transformed in the line graph into a clique

with
¡

2

¢
links. Thus, a line graph can be regarded as a collection of interconnected

cliques  , where 1 ≤  ≤  . The presence of an eigenvalue  () = −2 is
insufficient to deduce that a graph is a line graph. A more elaborate discussion on

line graphs is found in Cvetkovíc et al. (2004) and Cvetkovíc et al. (2009, Section

3.4).

A peak in the density  () of the eigenvalues of the adjacency matrix at  () =
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−2 and  () = 2 may correspond to a very long path (art. 179). As shown in Fig.
7.1, these peaks occur in large, sparse regular graphs with degree  = 2 by McKay’s

Theorem 49.

8.2 Distribution of the Laplacian eigenvalues and of the degree

Although the moments of the Laplacian eigenvalues (art. 106-108) can be expressed

in terms of those of the degree, in most real-world networks the degree distribution

and the Laplacian distribution are usually different. In this section, we present a

curious example, where both distributions are remarkably alike.

Software is assembled from many interacting units and subsystems at several

levels of granularity (subroutines, classes, source files, libraries, etc.) and the inter-

actions and collaborations of those parts can be represented by a graph, which is

called the software collaboration graph. Fig. 8.1 depicts the topology of the VTK

network, which represents the collaborations in the VTK visualization C++ library

that has been documented and studied by Myers (2003).

Fig. 8.1. The connected graph of the VTK network with  = 771 and  = 1357. The
nodal size is drawn proportionally to its degree.

Fig. 8.2 shows the correspondence between the degree and the Laplacian eigen-

value  in the connected VTK graph with  = 771 nodes,  [] =  [] = 35201,

Var[] = 330603 and Var[] = 365804, which agrees with the theory in art. 106.

Both the degree  and the Laplacian eigenvalue  of the VTK graph approximately

follow a power law, a general characteristic of many complex networks, and each

power law is specified by the fit in the legend in Fig. 8.2, where  and  are nor-
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274 Spectra of complex networks

malization constants. The much more surprising fact is that the insert in Fig. 8.2

demonstrates how closely the ordered Laplacian eigenvalues  follow the ordered

degree (). Only in software collaboration networks, such as MySql studied in

Myers (2003), have we observed such a close relationship between  and , which

suggests that these graphs may be close to threshold graphs (art. 114).

0.0001

0.001

0.01

0.1

f (
x)

1
2 3 4 5 6 7 8 9

10
2 3 4

x

 f (x) and fit: c x
-1.53

 Pr[D = x] and fit: cD x
-1.90

0.1

1

10

7006005004003002001000 k

Laplacian eigenvalue k

 Ordered degree d(k) 

Fig. 8.2. The density function of the degree and of the Laplacian eigenvalues in the soft-
ware dependence network VTK. The insert shows how close the ordered degree and Lapla-
cian eigenvalues are.

The definition of the Laplacian  = ∆− hints that the influence of the adja-

cency matrix on the eigenvalues  of the Laplacian is almost negligible. The bounds

in art. 106, derived from the interlacing principle,

() − 1 () ≤  () ≤ () −  ()

are too weak because 1 () = 1146 and  () = −913. Our recent perturba-
tion approximation (Van Mieghem, 2021) for a Laplacian eigenvalue  expanded

around the degree  of a node  in the graph

 ≈  +
11

16

X
=1
 6=



 − 
− 5
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=1
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

 − 

X
=1
 6=



 − 
(8.1)

+
1

16

⎛⎜⎝ X
=1
 6=



 − 
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 − 
−
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

( − )
2

X
=1
 6=



 − 

⎞⎟⎠
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is expected to be useful, e.g. when a few links are added or removed in threshold

graphs (art. 114).

Fig. 8.3 presents the density function  () of the adjacency eigenvalues, which

is typically tree-like: a high peak  (0) = 042 at the origin  = 0 and the density

function is almost symmetric around the origin,  (−) ≈  (). If a graph is

locally tree-like (art. 183), we would expect its density to approximately follow

McKay’s Theorem 49 drawn in Fig. 7.1. At first glance, the peaks in  () at

roughly  = −1 and  = 1 may hint at such a locally tree-like structure, but

McKay’s Theorem 49 predicts singular behavior at  = 2
√
 − 1 ≈ 31 for degree

 '  [] = 352. The small variance Var[] =  [] = 352 (art. 49), which

is much smaller than Var[] and than Var[] = Var[] +Var[], supports the ob-

servation why the adjacency spectrum only marginally influences the Laplacian

eigenvalues.
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Fig. 8.3. The density of the eigenvalues of the adjacency matrix of the VTK graph. The
insert shows the ordered eigenvalues  versus their rank , where 1 = 1146 and  =
−913.

Finally, we mention the nice estimate of Dorogovtsev et al. (2003). Using an ap-

proximate analysis from statistical physics, but inspired by McKay’s result (Section

7.4) based on random walks, Dorogovtsev et al. (2003) derived the asymptotic law

for the tails of  () of locally tree-like graphs as

 () ≈ 2 ||Pr
£
 = 2

¤
for large . For example, in a power law graph where Pr [ = ] = − , the
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asymptotic tail behavior of the density function of the adjacency eigenvalues is

 () ≈ 2 ||1−2

As shown in Fig. 8.2, the power law exponent for the VTK network is about  ' 19
such that 2 − 1 ' 28, but fitting the tail region of  () in a log-log plot gives a
slope of −17, which again seems to indicate that the VTK graph is not sufficiently
close to a locally tree-like, power law graph.

8.3 Functional brain network

The interactions between brain areas can be represented by a functional brain net-

work as shown by Stam and Reijneveld (2007) and Tewarie et al. (2021). The con-

cept of functional connectivity refers to the statistical interdependencies between

physiological time series recorded in various brain areas, and is thought to reflect

communication between several brain areas. Magneto-encephalography (MEG), a

recording of the brain’s magnetic activity, is a method to assess functional connec-

tivity within the brain. Each MEG channel is regarded as a node in the functional

brain network, while the functional connectivity between each pair of channels is

represented by a link, whose link weight reflects the strength of the connectivity,

measured via the synchronization likelihood. It is based on the concept of general

synchronization (Rulkov et al., 1995), and takes linear as well as non-linear syn-

chronization between two time series into account. The synchronization likelihood

 between time series  and  lies in the interval [0 1], with  = 0 indicating

no synchronization, and  = 1 meaning total synchronization. We adopt the

convention that  = 0, rather than  = 1, because of the association with the

adjacency matrix of the corresponding functional brain graph.

The weighted adjacency matrix  of the human functional brain network con-

tains as elements  the synchronization likelihood between the  = 151 different

MEG channels, each probing a specific area in the human brain as detailed in

Wang et al. (2010). Since all functional brain areas are correlated, the matrix 

has the structure of the adjacency matrix 
of the complete graph  , where

the one-elements  are substituted by the correlations | | ≤ 1. Since the ma-
trix norm kk ≤ k

k because all elements | | ≤ 1, art. 207 indicates that
1 ( ) ≤ kk and 1 ( ) ≤ 1 (

) =  − 1. Fig. 8.4 shows the eigenvalues
of the weighted adjacency matrix  of the functional brain network of a typical

patient before and after surgery. The correlations  before and after surgery are

almost the same. The spectrum in Fig. 8.4 is closely related to that of the complete

graph  : the  = −1 eigenvalue with multiplicity  − 1 in  is here spread

over the interval [−1 1). All eigenvalues are simple and the largest eigenvalue in
[14 15] is clearly most sensitive to the changes in the weighted adjacency matrix ,

as the insert in Fig. 8.4 shows. Hence, the changes in the few largest eigenvalues

seem to be good indicators to evaluate the effect of the brain surgery.

                     

https://doi.org/10.1017/9781009366793.011
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.011
https://www.cambridge.org/core


8.4 Rewiring Watts-Strogatz small-world graphs 277

14

12

10

8

6

4

2

0

 N
-k

(A
)

140120100806040200

k

 before surgery
 after surgery

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

 N
-k

 (
A

be
fo

re
)-
 N

-k 
(A

af
te

r)

140120100806040200
k

Fig. 8.4. The eigenvalues of the weighted adjacency matrix of the functional brain network
before and after surgery in increasing order. The insert shows the differences between the
eigenvalues before and after surgery.

8.4 Rewiring Watts-Strogatz small-world graphs

The spectrum of theWatts-Strogatz small-world graphSW; without link rewiring

is computed in Section 6.2. Recall that SW; is a regular graph (art. 55) where

each node has degree  = 2. When links in SW; are rewired, independently and

with probability , the graph’s topology and properties change with . Fig. 1.3

presents a rewired Watts-Strogatz small-world graph, while the original regular

small-world graph SW; is shown in Fig. 6.1. Here, we investigate the influence

of the link rewiring probability  on the eigenvalues of the adjacency matrix of

Watts-Strogatz small-world graphs.

Fig. 8.5 shows the pdf  () of an eigenvalue  of the adjacency matrix of a

Watts-Strogatz small-world graph. In absence of randomness  = 0, the spectrum

is discrete, reflected by the peaks in Fig. 8.5 and drawn differently for all  in

Fig. 6.2. When randomness is introduced by increasing   0, the peaks smooth

out and Fig. 8.5 indicates that the pdf  () tends rapidly to that of the Erdős-

Rényi random graph shown in Fig. 7.2.

Fig. 8.5 thus suggests that a bell-shape of the spectrum around the origin is a

fingerprint of “randomness” in a graph, while peaks reflect “regularity” or “struc-

ture”1. We also observe that “irregularity” can be measured, as mentioned in

1 The quotes here refer to an intuitive meaning. A commonly agreed and precise definition of
“randomness” and “structure” of a graph is lacking.
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Fig. 8.5. The probability density function  () of an eigenvalue in Watts-Strogatz small-
world graphs with  = 200 and  = 4 for various rewiring probabilities  ranging from
0 to 1, first in steps of 001 until  = 01, followed by an increase in steps of 01 up to
 = 1. The arrow shows the direction of increasing .

art. 72, by the amount that the largest eigenvalue deviates from the mean degree

 [] = 2. Rewiring does not change the mean degree, because the number of

links and nodes is kept constant and  [] = 2

, but the -axis in Fig. 8.5 shows

an increase of the largest eigenvalue from 1 = 8 = 2 when  = 0 to about 9 for

 = 1.

Fig. 6.3 has shown how irregular the number of different eigenvalues of SW;

without rewiring behaves as a function of  and . Simulations indicate that, even

for a small rewiring probability of  = 001, the spectrum only contains simple

eigenvalues with high probability. When rewiring only one link in SW; with

 = 200 and  = 4, the number of distinct eigenvalues dramatically increases

from 95 to about 190. Hence, destroying the regular adjacency matrix structure

by even one element has a profound impact on the multiplicity of the eigenvalues.

This very high sensitivity is a known fact in the study of zeros of polynomials

(Wilkinson, 1965, Chapter 2): small perturbations of the coefficients of a polynomial

may heavily impact the multiplicity of the real zeros and whether the perturbed

zeros are still real. Another consequence is that the upper bound in Theorem 11 on

p. 75 for the diameter  in terms of the number of different eigenvalues is almost

useless in real-world graphs, where most of the eigenvalues are different, such that
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the bound in Theorem 11 reduces to  ≤  − 1 = max. By rewiring links in

SW; , we observe even contrasting effects: the regular structure of SW; is

destroyed, which causes the diameter , in most cases, to shrink, while the number

of different eigenvalues jumps to almost the maximum  .

8.5 Assortativity

8.5.1 Theory

“Mixing” in complex networks refers to the tendency of network nodes to connect

preferentially to other nodes with either similar or opposite properties. Mixing is

computed via the correlations between the properties, such as the degree, of nodes

in a network. Here, we study the degree mixing in undirected graphs. Generally, the

linear correlation coefficient between two random variables of  and  is defined

(Van Mieghem, 2014, p. 27) as

 ( ) =
 [ ]− 


(8.2)

where  =  [] and  =
p
Var [] are the mean and standard deviation of

the random variable , respectively. Newman (2003a, eq. (21)) has expressed the

linear degree correlation coefficient of a graph as

 =

P


 ( − )


(8.3)

where  is the fraction of all links that connect the nodes with degree  and  and

where  and  are the fraction of links that start and end at nodes with degree

 and , satisfying the following three conditions:
P


 = 1,  =
P


 and

 =
P


. When   0, the graph possesses assortative mixing, a preference

of high-degree nodes to connect to other high-degree nodes and, when   0,

the graph features disassortative mixing, where high-degree nodes are connected

to low-degree nodes. We refer to Noldus and Van Mieghem (2015) for review on

assortativity.

The translation of (8.3) into the notation of random variables is presented as

follows. Denote by  and  the node degree of two randomly chosen nodes 

and  in an undirected graph with  nodes that are connected, thus with element

 = 1 in (1.1) of the symmetric adjacency matrix . We are interested in the

degree of nodes at both sides of a link, without taking the link, that we are looking

at, into consideration. As Newman (2003a) points out, we need to consider the

number of excess links at both sides and, thus, the degree + =  − 1 and
− =  − 1, where the link  starts at + =  and ends at − = . The linear

correlation coefficient of those excess degrees is

 (+ −) =
 [+− ]− [+ ] [− ]


+


−
=

 [(+− [+ ]) (−− [− ])]


+


−
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where 2
= Var[] = 

h
( − [])

2
i
. Since + −  [+ ] =  −  [],

subtracting one link everywhere does not change the linear correlation coefficient,

provided   0 and   0, which is the case if there are no isolated nodes.

Removing isolated nodes from the graph does not alter the linear degree correlation

coefficient (8.3). Hence, we can assume that the graph has no zero-degree nodes.

Since  [] =  [ ], the linear degree correlation coefficient is

 (+ −) =  ()|=1 =
 [ ]− ( [])

2

2

(8.4)

We express  [ ], the mean 
=  [] and variance 2

= Var[] =


£
2


¤−2
in the definition of  (+ −) for undirected graphs in terms of the

total number  =  of walks with  hops (art. 59). First, we have that

 [ ] =
1

2

X
=1

X
=1

 =


2
=

3

1

and


£
2


¤
=

1

2

X
=1

X
=1

2  =
1

2

X
=1

3

The average 
and 

are the mean node degree of the two connected nodes

 and , respectively, and not the mean of the degree  of a random node, which

equals  [] = 2

. Thus,


=

1

2

X
=1

X
=1

 =
1

2

X
=1

2 =


2
=

2

1

illustrating that 
= 

and 2
= 2

. After substituting all terms into

the linear degree correlation coefficient in (8.4), our reformulation of Newman’s

definition (8.3) in terms of  is

 =  () =
13 −2

2

1

P
=1

3 −2
2

(8.5)

The crucial understanding of (dis)assortativity lies in the total number 3 of walks

with three hops, studied in Li et al. (2006), compared to
P
=1

3 = 
£
3
¤
.

8.5.1.1 Discussion of (8.5)

As shown in art. 63, the total number  =  of walks of length  is upper

bounded by

 ≤
X
=1


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with equality only if  ≤ 2 and, for all , only if the graph is regular. Hence,

(8.5) shows that only if the graph is regular,  = 1, implying that maximum

assortativity is only possible in regular graphs2. Since the variance of the degrees

at one side of an arbitrary link

2
=

1

1

X
=1

3 −
µ
2

1

¶2
≥ 0 (8.6)

the sign of 13 − 2
2 in (8.5) distinguishes between assortativity (  0) and

disassortativity (  0). The sign of 13 − 2
2 can also be determined from

(4.97). Using
P

=1 
3
 − 3 =

P
∈L (+ − −)

2
in (3.43) and denoting a link

 =  ∼ , the degree correlation (8.5) can be rewritten as

 = 1−
P

∼ ( − )
2

P
=1

3 − 1
2

µ
P
=1

2

¶2 (8.7)

The graph is zero assortative ( = 0) if

2
2 = 13 (8.8)

We can show that the connected Erdős-Rényi random graph  () is zero-assorta-

tive for all  and link density  = 
¡

2

¢
 , where  is the disconnectivity

threshold. Asymptotically for large  , the Barabási-Albert power law graph is

zero-assortative as shown in Nikoloski et al. (2005).

Perfect disassortativity ( = −1 in (8.5)) implies that

2
2 =

1

2

Ã
3 +

X
=1

3

!
(8.9)

For a complete bipartite graph  (Section 6.7), we have thatX
∼

( − )
2
=  (−)

2
,

X
=1

3 = 
¡
2 +2

¢
and

X
=1

2 =  (+)

such that (8.7) becomes  = −1, provided  6= . Hence, any complete bipartite

graph  is perfectly disassortative, irrespective of its size and structure (),

except for the regular graph variant where  = . The perfect disassortativity

of complete bipartite graphs is in line with the definition of disassortativity, be-

cause each node has only links to nodes of a different set with different properties.

Nevertheless, the fact that all complete bipartite graphs  with  6=  have

2 The definition (8.5) is inadequate, due to a zero denominator and numerator, for a regular
graph with degree  because  regular graph =  (art. 59). For regular graphs where

=1 
3
 = 3, the perfect disassortativity condition (8.9) becomes 

2
2 = 13, which is

equal to the zero assortativity condition (8.8). One may argue that ;regu lar graph = 1, since
all degrees are equal and thus perfectly correlated. On the other hand, the complete graph 

minus one link  has  (\{}) = −2
−1 , which suggests that  ( ) = 0 instead of 1
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282 Spectra of complex networks

 = −1, even those with nearly the same degrees  =  ± 1 and thus close to
regular graphs typified by  = 1, shows that assortativity and disassortativity of

a graph is not easy to predict. It remains to be shown that the complete bipartite

graph  with  6=  is the only perfect disassortative graph.

There is an interesting relation between the linear degree correlation coefficient

 of the graph  and the variance of the degree of a node in the corresponding

line graph  () in art. 25. The -th component of the  × 1 degree vector in the
line graph  () in art. 26 is

¡
()

¢

=  +  − 2, where node  and node  are

connected by link  =  ∼ . The variance of the degree () of a random node in

the line graph  () equals Var
£
()

¤
= 

h
( +)

2
i
−( [ + ])

2
, which we

rewrite as Var
£
()

¤
= 2

¡

£
2


¤− 2
+ [ ]− 2

¢
. Using the definition

of  in (8.4) leads to

Var
£
()

¤
= 2 (1 + )

¡

£
2


¤− 2

¢
= 2 (1 + )Var []

= 2 (1 + )

Ã
1

1

X
=1

3 −
µ
2

1

¶2!
(8.10)

The expression (8.10) shows for perfect disassortative graphs ( = −1) that
Var

£
()

¤
= 0. The latter means that  () is then a regular graph, but this

does not imply that the original graph  is regular. Indeed, if  is regular,

then  () is also regular as follows from the -th component of the degree vec-

tor,
¡
()

¢

=  +  − 2. However, the reverse is not necessarily true: it is

possible that  () is regular, while  is not, as shown above, for complete bipartite

graphs  with  6=  that are not regular. In summary, in both extreme cases

 = −1 and  = 1, the corresponding line graph  () is a regular graph.

8.5.1.2 Relation between 1 and 

We present a new lower bound for 1 in terms of the linear degree correlation

coefficient . For  = 3 in 1 ≥ 


in (3.65) and using (8.5), we obtain

31 ≥
3


=
1



Ã


Ã
X
=1

3 −
2
2

1

!
+

2
2

1

!
(8.11)

This last inequality (8.11) with (8.6) shows that the lower bound for the largest

eigenvalue 1 of the adjacency matrix  is strictly increasing in the linear degree

correlation coefficient , except for regular graphs. Given a constant degree vector

, inequality (8.11) shows that the largest eigenvalue 1 is obtained, when we

succeed in increasing the assortativity of the graph by degree-preserving rewiring

discussed in Section 8.5.2.

Fig. 8.6 illustrates how the largest eigenvalue 1 of the Barabási-Albert power

law graph evolves as a function of the linear degree correlation coefficient , which
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Fig. 8.6. The largest eigenvalue 1 of the Barabási-Albert power law graph with  = 500
nodes and  = 1960 links versus the linear degree correlation coefficient . Various
lower bounds are plotted: bound 1 is (8.11), bound 2 is (3.73) and bound 3 is 1 ≥ 32

in (3.64). The corresponding classical lower bound (3.63) is 7.84, while the lower bound
(3.66) is 10.548. The latter two lower bounds are independent of .

can be changed by degree-preserving rewiring. The optimized lower bound (3.73)

outperforms the lower bound3 (8.11).

8.5.1.3 Relation between −1 and 

The Rayleigh principle in art. 133 provides an upper bound for the second smallest

eigenvalue −1 of the Laplacian  for the choice  () = , the degree of a node

,

−1 ≤
P

∈L (+ − −)
2P

=1 
2
 − 1



³P
=1 

´2
After introducing (8.7), we find for any non-regular graph

−1 ≤ (1− )

P
=1

3 − 1
2

µ
P
=1

2

¶2
P

=1 
2
 − 1



³P
=1 

´2 = (1− )
 []

£
3
¤− ¡ £2

¤¢2
 []Var []

(8.12)

which is an upper bound for the algebraic connectivity −1 in terms of the linear
correlation coefficient of the degree . In degree-preserving rewiring, the fraction

3 Especially for strong negative  , we found — very rarely though — that (3.73) can be slightly
worse than (3.66).
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284 Spectra of complex networks

in (8.12), which is always positive, is unchanged and we observe that the upper

bound decreases linearly in .

8.5.2 Degree-preserving rewiring

Degree-preserving rewiring changes links in a graph, while maintaining the degree

distribution unchanged. If the degree vector  is constant and, consequently, that

1 =
P

=1  2 =
P

=1 
2
 and

P
=1 

3
 do not change during degree-preserving

rewiring, only 3 does, and, by (8.5), also the (dis)assortativity .

Degree-preserving rewiring changes only the term
P

∼ ( − )
2
in (8.7), which

allows us to understand how a degree-preserving rewiring operation changes the lin-

ear degree correlation . Each step in degree-preserving random rewiring consists

of first randomly selecting two links  ∼  and  ∼  associated with the four nodes

   . Next, the links can be rewired either into  ∼  and  ∼  or into  ∼  and

 ∼ .

Theorem 55 Given a graph in which two links are degree-preservingly rewired and

the degree of the four involved nodes is ranked as (1) ≥ (2) ≥ (3) ≥ (4). The two

links are associated with the four nodes (1)  (2)  (3) and (4) only in one of the

following three ways: (a) (1) ∼ (2)  (3) ∼ (4) , (b) (1) ∼ (3)  (2) ∼ (4)
and (c) (1) ∼ (4)  (2) ∼ (3)  The corresponding linear degree correlation

introduced by these three possibilities obeys  ≥  ≥ .

Proof: In these three ways of placing the two links, the degree of each node

remains the same. According to the definition (8.7), the linear degree correlation

changes only via  = −P∼ ( − )
2
. Thus, the relative degree correlation dif-

ference between (a) and (b) is

 −  = −
¡
(1) − (2)

¢2 − ¡(3) − (4)
¢2
+
¡
(1) − (3)

¢2
+
¡
(2) − (4)

¢2
= 2((2) − (3))((1) − (4)) ≥ 0

since the rest of the graph remains the same in all three cases. Similarly,

 −  = 2((2) − (4))((1) − (3)) ≥ 0
 −  = 2((1) − (2))((3) − (4)) ≥ 0

These three inequalities prove the theorem. ¤

A direct consequence of Theorem 55 is that we can now design a rewiring rule that

increases or decreases the linear degree correlation  of a graph. We define degree-

preserving assortative rewiring as follows: randomly select two links associated with

four nodes and then rewire the two links such that, as in (a), the two nodes with

the highest degree and the two lowest degree nodes are connected. If any of the new

links exists before rewiring, discard this step and a new pair of links is randomly

selected. Similarly, the procedure for degree-preserving disassortative rewiring is:
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Fig. 8.7. The ten largest and five smallest eigenvalues of the adjacency matrix of the USA
airport transport network versus the percentage of rewired links. The insert shows the
linear degree correlation coefficient  as a function of the assortative degree-preserving
rewiring.

randomly select two links associated with four nodes and then rewire the two links

such that, as in (c), the highest degree node and the minimum degree node are

connected, while also the remaining two nodes are linked provided the new links do

not exist before rewiring. Theorem 55 shows that the degree-preserving assortative

(disassortative) rewiring operations increase (decrease) the degree correlation of a

graph.

The assortativity range, defined as difference max−min, may be regarded as
a metric of a given degree vector , which reflects its adaptivity in (dis)assortativity

under degree-preserving rewiring. As shown earlier, for some graphs such as regular

graphs, that difference max−min = 0, while max−min ≤ 2 because

−1 ≤  ≤ 1.
Degree-preserving rewiring is an interesting tool to modify a graph in which the

resources of the nodes are constrained. For instance, the number of outgoing links

in a router as well as the number of daily flights at many airports are almost fixed.

We exemplify degree-preserving rewiring with the US air transportation net-

work4, where each node is an American airport and each link is a flight connection

between two airports. We are interested in an infection process, where viruses are

4 The number of nodes is  = 2179 and the number of links is  = 31326.
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286 Spectra of complex networks

spread via airplanes from one city to another. From a topological point of view,

the infection threshold  =
1
1
is the critical design parameter, which should be as

high as possible, because an effective infection rate    translates into a certain

percentage of people that remain infected after sufficiently long time (for details

see Pastor-Satorras et al. (2015)). Since most airports operate near to full capacity,

the number of flights per airport should hardly change during the re-engineering

to modify the largest eigenvalue 1. Fig. 8.7 shows how the adjacency eigenval-

ues of the US air transportation network change with degree-preserving assortative

rewiring, while the disassortative companion figure is also shown in Van Mieghem

et al. (2010). In each step of the rewiring process, only four elements 1 (i.e., two

links) in the adjacency matrix change position. If we relabel the nodes in such a

way that the link between 1 and 2 and between 3 and 4 (case (a) in Theorem 55) is

rewired to either case (b) or (c), then only a 4× 4 submatrix 4 of the adjacency

matrix  in

 =

∙
4 

 

¸
is altered. The Interlacing Theorem 71 states that +4 () ≤  () ≤  () for

1 ≤  ≤  − 4, which holds as well for  after just one degree-preserving rewiring

step. Thus, most of the eigenvalues of  and  are interlaced, as observed from

Fig. 8.7. The large bulk of the 2179 eigenvalues (not shown in Fig. 8.7) remains cen-

tered around zero and confined to the almost constant white strip between 10 and

−5. As shown in Section 8.5.1.2, assortative rewiring increases 1. Fig. 8.7 illus-
trates, in addition, that the spectral width or range 1− increases as well, while
the spectral gap 1−2 remains high, in spite of the fact that the algebraic connec-
tivity −1 is small. In fact, Fig. 8.8 shows that −1 decreases, in agreement with
(8.12), and vanishes after about 10% of the link rewiring, which indicates (art. 116)

that the graph is then disconnected. Fig. 8.8 further shows that by rewiring all links

on average once (100%), assortative degree-preserved rewiring has dissected the US

air transportation network into 20 disconnected clusters. Increasing assortativity

implies that high-degree and low-degree nodes are linked increasingly more to each

other, which, intuitively, explains why disconnectivity in more and more clusters

starts occurring during the rewiring process.

The opposite occurs in disassortative rewiring: the algebraic connectivity −1
was found to increase during degree-preserving rewiring from about 0.25 to almost 1,

which is the maximum possible due to (4.54) and min = 1 as follows from the insert

in Fig. 8.8. Hence, in order to suppress virus propagation via air transport while

guaranteeing connectivity, disassortative degree-preserving rewiring is advocated,

which, in return, enhances the topological robustness as explained in art. 144.

Finally, we mention that highly disassortative graphs possess a zero eigenvalue of

the adjacency matrix with large multiplicity, which can be understood from Section

8.1.1: high degree nodes are preferentially connected to a large set of low degree

nodes, that are not interconnected among themselves.
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Fig. 8.8. The twenty smallest eigenvalues of the Laplacian matrix of the US air trans-
portation network versus the percentage of rewired links. The insert shows the degree
distribution that is maintained in each degree-preserving rewiring step.

8.6 Reconstructability of complex networks

In this section, we investigate, given the set of eigenvectors 1 2       , how

many eigenvalues of the adjacency matrix  are needed to reconstruct  exactly.

Specifically, we perturb the spectrum by omitting the  smallest eigenvalues in

absolute value of  and we determine the maximal value of  such that the matrix

 can be exactly reconstructed. Art. 97 shows that if the orthogonal matrix  of

the adjacency matrix  is known and if rank(Ξ) =  − 1, where the Hadamard
product is Ξ =  ◦, then the adjacency matrix  can be reconstructed exactly,

without needing the eigenvalue vector !

Since
P

=0  = 0 (art. 46), on average half of the eigenvalues of the adjacency

matrix  are negative. Therefore, we reorder the eigenvalues as
¯̄
(1)

¯̄
≤
¯̄
(2)

¯̄
≤

· · · ≤
¯̄
()

¯̄
such that () is the -th smallest (in absolute value) eigenvalue corre-

sponding to the eigenvector (). Let us define the  × matrices

Λ() = diag
¡
0     0 (+1) (+2) · · ·  ()

¢
and

() = ̃Λ()̃


where ̃ =
£
(1) (2) · · · ()

¤
is the reordered version of the orthogonal

matrix  in (1.2) corresponding to the eigenvalues ranked in absolute value. Thus,

Λ() is the diagonal matrix where the  smallest (in absolute value) eigenvalues are
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Fig. 8.9. The histograms of the entries of (5), (10), (15) and (20). The matrix 
( = (0)) is the adjacency matrix of an Erdős-Rényi random graph with  = 36 nodes
and link density  = 05.

put equal to zero, or, equivalently, are removed from the spectrum of . The spec-

tral perturbation here considered consists of consecutively removing more eigenval-

ues from the spectrum until we can no longer reconstruct the adjacency matrix .

Clearly, when  = 0, we have that (0) =  and that, for any other   0, () 6= .

Moreover, when   0, () is not a zero-one matrix anymore. Fig. 8.9 plots the

histograms of the entries of (5), (10), (15) and (20) for an Erdős-Rényi random

graph with  = 36 nodes and link density of  = 05. The removal of a part of

the eigenvalues causes roughly the same impact on the 1 and 0 elements of the

adjacency matrix , as shown in Fig. 8.9. This means that the deviations on 1s

and 0s are almost the same, and that the distribution of values around 1 and 0

will reach 1/2 roughly simultaneously, when the number of removed eigenvalues

increases gradually. Using Heaviside’s step function  (),

 () =

⎧⎨⎩
0 if   0
1
2

if  = 0

1 if   0

we truncate the elements of () as 
³¡
()

¢

− 1

2

´
. If we now define the operator
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H applied to a matrix () that replaces each element of () by 
³¡
()

¢

− 1

2

´
,

then f = H ¡()¢ is a zero-one matrix, with the possible exception of elements
1
2
. The interesting observation from extensive simulation is that there seems to

exist a maximal number , for which f = ‚ if  ≤  and f 6= ‚ if   . In

other words,  is the maximum number of eigenvalues that can be removed from

the spectrum of the graph such that the graph can still be reconstructed precisely,

given the matrix . We therefore call  the reconstructability coefficient.

8.6.1 Theory

Art. 254 shows that any real, symmetric matrix  can be rewritten as (A.138),

 =

X
=1



 =

X
=1



where the matrix  = 

 is the outer product of  by itself. Any element of 

can be written, with the above relabeling of the eigenvectors according to a ranking

in absolute values of the eigenvalues
¯̄
(1)

¯̄
≤
¯̄
(2)

¯̄
≤ · · · ≤

¯̄
()

¯̄
as

 =

X
=1

()
¡
()

¢

+

X
=+1

()
¡
()

¢


(8.13)

where  ∈ [1 ] is, for the time being, an integer. As shown in art. 255, the
2-norm of  is not larger than 1, so that

¯̄̄¡
()

¢


¯̄̄
≤ 1 for any 1 ≤  ≤  ,

which implies that −1 ≤ ¡
()

¢

≤ 1. Relation (A.138) also explains why an

ordering in absolute value is most appropriate for our spectral perturbation: the

usual ordering 1 ≥ 2 ≥ · · · ≥ −1 ≥  in algebraic graph theory would first

remove   0, then −1 and so on. However, | | can be large and its omission
from the spectrum is likely to cause too big an impact.

The reconstructability of a graph is now reformulated as follows. Since  is

either zero or one, it follows from (8.13) that, if¯̄̄̄
¯ −

X
=+1

()
¡
()

¢


¯̄̄̄
¯  1

2
(8.14)

we can reconstruct the element  as  = 1
=+1 ()(())

1
2

. The recon-
structability requirement (8.14) determines the values of  that satisfy the inequal-

ity. The largest value of  obeying (8.14) is the reconstructability coefficient  of

a graph. Using (8.13), the reconstructability requirement (8.14) is equivalent to¯̄̄̄
¯
X

=1

()
¡
()

¢


¯̄̄̄
¯  1

2
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290 Spectra of complex networks

8.6.2 The average reconstructability coefficient  []

Via extensive simulations, Liu et al. (2010) investigated the properties of the re-

constructability coefficient  for several important types of complex networks intro-

duced in Section 1.5, such as Erdős-Rényi random graphs, Barabási-Albert scale-

free networks and Watts-Strogatz small-world networks, and also other special de-

terministic types of graphs. A general linear scaling law was found:

 [] =  (8.15)

where the real number  ∈ [0 1] depends on the graph . Moreover, the variance

Var[] was sufficiently smaller than the mean  [] such that  [] serves as an excel-

lent estimate for . For sufficiently large  , a portion  of the smallest eigenvalues

(in absolute value) can be removed from the spectrum and the adjacency matrix is

still reconstructible with its original eigenvectors. The magnitude of  for different

types of complex networks with different parameters was found to vary from 39%

to 76%, which is surprisingly high.

The reconstructability coefficient  or the scaled coefficient  =
[]


in (8.15) can

be regarded as a spectral metric of the graph that expresses how many dimensions

or orthogonal eigenvectors of the  -dimensional space are needed to represent or

reconstruct the graph. Roughly, a high reconstructability coefficient  reflects a

“geometrically simple” graph that only needs a few orthogonal dimensions to be

described.

8.7 Spectral graph metrics

Most of the graph metrics, such as the hopcount, diameter, clustering coefficient,

and many more listed in Section 1.6, are defined in the topology domain. In this

section, we briefly mention graph metrics that are defined in the spectral domain,

but we study the effective graph resistance in depth in Section 5.2. We have already

encountered some spectral graph metrics such as the algebraic connectivity −1
in Section 4.3 and the reconstructability coefficient  in Section 8.6.

8.7.1 Eigenvector centrality

The per component eigenvalue equation (1.4) of the -th eigenvector,

() =
()


=
1



X
∈ neighbors()

() (8.16)

is called the eigenvector centrality of node  according to the eigenvector  of the

adjacency matrix  of a graph . This “centrality” measure reflects the importance

with respect to the eigenvector  of a node in a network and provides a ranking

of the nodes in the network according to the eigenvector . Since the eigenvector

1 has non-zero components (art. 41), this largest eigenvector is considered most
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8.7 Spectral graph metrics 291

often. Perhaps the best known example of this spectral graph metric is Google’s

Page Rank, explained in Van Mieghem (2014, Section 11.5), where the importance

of webpages is ranked according to the components of the largest eigenvector of a

weighted adjacency matrix, actually the stochastic matrix  = ∆−1 of the web.

Van Mieghem (2015a) advocates the squared eigenvector components ()
2
 of

e.g. the adjacency matrix as nodal centrality metrics.

8.7.2 Graph energy

The graph energy  is defined as

 =

X
=1

| ()| (8.17)

The graph energy (8.17) is inspired by the energy eigenstates of the Hamiltonian

applied to molecules (such as hydrocarbons) and was first proposed by Gutman

(Dehmer and Emmert-Streib, 2009, Chapter 7). The chemical origin does not

directly help to interpret the notion of graph energy, so that the graph energy is

best considered as one of the spectral metrics of a graph.

The absolute sign in the definition (8.17) complicates exact computations, but

a large number of bounds exist. A direct application of the inequality (B.75) and

art. 243 gives

( − 1 ())
2 ≤ ( − 1)2−1 ©trace ¡2¢− 21 ()

ª
Rewritten with definition of  = trace

¡

¢
in art. 65, we obtain, for any integer

  0, the upper bound

 ≤ 1 () + ( − 1)1−1(2) 2

q
2 − 21 ()

Other upper bounds are found in Dehmer and Emmert-Streib (2009, Chapter 7).

A lower bound is deduced from

2 =

X
=1

2 () +

X
=1

X
=1; 6=

| ()| | ()|

We apply the product in the harmonic, geometric and arithmetic mean inequality

(6.38) to the last sum and find

 ≥
q
2+ ( − 1) (|det ()|)2

which shows that  ≥
√
2.

The determination of graphs that maximize the graph energy  is an active

domain of research. We content ourselves here to list a few results and refer to

Dehmer and Emmert-Streib (2009, Chapter 7) for a detailed review. The graph

with minimum energy is the empty graph consisting of isolated nodes, i.e., the
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complement of the complete graph ( )

. Among the trees, the star 1 has

minimal graph energy, whereas the path possesses maximum energy. Simulations,

as mentioned by Gutman et al. in Dehmer and Emmert-Streib (2009, Chapter

7), show that  seems to decrease almost linearly in the multiplicity of the zero

eigenvalue for a certain class of graphs.

8.7.3 Delft graph metrics

Delft graph metrics, created in my NAS group in Delft, are defined as the quotient

of quadratic forms for positive integers ,

 =
Ω

2
(8.18)

where the denominator 2 = 2 is the total number of walks (art. 59) in the

graph  with 2 hops or of length 2. If  = 0, then with  =  , the definition

(8.18) leads to the effective graph resistance  =
1
2
Ω in (5.8)

0 =
Ω


=
2



and if  = 1, the definition (8.18) relates to the Kemeny constant  =
Ω
4

in

Wang et al. (2017)

1 =
Ω


=
4




The definition (8.18) itself is an instance of the Rayleigh quotient Ω
 

, where

the vector  is chosen as  = . Rayleigh’s principle (art. 251) states that, for

any ,

 ≤ 1

where 1 in Section 5.5 is the largest eigenvalue of the effective resistance matrix

Ω. The normalization 2 = 2 in (8.18) is algebraically more convenient

than the current definitions of the effective graph resistance  =
1
2
Ω and the

Kemeny constant  =
Ω
4

, where the quotient Ω


is implicitly chosen.

The power method (art. 244) shows for sufficiently large  that the vector  = 

tends to 1, where  is the normalized eigenvector of the adjacency matrix 

belonging to the eigenvalue  and where  is a constant. Hence, it can be proved

that

lim
→∞  = 1 Ω1

After writing  =  as a linear combination (art. 251) of the eigenvectors

{}1≤≤ of Ω, Theorem 34 shows that

 =

P
=1

¡
 


¢2


2
=

¡
1 


¢2

2
1−

X
=2

¡
 


¢2

2
|| ≤

¡
1 


¢2P

=1

¡
 


¢2 1
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8.8 Laplacian spectrum of interdependent networks 293

The class of regular graphs with degree  indeed demonstrates, since  is the eigen-

vector (art. 55) belonging to the largest eigenvalue 1 = , that

regular graph =
2Ω

2
=
2


≤ 1

which is independent from . Equality in the last inequality occurs when  = 
2 

(see Theorem 35, which appears in so-called vertex-transitive graphs, that are a

subclass of regular graphs.

Since all involved matrices and vectors in (8.18) are non-negative, the graph

metrics  are positive and reflect a global graph property. The electric power

P = −1
2
Ω in (5.12), subject to  = 0 and at least one vector component of

the injected  is negative, indicates by decomposing  =  =  +  that the

Delft graph metrics  only contains a small contribution of the electric power P.

8.8 Laplacian spectrum of interdependent networks

An interdependent network, also called interconnected or multi-layer network, is a

network consisting of different types of networks, that depend upon each other for

their functioning (Buldyrev et al., 2010). For example, a power grid is steered by a

computer network, that in turn needs electricity to function. Van Mieghem (2016)

shows that regularity in the interconnection pattern features attractive properties,

that provide engineers with handles to control or uncouple the network’s dynamics

by changing the strength of the interconnectivity as well as by balancing or dis-

tributing that total strength over several inter-links, that connect nodes in different

networks or layers.

A two-fold interconnected network  has an adjacency matrix

 =

"
(1)× ×¡

¢
× (2)×

#
(8.19)

where 1 is the  ×  adjacency matrix of the graph 1 with  nodes, 2 is the

× adjacency matrix of the graph 2 with  nodes and  is the × weighted

matrix interconnecting 1 and 2, whose elements are real, non-negative numbers.

The total number of nodes in  is  = +. The Laplacian  of , corresponding

to (8.19) generalizes that of the cone in art. 166 and equals

 =

"
(1)× + diag (()) −×

− ¡
¢
× (2)× + diag

¡¡


¢¢ # (8.20)

where 1 = ∆1−1, 2 = ∆2−2 and ∆ = diag (()) = diag( ()) for  =

1 2 and where  () denotes the degree of node  in the graph . Only if  is a

zero-one matrix, the total number of links in  equals  = 2
+1

+×,
where 

= 1
2
 is the number of links in . The block matrix (8.20)

illustrates that a submatrix such as  = (1)×+ diag(()) of a Laplacian
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294 Spectra of complex networks

 of a connected graph is positive definite, i.e.   0. Indeed, if  6= , then

1  0, else 
diag(())  0; hence the inverse −1 exists.

Any eigenvector  =  =
¡
1  


2

¢
of the Laplacian  of the interconnected

network  with 1 ≤    , thus excluding  = , obeys

1 + 2 = 0 (8.21)

while the normalization  = 1 of the eigenvector  translates to

1 1 + 2 2 = 1 (8.22)

The Laplacian eigenvalue equation for the eigenvector  =
¡
1  


2

¢
belonging to

the eigenvalue ,"
(1)× + diag (()) −×

− ¡
¢
× (2)× + diag

¡¡


¢¢ # ∙ 1
2

¸
= 

∙
1
2

¸
is equivalent to the set½

11 + diag (())1 −2 = 1
22 + diag

¡¡


¢


¢
2 −1 = 2

(8.23)

The quadratic form of  has the following property, proven5 in Van Mieghem

(2016):

Theorem 56 Let  =
¡
1  


2

¢
be any real vector, then the quadratic form ,

where the Laplacian matrix  is defined in (8.20), equals

 = 1 11 + 2 22 +(12) (8.24)

where

(12) =

X
=1

X
=1



³
(1) − (2)

´2
(8.25)

which is always non-negative because  ≥ 0.
Since any Laplacian is positive semidefinite, each term in the Laplacian quadratic

form (8.24) is non-negative. Excluding uncoupled networks,  6= , then (8.25)

shows that (12) = 0 only if (1) = (2) for all possible pairs ( ) of nodal

interconnections with positive coupling strength   0. In particular, when

 =  =
¡
  




¢
, then () = 0 independently of the structure of  (as

also follows from (8.24) because  =  is the eigenvector belonging to the zero

Laplacian eigenvalue  = 0). As a consequence of (12) ≥ 0, we find with

 =  in (8.24) that any eigenvalue  of  belonging to eigenvector  =
¡
1  


2

¢
is lower bounded (art. 163) by

 ≥ 111 + 222

5 Theorem 56 is generalized to an -fold interconnected network with  ≥ 2 in Van Mieghem
(2016).
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8.8 Laplacian spectrum of interdependent networks 295

We may interpret (12) in (8.25) as the total interconnection energy between 1

and 2 due to the vector  =
¡
1  


2

¢
. In such an interpretation,  represents

the total network energy for a state vector .

If the interconnected network  with  =  +  nodes has a special regular

structure, we can determine at least two eigenmodes of :

Theorem 57 Only if the × interconnection matrix  has a constant row sum

equal to ∗


 and a constant column sum equal to ∗


, which we call the regularity

condition for ×, (
 = ∗ 

+


 = ∗ 
+


(8.26)

then is

 =
1√


£ p


 −p 




¤
(8.27)

an eigenvector of , defined in (8.20), belonging to the eigenvalue

∗ =
µ
1


+
1



¶
× (8.28)

and × =
P

=1

P
=1 equals the sum of the elements in , specifying

to the total strength of the interconnection between 1 and 2.

The proof is a consequence of equitable partitions in Section 2.5. Since each

element  ≥ 0, the eigenvalue ∗


=

×


in (8.28) represents the average

“coupling strength” per element in  and can only be zero if  = , in which case

the two networks 1 and 2 are disconnected. The eigenvector and eigenvalue in

Theorem 57 are only determined by the interconnection matrix  and are indepen-

dent of the structure of 1 and of 2, because each eigenvector component of  in

(8.27) satisfies 11 = 1 = 0 and, similarly, 22 = 2 = 0.

By choosing 1 equal to the -th normalized eigenvector (i.e. 1 1 = 1, while

  = 1 1 + 2 2) of 1 and 2 equal to -th normalized eigenvector of 2, the

quadratic form (8.24) reads

 =  (1) +  (2) +(12)

In particular, confining to the algebraic connectivity where 1 = −1 and 2 =

−1 are the eigenvectors belonging to the respective algebraic connectivity −1
in 1 and −1 in 2, leads to

 = −1 (1) + −1 (2) +(−1−1)

where −1 = 0 and −1 = 0, so that 
 = 0. In that case, the Rayleigh

inequality  ≥ +−1 ()   = 2+−1 () leads to the upper bound for
the algebraic connectivity of ,

−1 () ≤ 1
2

¡
−1 (1) + −1 (2) +(−1−1)

¢
(8.29)
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296 Spectra of complex networks

Let us investigate the smallest, non-zero eigenvalue , corresponding to any

eigenvector  =
¡
1  


2

¢
of  obeying 1 = 2 = 0, a necessary condi-

tion for regularity of . The Rayleigh inequality demonstrates for 1 = 0 that

111 ≥ −1 (1)1 1 and, similarly for 

2 = 0, 


222 ≥ −1 (2)2 2

with equality only if 1 and 2 are the eigenvectors of 1 and 2 belonging to the

algebraic connectivity, eigenvalues −1 (1) and −1 (2), respectively. Com-
plementary to the upper bound (8.29), the quadratic form (8.24) leads to the lower

bound (8.30) for the algebraic connectivity of  with regular interconnection ma-

trix ,

−1 () ≥ −1 (1)1 1 + −1 (2)2 2 +(12) ≥ 0 (8.30)

with 0  2 2 = 1− 1 1  1. Combining the upper bound (8.29) and the lower

bound (8.30) yields, for a regular interconnection matrix ,

−1(1)
1

1 1

+
−1(2)

1
1−1 1

+(12) ≤ −1() ≤ −1(1)
2

+
−1(2)

2
+
(−1−1)

2

(8.31)

Even when both 1 and 2 are disconnected (−1 (1) = −1 (2) = 0), a

positive interconnection energy (12)  0 results in a connected interdependent

network  (i.e. −1 ()  0). We observe from (8.31) that, if −1 (1) =
−1 (2), then we obtain the curious inequality

−1 (1) +(12) ≤ −1 () ≤ −1 (1) +
(−1−1)

2

illustrating that 0 ≤ (12) ≤ −1 () − −1 () ≤
(−1−1)

2
. The inter-

connection energy (12) for the Fiedler eigenvector  of  is smaller than half

the interconnection energy (−1−1) of the individual Fiedler vectors −1 of
1 and −1 of 2, both belonging to a same algebraic connectivity −1 (1) =
−1 (2).
The scaling of elements in also causes that the eigenvalue ∗ in (8.28) is not nec-

essarily equal to the second smallest eigenvalue −1. Indeed, by lowering the total
coupling strength ×, we can always force ∗ to be lower than −1 ().
The possibility of modifying the total coupling strength × leads to con-

sequences elaborated in Sahneh et al. (2015), where the coupling strength  in

 =  was computed so that ∗ = −1 ().

8.9 Graph sparsification

The goal of sparsification is to approximate a given weighted graph  by a sparse

weighted graph  with less links and potentially different link weights, but on the

same set of nodes, by trying to preserve in  some property of . For example, cut-

sparsifiers approximately preserve the sizes of all cuts, while a spectral sparsifier

approximately preserves eigenvalues (see e.g. Chu et al. (2020)). Spielman and
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8.9 Graph sparsification 297

Srivastava (2011) have proposed an elegant spectral sparsification algorithm for

any graph  that samples a link  = ( ) in  with probability  proportional

to the relative resistance , where  is the weight of link  and  =  is its

effective resistance.

Before specifying the Spielman-Srivastava sparsification algorithm in Batson et al.

(2013), we define spectral similarity . Two symmetric  × matrices  and  are

-spectrally similar if

(1− ) ≤  ≤ (1 + ) for all  × 1 vectors 

If the components of the vector  are restricted to  ∈ {−1 1} for all  ∈ N ,
one obtains cut-sparsifiers (art. 143). The Courant-Fischer Theorem,  () =

maxdimV=min∈V 


in (A.132), implies that

(1− ) () ≤  () ≤ (1 + ) ()

The notion of -spectral similarity is written with the inequality sign “4” as

(1− ) 4  4 (1 + )

because it allows matrix operations as with the usual inequality sign ≤, in particular
for positive semidefinite matrices. Indeed, let e and e denote the weighted

Laplacian of the graph  and its sparsifier , respectively. Since all Laplacian

eigenvalues are non-negative, we have that e =
³ e´ 1

2
³ e´ 1

2

and left- and right-

multiplying (1− ) e 4 e 4 (1 + ) e with
³

†


´ 1
2

=
³


1
2



´†
(see art. 128),

using
³

†


´ 1
2 e

³

†


´ 1
2

=  − 1

 , yields

(1− )

µ
 − 1




¶
4
³

†


´ 1
2 e

³

†


´ 1
2 4 (1 + )

µ
 − 1




¶
(8.32)

Invoking e =P∈L (+ − −) (+ − −)

in (4.5) indicates that³


†


´ 1
2 e

³

†


´ 1
2

=
X
∈L

;

³

†


´ 1
2

(+ − −) (+ − −)

³

†


´ 1
2

(8.33)

where the link weight ; is crucial and determined below.

Batson et al. (2013, Theorem 5) state the algorithm: “Set  = 8 log 
2
. Choose

a random link  of  with probability  proportional to . Add  to  with link

weight 

. Take  samples independently with replacement, summing weights if a link

is chosen more than once.” With probability at least 1/2,  is a (1 + )-spectral

approximation of . We first formulate a variant without link replacements, which

is more natural for sparsification and akin to random matrix theory in Section

7.5. Limitations of sampling without replacement leads to the Spielman-Srivastava

sparsification algorithm with link replacements.
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298 Spectra of complex networks

8.9.1 Sampling links without replacement

The link weight in the sparsifier  is written as ; = , where the positive

real number  is a link weight scaler and the indicator  = 1{∈L} is  = 1 with
probability  = Pr [ ∈ L ] if link  ∈ L is maintained as a link in the sparsifier
, else  = 0. The mean of an indicator or Bernoulli random variable is  [] = ,

but we require that the number of links  =
P

∈L  is fixed
6 and not a random

variable. Thus, the expected number of links in  is  [L ] =
P

∈L  =  .

The expectation


h e

i
= 

"X
∈L

 (+ − −) (+ − −)


#
=
X
∈L

 (+ − −) (+ − −)


suggests to choose  =
1

for any link  ∈ L so that 

h e

i
= e, meaning that

the average link weight in the sparsifier  and the original graph  is the same.

Since   1 as   , the link weight scaler   1 and any sampled link of 

possesses a higher weight in the sparsifier .

The expectation of the random matrix in (8.33) becomes



∙³

†


´ 1
2 e

³

†


´ 1
2

¸
= 

"X
∈L

;

³

†


´ 1
2

(+ − −) (+ − −)

³

†


´ 1
2

#

=
X
∈L

 []
³

†


´ 1
2

(+ − −) (+ − −)

³

†


´ 1
2

Since the choice  =
1

implies that  [] =  [] =  = , we

arrive at



∙³

†


´ 1
2 e

³

†


´ 1
2

¸
=
X
∈L

³

†


´ 1
2

 (+ − −) (+ − −)

³

†


´ 1
2

=
³

†


´ 1
2 e

³

†


´ 1
2

=  − 1




and at the random matrix³

†


´ 1
2 e

³

†


´ 1
2

=
X
∈L

½


r




³

†


´ 1
2

(+ − −)

¾½


r




³

†


´ 1
2

(+ − −)

¾

Denoting the random vector  = 

q



³

†


´ 1
2

(+ − −), the norm of the

6 Similar to the variant of Erdős-Rényi graphs (see e.g. Van Mieghem (2014, p. 376) and Bollobás
(2001, Section 2.1)), where a link  occurs with probability  and the total number of links is
fixed. Links in  are weakly dependent and  [] 6=  [] [].
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8.9 Graph sparsification 299

random matrix using (A.18) is°°°°³†´ 1
2 e

³

†


´ 1
2

°°°°
2

=

°°°°°X
∈L





°°°°°
2

≤
X
∈L

°° °°2 = X
∈L

kk22

and

kk22=
°°°°r





³

†


´ 1
2

(+− −)

°°°°2
2

=



(+−−)†(+−−) = 






(8.34)

where the last equality follows from the definition (5.2). Thus,°°°°³†´ 1
2 e

³

†


´ 1
2

°°°°
2

≤
X
∈L





 =

X
∈L






and Foster’s rule
P

∈L =  − 1 in (5.20) with  =
1

illustrates that



∙°°°°³†´ 1
2 e

³

†


´ 1
2

°°°°
2

¸
≤
X
∈L

 =  − 1

If kk22 =  in (8.34), then 

 =  for a link  in the sparsifier , where the

relative resistance  ≤ 1 for any link  as follows from the parallel resistor

formula (5.6). Sampling without replacements leads to the number of links  =P
∈L  =

1


P
∈L  in the sparsifier , from which follows that  = −1



and  =

−1. Then, the norm of the random matrix is bounded by°°°°³†´ 1

2 e

³

†


´ 1
2

°°°°
2

≤
X
∈L

kk22 =



( − 1)

while the norm of its average

°°°° ∙³†´ 1
2 e

³

†


´ 1
2

¸°°°°
2

=
°° − 1



°°
2
= 1 is sub-

stantially lower! Since  =

−1 ≤ 1 for any link  ∈ L, it holds that

 ≤ min
∈L

 − 1


which confines the number of links  in the sparsifier . This constraint is absent

in Spielman and Srivastava (2011). More importantly, the stringency  in (8.32)

cannot be tuned. In order to create a sparsifier  whose Laplacian eigenvalues are

within stringency  from those of the original graph , Spielman’s sampling with

replacement is needed.

8.9.2 Sampling links with replacement

Instead of selecting a link in the original graph  only once, sampling with replace-

ment allows to choose a link several times. The number of link samplings is  and

the random variable e =  = 1{∈L} denotes the number of times link  is
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300 Spectra of complex networks

sampled, leading to the probability that link  ∈ L appears in the sparsifier  is

now . The link weight is ; = ee, where the link weight scaler is e = 1


to obey 
h e

i
= e. Thus, each time the same link is chosen, its weight is

increased with 

, but ; = ee =  remains the same as in sampling

without replacement. Instead of imposing that  [L ] =  , which creates depen-

dence, only the average number of links  [L ] = 
P

∈L  can be determined

and each sampled link is independent from all  others.

In order to bound the deviations in the random matrix
³

†


´ 1
2 e

³

†


´ 1
2

from

its mean  − 1

 , Spielman and Srivastava (2011) rewrite (8.33) as

³

†


´ 1
2 e

³

†


´ 1
2

=
X
∈L

ee

³

†


´ 1
2

(+ − −) (+ − −)

³

†


´ 1
2

=
1



X
=1





where  are i.i.d. random vectors drawn with probability  from the distribution

 =
q




³

†


´ 1
2

(+ − −) with link  ∈ L and they apply7

Theorem 58 (Rudelson and Vershynin (2007)) Let 1 2      be indepen-

dent random vectors with max kk2 ≤  and
°° £ ¤°°

2
≤ 1, then



"°°°°°1
X

=1



 −

£


¤°°°°°
2

#
≤ min

Ã
8

s
log 


 1

!

and, for 0    1 and for a constant ,

Pr

"°°°°°1
X

=1



 −

£


¤°°°°°
2

 

#
≤ exp

µ
− 

 log 
2
¶

(8.35)

Since the definition of the matrix norm in (A.23) shows, with art. 193, that°° £ ¤°°
2
=

°°°° ∙³†´ 1
2 e

³

†


´ 1
2

¸°°°°
2

=
°° − 1



°°
2
= 1, only the condition

max kk2 ≤  in Theorem 58 needs to be obeyed. Spielman and Srivastava (2011)

choose the norms of all random vectors  equal and deduce
2 = max1≤≤ kk22 =

 − 1, which is optimal, because the lowest right-hand side bound in Rudelson’s
theorem 58 is attained. Finally, they find that  =

1
−1, which demonstrates

the key idea in Spielman and Srivastava (2011) of sampling links in  with a

probability  proportional to the relative resistance  =


.

It remains to estimate the number  of link samplings. Together with -spectral

7 Rudelson and Vershynin (2007, remark 3.4) state that the estimates in Theorem 58 are generally
best possible.
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similarity,
³

†


´ 1
2 e

³

†


´ 1
2 4 (1 + )

¡
 − 1



¢
, Rudelson’s theorem



"°°°°°1
X

=1



 −

£


¤°°°°°
2

#
= 

∙°°°°³†´ 1
2 e

³

†


´ 1
2 −

µ
 − 1




¶°°°°
2

¸
≤ 

°°°°µ − 1




¶°°°°
2

= 

then states that 8

q
(−1) log 


≤ , which leads to  = 

¡

2
log 

2

¢
for large  .

Indeed8, a few iterations in the recusion inequality  ≥ 64(−1)
2

log −1, with 0 =
64

(−1)
2

, shows that  ≈ 64
2

¡
log 

2
+ log log 

2
+ · · · ¢. The probability (8.35)

then demonstrates that the deviations in the random matrix
³

†


´ 1
2 e

³

†


´ 1
2

from its mean  − 1

 are small.

Sampling with replacements allows to incorporate a stringent   min accuracy,

at the expense of a large number  of samplings. The accuracy  that specifies the

deviations of the Laplacian eigenvalues of the sparsifier  from those in the orginal

graph  and the sparseness of  remains a trade-off: if   min, then  = .

Since the Spielman-Srivastava sparsification algorithm is stochastic, more than one

sparsifier  can be found that meets the accuracy range in (8.32).

8.10 Machine learning: Assigning labels to nodes

A classical task in machine learning consists of classifying objects such as images.

Suppose that there are  objects represented by points in an -dimensional space.

For example, an image with 256 pixels is represented by an  = 256 dimensional

vector, also called a feature vector. Precisely  objects are labeled or classified by

labels 1 2     . For example, an image  of a written letter A is recognized

precisely and labeled as  = 1. The remaining  =  −  objects, typically ¿ ,

are unlabeled and the aim is to label them. This problem is called semi-supervised

learning.

All  points or objects are considered as nodes in a graph . The labeled nodes

belong to the set S ⊂ N and the unlabeled nodes to its complement S = N\S.
The links are specified by an  ×  symmetric, weighted matrix  , which we

assume is given9. For example, the link weight between node  at position  and

node  at position  is  =  (k − k) and  () is a decreasing function of the

distance  = k − k in the -dimensional Euclidean space. The corresponding
weighted adjacency matrix (art. 5) is e = .

The labeling requires to construct a real-valued function that maps a node  ∈ N
8 The exact solution of log 


= 2

64(−1) is  = exp

−


− 2

64(−1)

, where  () is the

Lambert function with inverse −1 () = .
9 We refer to Zhu et al. (2003, Section 6) for a method to estimate  if the weighted matrix 
is neither given nor fixed.
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302 Spectra of complex networks

to a label, which is a real number. Inspired by the elegant properties of an electric

resistor network (art. 14), Zhu et al. (2003) propose as a real-valued function to

consider the potential , which is a harmonic function (art. 15). Consequently, the

labels reflect injected currents, provided that the current conservation law  = 0

is obeyed, which can be met by a current vector  =  −  


. The fundamental

current-voltage relation  = e in (2.15) shows that ³ e´
∈S

= 0 for an unlabeled

node , whereas  =
³ e´


for a labeled node  ∈ S. The inverse relation  = †

in (4.32) specifies the labeling function  at each node completely, with average label

  = 0. Since  is harmonic, its maximum and minimum value is attained at the

boundary S and all unlabeled nodes in S will receive a label between maximum
and minimum. Examples of this “harmonic” label assignment and a comparison

with other methods are given in Zhu et al. (2003). Harmonic label assignment

assumes that direct neighbors in  likely share the same label.

8.11 Graph neural networks

We only review the theory and concepts and refer for examples and applications to

Ortega (2022) and Gama et al. (2020).

8.11.1 Graph signal processing

A process on a graph  with  nodes, such as an epidemic in a contact net-

work, power transport in an electric network, etc., can generate an outcome of that

process, called “data”, at each node of the graph. In graph signal processing (see

e.g. Gama et al. (2020)), the datum  at node  is the -th component of a graph

signal , which is an ×1 vector. The graph signal  can be shifted over the nodes
by the graph shift operator , which is an × real symmetric graph-related ma-

trix, such as the adjacency or Laplacian matrix. After a shift , the datum at node

 is () =
P

=1  , which is a linear combination of the data  at neighbors

 ∈ N of node . Given the  × 1 parameter vector  = £ 1 2 · · · 
¤
,

a graph convolution is defined as

 () =

X
=0


 (8.36)

The -shifted signal  contains a summary of the information located in the -hop

neighborhood, akin to  in Section 1.3, and  weighs this summary. The graph

convolution (8.36) is said to filter a graph signal  with a finite impulse response

(FIR) graph filter  () and the weights  are called filter taps or filter weights

(Gama et al. (2020)). The spectral domain, called the graph frequency domain in

signal processing, is specified by the eigendecomposition of the shift operator  =

 Λ  , similar to  = Λ . The set of eigenvectors {}1≤≤ form the graph
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8.11 Graph neural networks 303

frequency basis of graph  and can be interpreted as signals representing the graph

eigenmodes or graph oscillating modes, while the set of eigenvalues {}1≤≤ are

called graph frequencies. The graph Fourier transform (GFT) of the graph signal

 is e =   and the component e is the Fourier coefficient associated to graph
frequency , which quantifies the contribution of mode  to the signal . Since

  =    = , the inverse GFT is  =  e. The GFT of the graph convolution
 =  () in (8.36) is

e =    =

X
=0


 Λ  =

X
=0

Λ
e =  (Λ) e

where  (Λ) is an  ×  diagonal matrix with -th diagonal element  (Λ) =P
=0 


 =  (), where  () =

P
=0 

 is the frequency response of the

graph filter  (Λ) and solely determined by the filter tap . The -th frequency

content of the GFT e is e =  () e and the graph convolution (8.36) modifies the
-th frequency content e of the input signal  according to the filter value  ()
at frequency .

8.11.2 Graph convolutional neural networks

Learning from graph data  requires a map Φ between the data  and the target

representation  that incorporates the graph structure:  = Φ (;). The image

of the map Φ is known as the representation space and determines the space of all

possible representations  for a given graph shift-operator  and any graph signal .

One example of a representation map is the graph convolution Φ (;H) =  ()

in (8.36), where the set H = {} contains the filter taps that characterize the
representation space. In order to learn this map, a cost function  is optimized,

given a training set T = {1 2      } with |T | samples. The learned map is
then Φ (;H∗) with

H∗ = argmin
H

1

|T |
X
∈T

 (Φ (;H)) (8.37)

Typical cost functions are the mean squared error, the 1 norm for regression, cross-

entropy for classification and the maximum likelihood for stochastic processes. If

Φ (;H) =  (), then the optimization in (8.37) returns the  + 1 best filter

taps H∗ = {∗} that best fit the training data with respect to the cost function
 and where  can be considered as a known design parameter or as a variable

to be optimized. However, graph convolutions limit the representation problem to

a linear map. Non-linear maps lead to the concept of a graph perceptron  (),

where each component  in the vector  is transformed to  (), thus the vector

 () = ( (1)   (2)       ( )). In other words, if  is the input signal to a

graph convolution  =  (), then the graph perceptron  =  () creates a non-

linear output signal, where  () is usually a sigmoid function of the parameter 

such as  () = tanh() or  () = max ( 0).
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304 Spectra of complex networks

Instead of one non-linear perceptron that maps each input component  to an

output component  =  (( ())), a cascade of  graph perceptrons is built

that forms a multi-layer graph perception, also called a graph convolutional neural

network, where layer  − 1 feeds the next layer  by
 =  ( ()−1) where  = 1     

Solving this recursion indicates that an input signal 0 of an  layer graph percep-

tron is eventually transformed to an output signal

 =  (−1 (−1−2 (−2 · · ·1 (10))))

which is a nested function evaluation of sigmoid functions  and where we have

omitted the dependence of  on the underlying graph via the shift-operator .

The  layer graph perceptron is actually a generalized, directed bipartite graph,

where odd layers are placed on the left side and even layers are the right-side nodes

of the bipartite graph and links are directed from layer  to layer  + 1. Graph

theoretically, the implicit underlying bipartite structure of a multi-layer perceptron

neural network is perhaps one of its major limitations, because it prevents that

layer  can interact directly with layer 0 6= +1. The corresponding representation

problem Φ (;H) =  ( (−1 (−2 · · · (10)))) in (8.37) then finds the

best filter coefficients H∗ = {∗ }1≤≤, given the sigmoid functions {}≤≤ and
the order  of each graph convolution in (8.36). The number  of layers is either

fixed and given or it can be iteratively increased to enhance accuracy.

We refer to the specific and rapidly evolving literature (see e.g. Gama et al.

(2020), Ruiz et al. (2021) and references therein) for implementation details, algo-

rithms to find the optimal filter coefficients H∗, such as stochastic gradient descent,
and applications.
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Eigensystem
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9

Topics in linear algebra

This chapter reviews a few, general results from linear algebra. In-depth analyses

are found, among many others, in the books by Gantmacher (1959a,b), Wilkinson

(1965), Shilov (1977), Mirsky (1982) and Meyer (2000). We refer to Golub and

Van Loan (1996) for matrix computational methods and algorithms.

In this chapter,  is a general matrix, not the adjacency matrix.

9.1 Matrix transformations

Any linear transformation, that maps a vector  to a vector  in an -dimensional

vector space, can be represented by  = , where  is an  ×  matrix. The

relation  =  links matrix theory to geometric mappings and vector spaces.

After reviewing the basic concept of a coordinate of a point in an -dimensional

space, we discuss here matrix transformations, that can make certain components

of a vector  zero and that play a role in the transformation of a matrix  to a

triangular form.

191. Coordinates. Let us consider an -dimensional space and  basic vectors

1 2      with vector components () =  , where  is the Kronecker delta,

i.e. () = 0 if  6=  and () = 1 if  = . This set of basic vectors 1 2     
is orthonormal, because  = , and is said to span the -dimensional space,

because any ×1 vector  = (1 2     ) can be written as a linear combination
of the basic vectors  =

P
=1  , where  is a real number. If we explicitly use

the definition of the basic vectors 1 2     , then we can write this expression

in matrix form as

 = 1

⎡⎢⎢⎢⎣
1

0
...

0

⎤⎥⎥⎥⎦+ 2

⎡⎢⎢⎢⎣
0

1
...

0

⎤⎥⎥⎥⎦+ 

⎡⎢⎢⎢⎣
0

0
...

1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
1 0 · · · 0

0 1 · · · 0
...
...

. . .
...

0 0 · · · 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
2
...



⎤⎥⎥⎥⎦
In matrix notation, we have that  =  = , where  is the ×  identity matrix

and where the × 1 vector  = (1 2     ), and we observe from  =  that
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308 Topics in linear algebra

the vector components  = . The projection of the vector  on a basic vector

 is equal to 
  =

P
=1 

¡
 

¢
= , where we have invoked orthogonality.

A point  in the -dimensional space can be represented by a vector  and the -th

vector component  is called the coordinate of the point  in the basis determined

by the set of vectors 1 2     . Finally, the Euclidean norm of the vector 

equals  , which is the distance of the point  to the origin, the point  with zero

coordinates and norm.

192. Orthogonal transformation. Suppose that  is an  ×  orthogonal matrix

(art. 247, 248 and 249) satisfying  =  = , from which −1 =  . This

means that the -th column vector of , which we denote by , is orthogonal to

 if  6= . Thus, the set of orthogonal vectors 1 2      can span the

-dimensional space and, similarly as in art. 191, we can write the vector  =P
=1  as a linear combination of those orthogonal vectors and orthogonality

shows that  = . In matrix notation,  = , where the  × 1 vector
 = (1 2     ) are the coordinates of the point , represented by the vector

, in the basis specified by the orthogonal vectors 1 2     . The Euclidean

norm of the vector  in the coordinate system determined by the orthogonal vectors

1 2      is

  =

X
=1





X
=1

 =

X
=1

X
=1


¡
 

¢
=

X
=1

2

or, in matrix notation,   = ()

 =  = . The equality

  =  implies that the Euclidean norm is preserved after an orthogonal trans-

formation: the distance of the point  to the origin is unaltered in the coordinate

system 1 2      and in the coordinate system 1 2     , although the cor-

responding coordinates  =   and  =  are generally different.

The relation between the coordinates (1 2     ) of the point  in the basis

1 2      and its coordinates (1 2     ) in the basis 1 2      is the

linear transformation  =  and its inverse transformation  = −1 =  .

Hence, an orthogonal transformation, characterized by an orthogonal matrix ,

preserves the Euclidean distance and provides an easy way to interrelate the coor-

dinates of a same point , without requiring the computation of the inverse matrix.

Geometrically, any orthogonal transformation is a rotation of the vector  around

the origin to a vector , and both  and  have equal Euclidean distance or norm

(see art. 201).

193. Elementary orthogonal projector. A matrix of the form

 =  − 1

 
 (A.1)

is called an elementary orthogonal projector onto the hyperplane through the origin

that is orthogonal to the vector . That hyperplane contains all the vectors  that

are orthogonal to the vector , i.e. that satisfy   = 0. Indeed, the vector  =
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9.1 Matrix transformations 309

−
³

 

´
 obeys  () = −

³

 

´
  = 0 and thus lies in the hyperplane

orthogonal to . Moreover, ( − ) =
³

 

´
 is the vector proportional to  or

lying on the line determined by the vector .

The elementary orthogonal projection  is symmetric, because the matrix 

is symmetric. However,  is not orthogonal because  =  − 

 
6= . Hence,

since  = 2, we observe that 2 = , and  =  for  ∈ N. The squared
length kk22 =  of the projected vector  =  equals  = 2 =

 = − (
)

2

 
, which can be viewed as the higher dimensional analogue of

Pythagoras’ theorem.

194. Spectrum of the elementary orthogonal projector. The functional equation

2 =  in art. 193 means that the vector  is transformed to the vector  = ,

which is orthogonal to , and that any subsequent set of projections, , keeps

the vector  unchanged in the hyperplane orthogonal to the vector . Indeed, if

 is orthogonal to , then  = 0 and  = , which shows that  = 1 is an

eigenvalue of  for all vectors orthogonal to . Each vector  that is not orthogonal

to  is of the form  =  + , where   = 0, and is transformed into a vector

 =  =  that is not proportional anymore to itself. The eigenvalue equation

 =  only has a solution if  = 0 and  = 0, in which case  = 0. Hence,  is

singular, i.e. det = 0.

Similar to the spectrum of the complete graph in Section 6.1, the eigenvalues of

 also follow from (A.66): the eigenvalues of  are  = 1 with multiplicity  − 1
and  = 0 with multiplicity 1.

195. General Projector. The elementary orthogonal projector  can be generalized.

Let X and Y be complementary subspaces of a vector space V so that every vector
 ∈ V can be uniquely resolved as  = + , where  ∈ Xand  ∈ Y. The unique
linear operator  defined by  =  is called the projector onto X along Y and 

has the following properties: (a)  2 =  (i.e.,  is idempotent), (b)  −  is the

complementary projector onto Y along X , (c) If V is R, then

 =
£
 

¤ ∙  

 

¸ £
 

¤−1
where the columns of  and  are respective bases for X and Y. These results
are proved in Meyer (2000, p. 386). If Y = X⊥, then  is the orthogonal projector

onto X . In that case, Meyer (2000, p. 430) shows that  = 
¡


¢−1
 .

Moreover, if the basis vectors of X are orthogonal, i.e.,  =  =  , we have

 =  = .

196. Gauss transformation. Gaussian elimination is the key technique to solve a

set of  linear equations of the form  = . A characteristic step in the Gaussian

elimination is illustrated for  = 2 variables and transforms the set½
111 + 122 = 1
211 + 222 = 2
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310 Topics in linear algebra

after multiplying the first equation by 21
11
, assuming 11 6= 0, and subtracting from

the second equation to the equivalent set(
111 + 122 = 1³

22 − 21
12
11

´
2 = 2 − 21

11
1

In matrix form, this transformation is written as∙
1 0

−21
11

1

¸ ∙
11 12
21 22

¸
=

∙
11 12
0 22 − 21

12
11

¸
Multiplying both sides with the inverse transformation yields∙

11 12
21 22

¸
=

∙
1 0
21
11

1

¸ ∙
11 12
0 22 − 21

12
11

¸
which is called the LU decomposition of  =  , where  is a unit lower triangular

and  is an upper triangular matrix. The solution  =  is found in two steps by

solving triangular matrices that have an easy solution (see e.g. Golub and Van Loan

(1996)): (a) solve  in  = , (b) solve  in  = . Indeed, we verify that  is

the solution, because  =  =  = .

A crucial step in Gaussian elimination is the transformation  of a vector 
 =£

1 · · ·  +1 · · · 
¤
to a vector ()


=
£
1 · · ·  0 · · · 0

¤
.

The case  = 2 above has shown, for  = 2
1
(and 1 6= 0), that∙

1 0

− 1

¸ ∙
1
2

¸
=

∙
1
0

¸
In general, the rank-one update

 =  − 

 (A.2)

where the vector  =
£
0 · · · 0 +1 · · · 

¤
and  =



for +1 ≤  ≤ 

transforms  into  =
¡
 − 




¢
 =  −  with the desired property that

only the first  components of  are non-zero and equal to those of the first 

components of . The transform  in (A.2) is called the Gauss transformation

with Gauss vector . The Gauss transformation is a unit lower triangular matrix,

 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 0 0 · · · 0
...

. . .
...

...
... · · · ...

0 · · · 1 0 0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 −+1 1 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 − 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The inverse Gauss transform follows from the inverse (A.67) of the rank-one update
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9.1 Matrix transformations 311

with   = 0 as

−1 =
¡
 − 




¢−1
=  + 


 (A.3)

which is a unit lower triangular matrix. In general, after  − 1 Gauss transforms
1 2     −1, the matrix  is transformed into an upper triangular matrix

 = −1    1 so that

 = (−1    1)
−1

 = 

where, using (A.3),

 = (−1   1)
−1
=

−1Y
=1

−1 = −11    −1−1 =  +

−1X
=1





is a unit lower triangular matrix. Numerical aspects (such as pivoting, error analy-

ses, algorithms and numerical complexity) of the LU decomposition  =  are

discussed in Golub and Van Loan (1996).

197. Householder reflections. The ×  real1 matrix  of the form

 =  − 2

 
 (A.4)

is called a Householder reflection or transformation with Householder vector .

The Householder transformation is symmetric, because
¡


¢
=  , and or-

thogonal, because  = . Moreover, the Householder transformation (A.4) is

the only orthogonal rank-one update transformation. Indeed, a rank-one update

transformation  =  −  , that is orthogonal, must satisfy

 =   =  −  −  +
¡
 
¢


so that  + =
¡
 
¢
 . Let  = + and  = 0, then the requirement

is 2 + 
¡
 + 

¢
=
¡
2+ 2 

¢
 , which shows that  = 0 and

2 = 2 or  = 2
 
. Hence, an orthogonal rank-one update transformation is

of the form  =  − 2
 

 .

Let  be a non-zero vector, then

 =

µ
 − 2

 


¶
 = − 2



 
 (A.5)

Since  is an orthogonal transformation, ()

 = , the length of the vector

 is preserved after transformation, implying that both  and  lie on the same

hypersphere with center at the origin and radius
√
. Interestingly, after applying

the elementary orthogonal projector , defined in (A.1) and art. 193, to  = ,

we find that

 =

µ
 − 

 

¶µ
− 2



 


¶
= − 

 
 = 

1 The Householder reflection with a complex Householder vector  is defined as  = − 2


 .
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312 Topics in linear algebra

Hence, both the orthogonal projection onto the hyperplane orthogonal to  of the

vector  and the vector  =  are the same. This means that the Householder

transformation (A.4) creates a reflection of the vector  with respect to the hyper-

plane orthogonal to . Since −1 =  = , we have that 2 = .

Since the Householder transformation  in (A.4) is orthogonal, in contrast to

the elementary orthogonal projector , a useful application is to find the vector 

so that  = 1, where  is a given vector. Equation (A.5) indicates that  is a

linear combination of  and 1. Thus, setting  = + 1 gives, with 1 = 1 ,

1 =  =

Ã
1− 2

¡
+ 1

¢
+ 21 + 2

!
− 

2
¡
+ 1

¢
+ 21 + 2

1

which requires that the coefficient of  must be zero, 1 − 2(+1)
+21+2

= 0 or

2 = . Hence, for a Householder vector  = ± kk2 1, it follows that2

 = ∓ kk2 1 (A.6)

The orthogonality and symmetry of the Householder transformation implies that

−1 =  = , so that  = ∓ kk21, which illustrates that the orthogonal
matrix  contains the vector  in the first column (which is 1).

In summary, the columns of the Householder matrix  with Householder vector

 = ± kk2 1 represent a set of orthogonal vectors of which the first equals .
198. Householder reduction. Gaussian elimination (art. 196) is a technique to

transform a matrix  to an upper triangular matrix  . Consecutive application of

the Householder transformation (art. 197) can also achieve a similar result as we

will show here.

Consider a real  ×  matrix  =
£
1 2 · · · 

¤
where  is the  ×

1 vector of the -th column. We invoke the  ×  Householder reflection 1
with Householder vector 1 = 1 ± k1k2 1 to transform the first column 1 to

11 (1)×1, with 11 = ±k1k2 according to (A.6). Hence,

1 =
£
11 (1)×1 12 · · · 1

¤
=

∙
11 1
0 

¸
where the real (− 1)×(− 1) matrix  =

£
1 2 · · · −1

¤
has (− 1)×1

column vectors.

After (− 1)× (− 1) Householder reflection e2 with (− 1)×1 Householder
vector e2 = 1 ± k1k2 1 of the matrix , (A.6) shows thate2 =

h
22 (1)(−1)×1 22 · · · 2

i
where 22 = ±k1k2. Now, if  and  are orthogonal matrices, so is

∙
 

 

¸
.

2 Besides the Householder reflection, also Givens rotations, explained in Meyer (2000); Golub
and Van Loan (1996), can easily map an arbitrary vector  to the basic vector 1.
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9.1 Matrix transformations 313

Hence, the matrix 2 =

"
1 0

0 e2
#
is orthogonal and, moreover, 2 is also a

Householder reflection with Householder vector  =
¡
0 e2 ¢. Thus,

21 =

"
11 1
0 e2

#
=

⎡⎣ 11 ∗ ∗
0 22 2
0 0 

⎤⎦
After the -th iteration, the result is

    21 =

"
()× ()×(−)
(−)× (−)×(−)

#

where  is upper triangular and  =

"
−1 0

0 e

#
is a Householder reflection.

The final result after  =  − 1 steps is  =  , where  = −1    1 is
an  ×  orthogonal matrix3 and  is an  ×  upper triangular matrix, with

diagonal element  equal to plus or minus the Euclidean norm of an (− )× 1
vector. In fact, the above method shows that we can always choose the sign of

 . In summary, Householder reduction
4 results in the factorization  =  of

any ×  matrix, where  is an orthogonal (unitary) matrix and  is an upper

triangular matrix.

199. Quadratic form. To a real symmetric matrix , a bilinear form  is

associated, which is a scalar defined as

 =  =

X
=1

X
=1



We call a bilinear form a quadratic form if  = . A necessary and sufficient

condition for a quadratic form to be positive definite, i.e.,   0 for all  6= 0,
is that all eigenvalues of  should be positive. Indeed, for a real symmetric matrix

, art. 247 shows the existence of an orthogonal matrix  that transforms  to a

diagonal form. Let  = , then

 =  =

X
=1


2
 (A.7)

which is only positive for any vector component  provided   0 for all . From

det =
Q

=1  in (A.98), a positive definite quadratic form  possesses a

positive determinant det  0. The problem of determining an orthogonal matrix

 or the eigenvectors of  is equivalent to the geometrical problem of determining

3 Although each Householder reflection  = 
 is symmetric, the product is, in general, not

symmetric, because (−1    1) = 1    −1.
4 Householder reduction is only one of the techniques to obtain this type of matrix factorization,
also known as QR factorization or decomposition, which is treated in depth by Golub and
Van Loan (1996).
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314 Topics in linear algebra

the principal axes of the hyper-ellipsoid
P

=1

P
=1  = 1. Relation (A.7)

illustrates that the inverse eigenvalue −1 is the square of the principal axis along

the  vector. A multiple eigenvalue refers to an indeterminacy of the principal

axes. For example if  = 3, an ellipsoid with two equal principal axis means that

any section along the third axis is a circle. Any two perpendicular diameters of the

largest circle orthogonal to the third axis are principal axes of that ellipsoid.

For additional properties of quadratic forms, such as Sylvester’s law5 of inertia

in art. 266, we refer to Courant and Hilbert (1953) and Gantmacher (1959a).

200. Taylor series of a multivariable function and a quadratic form. The Taylor

expansion of a differentiable function  () of the vector  around the vector  is

 () =  () + (∇ ()) (− ) +
1

2
(− )


 () (− ) +

where is the remainder of the order of
³
k− k3

´
, the gradient vector∇ () =³

 ()

1

¯̄̄
=


 ()

2

¯̄̄
=

    
 ()



¯̄̄
=

´
and the ×  Hessian matrix is

 () =

⎡⎢⎢⎢⎢⎢⎢⎣

2 ()

21

¯̄̄
=

2 ()

12

¯̄̄
=

· · · 2 ()

1

¯̄̄
=

2 ()

21

¯̄̄
=

2 ()

22

¯̄̄
=

· · · 2 ()

2

¯̄̄
=

...
...

. . .
...

2 ()

1

¯̄̄
=

2 ()

2

¯̄̄
=

· · · 2 ()

2

¯̄̄
=

⎤⎥⎥⎥⎥⎥⎥⎦
If  () =  is a quadratic form and  = − , then

 () =  (+ ) =
¡
 + 

¢
 (+ )

= +  + + 

Since all terms are scalars,  =
¡


¢
=  , we have

 () =  () + 
¡
+

¢
(− ) +  (− )

Comparison with the above general Taylor series indicates that the remainder  = 0

and that ∇ () = 
¡
+

¢
and  () = 2. After putting  →  +  and

 →  in the Taylor series of a quadratic function  () ≡  (1 2     ) =

 yields

 (1 + 1 2 + 2      + ) =  (1 2     ) +

X
=1

 (1 2     )




+
1

2

X
=1

X
=1

2 (1 2     )


 (A.8)

where
2 (12)


= 2 and

 (12)


=
P

=1 ( + ).

5 The number of positive and negative coefficients in a quadratic form reduced to the form (A.7)
by a non-singular real linear transformation does not depend on the particular transformation.
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9.2 Vector and matrix norms

201. Vector and matrix norms, denoted by kk and kk respectively, provide a
single number reflecting a “size” of the vector or matrix and may be regarded as an

extension of the concept of the modulus of a complex number. A norm is a certain

function of the vector components or matrix elements. All norms, vector as well as

matrix norms, satisfy the three “distance” relations:

(i) kk  0 unless  = 0;
(ii) kk = || kk for any complex number ;
(iii) k+ k ≤ kk+ kk (triangle inequality)

An example of a non-homogeneous vector norm is the quadratic formq
kk =

√


provided  is positive definite. Relation (A.7) shows that, if not all eigenvalues 
of  are the same, then not all components of the vector  are weighted similarly

and, thus, in general,
pkk is a non-homogeneous norm. The quadratic form

kk equals the homogeneous Euclidean norm kk22.
202. Hölder -norm. The Hölder -norm of a vector  is defined as

kk =
⎛⎝ X

=1

| |
⎞⎠1

(A.9)

The well-known Euclidean norm or length of the vector  is found for  = 2 and

kk22 = . In probability theory where  denotes a discrete probability density

function, the law of total probability states that kk1 =
P

=1  = 1 and we will

write kk1 = kk. The extreme case  → ∞ follows from (A.9) as max | | =
lim→∞ kk = kk∞ = max1≤≤ | |. The unit-spheres  = { : kk = 1} are,
in three dimensions  = 3, for  = 1 an octahedron; for  = 2 a ball; and for  =∞
a cube. Furthermore, 1 fits into 2, which in turn fits into ∞, and this implies
(art. 203) that kk1 ≥ kk2 ≥ kk∞ for any .

The Hölder inequality, proved in e.g. Van Mieghem (2014, p. 106), states that,

for 1

+ 1


= 1 and real   1,

X
=1

| | ≤
⎛⎝ X

=1

| |
⎞⎠ 1


⎛⎝ X

=1

| |
⎞⎠ 1



(A.10)

and in vector form ¯̄


¯̄
≤ kk kk (A.11)

A special case of the Hölder inequality where  =  = 2 is the Cauchy-Schwarz

inequality ¯̄


¯̄
≤ kk2 kk2 (A.12)
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The Cauchy-Schwarz inequality (A.12) follows immediately from the Cauchy iden-

tity (A.71) as shown in art. 222. The  = 2 norm is invariant under a unitary, hence

also orthogonal, transformation  , where  = , because kk22 =  =

 = kk22 (see art. 192).
203. Norm inequalities. All norms are equivalent in the finite dimensional case6:

there exist positive real numbers 1 and 2 such that, for all vectors ,

1 kk ≤ kk ≤ 2 kk (A.13)

For example,

kk2 ≤ kk1 ≤
√
 kk2

kk∞ ≤ kk1 ≤  kk∞
kk∞ ≤ kk2 ≤

√
 kk∞

By choosing  → 



 for real   0,  → 
1


  0 and  = 1

in the Hölder

inequality (A.10), we obtain with 0    1 the inequalityÃP
=1 

2−
 P

=1 

! 1


≤
⎛⎝P

=1 
1


 | |P
=1 

⎞⎠ 1


For  = 1, the weights  disappear such that the inequality for the Hölder -

norm becomes kk ≤ kk 
1

( 1

−1), where 

1

( 1

−1) ≥ 1. On the other hand, with

0    1 and for real   0,

kk
kk



=



=1 | |
 1




=1 ||
 1


=

 
=1

| |

=1 ||
 1


 1


=



=1

 | |

=1 ||
 1


 1


Since  =
| |

=1 || ≤ 1 and

1

 1, it holds that 

1
 ≤  and



=1

 | |

=1 ||
 1


 1


≤



=1

| |

=1 ||
 1



=



=1 | |

=1 ||
 1



= 1

which leads to an opposite inequality kk ≤ kk.
In summary, if     0, then the general inequality for Hölder -norm is

kk ≤ kk ≤ kk 
1

− 1
 (A.14)

The Minkowski inequality for the elements  ≥ 0 of an  ×  non-negative

6 For a finite dimensional vector space, the inequality (A.13) shows that the concept of “con-
vergence of a sequence {}≥1 to a point ∗” does not depend on the particular norm. For
infinite dimensional vector spaces, however, the choice of the norm matters: for example, a
Fourier series converges to the function with respect to the 2-norm (art. 350), but the Gibbs
phenomenon illustrates that the Fourier series does not converge uniformly.
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matrix , proved in e.g. Van Mieghem (2014, p. 108), is⎛⎝ X
=1

Ã
X
=1



!
⎞⎠ 1



≤
X
=1

⎛⎝ X
=1





⎞⎠ 1


(A.15)

and reduces for  = 2 to⎛⎝ X
=1

| +  |
⎞⎠ 1



≤
⎛⎝ X

=1

| |
⎞⎠ 1



+

⎛⎝ X
=1

| |
⎞⎠ 1



(A.16)

which is also known as the “triangle inequality”, k+ k ≤ kk + kk, for the
vector - norm (A.9).

204. Matrix norms. For  ×  matrices , the most frequently used norms are

the Euclidean or Frobenius norm

kk =
⎛⎝ X

=1

X
=1

| |2
⎞⎠12

(A.17)

and the -norm

kk = sup
6=0

kk
kk

(A.18)

The second distance relation in art. 201,
kk
kk =

°°° 
kk

°°°

, shows that

kk = sup
kk=1

kk (A.19)

Furthermore, the matrix -norm (A.18) implies that

kk ≤ kk kk (A.20)

Since the vector norm is a continuous function of the vector components and since

the domain kk = 1 is closed, there must exist a vector  for which equality

kk = kk kk holds. The -th vector component of  is () =
P

=1 
and the Hölder -norm (A.9) indicates that

kk =
⎛⎝ X

=1

¯̄̄̄
¯̄ X
=1



¯̄̄̄
¯̄
⎞⎠1

For example, for all  with kk1 = 1, we have that

kk1 =
X
=1

¯̄̄̄
¯̄ X
=1



¯̄̄̄
¯̄ ≤ X

=1

X
=1

| | | | =
X
=1

| |
X
=1

| |

≤
X
=1

| |
Ã
max


X
=1

||
!
= kk1max



X
=1

|| = max


X
=1

||
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318 Topics in linear algebra

There exists a vector  for which equality holds, namely, if  is the column in 

with maximum absolute sum, then  = , the -th basis vector with () = .

Similarly, for all  with kk∞ = 1,

kk∞ = max


¯̄̄̄
¯̄ X
=1



¯̄̄̄
¯̄ ≤ max

X
=1

| | | | ≤ max


X
=1

| |

If  is the row with maximum absolute sum and  = 1.sign() such that kk∞ =
1, then () =

P
=1 | | = max

P
=1 | | = kk∞. Hence, we have proved

that

kk∞ = max


X
=1

| | (A.21)

kk1 = max


X
=1

| | (A.22)

from which
°°

°°
∞ = kk1.

205. The  = 2 matrix norm kk2 is obtained differently. Consider
kk22 = ()  = 

Since  is a Hermitian matrix, art. 247 shows that all eigenvalues are real and

non-negative because a norm kk22 ≥ 0. These ordered eigenvalues of  are

denoted as 21 ≥ 22 ≥ · · · ≥ 2 ≥ 0. Theorem 68 in art. 247 states that there

exists a unitary matrix  such that  =  yields

 =  = diag
¡
2
¢
 ≤ 21

 = 21 kk22
Since the  = 2 norm is invariant under a unitary and orthogonal transform kk2 =
kk2, the definition (A.18) shows that

kk2 = sup
6=0

kk2
kk2

= 1 (A.23)

where the supremum is achieved if  is the eigenvector of  belonging to 21.

Meyer (2000, p. 279) proves the corresponding result for the minimum eigenvalue

provided that  is non-singular,°°−1°°
2
=

1

min
kk2=1

kk2
= −1

The non-negative quantity  is called the -th singular value of the × matrix

 and 1 is the largest singular value of . An extension of the eigenvalue problem

(1.3) to non-square matrices is called the singular value decomposition. A detailed

discussion is found in Golub and Van Loan (1996) and Horn and Johnson (2013,

Chapter 2).
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9.3 Formulae of determinants 319

206. The Frobenius norm kk2 = trace
¡


¢
. With the trace-formula (A.99)

and the analysis of  above,

kk2 =
X

=1

2 (A.24)

In view of (A.23), the bounds kk2 ≤ kk ≤
√
 kk2 may be attained.

207. Additional norm inequalities. Since
°°

°° = °°−1°° ≤ kk
°°−1°°, by

induction, we have for any integer , that°°
°° ≤ kk

and

lim
→∞

 = 0 if kk  1

We apply the norm inequality (A.20) twice to the product 

kk ≤ kk kk ≤ kk kk kk

The -norm definition kk = sup6=0
kk
kk in (A.18) then leads to

kk ≤ kk kk (A.25)

The norm kk = || kk of the eigenvalue equation (1.3) leads with kk ≤
kk kk in (A.20) to

|| ≤ kk (A.26)

Hence, the largest in absolute value eigenvalue of a matrix  does not exceed any

matrix -norm in (A.18). Applied to , for any -norm,

21 ≤
°°

°°

≤
°°

°°

kk

Choose  = 1 and with (A.23),

kk22 ≤
°°

°°
1
kk1 = kk∞ kk1

Any matrix  can be transformed (art. 239) by a similarity transform  to a

Jordan canonical form  as  = −1, from which  = −1. A typical
Jordan submatrix (())


= −2, where  is independent of . Hence, for

large ,  → 0 if and only if ||  1 for all eigenvalues.

9.3 Formulae of determinants

The theory of determinants is discussed in historical order up to 1920 by Muir

(1930) in five impressive volumes. Muir claims to be comprehensive. His treatise

summarizes each paper and relates that paper to others. A remarkably large amount
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320 Topics in linear algebra

of papers are by his hand. Many papers deal with specially structured determinants

that sometimes possess a nice, closed form7.

208. Definition. A determinant of an ×  matrix  is defined by

det =
X


(−1)()
Y
=1

 (A.27)

where the sum is over all the ! permutations  = (1 2     ) of (1 2     ) and

 () is the number of interchanges between  and the natural order (1 2     ).

For example,  = (1 3 2 4) has 1 interchange,  () = 1, while  = (4 3 2 1) has

 () = 2. Thus,  () is the number of interchanges to bring  back to the natural

order. The determinant of a non-square matrix is not defined.

An important observation from the definition (A.27) of a determinant is that the

product
Q

=1  contains precisely one element from each row and one element

of each column. Hence, if the matrix  contains a zero row or zero column, then

its determinant det = 0. Any ×  diagonal matrix  = diag() possesses only

one non-zero product
Q

=1  =
Q

=1  and (A.27) with  () = 0 reduces to

det (diag ()) =

Y
=1

 (A.28)

The same argument shows that any × triangular matrix  , with all zero elements
 = 0 below (or above) the main diagonal, has a determinant equal to det =Q

=1  , which generalizes the result (A.28) for the diagonal matrix.

209. Elementary properties. From the definition (A.27) of a determinant in

art. 208, the following elementary properties can be derived (see e.g. Meyer (2000)

or Mirsky (1982)).

(a) The transpose of a square matrix does not alter the determinant:

det
¡

¢
= det (A.29)

Hence, a sequence of row manipulations performed on a matrix results in the same

determinant after performing the same sequence of corresponding column manipu-

lations.

(b) If two rows (or columns) of a matrix  are interchanged, then the determinant

7 We mention as an example the following  ×  determinant of Scott (1880) in Muir (1930,
vol. IV, p. 124), which involves all players of the harmonic, geometric and arithmetic mean
inequality (6.38),

0 1 + 2 1 + 3 · · ·
1 + 2 0 2 + 3   

1 + 3 2 + 3
. . .

.

.

.
.
.
.

. . .


=
(−2)−1

2


=1




 
=1



 
=1

1



− (− 2)2

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of the resulting matrix  equals

det = −det (A.30)

An immediate consequence of property (A.30) is that, when a matrix  contains

two identical rows (or columns), its determinant is zero. Indeed, after interchanging

these identical rows in , property (A.30) indicates that the sign of the determinant

must change, but the matrix  is unchanged! Hence, det = −det implies that

det = 0.

(c) If a row (or column) in a matrix  is multiplied by a complex number , then

the determinant of the resulting matrix  equals

det =  det (A.31)

Clearly, if  = 0, then the matrix  has one zero row and we obtain again the

property, deduced in art. 208, that directly follows from the definition (A.27).

(d) The column (or row) addition property for determinants states that

det =

¯̄̄̄
¯̄̄̄
¯
11 · · · 1 + 1 · · · 1
12 · · · 2 + 2 · · · 2
...

...
...

1 · · ·  +  · · · 

¯̄̄̄
¯̄̄̄
¯

=

¯̄̄̄
¯̄̄̄
¯
11 · · · 1 · · · 1
12 · · · 2 · · · 2
...

...
...

1 · · ·  · · · 

¯̄̄̄
¯̄̄̄
¯+

¯̄̄̄
¯̄̄̄
¯
11 · · · 1 · · · 1
12 · · · 1 · · · 2
...

...
...

1 · · · 1 · · · 

¯̄̄̄
¯̄̄̄
¯

= det1 + det2 (A.32)

In other words, when the matrix  is written in terms of its column vectors  =

(1 2     ) as

 =
£
1 · · · −1  +1 · · · 

¤
and  =  +  so that

1 =
£
1 · · · −1  +1 · · · 

¤
and

2 =
£
1 · · · −1  +1 · · · 

¤
then (A.32) holds, but clearly  6= 1 + 2. A consequence of property (A.32)

and (A.30) is that the determinant is unaltered if a multiple of a column (row) is

added to another column (row). Thus, if we add to the column vector  in 1 the

column vector  =  for any 1 ≤  6=  ≤  (thus  6= ) and any complex

number , then the matrix 2 consists of two identical columns after applying

the column multiplication property (A.31) and its determinant vanishes, so that

det = det1.
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322 Topics in linear algebra

(e) Product rule: If  are ×  matrices and  = , then

det = detdet (A.33)

210. Explicit form of det (+). We illustrate the definition (A.27) of a deter-

minant by computing det (+), the determinant of a sum of two matrices, which

can be recursively obtained from the column addition property (A.32). Here, we

present a direct computation of

det (+) =
X


(−1)()
Y
=1

¡
 + 

¢
We first compute the product, rewritten as

Q
=1 ( + ) =

Q
=1 

Q
=1

³
1 +




´
and the latter product is a special case of the polynomial

Q
=1 ( − ) =

P
=0 



in (B.1) with  = 1, where  = − 

and  = 1. We invoke Vieta’s formula (B.11)

and find that

Y
=1

( − ) =

X
=0

⎛⎝(−1)− X
1=1

X
2=1+1

· · ·
X

−=−−1+1

−Y
=1



⎞⎠ 

We return to the original product

Y
=1

( + ) =

X
=0

⎛⎝ X
1=1

X
2=1+1

· · ·
X

−=−−1+1

−Y
=1



Y
=−+1



⎞⎠
which, introduced into det (+) =

P
 (−1)()

Y
=1

¡
 + 

¢
, yields

det (+) =

X
=0

⎛⎝ X
1=1

X
2=1+1

· · ·
X

−=−−1+1

X


(−1)()
−Y
=1



Y
=−+1



⎞⎠
(A.34)

where the  sum is over all the ! permutations  = (1  2      ) of the -tuple

(1 2     ). We observe that

X


(−1)()
−Y
=1



Y
=−+1



is the determinant of the matrix with rows 1 2     − consisting of elements of
the matrix  and the remaining rows −+1      with elements of the matrix
.

211. Explicit form of det (− ). The special case of (A.34), where  = −,
is of particular interest (see art. 235). If  = −, then the factor Q

=−+1 
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9.3 Formulae of determinants 323

is non-zero and equal to (−), only if  =  for  −  + 1 ≤  ≤ , so that,

using the notation of (A.95) in art. 235,

det (− ) =

X
=0




with

 = (−1)
X

1=1

X
2=1+1

· · ·
X

−=−−1+1

X
−

(−1)(−)
−Y
=1

 (A.35)

where the last sum is over all (− )! permutations of − =
¡
1  2      −

¢
of

(1 2     −). The latter determinant, called a principal minor, is thus obtained
from the matrix  by selecting only (1 2     −) rows and the same columns.
For example, the case  =  − 1 in (A.35) equals −1 = (−1)−1P

=1  , pre-

sented in (A.99). For  = − 2, (A.35) becomes

−2 = (−1)
X
=1

X
=+1

( − ) = (−1)
X
=1

X
=+1

¯̄̄̄
 
 

¯̄̄̄

212. Expansion of the determinant in cofactors. A cofactor of the element ( ) in

the ×  matrix  is defined as

̊ = (−1)+ det\ row \ col  (A.36)

where \ row \ col  is the (− 1)×(− 1) matrix obtained from  by deleting the -

th row and the -th column. The determinant  = det\ row \ col  is also called
the minor of element  in the matrix . The adjugate of the matrix  is the

transpose of the matrix of cofactors,

adj = ̊ (A.37)

and

(adj) = ̊ = (−1)+ det\ row \ col  (A.38)

Theorem 59 (Cofactor Expansion) If ̊ is the cofactor of  in the  × 

matrix  and  is the Kronecker delta, then for 1 ≤  ≤  and 1 ≤  ≤ , the -th

row expansion of the determinant of  equals

X
=1

̊ =  det (A.39)

while the -th column expansion is

X
=1

̊ =  det (A.40)
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324 Topics in linear algebra

Proof: See, e.g., Mirsky (1982, pp. 15-20). ¤

When  = (1 2     ) is the -th column vector in the matrix  and

̊ =
³
̊1 ̊2     ̊

´
is the vector of cofactors of the components of the vector

, then (A.40) in the cofactor expansion Theorem 59 is rewritten as the scalar

product ()

̊ =  det. Only when each element in column  is multiplied

by its corresponding cofactor, we obtain the value of the determinant of , else

()

̊ = 0. In other words, the vectors  and ̊ are orthogonal if  6= .

An interesting application of the cofactor expansion Theorem 59 is Cauchy’s

formula

det (adj) = (det)
−1

(A.41)

Consider the matrix  = adj, where  =
P

=1 ̊. Invoking (A.39) shows

that the matrix  is a diagonal matrix with the same diagonal elements,  = det.

Similarly, using (A.40) shows that adj =  det = . Hence, by (A.28), we

have that det = (det)

and by the product rule (A.33), we arrive at (A.41).

Moreover, from the basic property of the adjugate

adj =  det = adj (A.42)

we find that the inverse of a matrix  equals

−1 =
adj

det
(A.43)

and with (A.38) ¡
−1

¢

= (−1)+ det\ row \ col 

det
(A.44)

213. Derivative of a determinant. Suppose that the elements  of a matrix 

are differentiable functions of . Then, the derivative of det is computed from the

definition (A.27) of the determinant of  () as

det ()


=
X


(−1)() 



Y
=1

 ()

Since





Y
=1

 () =

X
=1

 ()



Y
=1; 6=

 ()

we have

det ()


=

X
=1

X


(−1)()  ()


Y
=1; 6=

 ()

The definition (A.27) shows that
P

 (−1)()
 ()



Q
=1; 6=  () = det,
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9.3 Formulae of determinants 325

where the matrix  is equal to the matrix , except that the -th row in  is

replaced by the derivatives
()


, for 1 ≤  ≤ . Hence,

det ()


=

X
=1

det (A.45)

We compute the derivative of the characteristic polynomial  () = det (− )

with respect to  using (A.45). Since
()


= − , the cofactor Theorem 59 and

the definition of a cofactor (A.36) in art. 212 indicate that det = det\{},
where \{} is the (− 1) × (− 1) matrix deduced from  by deleting the -th

row and -th column. Thus, we find that

 ()


=

det (− )


= −

X
=1

det
¡
\{} − 

¢
= −

X
=1

\{} () (A.46)

Invoking 1 =
()



¯̄̄
=0

= det
P

=1
1

()
in (A.100), the case for  = 0 in

(A.46) leads to

X
=1

det
¡
\{}

¢
= det

X
=1

1

 ()

214. Generalized expansion of the determinant. In 1772, Laplace has presented

a generalization of the cofactor expansion Theorem 59 in art. 212. Before stating

Laplace’s theorem, the definition of the cofactor needs to be generalized. We denote

by  (1 · · · |1 · · · ) the  ×  submatrix of the  ×  matrix  formed by the

rows 1 2      intersected by the column 1 2     . The corresponding minor

 (1 · · · |1 · · · ) is the (− ) × (− ) determinant of the submatrix of 

obtained by deleting the rows 1 2      and the column 1 2      from .

The cofactor of  (1 · · · |1 · · · ) is defined as

̊ (1 · · · |1 · · · ) = (−1)


=1 +  (1 · · · |1 · · · ) (A.47)

When  = 1, then  (1 · · · |1 · · · ) =  (|) =  and ̊ (1 · · · |1 · · · ) =
̊ (|) = (−1)+  = ̊ , consistent with the definition (A.36) of the cofactor.

Theorem 60 (Laplace) For each fixed set of row indices 1 ≤ 1  2  · · ·   ≤
, it holds that

det =
X

1≤1···≤
det (1 · · · |1 · · · ) ̊ (1 · · · |1 · · · ) (A.48)

where the sum is over all
¡



¢
ways in which a set 1 2      of  columns can be

chosen.

Proof: See, e.g., Mirsky (1982, pp. 22-23). ¤
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326 Topics in linear algebra

Due to property (A.29), we have similarly, for each fixed set of column indices

1 ≤ 1  2  · · ·   ≤ , that

det =
X

1≤1···≤
det (1 · · · |1 · · · ) ̊ (1 · · · |1 · · · ) (A.49)

Mirsky (1982) remarks that Laplace’s expansion Theorem 60 can be obtained

from the column or row addition property (A.32): select the 1 2     rows in

the matrix  and write each element in those rows as  + 0, while every other

element in each remaining row as 0+. After repeatedly invoking the row addition

property (A.32), we obtain a sum of 2 determinants. The non-zero of those 2

determinants can be written as a product of two determinants, corresponding to a

 ×  submatrix and its corresponding cofactor.

The next generalization is a famous theorem of Jacobi from 1833.

Theorem 61 (Jacobi) For 1 ≤  ≤ , it holds that

det (adj (1 · · · |1 · · · )) = (det)−1 ̊ (1 · · · |1 · · · ) (A.50)

Proof: See, e.g., Mirsky (1982, pp. 25-27). ¤

For  = 1, (A.50) reduces to an identity. If  = , then adj (1 · · · |1 · · · ) =
adj and (A.50) reduces to Cauchy’s formula (A.41) when we define

̊ (1 · · · |1 · · · ) = 1

consistent with (A.48). If  = − 1, then ̊ (1 · · · |1 · · · ) equals an element in
, say (−1)+ , and det (adj (1 · · · |1 · · · )) is the cofactor of element ( )
in the adjugate matrix adj, which is, by (A.50), equal to (−1)+  (det)−2.
If  = 2 and let 1 = , 2 = , 1 =  and 2 = , then

det (adj (12|12)) = det
"

̊ ̊

̊ ̊

#
= ̊̊ − ̊̊

= (−1)+++ det\ row \ col  det\ row\ col 

− (−1)+++ det\ row \ col  det\ row\ col 

and

̊ (12|12) = (−1)+++ det
¡
\ row \ row\ col \ col 

¢
If the latter is non-zero, Jacobi’s formula (A.50) becomes

det =
det\ row \ col  det\ row\ col  − det\ row \ col  det\ row\ col 

det
¡
\ row \ row\ col \ col 

¢
(A.51)

215. Resolvent and Jacobi’s trace formula. The diagonal element of the matrix

                     

https://doi.org/10.1017/9781009366793.013
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.013
https://www.cambridge.org/core


9.3 Formulae of determinants 327

( −)
−1
, called the resolvent (art. 262) of matrix , follows from (A.44) as

( −)
−1
 =

det
¡
 −\{}

¢
det ( −)

(A.52)

where \{} is the (− 1)×(− 1)matrix obtained from  by deleting the -th row

and column. The expression 

det ( −) =

P
=1 det

¡
 −\{}

¢
in (A.46) in

art. 213) shows that

X
=1

( −)
−1
 =



det ( −)

det ( −)
=




log det ( −)

which is rewritten as

trace
³
( −)

−1
´
=




log det ( −) (A.53)

Integrating both sides with respect to  yields (art. 231)

trace (log ( −)) = log det ( −)

By substitution of  = log ( −), we find Jacobi’s expression, valid for any

matrix ,

trace() = det  (A.54)

After taking the logarithm in (A.54), the trace is expressed in terms of the deter-

minant,

trace () = log det 

while by substituting  =  in (A.54), Jacobi’s identity expresses a determinant

as a function of the trace

det = trace(log)

Expanding the last expression in a Taylor series shows the relation with the Newton

identities (B.4) as demonstrated in art. 65.

216. Christoffel-Darboux formula for resolvents. The resolvent ( −)
−1

of

matrix  obeys

( −)
−1 − ( −)

−1
= ( − ) ( −)

−1
( −)

−1

which is verified by left-multiplication by ( −) and right-multiplication by

( −). With the inverse matrix −1 = adj
det

in (A.43),

adj ( −)

det ( −)
− adj ( −)

det ( −)
= ( − )

adj ( −)

det ( −)

adj ( −)

det ( −)

After multiplying both sides by ( − )
−1
det ( −) det ( −), the element 
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328 Topics in linear algebra

of the resulting matrix  =adj( −)adj( −) is

 =
adj ( −) det ( −)− adj ( −) det ( −)

 − 

=

X
=1

adj ( −) adj ( −)

Since both the adjugate and the determinant of − are polynomials in  of degree
 − 1 and , respectively, the Christoffel-Darboux identity reflects a polynomial

identity, whose strength is applied in the study of orthogonal polynomials (see

art. 358). In particular, the limit  →  results in

lim
→

 = adj ( −)



det ( −)− 


adj ( −) det ( −)

=

X
=1

adj ( −) adj ( −)

If  =  and  is symmetric, then adj is symmetric and

adj ( −)
det ( −)


− adj ( −)


det ( −) =


=1

(adj ( −))
2

(A.55)

By using the same arguments as in art. 364, the above expression implies that

the zeros of the polynomial  () = adj ( −) and the polynomial  () =

det ( −) interlace.

217. Schur complements. From the Schur identity∙
 

 

¸
=

∙
 

−1 

¸ ∙
 

  − −1

¸
(A.56)

which is a block Gaussian elimination in art. 196 to construct an upper block

triangular matrix, we find that

det

∙
 

 

¸
= detdet

¡
 − −1

¢
(A.57)

and  − −1 is called the Schur complement of . A similar identity∙
 

 

¸
=

∙
−−1 

 

¸ ∙
 

−1 

¸
(A.58)

leads to

det

∙
 

 

¸
= det det

¡
−−1

¢
(A.59)

with Schur complement −−1.

                     

https://doi.org/10.1017/9781009366793.013
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.013
https://www.cambridge.org/core


9.3 Formulae of determinants 329

Applying det () = det () det () in (A.33) to the right-hand side of (A.57),

provided × and × have the same dimensions  = , results in

detdet
¡
 − −1

¢
= det

¡
 −−1

¢
= det

¡
− −1

¢
which illustrates that, if  and  or  and  commute (i.e.  =  or  =

), then the Schur determinant simplifies to

det

∙
 

 

¸
= det ( − ) = det (− )

which is formally equal to the determinant of a 2× 2 matrix.
We can further reduce the block triangular matrices to block diagonal matrices

as ∙
 

  − −1

¸
=

∙
 

  − −1

¸ ∙
 −1
 

¸
and ∙

−−1 

 

¸
=

∙
 −1

 

¸ ∙
−−1 

 

¸
so that the first (A.56) and second (A.58) Schur identities become∙

 

 

¸
=

∙
 

−1 

¸ ∙
 

  − −1

¸ ∙
 −1
 

¸
and ∙

 

 

¸
=

∙
 −1

 

¸ ∙
−−1 

 

¸ ∙
 

−1 

¸
From the identity ∙

 

 

¸ ∙
 −
 

¸
=

∙
 

 

¸
it follows that ∙

 

 

¸−1
=

∙
 −
 

¸
while the inverse of a diagonal block matrix equals∙

 

 

¸−1
=

∙
−1 

 −1

¸
With ()

−1
= −1−1−1, we find two expressions for the inverse of the block
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330 Topics in linear algebra

matrix:∙
 

 

¸−1
=

∙
 −−1
 

¸"
−1 


¡
 − −1

¢−1 # ∙  

−−1 

¸

=

"
−1+−1

¡
 − −1

¢−1
−1 −−1¡ − −1

¢−1
− ¡ − −1

¢−1
−1

¡
 − −1

¢−1
#

(A.60)

and∙
 

 

¸−1
=

∙
 

−−1 

¸" ¡
−−1

¢−1


 −1

# ∙
 −−1
 

¸

=

" ¡
−−1

¢−1 − ¡−−1
¢−1

−1

−−1¡−−1
¢−1

−1+−1
¡
−−1

¢−1
−1

#
(A.61)

Equating corresponding blocks at the right-hand side of (A.60) and (A.61)

returns the formulae

−1
¡
 − −1

¢−1
=
¡
−−1

¢−1
−1

and ¡
−−1

¢−1
= −1 +−1

¡
 − −1

¢−1
−1 (A.62)

where the latter (A.62) is known as the Sherman-Morrison-Woodbury formula.

218. Schur’s complement extended to a general block matrix. Powell (2011) applied

block Gaussian elimination to the  ×  block matrix , which is partitioned

into 2 blocks, each of size × ,

 =

⎡⎢⎢⎢⎣
11 12 · · · 1
21 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎤⎥⎥⎥⎦
The determinant of  is

det =

Y
=1

det
³

(−)


´
(A.63)

where the ×  matrices 
()
 obey the recursion⎧⎨⎩ 

(0)
 = 


(+1)
 = 

()
 − 

()

−
³

()

−−
´−1


()

− for 0 ≤   
(A.64)
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9.3 Formulae of determinants 331

In the case  = 2, (A.63) reduces to det = det
(1)
11 det

(0)
22 = det

(1)
11 det22

and the recursion (A.64) for 
(1)
11 becomes


(1)
11 = 

(0)
11 − 

(0)
12

³

(0)
22

´−1

(0)
21 = 11 −12

−1
22 21

which is precisely equal to Schur’s block determinant (A.59).

219. Rank one update formulae. An interesting application of art. 217 is

det

∙
× −×

× 

¸
= det

¡
× + ×

×
¢
= detdet

¡
 +−1

¢
(A.65)

which follows by applying both (A.59) and (A.57). For  = 1 and  =  in (A.65),

we obtain the “rank one update” formula

det
¡
 + 

¢
= 1 +   (A.66)

This example shows that interesting relations can be obtained when the inverse of

either  or  or both in (A.57) and (A.59) are explicitly known.

The inverse of
¡
× + ×

×
¢
follows from formula (A.62) as¡

× + ×
×

¢−1
= −1 −−1

¡
 +−1

¢−1
−1

from which the special case  = 1 of the “rank one update” follows as¡
+ 

¢−1
= −1 − −1−1

1 + −1
(A.67)

and, in particular for  = ,¡
 + 

¢−1
=  − 

1 +  

The classical example of (A.67) is the case where one element  in an × matrix

 is increased by a number , which is established if  =  and  =  so that

 = 

 and

¡
+ 




¢−1
= −1 − −1 

−1

1 +  
−1

= −1 −

P

=1

¡
−1

¢


¡
−1

¢


1 +  (−1)

= −1 −

¡
−2

¢


1 +  (−1)

Hence, if the inverse −1 is known, the inverse
¡
+ 




¢−1
is efficiently com-

puted in terms of the elements of −1, which is useful for perturbation or sensitivity
analyses.

220. Cramer’s rule. The linear set of equations,  = , has a unique solution
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332 Topics in linear algebra

 = −1 provided det 6= 0. If we write the matrix  in terms of its column

vectors  = (1 2     ), then

 =
£
1 · · · −1  +1 · · · 

¤
Cramer’s rule expresses the solution of  = (1 2     ) per component as

 =
det

£
1 · · · −1  +1 · · · 

¤
det

(A.68)

Indeed, the matrix  with the -th column replaced by the vector  is

 = + (− ) 



where  is the -th basis vector. Hence, 

 equals the zero matrix with the -th

column replaced by the vector  and it has rank 1. Then,

det = det
¡
+ (− ) 




¢
= detdet

¡
 +−1 (− ) 




¢
The “rank one update” formula (A.66), with  =  and  = −1, produces

det
¡
 +−1 (− ) 




¢
= 1 + 

−1 (− ) = 1 + 
¡
−1−−1

¢
= 1 +  (− ) = 

which demonstrates Cramer’s formula (A.68).

221. Expansion of the determinant of a product.

Theorem 62 (Binet-Cauchy) Let  =  where × and ×. Then,

det =
X

1≤12···≤

¯̄̄̄
¯̄̄ 11 · · · 1

... · · · ...

1 · · · 

¯̄̄̄
¯̄̄
¯̄̄̄
¯̄̄ 11 · · · 1

... · · · ...

1 · · · 

¯̄̄̄
¯̄̄ (A.69)

Proof: See, e.g., Gantmacher (1959a, pp. 9-10). ¤

If × = (×)

(thus  = ), then the Binet-Cauchy formula (A.69)

reduces to

det =

X
1=1

X
2=1+1

· · ·
X

=−1+1

¯̄̄̄
¯̄̄ 11 · · · 1

... · · · ...

1 · · · 

¯̄̄̄
¯̄̄
2

(A.70)

222. The Cauchy identity. The Cauchy identity

X
=1

2

X
=1

2 −
⎛⎝ X

=1



⎞⎠2

=
1

2

X
=1

X
=1

( − )
2

(A.71)

is the special case for the dimension  = 2 in the Binet-Cauchy Theorem 62.
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9.3 Formulae of determinants 333

Specifically8, (A.70) reduces to (A.71) for the matrix 2× =
∙




¸
, where 

and  are × 1 vectors. Since the right-hand side in the Cauchy identity (A.71) is
non-negative for real vectors  and , the Cauchy-Schwarz inequality (A.12) is

X
=1

2

X
=1

2 ≥
⎛⎝ X

=1



⎞⎠2

(A.72)

The equality sign is only possible if and only if all  =  and all  = . With the

scalar product   = kk2 kk2 cos , where  is the angle between the vector
 and , the Cauchy identity (A.71) is represented as

kk2 kk2 |sin | =
vuut1

2

X
=1

X
=1

( − )
2

Since Var[] = 
£
2
¤− ( [])2, Cauchy’s equality (A.71) shows for any ran-

dom variable  in a graph, such as the degree , that the variance equals

Var [] =
1



X
=1

2 −
⎛⎝ 1


X
=1



⎞⎠2

=

X
=2

−1X
=1

µ
 − 



¶2
(A.73)

where the last term sums the square of the difference in realizations of  over all

pairs of nodes in the graph.

223. The de Bruijn inequality. If 1 2      are real numbers and 1 2     
are complex numbers, then de Bruijn (1960) found the interesting inequality¯̄̄̄

¯̄ X
=1



¯̄̄̄
¯̄
2

≤ 1
2

X
=1

2

⎛⎝ X
=1

| |2 +
¯̄̄̄
¯̄ X
=1

2

¯̄̄̄
¯̄
⎞⎠ (A.74)

Since
¯̄̄P

=1 
2


¯̄̄
≤ P

=1 | |2, the de Bruijn inequality (A.74) is sharper than¯̄̄̄
¯̄ X
=1



¯̄̄̄
¯̄
2

≤
X
=1

2

X
=1

| |2

which follows from the Cauchy-Schwarz inequality (A.12), because
¯̄̄P

=1 

¯̄̄
≤P

=1  | |.
Proof of (A.74): Let  =

P
=1  and denote  =  +  . de Bruijn

(1960) observes that  and  have the same modulus ||, so that we may as-
sume that

P
=1  =

P
=1  ≥ 0 and

P
=1  = 0, which corresponds to

8 The case  = 2 in the Cauchy identity (A.71),

21 + 22

 
21 + 22


= (11 + 22)

2 +

(12 − 21)
2, has played (Weil, 1984, p. 67-69) a role in Fermat’s “Christmas 1640” Theo-

rem, that every prime of the form  = 4+1, where  is a positive integer, can be written in
one and only one way as sum of two squares.
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334 Topics in linear algebra

a simultaneous rotation of 1 2      around the origin of the complex plane.

Invoking the Cauchy-Schwarz inequality (A.12) then yields¯̄̄̄
¯̄ X
=1



¯̄̄̄
¯̄
2

=

⎛⎝ X
=1



⎞⎠2

≤
X
=1

2

X
=1

2

Since ||2 = 2+2 and Re
¡
2
¢
= 2−2, we have that 2 = 1

2

³
||2 +Re

¡
2
¢´
.

Together with
P

=1Re
¡
2
¢
= Re

¡P
=1 

2


¢ ≤ ¯̄P
=1 

2


¯̄
, the de Bruijn inequality

(A.74) is proved. ¤

224. Vandermonde matrix. The  ×  Vandermonde matrix of the vector  is

defined as9

 () =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 21 31 · · · −11

1 2 22 32 · · · −12

1 3 23 33 · · · −13

...
...

...
...

...
...

...
...

...
...

...
...

1  2 3 · · · −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.75)

The Vandermonde determinant obeys the recursion

det () = det(−1) ()
−1Y
=1

( − ) (A.76)

with det2 () = 2 − 1. Indeed, subtracting the last row from all previous rows

and using the algebraic formula  −  = (− )
P−1

=0 
−1− yields

det () =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

0 1 −  (1 − )(1 + ) · · · −11 − −1

0 2 −  (2 − )(2 + ) · · · −12 − −1

0 3 −  (3 − )(3 + ) · · · −13 − −1

...
...

...
...

...

0 −1 −  (−1 − )(−1 + )
...

...

1  2 · · · −1

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

After expanding the determinant as (−1) times the cofactor of the last element
of the first column, the resulting determinant is, after dividing each row  by the

9 There are different ways to define the Vandermonde matrix, for instance, by organizing the
powers of the vector  in rows (as in art. 242) instead of in columns, and by choosing the
sequence of powers in either decreasing or increasing order.
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9.3 Formulae of determinants 335

factor  − ,

det−1 =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

1 1 +  21 + 1 + 2 · · · P−2
=0 

−2−
 


1

1 2 +  22 + 2 + 2 · · · P−2
=0 

−2−
 


2

1 3 +  22 + 2 + 2 · · · P−2
=0 

−2−
 


3

...
...

...
...

...

1 −2 +  2−2 + −2 + 2
...

...

1 −1 +  2−1 + −1 + 2 · · · P−2
=0 

−2−
 


−1

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

A determinant remains unchanged by adding a column multiplied by some number

 to another column. Since
P−1

=0 
−1− = −1 + 

P−2
=0 

−2− , we can
subsequently multiply each but the last column  by  and subtract the result

from the column +1 to arrive at−1 = −1 (). This establishes the recursion
(A.76). Iterating the recursion (A.76) results in

det () =
Y

1≤≤
( − ) =

Y
=1

Y
=+1

( − ) (A.77)

The cofactor of the Vandermonde matrix  () is elegantly derived as (B.26) in

art. 305 using the Lagrange interpolation polynomial.

225. Hadamard’s inequality. Consider the matrix  =
£
1 2 · · · 

¤
, with

the vectors {}1≤≤ as columns. The Hadamard inequality for the determinant,
proved in Meyer (2000, p. 469), is

|det| ≤
Y

=1

kk2 =
Y

=1

vuut X
=1

| |2 (A.78)

with equality only if all the vectors 1 2      are mutually orthonormal, i.e., if

()

 =  or, when complex ()


 =  , for all pairs ( ). As proved by

Meyer (2000, p. 469), the volume  of an -dimensional parallelepiped, a possibly

skewed rectangular box generated by  independent vectors 1 2     , equals

 = |det|. This relation provides a geometrical interpretation of the determinant.
Hadamard’s inequality (A.78) asserts that the volume of an -dimensional paral-

lelepiped generated by the columns of  cannot exceed the volume of a rectangular

box whose sides have length kk2. In general, an -dimensional parallelepiped is

skewed, i.e., its  independent, generating vectors 1 2      are not orthogonal,

which geometrically explains Hadamard’s inequality (A.78).

We apply the Hadamard inequality (A.78) to the Vandermonde determinant in

art. 224, where the components of the vector  are ordered as |1|  |2|     

||  1 ≥ |+1|      ||. After dividing the first  rows, corresponding

to the components with absolute value larger than 1, by −1 for 1 ≤  ≤ , we
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obtain

det () =

Y
=1

−1

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄


−(−1)
1 

−(−2)
1 

−(−3)
1 

−(−4)
1 · · · 1

...
...

...
...

...
...


−(−1)
 

−(−2)
 

−(−3)
 

−(−4)
 · · · 1

1 +1 2+1 3+1 · · · −1+1

...
...

...
...

...
...

1  2 3 · · · −1

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄

Since none of the elements in this determinant exceeds in absolute value unity,

Hadamard’s inequality (A.78) shows that |det ()| ≤ 

2

Q
=1 | |−1 with equal-

ity if and only if the row vectors are orthogonal. Art. 242 shows that orthogonality

is only possible if all  = 2

 corresponding to the zeros of  () =  (

 ± 1).
Using (A.77) and | | = 1 yields the identity

Y
=1

Y
=+1

¯̄̄

2
 − 

2


¯̄̄
= 


2 (A.79)

226. A Hadamard matrix. An  ×  Hadamard matrix  contains as elements

either −1 and 1 and obeys 

 = . The normalized matrix  =

1√

 is

an orthogonal matrix (art. 248), from which it follows that det = 

2 . Art. 225

demonstrates that det is maximal among all  ×  matrices with elements in

absolute value less than or equal to 1, which includes all orthogonal matrices. Any

relabeling (permutation of rows and columns, art. 31) of a Hadamard matrix is

again a Hadamard matrix; multiplying any row or column by −1 preserves the
Hadamard properties.

Sylvester found a construction for symmetric Hadamard matrices 2 = 2−1⊗
2, where ⊗ is the Kronecker product (art. 286) and 2 =

∙
1 1

1 −1
¸
, that

contain the  vector in the first column.

9.4 Function of a matrix

227. Bézout’s Theorem. Consider an arbitrary matrix polynomial in ,

 () =

X
=0




where all  are  ×  matrices and  6= . Hence, any element of the  × 

matrix  () is a polynomial  () =
P

=0 () 
 of at most order  in .

Any matrix polynomial  () can be right and left divided by another (non-zero)

matrix polynomial () in a unique way as proved in Gantmacher (1959a, Chapter

IV). Hence, the left-quotient and left-remainder  () = ()() + () and

the right-quotient and right-remainder  () = ()()+() are unique. Let
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9.4 Function of a matrix 337

us concentrate on the right-remainder in the case where () =  − is a linear

polynomial in . Using Euclid’s division scheme for polynomials (art. 309),

 () = 
−1 ( −) + (+ −1)−1 +

−2X
=0




=
£


−1 + (+ −1)−2
¤
( −)

+
¡


2 + −1+ −2
¢
−2 +

−3X
=0




and continuing, we arrive at

 ()=

⎡⎣−1+· · ·+−1 X
=


−+· · ·+

X
=1


−1

⎤⎦(−)+ X
=0




In summary,  () = () ( −)+() and similarly for the left-quotient and

left-remainder with

() =
P

=1 
−1

³P
= 

−
´

() =
P

=1 
−1

³P
= 

−
´

() =
P

=0 
 =  () () =

P
=0


(A.80)

and where the left- and right-remainder is independent of . The Generalized

Bézout Theorem states that the polynomial  () is divisible by ( −) on the

right (left) if and only if  () = () =  (or () = ).

228. The Cayley-Hamilton Theorem. Operations with matrices are different

from operations with scalars. Well-known examples of the difference are the non-

commutativity of the matrix product and the fact that  can be the null matrix

, although both  6=  and  6= . The Cayley-Hamilton Theorem is another

example that leads to a remarkable consequence discussed in art. 233.

Theorem 63 (Cayley-Hamilton) An  ×  matrix  satisfies its own charac-

teristic polynomial

() =  (A.81)

where the characteristic polynomial is  () = det (− ) =
P

=0 
.

There exist several proofs of the Cayley-Hamilton Theorem. Due to the impor-

tance of the Cayley-Hamilton Theorem, valid for any ×  matrix , we provide

a general proof.

Proof: Applying the basic property of the adjugate (A.42) in art. 212 to the

matrix − , yields, with  () = det (− ),

(− ) adj (− ) =  ()  = adj (− ) (− ) (A.82)

Since the characteristic polynomial  () =
P

=0 
 is a polynomial of degree

                     

https://doi.org/10.1017/9781009366793.013
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.013
https://www.cambridge.org/core


338 Topics in linear algebra

 in , art. 227 demonstrates that10  () = adj(− ) =
P−1

=0 
 must be

a polynomial of at most degree − 1 in  with ×  matrix coefficients. Hence,

(− ) adj (− ) = (− )

−1X
=0


 =

−1X
=0


 −

X
=1

−1

= 0 +

−1X
=1

( − −1) − −1

Equating corresponding powers of  in (A.82) yields

0 = 0

 = ( − −1) for 1 ≤  ≤ − 1
 = −1

After multiplying the above equation of the coefficients of  from the left by ,

we obtain

X
=0


 = 0 +

−1X
=1

¡
+1 −−1

¢−−1 = 0

Hence,  () =
P

=0 
 = , which completes the proof. ¤

229. The minimal polynomial of a square matrix. Let () =
P

=0 
 denote

the minimal polynomial, defined in art. 310, of the characteristic polynomial  ()

of a matrix  and the degree of the minimal polynomial obeys  ≤ , where  is the

number of different eigenvalues of .

A polynomial  () =
P

=0 
 is called an annihilating polynomial of the

square matrix  if  () = . The minimal polynomial  () =
P

=0 
 of

degree  is the annihilating polynomial of  of least degree with highest coefficient

 = 1. Consider the division

 () =  ()  () +  ()

where  () is a polynomial in  of degree less than  and consider the corresponding

matrix division

 () =  ()  () +  ()

Since  () =  and  () = , we conclude that  () =  and that  ()

10 Given the matrix , Gantmacher (1959a) describes a method due to Faddeev that si-
multaneously computes the coefficients  of the characteristic polynomial det( −) =

 − −1
=0

− as well as the matrix coefficients  of the adjoint matrix  () =−1
=0

−1−, differently defined than ours in (A.84). Faddeev defines, for 1 ≤  ≤ ,

the system  =
1

trace() and  =  − , where  =  and 1 = . A check is

 = − = . The solution is  = −−1
=1 −

 . After taking the trace of both

sides of this solution and comparing the result with the Newton identities (B.9), we find that

 =  are the coefficients of the characteristic polynomial det( −) = −−1
=0

−.
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is also an annihilating polynomial of . But, the degree of  () is lower than the

degree of the minimal polynomial  (), which is impossible, else  () should

be the minimal polynomial. Hence,  () must be zero. In conclusion, there holds:

 () =  ()  () or every annihilating polynomial  () of a matrix , obey-

ing  () = , is divisible, i.e. without remainder, by its minimal polynomial,

 () | (). Consequently, since the characteristic polynomial is an annihilating
polynomial by the Cayley-Hamilton Theorem 63, it holds that  () | ().
Moreover, given the matrix , its corresponding minimal polynomial  () is

unique. The uniqueness of the minimal polynomial also follows from the above argu-

ment. Indeed, if  ()were another minimal polynomial of, then  () | ()

as well as  () | (). Hence,  () =  (), but the constant  must be

one since the highest coefficient of a minimal polynomial is 1.

We remark that the coefficients of an annihilating polynomial are scalars. A

general matrix polynomial  (), satisfying  () =
P

=0 
 =  where the co-

efficients  are × matrices, can be of lower degree than the minimal polynomial
 () =

P
=0 

, i.e.   , as exemplified in art. 55.

230. The adjoint matrix. By the Generalized Bézout Theorem, the polynomial

 () = () − () is divisible by ( −) because  () = () − () = .

If  () is an ordinary polynomial (i.e. all coefficients  are scalars), then the

right- and left-quotient and the remainders are equal, () = () =  () and

 () =  () =  (),

 () = () ( −) + () = ( −)() + ()

Let () = (), then

() −  () = () ( −) = ( −)() (A.83)

The Cayley-Hamilton Theorem 63 states that () = , which indicates that

() = () ( −) and also () = ( −)(). Incidentally, the rela-

tion (A.83) also proves the Cayley-Hamilton Theorem 63, based on the property

(A.82) of the adjugate matrix (art. 212). The two proofs illustrate the intimate

relation between the adjugate and the Cayley-Hamilton Theorem 63.

The matrix

() = adj (− ) = ( −)
−1

() (A.84)

is called the adjoint matrix of . Explicitly, from (A.80),

() =

X
=1

−1

⎛⎝ X
=


−

⎞⎠
With 0 = det in (A.98), it holds that (0) = −−1 det =P

=1 
−1. The

Cayley-Hamilton Theorem (A.81) and (A.98),  =
P

=1 
 +  det, directly

lead to the above polynomial form for the inverse matrix −1 of a non-singular
matrix .
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340 Topics in linear algebra

The main theoretical interest of the adjoint matrix () stems from its definition,

() = () ( −) = ( −)()

In case  =  is an eigenvalue of , then ( −)() = , which indicates by

(1.3) and the commutative property ( −)() = () ( −) that every non-

zero column(row) of the adjoint matrix () is a right(left)-eigenvector belonging

to the eigenvalue . In addition, by differentiation with respect to , we obtain

0() = ( −)0() +()

This demonstrates that, if () 6= , the eigenvalue  is a simple root of ()

and, conversely, if () = , the eigenvalue  has higher multiplicity.

The adjoint matrix () = ( −)
−1

() is computed by observing that,

on the Generalized Bézout Theorem,  ( ) =
()−()

− is divisible without re-

mainder. By replacing  and  in this polynomial  ( ) by  and  respectively,

() =  () readily follows.

231. Consider the arbitrary polynomial of degree ,

() = 0

Y
=1

(− )

Substitute  by , then () = 0
Q

=1( − ). Since det () = detdet

and det() =  det, we have det(()) = 0
Q

=1 det(−) = 0
Q

=1 ().

With () =
Q

=1 ( − ) in (A.97),

det(()) = 0

Y
=1

Y
=1

( − ) =

Y
=1

0

Y
=1

( − ) =

Y
=1

 ()

Let () = ()− , then we arrive at the general result: for any polynomial (),

the eigenvalues of () are  (1)       () and the characteristic polynomial is

det(()− ) =

Y
=1

( ()− ) (A.85)

which is a polynomial in  of degree at most . Since the result holds for an

arbitrary polynomial, it should not surprise that, under appropriate conditions of

convergence, it can be extended to infinite polynomials, in particular to the Taylor

series of a complex function.

232. A function of a matrix. As proved in Gantmacher (1959a, Chapter V), if the

power series of a function () around  = 0,

() =

∞X
=0

(0)( − 0)
 where  (0) =

1

!

 ()



¯̄̄̄
=0

(A.86)
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9.4 Function of a matrix 341

converges for all  in the disc | − 0|  , then

() =

∞X
=0

(0)(− 0)
 (A.87)

provided that all eigenvalues of  lie within the region of convergence of (A.86),

i.e., |− 0|  . For example,

( − )
−1
=
P∞

=0 
 for ||  1, all 1 ≤  ≤ 

 =
P∞

=0


!
for all 

log =
P∞

=1
(−1)−1


(− ) for | − 1|  1, all 1 ≤  ≤ 

The Taylor series of an analytic function can be differentiated and integrated within

the region of convergence, which leads us to define other matrix functions. For

example, when ||  1 for all 1 ≤  ≤ ,Z
( − )

−1
 =

∞X
=0

+1

 + 1
 = −1

∞X
=1




 = −1 log ( − )

from which log ( − ) =
R
 ( − )

−1
, while, for all

¯̄



¯̄
 1, we find

 log(−)


= ( −)
−1
.

Expression (A.85) shows that the eigenvalues of  are 1      1 . Hence,

the knowledge of the eigenstructure of a matrix  allows us to compute any function

of  under the same convergence restrictions as complex numbers .

233. A function of a matrix is a polynomial. Any function  (), that has a Taylor

series (A.86) around some point 0, can define (art. 232) the function  () as a

Taylor series (A.87) for any × matrix , provided that the Taylor series (A.87)

converges. In that case, the Taylor series of  () consists of an infinite number of

terms, except when  () =  () is a polynomial of degree .

The situation for  () is surprisingly different: if the Taylor series (A.87) of

 () converges and, hence, defines  (), then there is a polynomial  () of

degree  ≤  − 1 such that  () =  (). This remarkable property is a direct

consequence of the Cayley-Hamilton Theorem (A.81):  = − (−1)P−1
=0 



so that each matrix + for any integer  ≥ 0 and similarly each term (− 0)

,

for  ≥ , in the Taylor series (A.87) can be expressed as a polynomial in  of

degree not exceeding − 1, as illustrated in art. 234 below.
234. The function of a symmetric real matrix. Using the vector notation (A.138)

of the eigenvalue decomposition of a symmetric matrix  and (A.117), we have that

(− 0)
 =

X
=1

( − 0)






For any analytic function  that possesses a converging Taylor series around some
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342 Topics in linear algebra

point 0, the function  () is, with (A.87),

 () =

∞X
=0

(0)(− 0)
 =

∞X
=0

(0)

X
=1

( − 0)






=

X
=1

⎛⎝ ∞X
=0

(0) ( − 0)


⎞⎠



Hence, provided that all eigenvalues of  lie within the radius of convergence of the

Taylor series (A.86) around 0, we find that

 () =

X
=1

 ()

 (A.88)

which indicates that the function  cannot map a symmetric matrix  into an

asymmetric matrix, where  () 6= ( ()) .
Art. 233 demonstrates that  () = −1 () for any  ×  matrix , if the

minimal polynomial  () is of degree  − 1, in which case all eigenvalues are
distinct. Hence, if there exists a polynomial for which  () = −1 (), for all
1 ≤  ≤  eigenvalues of , then

 () =

X
=1

 ()

 =

X
=1

−1 () = −1 () (A.89)

A polynomial −1 () of degree −1 that passes through a set of  different points
{(  ())}1≤≤ is precisely the Lagrange interpolation polynomial (B.20),

−1 () =
X

=1

 ()

Y
=1; 6=

− 

 − 

studied in art. 303, and thus,

−1 () =
X

=1

 ()

Y
=1; 6=

− 

 − 
(A.90)

Substituting the relations in art. 303 into (A.90), the function  () in (A.89) can

be written explicitly as a polynomial of degree − 1 in ,

 () =

−1X
=0

 [ ]
 (A.91)

where the coefficient  [ ], which depends on the function  and on the eigenvalues

of , is

 [ ] =
1

!

X
=1

 ()Q
=1; 6= ( − )





Y
=1; 6=

(− )

¯̄̄̄
¯̄
=0
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9.4 Function of a matrix 343

Since both expressions (A.89) and (A.90) hold for any function  , we conclude that



 =

Y
=1; 6=

− 

 − 
(A.92)

Another proof of (A.92) follows from (A.88) with  () =
()

− =
Q

=1; 6= (− ),

where  () is the characteristic polynomial of ,

Y
=1; 6=

(− ) =

X
=1

 ()

 − 



 = lim

→

 ()−  ()

− 



 = 0 ()




because 0 () =
Q

=1; 6= ( − ).

The above discussion has assumed that the eigenvalues of  are distinct, in order

to straightforwardly apply the Lagrange interpolation (art. 303). However, when

 has eigenvalues with multiplicity larger than one or when  is not symmetric nor

diagonalizable, but has the Jordan form (art. 239), matrix polynomials −1 ()
based on the spectrum of  can still be deduced. The analysis (see e.g. Gantmacher

(1959a, Chapter V), Meyer (2000, Section 7.9)) becomes more complicated and is

here omitted.
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10

Eigensystem of a matrix

This chapter reviews general results about the eigensystem or spectrum of a square

matrix , the set of eigenvalues with their corresponding eigenvectors. The em-

phasis lies on symmetric matrices,  =  , for whom the spectral theory belongs

to the pearls of linear algebra.

10.1 Eigenvalues and eigenvectors

235. The algebraic eigenproblem  =  in (1.3) asks for the determination of

the eigenvalue , a complex number, and the corresponding × 1 eigenvector  of
an ×  matrix  for which the set of  homogeneous linear equations⎡⎢⎢⎢⎢⎢⎣

11 −  12 13    1
21 22 −  23    2
31 32 33 −     3
...

...
...

. . .
...

1 2 3     − 

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1
2
3
...



⎤⎥⎥⎥⎥⎥⎦ = 0 (A.93)

in  unknowns 1 2      has a non-zero solution. Clearly, the zero vector  = 0

is always a solution of (1.3). A non-zero solution of eigenvalue equation  = 

is only possible if and only if the matrix −  is singular, that is,

det (− ) = 0 (A.94)

As shown1 in art. 211, this determinant () = det (− ) can be expanded as

a polynomial in  of degree ,

() =

X
=0


 = 

 + −1−1 + · · ·+ 1+ 0 = 0 (A.95)

1 Another proof is given in Meyer (2000, p. 495).

345
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346 Eigensystem of a matrix

which is called the characteristic or eigenvalue polynomial of the matrix . Apart

from  = (−1), the coefficients for 0 ≤    are

 = (−1)
X


− (A.96)

and  is a principal minor
2, given explicitly in (A.35) in art. 211. Meyer (2000,

p. 504) mentions the Leverrier—Souriau—Frame algorithm that computes the coef-

ficients  of characteristic polynomial  () in (A.95) as

 = −trace (−1)


where the matrix  obeys 0 =  and the recursion  = − trace(−1)
+−1

for  = 1 2     .

Since a polynomial of degree  has  complex zeros (art. 291), the ×  square

matrix  possesses  eigenvalues 1 2     , not all necessarily distinct. In

general, the characteristic polynomial can be written in product form (B.1),

() =

Y
=1

( − ) (A.97)

Since () = det (− ), it follows from (A.95) and (A.97) that, for  = 0,

det = 0 =

Y
=1

 (A.98)

Hence, if det = 0, there is at least one zero eigenvalue. Also (see art. 211),

(−1)−1−1 =
X

=1

 = trace() (A.99)

and

1 = −
X

=1

Y
=1; 6=

 = −det
X

=1

1


(A.100)

For any eigenvalue , the linear set (A.93) has at least one non-zero eigenvector

. Furthermore, if  is a non-zero eigenvector, also  is a non-zero eigenvalue.

Therefore, eigenvectors are often normalized, for instance, a probabilistic eigenvec-

tor has the sum of its components equal to 1 or a norm kk1 = 1 as defined in

(A.9). The most common normalization is the Euclidean norm kk22 =  = 1.

236. Multiplicity of eigenvalues. If the same eigenvalue  reappears  times as

2 A principal minor  is the determinant of a principal  ×  submatrix × obtained by
deleting the same −  rows and columns in . Hence, the main diagonal elements (×)
are  elements of main diagonal elements {}1≤≤ of .
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10.1 Eigenvalues and eigenvectors 347

a zero of the characteristic polynomial  () in (A.95), then (A.97) can be written

as

 () =

Y
=1

( − )
 with

X
=1

 = 

and  is called the algebraic multiplicity of the eigenvalue  of the ×  matrix

.

If the rank of  −  is less than  − 1, there will be more than one indepen-
dent eigenvector belonging to the eigenvalue . The geometric multiplicity of the

eigenvalue  of the ×  matrix  is defined as − rank(− ), which equals

the number of linearly independent eigenvectors associated with the eigenvalue .

For any ×  complex matrix, the algebraic multiplicity of an eigenvalue is larger

than or equal to its geometric multiplicity (Meyer, 2000, p. 511). If a matrix is

diagonalizable as any symmetric matrix; art. 247, then the algebraic and geometric

multiplicity of any eigenvalue are equal (Meyer, 2000, p. 512).

Multiplicity of eigenvalues seriously complicates the eigenvalue problem. In the

sequel, we omit a detailed discussion on multiple eigenvalues and refer to Wilkinson

(1965).

237. Eigenproblem of the transpose  . The eigenvalue equation (1.3) of the

transposed matrix  ,

  =  (A.101)

is of singular importance. The determinant of a matrix is equal to the determinant

of its transpose (art. 209). This property det
¡
 − 

¢
= det (− ) shows that

the eigenvalues of  and  are the same.

However, the eigenvectors are, in general, different. Transposing (A.101) yields

 =  (A.102)

The vector  is therefore called the left-eigenvector of belonging to the eigenvalue

 , whereas  in  =  is called the right-eigenvector belonging to the same

eigenvalue  . An important relation between the left- and right-eigenvectors of a

matrix  is, for  6= ,

  = 0 (A.103)

Indeed, left-multiplying =  in (1.3) by 

 , 


  = 


 , and similarly

right-multiplying   = 

 in (A.102) by , 


  = 


 , leads, after

subtraction, to 0 = ( − ) 

  and (A.103) follows.

Since eigenvectors can be complex and since   =   , the expression 

  is

not an inner-product that is always real and for which   =
¡
 

¢∗
holds. How-

ever, (A.103) expresses that the sets of left- and right-eigenvectors are orthogonal

if  6= .
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348 Eigensystem of a matrix

238. If  has  distinct eigenvalues, then the  eigenvectors are linearly inde-

pendent and span the whole -dimensional space. The proof is by reductio ad

absurdum. Assume that  is the smallest number of linearly dependent eigenvectors

labeled by the first  smallest indices. Linear dependence then means that

X
=1

 = 0 (A.104)

where  6= 0 for 1 ≤  ≤ . Left-multiplying by  and invoking the eigenvalue

equation (1.3) yields
X

=1

 = 0 (A.105)

On the other hand, multiplying (A.104) by  and subtracting from (A.105) leads

to
−1X
=1

 ( − ) = 0

which, because all eigenvalues are distinct, implies that there is a smaller set of

− 1 linearly depending eigenvectors. This contradicts the initial hypothesis.
This important property has a number of consequences. First, it applies to left-

as well as to right-eigenvectors. Relation (A.103) then shows that the sets of left-

and right-eigenvectors form a bi-orthogonal system with   6= 0. For, if  were
orthogonal to , thus 


  = 0, then (A.103) demonstrates that  would be

orthogonal to all left-eigenvectors  . Since the set of left-eigenvectors span the 

dimensional vector space, it would mean that the -dimensional vector  would

be orthogonal to the whole -space, which is impossible because  is not the null

vector. Second, any -dimensional vector can be written in terms of either the left-

or right-eigenvectors.

239. Let us denote by  the matrix with the right-eigenvector  in column 

and by   the matrix with the left-eigenvector  in row . If the right- and

left-eigenvectors are scaled such that   = 1, for all 1 ≤  ≤ , then (A.103)

leads to

  =  (A.106)

Thus, the matrix   is the inverse of the matrix . Furthermore, for any right-

eigenvector, the eigenvalue equation  =  in (1.3) holds, rewritten in matrix

form,

 =  diag() (A.107)

where the  × 1 eigenvalue vector is  = (1 1     ). Left-multiplying by

−1 =   yields the similarity transform of matrix ,

−1 =   = diag() (A.108)

                     

https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core


10.1 Eigenvalues and eigenvectors 349

Thus, when the eigenvalues of  are distinct, there exists a similarity transform

−1 that reduces  to diagonal form.

In many applications, similarity transforms by a matrix  are applied to simplify

matrix problems. The only condition is that the inverse −1 of the matrix  must

exist. Indeed, if  = , then −1 = −1 = (−1)−1. Thus, a
similarity transform preserves the eigenvalues; the matrix −1 possesses the

same eigenvalues as , while the eigenvectors  of  are transformed to −1.
When  has multiple eigenvalues, it may be impossible to reduce  to a diagonal

form by similarity transforms. Instead of a diagonal form, the most compact form

when  has  distinct eigenvalues each with multiplicity such that
P

=1 = 

is the Jordan canonical form ,

 =

⎡⎢⎢⎢⎢⎢⎣
1

(1)

2
(1)

...

−1 (−1)


()

⎤⎥⎥⎥⎥⎥⎦
where () is an × submatrix of the form

() =

⎡⎢⎢⎢⎢⎢⎣
 1 0 · · · 0

0  1 0 · · ·
...

...
...

...
...

0 · · · 0  1

0 · · · 0 0 

⎤⎥⎥⎥⎥⎥⎦
The number of independent eigenvectors is equal to the number of submatrices

in . If an eigenvalue  has multiplicity , there can be one large submatrix

(), but also a number  of smaller submatrices  () such that
P

=1  =

. This illustrates, as mentioned in art. 235, the much higher complexity of the

eigenproblem in case of multiple eigenvalues.

240. Frequency interpretation of the eigenvalue equation. The dependence on the

parameter  in the eigenvalue equation (1.3) in art. 235 is made explicit in

 () =   () (A.109)

where a non-zero vector  () only satisfies this linear equation if  is an eigenvalue

of  such that the eigenvector  =  (). We can interpret  as a frequency that

ranges continuously over all real numbers. This “frequency” interpretation of the

eigenvalue equation will be exploited in art. 241, where the application of calculus

to (A.109) is illustrated, and in art. 249.

241. Principal vector of grade . Invoking Leibniz’ rule to the parameterized

eigenvalue equation (A.109) of the ×  matrix  in art. 240, the -th derivative
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350 Eigensystem of a matrix

of both sides of  () =   () with respect to  is


 ()


=

X
=0

µ




¶



()

−

−
 () = 

 ()


+ 

−1 ()
−1

so that, for any integer  ≥ 1,

(− )
 ()


= 

−1 ()
−1

(A.110)

Explicitly, denoting () () =
()


and (0) () =  (), we obtain the sequence

for  = 0 1    ,

(− ) () = 0 (− )(1) () =  ()  (− )(2) () = 2(1) ()  · · ·
up to

(− )() () = (−1) () (A.111)

Multiplying both sides in (A.111) with (− )
−1

,

(− )

() () =  (− )

−1
(−1) ()

using (A.111) to the right-hand side iteratively -times

(− )

() () =  (− )

−1
(−1) () =  (− 1) (− )

−2
(−2) ()

=  (− 1) (− 2) (− )
−3

(−3) () = · · ·
yields

(− )

() () =

!

(− )!
(− )

−
(−) () (A.112)

Choose  =  and (0) () =  (), then (− )

() () = ! (− )

−
 ().

Subsequently with  = , we find that

(− )

() () = ! () (A.113)

and, from (− ) () = 0, that

(− )
+1

() () = 0 (A.114)

If  is not an eigenvalue so that − is of rank  and invertible, then (A.114) and
(A.113) show that () () = 0 and  () = 0, while the recursion (A.111) further

tells that all higher order derivatives vanish, () () = 0 for 0 ≤  ≤ . If  is an

eigenvalue, the vector () () can be different from the zero vector and orthogonal

to all the row vectors of (− )
+1

.

Theorem 64 The set of vectors
©
 ()  (1) ()  (2) ()      () ()

ª
is linearly

independent.
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10.1 Eigenvalues and eigenvectors 351

Proof: Assume, on the contrary, that these vectors are dependent, then

0 () + 1
(1) () + 2

(2) () +   + 
() () =

X
=0


() () = 0

and not all  are zero. Left-multiplying both sides with (− )

and taking

(A.114) into account that (− )
+

() () = 0 for any  ≥ 1 and  ≥ 1 leads
to

 (− )

() () = 0

and (A.113) indicates that  must be zero. Next, we repeat the argument and left-

multiply both sides with (− )
−1

, which leads us to conclude that −1 = 0.
Continuing in this way shows that each coefficient  = 0 for 0 ≤  ≤ , which

contradicts the assumption and proves the Theorem 64. ¤

Let us now consider the integer  = , equal to the dimensions of the matrix .

From (A.112), we define for 1 ≤  ≤  the vectors

 = (− )

() ()

that satisfy

 =
!

(− )!
(− )

−
(−) ()

while relation (A.113) shows that  = ! (). Hence, any vector  is generated

by the vector () () and Theorem 64 states that the set {1 2     } is linearly
independent and thus spans the -dimensional space. In the classical eigenvalue

theory (Wilkinson, 1965, p. 43), the vector  satisfying (− )
+1

 = 0 is called

a principal vector of grade + 1 corresponding to eigenvalue . Theorem 64 and

(A.114) show that  = () (), for any non-zero number .

We now concentrate on eigenvalues. Left-multiplying (A.113) by  () yields

! () () =  () (− )

() ()

If  is a symmetric matrix and  is an eigenvalue of , then  () (− )

=

 () ( − )

, so that

 =  () () =
( − )



!
 ()() ()

Hence,  ()() () = 0 for all  ≥ 0, if the eigenvalue  is different from the

eigenvalue . However, if  = , an inconsistency appears when   0, which

implies that a principal vector () () of grade  + 1 with   0 does not exist

for symmetric matrices. Indeed, for symmetric matrices, the set of eigenvectors

{}1≤≤ spans the entire space, as demonstrated in art. 247 below, so that

() () = 0 for  ≥ 1, because a non-zero vector cannot be orthogonal to all

eigenvectors. Hence, a principal vector () () of grade  + 1 with   0 only
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352 Eigensystem of a matrix

exists for asymmetric matrices and may be helpful to construct an orthogonal set

of vectors when degeneracy occurs as in Jordan forms in art. 239.

242. Companion matrix. The companion matrix of a polynomial  () =
P

=0 


is defined3 as

 =

⎡⎢⎢⎢⎢⎢⎢⎣
−−1


−−2


· · · − 1


− 0



1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
The basic property of the companion matrix  is

det ( − ) = (−1)  ()


(A.115)

Indeed, in

det ( − ) =

¯̄̄̄
¯̄̄̄
¯̄̄̄
−−1


−  −−2


· · · − 1


− 0



1 − · · · 0 0

0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 −

¯̄̄̄
¯̄̄̄
¯̄̄̄

multiply the first column by −1, the second column by −2, and so on, and add
them to the last column. The resulting last column elements are zero, except for

that in the first row, which is −()


. The corresponding cofactor is one, which

proves (A.115). The inverse −1 of the companion matrix  is

−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

−
0
−−1

0
−−2

0
· · · −1

0

⎤⎥⎥⎥⎥⎥⎥⎦
The companion matrix of the characteristic polynomial (A.95) of  is defined as

 =

⎡⎢⎢⎢⎢⎢⎣
(−1)−1−1 (−1)−1−2 · · · (−1)−11 (−1)−10

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦
such that det ( − ) =  (). If  has distinct eigenvalues,  as well as  are

similar to diag(). It has been shown in art. 239 that the similarity transform 

3 Other variants with the first row replaced to the last column also appear in the literature.
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10.1 Eigenvalues and eigenvectors 353

for  equals  = . The similarity transform for  is the Vandermonde matrix

 () in art. 224, where

() =

⎡⎢⎢⎢⎢⎢⎢⎣

−11 −12 · · · −1−1 −1

−21 −22 · · · −2−1 −2

...
... · · · ...

...

1 2
... −1 

1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
Indeed,

()diag () =

⎡⎢⎢⎢⎢⎢⎢⎣

1 2 · · · −1 
−11 −12 · · · −1−1 −1

...
... · · · ...

...

21 22
... 2−1 2

1 2 · · · −1 

⎤⎥⎥⎥⎥⎥⎥⎦
while

() =



(−1)−1 (1) + 1 (−1)−1 (2) + 2 · · · (−1)−1 () + 
−11 −12 · · · −1

...
... · · ·

...

21 22
... 2

1 2 · · · 


Since  () = 0, it follows that () = ()diag(), which demonstrates the

claim. Hence, the eigenvector  of  belonging to eigenvalue  is

 =
£
−1 −2 · · ·  1

¤
The Vandermonde matrix  () is non-singular if all eigenvalues are distinct

(see also art. 224). In the case that det () 6= 0, the matrix  () is of rank ,

implying that all eigenvectors are linearly independent. The eigenvectors are only

orthogonal if   = 0 for each pair () with  6= . In other words, if

0 =

X
=1

()

()


= 

()
 − 1

 − 1

The solution is  = 
2
 for  = 1 2      − 1, which implies that each of

the  eigenvalues {}1≤≤ must be an -th distinct root of unity and that the

associated polynomial to the companion matrix is  () =  (
 ± 1).

The first component or row in the eigenvalue equation  =  expresses ex-

plicitly the root equation  () = 0 of the polynomial

()1 − ()1 = − () = 0 (A.116)

and any other row is an identity. If  has an eigenvalue  of multiplicity ,
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354 Eigensystem of a matrix

then  satisfies  () = 0 () =    = 
(−1)
 () = 0. The first equality is

equivalent to (A.116). The others are similarly derived by differentiating (A.116)

with respect to  such that, for 1 ≤  ≤ − 1,³


()



´
1
−
³

(−1)


´
1
−
³


()



´
1
= −() () = 0

Hence, if  is a zero with multiplicity , then  = , where  is the

eigenvector and the other 2 ≤  ≤  equations are  =  + −1, where

 =

(−1)


(−1)! is a generalized eigenvector (art. 241),

 =
h
0 0    1

¡


−1
¢
   

¡
−1
−1
¢

−


i
which has a 1 in the -th position. Clearly, with this notation,  = 1. Moreover,

the set of the eigenvectors and  − 1 generalized eigenvectors are independent
because the ×  matrix formed by their components has rank .

243. Powers of a matrix and eigenvalues. When left-multiplying (1.3), we obtain

2 =  = 2

and, in general, for any integer  ≥ 0,

 =  (A.117)

Since an eigenvalue  satisfies its characteristic polynomial  () =
P

=0 
 =

0, we directly find from (A.117) that  () = 0. Only if the set of all eigenvectors

1 2      spans the -dimensional space and forms a basis, thus only for ×

diagonalizable matrices, then  ()
£
1 2 · · · 

¤
= 0 implies  () = ,

which demonstrates the Cayley-Hamilton Theorem 63 (art. 228).

If  has no zero eigenvalue, i.e., −1 exists, then left-multiplying (1.3) with −1

yields −1 = −1. We apply (A.117) to the matrix −1 and conclude that

− = −

In other words, if the inverse matrix −1 exists, then equation (A.117) is valid for
any integer, positive as well as negative.

Combining (A.117) and (A.99) implies that

trace
¡

¢
=

X
=1

 (A.118)

244. Power method. Let 1 2      denote the complete set of eigenvectors of .

For example, if  has distinct eigenvalues 1 2     , then art. 238 demonstrates

that the set 1 2      of linearly independent vectors spans the -dimensional

space. Any symmetric matrix possesses an orthogonal set of eigenvectors by The-

orem 68 in art. 247. For such matrices, any other vector  can be written as a

                     

https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core


10.2 Locations of eigenvalues 355

linear combination,

 =

X
=1



Then, for any integer  and using (A.117) yields

 =

X
=1


 =

X
=1





If the largest eigenvalue obeys that |1|  |2| and |2| ≥ | | for any 3 ≤  ≤ ,

then, for large  and assuming that 1 6= 0 nor too small, we observe that

 = 1

11

Ã
1 +

Ãµ |2|
|1|

¶!!
This shows that, after subsequent multiplications with , an arbitrary vector 

(not orthogonal to 1, i.e. 1 = 1 6= 0) aligns increasingly more towards

the largest eigenvector 1. This so-called power method lies at the basis of the

computations of the largest eigenvector, especially in large and sparse matrices.

In particular, the sequence 24     2


, tends exponentially fast to a

vector, proportional to the largest eigenvector 1 of  under the very mild condition

that |1|  |2|.

10.2 Locations of eigenvalues

245. General bounds on the position of eigenvalues. Marcus and Ming (1964)

overview the historic achievements on the localization of eigenvalues of a complex

 ×  matrix  from the early beginning up to 1964. Gerschgorin’s Theorem 65

has been central, although several other scholars have earlier rephrased variants of

Theorem 65.

Theorem 65 (Gerschgorin) Every eigenvalue of a matrix  lies in at least

one of the circular disks with center  and radii  =
P

=1; 6= || or  =P
=1; 6= | |
Proof: Suppose that the -th component of the eigenvector  of  belonging to

eigenvalue  has the largest modulus. An eigenvector can always be scaled and we

normalize such that

 = (1 2     −1 1 +1     )

where || ≤ 1, for all 1 ≤  ≤ . Equating the -th component on both sides of

the eigenvalue equation  =  gives
P

=1  =  = . Hence,

| − | ≤
X

=1; 6=
|| ≤

X
=1; 6=

|| || ≤
X

=1; 6=
||
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356 Eigensystem of a matrix

which shows that  lies in a circular disk in the complex plane centered at  with

a radius not larger than
P

=1; 6= ||. The other radius mentioned follows from
the fact that  and  have the same eigenvalues as shown in art. 237. ¤

A real  ×  matrix  has a characteristic polynomial with real coefficients

as follows from (A.96), so that its  zeros are either complex conjugate or real

(art. 314). A consequence of Gerschgorin’s Theorem 65 is

Corollary 3 (Gerschgorin) If all  Gerschgorin disks, each centered around a

diagonal element  of a real matrix , are disconnected (i.e. not overlapping),

then all eigenvalues of  are real.

Marcus and Ming (1964, p. 150) mention a generalization of Gerschgorin’s The-

orem 65 due to Ostrowski:

Theorem 66 (Ostrowski) Let 0 ≤  ≤ 1,  =
P

=1; 6= || and  =P
=1; 6= | |, then det 6= 0, provided | |  


1−
 for each 1 ≤  ≤ .

Proof: The -th row of the eigenvalue equation  =  is ( − ) =

−P
=1; 6= , from which

| − | | | ≤
X

=1; 6=
|| || =

X
=1; 6=

|| ||1− ||

After applying the Hölder inequality (A.10) with  = 1

≥ 1,

X
=1; 6=

|| ||1− || ≤
⎛⎝ X
=1; 6=

||
⎞⎠⎛⎝ X

=1; 6=
|| ||

1
1−

⎞⎠1−

and the definition  =
P

=1; 6= ||, we obtain for each 1 ≤  ≤ ,

| − | | | ≤ 


⎛⎝ X
=1; 6=

|| ||
1

1−

⎞⎠1−

(A.119)

We deduce a contradiction by supposing that det = 0, which implies that

 = 0 has a non-zero vector  belonging to  = 0 as solution. Ostrowski’s

theorem states that 

1−
  | | for all 1 ≤  ≤ , so that the general inequality

(A.119) becomes

 | |
1

1− ≤
X

=1; 6=
|| ||

1
1−

Summing over all , recalling that the inequality is strict for at least one ,

X
=1

 ||
1

1− 

X
=1

X
=1; 6=

|| ||
1

1− =

X
=1

Ã
X

=1

|| ||
1

1− − | | | |
1

1−

!
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and reversing the - and -sum, leads to

X
=1

 | |
1

1− 

X
=1

X
=1; 6=

|| ||
1

1− =

X
=1

||
1

1−
X

=1; 6=
|| =

X
=1

 ||
1

1−

which is a contradiction. ¤

Since each eigenvalue  obeys det (− ) = 0, Ostrowski’s Theorem 66 implies

that each eigenvalue of  lies on or inside at least one of the disks

| − | ≤ 

1−
 (0 ≤  ≤ 1) (A.120)

that reduces to that of Gerschgorin for  = 1.

The idea in the proof of Ostrowski’s Theorem 66 can be pushed a little further,

by showing that at least two components in the vector , satisfying  = 0, should

not be zero. Indeed, let  and  be the components of the vector  such that

|| ≥ || ≥ || for any  6= . Now, suppose that  = 0, then all components

of the vector , except for , are zero. But, row  in  = 0,
P

=1  = 0,

shows that  = 0, which contradicts the condition | |  

1−
 for each row .

Hence, there are at least two equations for which det = 0 implies that

|| || ≤
X

=1; 6=
|| || ≤ ||

X
=1; 6=

|| =  ||

and

|| || ≤
X

=1; 6=
|| || ≤ ||

X
=1; 6=

|| =  ||

leading to || || ≤  and to

Theorem 67 (Ovals of Cassini) If, for each   ∈ {1 2     } and  6= , it

holds that

|| | |  

then det 6= 0.

A direct consequence of Theorem 67 is that each eigenvalue of a complex × 

matrix  lies in at least one of the
¡

2

¢
ovals |− | |−  | ≤  of Cassini. A

combination of Ostrowski’s Theorem 66 and Theorem 67 leads to the generalization

that each eigenvalue of  lies in at least one of the
(−1)

2
ovals of Cassini, specified

by

|− | |−  | ≤ 
 
1−
 


1−
 (0 ≤  ≤ 1)
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358 Eigensystem of a matrix

10.3 Hermitian and real symmetric matrices

246. A Hermitian matrix. A Hermitian matrix  is a complex matrix that obeys

 =
¡

¢∗
= , where  = ()

∗
is the complex conjugate of  . The super-

script , in honor of Charles Hermite, means to take the complex conjugate and

then a transpose. Hermitian matrices possess a number of attractive properties. A

particularly interesting subclass of Hermitian matrices are real, symmetric matrices

that obey  = . The inner-product of vector  and  is defined as  and

obeys
¡


¢∗
=
¡


¢
=  . The inner-product   =

P
=1 | |2 is real

and positive for all vectors except for the null vector.

247. The eigenvalues of a Hermitian matrix are all real. Indeed, left-multiplying

the eigenvalue equation  =  in (1.3) by  yields

 = 

Since
¡


¢
=  = , it follows that  =  or  =  ,

because  is a positive real number. Furthermore, with  =  , we have

 = . Taking the complex conjugate, yields

∗ = ∗

In general, the eigenvectors of a Hermitian matrix are complex, but real for a real

symmetric matrix, because  =  . Moreover, the left-eigenvector  is the

complex conjugate of the right-eigenvector . Hence, the orthogonality relation

(A.103) reduces, after normalization, to the inner-product

  =  (A.121)

where  is the Kronecker delta, which is zero if  6=  and else  = 1. Conse-

quently, (A.106) reduces to

 =  (A.122)

which implies that the matrix  formed by the eigenvectors is a unitary matrix

obeying −1 =  .

For a real symmetric matrix , the corresponding relation  =  implies

that  is an orthogonal matrix obeying −1 =  and  =  = ,

where the first equality follows from the commutativity of the inverse of a matrix,

−1 = −1. Hence, all eigenvectors of a symmetric matrix are orthogonal.
Although the arguments in Section 10.1 for a complete set of eigenvectors that

spans the -dimensional space have assumed that the eigenvalues of  are distinct,

Theorem 68 for Hermitian and real matrices, proved in Wilkinson (1965, Section

47), applies to eigenvalues of any multiciplicty:

Theorem 68 (Hermitian and real symmetric diagonalizability) For any
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10.3 Hermitian and real symmetric matrices 359

Hermitian matrix , there exists a unitary matrix  such that, for real ,

 = diag ()

and for any real symmetric matrix , there exists an orthogonal matrix  such

that, for real ,

 = diag ()

Due to the fundamental character of these diagonalizations, we will prove the last

case in which  is real and symmetric. Transformations of a matrix  to another

matrix  that contains more zero elements are key operations in linear algebra,

that, as mentioned by Meyer (2000), have started with Gauss, who frequently used

the technique of Gaussian elimination. In 1909, Schur has proved that every square

matrix is unitarily similar to a triangular matrix:

Theorem 69 (Shur’s Triangularization) For any square matrix , there exists

a unitary matrix  , which is not necessarily unique, and a possibly non-unique

triangular matrix  such that  =  . The diagonal entries of  are the

eigenvalues of .

The proof of Schur’s Triangularization Theorem 69 (see e.g. Meyer (2000),

Mirsky (1982, p. 307-308)) is similar in nature to that of Theorem 68. The proof

relies on interesting properties of the Householder transformation (art. 197) and re-

duction (art. 198). The proof is here for an upper-triangular matrix, but Theorem

68 also holds for a lower-triangular matrix.

Proof of Theorem 68: Let 1 be the real eigenvector of an  ×  symmet-

ric matrix  =  belonging to the real eigenvalue 1 and normalized such that

1 1 = 1. We invoke the Householder reflection  =  in art. 197 with House-

holder vector  = 1 + 1, such that 1 = 1 and also 1 =  1 =  1. From

the eigenvalue equation 1 = 11, we obtain, after Householder reflection, that

11 = 1 =  1, which indicates that the first column of the matrix

 is a multiple of 1. But, since 
 is symmetric, it must be of the form

 =

∙
1 0

0 

¸
where  is an (− 1) × (− 1) symmetric matrix. We can proceed to iteratively
apply the above recipe to the matrix  as in art. 198. Here, we use induction

and assume that there exists an orthogonal (− 1) × (− 1) matrix  such that

  = diag(). The existence is clearly true for  = 2, since  is then a scalar.

Next,∙
1 0

0  

¸


∙
1 0

0 

¸
=

∙
1 0

0  

¸∙
1 0

0 

¸∙
1 0

0 

¸
=

∙
1 0

0 diag ()

¸

Since  = 

∙
1 0

0 

¸
is an orthogonal matrix, the induction assumption also
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360 Eigensystem of a matrix

holds for the  ×  matrix , which establishes the diagonalization for any real

symmetric matrix by a real orthogonal matrix. After comparison with the eigen-

value equation  = Λ, we conclude that  =  . Hence, we have demonstrated

that  = diag() for any real symmetric matrix . ¤

248. The orthogonal matrix  of a real symmetric matrix. We elaborate on the

results of art. 247 for a real symmetric matrix and point to the notion of double

orthogonality. We denote by  the eigenvector of the ×  symmetric matrix 

belonging to the eigenvalue , normalized so that 

  = 1. The eigenvalues of a

symmetric matrix  =  are real and can be ordered as 1 ≥ 2 ≥    ≥ . The

orthogonal matrix  with the eigenvectors of  in the columns,

 =
£
1 2 3 · · · 

¤
is explicitly written in terms of the -th component () of eigenvector  ,

 =

⎡⎢⎢⎢⎢⎢⎣
(1)1 (2)1 (3)1 · · · ()1
(1)2 (2)2 (3)2 · · · ()2
(1)3 (2)3 (3)3 · · · ()3
...

...
...

. . .
...

(1) (2) (3) · · · ()

⎤⎥⎥⎥⎥⎥⎦ (A.123)

where the element  = (). For a graph related matrix, the row  of  de-

tails the eigenvalue components of the node  over all eigenfrequencies/eigenvalues

(art. 240), while the column  of  equals the eigenvector  belonging to the -th

largest eigenfrequency/eigenvalue  .

The relation  =  =  (art. 247) expresses, in fact, double orthogonal-

ity. The first equality  =  translates to the orthogonality relation — the real

companion of (A.121) —

  =

X
=1

() () =  (A.124)

stating that the eigenvector  belonging to eigenvalue  is orthogonal to any other

eigenvector belonging to a different eigenvalue. The second equality  = ,

which arises from the commutativity of the inverse matrix −1 =  with the

matrix  itself, can be written as
P

=1 () () =  and suggests us to

define the row vector in  as

 = ((1)  (2)      ( )) (A.125)

Then, the second orthogonality condition  =  implies orthogonality of the

vectors

  =

X
=1

()() =  (A.126)
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10.3 Hermitian and real symmetric matrices 361

Beside the first (A.124) and second (A.126) orthogonality relations, the third com-

bination equals

  =

X
=1

() () =

X
=1

 =
¡
2
¢


(A.127)

Each ×  symmetric matrix  possesses 2 different orthogonal matrices, be-

cause each column in (A.123), thus each eigenvector, can be multiplied by −1
without violating the orthogonality conditions (A.124) and (A.126).

249. Continuous form of the orthogonality relations. Invoking the frequency inter-

pretation of the eigenvalue equation (A.109) in art. 240 and the Dirac delta-function

 () in art. 172, the first orthogonality relation (A.124) becomes

X
=1

() () =

X
∈{12}

( ()) ( ())

=

X
=1

Z ∞
−∞

 (− ) ( ()) ( ()) 

Using the non-negative weight function in art. 350

 () =

X
=1

 (− ) =  (det (− ))

¯̄̄̄
det (− )



¯̄̄̄
=

¯̄̄̄
shows that

X
=1

() () =

Z ∞
−∞

 () ( ()) ( ())  =  (A.128)

The right-hand side in (A.128) is the continuous variant of (A.126) that expresses

orthogonality between functions with respect to the weight function  in art. 351.

Specifically, the orthogonality property (A.128) applied to a general tri-diagonal

matrix (see e.g. Van Mieghem (2013, Appendix) and art. 370) shows that the set

{( ())}1≤≤ is a set of  orthogonal polynomials in , that are further studied
in Chapter 12.

250. The spectrum of a unitary matrix. We denote the eigenvalues of the  × 

unitary matrix  by 1 2     .

Theorem 70 All eigenvalues of a unitary matrix have absolute value 1, i.e. || = 1
for all 1 ≤  ≤ .

Proof: The orthogonality relation (A.121) for  =  or the matrix product of the

-th diagonal element in  in the orthogonality relation (A.122) equals
P

=1 | |2 =
1, which implies that the elements  of a unitary matrix cannot exceed unity in

absolute value. Therefore, the absolute value of the coefficients  in (A.96) of the

characteristic polynomial is bounded for any ×  unitary matrix  .
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362 Eigensystem of a matrix

Taking the determinant of the orthogonality relation (A.122) gives

1 = det
¡


¢
= det

¡


¢
det = |det |2

while (A.98) then leads to
Q

=1 ||2 = 1. Hence, a unitary matrix cannot have

a zero eigenvalue. In addition, it shows, together with the bounds on || that
are only function of , that all eigenvalues must lie between some lower and upper

bound for any  ×  unitary matrix  and these bounds are not dependent on

the unitary matrix elements considered. Art. 243 shows that any integer power

, positive as well as negative, of  has the same eigenvalues of  raised to the

power . In addition,  is also an ×  unitary matrix obeying ()

 = 

as follows by induction on

()

 =

¡
−1¢ −1 =

¡
−1¢ −1

Hence, |det|2 = 1 and, by (A.98), we have, for any ∈ Z, thatQ
=1 ||2 = 1.

But, the absolute value of these powers, positive as well as negative, can only remain

below a bound independent of  provided || = 1 for all . ¤

A unitary matrix  =  +  obeys 
 = ,

 = ( − )

( + ) = 

 + 
  + 

¡

 − 

 
¢

which requires that 
 + 

  =  and 
 = 

 . The latter, written

as
¡

 

¢
= 

 , shows that 

  is a symmetric matrix. An orthogonal

matrix  that obeys 

 =  can be regarded as a unitary matrix  = +

with imaginary part  = 0. Theorem 70 states that the -th eigenvector  =

 +  obeys the eigenvalue equation  =  for real  , explicitly,

( + ) ( + ) = (cos  +  sin ) ( + )

Thus, in general, the eigenvalues  and eigenvector  of an orthogonal matrix

 with  = 0 are complex with unit modulus. An alternative proof starts from

the eigenvalue equation of a real, orthogonal matrix  =  , whose complex

conjugate is 
∗
 = ∗

∗
 from which transposing follows as

¡
∗
¢


 = ∗

¡
∗
¢
.

After multiplication, we obtain


∗


¡
∗
¢

 =
¡
∗
¢


 =

¡
∗
¢



Since an eigenvector is different from the zero vector, we find that 
∗
 = | |2 = 1.

Only if the orthogonal matrix  is symmetric, i.e. when −1 = , the eigen-

vectors and eigenvalues are real (art. 247). Hence, an eigenvalue of a symmetric

orthogonal matrix  = 
 is either 1 or −1.

251. The Rayleigh inequalities. Art. 247 tells that the normalized eigenvectors 
and  of real symmetric4  obey  = 0 if  6=  and  = . These

4 The extension to a Hermitian matrix is straightforward and omitted.
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10.3 Hermitian and real symmetric matrices 363

 eigenvectors span the -dimensional space. Let  be an × 1 vector that can be
written as a linear combination of the first  eigenvectors of ,

 = 11 + 22 + · · ·+ 

where all  =  ∈ R. Equivalently,  ∈ X , where X is the space spanned by
the vectors {1 2     }. Then  =

P
=1

P
=1 


  =

P
=1 

2
 and

 =

X
=1

X
=1



 =

X
=1

2

Since  has real eigenvalues 1 ≥ 2 ≥ · · · ≥ , this ordering of the eigenvalues

leads to the bound 
P

=1 
2
 ≤

P
=1 

2
 ≤ 1

P
=1 

2
 from which the Rayleigh

inequalities for  ∈ X follow as

 ≤ 


≤ 1 (A.129)

Equality in 


=  is only attained provided  ∈ X is an eigenvector of 
belonging to eigenvalue  with  ≤  ≤ 1. If  is a vector that is orthogonal to

the first  eigenvectors of , which means that  = +1+1++2+2+· · ·+
can be written as a linear combination of the last − eigenvectors or that  ∈ X⊥ ,
then  ≤ 


≤ +1.

The two extreme eigenvalues can thus be written as

1 = sup
 6=0



 
(A.130)

 = inf
 6=0



 
(A.131)

The Courant-Fischer Theorem, proved in (Meyer, 2000, p. 550), is the generaliza-

tion to Hermitian matrices and infinite-dimensional operators,

 = max
dimV=

min
∈V




(A.132)

 = min
dimV=+1−

max
∈V




(A.133)

252. Field of values. The field of values Φ () is a set of complex numbers associated

to an ×  matrix ,

Φ () =
©
 :  ∈ C,  = 1ª (A.134)

While the spectrum of a matrix is a discrete set, the field of values Φ (), of which

an instance appeared in art. 251, can be a continuum. However, Φ () is always

a convex subset of C for any matrix , a fundamental fact known as the Toeplitz-
Hausdorff Theorem and proved in Horn and Johnson (1991, Section 1.3). Another

                     

https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core


364 Eigensystem of a matrix

property is the subadditivity, Φ (+) ⊂ Φ () + Φ (), which follows from the

definition (A.134). Indeed,

Φ (+) =
©
+  :  ∈ C,  = 1ª

⊂ © :  ∈ C,  = 1ª+ © :  ∈ C,  = 1ª
= Φ () +Φ ()

Since the set  () of eigenvalues of  belongs to Φ (), it holds that

 (+) ⊂ Φ (+) ⊂ Φ () +Φ ()
which can provide possible information about the eigenvalues of +, given Φ ()

and Φ ().

In general, given the spectrum  () and  (), surprisingly little can be said

about  (+) (see also art. 267 and 284). For example, even if the eigenvalues of

 and  are known and bounded, the largest eigenvalue of + can be unbounded,

as deduced from the example inspired by Horn and Johnson (1991, p. 5), where

 =

∙
1−  1

 () 

¸
and  =

∙
1 +  1

 () −
¸

Clearly, the eigenvalues of ,  and + are

12 () =
1

2

³
1±

p
1 + 4 (2 − +  ())

´
12 () =

1

2

³
1±

p
1 + 4 (2 + +  ())

´
12 (+) =

1

2

³
1±

p
1 + 4 ( () +  ())

´
It suffices to choose  () = −2 +  + 1 and  () = −2 −  + 2 for arbi-

trary constants 1 and 2 to have bounded eigenvalues, independent of , while

lim→∞ |12 (+)| =∞.
253. Weyl’s problem. Knutson and Tao (2001) discuss the problem of Weyl (1912):

Given the eigenvalues of two ×  Hermitian matrices  and , determine all the

possible sets of eigenvalues of +. Apart from the trace equality (A.99),

X
=1

 (+) =

X
=1

 () +

X
=1

 ()

Horn (1962) has shown that a finite number of inequalities of the form

X
=1

+(−+1) (+) ≤
X

=1

+(−+1) () +
X

=1

+(−+1) () (A.135)

needs to be obeyed, where 1 ≤    and all triplets of indices 1 ≤ 1  · · ·  ,

1 ≤ 1  · · ·   and 1 ≤ 1  · · ·   belong to a certain finite set .
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10.3 Hermitian and real symmetric matrices 365

Horn conjectured in 1962, but Knutson and Tao proved in 1999, that the set 
is generated by the triplets of indices that obey

X
=1

 +

X
=1

 =

X
=1

 +
 ( + 1)

2
(A.136)

and the inequalities

X
=1

 +

X
=1

 ≥
X
=1

 +
 (+ 1)

2
(A.137)

for 1 ≤    and all triplets of indices 1 ≤ 1  · · ·  , 1 ≤ 1  · · ·   and

1 ≤ 1  · · ·   in . The above equations are a highly recursive algorithm

to generate the sets  in terms of earlier generations  and give the complete

solution to Weyl’s problem for any dimension . The complicated proof of Knutsen

and Tao relies on their discovery of an equivalence between Weyl’s problem and a

planar graph, called the honeycomb, that is further explained in Knutson and Tao

(2001).

For the case that  = 1, (A.135) reduces to

1+1 (+) ≤ 1+1 () + 1+1 ()

while the indices (A.136) satisfy 1 + 1 = 1 + 1. Hence, for the ×  Hermitian

matrices  and , the Weyl inequality in Weyl (1912, Sec. 1), for 2 ≤ + ≤ +1,

is

+−1 (+) ≤  () +  ()

while, for 2 ≥ +  ≥ + 1, the dual Weyl inequality is

+− (+) ≥  () +  ()

254. The eigenvalue decomposition of a symmetric matrix. Art. 247 shows that

any real, symmetric matrix × can be written as  = Λ , where Λ = diag()

with eigenvalue vector  = (1 2     ) and where  =
£
1 2    

¤
is an orthogonal matrix, obeying  =  = , formed by the real and

normalized eigenvectors 1 2      of  corresponding to the eigenvalues 1 ≥
2 ≥ · · · ≥ . In vector notation,

 =

X
=1



 (A.138)

where the matrix  = 

 is the outer product of  by itself.

255. Properties of the matrix  = 

 . The definition  = 


 shows that
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366 Eigensystem of a matrix

 = 
 is symmetric. The explicit form of the ×  matrix  is

 = 

 =

⎡⎢⎢⎢⎢⎢⎢⎣
()

2
1 ()1 ()2 ()1 ()3 · · · ()1 ()

()2 ()1 ()
2
2 ()2 ()3 · · · ()2 ()

()3 ()1 ()3 ()2 ()
2
3 · · · ()3 ()

...
...

...
...

...

() ()1 () ()2 () ()3 · · · ()
2


⎤⎥⎥⎥⎥⎥⎥⎦
which shows that the diagonal element () = ()

2
equals the square of the -th

vector component of the eigenvector . Hence,

trace () =

X
=1

()
2
 =   = 1 (A.139)

We write  in terms of the elementary orthogonal projector  =  − 1
 



onto the hyperplane through the origin that is orthogonal to the vector  in art. 193

as

 =  −  = 



which represents the orthogonal projection onto the eigenspace of . Any vector

 is projected by  =
¡


¢
 onto the vector .

The orthogonality property (A.121) of eigenvectors  of a symmetric matrix

indicate that 2 =  and  = 0 for  6= . The eigenvalue equation  =

 of the symmetric matrix  has (art. 194) a zero eigenvalue  = 0 with

multiplicity  − 1 and one eigenvalue  = 1, such that kk2 = 1, which follows
from (A.23). The zero eigenvalues imply that det () = 0 and that the inverse

of  does not exist. Geometrically, this is understood because, by projecting,

information is lost and the inverse cannot create information.

The notation of  so far has implicitly assumed that all eigenvalues of the

symmetric matrix  are different. If the eigenvalue  has multiplicity , then

there are  eigenvectors belonging to  that form an orthonormal basis for the

eigenspace belonging to . Let  denote the × matrix with its columns equal

to the  eigenvectors belonging to , then the matrix  = 

 generalizes

 = 

 . Thus, with (A.99), trace() =  is equal to the rank of , which

is the dimension of the eigenspace associated with .

Consider now the  ×  matrix  =
P

=1, where the  index ranges over

all distinct  ≤  eigenvalues {}1≤≤ of . Since 2
 =  and  = 0 for

 6= , we find that  2 =
P

=1

P
=1 =

P
=1

2
+2

P
=1

P−1
=1  = 

such that all eigenvalues of the symmetric (Hermitian) matrix  are either 1 or 0.

But, trace( ) =
P

=1trace() =
P

=1 =  implies that all eigenvalues of 

must be equal to 1, and thus that  = . The fact that
P

=1 = × follows
directly from (A.89) for  () = , after letting  = 0. Moreover, this relation is

rewritten as  = , which, combined with the normalization (A.122), implies

that  is an orthogonal matrix, which we already knew from art. 247. It means
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10.3 Hermitian and real symmetric matrices 367

that the sum of the orthogonal projections onto all eigenspaces of  spans again

the total ×  space.

256. Hadamard product form of the decomposition of two symmetric matrices. Let

 =  = Λ and  =  =   , then their Hadamard product is written

with (A.138) as

( ◦) =  =

X
=1

X
=1


¡





¢


¡





¢


Since ¡





¢


¡





¢

= () () () () = ( ◦ ) ( ◦ )
=
³
( ◦ ) ( ◦ )

´


we obtain ( ◦) =
³P

=1

P
=1  ( ◦ ) ( ◦ )

´

. Hence, we find

that the Hadamard product of two symmetric matrices is

 ◦ =

X
=1

X
=1

 ( ◦ ) ( ◦ ) (A.140)

257. The eigenvalue decomposition of a function of a symmetric matrix. Art. 234

generalizes the spectral decomposition (A.138) of a real symmetric matrix  to a

function  () in (A.88), whose elements are

( ()) =

X
=1

 () () () (A.141)

Using the identity  =
(+)2−(2+2)

2
in (A.141) yields

( ()) =
1

2

X
=1

 ()
³
() + ()

´2
− 1
2

X
=1

 () ()
2
 −

1

2

X
=1

 () ()
2


and

( ()) =
1

2

X
=1

 ()
³
() + ()

´2
− ( ()) + ( ())

2
(A.142)

Similarly, using  =
(2+2)−(−)2

2
leads to

( ()) =
( ()) + ( ())

2
− 1
2

X
=1

 ()
³
() − ()

´2
(A.143)

After addition, we obtain

( ()) =
1

4

X
=1

 ()
³
() + ()

´2
− 1
4

X
=1

 ()
³
() − ()

´2
(A.144)
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368 Eigensystem of a matrix

Since
P

=1

³
() ± ()

´2
= 2 (1± ), upper and lower bounding results in

(1 + ) min
1≤≤

 () ≤
( ()) + ( ())

2
+ ( ()) ≤ (1 + ) max

1≤≤
 ()

(A.145)

and

(1− ) min
1≤≤

 () ≤
( ()) + ( ())

2
− ( ()) ≤ (1− ) max

1≤≤
 ()

(A.146)

while the addition formula (A.144) leads to the bound¯̄̄̄
( ()) −



2

µ
min
1≤≤

 () + max
1≤≤

 ()

¶¯̄̄̄
≤ 1
2

µ
max
1≤≤

 ()− min
1≤≤

 ()

¶
(A.147)

Each non-diagonal element in (A.147) is bounded by¯̄̄
( ())

¯̄̄
≤ 1
2

µ
max
1≤≤

 ()− min
1≤≤

 ()

¶
while each diagonal element is bounded by (A.145) asmin1≤≤  () ≤ ( ()) ≤
max1≤≤  (). If min1≤≤  () ≥ 0, then  () is positive semidefinite and

(A.146) shows, for  6= , that ( ()) ≤
(())+(())

2
, which is a well-known

bound for the off-diagonal elements (art. 279).

10.4 Recursive eigenvalue equation of a symmetric matrix

258. The eigenvalue equation of a symmetric block matrix. We write the  × 

symmetric matrix  as a block matrix

 =

∙
1 

 2

¸
(A.148)

where 1 is an (−)×(−) symmetric matrix and 2 is an × symmetric

matrix. The eigenvalue equation  =  () with the block eigenvector  =£
 

¤
, ∙

1 

 2

¸ ∙




¸
=  ()

∙




¸
is written as the linear block set,½

1 + =  () 

  +2 =  () 
(A.149)

where the normalization  = 1 is equivalent to   +   = 1.
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10.4 Recursive eigenvalue equation of a symmetric matrix 369

After left-multiplying the first block equation in (A.149) with  and the second

block equation with  , we obtain½
1 +  =  ()  

  + 2 =  ()  

Adding and subtracting these two scalar equations and using  =   and

  +   = 1 yields

 () = 1 + 2
 + 2 (A.150)

and

1 =  ()
¡
1− 2 ¢+ 2 (A.151)

which only contains two quadratic forms after the elimination of the (−)×

matrix .

Applying the Rayleigh inequality (A.129) to 1, 1 (1) ≥ 1
 

≥  (1)

leads, after substituting (A.151) and using the corresponding eigenvector, to a lower

bound for the spectral radius of 1,

1 (1) ≥
1 ()

¡
1− 21 1

¢
+ 1 21

1− 1 1
(A.152)

and an upper bound for the smallest eigenvalue of 1,

 (1) ≤
 ()

¡
1− 2 

¢
+ 2

1−  
(A.153)

259. The eigenvalue equation approached recursively. We revisite the eigenvalue

equation (1.3) for a real symmetric  ×  matrix , which we write in terms of

the (− 1) × (− 1) symmetric matrix −1 by adding the last column and row
as

 =

"
−1 (−1)×1¡


¢
1×(−1) 

#
(A.154)

where the (− 1) × 1 vector  = (1 2     −1). Let  () =
£
 

¤
be the eigenvector of  belonging to the eigenvalue  (), normalized in the

usual way as  () () = 1 and  is an (− 1) × 1 vector, while  is a real
number. With  =  () to simplify the notation, the block eigenvalue equations

in (A.149) in art. 258 reduce to½
(−1 − )  +  = 0

  +  ( − ) = 0

Assuming that (−1 − )
−1
exists, which implies that  is not an eigenvalue

of −1, the first equation is solved for the (− 1)× 1 vector  as
 = − (−1 − )

−1

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370 Eigensystem of a matrix

Introduced into the second equation,  = 1
−

¡− ¢ =  (−1−)−1
− leads

to an equation for ,

 (−1 − )
−1

 =  − 

which is consistent with (A.157) in art. 264, because  is not an eigenvalue of −1.
The normalization of  () shows that 

  + 2 = 1 and, explicitly,

1 = 2 +
³
 (−1 − )

−1

´
 (−1 − )

−1
 = 2

³
1 +  (−1 − )

−2

´

With  = ( ()) and provided that  is not an eigenvalue of −1, the -th
component of the eigenvector  () obeys

2 =
1

1 +  (−1 − )
−2


=

1

1 +
°°°(−1 − )

−1

°°°2
2

(A.155)

Since rows can be interchanged, a similar type of expression can be deduced for

each eigenvector component of . Invoking  () =
P

=1  ()

 in (A.88)

to the symmetric matrix −1 yields

(−1 − )
−2
=

−1X
=1

 (−1) (−1)

(−  (−1))
2

Finally, the square in (A.155) of any component of an eigenvector  () of , be-

longing to the eigenvalue  =  (), can be written in terms of the eigenstructure

of a submatrix −1 with corresponding vector ,

2 =

Ã
1 +

−1X
=1

¡
 (−1)

¢2
( ()−  (−1))

2

!−1

Using the norm inequality (A.12):
°°°(−1 − )

−1

°°°2
2
≤
°°°( −−1)

−1
°°°2
2
kk22.

Since (−1 − )
−1
is symmetric, art. 205 illustrates that

°°°( −−1)
−1
°°°
2
=

1
min(−−1) . If  = 1 () is the largest eigenvalue, the interlacing Theorem

71 shows that 1 () ≥ 1 (−1). By assumption that  is not an eigenvalue of
−1, we conclude that 1 ()  1 (−1) in which case the minimum eigenvalue
of the matrix  −−1 equals − 1 (−1). Hence, as follows from (A.155) and

if 1 ()  1 (−1), then any component of a principal vector of a symmetric
matrix can be lower bounded by

2 ≥ 1

1 +
kk22

(1()−1(−1))2
(A.156)

260. Determinant for the eigenvalue equation of blockmatrix (A.154). The char-

acteristic polynomial of the recursive, symmetric block matrix  in (A.154) is,
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10.4 Recursive eigenvalue equation of a symmetric matrix 371

invoking the Schur complement (A.57),

det ( − ) = det

∙
−1 −  

  − 

¸
= det (−1 − ) det

µ
 − −

³
 (−1 − )

−1

´
1×1

¶
and

det ( − ) =
³
 − −  (−1 − )

−1

´
det (−1 − ) (A.157)

For any symmetric matrix −1, the resolvent in (A.162) in art. 262 is

(−1 − )
−1
=

−1X
=1





 − 

where 1 2     −1 are the orthogonal eigenvectors of −1, belonging to the
eigenvalues 1 ≥ 2 ≥    ≥ −1, respectively. Hence,

 (−1 − )
−1

 =

−1X
=1

¡


¢2
 − 

and (A.157) is written with the projection5  =  of the vector  on the

eigenvector  as

det ( − )

det (−1 − )
=  − −

−1X
=1

2
 − 

Since det (−1 − ) =
Q−1

=1 ( − ) as shown in art. 235, we find the char-

acteristic polynomial of , written in terms of the eigenvalues {}1≤≤−1 of
−1,

 () = det ( − ) = ( − )

−1Y
=1

( − )−
−1X
=1

2

−1Y
=1; 6=

( − )

(A.158)

Equation (A.158) shows that

 () = (−1)− 2
−1Y
=1

| − |
−1Y

=+1

| − | (A.159)

The consequences of (A.158) and (A.159) are analyzed in art. 264.

261. Coefficients of the characteristic polynomial of  in terms of those of −1.

5 Art. 192 regards the values (1 2     −1) as the coordinates of the point  =
−1

=1


in the −1 dimensional space with respect to the coordinate axes generated by the orthogonal
eigenvectors 1 2     −1 of −1.
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372 Eigensystem of a matrix

Invoking the expansion of the resolvent of a matrix , valid for   1 (),

(− )
−1
= − 1



¡
 − −1

¢−1
= − 1



∞X
=0




= − 1



µ
 +




+

2

2
+ · · ·

¶
(A.160)

in (A.157) yields

 (−1 − )
−1

 = − 1


∞X
=0


−1


We translate (A.157) in the polynomial6 form  () =
P

=0  ()
 in (A.95)

of the characteristic polynomial  () = det ( − ),

X
=0

 ()
 =

Ã
 − +

∞X
=0


−1

+1

!
−1X
=0

 (− 1)

= ( − )

−1X
=0

 (− 1) +
∞X
=0

−1X
=0

¡


−1
¢
 (− 1)−−1

The substitution of  =  −  − 1 changes the summation in
∞X
=0

−1X
=0

¡


−1
¢
 (− 1)−−1 =

−2X
=−∞

−1X
=max(0+1)

³


−−1
−1  ́ (− 1)

For   0, the last sum is 
³P−1

=0  (− 1)
−1

´
−−1−1  = 0 by the Cayley-

Hamilton Theorem (art. 228), stating that  () =
P

=0  ()

 = 0. Hence,

we obtain

X
=0

 ()
 = ( − )

−1X
=0

 (− 1) +
−2X
=0

−1X
=+1

 (− 1)
³


−−1
−1 

´


Equating corresponding powers in  yields, for7 1 ≤  ≤  − 1, a recursion that
expresses the coefficients of the characteristic polynomial of  in terms of those

6 The first equation only holds for   1 (), but since the final result is polynomial, by analytic
continuation (see e.g. Titchmarsh (1964)), it holds for all complex .

7 For  = 0, we find with Cayley-Hamilton’s Theorem that

0 () = 0 (− 1) + 

−1
=1

 (− 1)−1−1

  = 0 (− 1)

 − −1−1


which, indeed, equals (A.157) when  = 0, while for  = ,  () = −−1 (− 1) leads to
 () = (−1), a requirement for any characteristic polynomial  () = det (− ).
For  = − 1, it holds that

−1 () = −1 (− 1)− −2 (− 1) = (−1)−1  − −2 (− 1)

which we write as (−1)−1−1 () = +(−1)−2−2 (− 1). Let  = (−1)−1−1 (),
then the recursion  =  + −1 yields  =


=1  , which is (A.99).
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10.5 Interlacing 373

of −1,

 () =  (− 1)− −1 (− 1) +
−1X

=+1

 (− 1)
³


−(+1)
−1 

´
(A.161)

Given the coefficients { (− 1)}0≤, the quadratic forms  () = 
−1

for 1 ≤    constitute the major computational effort in (A.161) to determine

the coefficients { ()}0≤. Starting with  = 2, the set can be iterated up

to any size  and any structure in , each  producing the set of coefficients

{ ()}0≤ of a polynomial with integer coefficients and real zeros. Moreover,
art. 263 shows that all eigenvalues of −1 interlace with those of . These

properties are also shared by orthogonal polynomials (see Chapter 12).

10.5 Interlacing

262. The resolvent. The resolvent ( −)
−1
of matrix  is defined in art. 215

and is related in art. 230 to the adjoint matrix  () = ( −)
−1

 (), where

 () is the characteristic polynomial of . Applying  () =
P

=1  ()

 in

(A.88) for a symmetric matrix  to the function  () = 1
− , which is everywhere

analytic except for  = , yields the spectral decomposition

( −)
−1
=

X
=1





 − 
(A.162)

Since trace
¡





¢
=
P

=1 ()
2
 = 1 by orthogonality (A.124), we have

trace ( −)
−1
=

X
=1

1

 − 
(A.163)

263. Interlacing. For any  × 1 real vector , we obtain from (A.162) for a

symmetric matrix  that

 () =  ( −)
−1

 =

X
=1

¡


¢2
 − 

which implies that the rational function  () has simple poles at the real eigen-

values of . Differentiating with respect to  yields for a real vector 

 ()


= − ( −)

−2
 = −

X
=1

¡


¢2
( − )

2

Since  =  is symmetric

 ( −)
−2

 = 
³
( −)

−1
´
( −)

−1
 =

°°°( −)
−1


°°°2
2
≥ 0

we observe that
()


is always strictly negative whenever  is real and not a pole
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374 Eigensystem of a matrix

of  (). This implies that each zero of  () must be simple and lying between

two consecutive poles of  (). By choosing  =  equal to the base vector  , we

find that

 () = ( −)
−1
 =

det
¡
 −\{}

¢
det ( −)

where the last equality is (A.52) in art. 215. Thus, the polynomial det
¡
 −\{}

¢
has simple zeros that lie between the zeros of det ( −).

In summary, all eigenvalues of the symmetric matrix \{} lie in between eigen-
values of  =  ,

+1 () ≤ 
¡
\{}

¢ ≤  ()

for any 1 ≤  ≤ −1. This property is called8 interlacing. Repeating the argument
to a principal submatrix \{} of \{}, obtained by deleting a same row  and

column , we arrive at the general interlacing theorem:

Theorem 71 (Interlacing) For a real symmetric matrix × and any principal
submatrix × of  obtained by deleting − same rows and columns in , the

eigenvalues of  interlace with those of  as

−+ () ≤  () ≤  () (A.164)

for any 1 ≤  ≤ .

Also the zeros of orthogonal polynomials (art. 364) are interlaced. There is an

interesting corollary of Theorem 71:

Corollary 4 Let  be a real symmetric  ×  matrix with eigenvalues  () ≤
−1 () ≤ · · · ≤ 1 () and ordered diagonal elements  ≤ −1 ≤ · · · ≤ 1 then,

for any 1 ≤  ≤ , it holds that

X
=1

 ≤
X

=1

 ()

Proof: Let  denote the principal submatrix of  obtained by deleting the rows

and columns containing the  −  smallest diagonal elements +1 +2     .

The trace formula (A.99) indicates that trace() =
P

=1  () and, by construc-

tion of , trace() =
P

=1  . The Interlacing Theorem provides the inequality

(A.164) from which
P

=1  () ≤
P

=1  (). Combining the relations proves

the corollary. ¤

Corollary 4 is differently proved in (A.181) in art. 275 based on properties of

8 A sequence of real numbers  ≤ · · · ≤ 2 ≤ 1 is said to interlace another sequence of real
numbers  ≤ · · · ≤ 2 ≤ 1 with   , if −+ ≤  ≤  for  = 1 . The interlacing
is called tight if there is an integer , with 0 ≤  ≤  such that  =  for  = 1  , and
−+ =  for  =  + 1 .
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10.5 Interlacing 375

the × doubly stochastic matrix Ξ, defined in (A.178) and associated to the real

symmetric matrix .

264. Strict interlacing. A number of interesting conclusions can be derived from

(A.158) and (A.159).

(a) If  = +1 is an eigenvalue of −1 with multiplicity larger than 1, then
(A.159) indicates that  () = 0, implying that  is also an eigenvalue of .

Eigenvalues of −1 with multiplicity exceeding 1 are found as a degenerate case
of the simple eigenvalue situation when  → + with   1. Thus, we assume

next that all eigenvalues of −1 are distinct and simple such that the product of
the absolute values of the differences of eigenvalues in (A.159) is strict positive.

Then, (A.159) shows that the eigenvalue  of −1 cannot be an eigenvalue of
, unless  = 0, which means that  is orthogonal to the eigenvector . If  is

not orthogonal to any eigenvector of −1, then  6= 0 for 1 ≤  ≤  − 1 and
 () 6= 0 for 1 ≤  ≤ −1. Moreover,  () is alternatingly negative, starting
from  = −1, then positive for  = −2, again negative for  = −3, etc. Since the
polynomial  () = (−) +

¡
−1

¢
for large  as follows from (A.158), there

is a zero smaller than −1 (because  (−1)  0 and lim→−∞  ()  0) and

a zero larger than 1 (because (−1)−1  (1)  0 and lim→∞ (−1)−1  () 
0). Since all zeros of  () are real (art. 247) and the total number of zeros is 

(art. 291), all zeros of  () are simple and there is precisely one zero of  ()

in between two consecutive zeros of −1 ().

This argument presents another derivation of the interlacing principle in art. 263.

But, the conclusion is more precise and akin to interlacing for orthogonal polyno-

mials (art. 364): if the vector  is not orthogonal to any eigenvector of −1, which
is equivalent to the requirement that  6= 0 for 1 ≤  ≤ −1, then the interlacing
is strict in the sense that

 ()  −1 (−1)  −1 ()      1 (−1)  1 ()

Only if  is orthogonal to some eigenvectors, the corresponding eigenvalues are the

same for  and −1.
(b) If  is proportional to an eigenvector, say  = , then  = 0 for all

1 ≤  ≤ − 1, except when  = , such that (A.158) reduces to

det ( − ) =
©
( − ) ( − )− 2

ª −1Y
=1; 6=

( − )

which shows that det ( − ) and det (−1 − ) have  − 2 eigenvalues in
common and only  and the zeros of the quadratic equation are different. Indeed,

 is not a zero of 2 () = ( − ) ( − ) − 2 because 2 () = −2 6= 0, by

construction. An example is given in art. 85. The observation is readily extended:

if  is a linear combination of  eigenvectors, then there are − 1−  eigenvalues in
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376 Eigensystem of a matrix

common. From (A.158) with +1 = +2 =    = −1 = 0, we have

det ( − ) = ( − )

−1Y
=1

( − )−
X

=1

2

Y
=1; 6=

( − )

−1Y
=+1

( − )

= +1 ()

−1Y
=+1

( − )

where +1 () = ( − )
Q

=1 ( − ) −P
=1 

2


Q
=1; 6= ( − ). We see

that +1 () = −2 6= 0, for 1 ≤  ≤ , by construction and that the real  + 1

zeros of the polynomial +1 () determine the zeros of  (), that are different

from those of −1 ().

In summary, if we build up the matrix  in (A.154) by iterating from  = 2

and requiring in each iteration  that the corresponding (− 1)× 1 vector  is not
orthogonal to any eigenvector of −1, then each matrix in the sequence 2 3    
 has only simple eigenvalues, that all interlace over 2 ≤  ≤ . Their associated

characteristic polynomials are very likely a set of orthogonal polynomials.

265. Symmetric matrix with simple, distinct eigenvalues. In order to have simple,

distinct eigenvalues, it is sufficient for 2 in (A.154) that all elements in the upper

triangular part including the diagonal are different. However, the statement that

“the symmetric matrix  has only real, simple eigenvalues provided all its upper

triangular (including the diagonal) elements are different” is not correct for   2

as follows from the counter example9

3 =

⎡⎣ 9 3 6

3 1 2

6 2 4

⎤⎦ = 
3

because the eigenvalues of 3 are 14 0 0. In fact, 3 is the  = 3 case of a

Fibonacci product matrix , with elements  = +1+1, where  denotes the

-th Fibonacci number. Since +1+1 and +1+1 are only equal if  =  and

 = , all elements in the upper triangular part are different. Since all rows are

dependent, we have  − 1 eigenvalues equal to 0 and one eigenvalue equal to the
sum of the diagonal elements,

P
=1 

2
+1.

Although not correct for   2, we provide a probabilistic argument that the

statement is in most, but not all cases correct. A random vector  has almost surely

all real elements (components) different. In additional, such a random vector  is

almost never orthogonal to any of the − 1 given orthogonal eigenvectors of −1,
that span the − 1 dimensional space. Intuitively, one may think of a unit sphere
in  = 3 dimensions in which the eigenvectors form an orthogonal coordinate axis.

The (normalized) vector  is a point on the surface of that unit sphere. The

orthogonality requirement translates to three circles on the sphere’s surface, each

of them passing through two orthogonal eigenvector points. The vector  is not

9 This example is due to F.A. Kuipers.
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10.5 Interlacing 377

allowed to lie on such a circle. These circles occupy a region with negligible area,

thus they have Lesbegue measure zero on that surface. Hence, the probability that

 coincides with such a forbidden region is almost zero. Geometric generalizations

to higher dimensions are difficult to imagine, but the argument, that the forbidden

“orthogonality” regions have a vanishingly small probability to be occupied by a

random vector, also holds for   3. In practice, most matrices  that obey the

statement have distinct eigenvalues.

266. General interlacing. Theorem 71 in art. 263 is extended by Haemers (1995):

Theorem 72 (Generalized Interlacing) Let  be a real symmetric × matrix

and  be a real × orthogonal matrix satisfying  = . Denote the eigenvector

 belonging to the eigenvalue  () of the × matrix  = . Then,

(i) the eigenvalues of  interlace with those of ;

(ii) if  () =  () or  () = −+ () for some  ∈ [1], then  is

an eigenvector of  belonging to  ();

(iii) if there exists an integer  ∈ [0] such that  () =  () for 1 ≤  ≤ 

and  () = −+ () for  + 1 ≤  ≤ , then  = .

Proof: The Rayleigh inequalities (A.129) in art. 251, applied to an ×1 vector
 being a vector belonging to the space spanned by the eigenvectors {1 2     },
are

 

 
≥  (). Since

 

 
=

()


()


, Rayleigh’s principle, now applied to

the vector  , states that the right-hand side is smaller than  () provided 
belongs to the space spanned by {        }, the last +1− eigenvectors of .
In that case,  can be written as a linear combination,  =

P
= . Using

the orthogonality −1 =  , we have  =
P

= 
. Hence, if we choose

 belonging to the space spanned by {1 2     } and orthogonal to the space
spanned by

©
1 

2     
−1

ª
, then +1 () ≤  () ≤  () for any

1 ≤  ≤ . If the same reasoning is applied to − and −, we obtain  () ≥
−+ (), thereby proving (i). Equality, occurring in the Rayleigh inequalities,
 () =  (), means that the  =  is an eigenvector of  belonging to the

eigenvalue  () and that  =  =  is an eigenvector of  belonging to

the eigenvalue  (). This proves (ii). The last point (iii) implies, using (ii),

that 1 2      is an orthonormal set of eigenvectors of  belonging to the

eigenvalues 1 ()  2 ()       (). Left-multiplying the eigenvalue equation

 =  ()  by  yields  =  () =  () =  =  from

which  =  follows because all 1 ≤  ≤  eigenvectors span the-dimensional

space. ¤

By choosing  =
£
× ×(−)

¤
, we find that  is just a principal

submatrix of . This observation shows that Theorem 71 is a special case of the

general interlacing Theorem 72, which was already known to Cauchy. Another

useful choice is the community matrix  in art. 36 that defines the quotient matrix

(2.43) of a matrix in art. 37. Haemer’s Theorem 72 may be compared to
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378 Eigensystem of a matrix

Theorem 73 (Sylvester’s law of inertia) Let  be a real symmetric × matrix
and  be a real non-singular ×  matrix. Then, the matrix  has the same

number of positive, negative and zero eigenvalues as .

Sylvester’s theorem also holds for Hermitian matrices  and  and follows from

the Courant-Fischer expression (A.132) or (A.133) with  = . If  is an orthogo-

nal matrix, then Theorem 68 shows that  is a diagonal matrix . Sylvester’s

law of inertia states that the number of positive, negative and zero diagonal ele-

ments of  is an invariant of , that does not depend on the matrix . Bapat

(2013) computes the inertia of threshold graphs (art. 114).

267. Interlacing and the sum +.

Lemma 7 For symmetric ×  matrices , it holds that

 () +  () ≤  (+) ≤  () + 1 () (A.165)

Proof: The proof is based on the Rayleigh inequalities (art. 251) of eigenvalues

(see, e.g., Wilkinson (1965, pp. 101-102)). ¤

An extension of Lemma 7 is, for +  − 1 ≤ ,

+−1 (+) ≤  () +  ()

which is also called an interlacing property. These inequalities are also known as

the Courant-Weyl inequalities and also hold for Hermitian matrices (see art. 253).

Lemma 8 If  =

∙
 

 

¸
is a real symmetric matrix, where  and  are

square, and consequently symmetric, matrices, then

max () + min () ≤ max () + max () (A.166)

Proof: See, e.g., Biggs (1996, p. 56). ¤

Theorem 74 (Wielandt-Hoffman) For symmetric matrices  and , it holds

that
X

=1

( (+)−  ())
2 ≤

X
=1

2 () (A.167)

Proof: See, e.g., Wilkinson (1965, pp. 104-108). ¤

We can rewrite (A.167) with  = + and  =  − as

X
=1

2 () +

X
=1

2 ()−
X

=1

2 ( −) ≤ 2
X

=1

 () ()
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10.6 Non-negative matrices 379

Using (A.118), we have

2

X
=1

 () () ≥ trace
¡
2
¢
+ trace

¡
2
¢− trace³( −)

2
´

= trace (+) = 2

X
=1

X
=1



Hence, an equivalent form of the Wielandt-Hoffman Theorem 74 for symmetric

matrices  and  is

trace () ≤
X

=1

 () () (A.168)

10.6 Non-negative matrices

268. Reducibility. A matrix  is reducible if there is a relabeling that leads to

e = ∙ 1 

 2

¸
where 1 and 2 are square matrices. Otherwise  is irreducible. Relabeling

amounts to permuting rows and columns in the same fashion. Thus, there exists a

similarity transform  such that  =  e−1.
For doubly stochastic matrices, where

P
=1  =

P
=1  = 1, Fiedler (1972)

has proposed the “measure  () of irreducibility” of  defined as

 () = min
M⊂N

X
∈M∈M

 (A.169)

because  is reducible if there exists a non-empty subsetM of the set of all indices

in N such that  = 0 for all  ∈M and  ∈M. Hence, if  is reducible, then

 () = 0. Since
P

∈M∈M  ≤
P

=2 1 ≤ 1 for a doubly stochastic matrix,
the measure of irreducibility lies between 0 ≤  () ≤ 1.
269. The famous Perron-Frobenius theorem for non-negative matrices.

Theorem 75 (Perron-Frobenius) An irreducible, non-negative ×  matrix 

always has a real, positive eigenvalue 1 = max () and the modulus of any other

eigenvalue does not exceed max (), i.e., | ()| ≤ max () for  = 2     .

Moreover, 1 is a simple zero of the characteristic polynomial det (− ). The

eigenvector belonging to 1 has positive components.

If  has  eigenvalues 1 2      with || = 1, then all these equal-moduli

eigenvalues satisfy the polynomial  − 1 = 0, i.e.,  = 1
2(−1)

 for  =

1     .
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380 Eigensystem of a matrix

Proof: See, e.g., Gantmacher (1959b, Chapter XIII). ¤

If a non-negative ×  matrix  is reducible, then  has always a non-negative

eigenvalue max () and no other eigenvalue has a larger modulus than max ().

The corresponding eigenvector belonging to max () has non-negative components.

Hence, reducibility removes the positivity of the largest eigenvalue and that of the

components of its corresponding eigenvector. An essential Lemma in Frobenius’

proof, beside the variational property of the largest eigenvalue

max () = max
6=0

min
1≤≤

()


(A.170)

akin to Rayleigh’s inequality (A.130) and a consequence of (A.171) in art. 270 for

a symmetric matrix, is:

Lemma 9 If  is an  ×  non-negative, irreducible matrix and  is an  × 

complex matrix, in which each element obeys | | ≤ , then every eigenvalue  ()

of  satisfies the inequality | ()| ≤ max ().

Proof: See, e.g., Gantmacher (1959b, Chapter XIII). ¤

An application of Lemma 9 is Lemma 10 for non-negative matrices, which is

useful in assessing the largest eigenvalue of the adjacency matrix of a graph:

Lemma 10 If one element in a non-negative matrix  is increased, then the largest

eigenvalue is also increased. The increase is strict for irreducible matrices.

Proof: Consider the non-negative matrix  and  =  + 

 , where   0,

 and  are the basic vectors and e = 

 is the zero matrix, except for the

element e = 1. Lemma 9 shows that max () ≥  (). We now demonstrate

the strict inequality max ()   () for irreducible matrices. If  denotes the

eigenvector belonging to the largest eigenvalue of , then the variational property

(A.170) implies

max () ≥ 


=




+ 

 

 


= max () + 





Since all components of the largest eigenvector  are non-negative and even positive

if  is irreducible, the lemma is proved. ¤

270. Bounds for the largest eigenvalue of symmetric, irreducible, non-negative ma-

trices. If the irreducible, non-negative matrix is symmetric, we can exploit symme-

try to deduce bounds for the largest eigenvalue by considering the quadratic form

1 = 1 , where 1 is the eigenvector with positive components (Perron-

Frobenius Theorem 75) belonging to the largest eigenvalue 1 and  is a vector

with positive components. Using the eigenvalue equation 1 = 11, we obtain
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10.6 Non-negative matrices 381

1 = 1
1. On the other hand, we have

1 =

X
=1

X
=1

 (1)  =

X
=1

(1) 

⎛⎝ X
=1





⎞⎠
and, since the components of  and 1 are positive,⎛⎝ min

1≤≤

X
=1





⎞⎠ X
=1

(1)  ≤ 1  ≤
⎛⎝ max
1≤≤

X
=1





⎞⎠ X
=1

(1) 

By combining both expressions, taking into account that 1 =
P

=1 (1)   0,

we obtain, for a positive vector  and for any symmetric, irreducible, non-negative

matrix , the bounds

min
1≤≤

()

≤ 1 ≤ max

1≤≤
()


(A.171)

271. Maximum ratio of principal eigenvector components of a positive matrix.

Ostrowski (1960) considered the maximum ratio

 = max
1≤≤

(1)
(1)

(A.172)

of components of the principal eigenvector 1 of an ×  positive matrix  , that

is irreducible, hence, (1)  0 for all 1 ≤  ≤ . Minc (1970) briefly overviews the

results and proves the following theorem:

Theorem 76 (Minc) Let  be a positive ×  matrix with principal eigenvector

1, then

 ≤ max
1≤≤





(A.173)

Equality in (A.173) holds if and only if the -th row of  is a multiple of the -th

row, for some pairs of indices  and  satisfying



= max1≤≤




.

The main idea of Minc’s proof is as follows. We consider the eigenvalue equa-

tion for both the minimum (1) = min1≤≤ (1) and the maximum (1) =

max1≤≤ (1) principal eigenvector component:(
1 () (1) =

P
=1 (1)

1 () (1) =
P

=1 (1)

Their ratio equals

 =
(1)

(1)
=

P
=1 (1)P
=1 (1)

(A.174)
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382 Eigensystem of a matrix

Since (1)  0 and   0, invoking the inequality (3.88) yields

 ≤ max
1≤≤





≤ max
1≤≤





If equality holds, then  =



for 1 ≤  ≤ , illustrating that row  and  are

linearly dependent and that det = 0 in art. 209. We refer to Minc (1970) for the

converse, which then proves Theorem 76. Theorem 76 also applies to the matrix

 + , because eigenvectors are the same for  and  + . The ratio (A.173)

can be sharpened by choosing the optimal value for .

272. Eigenvector components of a non-negative matrix. Fiedler (1975) found a nice

property regarding the signs of eigenvector components of a non-negative symmetric

matrix, that have a profound impact on graph partitioning (art. 150).

Theorem 77 (Fiedler) Let  be an irreducible, non-negative symmetric  × 

matrix with eigenvalues 1 () ≥ 2 () ≥     () and  be a vector such that

 ≥  ()  with  ≥ 2. Then, the set of indices (nodes) M = { ∈ N :  ≥ 0}
is not empty and the number of connected components of the principal submatrix

 (M), with indices of rows and columns belonging toM, is not larger than − 1.
Before proving the theorem, we rephrase the theorem when  is the adjacency

matrix of a graph . The non-negative vector components of  correspond to

nodes, that induce a subgraph, specified by the adjacency matrix  (M), with at

most  − 1 distinct connected components.
Proof10: The set M cannot be empty. For, if M were empty, then all com-

ponents of  would be negative such that  = − satisfies  ≤  () . Since

 is irreducible, Perron-Frobenius Theorem 75 demonstrates that 1 = 1 ()1
and 1 ()  max(2 ()   ()). Thus, 


1  = 1 ()


1    ()


1 , while

the hypothesis implies that 1 ≤  ()

1 , which leads to a contradiction.

If M = N , the theorem is true by the Perron-Frobenius Theorem 75. Suppose

now that M 6= N . Then, we can always write the matrix  as  =

" e 

 

#
,

where e consists of  distinct connected or irreducible matrices  , subject toP
=1 dim () = dimM   with structure

e =
⎡⎢⎢⎢⎢⎣

1  · · · 

 2
. . .

...
...

. . .
. . . 

 · · ·  

⎤⎥⎥⎥⎥⎦ and  =

⎡⎢⎢⎢⎣
1
2
...



⎤⎥⎥⎥⎦
We partition the vector  conformally,

 =

∙


−
¸

10 We have combined Fiedler’s proof with that of Powers (1988).
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10.6 Non-negative matrices 383

where the vector  =
£
1 2 · · · 

¤
has subvectors  all with non-

negative components whose indices belong to M. This implies that  contains

only positive components, otherwise a component of  would belong to M. The

condition  ≥  ()  implies that  −  ≥  () . Since  is irre-

ducible, none of the block matrices  can be zero such that  ≥ 0, with inequal-
ity in some component because all components of  are strictly positive. Hence,

 ≥  () holds with strict inequality in some component which implies that

    ()

  for 1 ≤  ≤ . By construction, each  is irreducible. The

Perron-Frobenius Theorem 75 and the Rayleigh inequality (art. 251) for the largest

eigenvalue state that 1 ()

  ≥   such that 1 ()   (). Finally,

the interlacing Theorem 71 shows that, if 1 ()   () for all 1 ≤  ≤ , then

 ()   () and  ≤  − 1. This proves the theorem. ¤

An immediate consequence is that the vector  = 1+2, where 1 is the largest

eigenvector with all positive components and 2 is the second largest eigenvector

of , satisfies, for  ≥ 0,  (1 + 2) = 1 () 1 + 2 () 2 ≥ 2 () (1 + 2)

and thus the inequality in Theorem 77 for  = 2. Hence, the index set M =n
 ∈ N :  (1) + (2) ≥ 0

o
corresponds to an irreducible submatrix of  (M).

Since  and  (M) are irreducible, it means that  (M), where M ∪M = N
and M =

n
 ∈ N :  (1) + (2)  0

o
, is also irreducible. This index set M

decomposes the set of indices (nodes) into two irreducible submatrices (connected

subgraphs).

273. Bounds on eigenvalues of the adjacency matrix. We present a consequence of

Fiedler’s eigenvector component Theorem 77 in art. 272. Consider the eigenvalue

equation  =  (), where the eigenvalue  () is smaller than the largest

eigenvalue 1 (). The corresponding real eigenvector  is orthogonal to 1, whose

vector components are positive by virtue of the Perron-Frobenius Theorem 75. Let

us denote the nodal sets

M+ =
n
∈N : ()0

o
M− =

n
∈N : ()0

o
M0 =

n
∈N : ()=0

o
such that M+ ∪M− ∪M0 = N . Since  1 = 0 by orthogonality (art. 247),

it holds that |M+| ≥ 1 and |M−| ≥ 1, whence |M0| ≤  − 2 for any eigenvalue
 () with index   1.

Suppose that () = min1≤≤ ()  0 and () = max1≤≤ ()  0.

The eigenvalue equation (1.4) for component  is, assuming that  ()  0,

 () () =

X
=1

 () ≥ (|M−|− 1) ()

while that for component  is  () () ≤ (|M+|− 1) (). Thus, provided
 ()  0, we have that  () ≤ (|M−|− 1) and  () ≤ (|M+|− 1), from
which  () ≤ min (|M−|  |M+|) − 1 ≤ |M−|+|M+|

2
− 1 = −|M0|

2
− 1. Since
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384 Eigensystem of a matrix

|M0| ≥ 0, we find that

2 () ≤
¹


2

º
− 1 (A.175)

When  ()  0, we obtain  () () = | ()|  |()| ≤ |M+| () and

 () () ≥ |M−| (). Thus, | ()| () ≤ |M−| () from which we

deduce, after multiplying both inequalities | ()| ≤
p
|M+| |M−| ≤ |M−|+|M+|

2
.

Since
p
|M+| |M−| =

p
|M+| ( − |M+|− |M0|) and |M0| ≥ 0, this quantity is

maximal if |M+| =
¥

2

¦
and |M0| = 0. Hence, the smallest eigenvalue of  obeys

 () ≥ −
s¹



2

º»


2

¼
(A.176)

In addition to this bound (A.176), the Perron-Frobenius Theorem 75 as well as

Theorem 109 indicate that  () ≥ −1 ().
We end this section on non-negative matrices by pointing to yet another nice

article by Fiedler and Pták (1962), that studies the class of real square matrices

with non-positive off-diagonal elements, to which the Laplacian matrix of a graph

belongs. We also mention totally positive matrices. An × matrix is said to be

totally positive if all its minors are non-negative. The current state of the art is

treated by Pinkus (2010), who shows that the eigenvalues of square, totally positive

matrices are both real and non-negative.

10.7 Doubly stochastic matrices

A non-negative matrix  is doubly stochastic if both its row and column sums

are 1, i.e.  =  and  = . Sinkhorn (1964) has demonstrated that any

matrix  with strictly positive elements can be made doubly stochastic by pre- and

post-multiplication by diagonal matrices. Thus, for any strictly positive matrix 

(without zero elements), there exist positive diagonal matrices 1 and 2 such that

12 is doubly stochastic.

274. Diagonal elements of  and the doubly stochastic matrix Ξ. It directly

follows from (A.138) that  =
P

=1  () =
P

=1  ()
2
 for each 1 ≤  ≤

 and by art. 243 that

() =

X
=1

 ()
2
 (A.177)

Geometrically, the scalar product of the eigenvalue vector  = (1 2     ) with

the vectors  =
³
()

2
1  ()

2
2      ()

2


´
, where () is the -th component of

the -th eigenvector of  belonging to , equals the diagonal element  . With
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10.7 Doubly stochastic matrices 385

the × non-negative matrix Ξ =  ◦, where ◦ denotes the Hadamard product,

Ξ =

⎡⎢⎢⎢⎢⎢⎢⎣
(1)

2
1 (2)

2
1 (3)

2
1 · · · ()

2
1

(1)
2
2 (2)

2
2 (3)

2
2 · · · ()

2
2

(1)
2
3 (2)

2
3 (3)

2
3 · · · ()

2
3

...
...

...
. . .

...

(1)
2
 (2)

2
 (3)

2
 · · · ()

2


⎤⎥⎥⎥⎥⎥⎥⎦ (A.178)

and with the vector  = (11 22     ), the relation  =
P

=1  ()
2
 reads

in matrix form

Ξ =  (A.179)

If a function  of the vector  = (1 2     ) is denoted by

 () = ( (1)   (2)       ())

then  () =
P

=1  ()

 in (A.88) leads to

Ξ () =  () (A.180)

Since Ξ =  and Ξ = , by “double orthogonality” of (A.124) and (A.126),

and since each element 0 ≤ ()
2
 ≤ 1, the matrix Ξ with squared eigenvector

components of a diagonalizable matrix is doubly stochastic with largest eigenvalue

equal to 1. Since Ξ is a non-negative matrix and Ξ = , the Perron-Frobenius

Theorem in art. 269 indicates that the eigenvalue 1 belonging to the eigenvector 

with non-negative components is the largest one and that the absolute value of any

other eigenvalue is smaller than 1. Hence, all eigenvalues of the asymmetric matrix

Ξ lie within the unit circle.

275. Partial sum inequalities and doubly stochastic matrices. Consider the  × 1
real vectors  and , both with ordered components, i.e. 1 ≥ 2 ≥    ≥  and

1 ≥ 2 ≥    ≥ .

Theorem 78 If  is a doubly stochastic matrix with elements 0 ≤  ≤ 1 and
 = , then the partial sum inequalities hold,

X
=1

 ≤
X
=1

 for 1 ≤   

X
=1

 =

X
=1



which is denoted as  ≺  and expresses that the vector  majorizes the vector .

Proof (Marshall et al., 2011, p. 31): Summing the first  components in  = 

yields
P

=1  =
P

=1 () =
P

=1

P
=1  =

P
=1

³P
=1 

´
 . We
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386 Eigensystem of a matrix

denote  =
P

=1  and  satisfies 0 ≤  ≤ 1 and
P

=1  =
P

=1

P
=1  = .

Hence,

X
=1

 −
X
=1

 =

X
=1

 −
X

=1

 =

X
=1

 −
X

=1

 + 

⎛⎝ −
X
=1



⎞⎠
Splitting the -upper limit sums at the right-hand side,

X
=1

 −
X
=1

 =

X
=1

 +

X
=+1

 −
X

=1

 +  − 

X
=1

 − 

X
=+1



and recombining yields, recalling that 1 ≥ 2 ≥    ≥ ,

X
=1

 −
X
=1

 =

−1X
=1

( − 1) ( − ) +

X
=+1

 ( − ) ≤ 0

The equality for  =  follows from  =  as  =  = . ¤

The proof does not use the ordering of the vector , only that  is ordered.

Except for the  =  case, the proof also holds for a doubly substochastic matrix

, in which there are rows and columns that sum to a value less than 1. Indeed,

denote  =
P

=1  , it now holds that
P

=1  ≤ , so that

X
=1

 −
X
=1

 =

X
=1

 −
X

=1

 ≤
X
=1

 −
X

=1

 + 

⎛⎝ −
X
=1



⎞⎠
and the remainder of the proof remains unchanged.

Application of Theorem 78 to Ξ () =  () in (A.180), where the components

of the vector  () decrease with index , shows that   () =   () and, for

1 ≤   ,

X
=1

( ()) ≤
X
=1

 () (A.181)

The partial sum inequalities (A.181) are also proved in Corollary 4 in art. 263

based on interlacing.

276. Convex functions and doubly stochastic matrices. Schur (Marshall et al.,

2011, Chapter 3) demonstrated in 1923 another type of inequality that involves

doubly stochastic matrices and a continuous convex function . Consider the -

th component in (A.179),  =
P

=1  with
P

=1  =
P

=1  = 1 and

 = ()
2
 , then the definition of convexity (Hardy et al., 1999, art. 90, p. 74)



µP
=1 P
=1 

¶
≤
P

=1  ()P
=1 

(A.182)
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10.8 Positive (semi) definiteness 387

with equality only if  is linear or all  are the same, shows that

 () = 

Ã
X

=1



!
≤

X
=1

 ()

Summing over all ,
P

=1  () ≤
P

=1

P
=1  () =

P
=1 (

P
=1 )  ()

results in Schur’s inequality,

X
=1

 () ≤
X

=1

 () (A.183)

which is, in vector form,   () ≤   ().

277. The next remarkable theorem by Fiedler (1972) bounds the spectral gap for

symmetric stochastic matrices, that are doubly stochastic.

Theorem 79 (Fiedler) Let  be an × symmetric stochastic matrix with second
largest eigenvalue 2 ( ). Then

 ( ( )) ≤ 1− 2 ( ) ≤ 

− 1 ( ) (A.184)

where the measure of irreducibility  () is defined in (A.169) and where the con-

tinuous, convex and increasing function  () ∈ [0 1] is

 () =

½
2
¡
1− cos 



¢
0 ≤  ≤ 1

2

1− 2 (1− ) cos 

− (2− 1) cos 2


1
2
  ≤ 1

The inequality (A.184) is best possible: if   ∈ R satisfy 0 ≤  ≤ 1 and  () ≤
1 −  ≤ 

−1, then there exists a symmetric stochastic matrix  with  ( ) = 

and 2 ( ) = .

Proof: The proof is rather involved and we refer to Fiedler (1972). ¤

10.8 Positive (semi) definiteness

278. Positive definiteness. A matrix  ∈ R× is positive definite if the quadratic
form   0 for all non-zero vectors  ∈ R. This definition implies that

 is non-singular for otherwise there would exist a non-zero vector  such that

 = 0.

We start with a basic property : If  ∈ R× is positive definite and  ∈ R×
has rank , then the  ×  matrix  =   is also positive definite. Indeed,

suppose that the non-zero vector  ∈ R satisfies 0 ≥  = ( )

 ( ), then

  = 0 by the positive definiteness of . But  has full column rank, which implies

that  = 0, leading to a contradiction.

A consequence of the basic property is that all principal submatrices of  are

positive definite. In particular, all diagonal elements of a positive definite matrix
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388 Eigensystem of a matrix

 are positive. By choosing  equal to the  column vectors of the identity matrix

×, any principal submatrix of  is found as  =   .

If  is positive semidefinite, then any principal submatrix of  is also positive

semidefinite. This property is less stringent than the basic property for positive

definiteness, because  = ( )

 ( ) ≥ 0 for any vector  .

279. Elements in a symmetric positive semidefinite matrix. If  ∈ R× is sym-
metric positive semidefinite, then

| | ≤ 1
2
( + ) (A.185)

| | ≤ √ (A.186)

Proof: Since
√
 ≤ +

2
for positive real numbers  and  as follows from¡√

−√¢2 ≥ 0, we only need to prove the geometric mean inequality (A.186).
We give two different proofs.

(i) Positive semidefiniteness implies that  ≥ 0 for any vector . Choose

now  = + , where  is a real number and  is a basis vector with () = .

Using  =   yields

 =  + 2 + 
2 = 

µ
+





¶2
+

 − 2



and the positive semidefiniteness requires that  ≥ 0, which is equivalent to the
condition that  ≥ 2 , because the diagonal elements of  are non-negative

(art. 278).

(ii) Consider a principal submatrix of , which is also positive semidefinite

(art. 278). Without loss of generality, we can choose the principal submatrix  =∙
11 12
21 22

¸
and the vector  =

∙


1

¸
. Then, 0 ≤  = 11

2 + 212+ 22,

which requires that the discriminant 4212 − 41122 ≤ 0. ¤

Since the inequality (A.185) holds for all  and , it also implies

max


| | ≤ max




280. The Gram matrix associated to the vectors 1 2      is defined as

 =   =
£
1 2 · · · 

¤
so that  =   and  =   = ||2 for  = 1     . The Gram matrix

 =  is symmetric and positive semidefinite because  = ()

 =

kk22 ≥ 0. Art. 199 implies that all eigenvalues of  are real and non-negative.

When a matrix  is positive semidefinite and symmetric, we can find the ma-

trix  as the square root  =
√
. Indeed, the eigenvalue decomposition is

 = diag(())
 , where  =

£
1 2 · · · 

¤
is an orthogonal ma-

trix
¡
 =  = 

¢
formed by the scaled, real eigenvectors  belonging to
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10.8 Positive (semi) definiteness 389

eigenvalue  (). Since all eigenvalues are real and non-negative, it holds thatp
() are real such that  = diag

³p
()

´
diag

³p
()

´
 . Any orthog-

onal matrix  satisfies  =  (see art. 247) and a more general form is

 =  = diag(
p
())


³
diag(

p
())

´


from which

 = diag(
p
())



The matrix  is also called the square root matrix of , but it is not unique, because

we can choose any orthogonal matrix  , such as, for example,  = . If  =  ,

we construct a symmetric square root matrix  =  = diag(
p
())

 , so

that  = 2. The matrix  can be found from the singular value decomposition

of  or from Cholesky factorization (Press et al., 1992). The Cholesky method

gives a solution  =
√
 that is, in general, not symmetric. Another example of a

non-symmetric “square root” matrix  appears in art. 374.

Moreover, if  is an orthogonal matrix for which  = , then ̃ =  has a

same Gram matrix since

̃ = ̃ ̃ = ()

 =  =  = 

Hence, given a solution  of  = , all other solutions are found by orthogonal

transformation.

In summary, any symmetric, positive semidefinite matrix can be considered as

a Gram matrix  whose diagonal elements are non-negative,  ≥ 0. The non-
negativeness of the diagonal elements was already demonstrated in art. 278 and

art. 279.

281. Stieltjes matrix. An  ×  positive definite matrix  with non-positive off-

diagonal elements, i.e.  ≤ 0 for all  6= , is called a Stieltjes matrix. Let

1 ≥ 2 ≥    ≥   0 be the eigenvalues of a Stieltjes matrix , then Micchelli

and Willoughby (1979) demonstrate that the matrix polynomials

 () =

Y
=1

( −)

are non-negative matrices: any element ( ()) ≥ 0 for 1 ≤  ≤ . The

polynomials  () in (B.17) arise in Lagrange (art. 303) and Newton interpolation

(art. 306), as well as in function expansions of a matrix (art. 234).

282. If all eigenvalues are real and   0 as in a symmetric, positive definite matrix

(art. 199), we can apply the general theorem of the arithmetic and geometric mean

in several real variables  ≥ 0, which is nicely treated by Hardy et al. (1999),
Y

=1



 ≤

X
=1

 (A.187)
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390 Eigensystem of a matrix

where
P

=1  = 1, to (A.98) and (A.99) with  =


=1 

≥ 0,

Y
=1

 ≤
ÃP

=1 P
=1 

!
=1 

Choosing  = 1, so that det =
Q

=1  in (A.98), leads for an × symmetric,

positive definite matrix  to the inequality

0  det ≤
µ
trace()



¶
283. Let  be a symmetric and positive semidefinite  ×  matrix with  =

0. Any square matrix whose  row sums are zero has an eigenvalue zero with

corresponding eigenvector . Let  denote the set of all column vectors  that

satisfy  = 1 and  = 0. If is positive semidefinite, then the second smallest

eigenvalue

−1 () = min
∈

 (A.188)

which follows from the Rayleigh inequalities in art. 251 and the fact that the

smallest eigenvalue is  () = 0.

Theorem 80 (Fiedler) The second smallest eigenvalue −1 () of a symmetric,
positive definite ×  matrix  with  = 0 obeys

−1 () ≤ 

− 1 min
1≤≤

 (A.189)

In addition,

2 max
1≤≤

√
 ≤

X
=1

√
 (A.190)

and

2 max
1≤≤

s
 − −1 ()

µ
1− 1



¶
≤

X
=1

s
 − −1 ()

µ
1− 1



¶
(A.191)

Proof: Fiedler (1973) observes that the matrix f = −−1 ()
¡
 − 1



¢
is

also positive semidefinite. For, let  be any vector in R. Then  can be written

as  = 1 + 2 where  ∈  . Since f = 0 because  = , it follows

with  =  = 0 that f = 22
f = 22

¡
− −1 ()

¢ ≥ 0 by
(A.188). Since any symmetric, positive semidefinite matrix can be considered as a

Gram matrix, whose diagonal elements are non-negative (art. 280), the minimum

diagonal element of f is non-negative,

0 ≤ min
1≤≤

e = min
1≤≤

µ
 − −1 ()

µ
1− 1



¶¶
which proves (A.189).
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10.9 Eigenstructure of the matrix product  391

Also  is a Gram matrix, i.e.,  =  and  =   , where  = 

is symmetric. The fact that  = 0 translates to  = 0. This implies that the

row vectors 1 2      of  obey
P

=1  = 0. Hence,  = −
P

=1 6= , and
taking the Euclidean norm of both sides leads to | | ≤

P
=1; 6= ||. Since this

inequality holds for any 1 ≤  ≤ , it also holds for max1≤≤ | |,

2 max
1≤≤

| | ≤
X

=1

||

With  = ||2, we arrive at (A.190), which, when applied to f , yields (A.191).
¤

10.9 Eigenstructure of the matrix product 

284. Eigenvalues of the matrix product .

Lemma 11 For all matrices × and × with  ≥ , it holds that  () =

 () and  () has − extra zero eigenvalues.

Proof: Consider the matrix identities∙
× ×
−× ×

¸ ∙
× ×
× ×

¸
=

"
× ×
×

¡
2 −

¢
×

#
and∙

× −×
× ×

¸ ∙
× ×
× ×

¸
=

" ¡
2 −

¢
× ×

× ×

#
Taking the determinants of both sides of each identity and denoting

 =

∙
× ×
× ×

¸
gives respectively

 det =  det
¡
2 −

¢
 det =  det

¡
2 −

¢
from which it follows, with  = 2, that − det (− ) = det ( − ),

which is an equation of two polynomials in . Equating corresponding powers in 

proves Lemma 11. ¤

If  and  are both  ×  matrices and det () 6= 0 so that −1 exists, then
 =

¡
−1

¢
 = −1 (). Thus, the matrix  and  are similar and

art. 239 shows that their eigenvalues are the same.
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392 Eigensystem of a matrix

Lemma 12 If  and  are symmetric matrices and one (or both) is positive

definite, then all eigenvalues of  are real.

Proof: See, e.g., Wilkinson (1965, pp. 34-36). ¤

The eigenvalue equation  =  under the conditions of Lemma 12 is equiv-

alent to  = −1 in case that  is positive definite, because the inverse of

a positive definite matrix exists and is also positive definite (art. 280). If  is

positive definite, then  =  can be written as

 () = −1 ()

Hence, the corresponding characteristic polynomials, det ( − ), det
¡
 − −1

¢
and det

¡
− −1

¢
have the same zeros (roots). Finally, the eigenvalue problems

 =  and  =  are equivalent if  = −1 is positive definite.
If  and  are symmetric matrices, but neither is positive definite, then the

eigenvalues of  can be complex, although all eigenvalues of  and  are real

(art. 247). Wilkinson (1965) illustrates the importance of positive definiteness by

the example

 =

∙
 0

0 

¸
  =

∙
0 1

1 0

¸
and  =

∙
0 

 0

¸
where the eigenvalues of , being ±

√
, are complex when  and  have different

sign. Moreover, if neither  nor  is positive definite and  is a complex eigenvalue

of the eigenvalue equation  =  with corresponding non-zero eigenvector ,

then it holds that

 = (Re  +  Im )

Since  and  are real (art. 247), we conclude that  =  = 0.

In other words, both  and  must have a zero eigenvalue.

285. Matrices  and  commute.

Lemma 13 If square matrices × and × commute such that  = , then

the set of eigenvectors of  is the same as the set of eigenvectors of  provided that

all  eigenvectors are independent. The converse more generally holds: if any two

matrices  and  have a common complete set of eigenvectors, then  = .

Proof: If  is an eigenvector of  corresponding to eigenvalue , then  =

. Left multiplying both sides by  and using the commutative property

yields  () =  (), which implies that, to any eigenvector  with eigen-

value , the matrix  also possesses an eigenvector  with same eigenvalue

. Since eigenvectors are linearly independent and since the set of  eigenvectors

{1 2     } spans the -dimensional space, the eigenvector  = , which

means that  is also an eigenvector of .

                     

https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.014
https://www.cambridge.org/core
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The converse follows from art. 239 since  = diag()
−1 and, similarly,

 = diag()
−1. Indeed,

 = diag ()
−1diag ()−1 = diag ()

−1

 = diag ()
−1diag ()−1 = diag ()

−1

shows that  = . ¤

If all eigenvalues are distinct, all eigenvectors are independent (art. 238). How-

ever, in case of multiple eigenvalues, the situation can be more complex such that

there are fewer than  independent eigenvectors. In that case, the Lemma 13 is not

applicable.

A direct consequence of Lemma 13 is that, for commuting matrices  and ,

the eigenvalues of  +  are  +  and both eigenvalues belong to the same

eigenvector . If matrices are not commuting, remarkably little can be said about

the eigenvalues of +, given the spectra of  and  (see also art. 252).

286. Kronecker product. The Kronecker product of the  × matrix  and the

×  matrix  is the × matrix ⊗, where

⊗ =

⎡⎢⎢⎢⎣
11 12 · · · 1

21 22 · · · 2
...

...
. . .

...

1 2 · · · 

⎤⎥⎥⎥⎦
The Kronecker product ⊗ features many properties (Meyer, 2000, p. 597). The

eigenvalues of × ⊗ × are the  numbers { () ()}1≤≤1≤≤.
Likewise, the set of eigenvalues of  ⊗ × + × ⊗  equals the set of 

eigenvalues { () +  ()}1≤≤1≤≤.
287. The commutator of a matrix. Consider the matrix equation

×× +×× = ×

that includes the commutator equation,  − = , where  are all matrices

that commute with , as a special case, as well as the Lyapunov equation (Horn

and Johnson, 1991, Chapter 4). The matrix equation is written in Kronecker form

as ¡
 ⊗× +

× ⊗ 
¢
 () =  () (A.192)

where the × 1 vector is
 () =

¡
1  


2      




¢
= (11     1 12     2     1     )

where  is the -th ×1 column vector of . The mixed-product property (Meyer,
2000, p. 597),

(1 ⊗1) (2 ⊗2) = (12 ⊗12)
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394 Eigensystem of a matrix

shows that

( ⊗×) (× ⊗ ) = (× ⊗×) = (× ⊗ ) ( ⊗×)

In other words, the square × matrices ⊗× and ×⊗ commute.
Horn and Johnson (1991) prove that, if  is an × 1 eigenvector of  belonging

to  () and  an  × 1 eigenvector of  belonging to  (), then  ⊗  is

an  × 1 eigenvector of  ⊗ × + × ⊗  belonging to the eigenvalue

 () +  ().

The linear equation (A.192) has a unique solution provided none of the eigenval-

ues  () +  () = 0 for all 1 ≤  ≤  and 1 ≤  ≤ , because 
¡

¢
=  ()

on art. 237. Likewise, if  =  in (A.192), the equation  − =  has only

a solution, provided { ()}1≤≤ ∩ { ()}1≤≤ 6= ∅. Thus, when  = ,

in which case  is the commutator of , there are at least  zero eigenvalues of

⊗×−×⊗ (and more than  if  has zero eigenvalues) illustrating that
there may exist many possible commutators of a matrix . If  6=  and  = −
in (A.192), there is no solution for . A theorem of Shoda, proved in Horn and

Johnson (1991, p. 288), states that  can be written as  =  −   for some

matrices  and  provided trace() = 0.

10.10 Perturbation theory

We confine ourselves to simple eigenvalues of a symmetric matrix , in which case

perturbation theory is relatively simple. Perturbation theory for non-symmetric

matrices and for eigenvalues with higher multiplicity is more involved and omitted.

We follow Wilkinson (1965, pp. 60-70), although a similar analysis, albeit a little

less transparent, appears in Cvetkovíc et al. (1997, Sec. 6.3).

288. Perturbation theory around a simple eigenvalue. Let us consider the matrix

 () = + . Perturbation theory assumes that the real number  is sufficiently

small so that we may regard () as the perturbation of the original × symmetric
matrix  by an × matrix , which is not necessarily symmetric. We denote by

 () the × 1 eigenvector of  () belonging to the eigenvalue  (). As shown in
Wilkinson (1965, pp. 60-70), both  () and  () are analytic functions of  around

zero and can be represented by a power series

 () = + 1 + 22 + · · · =
∞X
=0


 (A.193)

 () = + 1 + 22 + · · · =
∞X
=0


 (A.194)

where  (0) =  = 0 is the eigenvector of  and  (0) =  = 0 is its corre-

sponding simple eigenvalue. We omit considerations about the convergence radius

of the above power series. We choose  =  as the normalized eigenvector of 

corresponding to  = .
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10.10 Perturbation theory 395

The eigenvalue equation of  () is (+ ) () =  () (). After introduc-

ing the power series (A.193) and (A.194), we obtain

(+ )

⎛⎝ +

∞X
=1




⎞⎠ =

∞X
=0




∞X
=0




The left-hand side equals

(+ )

⎛⎝ +

∞X
=1




⎞⎠ =  +

∞X
=1


 +  +

∞X
=1


+1

=  + (1 +)  +

∞X
=2

( +−1) 

while the Cauchy product of the right-hand side gives

∞X
=0




∞X
=0


 =

∞X
=0

Ã
X

=0

−

!
 = +(1 + 1) +

∞X
=2

Ã
X

=0

−

!


Equating corresponding powers in  yields, for  = 1,

1 + = 1 + 1 (A.195)

and, for   1,

 +−1 =
X

=0

− =  +

−1X
=1

− +  (A.196)

Relations (A.195) and (A.196) are the results of complex function theory. The

solution for the × 1 vectors {}≥1 in (A.193) and the coefficients  in (A.194)
now requires linear algebra.

289. Scaling of the eigenvector  (). The vector  can be written as a linear

combination of the eigenvectors  of the symmetric matrix ,

 =

X
=1

 (A.197)

where the coefficients  =  =   6=  . The particular case  = 0,

where 0 = , indicates that 0 = . Thus, the eigenvector in (A.193) is

rewritten as

 () =

∞X
=0


 =

X
=1

⎛⎝ ∞X
=0




⎞⎠ =

⎛⎝ ∞X
=0




⎞⎠+

X
=1; 6=

⎛⎝ ∞X
=0




⎞⎠

and

 () =

⎛⎝1 + ∞X
=1




⎞⎠ +

X
=1; 6=

⎛⎝ ∞X
=1




⎞⎠
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396 Eigensystem of a matrix

We can always scale an eigenvector by a scalar  6= 0, which we choose here as

 = 1 +
P∞

=1 
 , assuming that the power series converges to a value different

than −1. The latter condition can always be met for sufficiently small || and we
arrive at

−1 () =  +

X
=1; 6=

Ã P∞
=1 



1 +
P∞

=1 


!


If we choose  =   = 0  = 0 for  ≥ 1 and recall that 0 = 1, then  = 1

and we simplify the computation by requiring that any “perturbation” vector 
for  ≥ 1 is orthogonal to the eigenvector  of the matrix .
If we choose a different scaling by requiring a normalized eigenvector, such as

 () () = 1, then it implies that

1 =  () () =

∞X
=0

 


∞X
=0


 =

∞X
=0

Ã
X

=0

−

!


and equating corresponding powers in  leads, for  = 0, to 0 0 = 1, which

is satisfied for any normalized eigenvector 0 =  of  and, for   0, to 0 =P
=0 


−. The latter condition means that 


0 1 = 0 and furthermore that

0  = −12
P−1

=1 

− for  ≥ 2.

In summary, the normalization of the eigenvector  () imposes conditions on

the scalar products 0  for all  ≥ 1. Choosing a different scaling leads to a dif-
ferent computational scheme and the art consists of choosing the most appropriate

conditions on 0  .

290. Evaluation of the power series coefficients  and vectors   After expressing

the relations (A.195) and (A.196) with  =
P

=1  in (A.197) in terms of the

normalized eigenvectors 1 2      of the matrix  and taking the eigenvalue

equation  =  into account, we obtain the set of linear equations

1 =

X
=1

1 ( − ) + (A.198)

and, for   1,

 =

X
=1

 ( − ) +

X
=1

−1 −
X
=1

−1X
=1

− (A.199)

in the unknown numbers {}≥1 and {}≥1;≥1. As eigenvector scaling, we
choose  =   = 0  = 0 for  ≥ 1, which is computationally, the simplest
choice.

Pre-multiplying (A.198) with the vector  , using 

  =  yields

1 = 1 ( − ) +  
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10.10 Perturbation theory 397

In particular, if  = , then

1 =   (A.200)

else,

1 =
 

 − 
for  6=  (A.201)

The expression (A.201) emphasizes that the eigenvalue  must be simple, which

is a basic limitation of the presented perturbation method. Hence, it follows from

(A.197) that 1 =
P

=1 1 =
P

=1; 6=

− +1. With our eigenvector

scaling choice 1 = 0, we find the first order expansion in ,(
 () =  + 

P
=1; 6=


−  +

¡
2
¢

 () =  +   +
¡
2
¢

Pre-multiplying (A.199) with the vector  analogously leads, for   1, to

 =  ( − ) +

X
=1

−1  −
−1X
=1

−

In particular, if  = , then

 =

X
=1

−1  −
−1X
=1

−

else

 =
1

 − 

(
−1X
=1

− −
X

=1

−1 

)
for  6=  (A.202)

With our eigenvector scaling choice  = 0 for  ≥ 1, the first recursive equation
in the coefficients  simplifies considerably to

 =

X
=1; 6=

−1  for   1 (A.203)

Substituting the explicit form of the coefficients  in (A.203) into (A.202) yields

 =
1

 − 

X
=1; 6=

(
−1X
=1

−−1  − −1 

)
for  6= 

The scaling choice 0 =  and  = 0 for  ≥ 1 simplifies, for  6= , to a

recursion in 

 =
−1; 

 − 
+

1

 − 

X
=1; 6=

(
−2X
=1

−−1  − −1 

)
(A.204)

which can be iterated up to any desired integer value of .
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398 Eigensystem of a matrix

For example, if  = 2, then (irrespective of the choice of scaling)

2 =

X
=1

1

  − 11 =

X
=1; 6=

1

 

and

2 =
1

 − 

(
1


  −

X
=1

1

 

)
for  6= 

Using (A.201) results in

2 =

X
=1; 6=

¡


¢2
 − 

(A.205)

and

2 =
1

 − 

X
=1; 6=

¡


¢ ¡


¢
 − 

−
¡
 

¢ ¡
 

¢
( − )

2
for  6= 

(A.206)

Moreover, we can use 2 immediately in 3 =
P

=1; 6= 2

  in (A.203),

3 =

X
=1; 6=

 

 − 

X
=1; 6=

¡


¢ ¡


¢
 − 

−
X

=1; 6=

¡
 

¢2 ¡
 

¢
( − )

2

(A.207)

illustrating that, in general, the eigenvalue expansion (A.194) can always be com-

puted, with the same efforts, one order higher in  than the eigenvector expansion

(A.193). Indeed, the coefficient  in (A.203) only depends on −1 and not on
 as  in (A.197).

If  = 1 is the largest eigenvalue of a symmetric matrix , then we observe

that the coefficient 2 in (A.205) is positive. Consequently, if  is sufficiently small

so that the remainder of the series in (A.194) obeys
¯̄̄P∞

=3 

¯̄̄
 2

2, then the

first order perturbation  () ≥ 1 + 1 1 is a lower bound.
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Polynomials
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11

Polynomials with real coefficients

The characteristic polynomial of real matrices possesses real coefficients. This chap-

ter aims to summarize general results on the location and determination of the zeros

of polynomials with mainly real coefficients. The operations here are assumed to

be performed over the set C of complex numbers. Restricting operations to other
subfields of C, such as the set Z of integers or finite fields (see e.g. Gilbert and
Nicholson (2004)), is omitted because, in that case, we need to enter an entirely

different and more complex area, which requires Galois theory, advanced group

theory and number theory. A general outline for the latter is found in Govers et al.

(2008). A nice introduction to Galois theory is written by Stewart (2004).

The study of polynomials belongs to one of the oldest researches in mathemat-

ics. The insolubility of the quintic, famously proved by Abel and extended by

Galois (see art. 291 and Govers et al. (2008) for more details and for the historical

context), shifted the root finding problem in polynomials from pure to numerical

analysis. Numerical methods as well as matrix method based on the companion

matrix (art. 242) are extensively treated by McNamee (2007), but omitted here.

A complex function theoretic approach, covering more recent results such as self-

inversive polynomials and extensions of Grace’s Theorem (art. 331), is presented

by Sheil-Small (2002) and by Milovanovíc et al. (1994) and Borwein and Erdélyi

(1995), who also list many polynomial inequalities. In addition, Milovanovíc et al.

(1994) treat polynomial extremal problems of the type: given that the absolute

value of a polynomial is bounded in some region of the complex plane, how large

can its derivative be in that region?

11.1 General properties

291. Definition of a polynomial. A fundamental theorem of algebra, first proved by

Gauss and later by Liouville (Titchmarsh, 1964, p. 118), states that any polynomial

of degree  has precisely  zeros in the complex plane. If these zeros coincide, we

count zeros according to their multiplicity. Thus, if there are    zeros and a zero

 has multiplicity , then the fundamental theorem states that
P

=1 = .

401
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402 Polynomials with real coefficients

In the sequel, we represent zeros as if they are single, however, with the convention

that a coinciding zero  with multiplicity  is counted  times.

Let () denote a polynomial of degree  defined by

() =

X
=0

 
 = 

Y
=1

( − ) (B.1)

where {}1≤≤ is the set of  zeros and the coefficient  (for 0 ≤  ≤ ) is a finite,

complex number. Moreover, we require that  6= 0, otherwise the polynomial is

not of degree . If  = 1, which is an often used normalization, the polynomial is

called “monic”.

Once the set of zeros is known, the coefficients  can be computed by multiply-

ing out the product in (B.1). The other direction, the determination of the set of

zeros given the set of coefficients {}0≤≤, proves to be much more challenging.
Abel and Galois have shown that only up to degree  = 4 explicit relations of

the zeros exist in terms of a finite number of elementary operations such as addi-

tions, subtractions, multiplications, divisions and radicals on the coefficients. The

solution of the cubic ( = 3) and quartic ( = 4) can be found, for example, in

Stewart (2004) and Milovanovíc et al. (1994). An important aspect of the theory

of polynomials thus lies in the determination of the set of zeros.

It follows immediately from (B.1) that (0) = 0 = 
Q

=1(−), which shows
that the absolute value of any zero of a polynomial must be finite. If 0 = 0, then

at least one zero must be zero and  () = − () for an integer  ≥ 1.

Therefore, we often implicitly assume that 0 6= 0, otherwise the polynomial  ()
can be trivially reduced to a lower degree polynomial. From (B.1), one readily

verifies that

 

µ
1



¶
=

X
=0

−  = 0

Y
=1

µ
 − 1



¶
(B.2)

Hence, the polynomial
P

=0 − 
 with the coefficients in the reverse order pos-

sesses as zeros the inverses of those of the original polynomial
P

=0  
.

292. Polynomials with integer coefficients. If all the coefficients  of  () =P
=0 

 are integers and if  = 

is a rational zero (i.e.  and  are integers and

coprime), then |0 and |. Indeed, rewriting 
¡



¢
= 0 in (B.1) as,



−1X
=0

+1
−−1 = −0

shows that  divides the left-hand side and, hence, |0. Since the prime factor-
izations of  and  do not have a prime number in common because  and  are

coprime, |0 implies that |0. The second statement follows analogously after
rewriting 

¡



¢
= 0 as 

 = −P−1
=0 

−1−.
The zeros of a monic polynomial (i.e.  = 1) with integer coefficients are called

algebraic numbers and play a fundamental role in algebraic number fields (see, e.g.,
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11.1 General properties 403

Govers et al. (2008)). Since the integer  in the zero  = 

of  () must divide

 = 1, it must equal one so that algebraic numbers cannot be rational numbers.

This fact was first observed by Gauss (1801, art. 11).

293. Irreducibility. While a polynomial  () =
P

=0 
 with complex co-

efficients can be factored over the complex numbers C as in the definition (B.1),
confinement of its coefficients to rationals or integers generally also confines the

factorization. If all coefficients are rational, i.e.  ∈ Q, then by multiplying  ()
with the least common multiple of all denominators, a polynomial with integer co-

efficients is obtained with the same zeros. A polynomial  () is irreducible over

Q if  () =  () () with  = +  cannot be factored into two polynomials

 () and  () with integer coefficients. Irreducibility over Q means that a monic
 () with  = 1 does not have rational zeros, but the converse is not true; e.g.¡
2 − 2¢ ¡2 − 3¢ does not possess rational zeros, but it is reducible. There exist
criteria (e.g. due to Eisenstein and Perron) to test whether a polynomial  ()

with integer coefficients is irreducible.

Irreducibility over Z occurs if −1 zeros of a monic polynomial  () with integer
coefficients and  = 1 0 6= 0 are, in absolute value, smaller than 1. In that case,
the definition (B.1) shows that () = ( − 1)

Q
=2( − ) where |1|  1 

|2| ≥ |3| ≥ ||, but −1 () =
Q

=2(−) =
P−1

=0 
 cannot be a polynomial

with integer coefficients  ∈ Z, because 0  |−1(0)| = |0| =
Q

=2 ||  1

and 0 ∈ Z. This fact, combined with Perron’s Theorem 85, shows that a monic

polynomial  () =
P

=0 
 is irreducible over Z if its integer coefficients obeyP−2

=0 || + 1  |−1| or, by Theorem 86, if either 

³
1
2

³P−1
=0 ||+ 1

´´
 0

or (−1) 
³
− 1
2

³P−1
=0 ||+ 1

´´
 0 holds. Perron (1907) derives several other,

but more complicated irreducibility criteria.

Eisenstein’s criterion, proved in Gilbert and Nicholson (2004, p. 194), is

Theorem 81 (Eisenstein) If the coefficients  of  () =
P

=0 
 are in-

tegers and if all the following conditions hold for some prime : (i) | for all
0 ≤   , (ii)  -  and (iii) 2 - 0, then the polynomial  () is irreducible
over Q.

For example, 5 − 2 and 23 + 9 − 3 are irreducible over the rational numbers
and do not possess rational zeros.

294. Newton identities  The Newton identities are a recursive set of equations that

relate the coefficients  of a polynomial  () =
P

=0 
 to sums of integer

powers  ∈ [1 ]

 =

X
=1



 (B.3)

of the zeros 1 2      of  ().
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404 Polynomials with real coefficients

Theorem 82 (Newton) For any polynomial defined by (B.1), the coefficients, for

1 ≤   , satisfy the recursion

 = − 1

− 

X
=+1

 − (B.4)

Proof: The logarithmic derivative
 log ()


of (B.1) is

0() = ()

X
=1

1

 − 
(B.5)

For   max , we can expand
1

− =
1

(1− 
 )

= 1


P∞
=0







in a geometric

series 0() = ()
P

=1

P∞
=0





+1
= ()

P∞
=0


+1

, where the summations

can always be reversed for polynomials (finite ), but not for functions. Introducing

the series representation in (B.1) of  () yields

X
=1

 
 =

X
=0

 


∞X
=0


− =

∞X
=0

X
=0

 
− (B.6)

Let  =  − , then −∞ ≤  ≤ . Also  =  −  ≥ 0 such that  ≥ . Combined

with 0 ≤  ≤ , we have max(0 ) ≤  ≤ . Thus,

∞X
=0

X
=0

 
− =

X
=−∞

X
=max(0)

 −

=

0X
=−∞

X
=0

 − +
X
=1

X
=

 −

Equating the corresponding powers of  in (B.6) and using 0 =  yieldsP
=0  − = 0  ≤ 0P
=+1  − = ( − ) 1 ≤  ≤ 

The first set of equations, equivalent for  ≥ 0 to 0 =P
=0  + =

P
=1 


  ()

are trivial, because  () = 0. Newton’s theorem thus follows from the second set

of equations. ¤

By rewriting the Newton identities (B.4) as

 = − 1


Ã
− +

−1X
=1

+− 

!
(B.7)

we obtain, for 1 ≤  ≤ , a recursion that expresses the positive powers  of the
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11.1 General properties 405

zeros in terms of the coefficients . Explicitly for the first few  ,

1 =

X
=1

 = −−1


(B.8)

2 =

X
=1

2 =
2−1
2
− 2−2



3 =

X
=1

3 = −
3−1
3

+
3−2−1

2
− 3−3



4 =

X
=1

4 =
4−1
4
− 4−2

2
−1

3
+
22−2 + 4−3−1

2
− 4−4



Applying (B.8) to the polynomial  
¡
1


¢
=
P

=0 − 
 with the coefficients

in reverse order (art. 291) gives

−1 =
X

=1

1


= −1

0

−2 =
X

=1

1

2
=

21
20
− 22

0

When changing the coefficients  → − and  → − in the Newton identities
(B.4) according to (B.2), we obtain

− = − 1

− 

X
=+1

− −+ = − 1

− 

−X
=1

−− −

After letting = −, we find, for 0 ≤  ≤ , the appealing form1 of the recursion

for the sum of inverse powers of zeros,

 = −
X
=1

− − (B.9)

= −−1−1 − −2−2 −   − 0−

The inverse powers − =
P

=1
1



and thus also the positive powers  after

changing  → − can be explicitly expressed for   1 as

− = 

X
=1

(−1)
 0

[]

where [] is the characteristic coefficient (Van Mieghem, 1996),

[] =
X



=1 =;0

Y
=1

 (B.10)

1 If a polynomial is defined as () =


=0 − 
 rather than our standard definition (B.1),

then the Newton identities appear in this easier form.
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406 Polynomials with real coefficients

If all zeros {}1≤≤ are real and positive, the harmonic, geometric and arith-
metic mean inequality (6.38) shows that



−1
≤ 

vuut Y
=1

 ≤ 1


1

from which we find
−1


1
0
≥ 2.

Finally, the Newton identities (B.4) are linear equations that express the co-

efficients  of a polynomial  () in terms of sums of powers  of zeros and

illustrate that the set {}0≤≤ suffices to determine the coefficients {}0≤≤
uniquely and, hence, the polynomial  (). The trace formula (A.118) relates  =

trace
¡

¢
, where the zero  equals the eigenvalue  of the ×  matrix .

295. The problem of finding the zeros  from the coefficients {}0≤≤ and
the set {}0≤≤ is difficult. However, from 1 =

P
=1  = −−1


and −1 =P

=1
1

= −1

0
, two zeros 1 and 2 can be determined in terms of the others.

Lemma 14 Both  = −−1

−P

=3  and  = −1
0
−P

=3
1

determine the

zeros

1 =


2

Ã
1 +

r
1− 4



!
and 1 =



2

Ã
1−

r
1− 4



!

in terms of the other − 2 zeros and the coefficient ratios −1


and 1
0
.

Proof : Let  = −−1

−P

=3  and  = −1
0
−P

=3
1

, then it holds that

1 + 2 =  and 1
1
+ 1

2
= . The last equation is rewritten as 

12
= . Thus,

the product is 12 =


, while the sum is 1 + 2 = , leading to the quadratic

equation 2 − + 

= 0, with solution 12 =

1
2

³
±

q
2 − 4



´
. ¤

296. Vieta’s formulae express the coefficients  of  () explicitly in terms of its

zeros {}1≤≤.

Theorem 83 (Vieta) For any polynomial defined by (B.1), it holds, for 0 ≤   ,

that




= (−1)−

X
1=1

X
2=1+1

· · ·
X

−=−−1+1

−Y
=1

 (0 = 0) (B.11)

≡ (−1)−
X

1≤12···−≤

−Y
=1

 (B.12)

Proof: The proof is based on the principle of induction. Relation (B.11) is

verified for  = 2. Assume that it holds for   2. Consider now the polynomial
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11.1 General properties 407

of degree + 1 whose zeros are precisely those of (), thus (+1) = () for

1 ≤  ≤  with the addition of the + 1-th zero, +1(+ 1). Hence,

+1() = ( − +1(+ 1)) () =

+1X
=1

−1()  −
X

=0

+1(+ 1) () 


= −+1(+ 1)0()+
X

=1

[−1()−+1(+ 1)()]+()+1

from which the recursion

(+ 1) = −1()− +1(+ 1) ()

is immediate. Since the coefficient of the highest power in (B.11) equals unity,

by definition thus () = +1( + 1) = 1, and since the constant term indeed

reflects (−1)+1 times the product of all +1 zeros, we only have to verify for the
coefficients (+1) with 1 ≤  ≤  whether (B.11) satisfies the recursion relation.

Substitution yields

(+ 1) = (−1)+1−
X

1=1

X
2=1+1

· · ·
X

+1−=−+1

+1−Y
=1

()

− (−1)−
X

1=1

X
2=1+1

· · ·
X

−=−−1+1

−Y
=1

() +1(+ 1)

Distributing the product of zeros over the sums and using ( + 1) = () for

1 ≤  ≤  leads to

(+ 1) = (−1)+1−
X

1=1

1(+ 1)

X
2=1+1

2(+ 1) · · ·
X

−=−−1+1

−(+ 1)⎡⎣ X
+1−=−+1

+1−(+ 1) + +1(+ 1)

⎤⎦
= (−1)+1−

X
1=1

1(+ 1) · · ·
X

−=−−1+1

−(+ 1)

+1X
+1−=−+1

+1−(+ 1)

Since
P

= () = 0 if   , the last relation equals (B.11) when  is replaced by

+ 1. ¤

In case () = 1 for all , we have () = (−1) =
P

=0

¡



¢
(−1)−  from

which the simple check

X
1=1

X
2=1+1

· · ·
X

−=−−1+1

1 =  (− 1) · · · (− )! ≡
µ




¶
follows, because only one ordering of {} out of ! is allowed. Hence, the mul-
tiple sum in (B.11) consists of

¡



¢
terms. Applying (B.11) to (B.2) yields, after

                     

https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core


408 Polynomials with real coefficients

substitution of  = − , the following alternative expression:

 = (−1) 0

X
1=1

X
2=1+1

· · ·
X

=−1+1

Y
=1

1


(B.13)

Finally, if the multiplicity of the zeros is known, then the polynomial can be

written as

 () = 

Y
=1

( − )


Using Newton’s binomium ( − )
 =

P

=0

¡




¢
(−) − , expansion of the

product yields

 () = 

1X
1=0

µ
1

1

¶
(−1)1

2X
2=0

µ
2

2

¶
(−2)2   

X
=0

µ




¶
(−) −


=1 

where we have used
P

=1 =  in art. 291. Let  =
P

=1 , then

 () = (−1) 
X

=0

⎧⎨⎩ X



=1 =;≥0

Y
=1

µ




¶
(−)

⎫⎬⎭ 

from which the coefficient  follows as

 = (−1)− 
X



=1 =;≥0

Y
=1

µ




¶




The last sum is an instance of a characteristic coefficient (B.10) of a complex func-

tion, first defined in Van Mieghem (1996) and different in form than (B.11).

297. The elementary symmetric polynomials of degree  in  variables 1 2     
are defined by

 (1 2     ) = (−1)− −


where
−


is given in either (B.11) or (B.12). We define 0 (1 2     ) = (−1).
By Vieta’s Theorem 83, any polynomial  () =

P
=0  

 =
P

=0 − 
− in

(B.1) can be expressed in terms of elementary symmetric polynomials as

 () = 

X
=0

(−1) − (1 2     ) 

which is verified by multiplying out () = 
Q

=1( − ), or easier, (−) =
(−1) 

Q
=1( + ). For example, for  = 1,

1 (1) = 1
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11.1 General properties 409

for  = 2,

1 (1 2) = 1 + 2

2 (1 2) = 12

for  = 3,

1 (1 2 3) = 1 + 2 + 3

2 (1 2 3) = 12 + 13 + 23

3 (1 2 3) = 123

for  = 4,

1 (1 2 3 4) = 1 + 2 + 3 + 4

2 (1 2 3 4) = 12 + 13 + 14 + 23 + 24 + 34

3 (1 2 3 4) = 123 + 124 + 134 + 234

4 (1 2 3 4) = 1234

For each positive integer  ≤ , there exists exactly one elementary symmetric

polynomial  (1 2     ) of degree  in  variables, which is formed by the sum

of all different products of -tuples of the  variables. Since each such a productQ
=1  is commutative, all linear combinations of products of the elementary

symmetric polynomials constitute a commutative ring, which lies at the basis of

Galois theory. For example, it can be shown that any symmetric polynomial in 

variables can be expressed in a unique way in terms of the elementary symmetric

polynomials  (1 2     ) for 1 ≤  ≤ .

298. Discriminant of a polynomial. The discriminant of a polynomial  () is

defined for  ≥ 2 as

∆ () = 2−2

Y
1≤≤

( − )
2 (B.14)

with the convention that ∆ (1) = 1. In view of (A.77), the discriminant can be

written in terms of the Vandermonde determinant as

∆ () = 2−2 (det ())
2

(B.15)

where  = (1 2     ) is the vector of the zeros of  (). The definition (B.14)

of the discriminant shows that ∆ () = 0 when at least one zero has a multiplicity

larger than 1. In order words, ∆ () 6= 0 if and only if all zeros of  () are simple
or distinct.

Since the discriminant is a symmetric polynomial in the zeros and any symmetric

polynomial can be expressed in a unique way in terms of the elementary symmetric

polynomials (art. 297), the discriminant can also be expressed in terms of the

coefficients of the polynomial. For example, for  = 2, we obtain the well-known
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410 Polynomials with real coefficients

discriminant of the quadratic polynomial 2 () = 2 +  +  as

∆ (2) = 2 − 4
The discriminant of the cubic 3 () = 3 + 2 +  +  is

∆ (3) = 22 − 43 − 43− 2722 + 18

299. Discriminant and the derivative of a polynomial. The logarithmic derivative

of the polynomial  () in (B.5) shows that

0 () = 

X
=1

Y
=1; 6=

( − )

Evaluated at a zero  of  () gives

0 () = 

Y
=1; 6=

( − ) =  (−1)−1
−1Y

=1; 6=
( − )

Y
=+1

( − )

from which we obtain
Y

=1
0 () =  (−1)

(−1)
2

Y

=1

Y

=+1
( − )

2
.

By invoking the definition (B.14) of the discriminant, we arrive at

∆ () = (−1)
(−1)

2 −2

Y
=1

0 () (B.16)

which shows that, if the discriminant is non-zero, the derivative 0 () has all its
zeros different from the simple zeros of  (). In cases where a differential equation

for a set of polynomials is known, such as for most orthogonal polynomials, the

relation (B.16) can be used to express the discriminant in closed form as shown in

Milovanovíc et al. (1994, p. 67).

11.2 Transforming polynomials

300. Linear transformation. Any polynomial

 () =

X
=0


 = 

Y
=1

( − )

where  6= 0 can be reduced by a linear transformation  = + into a polynomial

 () =
P

=0 
, where the coefficient −1 of −1 is zero. Indeed,

 (+ ) =

X
=0

 (+ )

=

X
=0



X
=0

µ




¶
− =

X
=0

⎛⎝ X
=



µ




¶
−

⎞⎠

= 
 + (−1 + )

−1 +   +

X
=0



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11.2 Transforming polynomials 411

shows that, if  = − −1


, the polynomial  () =  (+ ) possesses a zero

coefficient of −1, thus −1 = 0. Clearly, a linear transform shifts the zeros

{}1≤≤ of  () to the zeros { − }1≤≤ of  (). The sum of zeros of  ()
is zero by (B.8) such that  is the mean of the zeros of  (). Hence, without loss

of generality, any polynomial  () can be first transformed by  =  +  with

 = − −1


into the polynomial  (), where  =
P

= 
¡



¢
− and −1 = 0.

The Newton identity 2 =
P

=1 ( − )
2
= −2−2


shows that the real coeffi-

cients −2 and  of a real polynomial  (), where −1 = 0, must have opposite
signs if all zeros are real.

301. Möbius transform or linear fractional transform. The Möbius transform or

linear fractional transform  () = +
+

, that maps a point in the -plane to a

point in the -plane, is the only univalent2 transform in the whole finite plane

(Markushevich, 1985, Vol. II, p.116). The Möbius conformal mapping  = 1−
1+

and  = 1−
1+

transforms the right-half complex plane Re ()  0 into the unit circle

||  1. For, let  = , then

 =
1− +ln 

1 + +ln 
=


+ln 

2

³
−

+ln 
2 − 

+ln 
2

´

+ln 

2

³
−

+ln 
2 + 

+ln 
2

´ = − tanhµ ln  + 

2

¶
which can also be written as

 =

r
cosh ln  − cos 
cosh ln  + cos 

(arctan(
sin 

sinh ln  )+)

If  = 1, then  =  tan 
2
, which shows that a point  on the unit circle is mapped

into a point  on the imaginary axis (and vice versa). If Re ()  0 or  ∈ ¡
2
 3
2

¢
,

then cos   0 and || =
q

cosh ln −cos 
cosh ln +cos 

 1, while, if Re ()  0 or  ∈ ¡−
2
 
2

¢
and cos   0, then ||  1.
If all zeros of  () lie in the Re ()  0 - plane and similarly, all zeros of  (−)

lie in the left-half complex plane, then all zeros of 

³
1−
1+

´
lie inside the unit circle

||  1. The function3



µ
1− 

1 + 

¶
= (1 + )

−
X

=0

 (1 + )
−

(1− )

has the same (finite) zeros as the polynomial

 () =

X
=0

 (1 + )
−

(1− )

2 A single-valued function  () is univalent (schlicht or simple) on a domain  if  () is analytic
in , except possibly at simple poles, and if  () takes distinct value at distinct points of ,
i.e.  (1) 6=  (2) for 1 6= 1 and 1 2 ∈ .

3 All zeros of 


− 1−
1+


lie outside the unit circle and 


−1


=

=0


=0(−1)


=0  (−1)






−
−


.
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412 Polynomials with real coefficients

Newton’s binomium and the Cauchy product give

(1 + )
−

(1− ) =

X
=0

X
=0

(−1)
µ




¶µ
− 

− 

¶


such that the polynomial  () =
P

=0 
 has coefficients

 =

X
=0

(−1)
X

=0



µ




¶µ
− 

− 

¶
def
=

X
=0



Defining  =
P

=0(−1)
¡



¢¡
−
−

¢
as matrix elements of the (+ 1) × (+ 1)

matrix  allows us to write the coefficient vector  in terms of the coefficient vector

 as  = . Since  (1) = 0 2
, which is, for any set of coefficients , equivalent

to
X

=0

 =

X
=0

X
=0

(−1)
X

=0



µ




¶µ
− 

− 

¶
= 20

we find, by equating corresponding coefficients  that

X
=0

X
=0

(−1)
µ




¶µ
− 

− 

¶
= 21{=0} =

X
=0



Hence, the sums over the columns of  are zero, except for the zeroth column  = 0.

Let us consider the inverse transform  = 1−
1+

in 

³
1−
1+

´
=

()

(1+)
,

 () = 2
− (1 + )




µ
1− 

1 + 

¶
where



µ
1− 

1 + 

¶
=

X
=0



µ
1− 

1 + 

¶
= (1 + )

−
X

=0

 (1 + )
−

(1− )

= (1 + )
−

X
=0

 

Since  =
P

=0(−1)
P

=0 
¡



¢¡
−
−
¢
, the coefficient  is

 =

X
=0

(−1)
X

=0



µ




¶µ
− 

− 

¶

=

X
=0

(−1)
X

=0

Ã
X
=0

(−1)
X

=0



µ




¶µ
− 

 − 

¶! µ




¶µ
− 

− 

¶

=

X
=0



X
=0

Ã
X
=0

(−1)
µ




¶µ
− 

 − 

¶!⎛⎝ X
=0

(−1)
µ




¶µ
− 

− 

¶⎞⎠
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11.2 Transforming polynomials 413

Thus,  () = 2−
P

=0   and since  () =
P

=0  , we must have

that  = 2
− is

 = 2
−

X
=0



X
=0

Ã
X
=0

(−1)
µ




¶µ
− 

 − 

¶!⎛⎝ X
=0

(−1)
µ




¶µ
− 

− 

¶⎞⎠
After equating corresponding coefficients , we find

X
=0

⎛⎝ X
=0

(−1)
µ




¶µ
− 

− 

¶⎞⎠Ã X
=0

(−1)
µ




¶µ
− 

 − 

¶!
= 2

In terms of the matrix elements  =
P

=0(−1)
¡



¢¡
−
−

¢
, we observe that

X
=0

 = 2


Hence, the matrix 2 = 2.

If all zeros of  () lie inside the unit circle, then the sequence of the power sums

 =
P

=1 

 is strictly decreasing in . Art. 333 below gives another check. In

addition, the sum of the inverses of the zeros  1 2      of  () is (art. 294)

X
=1

1



= −1
0
= −

P
=0 (− 2) P

=0 

= −


(1 + )




³
1−
1+

´¯̄̄
=0

 (1)
= −+ 2

0
 (1)

 (1)

302. Möbius transform of an even polynomial. Consider an even polynomial

2 () =
P

=0 2 
2. Conformal mapping  = 1−

1+
and  = 1−

1+
leads to

2

µ
1− 

1 + 

¶
= (1 + )

−2
X

=0

2 (1 + )
2−2

(1− )2 = 2

µ
−1− 

1 + 

¶
= (1 + )

−2
2 ()

where

2 () =

2X
=0

∗


with coefficients ∗ =
P

=0(−1)
P

=0 2
¡
2


¢¡
2−2
−

¢
. The inverse transform

 = 1−
1+

applied to 2

³
1−
1+

´
= (1 + )

−2
2 () gives

2 () = 2
−2 (1 + )

2
2

µ
1− 

1 + 

¶
= 2−2 (1− )

2
2

µ
1 + 

1− 

¶
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414 Polynomials with real coefficients

where the latter follows from 2 () = 2 (−). Explicitly, we have that

(1 + )
2

2

µ
1− 

1 + 

¶
=

2X
=0

∗(1− ) (1 + )
2−

and

(1− )
2

2

µ
1 + 

1− 

¶
=

2X
=0

∗(1−)2− (1 + )

=

2X
=0

∗2−(1−) (1 + )
2−

Equating corresponding powers in (1− )

(1 + )


=
¡
1− 2

¢
shows that the

coefficients ∗ are symmetric around ∗,

∗ = ∗2−

Thus,

22

µ
1



¶
=

2X
=0

∗
2− =

2X
=0

∗2−
2− =

2X
=0

∗
 = 2 ()

or, in symmetric form4, 2
¡
1


¢
= −2 (). Hence, if the polynomial 2 ()

does not have a zero inside (and thus also outside) the unit circle, all 2 zeros of

2 () must lie on the unit circle, which is equivalent to the fact that all zeros of

2 () lie on the imaginary axis.

On the other hand, we can write

2 () =

X
=0

∗
 +

2X
=+1

∗2−
 =

−1X
=0

∗
 + ∗

 +

−1X
=0

∗
2−

= 

Ã
∗ +

−1X
=0

∗
¡
− + −¢!

Let  = , then with − + − = 2cosh ((−) (ln  + )), we have

−2 () = ∗ + 2
X

=1

∗+ cosh ( (ln  + ))

If  = 1 and if ∗  2∗+1  2
∗
+2  · · ·  2∗2, then

−2
¡

¢
= ∗ + 2

X
=1

∗+ cos ()

has 2 distinct real roots in the interval 0    2, and no imaginary roots at all.

The proof is given in Markushevich (1985, Vol. II, pp. 50-52).

4 Polynomials  () with complex coefficients that satisfy


=0 
 =


=0 (−)

∗ ,
equivalent to  () =





−1

∗
are called self-inversive and discussed in Sheil-Small

(2002, Chapter 7).
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11.3 Interpolation 415

11.3 Interpolation

303. Lagrange interpolation. Interpolation consists of constructing a polynomial

that passes through a set of  distinct points, defined by their finite, possibly com-

plex, coordinates (  ) for 1 ≤  ≤ . In many cases, each ordinate  =  ()

is a known value at  of a function  (), that we want to approximate by a poly-

nomial. Lagrange has developed a convenient way to construct an “interpolating”

polynomial.

We start by considering the polynomial of degree ,

 () =

Y
=1

(− ) (B.17)

Clearly,
()

− =
Q

=1; 6= (− ) is a polynomial of degree  − 1 and, since
 () = 0, we have that

lim
→

 ()

− 
= lim

→

 ()−  ()

− 
=  0 () =

Y
=1; 6=

( − ) (B.18)

Since all  are distinct,  is a simple zero of  () such that 
0
 () 6= 0. The

polynomial of degree − 1,

−1 (;) =
 ()

(− ) 0 ()
=

Y
=1; 6=

− 

 − 
(B.19)

possesses the interesting property that, at any of the abscissae 1 2     , it

vanishes, except at  = , where it is one. Thus, with Kronecker’s delta  , it

holds that

−1 ( ;) = 

Lagrange observed that the polynomial of degree − 1,

−1 () =
X
=1

−1 (;) (B.20)

passes through all  points {(  )}1≤≤ satisfying −1 () =  for 1 ≤  ≤ .

The polynomial (B.20) is called the Lagrange interpolation polynomial correspond-

ing to the set of  points {(  )}1≤≤.
The Lagrange polynomial (B.20) is unique. Indeed, assume that there is another

polynomial −1 () that passes through the same set of  points. Then −1 ()−
−1 () is again a polynomial of degree  − 1 that possesses  zeros at  for
1 ≤  ≤ , which is impossible (art. 291). Hence, −1 () = −1 (), which
establishes the uniqueness.

If the function  () that generates the set of  ordinate values { =  ()}1≤≤
is a polynomial of degree , then the Lagrange polynomial (B.20) returns precisely

that polynomial  () provided that  ≥  + 1. This property follows, similarly
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416 Polynomials with real coefficients

as the argument above, by considering the difference polynomial  () − −1 (),
which is zero at the  different abscissa points {}1≤≤. Hence, using more

(different) sampling points than  + 1 to determine a polynomial  () of degree 

cannot lead to a Lagrange polynomial of a higher degree than . On the other hand,

using more information than necessary does not degrade the Lagrange polynomial

−1 () in the sense that −1 () is still precisely equal to  (). This property

can be useful when we possess a set of  distinct points {(   ())}1≤≤ of which
it is unknown whether  () is a polynomial. If  () is a polynomial of degree ,

then after generating more than   +1 function evaluations, the Lagrange poly-

nomial does not change anymore and we may conclude that  () is a polynomial of

degree . Otherwise, the degree of the Lagrange polynomial −1 () will continue
to increase with .

304. Approximating a function by a polynomial. Given the set {}1≤≤ of dif-
ferent abscissae lying in the interval [ ] and ordered   1  2  · · ·    ,

the goodness of the approximation of  () by the Lagrange polynomial −1 ()
is usually measured by the maximum deviation max≤≤ | ()− −1 ()| for in-
creasing   0, while the remainder is  () =  () − −1 (). From (B.20), we

deduce that

max
≤≤

| ()− −1 ()| = max
≤≤

¯̄̄̄
¯̄ X
=1

( ()− ) −1 (;)

¯̄̄̄
¯̄

≤ max
≤≤

| ()−  ()| max
≤≤

X
=1

|−1 (;)|

and the definition (B.19) shows that
P

=1 |−1 (;)| is independent of the func-
tion  (). The smaller max≤≤

P
=1 |−1 (;)|, the better the sequence of

Lagrange interpolating polynomials at the set {}1≤≤ approximates the func-
tion  () uniformly over [ ]. Often, the interval [ ] is transformed to [−1 1] by
the linear transformation

2(−)
− −1. Finding the best set {}1≤≤ in [−1 1] that

minimizes max−1≤≤1
P

=1 |−1 (;)| seems a difficult, open problem (Rivlin,

1974), although the set that minimizes max−1≤≤1
P

=1 
2
−1 (;) is known

5.

Erdős (1961) demonstrates6 that there exists a positive real constant  such that

max−1≤≤1
P

=1 |−1 (;)|  2

log− , for any set {}1≤≤. Consequently,

given the set {}1≤≤, when →∞, there exists a continuous function  () on

5 Rivlin (1974, p. 52) mentions that this optimal set {}1≤≤ consists of zeros of
 1

−1 () ,

where  () is the -th Legendre polynomial, for which max−1≤≤1


=1 
2
−1 (;) = 1.

6 Rivlin (1974, p. 18) proves that, with the Euler constant  = 05772,

2


log+

2




log

8


+ 


 max
−1≤≤1


=1

|−1 (;)| ≤
2


log+ 1

where each point  in the set {}1≤≤ is a zero of the Chebyshev polynomial  () =

cos ( arccos).
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11.3 Interpolation 417

[−1 1] for which the Lagrange polynomial (B.20) does not converge uniformly to
 ().

Hermite interpolation requires that the interpolating polynomial 2−1 () of
degree 2− 1 satisfies, besides the function values  = 2−1 () at  , also the
first derivative 0 = 02−1 () for each 1 ≤  ≤ , so that

2−1 () =
X
=1

½


µ
1−  00 ()

 0 ()
(− )

¶
+ 0 (− )

¾
2−1 (;)

Whereas Lagrange interpolation failed, Rivlin (1974, p. 27) demonstrates that Her-

mite interpolation at the zeros of the Chebyshev polynomial leads to a sequence of

polynomials that converges to the function  (). Consequently, Hermite interpo-

lation also proves Weierstrass’s famous approximation theorem:

Theorem 84 (Weierstrass’s approximation theorem) For any continuous

real-valued function  (), defined on the real interval [ ], and for every   0,

there exists a polynomial  () such that | ()−  ()|  , for all  ∈ [ ].
Also Bernstein polynomials  () =

¡



¢
 (1− )

−
of degree  and integer

 ∈ [0 ] provide a constructive proof of Weierstrass’s approximation theorem.
Indeed, it can be shown that the polynomial

P
=0 

¡



¢
 () converges to  ()

uniformly for any  ∈ [0 1].
Since −1 () =  () for 1 ≤  ≤ , the remainder  () =  () − −1 ()

is zero at each interpolation point  and we can write with the definition (B.17)

of  () that

 () =  ()  ()

where  () is a function related to  (). Consider the auxiliary function

 () =  ()− −1 ()−  ()  ()

which is zero at  =  for 1 ≤  ≤  and also, by definition of the remainder

 (), at  = . If  ∈ [ ] and  6=  , then  () has at least  + 1 different

zeros in [ ],
()


has at least  zeros lying in between those of  () since the

interpolation points and  are different, and so on. Thus,
()


has at least one

zero  lying inside the interval ( 1) and satisfying

 ()



¯̄̄̄
=

= 0 ⇔  () ()− ! () = 0

In summary, assuming that  has continuous derivatives up to order  in [ ], we

arrive at the Lagrange interpolating polynomial with remainder

 () =

X
=1

 ()

(− ) 0 ()
 () +

 () ()

!
 () (B.21)

where     1.
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418 Polynomials with real coefficients

The error e () =  () − 2−1 () of Hermite interpolation is zero at each
interpolation point  and each zero has multiplicity two because both  () =

2−1 () and  0 () = 02−1 () so that e () =  2 ()  (). By a similar

argument that led to (B.21), the Hermite interpolating polynomial with remainder

is

 () = 2−1 () +
 (2) ()

(2)!
 2 () (B.22)

305. Lagrange interpolation and the Vandermonde matrix. There is a notewor-

thy relation with the Vandermonde matrix (art. 224), when we write the set of

equations,  = −1 () for 1 ≤  ≤ , using −1 () =
P−1

=0 
, as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 + 11 + 2

2
1 +   + −1−11 = 1

0 + 12 + 2
2
2 +   + −1−12 = 2

...

0 + 1 + 2
2
 +   + −1−1 = 

which is ⎡⎢⎢⎢⎣
1 1 21 · · · −11

1 2 22 · · · −12

...
...

...
...

...

1  2 · · · −1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
1
...

−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
2
...



⎤⎥⎥⎥⎦
In matrix form, the interpolation problem becomes  ()  = , where the co-

efficient vector  = (0 1     −1) is transformed to the ordinate vector  =
(1 2     ) by the Vandermonde matrix  () of the abscissa vector  =

(1 2     ). Using Cramer’s rule (art. 220), the coefficient  reads

 =
1

det 
 ()

¯̄̄̄
¯̄̄̄
¯
1 · · · −21 1 1 · · · −11

1 · · · −22 2 2 · · · −12

...
...

...
...

...
...

...

1 · · · −2   · · · −1

¯̄̄̄
¯̄̄̄
¯

After expanding the determinant in cofactors of the -th column (art. 212) and

recalling that cofactor

 () = cofactor (), we find

 =
1

det ()

X
=1

cofactor () (B.23)

The coefficient vector  can be found after multiplying out the product of −1 (;)
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11.3 Interpolation 419

in (B.19). Let7

Y
=1; 6=

(− ) =

−1X
=0

 ()
 (B.24)

and introduction into the Lagrange polynomial (B.20) results in

−1 () =
X

=1

Q
=1; 6= ( − )

−1X
=0

 ()


Equating corresponding powers of  in −1 () =
P−1

=0 
 and the above form

yields

 =

X
=1

Q
=1; 6= ( − )

 () (B.25)

Combining (B.23) and (B.25) leads to an explicit expression for the cofactor of the

Vandermonde matrix,

cofactor ()

det ()
=

 ()Q
=1; 6= ( − )

(B.26)

306. Newton interpolation. Before Lagrange, Newton has proposed to construct

the interpolating polynomial passing through  different points {(  )}1≤≤
based on Newton polynomials of degree ,

 () =

Y
=1

(− ) (B.27)

where 0 () = 1, 1 () = − 1, and so on. With the definition (B.17) of  (),

we recognize that  () =  () and that  () = 0 if  ≥ . Similarly as the

Lagrange polynomial (B.20), the Newton interpolating polynomial is

−1 () =
−1X
=0

 () (B.28)

7 After relabeling the set  =  for 1 ≤  ≤ − 1 and  = +1 for  ≤  ≤ − 1, we write


=1; 6=
(− ) =

−1
=1

(− ) =

−1
=0

 ()


and by using Vieta’s Theorem 83, we have

 () = (−1)−1−
−1
1=1

−1
2=1+1

· · ·
−1

−1−=−−2+1

−1−
=1

 (0 = 0)

Thus,  () is equal to the elementary symmetric polynomial of degree  in  − 1 variables
1 2      (art. 297).
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420 Polynomials with real coefficients

where the coefficients  can be found from the relation that −1 () =  , so

that, for 1 ≤  ≤ ,

 =

−1X
=0

 () =

−1X
=0

 () (B.29)

Explicitly, executing the relation −1 () =  for all  coordinates leads to a set

of linear equations that determine 0 1     −1 as⎡⎢⎢⎢⎣
1 0 0 · · · 0

1 (2 − 1) 0 · · · 0
...

...
...

. . .
...

1 ( − 1) ( − 1)( − 2) · · · Q−1
=1 ( − )

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
1
...

−1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1
2
...



⎤⎥⎥⎥⎦
Hence, we find that 0 = 1, 1 =

2−1
2−1 , 2 =

3−2
3−2−

2−1
2−1

3−1 , which is also written

as

2 =
1

(1 − 2) (1 − 3)
+

2

(2 − 1) (2 − 3)
+

3

(3 − 1) (3 − 2)

By iterating (B.29) further, we observe that

 =

+1X
=1

Q+1
=1;6= ( − )

=

+1X
=1



 0+1 ()
(B.30)

where (B.18) has been used. Indeed, substitution of (B.30) into (B.29) justifies the

correctness of (B.30),

 =

−1X
=0

+1X
=1

 ()

 0+1 ()
=

X
=1

X
=1


−1 ()
 0 ()

=

X
=1



X
=

−1 ()
 0 ()

Since −1 () =
Q−1

=1 ( − ), it holds that −1 () = 0 if  ≥  + 1.

Also, −1 () =
Q

=1 ( − )
Q−1

=+1 ( − ) illustrates that, if   , then

−1 () = 0. Hence,  =  =  and

−1 ()
 0 ()

= lim
→

 ()

(− )
0
 ()

=  ( ;) = 1

The expression (B.30) for  is called the divided difference of (1 2     +1)

and denoted as  = [1 2     +1]. The divided difference possesses interesting

recursive properties, such as

[1 2     +1] =
[2     +1]− [1 2      ]

+1 − 1

similar to forward and backward differences, for which we refer to Lanczos (1988).
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11.3 Interpolation 421

In conclusion, the Newton interpolating polynomial that passes through the  points

{( )}1≤≤ is

−1 () =
−1X
=0

(
+1X
=1



 0+1 ()

)
 () (B.31)

Explicitly,

−1 () = 1 +

½
2 − 1

2 − 1

¾
(− 1) +

(
3−2
3−2 −

2−1
2−1

3 − 1

)
(− 1) (− 2) +   

which shows that each term in -sum in (B.31) is a polynomial of degree , whereas

each term in -sum in the Lagrange interpolating polynomial (B.20) is of degree

−1. Since the polynomial (B.31) is unique, the Lagrange and Newton interpolating
polynomials are equal, but just different in representation.

307. Equidistant interpolation. When the set of abscissae {}1≤≤ is chosen in
an equidistant way as  = ∆ for 1 ≤  ≤ , then the Lagrange interpolating

polynomial (B.20) reduces to

−1 () =  ()

X
=1

−1 (∆)

(− ∆)

Y
=1;6=

( −)∆

Using
Q

=1;6= ( −) = (−1)− ( − 1)! (− )!, we obtain

−1 () =

Y
=1

(− ∆)

(∆)
−1

(− 1)!
X
=1

µ
− 1
 − 1

¶
(−1)− −1 (∆)

− ∆

It is often more convenient to interpolate the polynomial  () from 1 = 0 with

steps of ∆ =  up to  = (− 1) , in which case we arrive at the classical
equidistant interpolating polynomial:

 () =

Y
=0

(− )

!

X
=0

µ




¶
(−1)−  ()

− 
(B.32)

In particular, the special case where  = −1 leads to

(−) =
X
=0

µ
+ 1

 + 1

¶
(−1) () (B.33)

which expresses the negative argument values of a polynomial in terms of positive

argument values.
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422 Polynomials with real coefficients

Finally, we present

() =

X
=0

∆(0)

µ




¶
(B.34)

where

∆(0) =

X
=0

(−1)−
µ




¶
()

is the -th difference obeying ∆ = ∆−1+1 − ∆−1 for all  ∈ N0, thus
∆ = +1 − . By iteration, we have that ∆

 =
P

=0

¡



¢
(−1)−−+,

which we apply to the set {0 1     } = {(0) ()     ()}. Substitut-
ing the polynomial form  () =

P
=0 

 into the -th difference yields

∆(0)

!
=

X
=

S() 


where S() are the Stirling numbers of the second kind (Abramowitz and Stegun,

1968, Section 24.1.4). The relation (B.34) is commonly known for  = 1 as Newton’s

equidistant difference expansion for polynomials. If both sides of (B.34) converge

in the limit for  → ∞, the left-hand side converges to the Taylor series around
 = 0 of a complex function  and the right-hand side then equals the difference

expansion for  ,

 () =

∞X
=0


 =

∞X
=0

µ




¶
∆0 (B.35)

The series (B.35) first appeared in Newton’s famous book Philosophiae Naturalis

Principia Mathematica (Newton, 1687). If the Taylor coefficients { (0)}≥0 are
known around 0, then Newton’s series (B.35) generalizes to

 () =

∞X
=0

 (0) ( − 0)

=

∞X
=0

µ
 − 0



¶
∆0(0)

Carlson’s theorem8 indicates that Newton’s series (B.35) is unique.

Using the formula

X
=

(−1)+
µ




¶µ




¶
=

(−1)+ Γ(1 + )

( − ) !(− )!Γ(−+ )
(B.36)

=  if  = 

where Γ () is the Gamma function, we may verify that Newton’s difference expan-

sion (B.34) for polynomials is equivalent to the equidistant interpolating formula

(B.32).

8 A special case of the Phragmén-Lindelöf theorem (Titchmarsh, 1964, p. 176).
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11.3 Interpolation 423

308. Inequalities for derivatives. The Lagrange interpolation polynomial (B.20),

applied to the derivative 0 () of a polynomial  (), is written with  = 0−1 ()
for 1 ≤  ≤  and the definition (B.19) of −1 (;) as

0 ()
 ()

=

X
=1

0()
 0
()

− 

while the logarithmic derivative of  () is
 0
()

()
=
P

=1
1

− . The derivative





µ
0 ()
 ()

¶
=

00 () ()− 0 ()
0
 ()

 2 ()
= −

X
=1

0()
 0
()

(− )
2

illustrates that, at a zero  =  of  0 (),¯̄̄̄
00 ()
 ()

¯̄̄̄
=

¯̄̄̄
¯̄− X

=1

0()
 0
()

( − )
2

¯̄̄̄
¯̄ ≤ X

=1

¯̄̄
0()
 0
()

¯̄̄
| −  |2

If |0 ()| ≤ | 0 ()| and all 1 2      are real and distinct, then Rolle’s
theorem9 states that also  is real so that

¯̄̄̄
00 ()
 ()

¯̄̄̄
≤

X
=1

¯̄̄
0()
 0
()

¯̄̄
( − )

2
≤

X
=1

1

( − )
2
=

¯̄̄̄
 00 ()
 ()

¯̄̄̄
from which we conclude that |00 ()| ≤ | 00 ()|. The last equality only holds

provided all {}1≤≤ are real and distinct. Since the argument holds for any
zero of  0 (), we find that, if |0 ()| ≤ | 0 ()| for each zero  of  (), then
|00 ()| ≤ | 00 ()| at each zero  of  0 (), provided all 1 2      are real and
distinct.

The analysis can be extended by observing that  0 () = 
Y−1

=1
(− ), where

 ∈ R0, all zeros  are real and distinct and, in addition, different from those of

 (), by Rolle’s theorem. Generalizing this observation, we find that 
()
 () =


Y−

=1

³
− 

()


´
, where all zeros 

()
 are real and distinct and different from

those in the sets
n

()


o
1≤≤−

where 0 ≤    and 
(0)
 =  . The corresponding

Lagrange interpolation polynomial (B.20) becomes


(+1)
 ()


()
 ()

=

−X
=1


(+1)





()





(+1)




()




− 

()


9 If a real, continuous function  () on the interval [ ], that is differentiable inside the interval
( ), vanishes at  =  and  = ,  () =  () = 0, then there exists at least one point
 ∈ ( ) for which  0 () = 0.
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424 Polynomials with real coefficients

while the logarithmic derivative of 
()
 () is


(+1)
 ()


()
 ()

=

−X
=1

1

− 
()


We proceed by induction. Assume that
¯̄̄

(+1)



³

()


´¯̄̄
≤
¯̄̄


(+1)



³

()


´¯̄̄
for each

real zero 
()
 of 

()
 (). Differentiation as above yields

¯̄̄̄
¯̄̄(+2) ()

()
 ()− 

(+1)
 ()

(+1)
 ()³


()
 ()

´2
¯̄̄̄
¯̄̄ = −X

=1

¯̄̄̄
¯ 

(+1)





()





(+1)




()




¯̄̄̄
¯³

− 
()


´2
≤

−X
=1

1³
− 

()


´2 =
¯̄̄̄
¯  

(+1)
 ()


()
 ()

¯̄̄̄
¯

which holds for any real  different from 
()
 . By choosing  = 

(+1)
 for which


(+1)
 () = 0, we find that

¯̄̄

(+2)


³

(+1)


´¯̄̄
≤
¯̄̄

(+2)


³

(+1)


´¯̄̄
, which estab-

lishes the induction for all , because the case for  = 0 has been demonstrated

above. In conclusion, we have proved:

Lemma 15 Let all 1 2      be real and distinct. Define 
(0)
 =  for 1 ≤  ≤

. Further, consider a polynomial  () and the Lagrange product  (), defined

in (B.17). If |0 ()| ≤ | 0 ()| for each 1 ≤  ≤ , then it holds for any integer

 ≥ 0 that ¯̄̄

(+1)



³

()


´¯̄̄
≤
¯̄̄


(+1)



³

()


´¯̄̄
where 

()
 is a real zero of 

()
 () = 

−Y
=1

³
− 

()


´
.

11.4 The Euclidean algorithm

309. Consider two polynomials10 0 () =
P

=0  
 and 1 () =

P
=0  

,

both with complex coefficients and where the degree  of 0 () is larger than or

equal to . Then, there always exists a polynomial 1 (), called the quotient, such

that

0 () = 1 () 1 () + 2 ()

and the degree of the remainder polynomial 2 () is smaller than. Indeed, we can

10 The indices in 0 () and 1 () here deviate from the general definition (B.1) and do not reflect
the degree, but the sequence order of polynomials in the Euclidean iteration scheme.
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11.4 The Euclidean algorithm 425

always remove the highest degree term 
 in 0 () by subtracting




−1 ().
This first step in the long division yields

0 ()− 


−1 () =

−1X
=0

µ
 − 


−+

¶
 =  ()

where the convention − = 0 for   0 and where the degree of  () =
P−1

=0  


is at most −1. If the degree of the remainder  () is larger than , we repeat the
process and subtract

−1


−1−1 () from  (), resulting in a remainder with

degree at most −2. As long as the degree of the remainder polynomial exceeds ,
we repeat the process of subsequent lowering the highest degree. Eventually, we

arrive at a remainder 2 () with degree smaller than . This operation is the

well-known long division.

Next, we can rewrite the equation as

0 ()

1 ()
= 1 () +

2 ()

1 ()
= 1 () +

1
1()

2()

and apply the same recipe to
1()

2()
= 2 () +

3()

2()
, where the degree of 3 () is

smaller than that of 2 (). Thus,

0 ()

1 ()
= 1 () +

1

2 () +
1

2()

3()

We can repeat the recipe to
2()

3()
= 3 ()+

4()

3()
, where again the degree of 4 () is

smaller than that of 3 (). Hence, we can always reduce the degree of the remainder

and eventually it will be equal to zero. The result is a finite continued fraction for
0()

1()
in terms of the subsequent quotients 1 ()  2 ()       (),

0 ()

1 ()
= 1 () +

1

2 () +
1

3()+
1

...+ 1
()

Alternatively, we obtain a system of polynomial equations

0 () = 1 () 1 () + 2 () (0  deg 2  deg 1)

1 () = 2 () 2 () + 3 () (0  deg 3  deg 2)

2 () = 3 () 3 () + 4 () (0  deg 4  deg 3)

· · · · · ·
−2 () = −1 () −1 () +  () (0  deg   deg −1)
−1 () =  ()  ()

which is known as Euclid’s algorithm. The last equation shows that  () di-

vides −1 (). The penultimate polynomial equation, written as −2 () =
−1 ()  ()  ()+  (), indicates that  () also divides −2 (). Contin-
uing upwards, we see that the polynomial  () divides all polynomials  () with
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426 Polynomials with real coefficients

0 ≤  ≤ . Hence,  () cannot be zero for all , otherwise all  () would be

zero.

Thus,  () is the greatest common divisor polynomial of both 0 () and 1 ().

Indeed, any divisor polynomial  () of 0 () and 1 () obeys |0 and |1, then
the first Euclidean equation indicates that |2, and subsequently, |. Since the
degree of the sequence of polynomials  () strictly decreases,  () is the largest

possible common divisor polynomial. Consequently, the functions  () =
()

()

are again polynomials.

310. Minimal polynomial. The minimal polynomial associated to a polynomial

 () = 
Q

=1 ( − )
 , where  denotes the multiplicity of zero , is de-

fined as

 () = 

Y
=1

( − ) (B.37)

The minimal polynomial divides  () and is the lowest degree polynomial pos-

sessing the same zeros of  (), all with multiplicity 1. If  () has only simple

zeros, i.e.,  = 1 for all 1 ≤  ≤ , then  () =  ().

The minimal polynomial plays an important role in matrix polynomials (art. 229).

311. Division by a first degree polynomial. The division of  () =
P

=0  


by the polynomial  −  of degree 1 can be computed explicitly. In the notation of

art. 309, the long division of 0 () =  () by 1 () =  −  gives the remainder

2 () and the quotient

1 () =

−1X
=0

⎧⎨⎩ 1

+1

X
=+1




⎫⎬⎭  (B.38)

It is instructive to relate the long division with Taylor series. We assume that  6= 0.
With the convention that  = 0 if    and  6= 0, execution of the Cauchy

product of two Taylor series around  = 0 yields, for ||  ||,

 ()

 − 
= −

∞X
=0

 


∞X
=0



+1
= −

∞X
=0

⎧⎨⎩ 1

+1

X
=0




⎫⎬⎭ 

We split the series into two parts and take into account that  = 0 if   ,

 ()

 − 
= −

−1X
=0

⎧⎨⎩ 1

+1

X
=0




⎫⎬⎭  −
∞X
=

⎧⎨⎩ 1

+1

X
=0




⎫⎬⎭ 
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11.4 The Euclidean algorithm 427

Observing that  () =
P

=0 
 , the last sum equals

∞X
=

⎧⎨⎩ 1

+1

X
=0




⎫⎬⎭  =  ()

∞X
=



+1
=  ()

Ã ∞X
=0



+1
−

−1X
=0



+1

!

= − ()
 − 

−  ()

−1X
=0



+1

such that

 ()

 − 
=

−1X
=0

⎧⎨⎩ 1

+1

⎛⎝ () −
X

=0




⎞⎠⎫⎬⎭  +
 ()

 − 
(B.39)

where the -sum is the quotient 1 () =
()−()

− in (B.38) obtained by the long

division. It follows from (B.39) that 1 () = 0 (). The latter is, indeed, deduced
from (B.38) as

1 () =

−1X
=0

−1X
=

+1
 =

−1X
=0

+1


X
=0

1 =

−1X
=0

( + 1) +1
 = 0 ()

We rewrite the quotient 1 () in (B.38) with (B.39) as

 ()−  ()

 − 
=

X
=1

⎧⎨⎩ 1



X
=




⎫⎬⎭ −1 =
X

=1

⎧⎨⎩
−X
=0

+


⎫⎬⎭ −1

After letting  = − , we obtain

 ()−  ()

 − 
=

−1X
=0

⎧⎨⎩
X

=0

+−

⎫⎬⎭ −1−

=  
−1 + {−1 + } −2 + · · ·+

⎧⎨⎩
−1X
=0

+1


⎫⎬⎭
Let us denote the set of polynomials

 () =

X
=0

+− for 0 ≤  ≤  (B.40)

then 0 () = , 1 () = −1 + ,. . . , and  () =
P

=0 
 =  (). With

definition (B.40), the quotient 1 () becomes

 ()−  ()

 − 
=

−1X
=0

 () 
−1− (B.41)
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428 Polynomials with real coefficients

which is also valid if  is a zero of  () and  () = 0. Writing

+1 () =

+1X
=0

+−−1 =
X

=−1
+−+1 = 

X
=0

+− + −(+1)

shows that the polynomials { ()}0≤ obey the recursion
+1 () =  () + −(+1) for 0 ≤  ≤ − 1 (B.42)

312. Application of art. 311. Perron (1907) considers a monic polynomial  () =P
=0  

, i.e. with  = 1 and 0 6= 0, and defines, for the polynomials in (B.40),

 =

−1X
=1

| ()|

After introducing the recursion (B.42)

 =
1

||
−1X
=1

¯̄
+1 ()− −(+1)

¯̄
≤ 1

||
X
=2

(| ()|+ |−|)

=
1

||

Ã
| ()|+ − |1 ()|+

X
=2

|−|
!

and using |1 ()| = |−1 + |, we find the inequality

 (||− 1) ≤ | ()|+
−2X
=0

||− |−1 + |

The sharpest bound is achieved if  is a zero of  (), for which 0 =  () =  ().

If || = 1, then
−2X
=0

|| ≥ |−1 + | (B.43)

If ||  1, then  ≤
−2

=0
||−|−1+|
||−1 . Perron (1907) now constrains the right-

hand side to be smaller than 1, which leads to the inequality

−2X
=0

||+ 1− ||  |−1 + | (B.44)

Perron (1907) remarks that this constraint is not compatible with || = 1, because
it violates (B.43).

Let  be another zero of  (), different from the zero , then the quotient

polynomial in (B.41) becomes 0 =
P−1

=0  () 
−1−, which is equivalent, with

0 () =  = 1, to 
−1 = −P−1

=1  () 
−1−. If we assume that ||  1, then

||−1 ≤
−1X
=1

| ()| ||−1−  ||−2
−1X
=1

| ()| = ||−2 
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11.4 The Euclidean algorithm 429

which implies that ||  . However, the constraint (B.44) implies that   1, and

thus, that ||  1, in contrast to the assumption. In summary, we have proved

Theorem 85 (Perron) If a zero  of the monic polynomial  () =
P

=0  
,

i.e. with  = 1 and 0 6= 0, obeys || ≥ 1 and inequality (B.44), then it holds that
||  1, while all − 1 other zeros are smaller, in absolute value, than 1.

Since |−1|−||  |−1 + | and requiring thatP−2
=0 ||+1−||  |−1|−||,

then leads to a more stringent, but easier Perron constraint than (B.44),

X
=0

||  2 |−1| (B.45)

Theorem 85 with constraint (B.44) replaced by (B.45) still holds.

On the other hand, it also holds that ||− |−1|  |−1 + | and then a second
more stringent constraint than (B.44) is

−2X
=0

||+ 1− ||  ||− |−1|  |−1 + |

from which a second lower bound for the zero 1  || follows,

1

2

Ã
−1X
=0

||+ 1
!
 ||

Theorem 85 then states that, for a monic polynomial  (), whose zero  obeys

||  min
³
1 1

2

³P−1
=0 ||+ 1

´´
, any other zero  of  () satisfies ||  1. If

 = 1
2

³P−1
=0 ||+ 1

´
 1, then ||  1 and  is the only zero outside the unit

circle. If all coefficients  of the polynomial  () are real, then the zero  must
11

be real. Thus, if the zero   0 is positive, then  is the only real zero lying between

 and +∞, so that  ()  0, because  = 1. If  is negative, then  is the only

real zero lying between − and −∞, so that (−1)  (−)  0. In conclusion,

Perron’s Theorem 85 can be rephrased as:

Theorem 86 (Perron) Let  () =
P

=0  
 be a monic polynomial with real

coefficients  with  = 1 and 0 6= 0 and define  = 1
2

³P−1
=0 ||+ 1

´
. If either

 ()  0 or (−1)  (−)  0 holds, then  () has a real zero  with ||  1,

while all − 1 other zeros are smaller, in absolute value, than 1.

11 If  were complex, then also its complex conjugate ∗ with |∗| = ||  1 would be a zero, but
there is only one zero outside the unit disk.
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430 Polynomials with real coefficients

313. Division by an -degree polynomial. By using the Taylor series in case = 2,

1

( − ) ( − )
=
1



∞X
=0





∞X
=0




=
1



∞X
=0

⎧⎨⎩ 1



X
=0

µ




¶⎫⎬⎭ 

=
1

 − 

∞X
=0

µ
1

+1
− 1

+1

¶


a similar series expansion manipulation as in art. 311 leads to

 ()

( − ) ( − )
=

1

 − 

−2X
=0

⎧⎨⎩ 1

+1

X
=+1

 
 − 1

+1

X
=+1




⎫⎬⎭ 

+
 ()

 − 

1

 − 
+

 ()

 − 

1

 − 

When  = , differentiation yields

 ()

( − )
2
=

−2X
=0

⎧⎨⎩ 1

+2

X
=+1

( −  − 1)  
⎫⎬⎭  +

0 ()
 − 

+
 ()

( − )
2

The general result is elegantly deduced from the -th derivative of the Cauchy

integral,

1

!

 ()


=

1

2

Z
()

 ()

( − )
+1

 (B.46)

where the contour  () encloses the point  = . Let  () =
Q

=1 ( − ) in

(B.17), where  = , and assuming that all zeros  of  () are different, then

the Cauchy integral with  = 1 in (B.46) becomes

1

 ()
=

1

2

Z
()

1
Y
=1

( − ) ( − )



Since lim→∞ 1
|()| = 0, we can deform the contour  () to enclose the entire

complex plane except for an arbitrary small region around the point  = . The

function 1
()

is analytic everywhere, except for the simple poles at  =  and

does not possess zeros for finite . Cauchy’s residue theorem (Titchmarsh, 1964)

then leads to the partial fraction expansion

1

 ()
= −

X
=1

lim
→

 − 
Y
=1

( − ) ( − )
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11.4 The Euclidean algorithm 431

and

1

 ()
=

X
=1

1
Y

=1; 6=
( − )

1

 − 

If not all zeros are simple, a tedious computation using (B.46) leads to the general

partial fraction expansion

1Q
=1 ( − )


=

X
=1

X
=1

 ( − 1; )
( − )

 (B.47)

=

X
=1

(
 (0; )

( − )
+

 (1; )

( − )
2
+ · · ·+  ( − 1; )

( − )


)
where the residues are

 (;) =
1

( − 1− )!

−1−

−1−

Ã
1Q

=1; 6= ( − )


!
(B.48)

With 1
− =

P∞
=0



+1


for ||  || and proceeding with distinct zeros, we find
the Taylor expansion, for ||  min1≤≤ ||,

1

 ()
=

1
Y
=1

( − )

= −
∞X
=0

⎧⎨⎩
X
=1

1

+1

Y
=1; 6=

1

 − 

⎫⎬⎭  (B.49)

Similarly as in art. 311 by computing the Cauchy product of  () and
1

()
, we

arrive at

 ()
Y
=1

( − )

=

−X
=0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X
=1

P
=+1 




+1

Y
=1; 6=

( − )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭  +

X
=1

0 ()
Y

=1; 6=
( − )

1

 − 

(B.50)

We recognize that
Q

=1; 6= ( − ) =  0 () and (B.50) reduces, when  = ,

to

 () =

X
=1

 ()
 ()

( − ) 0 ()

which is the Lagrange interpolation polynomial (B.20) corresponding to the set of

 points {(  ())}1≤≤. The first sum in (B.50), which reduces to the  = 0

term when  = , vanishes because

X
=1

 ()−  (0)

 0 ()
=

X
=1

 ()

 0 ()
−  (0)

X
=1

1

 0 ()
= 0
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432 Polynomials with real coefficients

which follows from the Taylor expansion (B.49) and the Lagrange polynomial, both

evaluated at  = 0.

We have implicitly assumed that not all  are zeros of  (). If all {}1≤≤
are simple zeros of  (), then (B.50), written in terms of the polynomial in (B.17),

reduces to the quotient polynomial

 () =
 ()

 ()
=

−X
=0

(
X
=1

P−−1
=0 ++1




 0 ()

)
 (B.51)

Compared to the quotient polynomial (B.38) for  = 1, the coefficients in the

general version (B.51) of the quotient polynomial only require similar polynomial

evaluations
P−−1

=0 ++1

 as in (B.38) and  additional  0 () computations.

11.5 Descartes’ rule of signs

314. A famous theorem due to René Descartes is:

Theorem 87 (Descartes’ rule of signs) Let  denote the number of changes

of sign in the sequence of real coefficients 0 1      of a polynomial  () =P
=0 

 and let  denote the number of positive real zeros of  (), then

 −  = 2 ≥ 0
where  is a non-negative integer.

Before proving Theorem 87, we make the following observation. Since the poly-

nomial  (−) has coefficients (−1), Descartes’ rule of signs indicates that the
number of negative real zeros of  () is not larger than the number of changes in

signs of 0−1     (−1)  in  (−).
The product form in (B.1) for a real polynomial with  real and 2 complex

zeros ( conjugate pairs), such that  =  + 2, can be written as

 () = 

Y
=1

( − )

Y
=1

( −Re )2 + (Im )
2

from which

0 =  (0) = 

Y
=1

(−)
Y
=1

(Re )
2
+ (Im )

2

shows that the sign of 0 does not depend on the complex zeros. For example, 0 has

the sign of  if all real zeros  are negative. The sequence 0 1      in which

sign(0) = sign(), equivalent to 0  0, has an even number of changes in sign.

This is verified when the sequence is plotted as a piece-wise linear function through

the points ( ) for 0 ≤  ≤ , similarly as for the random walk in art. 184. The

number of sign changes equals the number of -axis crossings. Zero coefficients do
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11.5 Descartes’ rule of signs 433

not contribute to a change in sign. For example, the sequence {1 2 0 0−1 0 1}
has two sign changes.

Generalizing this observation, if the polynomial  () with real coefficients has

an even number of real, positive zeros such that sign(0) = sign(), the number

 of sign changes in 0 1      is even, whereas, if  () has an odd number of

real, positive zeros such that sign(0) = − sign(), the number  of sign changes

is odd. Hence,  and  are both even or odd, which demonstrates that − = 2
is even. To show that  is non-negative, a deeper argument is needed.

Proof12 (by Laguerre): Let  = , then the number of real zeros of the

function  (
) =

P
=0 

 is the same as the number of positive zeros of

 (), because  = log  is monotonous increasing for   0. Laguerre actually

proves a more general result by considering the entire function

 () =

X
=0




where the real numbers obey 0  1  · · ·  . Clearly, if we choose  = ,

we obtain  (
). Let  denote the number of changes in sign in the sequence

1 2      and let  denote the number of real zeros of the entire function

 (). For  → ∞, the term 
 dominates, while for  → −∞, the term

0
0 is dominant; by the argument above, therefore,  −  is even. The proof

that  − ≥ 0 is by induction. If there are no changes of sign ( = 0), then there
are no zeros ( = 0) and  ≥ . Assume that the Theorem holds for −1 changes
of sign (hypothesis). Suppose that  () has   0 changes of sign and let  + 1

be an index of change, i.e., +1  0 for 1 ≤   . Consider now the related

function

 () =

X
=0

 ( − ) 

then, for     +1, the number of changes of sign in the sequence

−0 (− 0) −1 (− 1)     − (− )  +1 (+1 − )       ( − )

is precisely  =  − 1 because now − (− ) +1 (+1 − )  0, where all

other consecutive products remain unchanged. Further,

 () = 




¡
− ()

¢
and, since −  0 for all real , both − () and  () have the same real

zeros. Rolle’s Theorem (Hardy, 2006) states that the derivative  0 () has not less
than  − 1 zeros in the same interval where  () has  zeros. Hence,  () has at
12 In 1828, Gauss proved Decartes’ rule, which was published in 1637 in his Géométrie. Laguerre
studied and extended Decartes’ rule in several papers, combined by Hermite et al. (1972) in
the part on Algebra.
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434 Polynomials with real coefficients

least  ≥ − 1 zeros. On the other hand,  () has at most − 1 zeros13. Thus,
 −  =  − 1 − ( − 1) and, by the induction argument,  − 1 ≥  − 1, we
arrive at  ≥ . Introducing  =  − 1 and  =  − 1, we finally obtain
that  ≥ , which completes the induction. ¤
Since the set of exponents {}1≤≤ can be real numbers, Laguerre’s proof

thus extends Descartes’ rule of signs to a finite sum of non-integer powers of . For

example, 3 − 2 + 13 + 17 − 1− −2 = 0 has  = 3 sign changes, and thus at
most  ≤ 3 positive (real) zeros.
Descartes’ rule of signs is only exact if   2 because  ≥ 0; thus, in case there is

no ( = 0) or only one ( = 1) sign variation, which corresponds to no or exactly

one positive real zero. The reverse of the  = 0 case holds: if all zeros of a real

polynomial have negative real part, then all coefficients are positive and there is no

change in sign. However, the reverse implication, { = 1} =⇒ { = 1} does not
hold in general as the example 3 − 2 + − 1 = (− 1) (− ) (+ ) shows.

Example 1 The polynomial 5 () = 25 − 4 + 3 + 112 −  + 2 has four

changes in sign, while 5 (−) = −25−4−3+112++2 only has one change

in sign. Hence, while there are in total precisely five zeros, there is at most one

negative real zero and at most four real positive. Since complex zeros appear in

pairs, there can be either four, two or zero real positive zeros, but precisely one

negative zero.

Example 2 Milovanovíc et al. (1994) mention the remarkable inequality, valid

for all real  and even integers  = 2  0,

 () =  − + − 1 ≥ 0
with equality only if  = 1. Since  (−) has only positive coefficients,  (−)  0.
For   0, there are  = 2 changes in sign and Descartes’ rule of signs states that

there are at most two real zeros. Since  (1) = 0 (1) = 0, the polynomial  () has
a double zero at  = 1, which is thus the only real zero and this implies  () ≥ 0.
315. Number of sign changes in the sequence of the differences. Let  be the

number of sign changes in the sequence 0 1      and assume that these sign

changes occur between the elements

(1  1
)  (2  2

)      (  
)

where  ≤  − 1 and the equality sign only occurs if there are no zero elements
between  and 

. We denote 0
= 0 and +1 = , which has the same

sign as 
and +1+1 = 0. Assume, without loss of generality, that 0

 0.

Then, we have that sign
¡

¢
= (−1)−1, sign¡

¢
= (−1) for 1 ≤  ≤  and

(−1)−1 −1 ≥ 0
13 If  () is an analytic function in the interior of a single closed contour  defined by | ()| = ,
where  is a constant, then the number of zeros of  () in this region exceeds the number
of zeros of the derivative  0 () in that same region by unity (Whittaker and Watson, 1996,
p. 121).
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11.5 Descartes’ rule of signs 435

Consider now the sequence of the differences 0 1−0 2−1     −−1. We
denote the difference by ∆ =  − −1 for 1 ≤  ≤  and ∆0 = 0. The sign of

the 1 ≤  ≤  elements,

(−1) ¡
− −1

¢
= (−1)∆

 0

is known. Since ∆−1 and ∆
have opposite sign for 1 ≤  ≤  by construc-

tion, the changes in sign of all differences between them is odd; an odd number of

-axis crossings. The last subsequence between ∆
and∆+1 = +1−+1 =

−sign(
) = −sign(∆

) also has an odd number of sign changes. Summing

the sign changes in all  + 1 subintervals equals  plus an odd number of sign

changes. Thus, we have proved:

Lemma 16 If  is the number of sign changes in the sequence 0 1     , then

the number of sign changes in the sequence of the differences ∆0∆1    ∆,

where ∆ =  − −1 for 1 ≤  ≤  and ∆0 = 0, equals  plus an odd positive

number.

316. Application of Lemma 16. Consider the polynomial +1 () = (− )  (),

+1 () = 
+1 +

X
=1

(−1 − )
 − 0 =

+1X
=0

(−1 − )


with the convention that −1 = +1 = 0. If   0, the number of sign changes in

the coefficients  = −1 −  of +1 () equals the number of sign changes in

the difference ∆
¡


¢
=  − −1−1 = −−1 . Lemma 16 shows that the

number of sign changes in the difference sequence equals that in the polynomial

 () plus an odd positive number. Descartes’ rule of signs in Theorem 87 states

that () = () + 2 and, hence,

+1() = () + 2 + 2+ 1 = +1() + 2 ( +)

The argument and Lemma 16 provide a second proof of Descartes’ rule of signs,

Theorem 87, because we have just shown the inductive step: if the rule holds for

 (), it also holds for +1 (). Descartes’ rule of signs definitely holds for  = 0

and this completes the second proof.

If   0 and the number of changes in sign in  () is zero, which implies by

Descartes’ rule of signs in Theorem 87 that  () has no positive real zeros, then

 is the largest real zero of +1 (). If   0 and the coefficients of  () are

alternating (equivalent to the fact that  () does not have negative real zeros

(art. 314)), then  is the smallest real zero of +1 ().

317. Laguerre’s extension of Descartes’ rule of signs. Laguerre (see Hermite

et al. (1972)) has elegantly and ingeniously extended Descartes’ rule of signs. As

in art. 314, Laguerre considers, as a generalization of the polynomial  () =
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436 Polynomials with real coefficientsP
=0 

, the entire function

 () =

X
=0


 = 

 + −1−1 +   + 0
0 (B.52)

where   −1      0 are real numbers.

Theorem 88 (Laguerre) The number of real zeros  of the entire function  (),

defined in (B.52), that are larger than a positive number , is at most equal the

number  of changes in signs of the partial sum sequence


  

 + −1−1   + −1−1 + −2−2       ()

and  −  = 2 ≥ 0.

Proof: We start from the polynomial identity (B.39),

 ()

 − 
=

−1X
=0

⎛⎝ X
=+1


−−1

⎞⎠  +
 ()

 − 

Using the expansion of ( − )
−1
for    results in

 ()

 − 
=

−1X
=0

⎛⎝ X
=+1


−−1

⎞⎠  +

∞X
=0

 ()

+1

Since   0, all terms  () for   0 have the same sign as  (), which implies

that the number  of sign changes is equal to the number of sign changes of the

coefficients in the first -sum. Each of these coefficients has the same sign as the

partial sum
P

=+1 
 of  (), because   0. This proves the theorem in case

 () is a polynomial.

We can always reduce  () to a polynomial form. If 0  0 and all exponents

 are integers, 
−0 () is a polynomial and the above argument applies. If

 ∈ Q+, then  () is a polynomial provided  is the least common multiple

of the denominators of the set {}1≤≤. Since each real number can be approx-
imated arbitrarily close by a rational number, so can  () with real exponents

approximated arbitrarily close by a polynomial, which proves Theorem 88. ¤

Theorem 88 is modified when we want the number of positive zeros smaller than

. In that case, we may verify by following the same steps as in the proof above

that the Theorem 88 also holds for the number of positive zeros smaller than ,

provided the order of terms (B.52) is written according to increasing exponents,

i.e.,   −1      0. As a corollary, the number of zeros in [0 1] of  () is

at most equal to the number of sign changes in the sequence

  + −1      (1)
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11.5 Descartes’ rule of signs 437

Another application is  () =  ( + ), which we expand by Taylor’s theorem

 ( + ) =

X
=0


()
 ()

!
 =  () + 0 () + 2

00 ()
2

+   + 

()
 ()

!

into a polynomial, written with exponents of  in increasing order. The number of

real zeros of  () between [0 ], and thus the real zeros of  () between [ +],

is at most equal to the number of sign changes in the sequence½
 ()   () + 0 ()   () + 0 () + 2

00 ()
2

      ( + )

¾
and their difference is an even integer (possibly zero).

The whole idea can subsequently be applied to
()

(−) using art. 313. Since the

number of sign changes in
()

(−) is at most equal to that in
()

(−)−1 (art. 316),
but not smaller than the number of real zeros of  () larger than , we may expect

to deduce, by choosing an appropriate , an exact way to determine the number

of such real zeros. In fact, Laguerre succeeded (Hermite et al., 1972, p. 24-25) to

propose an exact method, that involves the discriminant (art. 298), which is hard

to compute. In summary, his method turns out to be less attractive than that of

Sturm, discussed in art. 326.

318. We present another nice approach due to Laguerre (Hermite et al., 1972,

p. 26-41). Consider the polynomial

 () =

X
=1

 () =

X
=0

⎛⎝

X
=1





⎞⎠ 

where 0    −1      1 and  () =
P

=0 
. Descartes’ rule of signs

in Theorem 87 states that the number  of positive zeros is at most equal to the

number  of variations in sign in the sequence⎧⎨⎩0

X
=1

  1

X
=1

      

X
=1





⎫⎬⎭
That number  is also equal to the number 1 of sign changes in the sequence

(  )

1 =

⎧⎨⎩0

X
=1

  1

X
=1

      

X
=1





⎫⎬⎭
plus the number 2 of changes of sign in the remaining sequence

2 =

⎧⎨⎩

X
=1



  +1

X
=1


+1
      

X
=1





⎫⎬⎭
= { (0)  +1 (1)       (− )}
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438 Polynomials with real coefficients

where

 () =

X
=1






 =

X
=1



 (

)
log 

If we suppose that all  ≥ 0, then the number 2 of variations in sign in 2
is at most equal to the number  of positive zeros of  (), because even if

 () ( − 1)  0, there can be an even number of zeros in the interval ( − 1 ).
The number  is also equal to the number of real zeros of  (log ) = 0, which is

greater than 1. Theorem 88 in art. 317 shows that the number  of real zeros

of  (log ) larger than 1 is at most equal to the number  of sign changes in the

sequence ©
1


1 1


1 +2


2      (0)

ª
Hence,  ≤  ≤ 1 + . Since the above holds for all 0 ≤   , the simplest

choice is  = 0. Thus, we have proved

Theorem 89 (Laguerre) The number of real roots  of the equation

X
=1

 () = 0

where 0    −1      1 and  () =
P

=0 
, is at most equal to the

number of changes in sign of the sequence
n
1 1 +2    

P
=1

o
.

Theorem 89 holds for  () = lim→∞  () provided the polynomial sum con-

verges. Let us consider  () = . The equation
P

=0 exp () = 0 possesses

the same roots as
P

=0 exp (( + ) ) = 0, where  is a finite real number such

that the restriction 0   can be removed. Let  =  + ∆ and  =   ,

such that  = −
∆
, then we obtain the Riemann sum,

lim
∆→0

−
∆X
=1


(+∆)∆ =

Z 



 () 

where  () is an arbitrary function, because the coefficients 0 1      are

arbitrary. The number of sign changes in
n
1 1 +2    

P
=1

o
is, in that

limit, at least equal to the number of zeros of
R 

 ()  = 0 in the interval ( ).

For example, let

 () =

X
=0


+−1

Γ ( + )

where all   0,  ≥ 0 and Γ () is the Gamma function. For  = 0 and  = ∞,
the equation

R∞
0

 ()  = 0 becomes

X
=0



+
= 0
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11.5 Descartes’ rule of signs 439

whose number of positive zeros is, after the transformation  → −1, precisely
equal to those of

P
=0 

+ = 0 and, thus, of
P

=0 
 = 0. On the other

hand, the number of positive zeros of the equation
R 
0
 ()  = 0, computed as

X
=0


+

Γ ( +  + 1)
= 0

is at least equal to those of
P

=0 
 = 0. Now, for  =  the equations reduce

to polynomials and we observe that, after a transform  → −, the number of
negative zeros of the polynomial  () =

P
=0 

 is at most equal to those of

the polynomial
P

=0 


Γ(++1)
. Consequently, we arrive at

Theorem 90 (Laguerre) If all zeros of the polynomial  () =
P

=0 
 are

real, then the zeros of the related polynomial  (;) =
P

=0 


Γ(++1)
are also

all real, for any real number  ≥ 0.

Many extensions, so-called zero mapping transformations, have been deduced

of Laguerre’s Theorem 90. Consider the set of real numbers {}≥0, which is
a zero mapping transformation, satisfying certain properties. If all zeros of the

polynomial  () =
P

=0 
 are real, then the zeros of the related, transformed

polynomial  (; ) =
P

=0 
 are also all real. A large list of particular

sequences {}≥0 is presented in Milovanovíc et al. (1994).
319. Theorem 90 in art. 318 can be extended,

Theorem 91 (Laguerre) Let  () =
P

=0 
 be a polynomial with real zeros

and let  () be an entire function (of genus 0 or 1), which is real for real  and all

the zeros are real and negative. Then, the polynomial  () =
P

=0  () 
 has

all real zeros, and as many positive, zero and negative zeros as  ().

Proof: See Hermite et al. (1972, p. 200) or Titchmarsh (1964, pp. 268-269). ¤

It can be shown (Titchmarsh, 1964, pp. 269-270) that, if  → ∞ and  () =

lim→∞  () is an entire function, then  () = lim→∞  () is entire, all of

whose zeros are real and negative. Hence, applied to  () = , Laguerre’s theorem

91 (extended to →∞) shows that the Taylor series

 () =

∞X
=0

 ()

!


is an entire function  () with negative, real zeros.

320. Application of Descartes’ rule of signs. The polynomial

 () = ||  −
−1X
=0

|| 
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440 Polynomials with real coefficients

where ||  0 and
P−1

=0 ||  0, has precisely one positive real zero. Descartes’

rule of signs in Theorem 87 tells us that there is at most one positive real zero,

because there is one change of sign. Since the -sum in

 () = || 
Ã
1−

−1X
=0

||
||

−
!

is monotone decreasing from ∞ to 0 when  increases from 0 to ∞ along the real

axis, there is precisely one point  =  at which the -sum equals one and  () = 0.

Moreover,  ()  0 if    and  ()  0 if   . If 0 is a zero of the polynomial

 () =
P−1

=0 
, then

|| |0 | =
¯̄̄̄
¯−

−1X
=0



0

¯̄̄̄
¯ ≤

−1X
=0

|| |0| = || |0| −  (|0|)

which shows that  (|0|) ≤ 0, implying that |0| ≤ . Hence, we have proved

Theorem 92 If 0 is a zero of  () =
P

=0 
 and  is the only positive zero

of  () = ||  −
P−1

=0 || , then |0| ≤ .

In other words, the absolute values of all zeros of  () are smaller than or equal

to the only positive zero of  (). Theorem 92 is related to, but different from

Perron’s Theorem 85 in art. 312.

321. Cauchy’s rule. We derive an upperbound  ≥ 0 for any positive zero of the
real polynomial  () =

P
=0 

, without resorting to Decartes’ rule.

Theorem 93 (Cauchy’s rule) No zero of the real polynomial  () is larger in

absolute value than

 = max
0≤≤−1 and 


0

Ãµ ||
 ||

¶1(−)!
(B.53)

where
−1X

=0 and



0

 ≤ 1 (B.54)

.

Proof : The upperbound  ≥ 0 satisfies

0 ≤
¯̄̄̄
 ()



¯̄̄̄
=

¯̄̄̄
¯ +

−1X
=0






¯̄̄̄
¯ ≤  +

−1X
=0

¯̄̄̄




¯̄̄̄


Since the coefficients of  () are real, we rewrite the latter bound as



⎛⎜⎝1− −1X
=0 and




0




−

⎞⎟⎠+ −1X
=0 and



≥0




 ≥ 0
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11.5 Descartes’ rule of signs 441

Let us denote  =
¯̄̄



¯̄̄
− ≥ 0 for all  indices for which 


 0. Then,

 =
³

||
||

´1(−)
and the above inequality reduces to (B.54). ¤

Examples Let  =
P−1

=0 and



0
1 be the number of negative coefficients of

()


, then the choice  =

1

satisfies the condition (B.54), leading to

 = max
0≤ and 


0

µ


¯̄̄̄




¯̄̄̄¶ 1
−

(B.55)

A weaker bound  = max0≤≤−1

µ³

||
||

´1(−)¶
, derived from the inequality

in (B.53), follows from the choice  =
1

≤ 1


. Another choice, that satisfies (B.54)

for all , is  =
(−1 )
2−1 .

322. Rescaling. The equation  () = 0 where  6= 0 can be transformed by

the substitution  =  into  +
P−1

=0


− = 0. Let us confine to odd .

Odd polynomials with real coefficients have at least one real zero. We now choose 

such that 0

− = −1 or  =

³
−0



´1
. This choice reduces the original equation

 () = 0 into

 () =  −
−1X
=1



0

µ
−0


¶
 − 1 = 0

Since  (0) = −1  0 and lim→∞  ()  0, there must lie at least one real root

in the interval (0∞). If  (1)  0, the root must lie between 0 and 1; if  (1)  0,
then the root lies in the interval (1∞). By the transform  = −1, the interval
(1∞) can be changed to (0 1). Alternatively, art. 291 shows that Q

=1  = 1

which indicates that not all zeros can lie in (0 1) nor in (1∞). Hence, we have
reduced the problem to find a real zero of  () with odd degree , into a new

problem of finding the real root of  () in (0 1). We refer to Lanczos (1988)

for a scheme of successively lowering the order of the polynomial  () by shifted

Chebyshev polynomials.

323. Isolation of real zeros via continued fractions. Let 1 ∈ N and  ∈ N0 for
all   1. Akritas (1989, p. 367-371) has proved:

Theorem 94 (Vincent-Uspensky-Akritas) There exists a continued fraction

transform with a non-negative 1 and further positive integer partial quotients

{}2≤≤,

 =
 +−1
 +−1

= 1 +
1

2 + · · ·+ 1
+

(B.56)

that transforms the polynomial  () with rational coefficients  and simple zeros

into the function 

³
+−1
+−1

´
= ( +−1)

−
̃ () such that the polynomial
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442 Polynomials with real coefficients

̃ () has either zero or one sign variation. The integer  is the smallest integer

such that −1 2  1 and −1  1 + −1 , where  is the minimum distance

between any two zeros,  is the -th Fibonacci number that obeys  = −1 +

−2 for   1 and with 0 = 1 = 1 and where  =
¡
1 + 1



¢ 1
−1 − 1.

While the converse of Descartes’ Theorem 87 in case  = 0, implying that

there is no positive real zero, is generally true, the converse of the case  = 1 is not

generally true as demonstrated in art. 314. The part of Theorem 94 that details the

determination of the integer  guarantees that, if there is one zero with positive real

part and all others have negative real part and lying in an -disk around −1, the
corresponding polynomial has exactly one change in sign. The Fibonacci numbers

 enter the scene because they are the denominators of the -th convergent of

the continued fraction of the golden mean (see e.g. Govers et al. (2008, p. 316)),

1 +
√
5

2
= 1 +

1

1 + · · ·+ 1

1+
. . .

in the limit case where all  = 1 for  ≥ 1. The continued fraction transform
(B.56) roughly maps one zero to the interval (0∞) and all others in clusters
around −1 with negative real part. The continued fraction (B.56) is equivalent
to a series of successive substitutions of the form  =  +

1

for 1 ≤  ≤ .

The best way to choose the set of integers {}1≤≤ is still an open issue. Akritas
(1989) motivates to choose in each substitution round equal to Cauchy’s estimate

(B.55). Finally, Akritas (1989) claims that his method for isolating a zero is superior

in computational effort to Sturm’s classical bisection method based on Theorem 96.

11.6 The number of real zeros in an interval

324. The Cauchy index. Consider the rational function  () =
()

()
that has at

most  poles: the zeros of the polynomial  () that are not zeros of the numerator

polynomial  (). We further assume   , else we can always reduce the

rational function as the sum of a polynomial and a rational function, where the

numerator polynomial has a smaller degree than the denominator polynomial as

explained in art. 309.

If  is a zero with multiplicity  of  () but not of  (), then  () =

 ()
Y

=1
( − )

− and the partial fraction expansion (B.47) shows that the

behavior of  () around a pole  of order is dominated by  ( − )
− , where

 =  () ( − 1; ) =  ()
Q

=1; 6= ( − )
− 6= 0.

The Cauchy index of a rational function  () at a real pole  is defined to be +1

if

lim→−  () = −∞ and lim→+  () =∞
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11.6 The number of real zeros in an interval 443

and the Cauchy index is −1 if
lim→−  () =∞ and lim→+  () = −∞

while the Cauchy index is zero if both limits are the same. Hence, the Cauchy index

at a real zero  of  () equals 0 if  is even and sign() if  is odd. The

Cauchy index of a rational function  for the interval [ ], denoted by  (), is

defined as the sum of the Cauchy indices at all real poles  between  and , such

that      and  and  are not poles of .

The logarithmic derivative of  () =
Q

=1 ( − )
− is

 log  ()


=

0 ()
 ()

=

X
=1



 − 
=

X
=1



 − 
+ 1 ()

where only the first  zeros are real in the interval [ ]. The Cauchy index for

the interval [ ] is 
0()
()

= , which is equal to the number of distinct real zeros

of  () in the interval [ ]. Since  () has a finite number of zeros, 
+∞
−∞

0()
()

equals all distinct real zeros of  ().

Sturm’s classical Theorem 95 in art. 325 is a method to compute the Cauchy

index for the logarithmic derivative, which determines the number of real zeros of

a polynomial in a possibly infinite interval [ ].

325. A Sturm sequence. A sequence of real polynomials 1 ()  2 (),  ,  () is

a Sturm sequence on the interval ( ) if it obeys for each      two properties:

(i)  () 6= 0 and (ii) −1 () +1 ()  0 for any  where  () = 0.
Let  () denote the number of changes in sign of the sequence 1 (), 2 (),   ,

 () at a fixed  ∈ ( ). The value of  () can only change when  varies from
 to , if one of the functions  () passes through zero. However, for a Sturm

sequence, property (ii) shows that, when  () = 0 for any 2 ≤  ≤ −1, the value
of  () versus  does not change. Only if 1 () passes through a zero  ∈ ( ),
then  () changes by ±1 according to the Cauchy index of 2()

1()
at  = . Hence,

we have shown:

Theorem 95 (Sturm) If 1 ()  2 ()       () is a Sturm sequence on the

interval ( ), then 
2()

1()
=  ()−  ().

326. An interesting property of a Sturm sequence is its connection to the Euclidean

algorithm (art. 309), which we modify (all remainders have negative sign) into

0 () = 1 () 1 ()− 2 () (0  deg 2  deg 1)

1 () = 2 () 2 ()− 3 () (0  deg 3  deg 2)

2 () = 3 () 3 ()− 4 () (0  deg 4  deg 3)

· · · · · ·
−2 () = −1 () −1 ()−  () (0  deg   deg −1)
−1 () =  ()  ()
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444 Polynomials with real coefficients

The sequence { ()}0≤≤ is a Sturm sequence if the largest common divisor

polynomial  () does not change sign in the interval ( ). By the modified

Euclidean construction, we observe that property (ii) in art. 325 is always fulfilled.

Indeed, in the modified Euclidean algorithm for any 0     and  ∈ ( )
relation −1 () =  ()  () − +1 () shows that, if  () = 0, both −1 ()
and +1 () have opposite sign and do not contribute to changes in  ().

The Euclidean algorithm, applied to the logarithmic derivative  () =
0()
()

where 0 () =  () and 1 () = 0 (), provides information about the multiplicity
of zeros of the polynomial  (). If  is a zero with multiplicity  of  (), then it is

a zero with multiplicity − 1 of 0 (). Hence, both  () and 0 () have the factor
( − )

−1
in common, and since, by construction,  () is the largest common

divisor polynomial,  () also must possess the factor ( − )
−1

.

In summary, applying the (modified) Euclidean algorithm to the logarithmic

derivative  () =
0()
()

of a polynomial  (), art. 324 with Theorem 95 leads to:

Theorem 96 (Sturm) Let  () be a polynomial with real coefficients and let

{} be the sequence of polynomials generated by the (modified) Euclidean algorithm
starting with 0 () =  () and 1 () = 0 (). The polynomial  () has exactly
 ()− () distinct real zeros in ( ), where  () denotes the number of changes
of sign in the sequence { ()}. A complex number  is a zero of multiplicity 

of  () if and only if  is a zero of multiplicity − 1 of  (). Thus, all zeros of
 () in ( ) are simple if and only if  () has no zeros in ( ).

Example Let  () = 4 − 22 +  + 1. Descartes’ rule of signs in Theorem 87

states that there are either 2 or 0 real positive zeros. The (modified) Euclidean

algorithm yields, with 0 () =  () and 1 () = 00 (),

0 () = 4 − 22 +  + 1 =
³
4

´
1 ()−

µ
2 − 3

4
 − 1

¶
1 () = 4

3 − 4 + 1 = (4 + 3) 2 ()−
µ
−9
4
 − 4

¶
2 () = 2 − 3

4
 − 1 =

µ
−4
9
+
91

81

¶
3 ()− 283

81

3 () = −9
4
 − 4 =

µ
729

1132
 +

324

283

¶
4 ()

4 (4) = −283
81

The corresponding continued fraction of the modified Euclidean algorithm is

0 ()

1 ()
= 1 ()− 1

2 ()− 1
3()− 1

...− 1
()
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11.7 Real zeros and the sequence of coefficients 445

and, here,

0 ()

1 ()
=



4
− 1

4 + 3− 1
− 4

9
+ 91
81
− 1

729
1132

+324
283

The sequence of signs in 0 ()  1 ()      4 () at  = 0 is ++−−− such that
 (0) = 1. For  → ∞, the signs of the leading coefficients are +++−− and
 (∞) = 1, while  (−∞) = 3. There is no positive real zero, but two negative

zeros. The zeros are simple because 4 () is a constant. The zeros of  () are

1 = −149, 2 = −052, 34 = 101± 051.

11.7 Real zeros and the sequence of coefficients

We discuss a beautiful result of Newton on the sequence of the real coefficients

0 1      of a polynomial with real zeros. Instead of starting with the usual

definition  () =
P

=0 
 in (B.1) of a polynomial, Newton considers the

polynomial in two variables

 ( ) =

X
=0


− = 

 + −1−1 +   + 0
 = 

µ




¶
whose zeros  = 


are all real.

327. If the zeros of the polynomial  ( ) are real, then also the polynomials



and 


possess real zeros by Rolle’s theorem (Hardy, 2006), provided   1.

Applying Rolle’s theorem recursively leads to the conclusion that any polynomial
+


with  +    has real zeros. In particular, all polynomials +


of

degree − (+ ) = 2,

−2
−1−1−

=

X
=0


!

( −+ 1)!

(− )!

(−  + 1)!
−+1−+1

=

+1X
=−1


!

( −+ 1)!

(− )!

(−  + 1)!
−+1−+1

= −1
(− 1)! (−+ 1)!

2
2 + ! (−)!

+ +1
(+ 1)! (−− 1)!

2
2

=
!

2

Ã
−1¡


−1

¢2 + 2¡


¢  + +1¡


+1

¢2!
possess real zeros, which is equivalent to the fact that all these polynomials for

1 ≤  ≤ − 1 have a non-negative discriminant (art. 298):
2¡



¢2 ≥ −1¡


−1
¢ +1¡


+1

¢

                     

https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core


446 Polynomials with real coefficients

Hence, we have shown

Theorem 97 (Newton) If  () =
P

=0 
 is a polynomial with real coeffi-

cients and real zeros, then the coefficients satisfy the inequality

2 ≥ −1+1
+ 1



−+ 1

−
(B.57)

For example, the inequality for  = − 1 in (B.57) yields 2−1 ≥ −2 2
−1 .

Using a different argument, art. 300 concludes that, if −1 = 0, then  and −2
must have opposite sign.

328. Unimodal sequences. A real sequence 0 1      is unimodal (Comtet,

1974) if there exist two integers  and  such that½
 ≤ +1 for 0 ≤  ≤  − 2
 ≥ +1 for  ≥ + 1

and with an intermediate region where −1   = +1 =    =   +1.

If   , there is a plateau, else ( = ), there is a peak separating the non-

decreasing and non-increasing subsequence. A real sequence  ≥ 0 with 0 ≤  ≤ 

is logarithmically convex on [ ] if 2 ≤ −1+1 for  + 1 ≤  ≤  − 1, while a
real sequence 0 1      is convex on [ ] if  ≤ 1

2
(−1 + ) for  + 1 ≤

 ≤ −1. The transform  = log  explains the logarithmic convexity inequality,

that is also rewritten as


−1
≤ +1



demonstrating that  =

−1

is increasing in  on [+ 1 ]. Similarly, the loga-

rithmic concavity inequality 2 ≥ −1+1 implies that  = 
−1

is decreasing on

[+ 1 ]. If the sequence is logarithmically concave and  ≥ 1, then  is increas-

ing in , while if +1 ≤ 1, then  is decreasing. If +1  1 and   1, then 
is unimodal. Finally, if the sequence is logarithmically strictly concave obeying the

inequality 2  −1+1 so that  is strictly decreasing, then there is at most one
value of  where  =


−1

= 1, which results in a plateau of two points. If there

is no such value of , then the unimodal sequence has a peak.

This preparation is needed to conclude from Newton’s Theorem 97 that if all

coefficients  ≥ 0 and all zeros are real (and non-positive by Decartes’ Theorem
87), then the sequence  ≥ 0 is unimodal with either a plateau of two points or a
peak because

2 ≥ +1−1
+ 1



−+ 1

−
 −1+1

Comtet (1974) illustrates that generating functions of many positive combinatorial

numbers, such as binomial and Stirling numbers of the second kind, are polynomials

with real zeros and the sequences of such combinatorial numbers are unimodal with

either a plateau of two points or a peak.
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11.8 Locations of zeros in the complex plane 447

329. Interlacing polynomials. A polynomial −1 () =
Q−1

=1 (− ) interlaces a

polynomial  () =
Q

=1 (− ) if their real zeros interlace

 ≤ −1 ≤ −1 ≤ −2 ≤ · · · ≤ 1 ≤ 1

A set of (monic) polynomials 1 () 2  ()       () have a common inter-

lacing if there is a single polynomial −1 () that interlaces each of them. If

 () =
Q

=1 (− ;), then the polynomials 1 () 2  ()       () pos-

sess a common interlacing if there exist numbers  ≤ −1 ≤ · · · ≤ 1 ≤ 0 so that

; ∈ [−1 ] for all  ∈ [1 ] and all  ∈ [1]. The numbers −1 ≤ · · · ≤ 1
can represent the zeros of a polynomial −1 (), while  (0) is smaller (larger)
than any of the zeros of any polynomial  (). Marcus et al. (2015, Lemma 4.2)

prove

Lemma 17 If the monic polynomials 1 () 2  ()       () have a common

interlacing, then there exists a polynomial  () with  ∈ [1] for which the
largest zero ;1 is at most the largest zero 1 of the sum polynomial  () =P

=1   ().

Proof : The monic polynomial −1 () =
Q−1

=1 (− ) interlaces all monic

polynomials 1 () 2  ()       (), implying that 1 ≤ ;1 ≤ 0 and for  ≥
;1,  ()  0 because the leading coefficient is 1 for monic polynomials. Since

each polynomial  () has exactly one zero 1 ≤ ;1, it holds that  (1) ≤ 0 for
all 1 ≤  ≤ . Hence,  (1) =

P
=1   (1) ≤ 0 and  () becomes eventually

positive for   1. In other words, the sum polynomial  () has a zero 1 ≥ 1.

Furthermore, there must be some  ∈ [1] for which polynomial  (1) ≥ 0, else
 (1) were negative, contradicting that 1 is a zero of  (). Hence, there exists

a polynomial  () with largest zero 1 ≤ ;1 ≤ 1. ¤
A similar argument can be deduced for the second largest zero and, further, for

the -th largest zero. Consequently, Lemma 17 implies that the sum polynomial

 () =
P

=1   () also interlaces the polynomial −1 () and thus possesses
all real zeros.

In general, a sum polynomial of real-rooted polynomials does not possess neces-

sarily all real zeros, which underlines the strong property of interlacing. However,

even if all zeros of the sum polynomial are real, but interlacing is violated, Marcus

et al. (2015) consider the sum 3 () of the polynomials (+ 5) (− 9) (− 10) and
(+ 6) (− 1) (− 8), whose zeros are approximately −53 64 and 74, indicating
that both the largest zeros 10 and 8 are larger than 7.4 of the sum polynomial, in

contrast to Lemma 17.

11.8 Locations of zeros in the complex plane

330. Center of gravity. Consider the real numbers 1  0, 2  0,. . . ,   0 that

obey
P

=1  = 1, and let {}1≤≤ denote the  complex zeros of a polynomial
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448 Polynomials with real coefficients

 (), then the center of gravity is defined as

 =

X
=1

 (B.58)

and the number  can be interpreted as a mass placed at the position  . If we

consider all possible sets {}1≤≤ of masses at the fixed points {}1≤≤ in the
complex plane, then the corresponding centers of gravity cover the interior of a

convex polygon, the smallest one containing the points 1 2     . The only

exception occurs if all zeros lie on a straight line. In that case, all the centers of

gravity lie in the smallest line segment that contains all the points 1 2     .

Any straight line through the center of gravity14 separates the set {}1≤≤
into parts, one on each side of the line, except if all the points 1 2      lie on

a line. Indeed, since
P

=1  = 1, we can write (B.58) with  =  ( − ) asP
=1 = 0. If all the points 1 2      are on the same side of a straight

line passing through the origin, then
P

=1 6= 0 and
P

=1
1

6= 0. Indeed, we

can always rotate the coordinate axis such that the imaginary axis coincides with

the straight line through the origin. If all points are on one side, then they lie in

either the positive or negative half plane and
P

=1Re () = Re
³P

=1 

´
andP

=1Re
¡
−1

¢
is non-zero. The argument shows that not all the points  ( − )

lie on the same side of a line. Translate the origin from the center of gravity  to

any other point in the plane and verify that the property still holds.

Theorem 98 (Gauss) No zero of the derivative 0 () of a polynomial  () lies
outside the smallest convex polygon that contains all the zeros of  ().

Proof: Let 1 2      denote the zeros of  () and let  be a zero of 
0
 (),

different from 1 2     , then

0 ()
 ()

=

X
=1

1

 − 
= 0

Since also the complex conjugate
P

=1
1

(−)∗ = 0, we have that
P

=1
−
|− |2 = 0.

This is equivalent to 
P

=1
1

|− |2 =
P

=1
1

|− |2  . With  =
P

=1
1

|− |2 ,
we arrive at

 =

X
=1

1

 | −  |2


which expresses a center of gravity if  =
1

 |− |2 in (B.58) and, by construction,P
=1  = 1. As shown above, any center of gravity lies inside the smallest convex

polygon formed by the points 1 2     . ¤
14 We may also interpret the vector − as a force directed from  to  with magnitude  |−|.

Then  represents an equilibrium position of a material point subject to repellant forces exerted
by the points 1 2     . If  were outside the smallest convex polygon that contains the
 ’s, the resultant of the several forces acting on  could not vanish: no equilibrium is possible.
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11.8 Locations of zeros in the complex plane 449

Any smallest convex polygon containing all zeros can be enclosed by a circular

disk , because all zeros are finite. If  is a point lying on the boundary of the

circle , then the Möbius transform in art. 301  () = 1
− maps the disk into a

half-plane containing the point at infinity, since () = ∞. Further considerations
of Gauss’s Theorem 98 and the Möbius transform are discussed in Henrici (1974).

331. Apolar polynomials. There exists a quite remarkable result that relates the

zeros of two polynomials, that satisfy the apolar condition (B.59). Two polynomials

 () =
P

=0 
 and  () =

P
=0 

 are called apolar if they satisfy

X
=0

(−1) −¡



¢ = 0 (B.59)

Let  =
(−1)
()

, then the Cauchy product of the polynomials  () and ̃ () =P
=0 

 is

 () ̃ () =

2X
=0

⎛⎝ X
=0

−

⎞⎠ 

which shows that the apolar condition (B.59) implies that the -th coefficient or

-th derivative at  = 0 of the product  () ̃ () is zero.

Theorem 99 (Grace) Let  () =
P

=0 
 and  () =

P
=0 

 be apolar,

thus satisfying (B.59). If all zeros of  () lie in a circular region , then  ()

has at least one zero in .

Proof: See, e.g., Szegő (1922), Henrici (1974, pp. 469-472). ¤

Example Consider  () =  + −−, whose coefficient − is chosen to
satisfy the apolar condition (B.59), such that 0 + (−1)

¡



¢−1
− = 0. Thus,

for − = (−1)+1 ¡


¢
0

, the zeros of  () are [0]

− and (−)
1

2 for

0 ≤   . All zeros of  () lie at the origin or on the circle  around the origin

with radius
¯̄̄¡



¢
0


¯̄̄1
. Grace’s Theorem 99 states that, there is at least one zero

of  () that lies inside that circle .

The example shows that, by choosing an appropriate polynomial  () whose

zeros are known and that can be made apolar to  (), valuable information about

the locations of some zeros of  () can be derived. Related to Grace’s Theorem

99 is:

Theorem 100 (Szegő’s Composition Theorem) Suppose that all the zeros

of  () =
P

=0 
¡



¢
 lie in a circular region . If  is a zero of  () =P

=0 
¡



¢
, then each zero  of  () =

P
=0 

¡



¢
 can be written as

 = −, where  is a point belonging to .

Proof: See Szegő (1922). ¤
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332. A variation on Cauchy’s rule. Let us assume that there is no zero of the poly-

nomial  () =
P

=0 
 in a disk around 0 with radius . After transforming

 →  − 0, we obtain the polynomial expansion  () =
P

=0  (0) ( − 0)


around 0, where 0 (0) =  (0) 6= 0, by the assumption. Further, we bound

 () for | − 0|   as

| ()| =
¯̄̄̄
¯0 (0) +

X
=1

 (0) ( − 0)


¯̄̄̄
¯  |0 (0)|−

X
=1

| (0)| ( − 0)


 |0 (0)|−
X

=1

| (0)|  = |0 (0)|
(
1−

X
=1

| (0)|
|0 (0)|



)
Cauchy’s rule in art. 321 shows that we may deduce a sharper bound if all coef-

ficients  (0) are real. There is exactly one positive solution for  of |0 (0)| =P
=1 | (0)|  because the right-hand side is monotonously increasing from zero

at  = 0 on. Since finding such solution is generally not easy, we proceed as in

art. 321. Let  =
|(0)|
|0(0)|

  0, for each  where | (0)|  0, then

| ()|  |0 (0)|
⎧⎨⎩1−

X
=1;|(0)|0



⎫⎬⎭ ≥ |0 (0)|
(
1−

X
=1



)

It suffices to require that
P

=1  ≤ 1 to obtain | ()|  0. Hence, given a set

of positive numbers  satisfying
P

=1  ≤ 1, then there are no zeros in a disk
around 0 with radius

 = min
1≤≤;|(0)|0


1



¯̄̄̄
 (0)

0 (0)

¯̄̄̄1
Example 1 If  = 2

− for which
P

=1  =
P

=1 2
− 

P∞
=1 2

− = 1, then a
zero free disk around 0 has radius

 =
1

2
min

1≤≤;|(0)|0

¯̄̄̄
 (0)

0 (0)

¯̄̄̄1
Example 2 If  =

¡



¢
 (1− )

−
, then

P
=1  =

P
=1

¡



¢
 (1− )

−
= 1

and

 =


1− 
min

1≤≤;|(0)|0
(1− )




¯̄̄̄µ




¶
 (0)

0 (0)

¯̄̄̄1
If 0    1, then (1− )


  (1− )


such that

 ≥  (1− )
−1

min
1≤≤;|(0)|0

¯̄̄̄µ




¶
 (0)

0 (0)

¯̄̄̄1
Finally, the maximum of  (1− )

−1
occurs at  = 1


and is 1



¡
1− 1



¢−1
 1


.
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11.8 Locations of zeros in the complex plane 451

Thus, a zero free disk around 0 has radius

 =
1


min

1≤≤;|(0)|0

¯̄̄̄µ




¶
 (0)

0 (0)

¯̄̄̄1
Example 2 has another interesting property: Vieta’s formula (B.13) applied to

 () =
P

=0  (0) ( − 0)

shows that

 (0)

0 (0)
= (−1)

X
1=1

X
2=1+1

· · ·
X

=−1+1

Y
=1

1

 − 0

where the multiple sum contains
¡



¢
terms as shown in art. 296. Now, let  =

min1≤≤ | − 0| denote the distance of 0 to the nearest zero of  (), then
| − 0|−1 ≤ −1 for all 1 ≤  ≤ . Introduced in the above Vieta formula yields,

for 1 ≤  ≤ ,¯̄̄̄
 (0)

0 (0)

¯̄̄̄
=

X
1=1

X
2=1+1

· · ·
X

=−1+1

Y
=1

¯̄̄̄
1

 − 0

¯̄̄̄
≤
µ




¶
−

from which

 ≤ min
1≤≤;|(0)|0

¯̄̄̄µ




¶
 (0)

0 (0)

¯̄̄̄1
= 

Thus, we have shown that there is at least one zero in the disk around 0 with

radius , while Example 2 demonstrates that there are no zeros in the disk with

the same center 0 but radius . Finally, we use the bound
¯̄̄
(0)

0(0)

¯̄̄
≤ ¡



¢
− into

|0 (0)| =
P

=1 | (0)|  and find

1 =

X
=1

| (0)|
|0 (0)|

 ≤
X

=1

µ




¶³


´
=
³
1 +





´
− 1

such that  ≤ 

21−1 . Given the solution  of |0 (0)| =
P

=1 | (0)| , the disk
around 0 with radius



21−1 contains at least one zero of  ().
There exist theorems, for which we refer to Henrici (1974, pp. 457-462), that give

conditions for the radius of a disk to enclose at least  zeros.

333. If 0  1  · · ·    0, then the polynomial  () =
P

=0 
 does not

have a zero in the unit disk || ≤ 1 nor on the positive real axis.
Proof: If  =  is real and positive,  ()  0. For the other cases where

 =  and  6= 0, consider

|(1− ) ()| =
¯̄̄̄
¯0 −

Ã
X

=1

(−1 − ) 
 + 

+1

!¯̄̄̄
¯

≥ 0 −
¯̄̄̄
¯
X

=1

(−1 − ) 
 + 

+1

¯̄̄̄
¯
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Further, with  ≤ 1,¯̄̄̄
¯
X

=1

(−1 − ) 
 + 

+1

¯̄̄̄
¯ =

¯̄̄̄
¯
X

=1

(−1 − ) 
 + 

+1(+1)

¯̄̄̄
¯



X
=1

(−1 − ) +  = 0

where the inequality stems from the fact that not all arguments  are equal,

because  6= 0. Hence, |(1− ) ()|  0 for || ≤ 1. ¤

Art. 333 also holds for a polynomial with alternating coefficients,  () =P
=0(−1), where 0  1  · · ·    0, because a zero  of  () is

also a zero of  (−) for which |−|  1. If   −1  · · ·  0  0, then all the

zeros of the polynomial  () =
P

=0 
 lie within the unit disk ||  1. This

case is a consequence of art. 333 and (B.2) in art. 291.

334. Two extensions of art. 333 due to Aziz and Zargar (2012).

Theorem 101 (Aziz-Zargar) If  ≥ −1 ≥ · · · ≥ 1 ≥ 0 ≥ 0 where  ≥ 1
and 0   ≤ 1, then all the zeros of the polynomial  () =

P
=0 

 lie in the

closed disk | + − 1| ≤ + 20

(1− ).

Proof: We rewrite  () = (1− ) () as

 () = −+1 + ( − −1)  +
−1X
=2

( − −1)  + (1 − 0)  + 0

= −+1 + 
 − 

 + ( − −1)  +
−1X
=2

( − −1) 

+ (1 − 0)  + ( − 1) 0 + 0

and further  () = −+, where  = 
 ( + − 1) and

 = ( − −1)  +
−1X
=2

( − −1)  + (1 − 0)  + ( − 1) 0 + 0

Hence,

| ()| ≥ ||− ||

≥ || ||
(
| + − 1|− 1

||

Ã
( − −1) +

−1X
=2

( − −1) ||−

+(1 − 0)
1

||−1
+ |( − 1)| 0

||−1
+

0

||
!)
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where in the last step, the inequality of the coefficients in the theorem has been

used. For ||  1, we have that

| ()|  || ||
(
| + − 1|− 1



Ã
 − −1 +

−1X
=2

 −
−1X
=2

−1

+1 − 0 + (1− ) 0 + 0)}

= || ||
½
| + − 1|− 1


( − 0 + (1− ) 0 + 0)

¾
If | + − 1|  +2(1−)0


and ||  1, then | ()|  0. Therefore, all the

zeros of  () with modulus larger than 1 lie in the closed disk | + − 1| ≤  +

2 (1− ) 0

. Now, the zeros of  () with modulus smaller than or equal to 1, also

satisfy | + − 1| ≤ + 2 (1− ) 0

, because | + − 1| ≤ ||+ − 1 ≤ . Since

all the zeros of  () are also zeros of  (), the theorem is proved. ¤

When  =  = 1, Theorem 101 reduces to art. 333. Art. 333 cannot be applied

to the polynomial  () = +(− 1)P−1
=1 

+ with   1, whereas Theorem

101 with  = 1 and  = −1


shows that all the zeros of  () lie in the disk

|| ≤ 1 + 2

.

Theorem 102 (Aziz-Zargar) If  ≤ −1 ≤ · · · ≤ +1 ≤  ≥ −1 ≥ · · · ≥
1 ≥ 0 where 0 ≤  ≤ − 1 and 0   ≤ 1, then all the zeros of the polynomial
 () =

P
=0 

 lie in the closed disk¯̄̄̄
 +

−1

− 1
¯̄̄̄
≤ 2 − −1 + (2− ) |0|− 0

||
Proof: Similar as the one above and omitted (see Aziz and Zargar (2012)). ¤

335. If the polynomial  () =
P

=0 
 has real, positive coefficients, then all

its zeros lie in the annulus min1≤≤
³
−1


´
≤ || ≤ max1≤≤

³
−1


´
.

Proof: Consider 
¡



¢
=
P

=0 
− and we can always choose  such that


−  −11− for each 1 ≤  ≤ . Indeed, it suffices that −1  −1


for each

 or that −1 = min1≤≤
³
−1


´
. For those , art. 333 shows that

¯̄

¡



¢¯̄
 0

for || ≤ 1, which implies that  () has no zeros within the disk with radius −1,
thus ||  −1. Applying the same method to 

¡



¢
=
P

=0 −
−

and choose  such that −−  −+1−+1 for each 1 ≤  ≤ , or  =

max1≤≤
³
−1


´
. For those , art. 333 indicates that

¯̄

¡



¢¯̄
 0 for || ≤ 1,

which implies that all zeros of 
¡
1


¢
lie outside the disk with radius . In view

of art. 291, the zeros  of  () lie within that disk with radius , thus ||  .

Combining both bounds completes the proof. ¤

336. Upper bound for the number of real zeros of a polynomial  (). The square
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454 Polynomials with real coefficients

of the distance between the complex numbers  =  and  =  equals

| − |2 = 1 + 2 − 2 cos ( − )

from which

| − |2
|| = +

1


− 2 cos ( − )

and the right-hand side is minimal when  = 1, so that

| − |2
|| ≥ 2− 2 cos ( − ) =

¯̄
 − 

¯̄2
After applying this inequality to the  zeros  = 

 for 1 ≤  ≤  of a

polynomial  (), we obtain for  on the unit circle, i.e. || = 1,

|Q
=1 ( − )|2
|Q

=1 |
≥
¯̄̄̄
¯
Y

=1

¡
 − 

¢¯̄̄̄¯
2

With the definition (B.1) of  () and defining the polynomial

 () =

Y
=1

¡
 − 

¢
whose zeros are all on the unit circle and each zero  of  () possesses precisely

the same phase  as the zero  = 
 of  (), we find

| ()|2 ≤ | ()|2
||2 |

Q
=1 |

=
| ()|2
|0| for any complex  with || = 1

Since | ()|2 =
¯̄

¡

¢¯̄2

for any real  and
¯̄

¡

¢¯̄
=
¯̄P

=0 

¯̄
≤P

=0 ||, we arrive at Shur’s inequality, according to Erdős and Turán (1950),

| ()| ≤
P

=0 ||p
|0|

for any complex  with || = 1

The zeros of  () lie on a known interval [0 2] and, if  () has  positive real

zeros, then  () has a zero at  = 1 with multiplicity . By using extremal prop-

erties of orthogonal polynomials, Erdős and Turán (1950) derived a lower bound

for | ()| and established

Theorem 103 (Schmidt-Schur-Erdős-Turán) The number  of real zeros of

the polynomial  () =
P

=0 
 is upper bounded by

2 ≤ 4 log
P

=0 ||p
|0|

(B.60)
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11.9 Iterative algorithms for the zeros

337. Method of Newton-Raphson. Assume that 0 is a reasonably good approxi-

mation of a zero  of  (), so that  − 0 =  is sufficiently small. Then, Taylor’s

theorem  () =
P∞

=0  (0) ( − 0)

with  (0) =

1
!

()



¯̄̄
=0

shows that

 (0 + ) =  (0) + 1 (0)+
¡
2
¢

Since  (0 + ) = 0, a good approximation of  up to 
¡
2
¢
can be computed as

 = − (0)

1(0)
and the approximation of the zero  is 1 = 0 + . Newton observed

that repeating the argument increasingly leads to a better approximation for the

zero . If the first derivative can be computed in a range around 0, then the

Newton-Raphson iteration scheme for the zero is

 = −1 −  (−1)
1 (−1)

(B.61)

and the sequence 0 1 2      converges to the correct zero  of  (). Indeed,

Taylor’s theorem indicates that  () = 
³
−1 − (−1)

1(−1)

´
is

 () = 2 (−1)
µ
 (−1)
1 (−1)

¶2
+

Ãµ
 (−1)
1 (−1)

¶3!

which implies, provided that  = − (−1)
1(−1)

is small enough to ignore terms of

order 3 and higher, that

 () ' 2 (−1)
21 (−1)

( (−1))
2

If the derivatives 1 (−1) are not too small, nor 2 (−1) is too large, then the
sequence { ()}≥0 converges quadratically : if  (−1) = 10− is small, then
 () ' 10−2 and each iteration doubles the number of correct digits, which is
amazing!

338. Weierstrass’s iterative method. Weierstrass argues similarly. Ideally, all

 + ∆ =  for all zeros 1 ≤  ≤  such that the product form (B.1) of the

polynomial equals

 () = 

Y
=1

( −  +∆)

Taylor’s Theorem in art. 200 of the -dimensional function  (; 1     ) in the

vector (1 2     ) around the vector (1  2     ) yields

 () =  (;1     ) +

X
=1

 ()



¯̄̄̄
=

∆ + 

where the remainder  contains higher order terms in ∆ such as (∆)

∆,
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456 Polynomials with real coefficients

where  is the Hessian. Ignoring the remainder as in Newton-Raphson’s rule

(art. 337) and computing the derivative yields

 () ' 

Y
=1

( − )− 

X
=1

Y
=1; 6=

( − )∆

All increments ∆ for 1 ≤  ≤  are solved from this relation by subsequently

letting  =  for 1 ≤  ≤ , resulting in

 () ' −
X
=1

∆

Y
=1; 6=

( − ) = −∆

Y
=1; 6=

( − )

from which Weierstrass’ increments for 1 ≤  ≤  are obtained:

∆ =
− ()


Q

=1; 6=( − )
(B.62)

Iterations of 
(+1)
 = 

()
 + ∆

()
 for 1 ≤  ≤  in  = 0 1    converge also

quadratically in  to all the 1 ≤  ≤  zeros  under much milder conditions

than the Newton-Raphson rule. McNamee (2007) demonstrates that Weierstrass’s

scheme nearly always converges, irrespective of the initial guesses 
(0)
 for 1 ≤  ≤

.

There is an interesting alternative derivation of theWeierstrass increments (B.62).

The application of the Newton-Raphson rule (B.61) to the coefficients (B.11) of Vi-

eta’s formula expressed in terms of the zeros yields a set of linear equations in

∆ that leads to (B.62). The simplest linear equation,
−1


= −P
=1  for

 = − 1 in (B.11), is linear in  =  +∆ and shows that, at each iterationP
=1

(+1)
 = −−1


, meaning that the sum of approximations equals the exact

sum. Just as there are many improvements of the Newton-Raphson rule to enhance

the convergence towards the root, so are there many variants that improve Weier-

strass’s rule. Moreover, there are conditions for the initial values 
(0)
 to guarantee

convergence, which are discussed in McNamee (2007).

11.10 Zeros of complex functions

339. The argument principle.

Theorem 104 If  () is analytic on and inside the contour , then the number

of zeros of  () inside  is

 =
1

2

Z


 0 ()
 ()

 =
1

2
∆ arg  ()

where ∆ denotes the variation of the argument of  round the contour .

Proof: See Titchmarsh (1964, p. 116). ¤
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11.10 Zeros of complex functions 457

Since polynomials are analytic in the entire complex plane, Theorem 104 is valid

for any contour  and can be used to compute the number of zeros inside a certain

contour as shown in Section 11.6.

340. Theorem of Rouché. The famous and simple theorem of Rouché is very

powerful.

Theorem 105 (Rouché) If  () and  () are analytic inside and on a closed

contour , and | ()|  | ()| on , then  () and  () +  () have the same

number of zeros inside .

Proof: See Titchmarsh (1964, p. 116). ¤

Corollary 5 If at all points of a contour  around the origin, it holds that || ¯̄̄P
=0; 6= 


¯̄̄
, then the contour  encloses  zeros of  () =

P
=0 

.

Proof: A proof not directly based on Rouché’s Theorem is given in Whittaker

and Watson (1996, p. 120). The result directly follows from Rouché’s Theorem

105 with  () = 
, which has a -multiple zero at the origin and  () =P

=0; 6= 
 . ¤

We give another application of Rouché’s Theorem to a polynomial  () with

real coefficients 0  1  · · ·    0. If  is such that 0 
P

=1 
,

then  () has no zeros in the disk around the origin with radius . If   1, an

improvement of art. 333 is obtained.

341. Theorem of Jensen and bounds of Mahler.

Theorem 106 (Jensen) Let  () be analytic for ||  . Suppose that  (0) 6= 0,
and let 1 ≤ 2 ≤    ≤  ≤    be the moduli of the zeros of  () in the circle

||  . Then, if  ≤  ≤ +1,

 log  + log | (0)|−
X
=1

log  =
1

2

Z 2

0

log
¯̄

¡


¢¯̄


Proof: See Titchmarsh (1964, p. 125). ¤

Consider the polynomial  () =
P

=0 
 with zeros, ordered as |1|  |2| 

    ||  1 ≥ |+1|      ||. Assuming that 0 6= 0, then Jensen’s

Theorem 106 states for  = 1 that 1
2

R 2
0
log
¯̄

¡

¢¯̄
 = − log

⎛⎝ 1
|0|

Y
=+1

| |
⎞⎠.

Using 0 = (−1) 
Q

=1  in art. 291 yields

1

2

Z 2

0

log
¯̄

¡

¢¯̄
 = log

Ã
||

Y
=1

||
!

(B.63)
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458 Polynomials with real coefficients

With
¯̄

¡

¢¯̄
=
¯̄P

=0 

¯̄
≤ P

=0 ||, we obtain the inequality of Mahler
(1960),

||
Y
=1

|| ≤
X

=0

|| (B.64)

Mahler (1960) also derives a lower bound for ||
Q

=1 ||. Since |1|  |2| 
    ||  1 ≥ |+1|      ||, it holds, for 1 ≤  ≤  and 0 ≤  ≤ , thatQ

=1 | | ≤
Q

=1 ||. Vieta’s formula (B.11) shows that, for each 0 ≤  ≤ ,¯̄̄̄
−


¯̄̄̄
=

¯̄̄̄
¯̄ X
1=1

X
2=1+1

· · ·
X

=−1+1

Y
=1



¯̄̄̄
¯̄ ≤ X

1=1

X
2=1+1

· · ·
X

=−1+1

¯̄̄̄
¯
Y
=1



¯̄̄̄
¯

≤
Y
=1

||
X

1=1

X
2=1+1

· · ·
X

=−1+1

1 =

µ




¶ Y
=1

||

Multiplying by − and summing over all  results in

X
=0

|−| − =
X

=0

||  ≤ ||
Y
=1

||
X

=0

µ




¶
− = (1 + )

 ||
Y
=1

||

which gives Mahler’s lower bound when  = 1,

2−
X

=0

|| ≤ ||
Y
=1

|| (B.65)

342. Lagrange’s series for the inverse of a function. Let the function  =  () be

analytic around the point 0 and  0 (0) 6= 0. Then, there exists a region around

0 =  (0), in which each point has a unique inverse  = −1 () belonging to
the analytic region around 0. The Lagrange series for the inverse of a function

(Markushevich, 1985, II, pp. 88),

−1() = 0 +

∞X
=1

1

!

−1

−1

µ
 − 0

()− (0)

¶ ¯̄̄̄
=0

( − (0))
 (B.66)

is a special case (for () = ) of the more general result

(−1()) = (0) +

∞X
=1

1

!

−1

−1

∙
0()

µ
 − 0

()− (0)

¶¸¯̄̄̄
=0

( − (0))


(B.67)

Provided that  () is analytic inside the contour  around 0, that encloses a

region where  () − 0 has only a single zero, then the last series (B.67) follows

from expanding the integral definition of an inverse function

(−1()) =
1

2

Z


()
 0()

()− 

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11.11 Bounds on values of a polynomial 459

in a Taylor series around 0 = (0),

(−1()) =
∞X
=0

∙
1

2

Z


()
 0()

(()− (0))+1


¸
( − (0))



Applying integration by parts for   0 gives

1

2

Z


()
 0()

(()− (0))+1
 =

1

2

Z


0()
(()− (0))



After rewriting,

1

2

Z


0()
(()− (0))

 =
1

2

Z


µ
( − 0)

(()− (0))

¶
0()

( − 0)


and invoking Cauchy’s integral formula (B.46) for the -th derivative, we obtain

(B.67).

A zero  of a function  =  (), whose inverse is  = −1 (), satisfies
 = −1 (0). If the Taylor series  () =

P∞
=0  (0) ( − 0)


is known, the

Lagrange series (B.66) can be computed formally using characteristic coefficients

(Van Mieghem, 2007) to any desired order. Explicitly, up to order five in
0(0)

1(0)
, we

have

(0) ≈ 0 − 0(0)

1(0)
− 2(0)

1(0)

µ
0(0)

1(0)

¶2
+

"
−2

µ
2(0)

1(0)

¶2
+

3(0)

1(0)

# µ
0(0)

1(0)

¶3
+

"
−5

µ
2(0)

1(0)

¶3
+ 5

3(0)

1(0)

2(0)

1(0)
− 4(0)

1(0)

# µ
0(0)

1(0)

¶4
+

"
−14

µ
2(0)

1(0)

¶4
+ 21

3(0)

1(0)

µ
2(0)

1(0)

¶2
− 3

µ
3(0)

1(0)

¶2
−6 4(0)

1(0)

2(0)

1(0)
+

5(0)

1(0)

¸ µ
0(0)

1(0)

¶5
(B.68)

from which we observe that the two first terms are Newton-Raphson’s correction

(B.61) in art. 338. The formal Lagrange expansion, where only a few terms in

(B.68) are presented, only converges provided 0 is chosen sufficiently close to the

zero (0), which underlines the importance of the choice for 0. Another observa-

tion is that, if all Taylor coefficients  (0) are real as well as 0, the Lagrange series

only possesses real terms such that the zero (0) is real. Thus, for any polynomial

 () =  () with given real coefficients, a converging Lagrange series for some

real 0 identifies a real zero (0).

11.11 Bounds on values of a polynomial

Milovanovíc et al. (1994) have collected a large amount of bounds on values of

polynomials. Here, we only mention the first contributions to the field by Pavnuty
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460 Polynomials with real coefficients

Chebyshev and refer to Borwein and Erdélyi (1995) and Rivlin (1974) for the deeper

theory. Properties of Chebyshev polynomials are studied in Section 12.7.

343. Chebyshev proved the following theorem:

Theorem 107 (Chebyshev) Let  () =
P

=0 
 be a monic polynomial

with real coefficients and  = 1, then, for  ≥ 1,

max
−1≤≤1

| ()| ≥ 1

2−1

The equality sign is obtained for  () =
()

2−1 , where  () = cos ( arccos ) are

the Chebyshev polynomials of the first kind.

Proof: See Aigner and Ziegler (2003, Chapter 18) and Rivlin (1974, p. 56). ¤

An immediate consequence of Chebyshev’s Theorem 107 is:

Corollary 6 If a real and monic polynomial  () obeys | ()| ≤  for all  ∈
[ ], then −  ≤ 4 ¡ 

2

¢1
.

Proof: We map the -interval [ ] onto the -interval [−1 1] by the linear
transform  = 2

− (− ) − 1. The polynomial  () = 
¡
−
2
( + 1) + 

¢
has

leading coefficient
¡
−
2

¢
and satisfies max−1≤≤1 | ()| = max≤≤ | ()|.

Chebyshev’s Theorem 107 states that max−1≤≤1 | ()| ≥
¡
−
2

¢ 1
2−1 . Hence,

2

µ
− 

4

¶
≤ max

≤≤
| ()| ≤ 

such that −  ≤ 4 ¡ 
2

¢1
. ¤

11.12 Bounds for the spacing between zeros

344. Minimum distance between zeros. Mahler (1964) proved a beautiful theorem

that bounds the minimum spacing or distance between any pair of simple zeros of

a polynomial. Only if all zeros are simple or distinct, the discriminant ∆ () is

non-zero as shown in art. 298. Moreover, Mahler’s lower bound (B.69) is the best

possible.

Theorem 108 (Mahler) For any polynomial  () with degree  ≥ 2 and distinct
zeros, ordered as |1|  |2|      ||  1 ≥ |+1|      ||, the minimum
distance between any pair of zeros is bounded from below by

min
1≤≤

| −  | 
p
3 |∆ ()|



2
+1

⎛⎝|| Y
=1

||
⎞⎠−1 ≥

p
3 |∆ ()|



2
+1 (

P
=0 ||)

−1 (B.69)
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11.12 Bounds for the spacing between zeros 461

where ∆ () is the discriminant, defined in art. 298.

Proof: The relation (B.15) between the discriminant and the Vandermonde

determinant suggests us to start considering the Vandermonde matrix  () in

(A.75) of the zeros, ordered as in Theorem 108. Subtract row  from row  and use

the algebraic formula  −  = (− )
P−1

=0 
−1− such that

det () = ( − )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 21 31 · · · −11

1 2 22 32 · · · −12

...
...

...
...

...
...

0 1  +  2 +  + 2 · · · P−2
=0 

−2−
 

...
...

...
...

...
...

1  2 3 · · · −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We now proceed similarly as in art. 225 by dividing the first  rows, corresponding

to the components with absolute value larger than 1, by −1 for 1 ≤  ≤ . The

only difference lies in row , that consists of the elements

0 1  +  2 +  + 2 · · · P−2
=0 

−2−
  if   

0 
−(−2)


+

−1


2++
2



−1


· · ·
−2

=0 −2− 


−1


if  ≤ 

Since   , the ordering tells us that ||  ||. If   , then 1 ≥ ||  ||, and
the -th element in row  is bounded by

¯̄̄P−2
=0 

−2−
 

¯̄̄
≤  − 1, while if  ≤ ,

then ||  1 and the -th element in row  is bounded by
¯̄̄P−2

=0

−2− 

−1


¯̄̄
≤ −1.

Hadamard’s inequality (A.78) shows that

|det ()| ≤ | − |
−1
2

Y
=1

| |−1
vuut X

=1

( − 1)2

Using
P−1

=1 
2 =

(−1)(2−1)
6

 3

3
(Abramowitz and Stegun, 1968, Section

23.1.4), we have

|det ()| ≤ | − |√
3


+2
2

Y
=1

| |−1 (B.70)

This inequality (B.70) is nearly the best possible, because equality is attained

if  = 2

 as shown in art. 225 and art. 242. Choosing  = 1 and  =


2
 , | − | = 2 sin 


, while we know from (A.79) that |det ()| = 2 such

that
|det()|
|−| = 2

2 sin 


=



sin 


µ

+2
2

2

¶
, which tends to

|det()|
|−| → 

+2
2

2
for

large . This illustrates that (B.70) cannot be improved, except perhaps for a

slightly smaller prefactor than 1√
3
. Since the inequality (B.70) holds for any  and

, Theorem 108 now follows from the definition of the discriminant (B.15). The

last inequality in (B.69) follows from (B.64). ¤
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462 Polynomials with real coefficients

Usually, the discriminant ∆ () is not easy to determine. However, for a poly-

nomial with integer coefficients and thus also rational coefficients because
()



and  () have the same zeros for any complex number  6= 0, art. 298 shows

that ∆ () is a function of the coefficients  and, hence, an integer. In addition

∆ () 6= 0, such that |∆ ()| ≥ 1. Thus, the minimum spacing between the simple
zeros of a polynomial with rational coefficients  ∈ Q is lower bounded by

min
1≤≤

| −  | 
√
3



2
+1 (

P
=0 ||)

−1 (B.71)

345. Lupas’ upper bound for the minimum spacing. An upper bound for the spacing

(Milovanovíc et al., 1994, p. 106) due to Lupas is

min
1≤≤

| −  | ≤ 2
r
3 Var []

2 − 1 (B.72)

where the variance of the zeros of a real polynomial is defined as

Var [] =
1



X
=1

2 −
Ã
1



X
=1



!2

Using the Newton identities in art. 294 yields Var[] = 1
2

n
(− 1) 

2
−1
2
− 2−2



o
.

Equality in the upper bound (B.72) is attained for the polynomial

 () =

Y
=1

Ã
 − []− (− 2 + 1)

r
3 Var []

2 − 1

!
where the mean of the zeros  [] = 1



P
=1  = −−1


.

11.13 Bounds on the zeros of a polynomial

346. Bounds on the largest zero. Let  be a zero of the polynomial  (), then

− =
P−1

=0 
 implies || || ≤

P−1
=0 || ||. If || ≥ 1, then we can

further bound as || || ≤ ||−1P−1
=0 ||. Thus, unless all zeros lie within

the unit disk and ||  1, the zero  = max1≤≤ || with largest modulus of
the polynomial  () obeys 1 ≤  ≤ 1

||
P−1

=0 ||. The Newton equation 1 =P
=1  = −−1


in (B.8) leads to

¯̄̄
−1


¯̄̄
≤ P

=1 || ≤ . Hence, the zero 

with largest modulus is bounded by

max

µ
1
1



|−1|
||

¶
≤  ≤ |−1||| +

1

||
−2X
=0

||

The difference between upper and lower bound illustrates that the bounds are rather

loose.

McNamee (2007) provides a long list of bounds on the modulus of the largest
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11.13 Bounds on the zeros of a polynomial 463

zero  = max1≤≤ || of  (), where the coefficients  ∈ C and  = 1. By

testing over a large number of polynomials, he mentions that the relatively simple

formula, due to Deutsch (1970),

 ≤ |−1|+ max
1≤≤−1 and  6=0

¯̄̄̄
−1


¯̄̄̄
which is an extension of art. 291 to complex coefficients  derived from the com-

panion matrix (art. 242) using matrix norms, ended up as second best. The best

one is due to Kalantari,

 ≤ max
4≤≤+3

¯̄
2−1−+3 − −1−+2 − −2−+3 + −+1

¯̄ 1
−1

347. Euler’s bounds. Let  = max1≤≤ || denote the zero with largest modulus
of the polynomial  () =

P∞
=0 

 and define  =
P

=1 || ≥ | |, where the
Newton equations (B.4) determine  in terms of the coefficients {}. Evidently,
 ≤  . On the other hand, since  ≥ || for any 1 ≤  ≤ ,

+1 =

X
=1

|| || ≤ 

X
=1

|| = 

Combining both inequalities yields the bounds, for any   0,

+1


≤  ≤ ()

1


In the limit for  → ∞ and for functions  with only real positive zeros where

 =
P

=1 

 = , both bounds tend to each other, because the radius of

convergence  of the Taylor series
 0()
()

=
 0(0)
(0)
−P∞=1 ³P∞=1 1


+1


´
, which

is nothing else than , can be calculated from (Buck, 1978, pp. 240) as 1

=

lim→∞ sup || 1 and 1

= lim→∞

¯̄̄
+1



¯̄̄
, when the latter exists. Watson

(1995, pp. 500) mentions that Euler, already in 1781, has devised a similar method

to calculate the three smallest zeros of the Bessel function 0(2
√
).

348. Inequalities for  =
P

=1 || . For any integer  and , we may write

 =
P

=1

¯̄̄

−


¯̄̄
| |. Applying the Hölder inequality (A.10) gives

 ≤
Ã

X
=1

||(−)
! 1


Ã

X
=1

||

−1

!1− 1


where we require that  ( −) =  and 
−1 =  and both  and  are integers.

All solutions satisfy  ( − ) = ( − ) with   0 and  = 
− and we obtain

the recursion inequality

 ≤ ()
1
 ()

1− 1
 with  =  ( −) and  =



− 1
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464 Polynomials with real coefficients

For example, the solution  =  =  and  = 
− returns, for any  and , an

equality, namely the definition of  . The case  = 2 is

2 ≤
Ã

X
=1

||2(−)
!Ã

X
=1

||2
!
= 2(−)2 (B.73)

which is particularly useful in the case where  is even and all zeros are real.

349. The next theorem sharpens the bounds in art. 347:

Theorem 109 If 1      are the real zeros of a polynomial  () =
P

=0 


for which 1 =
P

=1  = 0, then any zero  ∈ {1     } is bounded for positive
integers 1 ≤  by

−
Ã

2

1 + 1

(−1)2−1

! 1
2

≤  ≤
Ã

2

1 + 1

(−1)2−1

! 1
2

(B.74)

where  =
P

=1 

 for 1 ≤  ≤  is uniquely expressed via the Newton recursion

(B.7) in terms of the coefficients .

As shown in art. 300, the condition 1 = 0, which is equivalent to the require-

ment that −1 = 0 by (B.8), is not confining.

Proof: Let 1 denote an arbitrary zero of  (), because we can always relabel

the zeros. Applying the Hölder inequality (A.10) to  = 1 and  =  ∈ R for
2 ≤  ≤ , yields for even  = 2  1,

1

(− 1)2−1

⎛⎝ X
=2

| |
⎞⎠2

≤
X
=2

| |2 (B.75)

Since
¯̄̄P

=2 

¯̄̄
≤ P

=2 | | and
P

=2  = −−1

− 1, the inequality (B.75)

becomes for real zeros only,

1

(− 1)2−1
µ
−1


+ 1

¶2
≤ 2 − 21 (B.76)

Using the assumption that −1 = 0, we finally arrive, for any integer 1 ≤ , at

our bounds (B.74) for any zero of  (), and thus also for the largest real zero. ¤

Theorem 109 actually generalizes a famous theorem due to Laguerre in which

 = 1 and where the condition that 1 = 0 is not needed:

Theorem 110 (Laguerre) If all the zeros 1      of a polynomial  () =P
=0 

 with  = 1 are real, then they all lie in the interval [− +] where

± = −−1


± − 1


r
2−1 −

2

− 1−2
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11.13 Bounds on the zeros of a polynomial 465

Proof: Laguerre’s theorem follows immediately from (B.76) and the Newton

identities in art. 294 for  = 1. See also Aigner and Ziegler (2003, p. 101). ¤

Since the quartic equation ( = 2 in (B.76)) is still solvable exactly, that case

can be expressed in closed form without the condition 1 = 0, as in the proof of

Laguerre’s Theorem 110. However, all other  ≥ 2 cases are greatly simplified by
the condition 1 = 0, that relieves us from solving a polynomial equation of order

2.

Theorem 111 If 1      are the real zeros of a polynomial  () =
P

=0 
,

then any zero  ∈ {1     } is upper bounded, for positive integers  by

 ≤
⎛⎝2


+
p
(− 1)

s
4


−
µ
2



¶2⎞⎠ 1


(B.77)

and lower bounded for odd integer values of  by

 ≥
⎛⎝2


−
p
(− 1)

s
4


−
µ
2



¶2⎞⎠ 1


(B.78)

Proof: In a similar vein, application of (B.73) for  = 2 and  = , gives¡
2 − 21

¢2 ≤ ³2(2−) − 
2(2−)
1

´ ¡
2 − 21

¢
If  = 

2
or  = 3

2
, then 31 − 221 2 + 1 3 +22 −3 ≤ 0, whose

exact solution via Cardano’s formula is less attractive. For  = 0, the quadratic

inequality

41 − 22


21 +
22 − (− 1)4


≤ 0

is obeyed for any 1 lying in between

± =
2


±
p
(− 1)

s
4


−
µ
2



¶2
The Cauchy—Schwarz inequality (A.12) shows that 4


− ¡2



¢2 ≥ 0, implying

that the roots are real. Thus, we find the upper bound (B.77) and the lower bound

(B.78), that always exists for odd . ¤

                     

https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core


                     

https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.016
https://www.cambridge.org/core


12

Orthogonal polynomials

The classical theory of orthogonal polynomials is reviewed from an algebraic point

of view. The book by Szegő (1978) is regarded as the standard text, although it

approaches the theory of orthogonal polynomials via complex function theory and

differential equations. The classical theory of orthogonal polynomials is remarkably

beautiful, and powerful at the same time. Moreover, as shown in Section 6.13, we

found interesting relations with graph theory.

An overview and properties of the classical orthogonal polynomials such as Legen-

dre, Chebyshev, Jacobi, Laguerre and Hermite polynomials is found in Abramowitz

and Stegun (1968, Chapter 22) and Rainville (1971). A general classification scheme

of orthogonal polynomials is presented by Koekoek et al. (2010) and by Koornwinder

et al. in Olver et al. (2010, Chapter 18). The theory of expanding an arbitrary

function in terms of solutions of a second-order differential equation, initiated by

Sturm and Liouville, and treated by Titchmarsh (1962) and by Titchmarsh (1958)

for partial differential equations, can be regarded as the generalization of orthogonal

polynomial expansions.

12.1 Definitions

350. The usual scalar or inner product between two vectors  and , that is denoted

as  , is generalized to real functions  and  as the Stieltjes-Lebesgue integral1

over the interval [ ]

( ) =

Z 



 ()  ()  () (B.79)

1 As mentioned in the introduction of Van Mieghem (2014, Chapter 2), the Stieltjes integral
unifies both continuous and differentiable distribution functions as well as discrete ones, in
which case, the integral reduces to a sum. If  is differentiable, then (B.79) simplifies to

( ) =

 



 ()  () () 

where the non-negative function  () =  0 () is often called a weight function. A broader
discussion is given by Szegő (1978, Section 1.4).

467
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468 Orthogonal polynomials

where the distribution function  is a non-decreasing, non-constant function in

[ ]. As in linear algebra, the functions  and  are called orthogonal if ( ) = 0

and, likewise, the norm of  is kk =
p
( ). Moreover, the generalization (B.79) is

obviously linear, ( +  ) =  ( ) +  ( ) and commutative ( ) = ( ).

The definition thus assumes the knowledge of both the interval [ ] as well as the

distribution function  . All functions  , for which the integral
R 

| ()|2  ()

in (B.79) exists, constitute the space 2[].

351. An orthogonal set of real functions 0 ()  1 ()       () is defined, for

any  6=  ∈ {0 1    }, by

( ) =

Z 



 ()  ()  () = 0 (B.80)

When ( ) = 1 for all  ∈ {0 1    }, the set is normalized and called an
orthonormal set of functions. Just as in linear algebra, these functions {}0≤≤
are linearly independent. Since polynomials are special types of functions, an or-

thogonal set of polynomials {}0≤≤ is also defined by (B.80), and we denote,

an orthogonal polynomial of degree , by  or  (). In addition, the general

polynomial expression (B.1) is

 () =

X
=0

;
 (B.81)

The special scalar product  =
¡
 1

¢
, or in integral form

 =

Z 



 () (B.82)

is called the moment of order , and is further studied in art. 354.

If  () is an orthogonal polynomial, then e () = ()√
()

is an orthonormal

polynomial. Although the highest coefficients ; can be any real number, we may

always choose ;  0 since any polynomial can be multiplied by a number without

affecting the zeros. The fact that ;  0 is sometimes implicitly assumed.

352. The Gram-Schmidt orthogonalization process. Analogous to linear algebra,

where a set of  linearly independent vectors that span the -dimensional space

are transformed into an orthonormal set of vectors, the Gram-Schmidt orthogo-

nalization process can also be used to construct a set of orthonormal polynomials,

defined by the scalar product (B.79). First, the constant polynomial of degree zero

0 () = 0 is chosen to obey

1 = (0 0) = 20

Z 



 () = 200

where the moment of order zero in (B.82) equals

0 = ()− ()  0
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12.2 Properties 469

because the distribution function () is non-decreasing in . Thus, e0 () = 1√
0
.

The degree one polynomial, 1 () = 1;1 + 0;1 must be orthogonal to 0 ()

and orthonormal, (1 1) = 1. These two requirements result in

(1 0) = 1;1 ( 0) + 0;1 (1 0) = 0

such that 0;1 = − 1;1(0)

(10)
, while normalization requires that e1 () = 1;1+0;1√

(11)
.

Combining both leads to

e1 () = 1;1p
(1 1)

µ
− ( 0)

(1 0)

¶
Both 1 and 0 are real polynomials.

We can continue the process and compute the degree two polynomial that is

orthogonal to both 1 and 0, and that is also orthonormal. Suppose now that we

have constructed a sequence of orthonormal polynomials 0 1     −1, which are
all real, obey the orthogonality condition (B.80) and are normalized, ( ) = 1.

Next, we construct the polynomial  () that is orthogonal to all lower degree

orthonormal polynomials by considering

 () = ;
 −

−1X
=0

 ()

Orthogonality requires for    that

0 = ( ) = ; (
 )−

−1X
=0

 ( ) = ; (
 )−  (  )

such that

 = ;
( )

(  )

After normalization ( ) = 1, we obtain the real, orthonormal polynomial of

degree :

e () = ;p
( )

Ã
 −

−1X
=0

( )

( )
 ()

!
By induction on , it follows that there exists an orthonormal set of polynomials

belonging to the scalar product (B.79).

12.2 Properties

353. Key orthogonality property. Let  () be an arbitrary polynomial of degree

, then  () can be written as a linear combination of the linearly independent,

                     

https://doi.org/10.1017/9781009366793.017
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.017
https://www.cambridge.org/core


470 Orthogonal polynomials

orthogonal polynomials {}0≤≤, provided  ≥ ,

 () =

X
=0

; () (B.83)

After multiplying both sides by  (), taking the scalar product, and using the

orthogonality definition in (B.80), we find that, for all 0 ≤  ≤ ,

; =
( )

( )

Hence, any polynomial of degree  ≤  can be expressed in a unique way as a

linear combination of the set of orthogonal polynomials {}0≤≤. Because the
polynomial  () is of degree , the fundamental theorem of algebra states that

the coefficients ; = 0 when   . In summary, a key property of orthogonality

is

( ) =

½
; kk2 if 0 ≤  ≤ 

0 if   
(B.84)

Example If  () =  () =
P

=0 ;
, then ( ) =

P
=0 ;

¡
 

¢
=P

= ;
¡
 

¢
, because (B.84) indicates that

¡
 

¢
= 0 if   . By or-

thogonality (B.80), it holds that ( ) = ( ) =  = ; kk2. Thus,P
= ;

¡
 

¢
= 0 for    and, for  = , we find that ; = 1, such that

; =
( )

( )
(B.85)

354. A first interesting consequence of art. 353 arises for the special class of

polynomials  () = . In that case, if   , then ( ) = 0, but (
 ) 6= 0.

Introducing the polynomial form (B.81) and using
¡
 

¢
=
¡
+ 1

¢
= + in

(B.82) yields, for  ≤ ,

( ) =

X
=0

;+

which is written in matrix form, taking into account that ( ) = ( ) 
for 0 ≤  ≤ , as⎡⎢⎢⎢⎣

0 1 · · · 

1 2 · · · +1

...
...

...
...

 +1 · · · 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0;
1;
...

;

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0

0
...¡

 
¢
⎤⎥⎥⎥⎦

                     

https://doi.org/10.1017/9781009366793.017
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009366793.017
https://www.cambridge.org/core


12.2 Properties 471

The symmetric moment matrix

 =

⎡⎢⎢⎢⎣
0 1 · · · 

1 2 · · · +1

...
...

...
...

 +1 · · · 2

⎤⎥⎥⎥⎦
is an ( + 1)×( + 1) Hankel matrix2. The Gram-Schmidt orthogonalization process
(art. 352) shows that there always exists an orthogonal set of polynomials, such that

a set of not-all-zero coefficients {;}0≤≤ exists. This implies that the determinant
of the moment matrix  is non-zero. By Cramer’s rule (A.68), the solution is

; =

¡
 

¢
cofactor+1

det

In particular, the definition (A.36) of a cofactor in art. 212 shows that

; =
det−1
det

¡
 

¢
(B.86)

which is always different from zero.

By applying (B.86) for  = , any polynomial  () =
P

=0 
 can be written

as

( ) =

X
=0


¡
 

¢
=  (

 ) = 
; det

det−1

and the particular choice  () =  () shows that

det

det−1
=
( )

2;
 0 (B.87)

355. Another consequence of the orthogonality property in art. 353 is that for any

monic polynomial  () =
P

=0 
 with  = 1 and any set of monic orthogonal

polynomials  () with ; = 1, it holds thatZ 



2 ()  () ≥
Z 



2 ()  () = kk2 (B.88)

with equality only if  = . Among all monic polynomials of degree , an

orthogonal polynomial has the smallest integral of its square with respect to its

weight function  () and its orthogonality interval [ ].

Proof of (B.88): We considerZ 



( ()−  ())
2
 () =

Z 



2 ()  () +

Z 



2 ()  ()

− 2
Z 



 () ()  ()

2 We refer for properties of the Hankel matrix to Gantmacher (1959a, pp. 338-348).
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472 Orthogonal polynomials

and the last integral equals with art. 351 and art. 353Z 



 () ()  () = ( ) = ; kk2

Equating the coefficient of  in  () =
P

=0 ; () and (B.81) shows, with

the definition (B.81), that  = ;; and, thus, ; = 1. With
R 

2 ()  () =

( ) = kk2, we arrive atZ 



( ()−  ())
2
 () =

Z 



2 ()  ()−
Z 



2 ()  ()

and since the left-hand side is non-negative, we have established (B.88). ¤
The proof is generalized from a polynomial  () to a real function  () ∈ 2

[]
,

defined in art. 350. Similarly as above, we minimize
R 

( ()−  ())

2
 (),

where  () is a polynomial of degree  with real coefficients, which can be ex-

panded by art. 353 as  () =
P

=0 e (). Hence,Z 



( ()−  ())
2
 () =

Z 



2 ()  ()− 2
X

=0



Z 



e ()  ()  ()

+

X
=0



X
=0



Z 



e () e ()  ()

By orthonormality (art. 351),
R 

e () e ()  () = , and defining

 = ( e) = Z 



 () e ()  () (B.89)

we findZ 



( ()−  ())
2
 () =

Z 



2 ()  ()− 2
X

=0

 +

X
=0

2

=

Z 



2 ()  () +

X
=0

( − )
2 −

X
=0

2 ≥ 0

(B.90)

illustrating that the right-hand side is minimal when  = , thus when  () is

replaced by  () =
P

=0 e (), which leads to Bessel’s inequality,
X

=0

2 ≤
Z 



2 ()  () (B.91)

Since the right-hand side of (B.91) is independent of  and finite,
P∞

=0 
2
 con-

verges, implying that lim→∞  = 0. Moreover, if  ∈ 2
[]

, then equality

holds in Bessel’s inequality (B.91) when  → ∞ by Weierstrass’s approxima-

tion theorem (art. 304): for   0, there exists a degree  such that the min-

imizer polynomial  () obeys | ()−  ()| ≤  for all  ∈ [ ], so that
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12.3 The three-term recursion 473R 

( ()−  ())

2
 () ≤ 2. For  arbitrarily small, thus  arbitrarily large,

relation (B.90) reduces to Parseval’s equality

∞X
=0

2 =

Z 



2 ()  ()

12.3 The three-term recursion

356. The three-term recursion. Another, even more important application of

art. 353 follows from the polynomial  () = −1 (), that has an orthogonal
polynomial expansion

−1 () =
X
=0

; ()

where the coefficients are

; =
(−1 )
( )

=
(−1 )
( )

Since  is a polynomial of degree +1, we know from art. 353 that ; = 0 when

 − 1   + 1, thus when    − 2. Hence, we find that any set of orthogonal
polynomials possesses a three-term recursion for 2 ≤  ≤ 

−1 () = ; () + −1;−1 () + −2;−2 () (B.92)

When  = 1, then 0 () is a constant and −1 () = 0. Observe that any other

polynomial  () = − () with   1 will result in a recursion with 2 + 1

terms because
(− )
()

=
(−)
()

= 0 if −    + , thus   − 2.
The coefficients ; for  − 2 ≤  ≤  in the three-term recursion (B.92) can

be related to the coefficients ; in art. 354 of the moment expansion. Taking the

scalar product in (B.92) with −2 yields¡
−1 −2

¢
= ;

¡
 

−2¢+ −1;
¡
−1 −2

¢
+ −2;

¡
−2 −2

¢
Since

¡
−1 −2

¢
=
¡
−1 −1

¢
while

¡
  

−2¢ = 0 for    − 2, we find,
beside −2; =

(−1−2)
(−2−2)

, that

−2; =

¡
−1 −1

¢
(−2 −2)

=
−1;−1 det−1 det−3

−2;−2 (det−2)
2

(B.93)

where the last formula follows from (B.86). It demonstrates that −2; 6= 0.

Moreover, (B.87) shows that for monic polynomials, i.e., if ; = 1, that −2;  0

and, thus, (−1 ()  −2)  0. Substituting (B.81) in

−2; =
(−2 −1)
(−2 −2)

=

P−1
=1 −1;−2

¡
 −1

¢
(−2 −2)

=
−2;−2

¡
−1 −1

¢
(−2 −2)
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474 Orthogonal polynomials

leads with (B.85) to

−2; =
−2;−2 (−1 −1)
−1;−1 (−2 −2)

(B.94)

Further,

−1; =
(−1 −1)
(−1 −1)

=
1

(−1 −1)

Z 



2−1 ()  () (B.95)

shows that −1; is positive if    ≥ 0 and negative, if    ≤ 0. It can only be
zero provided symmetry holds,  = − and  () = 


=  (−).

The coefficient ; can be rewritten as

; =
(−1 ()  )

( )
=

P
=1 −1;−1

¡
 

¢
( )

=
−1;−1 ( )

( )

Using (B.85) leads to

; =
−1;−1
;

(B.96)

The expressions (B.93) and (B.96) simplify for monic polynomials where ; = 1.

357. Often, the three-term recursion (B.92) is rewritten in normalized form with

 () = e ()p( ) as
e () = (− −1;) e−1 ()p(−1 −1)

;
p
( )

− e−2 () −2;p(−2 −2)
;

p
( )

Substituting the expressions (B.96), (B.95) and (B.93) for the -coefficients yields

e () = (− −1;) e−1 () e;e−1;−1 − e−2 () e;e−2;−2e2−1;−1
where e; = ;√

()
. Thus, the normalized three-term recursion is

e () = (+) e−1 ()− e−2 () (B.97)

where  =
;−1;−1 ,  = −−1; ;−1;−1 and  =

;−2;−22−1;−1 = 
−1

. The

major advantage of the normalized expression is the relation  =

−1

, as illus-

trated in art. 358.

The converse is proven by Favard: if a set of polynomials satisfies a three-term

recursion as (B.92), then the set of polynomials is orthogonal. Favard’s theorem is

proven in Chihara (1978, p. 22) for monic polynomials, where  = 1 and   0.

358. Christoffel-Darboux formula. Multiplying both sides of the normalized three-

term recursion (B.97) by e−1 (),e−1 () e () = (+) e−1 () e−1 ()− e−2 () e−1 ()
Similarly, letting →  in (B.97) and multiplying both sides by e−1 () yieldse−1 () e () = ( +) e−1 () e−1 ()− e−2 () e−1 ()
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12.3 The three-term recursion 475

Subtracting the second equation from the first results in

e−1 () e ()− e−1 () e () =  (− ) e−1 () e−1 ()
−  {e−2 () e−1 ()− e−2 () e−1 ()}

At this stage, we employ the relation  =

−1

, that only holds for the normalized

three-term recursion (B.97) and not for (B.92). Defining

 =
e−1 () e ()− e−1 () e ()



leads to

(− ) e−1 () e−1 () =  − −1

Summing both sides over ,

(− )

+1X
=1

e−1 () e−1 () = +1X
=1

 −
+1X
=1

−1 = +1 − 0 = +1

because e−1 = 0. Hence, we arrive at the famous Christoffel-Darboux formula,
X
=0

e () e () = 1

+1

e () e+1 ()− e () e+1 ()
− 

(B.98)

which can also be written as
X
=0

e () e () = e ()
+1

e+1 ()− e+1 ()
− 

− e+1 ()
+1

e ()− e ()
− 

The special case, where  = , follows, after invoking the definition of the derivative,

as
X
=0

e2 () = e () e0+1 ()− e0 () e+1 ()
+1

=
e2 ()
+1





µe+1 ()e ()
¶
(B.99)

359. Associated orthogonal polynomials. Similar to the derivation of the Christoffel-

Darboux formula in art. 358, we consider the difference at two arguments of the

three-term recursion (B.92) for   1,

−1 ()− −1 () = ; [ ()−  ()] + −1; [−1 ()− −1 ()]

+ −2; [−2 ()− −2 ()]

We rewrite the left-hand side as

−1 ()− −1 () =  [−1 ()− −1 ()] + (− )−1 ()

and obtain

(− )−1 () = ; [ ()−  ()] + (−1; − ) [−1 ()− −1 ()]

+ −2; [−2 ()− −2 ()]
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476 Orthogonal polynomials

After multiplying both sides by
 ()

− and integrating over [ ], we haveZ 



−1 ()  () = ;

Z 



 ()−  ()

− 
 ()

+ (−1; − )

Z 



−1 ()− −1 ()
− 

 ()

+ −2;

Z 



−2 ()− −2 ()
− 

 ()

Since
R 

−1 ()  () = (−1 1) = 0 for   1 by orthogonality (art. 353), we

arrive, with the definition

 () =

Z 



 ()−  ()

− 
 () (B.100)

at the same three-term recursion as (B.92) for   1,

−1 () = ; () + −1;−1 () + −2;−2 ()

If  = 0, in which case 0 () is a constant, then (B.100) shows that 0 () = 0.

For  = 1 where 1 () = 1;1 + 0;1, the integral (B.100) with (B.82) gives

1 () = 1;10. By introducing (B.81) in (B.100), we have

 () =

X
=0

;

Z 



 − 

− 
 () =

X
=0

;

−1X
=0


Z 



−1− ()

Using (B.82) yields  () =
P

=0 ;
P−1

=0 
−1− . After reversal of the sum-

mation, we find that

 () =

−1X
=0

⎛⎝ X
=+1

;−1−

⎞⎠

is a polynomial of order  − 1. Since the polynomials  () satisfy a three-term
recursion, Favard’s theorem (art. 356) states that these polynomials are also or-

thogonal. The polynomials  (), defined by the integral (B.100), are called or-

thogonal polynomials of the second kind or associated orthogonal polynomials. The

analysis shows that, by choosing other initial conditions, another set of orthogonal

polynomials can be obtained from the three-term recursion (B.92).

360. The integral (B.100) of  () cannot be split into two integrals when  ∈
[ ], due to the pole at . However, when  ∈ C\ [ ], then we can write,

 () =  ()

Z 



 ()

− 
−
Z 



 ()

− 
 ()

For ||  max (||  ||), we expand 1
− =

P∞
=0



+1
and interchange the integra-

tion and summation, which is valid when assuming absolute convergence. The first
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12.3 The three-term recursion 477

integral,

 () =

Z 



 ()

− 
(B.101)

becomes

 () =

∞X
=0

1

+1

Z 



 () =

∞X
=0



+1

while the second integral,

 () =

Z 



 ()

− 
 () (B.102)

reads

 () =

∞X
=0

1

+1

Z 



 ()  () =

∞X
=

¡
 

¢
+1

because
¡
 

¢
= 0 for   , by orthogonality (art. 353). Hence, for large , we

rewrite  () =  () ()−  () as

 ()

 ()
=  ()−  ()

 ()
=  () +

¡
−2−1

¢
(B.103)

whose consequences are further explored in art. 367. Convergence considerations

when →∞ are discussed in Gautschi (2004).

361. Computing the weight function  (). The two functions  () and  () are

analytic in C\ [ ] and both integral representations resemble the Cauchy integral,
 () = 1

2

R
()

()

− , where  () is a contour that encloses the point  ∈ C. A
general theorem (Markushevich, 1985, p. 312) states that the integral of the Cauchy

type,

 () =
1

2

Z


 ()

 − 
 (B.104)

satisfies

lim
→0;∈(0)

 ()− lim
→0;∈(0)

 () =  (0) (B.105)

where  is a not necessarily closed path in the complex plane and on which

| ()−  (0)| ≤  ( − 0)

for any point  0 ∈ , and where    0 are con-

stants. The interior  (0) is a region enclosed
3 by a closed contour 1 (0) around

0 ∈  in which  () is analytic. The exterior  (0) is the region that is not

enclosed by a contour 2 (0). The contours 1 (0) and 2 (0) are here formed

by a circle around 0 with a radius such that it intersects the path  in two points

1 and 2 and such that  () is analytic in the enclosed region. The first contour

1 (0) follows the path  in the positive direction from 1 to 2 and returns to

3 An observer traveling in the direction of the contour around 0 in counter-clockwise sense finds
the interior on his left and the exterior on his right.
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478 Orthogonal polynomials

1 along the circle in positive direction, whereas contour 2 (0) similarly follows

the path  in the positive direction from 1 to 2, but it returns to 1 along the

circle around 0 in negative direction. Hence, any point  lying inside the contour

1 (0) is enclosed in positive direction, whereas any point  lying inside the con-

tour 2 (0) is enclosed in negative direction. Finally, consider the circle  (0)

around 0 that passes through 1 and 2. By Cauchy’s theorem and the fact that

 () is analytic inside the circle  (0), we have that  (0) =
1
2

R
(0)

()

− .
By deforming the circle into the contour  (0) = 1 (0) − 2 (0), we arrive at

(B.105).

We apply this theorem to the integral (B.102). The path  is the segment [ ]

on the real axis and 0 = 0 ∈ [ ]. The contour  (0) around 0 = 0 is the path

from 0−    to 0+    along the real axis and the circle segment lying above

the real axis (with positive imaginary part). The contour  0 (0) follows the same
segment from 0 −    to 0 +   , but returns along the semicircle below the

real axis. Hence,

lim
→0;∈(0)

 () = lim
→0

 (0 + )

lim
→0;∈(0)

 () = lim
→0

 (0 − )

Since the complex conjugate ∗ () =  (
∗), by the reflection principle (Titch-

marsh, 1964, p. 155) because  () is real on the real axis, we have that

 (0 − ) = Re  (0 − ) +  Im  (0 − )

= Re  (0 + )−  Im  (0 + )

Finally, (B.105) shows that

1


lim
→0

Im  (0 + ) = − (0) (0)

Similarly, from the integral (B.101), the density function is found at 0 ∈ [ ] by

 (0) = − 1

lim
→0

Im (0 + )

362. Cauchy transform. When the path of integration  in (B.104) coincides with

the real axis, art. 361 has demonstrated that the Cauchy transform Γ () of a

function  ,

Γ () =

Z 



 ()

 − 


possesses, for any  ∈ [ ], the inverse

 () = − 1

lim
→0

ImΓ (+ )

A short formal, but different demonstration of the inverse Cauchy transform is
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12.4 Zeros of orthogonal polynomials 479

based on the Dirac function. Indeed, for any  ∈ [ ], the characteristic property
of the Dirac function (see art. 172) shows that

 () =

Z 



 ()  (− ) 

Substituting the representation (7.3) of the Dirac function yields

 () = − 1

lim
→0

Im

Z 



 ()

− + 
 = − 1


lim
→0

ImΓ (+ )

12.4 Zeros of orthogonal polynomials

We illustrate that a lot of information about the zeros of orthogonal polynomials

can be deduced. Both the orthogonal polynomial  () and its normalized versione () = ()√
()

possess the same zeros.

363. Zeros of orthogonal polynomials.

Theorem 112 All zeros of the orthogonal polynomial  () are real, simple and

lie inside the interval [ ].

Proof: Art. 354 has shown that ( ) = 0 if   . The particular case  = 0

and  ≥ 1, written with the scalar product (B.79) asZ 



 ()  () = 0

indicates that there must exist at least one point within the interval ( ) at which

 () changes sign, because  () is a distribution function with positive density.

The change in sign implies that such a point is a zero with odd multiplicity. Let

1 2      be all such points and consider the polynomial  () =
Q

=1 (− ).

Art. 353 shows that ( ) 6= 0 but that ( ) = 0 if   ,Z 



 ()

Y
=1

(− )  () = 0

By construction,  ()
Q

=1 (− ) does not change sign for any  ∈ [ ] and,
hence, the integral cannot vanish. Orthogonality shows that the non-vanishing

of ( ) is only possible provided  = . The fundamental theorem of algebra

(art. 291) together with the odd multiplicity of each zero  then implies that all

zeros are simple. ¤

Szegő (1978, p. 45) presents other proofs. For example, the simplicity of the

zeros can be deduced by applying the Sturm sequence (art. 325) to the tree-term

recursion (B.97) assuming ;  0. Theorem 112 shows that any orthogonal

polynomial only possesses real and simple zeros. An arbitrary polynomial with

real coefficients possesses zeros that, with high probability, do not all lie on a line
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480 Orthogonal polynomials

segment in the complex plane, which illustrates the peculiar nature of orthogonal

polynomials.

Let  ≤ ;  −1;  · · ·  1; ≤  denote the zeros of the orthogonal

polynomial  (). Combining Theorem 112 and (B.1) yields

 () = ;

Y
=1

(− ;) (B.106)

Finally, if   0 and ;  0, then all coefficients {;}0≤≤ of  () =P
=0 ;

 in (B.81) are non-negative. As a consequence of Newton’s Theorem

97 in art. 328 and Theorem 112, the sequence {; ≥ 0}0≤≤ of the coefficients
in (B.81) is unimodal with either a plateau of two points or a peak.

364. Interlacing property of zeros of orthogonal polynomials. The main obser-

vations are derived from the Christoffel-Darboux formula (B.99), which implies,

assuming +1  0,

e () e0+1 ()− e0 () e+1 () ≥ 1

0

 0 (B.107)

because e0 () = 1√
0
. The simplicity of the zeros (Theorem 112) implies that the

derivative e0 () cannot have the same zero as e (). Hence, the above inequality
indicates that e () and e+1 () cannot have a same zero.
Theorem 113 (Interlacing) Let   ;  −1;  · · ·  1;   be the

zeros of the orthogonal polynomial  (). The zeros of  () and +1 () are

interlaced,

  +1;+1  ;  ;+1  −1;  · · ·  1;  1;+1  

In other words (art. 329), between each pair of consecutive zeros of  (), there

lies a zero of +1 (), thus, ;  ;+1  −1; for all 1 ≤  ≤ , while the

smallest and largest zero obey   +1;+1  ; and 1;  1;+1  .

Proof: Theorem 112 shows that the zeros are simple and real such that

0 (;)
0
 (−1;)  0

On the other hand, the inequality (B.107) implies that

−0 (;)+1 (;)  0 and − 0 (−1;)+1 (−1;)  0

Multiplying both and taking 0 (;)
0
 (−1;)  0 into account yields

+1 (;)+1 (−1;)  0

which means that there is at least one zero ;+1 between ;  ;+1  −1;.
Since the inequalities hold for all 1 ≤  ≤ , the argument accounts for at least −1
zeros of +1 (). With the convention that ;  0 for all  ≥ 0, we know that
 () is increasing at least from the largest zero on, 0 (1;)  0. The inequality
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12.4 Zeros of orthogonal polynomials 481

(B.107) indicates that +1 (1;)  0. By the convention ;  0 for all  ≥ 0,
we have that +1 ()  0 such that there must be a zero, in fact the largest 1;+1
of +1 () in the interval [1; ]. A similar argument applies for the smallest zero

+1;+1, thereby proving the theorem. ¤

If ; = , the interlacing Theorem 113 implies that the set {e ()}0≤≤ is
finite and that e () is the highest order polynomial of that finite orthogonal set
with a zero equal to ; = . All other smallest zeros are larger, i.e., ;   for

1 ≤  ≤ − 1.
Another noteworthy consequence of the interlacing Theorem 113 is the partial

fraction decomposition

 ()

+1 ()
=

+1X
=1

;+1

− ;+1

where the coefficients, in general, obey

;+1 = lim
→;+1

 () (− ;+1)

+1 ()
=

 (;+1)

0+1 (;+1)

Inequality (B.107) shows that all ;+1  0. We include here a sharpening of the

interlacing property whose proof relies on the Gaussian quadrature Theorem 115

derived in Section 12.5.

Theorem 114 Between two zeros of  (), there is at least one zero of  () with

  .

Proof: Assume the contrary, namely  () has no zero between ; and −1;
for some  ∈ [1 ]. Then, the polynomial  () =  () −2 () of degree  =

2− 2, where

−2 () =
 ()

(− ;) (− −1;)

is everywhere non-zero in [ ], except in the interval (; −1;), where  () is
negative. The Gaussian quadrature Theorem 115 shows, for  = 2− 2  2, thatZ 



 ()  () =

X
=1

 (;);  0

because (a) the Christoffel numbers ; are positive (art. 366), and (b)  (;)

cannot vanish at every zero ; of  () and  (;) ≥ 0 since, by hypothesis,

; ∈ [; −1;]. But this contradicts the basic orthogonality property,Z 



 ()  () = ( −2) = 0

established in art. 353. ¤
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482 Orthogonal polynomials

Szegő (1978, p. 112) mentions the following distance result between consecutive

zeros. If the density or weight function
 ()


=  () ≥ min  0 and the zeros

are written as ; =
+
2
+ −

2
cos ;, where 0  ;  , for 1 ≤  ≤ , then

it holds that

+1; − ;  
log



where the constant  depends on min,  and . If stronger constraints are imposed

on the weight function , the log factor in the numerator can be removed. More

precise results on the location of zeros only seem possible in specific cases and/or

when the differential equation of the set of orthogonal polynomials is known.

12.5 Gaussian quadrature

Lanczos (1988, pp. 396-414) nicely explains Gauss’s genial idea to compute the

integral
R 1
−1  ()  with “double order accuracy” compared to other numerical

integration methods. The underlying principle of Gauss’s renowned quadrature

method is orthogonality and properties of orthogonal polynomials. Before giving

an example, we first focus on the theory.

365. We consider the Lagrange polynomial −1 of degree  − 1 (art. 303) that
coincides at  points, defined by their finite coordinates (  ) for 1 ≤  ≤ , with

the arbitrary polynomial  () of degree   ,

−1 () =
X
=1

−1 (;) =
X
=1


 ()

(− ) 0 ()

where  () =
Q

=1 (− ) and  =  (). We further assume that the

abscissae coincide with the distinct zeros of the orthogonal polynomial  (), thus

 = ;. Then, from (B.106), it follows that
()

 0
(;)

=
()

0(;)
for all 1 ≤  ≤ 

and we obtain

−1 () =
X
=1

 (;)
 ()

(− ;)0 (;)

The difference polynomial  () =  () − −1 () has degree  and  ()

vanishes at the  points  = ;, taken as the zeros of  (). Thus,

 () = − () ()

where − () is some polynomial of degree  − . Taking the scalar product

( 1) or multiplying both sides by  () and integrating over [ ] shows that

( 1) = (− )
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12.5 Gaussian quadrature 483

which, by art. 353, vanishes provided   − , or 2  . In the case that 

is at most 2− 1 and ( 1) = ( − −1 1) = 0, we find thatZ 



 ()  () =

Z 



−1 ()  ()

=

X
=1

 (;)

Z 



 ()  ()

(− ;)0 (;)

In summary, we have demonstrated Gauss’s famous quadrature formula,

Theorem 115 (Gauss’s quadrature formula) Let   ;  −1;  · · · 
1;   be the zeros of the orthogonal polynomial  () on the interval [ ] with

respect to the distribution function  (). For any polynomial  () of degree 

at most 2− 1, Z 



 ()  () =

X
=1

 (;); (B.108)

where the Christoffel numbers are

; =

Z 



 ()  ()

(− ;)0 (;)
(B.109)

The extension from a polynomial  () to a real function  () ∈ 2[] may

suggest us to consider the remainder  () =  () − −1 (), which has  zeros
in [ ] since  (;) = −1 (;) for 1 ≤  ≤  and which, as in art. 304, can

be written as  () =  ()  (). However, since Gauss’s quadrature formula

(B.108) with  evaluations is exact for polynomials with degree at most 2− 1, a
sharper error estimate is achieved by considering Hermite interpolation (art. 304).

After integration of the Hermite interpolating polynomial (B.21) at the interpola-

tion points  = ; for 1 ≤  ≤  and replacing  () =
()

;
by (B.106), we

obtainZ 



 ()  () =

Z 



2−1 ()  () +
 (2) ()

(2)!2;

Z 



2 ()  ()

Using (B.108), we arrive at Gauss’s quadrature formula with remainderZ 



 ()  () =

X
=1

 (;); +
 (2) ()

(2)!2;
kk2 (B.110)

where     .

366. Christoffel numbers. The Christoffel numbers in (B.109) possess interesting

properties. First, let  () =
n

()

(−;)0(;)
o2
such that  (;) =  , then

Gauss’s quadrature formula (B.108) reduces to

; =

Z 



½
 ()

(− ;)0 (;)

¾2
 () (B.111)
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484 Orthogonal polynomials

demonstrating that all Christoffel numbers ; are positive.

The integral (B.102), corresponding to the associated orthogonal polynomials

 () and valid for  ∈ C\ [ ], actually is finite at the zeros of  (). Comparison
with (B.109) shows that

 (;) = −;0 (;)

Next, the Christoffel-Darboux formula (B.98), with  = ;, is

−1X
=0

e () e (;) = 1

+1

−e () e+1 (;)
− ;

Taking the scalar product ( 1) of both sides yields

−1X
=0

(e 1) e (;) = −e+1 (;)
+1

Z 



e ()
− ;

 ()

Art. 353 shows that (e 1) = 0 except when  = 0. In that case, e0 () = 1√
0

and (e0 1) = R 

e0 ()  () =

√
0 such that

P−1
=0 (e 1) e (;) = 1. The

definition (B.109) of the Christoffel numbers shows that

; =

Z 



 ()  ()

(− ;)0 (;)
=

Z 



e ()  ()

(− ;) e0 (;)
such that

1 = −e+1 (;)
+1

Z 



e ()
− ;

 () = −e+1 (;) e0 (;)
+1

;

Thus, the Christoffel numbers obey

; = − +1e+1 (;) e0 (;) = e−1 (;) e0 (;) (B.112)

where the latter follows from (B.97).

Finally, the Christoffel-Darboux formula (B.99) evaluated at  = ; combined

with (B.112) gives

; =
1P−1

=0 e2 (;) (B.113)

which again illustrates that all Christoffel numbers ; are positive.

367. Partial fraction decomposition of
()

()
. The associated orthogonal polyno-

mials (art. 359) are of degree − 1, such that the fraction ()

()
can be expanded

as

 ()

 ()
=

X
=1

;

− ;
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12.5 Gaussian quadrature 485

where we need to determine the coefficients ;. Substituting in (B.103)

 ()

 ()
−  () = 

¡
−2−1

¢
the partial fraction expansion and the integral (B.101) of  () yields

X
=1

;

− ;
−
Z 



 ()

− 
= 

¡
−2−1

¢
After expanding the left-hand side in a power series in −1 and after equating the
corresponding power of −, we obtain, for 0 ≤  ≤ 2− 1,

X
=1

; (;)
 −

Z 



 () = 0

Gauss’s quadrature formula (B.108) applied to  () =  for 0 ≤  ≤ 2 − 1
gives Z 



 () =

X
=1

;

;

whence ; = ;. In summary, the partial fraction decomposition becomes

 ()

 ()
=

X
=1

;

− ;

from which the Christoffel numbers follow as

; = lim
→;

 () (− ;)

 ()
=

 (;)

0 (;)
(B.114)

368. Parameterized weight functions. Suppose that the distribution function 

is differentiable at any point of [ ], and that  depends on a parameter . In

addition, we assume that the density or weight function  ( ) =
 ()


is positive

and that  ( ) is also continuous and differentiable in . The explicit dependence

on the parameter  in Gauss’s quadrature formula (B.108) is written asZ 



 () ( )  =

X
=1

 (; ()); ()

Differentiation with respect to  yieldsZ 



 ()
 ( )


 =

X
=1

0 (; ()) 
0
; (); () +

X
=1

 (; ())
0
; ()

For the particular choice of  () =
2()

−;() , we have that  (; ()) = 0 and
that

0 (; ()) =
 ()



¯̄̄̄
=;()

= (e0 (; ()  ))2 
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486 Orthogonal polynomials

such that Z 



e2 ( )
− ; ()

 ( )


 = (e0 (; ()  ))2 0; (); ()

On the other hand,µe e
− ; ()

¶
=

Z 



e2 ( )
− ; ()

 ( )  = 0

by orthogonality (art. 353). Subtraction from the previous integral yields

(e0 (; ()  ))2 0; (); () = Z 



e2 ( )
− ; ()

½
 ( )


−  ( )

¾


=

Z 



e2 ( )
− ; ()

(
()



 ( )
− 

)
 ( ) 

If the constant  is chosen equal to  = 1
()

()



¯̄̄
=;()

, then the function½
1

()

()


− 1

()

()



¯̄̄
=;()

¾
− ; ()

≥ 0

provided that 1
()

()


is increasing in . In that case, the integral at the right-

hand side is positive (because it cannot vanish at any point  ∈ [ ]) and, hence,
0; ()  0: the zero ; () of e ( ) is increasing in the parameter .
An interesting application is the choice  ( ) = (1− )1 () + 2 (), where

1 and 2 are two weight functions on [ ], both positive and continuous for

 ∈ ( ). In addition,

1

 ( )

 ( )


=

2 ()− 1 ()

(1− )1 () + 2 ()
=
1



⎛⎝1− 1


2()

1()
+ 1− 

⎞⎠
is increasing if

2()

1()
is increasing for 0    1. Then, we have shown above that

the zero ; () of e ( ) is increasing in . Let {1;;}1≤≤ and {2;;}1≤≤
denote the set of zeros of the orthogonal polynomials corresponding to 1 and 2,

respectively. Thus, 2;; = ; (1) is larger than 1;; =  (0) for all 1 ≤  ≤ ,

because  ( 0) = 1 () and  ( 1) = 2 (). In summary, if the ratio
2()

1()
of

two weight functions is increasing on  ∈ [ ], then the respective zeros obey
2;;  1;; for all 1 ≤  ≤ .

369. Numerical integration. Let us consider the integral
R 

 ()  (), which

we evaluate by the Gaussian quadrature formula (B.110) with remainder. The

Christoffel numbers {;}1≤≤ and the zeros {;}1≤≤ of the orthogonal poly-
nomial  () are independent of the function  (). Theorem 115 states that

(B.110) is exact for any polynomial  () of degree at most 2− 1. In fact, it can
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12.6 The Jacobi matrix 487

be shown (see Gautschi (2004)) that the Gaussian quadrature formula is the only

interpolating quadrature rule with  function evaluations with the largest possible

precision of 2− 1.
Since  () =  for Legendre polynomials  (), where  = −1 and  = 1,

the most straightforward numerical computation of the integral
R 

 ()  uses

Legendre’s orthogonal polynomials. After substitution  = +
2
+ −

2
,

Z 



 ()  =
− 

2

Z 1

−1


µ
+ 

2
+

− 

2


¶


Gauss’s quadrature formula (B.110) gives usZ 



 ()  ' − 

2

X
=1



µ
+ 

2
+

− 

2
;

¶Z 1

−1

 () 

(− ;) 0 (;)

where ; is the -th zero of  (). For Chebyshev polynomials  () studied in

Section 12.7, the Gaussian quadrature formula (B.110) simplifies toZ 1

−1

 ()√
1− 2

 =

Z 

0

 (cos )  =




X
=1



µ
cos

(2 − 1)
2

¶
+



22−1
 (2) ()

(2)!

because the zeros ; are given in (B.126), ; is specified in (B.124), ( ) =

2

in art. 381 and the Christoffel numbers (B.109) are all equal to ; =


. We refer

to Lanczos (1988, p. 400-404) for a numerical example that illustrates the power of

the Gaussian quadrature formula.

12.6 The Jacobi matrix

370. The Jacobi matrix. The three-term recursion (B.92) is written in matrix form

by defining the vector  () =
£
0 () 1 () · · · −1 ()

¤
as



⎡⎢⎢⎢⎢⎢⎣
0 ()

1 ()
...

−2()
−1()

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎣
0;1 1;1
0;2 1;2 2;2

. . .
. . .

. . .

−3;−1 −2;−1 −1;−1
−2; −1;

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0 ()

1 ()
...

−2()
−1()

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎣

0

0
...

0

()

⎤⎥⎥⎥⎥⎥⎦
Thus,

 () = Υ () +  ()  (B.115)
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488 Orthogonal polynomials

where the basic vector  =
£
0 0 · · · 0 1

¤
and the ×  matrix

Υ =

⎡⎢⎢⎢⎢⎢⎣
0;1 1;1
0;2 1;2 2;2

. . .
. . .

. . .

−3;−1 −2;−1 −1;−1
−2; −1;

⎤⎥⎥⎥⎥⎥⎦
We observe that, when  =  is a zero of  (), then (B.115) reduces to the

eigenvalue equation

Υ () =  ()

such that the zero  is an eigenvalue of Υ belonging to the eigenvector  ().

This eigenvector is never equal to the zero vector because the first component

0 () = 0;0 6= 0.
There must be a similarity transform to make the matrix Υ symmetric, since all

zeros of  () are real (Theorem 112). A similarity transform (art. 239) preserves

the eigenvalues. The simplest similarity transform is  = diag(1 2     ) such

that

eΥ = Υ−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0;1
1
2
1;1

2
1
0;2 1;2

2
3
2;2

. . .
. . .

. . .
−1
−2

−3;−1 −2;−1
−1


−1;−1

−1

−2; −1;

⎤⎥⎥⎥⎥⎥⎥⎦
In order to produce a symmetric tri-band matrix eΥ = eΥ , we need to require
that

³eΥ´
−1

=
³eΥ´

−1
for all 1 ≤  ≤ , implying for  ≥ 2 that 

−1
−2; =

−1


−1;−1, whence
³


−1

´2
=

−1;−1
−2;

. Art. 356 shows that −1;−1 and −2;

have the same sign. Thus,  =
q

−1;−1
−2;

−1 for 1 ≤  ≤  and we can choose

1 = 1 such that

 =

vuut−1Y
=1

;

−1;+1

The eigenvector belonging to the zero  equals e () =  (). After the simi-

larity transform , the resulting symmetric matrix eΥ is⎡⎢⎢⎢⎢⎢⎣
0;1

p
0;21;1p

0;21;1 1;2
p
1;32;2

. . .
. . .

. . .p
−3;−1−2;−2 −2;−1

p
−2;−1;−1p

−2;−1;−1 −1;

⎤⎥⎥⎥⎥⎥⎦
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12.6 The Jacobi matrix 489

371. Similarly as in art. 370, the three-term recursion (B.97) of the normalized

polynomials {e ()}0≤≤−1 is written in matrix form as



⎡⎢⎢⎢⎢⎢⎣
e0 ()e1 ()
...e−2()e−1()

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

−1

1

1
1

1
1

−2

2

1
2

. . .
. . .

. . .
1

−2
−−1

−1
1

−1
1

−1
−



⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
e0 ()e1 ()
...e−2()e−1()

⎤⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

0

0
...

0
1

e()

⎤⎥⎥⎥⎥⎥⎥⎦
Thus, in the normalized case where  =


−1

, the matrix eΥ is symmetric,
e () = eΥe () + 1



e () 
where the vector e () = diag³kk−1´  ().
If there exist two different similarity transforms 1 and 2 that transform

a matrix  into two different symmetric matrices, 1 = 1
−1
1 and 2 =

2
−1
2 , then 

1 1 = 
2 2. Indeed,  = −11 11 = −12 22 from

which 1 = 1
−1
2 22

−1
1 . Since 1 = 

1 and 2 = 
2 , we have that

1 =
¡
2

−1
1

¢
2
¡
1

−1
2

¢
. Hence, 1

−1
2 =

¡
2

−1
1

¢
and 2

−1
1 =¡

1
−1
2

¢
, which lead to 

1 1 = 
2 2. If 1 and 2 are, in addition, also

symmetric as in the case of a diagonal matrix, then 2
1 = 2

2 or 1 = ±2. Sincee () =  () kk−1, both similarity transforms 1 and 2 must be the same.

This implies that  = diag
¡p


¢
= diag

³
kk−1

´
, thus  = kk−2 = 1

( )
. In

addition, in agreement with art. 356, we have

−1; = −

p
−1;+1; =

1



Hence, transforming Υ by a similarity transform  to a symmetric matrix eΥ cor-
responds to normalizing the orthogonal polynomials.

372. Gerschgorin’s Theorem 65 tells us that there lies a zero  of  () in a

disk centered around −1; = −

with radius 1

−1
+ 1


. Overall, the symmetric

matrix eΥ leads to the sharpest bounds on the eigenvalues/zeros of  () because
the above similarity transform  minimizes the off-diagonal elements. However,

not always. In particular, ignoring the attempt to symmetrize Υ, we may choose 1
and  in such a way that

¡
Υ−1

¢
12
and

¡
Υ−1

¢
;−1 are arbitrarily small

but not zero. But, by making 1 and  very small, we increase the radius around

0;1 and −1;. Gerschgorin’s Theorem 65 indicates that there is a zero  close to

0;1 and another zero close to −1;.
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490 Orthogonal polynomials

373. Continued fraction associated to orthogonal polynomials. By systematic row

multiplication and subtraction from the next one, we can eliminate the lower diag-

onal elements eΥ−1; in the determinant det³eΥ− 
´
, which eventually results in

a continued fraction expansion of  = det
³eΥ− 

´
=
¯̄̄ eΥ− 

¯̄̄
,

 =

¯̄̄̄
¯̄̄̄
¯̄̄̄
−1

1
−  1

1
1
1

−2

2
−  1

2

. . .
. . .

. . .
1

−2
−−1

−1
−  1

−1
1

−1
−


− 

¯̄̄̄
¯̄̄̄
¯̄̄̄

We write the determinant  in block form,

 =

¯̄̄̄
¯ −1+1

1

1
1

1
1
1

1 1;

¯̄̄̄
¯

where the basis vector is 1 = (1 0   ) and where the matrix 1; is obtained by

deleting the first row and the first column in eΥ− ,

1; =

⎡⎢⎢⎢⎢⎢⎢⎣

−2+2

2

1
2

1
2

−3+3

3

1
3

. . .
. . .

. . .
1

−2
−−1+−1

−1
1

−1
1

−1
−+



⎤⎥⎥⎥⎥⎥⎥⎦
Invoking the Schur complement (A.57) yields

 = −1+1

1

¯̄̄̄
1; +

1

1

1

1

1+1

¯̄̄̄
and 1


1 =

b equals the zero matrix with same dimensions as −1, except for
the element b11 = 1. Thus,

 = −1+1

1

¯̄̄̄
¯ −2+2

2
+ 1

1

1
1+1

1
2

1
1
2

1 2;

¯̄̄̄
¯

where we denote by ; the matrix obtained by deleting the first  rows and the

first  columns in eΥ− . Again invoking (A.57) yields, with  =

−1

,

 =
1+1

12

µ
2+2− 2

1+1

¶¯̄̄̄
¯

1
2

1

2+2− 2
1+1

− 3+3

3

1
3

1

1
3

1 3;

¯̄̄̄
¯
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12.6 The Jacobi matrix 491

The next iteration

 = −1+1

123

µ
(2+2)− 2

1+1

¶Ã
(3+3)− 3

2+2 − 2
1+1

!

×
¯̄̄̄
¯̄ −

4+4

4
+ 1

3

1

3+3− 3

2+2−
2

1+1

1
4

1

1
4

1 4;

¯̄̄̄
¯̄

reveals the structure  =
(−1)Y

=1


Y

=1
 (), where the continued fraction

 () equals

 () = + − 

−1+−1 − −1
−2+−2−

−2

...−
...

2+2−
2

1+1

(B.116)

The continued fraction thus satisfies the recursion4

 () = + − 

−1 ()
(B.117)

Art. 370 shows that the characteristic polynomial  = det
³eΥ− 

´
has the

same zeros as  (), such that  =
(−1)
;

 (), and

 () =
;
Y

=1



Y
=1

 ()

from which,

 () =
−1;−1

;

 ()

−1 ()
=

e ()e−1 ()
Introducing  () =

()−1() into the recursion (B.117) again leads to the normal-
ized three-term recursion (B.97).

More results on continued fractions are presented in Gautschi (2004) and in

Chihara (1978).

4 In most textbooks, a finite continued fraction is written in a differently labeled form as

 = 0 − 1

1 − 2

2− 3

. . .−
. . .



from which the recursive structure is less naturally observed. If the determinant  is expanded
by the last row and last column, up to the first one, a same labeling would have been found.
The main purpose in classical treatment to use the highest index in the deepest fraction is to
study the convergence of lim→∞ 
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492 Orthogonal polynomials

374. If eΥ is positive semidefinite, then eΥ can be considered as a Gram matrix

(art. 280), i.e. eΥ =  where eΥ ≥ 0. Art. 370 demonstrates that eΥ is positive
semidefinite if all zeros of the orthogonal polynomials are non-negative. Theorem

112 guarantees semidefiniteness when the orthogonality interval [ ] lies on the

non-negative real axis, i.e., if    ≥ 0.
Since eΥ is a three-band matrix,  is a two-band matrix with diagonal elements

 =  for 1 ≤  ≤  and upper diagonal elements +1 =  for 1 ≤  ≤ − 1.
Indeed,

eΥ = X
=1

¡

¢

 =

X
=1



=  +−1−1 =  + −1−1

and

eΥ =
⎧⎨⎩

−1−1 if  = − 1
2 + 2−1 if  = 

 if  = + 1

Hence, if  = 1, comparison shows that eΥ11 = 21 and
eΥ12 = 11 such that

1 =
q
−1

1
and 1 =

1√−11
. For the -th row, we find the equations⎧⎪⎨⎪⎩
eΥ−1 = −1−1 = 1

−1eΥ = 2 + 2−1 = −
eΥ+1 =  =

1


whose solution, by iteration from  = 1, is a continued fraction

2 = −




+
1

−1−1 − 2
−1

−2−2−
2
−2

−3−3−
2
−3

...
...

22−
2
2

11

2 =
1

− +
2


−1−1−
2
−1

−2−2−
2
−2

−3−3−
2
−3

...
...

22−
2
2

11

satisfying the recursion 2 = −

− 1

2
−1

2
−1
. Either the positive square root³q

2 
q
2

´
or the negative square root

³
−
q
2 −

q
2

´
are solutions. By com-
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12.6 The Jacobi matrix 493

parison with the continued fraction (B.116) where  =

−1

, we verify that

2 = −
 (0)



and 2 = −
1

 (0)

In summary, the matrix , which satisfies eΥ = , is

 =

⎡⎢⎢⎢⎢⎢⎣
1 1
0 2 2

. . .
. . .

. . .

0 −1 −1
0 

⎤⎥⎥⎥⎥⎥⎦
The eigenvalues of  are its diagonal elements . The eigenvector  of  belonging

to  =  can be written explicitly: just write out  = , starting with the

last component () = 1{=}, and iterate upwards. Thus,  = diag( ())−1

can be explicitly written, where  is the matrix with its eigenvectors as columns,

and eΥ =  =
¡
−1

¢
diag ( ())diag ( ())−1

After eigenvalue decomposition, the symmetric matrix

eΥ = diag
³


³eΥ´´−1
where  = −1 is an orthogonal matrix (art. 247). The latter is a property
of symmetric matrices and does not hold in general. Hence,  is not necessarily

orthogonal, although the eigenvectors 1 2      of  are linearly independent.

Since eΥ is positive semidefinite,  ³eΥ´ ≥ 0 and, thus r

³eΥ´ is real such that
eΥ = diag

³


³eΥ´´−1 = diag

µq
(eΥ)¶  diag

µq
(eΥ)¶

= diag

µq
(eΥ)¶ 

µ
diag

µq
(eΥ)¶ 

¶
where  is an orthogonal matrix. Hence, we can construct the matrix  =

 diag

µq
(eΥ)¶ , which is a singular value decomposition5. Obviously, the

simplest choice is  = , in which case,  = diag

µq
(eΥ)¶ . However, mul-

tiplication by a diagonal matrix only multiplies row  in  by

q
(eΥ) and the

resulting structure should be the two-band structure of . Since the two-band struc-

ture of  is not orthogonal (the column vectors in  are not orthogonal),  = 

5 Although the singular values are unique, the singular vectors are not, and, hence  = Σ 

is not unique.
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494 Orthogonal polynomials

is not a correct choice. Also,  6=  , because  is not symmetric. Applying QR-

decomposition (see, e.g., Golub and Van Loan (1996)) to  = diag( ())−1

with  =  and −1 = 1

1 yields

 = diag ( ())1

1

Since  =  diag

µq
(eΥ)¶ , it remains to show that diag( ())1 is a

diagonal matrix. Unfortunately, the major difficulty is to find an orthogonalization

process for the eigenvectors  such that  = diag( ())−1 has a singular

value decomposition  =  diag

µq
(eΥ)¶ . There does not seem to exist a

general method to achieve this result. If it existed, we would have, at least for

the class of orthogonal polynomials with zeros on the positive real axis, a general

method to compute the exact zeros!

12.7 Chebyshev polynomials

Instead of the Legendre, Hermite or Jacobi polynomials, we have chosen the Cheby-

shev polynomials to exemplify an orthogonal set of polynomials, because Chebyshev

polynomials appear in the spectrum of the small-world graph (Section 6.2.2), the

cycle (Section 6.3) and the path (Section 6.4).

375. Definition. The Chebyshev polynomial of degree  is defined by

 () = cos () with  = cos  (B.118)

For real , cos  ranges between −1 and 1 and (B.118) defines the Chebyshev
polynomial  () for  in the interval [−1 1]. The compact definition for  ∈
[−1 1], corresponding to 0 ≤  ≤ , is

 () = cos ( arccos)

For complex  = , then cos  = cosh  which is larger than 1 for real  6= 0 and
the corresponding compact definition for   1 is

 () = cosh ( arccosh)

A direct consequence of the compact definition is

 ( ()) = cos ( arccos cos ( arccos)) = cos ( arccos)

demonstrating the semi-group property or commutativity under composition of the

Chebyshev polynomials,

 ( ()) =  () (B.119)

Rivlin (1974, p. 161) shows that no other polynomial than  itself can commute

with  if  ≥ 2. Among all polynomials  (), only the powers of  and  ()

obey  ( ()) =  ().
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12.7 Chebyshev polynomials 495

376. Polynomial form for  (). The Taylor expansion of the Chebyshev polyno-

mial  () around 0 is

 () =

X
=0

; (0) (− 0)


(B.120)

Writing − 0 = (− 1) + (1 − 0), substituting the binomial series in (B.120),

reversing the summations and equating corresponding powers in − 0 lead to

; (1) =

X
=

; (0)

µ




¶
(1 − 0)

−

with the obvious inverse after replacing 1 and 2. Choosing 0 = 0 thus expresses

the Taylor coefficients ; (1) around 1 in terms of the Taylor coefficients ; (0)

around 0 = 0. The Taylor coefficients ; (0) of  () around 0 = 0 in (B.120)

are elegantly derived from Euler’s formula  = cos  +  sin . Indeed, from

 = cos +  sin = (cos  +  sin )


the binomial expansion (cos  +  sin )

=
P

=0

¡



¢
 cos−  sin  is split in even

and odd powers of  using the general formula

X
=1

 () =

[2 ]X
=1

 (2) +

[+12 ]X
=1

 (2 − 1) (B.121)

as  = cos +
P[2 ]

=1

¡

2

¢
cos−2  sin2 

−2 +
P[+12 ]

=1

¡


2−1
¢
cos−2+1  sin2−1 

1−2 . Equat-

ing the real and imaginary part of both sides yields⎧⎨⎩ cos = cos  +
P[2 ]

=1

¡

2

¢
(−1) cos−2  sin2 

sin
sin 

= 1
sin2 

P[+12 ]
=1

¡


2−1
¢
(−1)−1 cos−2+1  sin2 

Only even powers of sin  occur. With sin2 =
¡
1−cos2¢ =P

=0

¡



¢
(−1)cos2,

we obtain cos =
P[2 ]

=0

P
=0

¡



¢¡

2

¢
(−1)+ cos−2(−)  and, after reversing

the sums, cos =
P[2 ]

=0

P[2 ]
=

¡



¢¡

2

¢
(−1)+ cos−2(−) . Let  =  − , then

0 ≤  ≤ £
2

¤
. Moreover,  =  −  ≥ 0 and  ≤ , so that  ≥ , while  ≤ £

2

¤
.

Hence, we arrive at

cos =

[2 ]X
=0

(−1)
⎛⎜⎝ [2 ]X
=

µ




¶µ


2

¶⎞⎟⎠ cos−2 
The sin

sin 
counterpart can be treated similarly. However, we will later in art. 378
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496 Orthogonal polynomials

see a more convenient way. With the definition (B.118), we find the Taylor expan-

sion around 0 = 0,

 () =

[2 ]X
=0

(−1)
⎛⎜⎝ [2 ]X
=

µ




¶µ


2

¶⎞⎟⎠−2 (B.122)

which demonstrates that  () =
P

=0 ; (0)
 is a polynomial of degree  in ,

valid for any complex number , with coefficients

−2; (0) = (−1)
[2 ]X
=

µ




¶µ


2

¶
(B.123)

Since (B.122) only contains powers of −2, we observe that

 (−) = (−1)  ()
The Chebyshev polynomials  () for first few degrees  are 0 () = 1 and

-1.0
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0.0
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1.0

C
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n(
x)

-1.0 -0.5 0.0 0.5 1.0

x

Fig. 12.1. The Chebyshev polynomials  () for  = 1 2    10 in the interval [−1 1].

1 () =  4 () = 8
4 − 82 + 1

2 () = 2
2 − 1 5 () = 16

5 − 203 + 5
3 () = 4

3 − 3 6 () = 32
6 − 484 + 182 − 1

The coefficient ; (0) of 
 in (B.123) equals, for   0,

; (0) =

[2 ]X
=0

µ


0

¶µ


2

¶
=

[2 ]X
=0

µ


2

¶
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12.7 Chebyshev polynomials 497

The binomial sum (1 + )

=
P

=0

¡



¢
 indicates that

(1 + )

+ (1− )


=

X
=0

µ




¶³
1 + (−1)

´
 = 2

[2 ]X
=0

µ


2

¶
2

from which the coefficient ; = ; (0) of the highest power in  in (B.81) equals

; (0) = 2
−1 (B.124)

377. Closed form for  (). A closed form for  () follows from cos  =
+−

2

and Euler’s formula as

cos =
1

2
{(cos  +  sin )


+ (cos  −  sin )

}

=
1

2

n³
cos  + 

p
1− cos2 

´
+
³
cos  − 

p
1− cos2 

´o
For real , it holds that  = cos  is in absolute value smaller than or equal to 1,

i.e. || ≤ 1 and the definition (B.118) of  () shows that

 () =
1

2

n³
+ 

p
1− 2

´
+
³
− 

p
1− 2

´o
which can be written, for ||  1, as

 () =
1

2

n³
+

p
2 − 1

´
+
³
−

p
2 − 1

´o
(B.125)

The closed form (B.125) straightforwardly extends to ||  1 as well and illustrates
that  (1) = 1,  (−1) = (−1) and  (0) =


 
2

+
− 

2


2
= cos 

2
= (−1).

378. Zeros and extrema and Chebyshev polynomial  (). The definition (B.118)

with 0 ≤  ≤  shows that cos = 0 for  =
(2−1)
2

for  = 1 2     , so that

the zeros  1;  2;      ; of  () are

; = cos
(2 − 1)

2
for 1 ≤  ≤  (B.126)

which indicates that all zeros are real, different and lying in the interval (−1 1).
With ; (0) = 2

−1 in (B.124) and  () =
P

=0 ; (0)
, the product form in

(B.1) becomes

 () = 2
−1

Y
=1

µ
− cos

µ
 (2− 1)

2

¶¶
(B.127)

The zeros of cos ( arccos )− 1 = 0 are  = cos
¡
2


¢
, for  = 1     , so that

the definition  () = cos ( arccos) and (B.1) leads to an alternative product

form

 ()− 1 = 2−1
Y

=1

µ
− cos

µ
2



¶¶
(B.128)
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498 Orthogonal polynomials

Similarly, the extrema of cos occur at  = , for  = 0 1      so that the

extrema of  (), obeying  (;) = (−1), are

; = cos



for 0 ≤  ≤ 

which also lie inside the interval (−1 1), except for 0; = 1 and ; = −1. Those
extrema of  () inside the interval (−1 1) are the zeros of  0 (), which is a
polynomial of degree − 1. By differentiating (B.118) with respect to  = cos ,

 0 () =



(cos)




= − sin

µ
1

− sin 
¶
= 

sin

sin 
(B.129)

and the polynomial of degree − 1, with zeros ; = cos  for 1 ≤  ≤ − 1,

−1 () =
1


 0 () =

sin

sin 
(B.130)

is called the Chebyshev polynomial of the second kind.

379. Differential equations of  (). Differentiation of (B.129) yields

 00 () = 




µ
sin

sin 

¶



= − 

sin2 

µ
 cos − cos  sin

sin 

¶
from which we deduce with (B.129) that  () satisfies the second-order linear

differential equation ¡
1− 2

¢
 00 ()−  0 () + 2 () = 0 (B.131)

Remarkably, we can integrate this second-order linear differential equation once.

After multiplying both sides in (B.131) by  0 (),¡
1− 2

¢
 00 ()

0
 () =  ( 0 ())

2 − 2 ()
0
 ()

and substituting  00 ()
0
 () =

1
2


( 0 ())

2
and  ()

0
 () =

1
2


( ())

2
,

we obtain ¡
1− 2

¢ 


( 0 ())

2
= 2 ( 0 ())

2 − 2



( ())

2

Let  =  (), then
¡
1− 2

¢


(0)2 − 2 (0)2 = −2 



¡
2
¢
and observing that




n¡
1− 2

¢
(0)2

o
=
¡
1− 2

¢



³
(0)2

´
− 2

³
(0)2

´
leads to





n¡
1− 2

¢
(0)2

o
= −2 



¡
2
¢

After integrating both sides¡
1− 2

¢
(0)2 = −22 + 

and using  (1) = 1, we find that the constant of integration is  = 2. In summary,

the Chebyshev polynomials  () also obey the first order non-linear differential

equation ¡
1− 2

¢
( 0 ())

2
= 2

¡
1−  2 ()

¢
(B.132)
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12.7 Chebyshev polynomials 499

Introducing the definition (B.130) of the Chebyshev polynomial of the second

kind  (), the first order non-linear differential equation (B.132) becomes

 2 ()−
¡
2 − 1¢2−1 () = 1

where we recognize the famous Pell diophantine equation 2 − 2 = 1 in the

unknown integers  and , given the integer . Hence, the integer  =  ()

and  = −1 (), given that  = 2 − 1 is an integer, solves the Pell equation
in number theory. On the other hand, standard solution techniques for the Pell

equation can generate integer solutions for the pair ( ()  −1 ()).

380. Coefficients of  (). We deduce a recursion for the Taylor coefficients

; (0) around 0 = 0 in (B.120) from the second-order linear differential equation

(B.131) in art. 379. By substitution of Taylor expansion (B.120) into the differential

equation (B.131) and simplifying ; (0) by , we obtain

¡
1− 2

¢ X
=0

 ( − 1) −2 − 

X
=0


−1 + 2

X
=0


 = 0

or

−2X
=0

( + 2) ( + 1) +2
 +

X
=0

¡
2 − 2

¢


 = 0

Equating corresponding powers of  yields,

( + 2) ( + 1) +2 +
¡
2 − 2

¢
 = 0 for 0 ≤  ≤ − 2

and
³
2 − (− 1)2

´
−1 = 0. Hence, for 0 ≤  ≤ − 2, we find the recursion

+2 = −(− ) (+ )

( + 2) ( + 1)


and −1 = 0. The recursion illustrates that all odd coefficients 2−1 = 0. After

iterating the recursion  times, we have

 = (−1) ( − 2)! (+  − 2)    (+  − 2) (−  + 2)    (−  + 2)

!
−2

With  = 2
−1 in (B.124), we find with  =  that

−2 = (−1) !

(− 2)! (2− 2) (2− 4)    (2− 2) 24    22
−1

=  (−1) (− − 1)!
(− 2)!! 2

−2−1 = (−1) 

− 

(− )!

(− 2)!! 2
−2−1

In conclusion, for  = 0 1    
£

2

¤
, the differential equation (B.131) leads to the
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500 Orthogonal polynomials

more concise6 Chebyshev coefficient of −2

−2; (0) = (−1) 

− 

µ
− 



¶
2−2−1 (B.133)

and the Taylor expansion (B.120) around 0 = 0 is

 () = cos ( arccos) =
1

2

[2 ]X
=0

(−1) 

− 

µ
− 



¶
(2)

−2
(B.134)

The Chebyshev polynomial of the second kind, defined by (B.130), is

 () =
sin (+ 1) arccos

sin arccos
=

[2 ]X
=0

(−1) (− )!

! (− 2)! (2)
−2

(B.135)

and has zeros at  = cos

+1

for  = 1      such that

 () = 2


Y
=1

µ
− cos 

+ 1

¶
(B.136)

381. Orthogonality and three-term recursion. The well-known orthogonality prop-

erty (B.80) in the theory of Fourier series isZ 

0

cos cos  = 0 for  6= 

and Z 

0

cos2  =

½

2

for  6= 0
 for  = 0

If we substitute  = cos in these integrals and invoke the definition (B.118), then

we find the orthogonal relations for the Chebyshev polynomialsZ 1

−1
 () ()

√
1− 2

= 0 for  6= 

and Z 

0

 2 ()
√
1− 2

=

½

2

for  6= 0
 for  = 0

which shows that the set { ()}≥0 is a sequence of orthogonal polynomials on
the interval [−1 1] with respect to the weight function ¡1− 2

¢−12
.

6 Comparison with (B.123) incidentally establishes the identity (Riordan, 1968)

[2 ]
=




 
2


=



− 

− 




2−1−2
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12.7 Chebyshev polynomials 501

From the trigonometric identity, cos+ cos (− 2)  = 2 cos (− 1)  cos , the
definition (B.118) directly leads to the three-term recursion (art. 356)

 () = 2−1 ()− −2 ()

with 0 () = 1 and 1 () = . Favard’s theorem (art. 357) demonstrates again

that  () is an orthogonal polynomial.

382. Generating functions. From the geometric series
P∞

=0 
 = 1

1− for
||  1, we obtain for real , after equating the real and imaginary part of both

sides, ( P∞
=0 

 cos  = 1− cos 
1−2 cos +2P∞

=0 
 sin  =  sin 

1−2 cos +2

With  = cos , the definition (B.118) provides us with the generating function

∞X
=0

 () 
 =

1− 

1− 2+ 2
(B.137)

while the definition −1 () = sin 
sin 

in (B.130) of Chebyshev polynomial of the

second kind indicates
∞X
=0

 () 
 =

1

1− 2+ 2
(B.138)

The real and imaginary part of both sides in
P∞

=0


!
= 



, that converges

for all  = , yields( P∞
=0

 cos 
!

=  cos(+) cos ( sin ( + ))P∞
=0

 sin 
!

=  cos(+) sin ( sin ( + ))

With  = cos  and (B.118), we obtain the exponential generating functions in the

real ,
∞X
=0

 ()

!
=  cos

³

p
1− 2

´
and

∞X
=0

+1 ()

( + 1)!
= 

sin
¡

√
1− 2

¢
√
1− 2

From the generating function (B.137), the Cauchy integral representation for the

-th derivative (B.46) gives

 () =
1

2

Z
(0)

1− 

1− 2+ 2


+1

where the contour  (0) encloses the origin. Since the integrand vanishes at ||→
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502 Orthogonal polynomials

∞, we deform the contour to enclose the entire -plane, except for the origin.

Cauchy’s residue theorem (Titchmarsh, 1964) yields

 () = − lim
→1

(1− ) ( − 1)

1− 2+ 2
1

+1
− lim

→2

(1− ) ( − 2)

1− 2+ 2
1

+1

where 1−2+2 = ( − 1) ( − 2) with 1 = +
√
2 − 1 and 2 = −√2 − 1,

from which we find again the closed form (B.125).
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Index

adjugate, 323
assortativity, 69, 161, 279

betweenness, 140

Catalan numbers, 262
chain of cliques, 178, 237
Cheeger constant, 152
Christoffel numbers, 481
Christoffel-Darboux formula, 327, 472
clique, 39, see complete graph
clique number, 81, 85, 101, 102
community, 153
complementary double cone, 228, 243
complete graph, 31, 35, 88, 125, 193
complex networks, 1, 271
reconstructability, 106, 287

complexity, 124, 191
weighted, 123

Courant-Fischer Theorem, 297, 361
current flow, 24, 175, 179
cut size, 152
cut-space of a graph, 22
cycle, 19, 21
Hamiltonian, 19, 41

cycle-space of a graph, 21—23

degree of a node, 16
in-degree, 17
out-degree, 17

determinant, 320
differences, 419, 432
Dirac function, 247, 359, 476
disjoint paths
Merger’s Theorem, 172

divided difference, 418

effective resistance matrix, 175
eigenvalues
adjacency matrix, 51
Laplacian matrix, 111

elementary orthogonal projector, 308
Euclid’s algorithm, 423, 441
expander, 152

Fiedler eigenvector, 137
forest, 123

Gauss transformation, 309
Gaussian Unitary Ensemble, 264
Godsil-McKay switching, 47
graph
angle, 52, 64, 73
antiregular, 231
asymmetric, 43
automorphism of graph, 43
bipartite, 212, 281
bisector of a graph, 150
co-eigenvector graphs, 106
coclique of a graph, 96, 101
component, 119
cone of a graph, 91—93, 119, 171, 212
cospectral, 42, 47
cycle or circuit, 40, 201
enumeration, 44
Erdos-Rényi random graph, 261, 264, 265,

288
fundamental weight, 52, 65, 73, 105
isomorphic, 42
multipartite, 47, 219
Paley, 59
path, 40, 203
pendant (degree one node), 173
Petersen, 46, 59
power law, 10
scale free, 10
simple, 15, 16
symmetric, 43
threshold, 119, 231, 274, 375
Turan, 57, 219
uniform degree graph, 230
weighted, 18

graph connectivity, 28, 119
edge connectivity, 171
vertex connectivity, 171

graph metrics
algebraic connectivity, 134, 218, 283
assortativity range, 285
diameter, 33, 75—77, 110, 151, 166
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514 Index

distance (or hopcount), 19
effective graph resistance, 177
eigenvector centrality, 93, 162, 290
graph energy, 291
hopcount, 128, 192
reconstructability coefficient, 289, 290

Hadamard product, 19
Hadamard’s inequality, 53, 335
harmonic function, 26, 180
Householder reduction, 312
Householder reflections, 48, 311

independence number, 101
independent set, 70
inequality
Bessel, 470
Cauchy-Schwarz, 315, 463
Chebyshev’s sum, 70
Hölder, 56, 71, 315, 354
Parseval, 470

integral of the Cauchy type, 268, 475
interlacing, 97, 101, 138, 145, 170, 371, 374,

376, 444
isoperimetric constant, 152

Kemeny constant, 183, 292
Kronecker product, 96, 227, 244, 390
Kronecker’s delta, xviii, 413

Lagrange interpolation polynomial, 335, 342,
413, 429

law
Kirchhoff ’s current law, 24
Kirchhoff ’s voltage law, 27
linear scaling law of the reconstructability

coefficient, 290
Marcenko-Pastur’s Law, 267
McKay’s Law, 259
Ohm’s law, 25
Wigner’s Semicircle Law, 261, 264

law of total probability, 315
levelset of a tree, 35, 215
line graph, 35, 38, 59, 201, 218, 272, 282
link weight structure, 19

majorization, 134, 383
matrix
adjacency matrix, 15
adjoint, 339, 371
circulant, 194
community matrix, 45, 154
companion matrix, 349, 350
distance matrix, 20
effective resistance, 176, 292
Gram, 386
h-hops matrix, 34
Hadamard, 336
Hermitian, 355
incidence matrix, 16
inverse, 324

Jacobi, 485
Laplacian (admittance matrix), 17
modularity matrix, 154, 159
normalized Laplacian, 110
orthogonal, 42
permutation matrix, 41
pseudoinverse Laplacian, 128, 176
quotient matrix, 45, 239
resolvent of a matrix, 159, 326, 368, 371
signless or unsigned Laplacian, 41
Stieltjes, 387
stochastic
doubly, 43

stochastic matrix, 20, 108, 291, 384
Vandermonde matrix, 74, 333, 351, 407, 416
weighted Laplacian, 19

Matrix Tree Theorem, 121
min-cut problem, 147
minor, 323
modularity, 153, 269
multiplicity, 344, 399

neighbor of a node, 16
network
electrical resistor network, 24, 113, 122, 133,

302
functional brain network, 276
interdependent, 293

orthogonal polynomials, 238, 240, 261, 359,
370, 465

associated, 474
Chebyshev polynomials, 259, 491

partition, 44, 146
equitable, 46, 105

path, 19
perturbation theory, 274, 391
polynomial
annihilating, 338
apolar, 447
characteristic, 322, 344
discriminant of a polynomial, 407, 408
elementary symmetric, 406
Gaussian, 41
minimal, 59, 75, 338, 424
monic, 400, 458, 466, 469, 471, 472
Newton identities, 53, 401
self-inversive, 412

potential, 25, 175, 180
power method, 353

random walk, 108, 257
reflection principle, 258, 263

reducibility, 119, 377
regular graphs, 57, 79, 117, 126, 159, 160, 194,

198
strongly, 59

resistance
effective, 175, 179, 181, 187, 189
relative, 177, 183, 189, 297, 300
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sampling, 414
scalar product, 112, 465
Schur complement, 328
separator, 147, 148
Sherman-Morrison-Woodbury formula, 330
shortest path, 19, 32, 75, 140, 167, 189
spacing, 88, 89, 458, 460
sparsification, 296
spectral gap, 77, 88, 109, 110, 117, 153, 187,

221, 225, 286
spectral radius, 51, 238
spectral similarity, 297
split graph, 96
Sylvester’s law of inertia, 314, 375

Tree
adjacency spectrum, 86, 106, 217
Laplacian spectrum, 218

triangle closure equation, 188

Unimodal sequence, 124, 444, 478

walk, 19
Eulerian, 19, 41
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