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SERIES EDITOR’S INTRODUCTION

Much has happened since the publication of Social Network Analysis, 2nd 
Edition. Perhaps most importantly from the standpoint of its content, 
“social network” has entered the modern lexicon. Facebook and YouTube 
started in the mid-2000s, quickly followed by Twitter, Snapchat,  WhatsApp, 
and others. Social media applications have exploded. The percentage of 
U.S. adults using at least one social media site increased from 5% in 2005 
to 25% in 2008, to 50% in 2011, and is now nearly 75% according to Pew 
Research Center estimates. Of course, social networks are not new. They 
have formed the organizational backbone of social life for many millennia 
and have been a focus of social science research for almost a century. What 
is new is broad public interest in social networks, including how they can 
be manipulated, for good or ill. Also new is the creation and accumulation 
of massive online datasets reflecting and recording participation in social 
media. These trends have inspired David Knoke and Song Yang to issue a 
new edition of their classic text.

As with the earlier editions, Social Network Analysis, 3rd Edition, pro-
vides a concise introduction to the concepts and tools of social network 
analysis. The authors are highly regarded technical experts, and the field 
itself can be quite complicated, but, as was the case with the earlier edi-
tions, this “little green cover” is readily accessible. Professors Knoke and 
Yang convey key material while at the same time minimize technical com-
plexities. The examples are simple—sets of five or six entities such as 
individuals, positions in a hierarchy, political offices, and nation-states. The 
set or sets of relations between them include friendship, communication, 
supervision, donations, and trade.

As with earlier editions, Social Network Analysis, 3rd Edition, would 
serve well as a course supplement at the undergraduate or graduate level. 
The authors have gone to great lengths to keep the math simple in all but 
the final chapter of the monograph. The volume is organized in a clear and 
straightforward manner. After a brief introduction in the first chapter, which 
situates the study of social networks in a broader context, the second chap-
ter takes up “network fundamentals,” defines central concepts, and demon-
strates multiple perspectives on how networks can be viewed and studied. 
Chapter 3 addresses social network data collection, specifically, how the 
choices made at the design phase such as how to define membership and 
where to set the boundary, how to sample network entities, and which rela-
tions to measure affect subsequent analysis and inference. This chapter also 
discusses missing data and data quality more generally. In Chapter 4, 



x   

Professors Knoke and Yang introduce basic methods for analyzing net-
works, presenting measures of nodes (e.g., degree centrality), dyads (e.g., 
reachability), subgroups (e.g., cliques), and whole networks (e.g., centrali-
zation). They describe and explain strict and more relaxed forms of struc-
tural equivalence at the end of the chapter. Level of difficulty increases in 
Chapter 5. Matrix algebra is needed for parts of this chapter, whereas basic 
algebra is all that is needed for Chapters 1 through 4. Chapter 5 introduces 
readers to advanced analytic methods such as clustering, multidimensional 
scaling, blockmodeling, community detection, and exponential random 
graph models (ERGMs), preparing them to read the technical literature on 
these topics.

In comparison with earlier editions, Social Network Analysis, 3rd Edi-
tion, reflects developments and changes in practice over the past decade. To 
begin with, Professors Knoke and Yang update the specific language used 
by network researchers (e.g., whole networks rather than complete net-
works). In addition, they expand coverage of some topics. For example, 
whereas the earlier edition presented affiliation models in terms of bipartite 
models alone, the third edition provides a more general discussion, cover-
ing tripartite as well as bipartite models. The authors also describe impor-
tant recent developments in network analysis, especially in the fifth chapter. 
ERGMs are a prime example. Analysts interested in statistically modeling 
network ties as an outcome need to account for clustering and endogeneity. 
When the second edition was published, P* models were the recommended 
approach for this, but they have been replaced by ERGMs since then. 
Finally, throughout the volume, Professors Knoke and Yang comment on 
the challenges and opportunities offered by Internet and social media data.

Social Network Analysis is one of the most popular “little green books” 
in the Quantitative Applications in the Social Sciences series. It draws on 
the authors’ years of experience to provide an initial entrée into a highly 
complex area of study, laying a firm foundation on which readers at all 
levels can continue to build. With the publication of the third edition, if 
anything, its popularity will increase.

—Barbara Entwisle

Series Editor
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Chapter 1

INTRODUCTION TO SOCIAL NETWORK ANALYSIS

Social networks are as old as the human species. As small bands of hunter-
gatherers spread around the globe, their survival depended on cooperative 
strategies for pursuing game and finding good foraging grounds. Ties of 
family and extended kin were crucial to raising the next generations. With 
increased size and density of agrarian settlements, succeeded by expanding 
urban civilizations, networks grew increasingly complex and indispensable 
for merchants involved in long-distance commerce and armies engaged in 
conquest. Palace and court intrigues ran on gossip, rumor, and favor-trading 
among political factions. Scientific and technological advances necessi-
tated information flows through invisible colleges of experts. Social net-
works have a truly ancient lineage yet are seldom noted nor well understood 
by their participants.

People today commonly envision social networking as clusters of 
 coworkers going for lunch or coffee, teams of dormmates playing basketball 
or softball, and bunches of friends chewing the fat. Yes, those small groups 
are all social networks. To give a formal definition, a social network is a set 
of actors, or other entities, and a set or sets of relations defined on them. In 
the three preceding examples, the first actors are coworkers and the relations 
are lunchmate and coffeemate; the second actors are residents of the same  
dorm and playing sports is the relation; the third network is friends gossip-
ing leisurely. Applying the definition to diverse social settings, we can 
easily uncover numerous social networks, some more formal than the three 
previously described. For example, a college academic unit has a social 
network composed of faculty members, staff, students, and administrators. 
Multiple sets of relations suffuse such networks: collegial relations among 
faculty members, faculty advising graduate students, faculty instructing 
undergraduates, and administrators supervising faculty and staff. A police 
department is also structured as a formal social network, in which officers 
at the same rank are colleagues, whereas a quasimilitary chain of command 
establishes hierarchical authority relations. Typical order from top down 
would consist of chief of police, deputy chief, captain, lieutenant, sergeant, 
corporal, patrol officer.

Although people typically conceive the actors in social networks as 
human beings, they can just as well be collective entities or aggregated 
units, such as teams, groups, organizations, neighborhoods, political parties, 
and even nation-states. For example, corporations can engage in cooperative 
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and competitive relations to pursue many outcomes, such as jointly develop-
ing new technologies and products or acquiring greater market shares 
(Knoke, 2001). Interorganizational relations take many governance forms, 
from contractual agreements to equity stakes (Child, 2005; Yang, 
 Franziska, & Lu, 2016). Inside organizations, work groups and teams often 
engage in knowledge transfers or information sharing to facilitate innova-
tion and improve task performance (Tsai, 2001). International relational 
networks also emerge and evolve, including military alliances and conflicts, 
trade partnerships and disputes, human migrations, intelligence exchanges, 
and technology sharing and embargoes (Yang et al., 2016, Chapter 8).

Nonsocial networks are prevalent in many domains: technology net-
works, computer networks and the Internet, telephone networks and electri-
cal power grids, transportation and logistics networks, food delivery, and 
patent-citation networks. They share some similarities with social net-
works, except that instead of actors their units are physical entities, such as 
computers and transformers, and their relations are transmission and deliv-
ery lines such as Ethernet cables, wireless connections, airline routes, and 
interstate highways. We mention nonsocial networks primarily to note that 
networks are the subjects of studies by many disciplines besides the social 
sciences. Those investigations illuminate and inspire one another, engen-
dering strong momentum to improve network knowledge, including social 
network analysis (Knoke & Yang, 2008). For example, after mathemati-
cians developed graph theory, computer scientists applied it to construct 
optimal computer networks. Social network scholars can borrow algo-
rithms from computer and mathematical sciences to decipher communica-
tion networks among friends, coworkers, and organizations.

Sociology built a long tradition of examining the social contexts of social 
networks. Founding fathers such as Georg Simmel, Émile Durkheim, and 
Max Weber promoted a structural perspective in the study of human behav-
iors. Social psychologist Jacob Moreno (1934) was directly responsible for 
laying the foundation of modern social network analysis. With Helen Jen-
nings, Moreno invented sociometry to draw maps visualizing individuals 
and their interpersonal relations, revealing complex structural relations 
with simple diagrams. Moreover, Moreno and other pioneering social net-
work scholars endeavored to explain how network structures affect human 
behaviors and psychological states (Freeman, 2004). On the one hand, we 
can better understand people’s actions and decisions by examining their 
social networks because networks provide participants with both opportu-
nities and constraints. On the other hand, the formation and change of 
social networks themselves have been the object of many research projects. 
An important sociological principle is social homophily, which asserts that 
people tend to form positive relations with others similar to themselves. 



   3

Actors could be attracted to others based on similarity of attributes—such 
as gender, age, race, ethnicity, or socioeconomic status—or similarity of 
behaviors—such as life experiences, political preferences, religious beliefs, 
or hobby interests. In this perspective, social relations are outcomes, or 
dependent variables, occurring because actors share some of the independ-
ent variables listed previously.

Social network analysis was vitally important to the inception of eco-
nomic sociology, a major specialty in sociology. In his classical article 
applying sociology to economic actions, Mark Granovetter (1985) criti-
cized the undersocialized view of economists in which human decision 
making is driven solely by subjective expected utility maximization. Sur-
prisingly, Granovetter likewise disapproved of the oversocialized view of 
sociologists in which human actions are determined solely by norms and 
social roles. So how does one avoid both under- and oversocialized expla-
nations of human behaviors? The answer, quite obviously, is by using social 
network analysis: by looking at actors’ social networks, we can better 
understand their decisions and actions. Social networks generate localized 
norms, rules, and expectations among their members, which reinforce 
mutual trust and sanction malfeasance. Thus, by examining how social 
networks actually operate as both causes and consequences of human per-
ceptions and actions, theorists and researchers avoid accepting either over-
socialized or undersocialized perspectives. More importantly, although 
Granovetter (1985) emphasized economic behaviors, his arguments are 
very relevant to many social pursuits, such as making friends, casting votes, 
looking for a job, seeking promotion, finding a therapist, searching for 
emotional support, and locating instrumental help.

Early sociological and anthropological research on social networks 
inspired other disciplines to investigate the mechanisms instigating net-
work formation in those fields. Over the past half century, mass communi-
cation, strategic management, marketing, logistics, public administration, 
political science, international relations, psychology, public health, crimi-
nology, and even economics begin introducing ideas and methods of social 
network analysis into those disciplines. For example, Zeev Maoz (2012) 
analyzed international trade and military alliances as network processes. He 
found that international trade follows a preferential attachment or band-
wagon process: all nations want a quick and short connection to a few key 
nations in the global trade network, resulting in a highly condensed, single-
core structure. In contrast, for military alliances, nations tend to partner 
with countries sharing similar political ideologies and regime structures. 
This homophily preference produces a network configuration consisting of 
multiple small military alliance clusters that are only sparsely intercon-
nected (see also Yang et al., 2016, p. 198).
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We would be remiss not to mention social media as an explosively grow-
ing component of social networks. Facebook, Twitter, LinkedIn, WeChat, 
and other apps facilitate a massive amount of daily information exchange 
among billions of users. Much social networking nowadays occurs in vir-
tual spaces as users contact one another via computers, laptops, iPad tab-
lets, and smartphones linked together by Ethernet cables or wireless. 
Computer communication networks and human social networks converge, 
engendering innumerable research opportunities and challenges for social 
and computer scientists. How does one best search, capture, aggregate, 
store, share, process, reduce, and visualize vast volumes of complex data 
generated by online social networkers (Press, 2013; Lohr, 2013)? John 
Mashey, chief scientist at Silicon Graphics, is often credited with coining 
the term Big Data, which he described in a slide presentation as “storage 
growing bigger faster” (1998, p. 2). Exponentially bourgeoning quantities 
of structured and unstructured information have revolutionized businesses, 
nonprofits, and governments. For social network researchers, Big Data is a 
trove of rich relational databases and a smörgåsbord of computer tools for 
data mining, information fusion, computational intelligence, machine 
learning, and other applications (de Nooy, Wouter, Mrvar, & Batagelj, 
2018). Although Big Data enhances organizational operations and out-
comes, it also raises numerous ethical and privacy challenges, such as the 
rise of surveillance state capacities to predict and control populations 
(Brayne, 2017; Madden, Gilman, Levy, & Marwick, 2017). Russian manip-
ulation of the 2016 U.S. presidential election was only the most notorious 
of innumerable criminal abuses of Big Data on social media platforms. 
Calls for governmental regulation of social media companies encounter 
conundrums of how to protect platforms and safeguard free speech while 
prohibiting dangerous content (Berman, 2019). The fate of our democracy 
hangs in the balance.

In sum, social network analysis is a vibrant multidisciplinary field. Peter 
Carrington and John Scott called it “a ‘paradigm’, rather than a theory or a 
method: that is, a way of conceptualizing and analyzing social life” (2011, 
p. 5). We believe the network paradigm has roots in and thrives on the 
integration of three elements: theories, methodologies, and applications. 
For theories, network analysis demands serious commitment that prioritizes 
actor interdependence and connectivity, emphasizing structured relations 
among social entities. For methodologies, network analysis borrows eclec-
tically from diverse disciplines, collaborating across the aisles to create 
innovative procedures. For applications, people increasingly use their net-
working skills to navigate along complex interorganizational pathways to 
acquire desired goods and services, such as better healthcare, shopping 
bargains, and recreational experiences.
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This volume updates the second edition of Social Network Analysis by 
Knoke and Yang (2008). In addition to providing a general overview of 
fundamental methodological topics, we cover new developments of the 
past decade. Our approach is didactic, aimed primarily at graduate students 
and professionals in many social science disciplines, including sociology, 
political science, business management, anthropology, economics, psychol-
ogy, public administration, public health, and human resources. College 
faculty could assign it as a text in graduate-level courses, use it for work-
shops at professional association meetings or summer instructional insti-
tutes, or study it to learn more about networks on their own. Graduate and 
advanced undergraduate students interested in social network analyses can 
read it to get a jump-start on their social network skills and intellectual 
aspirations. Professionals face many challenges in developing social net-
work research, such as how to design a social network project, details and 
problems that may arise during network data collection, and alternative 
techniques for analyzing their social network data. Social network scholars 
may find this volume a useful brief refresher or reference book. For more 
advanced texts, we suggest Easley and Kleinberg (2010); Dorogovtsev and 
Mendes (2014); Lazega and Snijders (2015); de Nooy, Mrvar, and Batagelj 
(2018); and Newman (2010).

We frequently illustrate concepts and methods by referring to substan-
tive social network research problems, citing examples from children’s 
playgroups to organizations, communities, and international systems. We 
tried to write with a precision and freshness of presentation using concise 
language that minimizes technical complexities. The book consists of 
five substantive chapters. Chapter 2 introduces fundamental network 
assumptions and concepts, as applied to a variety of units of observation, 
levels of analysis, and types of measures. It contrasts relational contents 
and forms of relations and distinguishes between egocentric and whole 
networks. The structural approach emphasizes the value of network 
analysis for uncovering deeper patterns beneath the surface of empirical 
interactions. Chapter 3 concerns issues in collecting network data: 
boundary specification, data collection procedures, cognitive social 
structures, missing data, measurement error, and collecting online social 
media and Big Data. In Chapter 4, we discuss basic methods of network 
analysis, including graphs and matrices; centrality, prestige, and power; 
social distance, paths, walks, and reachability; transitivity and cliques; 
and size, centralization, density, and different measure of equivalence for 
pairs of actors or entities. Chapter 5 gives an overview of more-advanced 
methods of network analysis, including ego-nets; clustering, multidimen-
sional analysis, and blockmodels; 2-mode and 3-mode networks; com-
munity detection; and exponential random graph models. The final 
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section concludes with some speculations about future directions in 
social network analysis.

After years of painstaking efforts, network analysts developed several 
computer packages to facilitate social network data collection and analyses. 
Softwares vary on many dimensions, such as operating systems, affordabil-
ity, learning curves, and strengths and weaknesses. We attached an 
 Appendix that summarizes some useful packages and contrasts them on 
those dimensions. We remain most impressed, however, with the breadth 
and user-friendly qualities of UCINET (Borgatti, Everett, & Freeman, 
2002) as both a teaching and a research tool for smaller-scale social net-
work analyses. Consequently, we used it to make this edition whenever we 
demonstrated social network analysis methods.
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Chapter 2

NETWORK FUNDAMENTALS

In this chapter, we discuss fundamental concepts for understanding social 
network analysis methods. We use terms and definitions most widespread 
and accepted by academic researchers but in instances of disagreement 
defer to sociological perspectives. We cite many examples from diverse 
disciplines that illustrate these basic concepts. Interested readers should 
read numerous publications to deepen their understanding of how network 
analysis methods can be applied to investigate substantive problems in 
their fields.

To clarify the distinctive social network perspective on social action, a 
contrast to individualistic, variable-based approaches may be insightful. 
Many social science theories, possibly a large majority, assume that actors 
make decisions and act without regard to the behavior of other actors. 
Whether analyzed as utility-maximizing rational calculations or as drive-
reduction motivation based on causal antecedents, such explanations pri-
marily consider only the characteristics of persons while ignoring the 
broader interaction contexts within which social actors are embedded. In 
contrast, network analysis explicitly assumes that actors participate in 
social systems connecting them to other actors and that their relations com-
prise important influences on one another’s behaviors. Central to the theo-
retical and methodological agenda of network analysis is identifying, 
measuring, and testing hypotheses about the structural forms and substan-
tive contents of relations among actors. This distinctive structural-relational 
emphasis sets social network analysis apart from the individualistic, varia-
ble-centric traditions still prevalent in much social science theory and 
research. We see encouraging signs that many social science disciplines are 
increasingly embracing structural-relational explanations of social action.

2.1 Underlying Assumptions

The network perspective emphasizes structural relations as its key orient-
ing principle. Siegfried Nadel, the great British anthropologist, proposed a 
relational definition of social structure: “We arrive at the structure of a 
society through abstracting from the concrete population and its behaviour 
the pattern or network (or ‘system’) of relationships obtaining ‘between 
actors in their capacity of playing roles relative to one another’” (Nadel, 
1957, p. 12). By network, he meant “the interlocking of relationships 
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whereby the interactions implicit in one determine those occurring in oth-
ers” (p. 16). By separating structural forms from their empirical contents, 
structural analysts can uncover the underlying systems of roles that arise 
from interdependent activities of the persons performing those roles. Nadel 
further contributed to nascent network science by suggesting that matrix 
methods could graphically depict network relations. Nadel’s conceptualiza-
tion of networks as relational social structures was widely adopted by social 
network theorists and researchers over the ensuing decades of develop-
ment. For example, Harrison White and his colleagues defined social struc-
ture as “regularities in the patterns of relations among concrete entities; it 
is not a harmony among abstract norms and values or a classification of 
concrete entities by their attributes’’ (White, Boorman, & Breiger, 1976, 
pp. 733–734). More recently, the core mechanisms in Crossley and 
 Krinsky’s (2016) relational approach to sociology are interactions,  relations, 
and networks. In network analyses, the entities may be individual natural 
persons, small groups, organizations, or even nation-states. Some types of 
network entities lack agency, such as documents posted on websites and 
participatory events such as sports matches and social movement protests. 
The patterns of relations connecting members of one or more sets of entities 
comprise the macrosocial contexts, or overall relational structures, that 
influence actor perceptions, attitudes, beliefs, decisions, and actions. The 
primary objectives of network analysis are to measure and represent these 
structural relations accurately and to explain both why they occur and what 
their consequences are.

Social network analysis rests on three underlying assumptions about 
structural relations and their consequences. First, structural relations are 
often more important for understanding observed behaviors than are such 
characteristics as race, gender, age, socioeconomic status, and political 
ideology. For example, research on voting behavior and social movement 
participation found that egocentric network structures more strongly 
influence people’s choices than respondent attributes (Diani, 2004; 
 Huckfeldt & Sprague, 1987; Knoke, 1990). Many actor attributes remain 
unaltered across the numerous social settings in which they participate 
(a woman’s age, race, and education remain unchanged whether at home, 
at work, and at church). In contrast, many structural relations occur only 
at specific time-and-place locales and either vanish or are suspended 
when participants are elsewhere (e.g., student-teacher and doctor-patient 
relations do not exist outside school and clinic settings, respectively). A 
man holding a menial factory job requiring little initiative may be the 
dynamic leader of his church and an enthusiastic softball team player. 
Such behavioral differences are difficult to reconcile with unaltering gen-
der, age, and status attributes but comprehensible on recognizing that 
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people’s structural relations can vary markedly across social contexts 
within which they are embedded. The structural-relational explanations 
favored by network analysts depart markedly from substantialist 
approaches premised on static ‘‘thing-concepts’’ as their primary units of 
analysis: essences, self-action, norm-based conformity, rational choice, 
and variable-centric and social identity approaches (Emirbayer, 1997). In 
assuming that patterned relations influence social entities apart from their 
attributes, network analysis offers distinctive theoretical and empirical 
explanations of the origins of social action.

Second, social networks affect actor perceptions, beliefs, and actions 
through diverse structural mechanisms that are socially constructed by 
relations among entities. Direct contacts and more-intensive interactions 
dispose people and organizations to be better informed, more aware, and 
more susceptible to influencing or being influenced by others. Indirect 
relations through intermediaries (in popular imagery, agents who broker 
connections for their clients) also bring exposure to new ideas and potential 
access to useful resources that may be obtained through exchanges with 
others. For example, in a classic network study by Mark Granovetter 
(1973), job seekers typically obtained less useful information from their 
intimate circles, whose members already shared and circulated the same 
intelligence, than from their weaker and more distant social contacts. Rela-
tional structures provide complex pathways for assisting or hindering flows 
of knowledge, gossip, and rumor through a population (Fang,  McAllister, & 
Duffy, 2017). A variety of structural-relational factors explains racial dif-
ferences in the spread of HIV/AIDS infections among young men who 
have sex with men (Mustanski, Birkett, Kuhns, Latkin, & Muth, 2015) and 
the propagation of financial distress through the international banking net-
work during the global financial crisis of the aughts (Kojaku, Cimini, 
Caldarelli, & Masuda, 2018). Physical illness, mental health, and recovery 
from substance abuse are strongly affected by people’s social support net-
works (Cullen,  Mojtabai, Bordbar, Everett, Nugent, & Eaton, 2017; Ste-
vens, Jason, Ram, & Light, 2015), with social media exerting some unusual 
impacts (Lu & Hampton, 2017; Pallotti, Tubaro, Casilli, & Valente, 2018). 
Structural relations are vital to building cohesion and solidarity within a 
group but may also reinforce prejudices and intensify conflict with out-
groups (Bliuc, Faulkner, Jakubowicz, & McGarty, 2018; Roversi, 2017). 
Competitive and cooperative relations enable innovation in corporate sup-
ply chains  (Delgado-Márquez, Hurtado-Torres, Pedauga, & Cordón-Pozo, 
2018), mobilization for collective action by social movements (Diani, 
2016), and the operation of ‘‘dark networks’’ for drug trafficking, immi-
grant smuggling, and terrorist campaigns (Wu & Knoke, 2017). By chan-
neling information, money, and other types of resources to particular 
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structural locations, networks help to create interests and shared identities 
and to promote shared norms and values. Network analysts seek to uncover 
the mechanisms through which social relations affect social entities and to 
identify the contingent conditions under which particular mechanisms 
operate in specific empirical contexts.

The third underlying assumption of network analysis is that structural 
relations should be viewed as dynamic processes. This principle recognizes 
that networks are not static structures but are continually changing through 
interactions among people, groups, or organizations. In applying their 
knowledge about networks to leverage advantages, network entities also 
transform those structural relations, both intentionally and unintentionally. 
For instance, in an intervention experiment to reduce conflict and bullying 
among students in 56 schools, experimenters comprehensively measured 
every school’s networks, then randomly selected “seed groups” of 20 to 32 
students to be encouraged to take public stands against conflict (Paluck, 
Shepherd, & Aronow, 2016). Disciplinary reports of conflict fell by 30% in 
the treatment schools compared to control-group schools, but the effect was 
stronger for seed groups containing more students who attracted greater 
student attention. Apparently, those popular students changed their network 
peers’ beliefs and behaviors by publicly stigmatizing conflict and bullying 
as less socially normative. Such dynamics exemplify the more general 
‘‘micro-to-macro problem’’ in the theory of social action (Coleman, 1986). 
The core issue is how large-scale systemic transformations emerge out of 
the combined preferences and purposive actions of individuals. Because 
network analysis simultaneously encompasses both structures and entities, 
it provides conceptual and methodological tools for linking changes in 
actors’ microlevel choices to macrolevel structural alterations. The increased 
availability of longitudinal datasets, especially large online networks, cou-
pled with methodological developments for analyzing multilevel relations, 
are accelerating research on cross-level dynamic processes (Lazega & 
Snijders, 2015; Snijders, Steglich, & Schweinberger, 2017). Likewise, 
developments in temporal exponential random graph models (TERGMs) 
and stochastic actor-oriented models (SAOMs), such as SIENA, hold great 
promise to advance our understanding of network dynamics (Leifeld & 
Cranmer, 2019; Leifeld, Cranmer, & Desmarais, 2018).

2.2 Entities and Relations

The two indispensable elements of any social network are entities and rela-
tions. Their combination jointly constitutes a social network, as described 
in the next subsection. Entities may be individual natural persons or 
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collective actors such as informal groups and formal organizations. Com-
mon examples of individual actors include children on a playground, high 
school students attending a prom, employees in a corporate work team, 
staff and residents of a nursing home, and terrorists operating in a covert 
cell. Collective actors might be firms competing in an industry, voluntary 
associations raising funds for charities, political parties holding seats in a 
parliament, and nations signing a military alliance. Other types of entities 
lack human agency, such as bills debated in a legislature, dances attended 
by students, and books read by library patrons. Sometimes networks are 
comprised of diverse types of entities, such as a healthcare system consist-
ing of doctors and nurses, patients, clinics, hospitals, laboratories, insur-
ance companies, and governmental regulations.

A relation is generally defined as a specific kind of contact, connection, 
or tie between a pair of entities, or dyad. Relations may be either directed, 
where one actor initiates and the second actor receives (e.g., advising, sell-
ing), or undirected, where mutuality occurs (e.g., conversing, collaborat-
ing). A relation is not an attribute of one entity but is a joint dyadic property 
that exists only so long as both participants maintain their association. An 
enormous variety of relations among individual and collective entities may 
be relevant to representing network structures and explaining their effects. 
At the interpersonal level, children befriend, play with, fight with, and 
confide in one another. Employees work together, discuss, advise, trust, 
undermine, and betray. Among collectivities, corporations exchange goods 
and services, communicate, compete, sue, lobby, and collaborate. In health-
care systems, physicians refer patients to specialty clinics, pharmacies, 
laboratories, hospitals, imaging centers, nursing homes, and hospices. 
Which specific type of relation a network researcher should measure 
depends on the particular objectives of the research project. For example, 
an investigation of community networks will likely examine various neigh-
boring activities, whereas a study of banking networks would investigate 
financial transactions. Of course, some analyses scrutinize multiple types 
of relations, such as the political, social, and economic ties among corpo-
rate boards of directors. We present a general classification of relational 
contents in the next subsection.

Social science researchers rely heavily on measuring and analyzing the 
attributes of individual or collective units of analysis, whether through 
survey, archival, or experimental data collection. Although attributes and 
relations are conceptually distinct approaches to investigating social behav-
ior, they should not be viewed as mutually exclusive options. Instead, many 
entity attributes can be reconceptualized as relations connecting dyads. For 
example, a nation’s annual volumes of exports and imports are characteris-
tics of its economy. But, the amount of goods and services exported and 
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imported between all pairs of nations represents the structure of trading 
networks in the global economy. Patents awarded to scientists employed at 
high-tech firms indicate companies’ research innovations, but patent- 
citation networks reveal how knowledge flows through industries (Zhang, 
Kong, Zheng, Wan, Wang, Hu, & Shao, 2016). The number of friends 
indicates a child’s popularity, but only network analyses of all dyadic 
friendship choices can uncover important cliques and clusters. Relations 
reflect emergent dimensions of complex social systems that cannot be cap-
tured by simply displaying a variable’s distribution or averaging its mem-
bers’ attributes. Structural relations potentially influence both individual 
behaviors and systemic outcomes in ways not reducible to entity character-
istics. For example, efforts to control sexually transmitted infections among 
injection drug users and sex workers require knowledge of both social and 
geographic distances among street people. Researchers identified 101 “hot-
spots” of high-risk activities in Winnipeg, Canada, where “the combination 
of spatial and social entities in network analysis defines the overlap of 
vulnerable populations in risk space, over and above the person to person 
links” (Logan, Jolly, & Blanford, 2016). An experiment in a large environ-
mental nongovernmental organization found that “boundary spanners”—
individuals who cross internal boundaries, such as departmental or 
geographic location, via their informal social networks—were more likely 
to diffuse innovations, although positions in a formal organizational hierar-
chy mediated this activity (Masuda, Liu, Reddy, Frank, Buford, Fisher, & 
Montambault, 2018). The strong inference is that exclusively focusing on 
actor attributes loses many important explanatory insights provided by 
network perspectives on social behavior.

2.3 Networks

A social network is a structure composed of a set of entities, some of whose 
members are connected by a set of one or more relations. These two funda-
mental components are common to most network definitions; for example: 
“a network contains a set of objects (in mathematical terms, nodes) and a 
mapping or description of relations between the objects or nodes” 
 (Kadushin, 2012, p. 14). Different types of relations identify different net-
works, even where observations are restricted to the same set of entities. 
Thus, the friendship network among a set of office employees very likely 
differs from their advice-seeking network. Stating that connections exist 
among members of a network does not require that all members have direct 
relations with all others; indeed, sometimes very few dyads have direct 
links. Rather, network analysis considers both present and absent ties and 
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possibly also variation in the intensities or strengths of the relations. A 
configuration of empirical relations among entities identifies a specific 
network structure, the pattern or form of that network. Structures can vary 
dramatically in form, ranging from isolated structures where no actors are 
connected to saturated structures in which everyone is directly connected. 
More typically, real networks exhibit intermediate structures in which some 
entities have more numerous connections than others. A core problem in 
network analysis is to explain the occurrence of different structures and, at 
the entity or nodal level, to account for variation in linkages among entities. 
The parallel empirical task in network research is to detect and represent 
structures accurately using relational data.

The first researcher credited with using the term social network was John 
A. Barnes (1954), an anthropologist who studied the connections among 
people living in a Norwegian island parish. Barnes viewed social interac-
tions as a ‘‘set of points some of which are joined by lines’’ to form a ‘‘total 
network’’ of relations (Barnes, 1954, p. 43). The informal set of interper-
sonal relations composed a ‘‘partial network’’ within this totality. Barnes 
drew on the work of Jacob Moreno (1934), whose hand-drawn sociograms 
of lines and labeled points displayed children’s likes and dislikes of their 
classmates. We discuss methods for representing networks visually as 
graphs and mathematically as matrices in Chapter 4. From anthropology 
and sociology, network ideas and methods diffused over the past half cen-
tury to many disciplines, which adapted them to prevailing theories and 
problems. For historical overviews of the origins and diffusion of network 
principles, see Freeman (2004, 2011); Knox, Savage, and Harvey (2006); 
Kadushin (2012); and Scott (2017).

If network analysis were merely a conceptual framework for describing 
how a set of actors is linked together, it would not have excited so much 
interest and effort among social researchers. But, as an integrated set of 
theoretical concepts and analytic methods, social network analysis offers 
more than accurate representations. It proposes that, because network 
structures affect actions at both the individual and systemic levels of analy-
sis, network analysis can explain variation in structural relations and their 
consequences. J. Clyde Mitchell’s (1969, p. 2) definition of social networks 
emphasized their impacts on outcomes: ‘‘a specific set of linkages among 
a defined set of persons, with the additional property that the characteris-
tics of these linkages as a whole may be used to interpret the social behav-
ior of the persons involved.’’ The first edition of this book underscored this 
perspective: ‘‘The structure of relations among actors and the location of 
individual actors in the network have important behavioral, perceptual, and 
attitudinal consequences for the individual units and for the system as a 
whole’’ (Knoke & Kuklinksi, 1982, p. 13). Similarly, Barry Wellman 
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(1999, p. 94) wrote, ‘‘Social network analysts work at describing underly-
ing patterns of social structure, explaining the impact of such patterns on 
behavior and attitudes.’’

2.4 Research Design Elements

Three elements of network research design shape the measurement and 
analysis strategies available to researchers: social settings, relational form 
and content, and level of data analysis. Every network data collection pro-
ject must involve making explicit choices about these elements before 
beginning fieldwork. Varying combinations of them generate the wide 
range of social network investigations published in the research literatures 
of numerous disciplines.

Social Settings. The first steps in designing a network study are to choose 
the most relevant social setting and to decide which entities in that setting 
comprise the network entities. Ordered on a roughly increasing scale of size 
and complexity, a half-dozen basic units from which samples may be drawn 
include individual persons, groups (both formal and informal), complex 
formal organizations, classes and strata, communities, and nation-states. 
Some two-stage research designs involve a higher-level system within 
which lower-level entities comprise the actors. Common examples are hier-
archical social settings such as corporations with employees, schools with 
pupils, hospitals with physicians, municipal agencies with civil servants, 
and universities with colleges with departments with professors.

The earliest and still most common network projects select small-scale 
social settings—classrooms, offices, factories, gangs, social clubs, schools, 
villages, artificially created laboratory groups—and treat their individual 
members as the actors whose relations comprise the networks for investiga-
tions. Recent examples include bullying and homophobic teasing among 
middle school students (Merrin, De La Haye, Espelage, Ewing, Tucker, 
Hoover, & Green, 2018), helping and gossip networks among employees of 
a Turkish retail clothing company (Erdogan, Bauer, & Walter, 2015), and 
the effects of ethnic diversity on the spread of word-of-mouth information 
in two matched rural Ugandan villages (Larson & Lewis, 2017). Small set-
tings have considerable advantages in sharply delineated membership 
boundaries, completely identified populations, and usually researcher 
access by permission from a top authority. However, network analysis con-
cepts and methods are readily applied to larger-scale formations, many of 
which have porous and fuzzy boundaries, including clandestine networks. 
Examples include peer network origins of adolescent dating behavior 
(Kreager, Molloy, Moody, & Feinberg, 2016), criminal organizations in 
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communities of Calabria, Italy (Calderoni, Brunetto, & Piccardi, 2017), and 
strategic alliances among multinational corporations in the Global Informa-
tion Sector (Knoke, 2009).

Relational Form and Content. Network researchers must decide on 
which particular relations to collect data. Relations among pairs of social 
actors have both form and content, a dichotomy that Georg Simmel (1908) 
proposed in his classic analyses of association. The two elements are 
empirically inseparable and only analytically distinguishable. Contents are 
the interests, purposes, drives, or motives of individuals in an interaction, 
whereas forms are modes of interaction through which specific contents 
attain social reality. Simmel argued that the task of sociology is to identify 
a limited number of forms—sociability, superiority, subordination, compe-
tition, conflict, cooperation, solidarity—that occur across a wide range of 
concrete settings, social institutions, and historical contexts. A particular 
form can vary greatly in content. For example, the basic forms of superor-
dination and subordination are ever present in government, military, busi-
ness, religious, athletic, and cultural institutions. Conversely, diverse 
contents like economic interests and drives for power are manifested 
through forms of competition and cooperation.

The form-content dichotomy also applies to social network analysis. 
Relational form is a property of relations that exists independently of any 
specific contents. Two fundamental relational forms are (a) the intensity, 
frequency, or strength of interaction between pairs of entities and (b) the 
direction of relations between both dyad members—null, asymmetric, or 
mutual choices. Relational content refers to its ‘‘substance as reason for 
occurring’’ (Burt, 1983, p. 36). Substantive content is an analytic construct 
designed by a researcher to capture the meanings of a relation from the 
informants’ subjective viewpoints. When people are asked, ‘‘please identify 
your close friends, friends, and acquaintances” in some social setting, the 
intended relational content is “friendship.” The results of this query depend 
on how each actor first conceptualizes the meanings of the three proffered 
response categories and then classifies the other actors according to recol-
lections of diverse interpersonal interactions. Obviously, people may vary 
markedly in their interpretations of both the friendship labels and those 
activities that they consider to be indicators of greater or lesser intimacy. 
Friendship dyads are never precisely reciprocated and the level of intimacy 
may be very unequal; for example, one dyad member considers the second 
person a “best friend,” but the second member views the first person as a 
“friend.” The National Study of Adolescent Health (Add Health) found that 
girls and Asian Americans were most likely to have reciprocated friend-
ships, whereas interracial friendships were much less common than 
 friendships between students of the same race (Vaquera & Kao, 2008).
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The choice of relational content, also called type of tie, is largely deter-
mined by a project’s theoretical concerns and research objectives. A study 
of healthcare networks could inquire into people’s interpersonal sources of 
trusted information and advice about health-related matters, whereas a 
project on political networks might ask them to identify others with whom 
they discussed or participated in political affairs. Some substantive prob-
lems imply that more than one analytically distinct relational content 
should be investigated, in which case measuring and simultaneously ana-
lyzing two or more types of ties (i.e., multiplex networks) is an appropriate 
strategy. For example, psychologists asked 132 undergraduates at Mid-
western University to list their Facebook friends who fulfilled each of five 
social functions (i.e., types of ties): sharing social activities, discussing 
personal matters, providing instrumental support, providing emotional 
support, and sharing success and happy events (Gillath, Karantzas, & 
Selcuk, 2017). Students with higher attachment avoidance were likely to 
ascribe fewer multiplex social roles to their networks’ members, implying 
a lower degree of social trust.

Inexplicably, network analysts have conducted little research on the con-
nections among diverse domains of relational contents. Ronald Burt (1983) 
examined survey respondents’ perceptions of relational contents and 
uncovered substantial confusion, redundancy, and substitutability among 
the 33 questions posed to a sample of Northern Californians. He concluded 
that just five key questions would suffice to recover the principal structure 
of relational contents in the friendship, acquaintance, work, kinship, and 
intimacy domains. However, we still need much more research on the simi-
larities and differences of meanings that people attach to commonly used 
relational terms and labels in a wide variety of network settings. A cogni-
tive map of the structural connections among relational content domains 
would enable researchers efficiently and accurately to select specific con-
tents most relevant to their theoretical and substantive concerns.

Until that desideratum arrives, in the spirit of Simmel we propose a small 
typology of generic contents:

• Transaction relations: Entities exchange control over physical or 
symbolic media, for example, in gift giving or economic sales and 
purchases.

• Communication relations: Linkages between entities are channels 
through which messages may be transmitted.

• Boundary penetration relations: Ties consist of membership in two or 
more social formations, for example, voluntary associations or social 
movement organizations.
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• Instrumental relations: Actors contact one another in efforts to obtain 
valued goods, services, or information, such as a job, an abortion, 
political favors, or religious salvation.

• Sentiment relations: Perhaps the most frequently investigated 
networks involve actors expressing their feelings of affection, 
admiration, deference, loathing, or hostility toward one another.

• Authority/power relations: These types of ties, usually occurring in 
formal hierarchical organizations, indicate the rights and obligations 
of position holders to issue and obey commands.

• Kinship and descent relations: These bonds of blood and marriage 
reflect relations among family roles.

Levels of Analysis. After deciding the social setting and the relational 
forms and contents, researchers have several alternative levels at which to 
analyze the structures in data that they collect for social network projects. 
Details of appropriate measures and methods appear in Chapters 3 
through 5, but here we summarize four conceptually distinct levels of 
analysis that analysts could investigate.

The simplest level is the egocentric network, consisting of one actor 
(ego) and all other actors (alters) with which ego has direct relations as well 
as the direct relations among those alters. This set is also called ego’s ‘‘first 
zone,’’ in contrast to second and higher zones consisting of all the alters of 
ego’s alters, and so on. If a network’s size is N actors, an egocentric analysis 
would have N units of analysis. Each ego actor can, in turn, be described 
by the number, intensity, and other characteristics of its linkages with its set 
of alters, for example, the proportion of reciprocated relations or the density 
of ties among its alters. An egocentric analysis of incarcerated California 
youths indicated that respondents reporting no close friendships within the 
facility had lower postinterview misconduct than those who nominated 
peers, suggesting an influence or amplifying effect of friends on misbehav-
ior (Reid, 2017). In some respects, egocentric analysis resembles typical 
attribute-based survey research, with a respondent’s individual characteris-
tics such as gender, age, and education supplemented by measures derived 
from that person’s direct network relations. Egocentric network research 
designs are well suited to surveys of respondents who are unlikely to have 
any contact with one another. The 1985 General Social Survey of the adult 
U.S. population (Marsden, 1987) pioneered procedures for identifying and 
eliciting information about a respondent’s alters, which we describe in 
some detail in Chapter 3.

A second level of analysis is the dyadic network, consisting of pairs of 
actors. If the order of a pair is irrelevant—as in marital status where persons 
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are either unmarried, cohabiting, married, separated, or divorced—a sam-
ple of N actors has (N 2 – N)/2 dyadic units of analysis. But, if the direction 
of a relation matters, as in giving orders and taking advice, then the sample 
contains (N 2 – N) ordered dyads. The most basic questions about a dyad are 
whether a specific type of tie exists between two actors, and, if so, what is 
the intensity, duration, or strength of that relation? A closely related issue 
is whether a dyad without a direct tie is nevertheless indirectly connected 
via ties to intermediaries (e.g., brokers, go-betweens). Typical analyses 
seek to explain variation in dyadic relations as a function of pair character-
istics, for example, the homophily hypothesis that ‘‘birds of a feather flock 
together’’ or the complementarity hypothesis that ‘‘opposites attract.’’ 
Dyadic empathy—‘‘a combination of perspective taking and empathic con-
cerns for one’s romantic partner”—is associated with higher sexual satis-
faction, relationship adjustment, and sexual desire of first-time parents 
(Rosen, Mooney, & Muise, 2017, p. 543).

A third level of network analysis is, unsurprisingly, triadic relations. A 

set of N actors has N

3
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⎟ triples, the number of ways to take N actors, three 

at a time. All possible combinations of present and absent directed binary 
relations among the actors in a triple generates a set of 16 distinct triad 
types. A basic descriptive question for empirical network analysis regards 
the distribution of observed triads among the 16 types, a summary tabula-
tion called the triad census. Substantive research on triadic structures con-
centrated on sentiment ties (liking, friendship, antagonism), with particular 
interest in balanced and transitive triadic relations (e.g., if A chooses B and 
B chooses C, does A tend to choose C?). Because we lack space to review 
triad analysis methods, interested readers should consult the research pro-
gram of James Davis, Paul Holland, and Samuel Leinhardt (Davis, 1979) 
and a comprehensive treatment by Wasserman and Faust (1994, pp. 556–
602) for details.

Beyond the three microlevels, the whole network (also called complete 
network) is the most important macrolevel of analysis. Researchers use the 
information about every relation among all N actors to represent and 
explain an entire network’s structural relations. Typical concerns are the 
presence of distinct positions or social roles within the system that are 
jointly occupied by the network actors and the pattern of ties within and 
among those positions. Although a whole network has N actors and  
(N  2 – N) dyads (assuming directed relations and self-relations are generally 
ignored), these elements add up only to a single system. Examining the 
causes or consequences of structural variation at the whole network level 
of analysis typically involves measures of the global structural properties. 
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An example is a Dutch online social network of more than 10 million users 
living in 438 municipalities (Norbutas & Corten, 2018). Communities with 
higher network diversity were more economically prosperous than less-
diverse communities, whereas greater network density at the community 
level was negatively associated with prosperity.

The four levels of network analysis imply that emergent phenomena at 
one level cannot be simply deduced from knowledge of the relations at 
other levels. For example, transitivity of choice relations is a substantively 
important variable for theories of friendship formation (‘‘a friend of my 
friend is my friend’’), which can be observed at the triadic level but not at 
the egocentric or dyadic level. For another illustration, Mark Newman 
(2001) found that coauthorship networks in biomedical research, physics, 
and computer science were each structured as “small worlds,” where only 
five or six steps were necessary to connect random pairs of scientists. How-
ever, biomedical research was dominated by many people with few coau-
thors, in contrast to other disciplines characterized by a few people with 
many collaborators (see also, e.g., Ebadi & Schiffauerova, 2016; Maggioni, 
Breschi, & Panzarasa, 2013). The adaptability of network principles and 
procedures to investigate structural relations across multiple levels of 
analysis underlies its bourgeoning popularity for theorizing about social 
action and guiding empirical research.
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Chapter 3

DATA COLLECTION

Before collecting data about a network, researchers must first answer three 
important questions: where to set the boundary, how to sample network 
entities, and which relations to measure? Because deciding the set of nodes 
to include is an obvious starting point for any network project, we begin 
with boundary specification issues.

3.1. Boundary Specification

The boundary specification question asks: Where does an investigator set 
limits when collecting data on social relations that, in reality, may have no 
clearly demarcated limits (Barnes, 1979, p. 414)? In the seminal article on 
network bounding, Laumann, Marsden, and Prensky (1983, p. 19) framed 
their answer around contrasting realist and nominalist strategies for speci-
fying “the inclusion rules in defining the membership of actors in particular 
networks and in identifying the types of social relationships to be ana-
lyzed.” They subsequently expanded the dichotomy to three generic 
approaches to identifying network boundaries: positional, relational, and 
event-based (Laumann, Marsden, & Prensky, 1989). A recent assessment 
concluded that each strategy has strengths and limitations about which 
network researchers should be better informed when deciding where to 
draw the boundary (Nowell, Velez, Hano, Sudweeks, Albrecht, &  Steelman, 
2018). This section highlights various aspects of alternative boundary 
specification procedures.

Realist and Nominalist Strategies. In the realist strategy for boundary 
specification, a researcher attempts to capture the subjective perceptions of 
network actors, defining boundaries as the limits that are consciously expe-
rienced by all or most participants (e.g., members of a family, congregation, 
or social movement). Actors and their relations are included or excluded to 
the extent that the other actors judge them to be relevant. For example, to 
identify the core organizations of the U.S. energy and health national policy 
domains, Knoke and Laumann (1982, p. 256) took the realist approach: “a 
policy domain is a subsystem identified by specifying a substantively 
defined criterion of mutual relevance or common orientation among a set 
of consequential actors concerned with formulating, advocating, and select-
ing courses of action (i.e., policy options) that are intended to resolve the 
delimited substantive problems in questions.” They excluded any 
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organizations that domain informants did not perceive as influential in 
national energy or health policy making.

To use the nominalist strategy, an investigator imposes an a priori con-
ceptual framework serving an analytic or theoretical purpose for a particu-
lar project. Legal or other formal membership requirements typically draw 
clear distinctions between persons inside and outside an organization. 
Often a membership roster or list of employees identifies current organiza-
tional participants. For example, research on the diffusion of physical activ-
ity guides for patients with spinal cord injuries investigated 
information-sharing relations among 78 staff within a Canadian 
 community-based organization (Gainforth, Latimer-Cheung, Athanasopou-
los, Moore, & Ginis, 2014). Another example of a nominalist approach 
bounded a 2012 Czech criminal network as the 11 persons “being charged” 
in the Rath Affair of bribery, kickbacks, abuse of European Union  subsidies, 
and public contract manipulation (Diviák, Dijkstra, & Snijders, 2018). The 
degree to which both the subjective-perception and analytic-imposition 
nominalist strategies produce equivalent network boundaries is, of course, 
always an empirical question.

Positional Strategies. This strategy uses actor attributes, membership in 
formal organizations, or occupancy of a well-defined position as a criterion 
for inclusion in a network. Heemskerk, Fennema, and Carroll’s (2016) 
research on the changing global corporate elite exemplified the positional 
approach. Defining the elite as persons who sat on the boards of the 176 
largest global corporations in 1976, 1996, 2006, and 2013, they identified 
10,164 board positions. Over time, the number of interlocks (directors with 
multiple board seats) showed “a steady trend of decline” (p. 74), and the 
network became less hierarchical and more transnational. Feldman- 
Savelsberg, Ndonko, and Yang (2005) investigated collective memory 
choices among the members belonging to six Cameroon women’s home-
town associations in the city of Bamileke, that is, women originating from 
the same village or chiefdom. For a study of environmental sustainability 
and corporate social responsibility in 49 large healthcare organizations, 
Senay and Landrigan (2018) required inclusion on one of five lists, includ-
ing Fortune 500, Standard & Poor (S&P) 500, and Becker’s Hospital 
Review. Analysts who use a positional strategy may discover that an 
organization’s membership list or roster is outdated, incomplete, or other-
wise inaccurate. They may need to conduct their own census to assemble a 
complete list of network participants.

Positional strategies commonly generate a list of actors occupying simi-
lar positions in a formal social structure, even when those actors lack direct 
ties to one another. Researchers should be acutely sensitive to how repre-
sentative are network structures uncovered using positional criteria. Thus, 
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the connections among business elites differ substantially from ties among 
lower-echelon employees. Strategic alliances formed between multina-
tional corporations may be quite dissimilar from partnerships of small 
firms. Another issue emerging from networks bounded using the positional 
strategy is that the actors are often disconnected, comprising many small, 
densely connected positions lacking ties to one another. For example, the 
Cameroon women belonging to the same hometown association were often 
complete strangers (Feldman-Salvesberg, Ndonko, & Yang, 2005).

Network analysts using a positional approach should provide explicit 
justification for including or excluding particular positions (Laumann et al., 
1983). Researchers may apply nominalist criteria, setting an arbitrary 
threshold for their inclusion rules even where positions vary continuously. 
For example, to study very large business firms, researchers might restrict 
the population to 50, 100, or 500 firms from the Fortune 1000 companies 
list. Where to draw a boundary may depend more on time and budget con-
straints than on some “natural” division between the included and excluded 
actors. Galaskiewicz’s (1979) selection of organizations in the small city of 
Towertown vividly illustrated this process. First, he applied a territorial 
criterion that restricted the population to a geographic area. Then, an indus-
try criterion excluded commercial establishments, transportation facilities, 
public utilities, real estate, block clubs, community organizations, and ele-
mentary schools because of time and budgetary constraints.

Relational Strategies. This approach relies on knowledgeable inform-
ants or the network actors themselves to nominate additional actors for 
inclusion. Relational approaches embrace several procedures, including the 
reputational method, snowball sampling, fixed-list selection, expanding 
selection, and k-core methods. This subsection briefly describes the 
requirements and limitations of these relational strategies.

In the reputational method, researchers ask the most knowledgeable 
informants or experts to nominate a set of actors for their study. For exam-
ple, Michael Heaney (2014) investigated interest group influence in the 
U.S. health policy domain by compiling a preliminary list of organizations 
that had lobbied the federal government, testified at Congressional hear-
ings, or appeared in a previous network project. The list was then “circu-
lated to a panel of experts from academia and the policy world to solicit 
additional recommendations. Any interest group recommended by at least 
two experts was included in the study.” These procedures identified 171 
“most active” organizations, which Heaney contacted for interviews about 
their network ties and political influence reputations.

Reputational methods rely heavily on key informants to provide accurate 
and complete information, which raises concerns about the researcher’s 
ability to locate informants capable of enumerating all important network 
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players (Scott, 1991, p. 59). Morrissey, Tausig, and Lindsey (1985, p. 35) 
cautioned, “there are no standards by which the accuracy of this boundary-
drawing [reputational method] criterion can be assessed. It is conceivable 
that different criteria could result in different actors being included and the 
subsequent analyses affected.” Assessing the reliability and completeness 
of network enumeration using reputational methods is a formidable task. 
Often an assessment is possible only after data collection is completed. 
Therefore, network researchers should always justify their choice of key 
informants with strong theoretical and empirical reasons that are independ-
ent of the particular social relations under investigation (Scott, 1991, p. 59). 
But sometimes the problem of sampling bias—defined as a sample that is 
not representative of its target population due to not-at-random missing 
cases (Allison, 2001, pp. 78–81)—goes beyond the issue of identifying 
suitable informants. Key informants, no matter how knowledgeable, always 
produce data systematically different from those collected through snow-
ball sampling.

Snowball sampling begins with an initial convenience sample of net-
work actors (“seeds”) who are asked to nominate others with whom they 
have a specified relation. In turn, those actors recruit another wave of net-
work participants, so the sample expands wave by wave like a snowball 
growing as it rolls downhill. The process continues until few or no addi-
tional names surface (Frank, 2005; Wasserman & Faust, 1994, p. 34). 
Recent projects used the method to identify the number of geriatric emer-
gency departments in the United States (Hogan, Olade, & Carpenter, 
2014), to locate cannabis users in two Spanish provinces (Brañas,  Barrigón, 
Garrido-Torres, Perona-Garcelán, Rodriguez-Testal, Lahera, &  Ruiz- 
Veguilla, 2016), and to study the risk of fatal and nonfatal gunshot injuries 
in Boston’s Cape Verdean community (Papachristos, Braga, & Hureau, 
2012). In an earlier version, each wave of a snowball sample rigidly gener-
ated the same number of actors (e.g., “name your three best friends”), and 
every actor at every stage was asked the identical questionnaire item 
(Goodman, 1961). More recently, these two conditions typically are 
relaxed to elicit differing numbers of nominated actors using different 
questionnaire items (Wasserman & Faust, 1994, p. 34). Because snowball 
sampling uses network actors’ social relations to construct the sample, each 
round of nominations typically uncovers new participants who have rela-
tions with the extant actors. Thus, snowball sampling usually generates 
strongly connected social networks (Laumann et al., 1983) and is also 
called the chain-referral method (Heckathorn, 1997). A complex extension 
is respondent-driven sampling, which combines snowball methods with a 
mathematical model that weights the sample to compensate for its nonran-
dom collection (Heckathorn & Cameron, 2017).
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Snowball sampling is particularly powerful for finding members of a 
hard-to-reach population for social network analysis, such as drug dealers 
and users, illegal immigrants, HIV-positive sex workers, and violent white 
supremacists. Because sampling frames for such hidden populations don’t 
exist, standard survey sampling methods often yield insufficient numbers of 
respondents. In contrast, snowball sampling starts by interviewing a handful 
of informants, for example, illegal-drug users in a needle-exchange program 
or sellers in an open-air drug market. These seeds are asked to give loca-
tional information about other actors with whom they have the specified 
relationship, for example, the sellers’ regular customers. In turn, these nomi-
nees are contacted and asked to name additional participants. Because net-
work data collection usually requires knowing the identities of egos’ alters, 
obtaining informed consent, protecting anonymity, assuring confidentiality, 
and securing stored data raise serious ethical concerns (Curtis 2014). Human 
subjects committees may disapprove snowball sampling designs in which 
researchers recruit alters directly. As an alternative, respondent-driven sam-
pling designs typically ask the seed egos to give coupons to their alters 
describing a small reward, such as a $20 gift card, that they would receive 
after voluntarily participating in the project (Scheim & Bauer, 2015).

A procedural issue in implementing network sampling—whether to pro-
vide informants with a list of names or to permit respondents to generate 
their own nominees—distinguishes fixed-list selection and expanding 
selection (Doreian & Woodard, 1992, 1994). In fixed-list selection, 
respondents can only report their ties with a set of alters identified a priori 
by the researchers and their informants. In expanding selection, respond-
ents identify as many actors as they wish without referring to a list of 
names. The implementation of expanding selection closely resembles 
snowball sampling procedures. In Doreian and Woodard’s (1992) project to 
identify child and adolescent service system program agencies, any organi-
zation that was added to the network had to receive at least three nomina-
tions from the directors or five nominations from the staff. Doreian and 
Woodard reported that fixed-list selection and expanding selection yielded 
radically different networks on several dimensions, including numbers of 
actors, numbers of ties, density, and quality of ties. Fixed-list selection 
generated only 50% of the organizations, and 40% of the dyadic ties, 
uncovered by expanding selection procedures. The fixed-list approach is 
more prone to nonrandom sampling bias; that is, it always produces a core 
set of actors and systematically excludes peripheral actors. This method 
yields an inferior result, a network without structural context. Unless condi-
tions guarantee that both methods produce equivalent networks, fixed-list 
selection, despite its low administrative cost, should not be used as a sur-
rogate for expanding selection.
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The k-core method finds subsets of actors within a large network that 
typically contains many subgroups weakly connected to one another but 
densely connected within the subsets (Seidman, 1983; Yang & Hexmoor, 
2004). A subset is a k-core if every actor has ties with at least k other actors 
in the subgroup. By changing the value of k, a researcher can set more or 
less restrictive criteria for bounding a network. Doreian and Woodard 
(1994) applied expanding selection to demonstrate how the k-core concept 
could be used to define and locate network boundaries. By changing the k 
threshold, researchers can redraw the boundaries of a very large and 
sparsely connected network to make it either more restrictive (high k) or 
less restrictive (low k). For practical purposes, Doreian and Woodward 
(1994) recommended using a low value of k to establish the overall net-
work boundary. A more inclusive network is less susceptible to selection 
bias, whereas analysts can always subsequently apply a higher k to create 
a more restrictive network. However, a more inclusive network imposes a 
greater data collection burden: Although a low k threshold produces a 
more inclusive network, researchers must interview large numbers of 
respondents at each nomination round, a costly and error-prone task. Low-
ering the k threshold also generates an exponential, rather than linear, 
increase in total number of network nodes. Recent research used k-core 
methods to identify influential spreaders in online social networks  
(Al-garadi, Varfathan, & Ravana, 2017), to locate core areas in many sci-
ence fields (Liu, Tang, Zhou, & Do 2015), and to find power elites 
(Larsen & Ellersgaard, 2017).

Event-Based Strategies. This method draws a network’s boundary 
around actors who participate in specified types of activity occurring at 
particular times in real or virtual locations. The classic Southern Women 
network, 18 women who attended 14 informal gatherings and civic 
events in the 1930s, continues to be a much-reanalyzed benchmark  
(e.g.,  Alzahrani & Horadam, 2016). A daunting task for event-based 
researchers is to provide a sufficient rationale for identifying and selecting 
important events capable of answering a specific research question. 
Researchers might include events that are either noteworthy to a neutral 
observer or identified as important by knowledgeable network partici-
pants. The event-based boundary method is particularly vulnerable to 
incomplete or missing data from failure to include some crucial activities 
and the actors who attend them. This problem is particularly acute for 
researchers who rely on a single event to locate network boundaries 
because many important players may fail to attend that event. Hence, 
observing multiple events would normally produce a more comprehensive 
network. Because each event involves a potentially unique subset of net-
work actors, a multievent approach produces malleable boundaries: Every 
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event yields a distinct network whose participants only partially overlap 
with those attending other events. Aggregating participants across all 
events should yield a more inclusive network that is better able to answer 
the research questions. For example, to study student interactions in a col-
lege dormitory, Freeman and Webster (1994) observed participants at 
events occurring in two visible settings, a cafeteria and dorm social meet-
ings. A complete network of children’s play activities requires observa-
tional or self-reported data collected at school playgrounds, homes, and 
out-of-school clubs (King & Howard, 2014).

Smartphone-driven event-based social networks (EBSNs) and location-
based social networks (LBSNs)—such as Foursquare, Google Local, and 
Meetup—attracted the attention of computer scientists who designed algo-
rithms that try to predict who will participate in which events (Du, Yu, 
Mei, Wang, Wang, & Guo, 2014; Frith, 2014; Li, Westerholt, Fan, & Zipf, 
2018; Zhang, Zhao, & Cao, 2015). The sheer volume of alternative EBSNs 
“often undermines users’ ability to choose the events that best fit their 
interests” (Macedo, Marinho, & Santos, 2015). To cope with overload, 
recommender software tools create lists of books, merchandise, restau-
rants, hotels, movies, concerts, and other activities personally tailored to 
users’ interests and prior choices (Ricci, Rokach, & Shapira, 2015). Could 
increasing integration of personalized EBSN, LBSN, and recommender 
systems be social networker paradise (Purushotham & Kuo, 2016), and the 
death knell of privacy?

3.2. Data Collection Procedures

We discuss a variety of data collection methods for producing network data, 
including single- and multiple-name generator procedures, measures of 
total personal networks, position and resource generators, and archival 
documents.

Single- and Multiple-Name Generators. Name generators are preva-
lent in research on egocentric networks, typically using survey question-
naires to collect information from an ego respondent about relations among 
a set of alters with whom ego has direct contact (Marsden, 1987). Egocen-
tric network research requires two survey instruments: a name generator to 
identify all alters and a name interpreter to obtain information from ego 
about each alter and network ties among them and with ego (Marsden, 
2005). First, ego is asked to name persons with whom she or he has a speci-
fied type of relation, such as friendship or political discussion. Next, ego is 
asked whether each pair of alters also has that relation and how strong or 
frequent is that tie. Finally, ego also provides information about every 
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alter’s attributes, such as age, sex, race, and education. The reliabilities of 
ego’s reports are unknown because the alters are not interviewed to obtain 
their self-reports.

Egocentric network studies may use single- or multiple-name generators, 
depending on a project’s objectives. A single-name generator relies on one 
questionnaire item to elicit the alters’ names. The pioneering 1985 General 
Social Survey (GSS) module on core discussion groups of Americans 
exemplified the single-name generator design (Burt, 1985; Marsden, 1987). 
An interviewer first asked a respondent:

From time to time, most people discuss important matters with other 
people. Looking back over the last 6 months—who are the people 
with whom you discussed matters important to you? Just tell me their 
first names or initials.

The interviewer recorded as many as six names, then asked, “Do you feel 
equally close to all these people? (IF NO): Which of these people do you 
feel especially close to? (PROBE: Anyone else?)” They next asked about 
ties among all pairs of alters:

Please think about the relations between the people you just men-
tioned. Some of them may be total strangers in the sense that they 
wouldn’t recognize each other if they bumped into each other on 
the street. Others may be especially close, as close or closer to each 
other as they are to you. First, think about NAME1 and NAME2. Are 
they total strangers? Are they especially close? (PROBE: As close or 
closer to each other as they are to you?)

Next, the interviewer asked how long the respondent had known each alter, 
how often they talked to one another on average, and various types of roles 
they played in relation to the respondent (e.g., spouse, parent, child, neigh-
bor, coworker, friend, advisor). Finally, the respondent also reported each 
alter’s gender, race, education, age, religion, and political party 
identification.

On average, the 1985 GSS respondents had 2.94 alters with whom they 
discussed important matters, and 55% of them were kin (Marsden, 1987). 
The mean egocentric density was 0.61, indicating that a majority of ego’s 
alters knew one another. (Density of an egocentric network measured ego’s 
perceived strength of relation for each pair of alters as 0 = total strangers, 
1 = very close, and 0.5 = other.) American core discussion groups were 
more homogenous in age and education than the general population. Mean 
gender diversity was 0.68, suggesting a heterogeneous mix of men and 
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women in most core discussion networks. In contrast, the low racial/ethnic 
heterogeneity of 0.05 indicated that most alters were the same race, which 
Marsden (1987) attributed to the high volume of kin nominations.

The 2004 GSS replicated the “discuss important matters” name genera-
tor and found a precipitous drop in the mean network size, from 2.94 in 
1985 to 2.08 in 2004 (McPherson, Smith-Lovin, & Brashears, 2006). In 
1985, the modal respondent had three confidants, but the modal response 
2 decades later was zero. The percentage of respondents who listed no 
names increased from 10 in 1985 to almost 25 in 2004. A substantial reduc-
tion in nonkin ties resulted in networks centered more on spouses and 
parents, with fewer connections to alters in voluntary associations and 
neighborhoods. Homogeneity among egos and alters remained very high, 
with educational heterogeneity decreasing and racial heterogeneity increas-
ing. The analysts speculated about how changing U.S. demographics might 
explain Americans’ increasing social isolation over time. (See the dispute 
between Fischer [2009] and McPherson, Smith-Lovin, and Brashears 
[2009] about questionnaire “anomalies” allegedly producing an artifactual 
decrease in ego network size.)

Some network researchers have explored name generators in other socie-
ties. A study of core discussion groups in The Netherlands asked a national 
sample with whom they “discussed important personal matters” in the past 
6 months (van Tubergen, 2014). Dutch majority respondents had the high-
est mean number of discussion partners (2.81), followed by second-gener-
ation Turks (2.27) and Moroccans (2.11) and trailed by first-generation 
Turks (1.91) and Moroccans (1.74). A four-nation analysis of five network 
datasets from Canada, Switzerland, Chile, and The Netherlands found sub-
stantial variation in mean ego network size, ranging from 11.9 in Zurich to 
23.8 in Toronto (Kowald et al., 2013). Ruan, Freeman, Dai, Pan, and Zhang 
(1997) replicated the GSS single-name generator in 1986 and 1993 surveys 
of Tianjin, China. The respondents named more alters in their core discus-
sion groups (4.58 and 3.30 persons in the two surveys, respectively) than 
the 1985 U.S. mean of 2.94 alters, and they were less likely to nominate 
kin. Compared to 1986, the 1993 Tianjin respondents named fewer cowork-
ers, many fewer relatives, but more friends in their core discussion groups. 
These changes reflected macrostructural transformations since 1978, in 
which China increasingly replaced lifelong employment at one workplace 
with more flexible market-based employment. As the transformation pro-
gressed, people came to know more contacts outside their work spheres, 
which increased the chances of including such alters in core discussion 
networks (Ruan et al., 1997).

The 1985 GSS questionnaire did not give respondents any cues about 
the content of the “discuss important matters” name generator but left 
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them the burden of interpreting that phrase. This ambiguity triggered some 
concerns among network analysts that the structure or composition of 
egocentric networks varies according to respondent interpretations of the 
key phrase (Bailey & Marsden, 1999; Brashears, 2014). For example, ask-
ing respondents with whom they discuss important matters generates a set 
of alters that only partly overlaps with the list of whom they discuss health 
issues (Perry & Pescosolido, 2010). To scrutinize respondents’ cognitive 
processes in interpreting “discuss important matters,” Bailey and Marsden 
(1999) used concurrent “think-aloud” probes with 50 persons, who were 
asked the GSS name generator questions, followed immediately by some 
probes into their thought processes. Most respondents interpreted it as ask-
ing about personal matters, such as familial or interpersonal problems. 
Although preceding survey items apparently induced respondents to inter-
pret “important matters” in alternative ways, these varying interpretations 
did not produce substantially different network compositions. Bailey and 
Marsden (1999) proposed four alternative strategies for future implemen-
tation of a single-name generator. The first strategy separates the definition 
of the content from the elicitation of alters: a respondent is first asked to 
define important matters in his or her own terms, then to name alters 
according to that definition. The second strategy involves exemplifying 
important matters, in which the researcher provides some examples that 
facilitate a respondent’s definition of important matters. In the third strat-
egy, the researcher explicitly specifies the meaning of important matters 
for every respondent. The fourth strategy involves rearranging the ques-
tionnaire sequence to attenuate any contextual impacts on respondent 
interpretations of the phrase.

The single-name generator method elicits only a fraction of the number 
of alters produced by using multiple-name generators. Researchers are 
often interested in a wider range of routine activities beyond the core rela-
tion captured using a single-name generator. For example, Fischer (1982) 
reported that people use the term “friend” to describe quite diverse rela-
tions. Instead of relying on a single-name generator, Fischer’s multiple-
name generators consisted of nine items such as house care, asking for a 
sizable loan, socializing, and discussing jobs, hobbies, and other personal 
matters. His survey of Northern California respondents elicited widely dif-
ferent numbers of alter names, ranging from 2 to 65, with a mean of 18.5 
alters named by ego. Moreover, respondents considered 11 of these con-
tacts to be friends, evidently interpreting “friend” indiscriminately to 
encompass a broad spectrum of interpersonal relations. Two survey replica-
tions in Israel generated means of 14 and 11 names (Fischer & Shavit, 
1995). Both surveys found that Israelis had higher-density egocentric net-
works than the Northern California survey.
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To compare single- to multiple-name generators, Ruan (1998) adminis-
tered 11 name generators to Tianjin respondents. In addition to the GSS 
important matters item, she included instrumental ties such as house care 
and money borrowing and expressive relations such as socializing, confid-
ing, and advice seeking. The GSS generator yielded a mean of 3.30 Tianjin 
alters, but the other 10 generators together produced 8.17 alters. Moreover, 
the Chinese respondents interpreted “discuss important matters” as social 
expressive issues, with most respondents identifying the same set of per-
sons with whom they socialized (going out to dinner, shopping, or visiting) 
as members of their discussion network. In contrast, persons nominated by 
instrumental name generators were least likely to be included in core dis-
cussion networks. A study of microfinance diffusion in 75 villages of rural 
Karnataka, India, used 12 name generators to elicit 80,838 directed social 
ties from 16,403 women and their spouses (Shakya, Christakis, & Fowler, 
2017). The mean total alters named across all 12 questions was 9.55. Visit-
ing alters in their homes elicited highest number of alters, whereas “go to 
temple with” generated the fewest names. Domestic interaction name gen-
erators (“visit their home” and “invite home”) resulted in highly clustered 
and centralized networks, but asking whom respondents “talk to” uncov-
ered more egalitarian relations. Because some questions appeared to iden-
tify networks specific to cultural context, the authors suggested that 
researchers “should balance local relevance with generalizability when 
choosing network generators” (p. 157).

The largest egocentric networks can be produced by the “knowing” name 
generator, which asks respondents to report all persons known to them. 
Killworth, Johnsen, Bernard, Shelley, and McCarty (1990) showed that the 
knowing name generator could produce as many as 1500 acquaintances in 
the United States and Mexico. However, to elicit a manageable list of per-
sons with whom a respondent has significant contact, stringent limits are 
often imposed. Campbell and Lee (1991) summarized four types of con-
straints typically built into name generators: (1) role/content constraint 
restricts respondents to focus on only one or a few types of relations in 
nominating their contacts, (2) geographical constraint asks respondents to 
name only those persons residing within a specified area, (3) temporal 
constraint requires respondents to name their contacts within a certain ret-
rospective period, and (4) numerical constraint limits respondents to nam-
ing only N persons who fit the name generator criteria (e.g., “your three 
best friends”). Many projects use some combination of the four name 
generators’ constraints. For example, Campbell and Lee (1991) presented 
690 Nashville respondents with maps of their neighborhoods and asked 
them to list all neighbors in the nearest nine or 10 houses whom they know 
by name. They next asked them to identify everyone with whom they had 
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either chatted for at least 10 minutes or whose homes they had visited in the 
previous 6 months. Compared to several other name generators, the 1985 
GSS “discuss important matters” name generator had the most restrictive 
content, numerical, and temporal limits and elicited the smallest egocentric 
network size (mean of 3.01 alters) with the highest network density. 
 Fischer’s Northern California study, with its multiple-name generators, 
produced the largest networks (mean of 18.5 alters) but with lower density. 
The duration of the relations was the longest for the Nashville study, which 
did not impose spatial constraints, and contact frequency was the highest 
for the GSS. Campbell and Lee’s (1991) study extended knowledge of how 
the restrictions imposed by name generators shape the configurations of 
resulting networks.

Positional Generators and Resource Generators. Nan Lin’s social 
resources theory posited that social structures—defined by wealth, power, 
and status—are pyramidal and hierarchical formations in which social 
resources and access to these resources are embedded (Lin, 1982). To solve 
the empirical problem of measuring actors’ social resources, positional 
generators ask respondents to report whether they have contacts with par-
ticular social positions or roles. To the extent that positions in a hierarchical 
occupational structure are reasonable indicators of social resources, inves-
tigating personal contacts with those positions discloses not only the types 
of social resources to which people may have access but also how they gain 
access to their alters’ resources.

The selection of social positions affects how well positional generators 
capture ego’s access to a broad range of social resources. Lin and Dumin 
(1986) selected a list of 20 occupations with the greatest frequency in the 
1970 U.S. Census Classified Index of Occupations. Those occupations 
spanned the upper and lower white- and blue-collar occupational divisions. 
Respondents reported whether any of their personal contacts, such as rela-
tives and friends (strong ties) or acquaintances (weak ties), held each occu-
pational position. Using a 1975 dataset containing positional generators to 
examine the job-seeking process, Lin and Dumin (1986) reported that the 
relationship between tie strength and access to prestigious occupations was 
contingent on a respondent’s origin, as indicated by the father’s occupation. 
When origin was high, strong ties and weak ties provided equal access to 
prestigious occupations. But, when origin was low, weak ties provided bet-
ter access than strong ties to more prestigious occupations. Subsequently, 
Lin, Fu, and Hsung (2001) applied positional generators to study job pres-
tige and income in Taiwan. They reported that Taiwanese society exhibited 
gender-based inequality in access to social capital. Social capital was more 
useful to men in obtaining prestigious occupations and higher incomes, 
whereas women relied more on human capital (education) to gain better 
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jobs and pay. Several projects deployed positional generators to examine 
social capital formation in occupational milieus (e.g., Hällsten, Edling, & 
Rydgren, 2015; Kmetty, Tardos, Albert, & Dávid, 2018; Roth, 2018). Reli-
ability tests of 13 position generator measures found that only the volume 
measure (total number of accessed occupations) had good reliability, 
whereas measures based on occupational prestige, status, and social class 
fared poorly (Verhaeghe, Van de Putte, & Roose, 2013).

The choice of which occupations to include on a positional generator list 
obviously depends on the research question. To examine how cultural dif-
ferences between social classes affect networks, Erickson (1996) selected 
occupations varying on three major class dimensions: control of property, 
organization, and skill. Because the respondents worked in the security 
industry, the 19 occupations based on control of skill reflected their security 
relevance (eight professional workers, four blue-collar workers, four 
policemen, two business managers, and one business owner). Interviewers 
instructed respondents, “Now I am going to ask you whether you know 
anyone in a certain line of work at all in the Toronto area, for example, 
whether you know any lawyers. Please count anyone you know well 
enough to talk to, even if you are not close to them.” If a respondent knew 
someone with an occupation, interviewers asked about the closeness of the 
relations, ranging from “just knowing” to “knowing as a close friend” to 
“knowing as a relative.” In a study of gendered social capital, Erickson 
(2004) purposely selected 15 male-dominated or female-dominated occu-
pations, based on a Canadian census. Respondents were asked to identify 
whether they knew any men or women in each occupation. Erickson (2004) 
reported that men were more likely to know people in female-dominated 
occupations than women were to know people in male-dominated occupa-
tions. Moreover, because men were more strategically located in many 
social spheres, men’s advantages in social networks were difficult to 
change, whereas both genders had more diverse ties to men than to women.

Positional generators produce egocentric networks measuring personal 
connections to several occupations in hierarchical ladders. To the extent 
that social resources are distributed within a pyramidal and hierarchical 
structure of occupations with differing status levels, positional generators 
accomplish the goal of capturing people’s access to different occupations, 
hence to varying social resources. However, people often receive instru-
mental and expressive help from alters beyond those enumerated by posi-
tional generators that restrict selections to a handful of occupations. 
Researchers often broadly define individual social capital to encompass all 
forms of assistance that people may receive from their contacts. In particu-
lar, a resource generator typically captures individual social capital 
expressed as SSC j j= Σ  whereby j refers to resource items and Sj measures 



34   

the availability of this type of resource (Van der Gaag & Snijders, 2004). 
Unlike positional generators that ask whether respondents have contacts 
with selected occupations, a resource generator asks whether people know 
anybody useful for specific resources. Van der Gaag and Snijders (2004) 
asked their Dutch respondents, “Do you know anybody who can. . .” help 
with a list of 35 items, ranging from “repair a bicycle” to “visit socially.” 
They reported that 17 resource generator items formed four subscales that 
were internally homogeneous and weakly correlated. One subscale that 
measured access to incumbents of prestigious occupations correlated 
strongly with Lin and Dumin’s (1986) positional generator. However, two 
subscales—access to information and access to instrumental support (e.g., 
help with house moving)—correlated only weakly with the positional gen-
erator, thus comprising distinct dimensions of social capital.

Measuring Total Personal Network. Various name generations are 
used to calculate the total personal network, defined as all alters known to 
ego. Depending on the procedure, total personal network size ranges from 
250 to 5000 alters (Dunbar, 2016; Freeman & Thompson, 1989; Killworth 
et al., 1984). We briefly examine the checklist, reverse small-world, and 
network scale-up methods for measuring total personal network size.

The checklist method first randomly generates several names (either first 
or last names), then interviewers read those names to randomly sampled 
respondents, asking, “Do you know anybody with that name?” If a respond-
ent recognizes a name, the interviewer asks name interpreter questions to 
elicit information about that alter. McCarty, Bernard, Killworth, Shelley, 
and Johnsen (1997) implemented this design by interviewing 793 Floridi-
ans about a list of 50 first names. Interviewers asked respondents to report 
any contacts having the same first name as those on the list. The respond-
ents were told that they should know a contact by sight or name and have 
interacted within the last 2 years. Recording a maximum of 14 alters with 
this method, McCarty et al. (1997) found that the elicited alter sample 
underrepresented blacks, Hispanics, and Asians. In a follow-up, the 
researchers asked a national sample of respondents to estimate the number 
of people they know in subpopulations (diabetics, Native Americans) and 
people in relational categories (kin, coworkers). Both methods generated 
mean total network sizes of 291 persons (McCarty, Killworth, Bernard, 
Johnsen, & Shelley, 2001). Both methods “yield valid and reliable proxies 
for actual network size, but questions about accuracy remain.” A reanalysis 
of the data using a latent nonrandom mixing model resolved some problems 
with the earlier approach and showed that, “if the first names asked about 
are properly chosen, the estimates from the simple scale-up model enjoy 
the same bias-reduction as the estimates from our more complex latent 
nonrandom mixing model” (McCormick, Salganik, & Zheng, 2010).
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The reverse small-world (RSW) method starts with a fictitious target, a 
person with an invented name who is randomly assigned geographic loca-
tions, ages, sexes, hobbies, organizational memberships, occupations, and 
other socioeconomic characteristics (Killworth & Bernard, 1978). Research-
ers ask informants to identify all alters whom they believe could either 
directly deliver a message or be a link in a chain to the target. After eliciting 
the informant alters’ names, researchers ask name interpreter questions 
about those alters’ demographic characteristics, their relations with the 
informant, and the extent to which the alters know one another. Killworth 
et al. (1984) implemented an RSW method by interviewing 15 Jackson-
ville, Florida, informants about 100 American and 400 international targets. 
The informants named an average of 134 alters to reach these 500 fabri-
cated targets. Most of the alters (86%) were friends of the informants, and 
more than half were male. Freeman and Thompson (1989) concluded that 
RSW approaches capture only a portion of an individual’s total network 
because informants cannot name more alters than the number of targets. To 
address this concern, Killworth et al. (1990) combined the RSW with the 
checklist method and the GSS name generator. They found that the mean 
size of total personal networks was 1700 for Floridians and 600 for Mexico 
City residents. Drawing from the same dataset, Bernard, Johnsen, Kill-
worth, McCarty, Shelley, and Robinson (1990) investigated the overlap 
among these different methods. They reported that the GSS name generator 
and the multiple social support name generator together accounted for only 
18% of the total personal network generated by the RSW method. The 
checklist method (based on last-name matching) produced the largest per-
sonal network.

The network scale-up method enables researchers to estimate the sizes of 
hidden-populations—for example, people at-risk of HIV infections, such as 
drug injectors, female sex workers, and men who have sex with men—from 
sampled network data (e.g., Maltiel, Raftery, McCormick, & Baraff, 2015). 
Using a collection of Florida subpopulations of known size, Killworth, 
Johnsen, McCarty, Shelly, and Bernard (1998) also asked about a subpopu-
lation of unknown size (persons who were HIV seropositive). Their best 
estimates were “108 members of the network defined by ‘having been in 
contact with during the previous two years,’ and (approximately unbiased) 
1.6 million for the seropositive subpopulation.” Feehan and Salganik 
(2016) proposed a generalized scale-up estimator, which requires two sam-
ples, one from the frame population and another from the hidden popula-
tion. They demonstrated the advantages of their approach over basic 
scale-up methods with a series of simulation studies.
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Archival Documents. Documents, tape recordings, videos, music, 
maps, and other multimodal historical records provide raw information for 
social network analysis, after recoding into suitable formats. Compared 
with surveys, archival data are relatively inexpensive, pose no burden on 
informant time and efforts, and may contain high-quality longitudinal 
information when maintained over time. Archival data come in various 
forms, including personal letters and diaries, webpages, patent citations, 
book and article references, and computer network communications. Sev-
eral online data aggregators and providers—such as Acxiom, Edgar-Online, 
LexisNexis, SDC Platinum, the Bureau of Labor Statistics, and the U.S. 
Patent and Trademark Office (USTPO)—store vast amounts of information 
about corporate boards of directors, mergers and acquisitions, strategic alli-
ances, ownership of subsidiaries, and patent citations, which greatly facili-
tates research on business organization networks. Archival data are 
especially valuable but underutilized in micro-organizational research, that 
is, analyses of individual-level activities occurring within organizations 
(Barnes, Dang, Leavitt, Guarana, & Uhlmann, 2018).

When the contents of letters, diaries, and emails carry information about 
interpersonal ties, scouring those messages provides fruitful data about 
personal networks as well as larger social structures. This approach is par-
ticularly beneficial for historians whose subjects from bygone eras render 
survey methods impossible. For example, Edwards and Crossley (2009) 
analyzed 26 letters and eight speeches, written between 1909 and 1914 by 
an English suffragette, Helen Watts, to reconstruct her egocentric network 
ties to other militants in the Votes for Women social movement. Combining 
content analysis with the network data extracted from the documents ena-
bled the researchers “to sharpen and make more precise a vague qualitative 
impression regarding centrality of Helen’s parents within ‘her’ ego-net” 
and then to explore questions raised by each method (p. 58). (See also 
Crossley, Edwards, Harries, & Stevenson, 2012.) In another example, 
 Alexander and Danowski (1990) investigated ancient Rome’s social struc-
ture through the letters of Cicero, the renowned orator and influential politi-
cian who straddled two elite social classes: the “knight class,” which was 
without office-holding, and the “senatorial class” of officeholders. They 
reviewed 280 letters between Cicero and his acquaintances, friends, and 
relatives spanning 18 years. Their data management program recorded 
1914 relations among 524 individuals, including the name and rank of both 
persons, and such relational contents as giving, ordering, serving as inter-
mediary, helping, describing in a negative way, and visiting. A major find-
ing was that, although senators and knights often opposed one another on 
particular issues, they appeared to make up a single, well-integrated, and 
interlocked social class.
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Journal publications and patents, which both report extensive citation 
lists, provide another good data source for network analysis. In contrast to 
traditional content analyses, citation network analysts cluster articles based 
on who cites whom, thus revealing how scholars construct their fields and 
how new research areas emerge and evolve. Recent citation network analy-
ses of research domains include physical activity and health (Verala, Pratt, 
Harris, Lecy, Salvo, Brownson, & Hallal, 2018), educational administration 
(Wang & Bowers, 2016), fuel cell technologies (Ho, Saw, Lu, & Liu, 2014), 
and digital humanities (Gao, Nyhan, Duke-Williams, & Mahony, 2018). 
Persons and organizations filing for patents generate masses of data that 
chart interorganizational knowledge flows. A focal innovation contains a 
patent citation list that provides information about its connections to prior 
foundational innovations, while subsequent innovations building on that 
focal innovation must cite it. Technological domains are comprised of 
interlocking egocentric networks among sets of focal innovations and their 
ties to other patented innovations. Using the USPTO’s database, Aharonson 
and Schilling (2016) developed a system for mapping technological space 
that enabled them to develop and apply novel measures of technological 
capabilities. At the firm level, “researchers can use the measures to assess 
the diversity of a firm’s technological footprint, and how that footprint 
changes over time. Temporal changes in a firm’s trajectory, in turn, can be 
useful for studies on topics such as organizational learning, responses to 
environmental shocks, mimetic isomorphism, and more” (p. 93). Other 
researchers have analyzed patent citation networks to investigate knowl-
edge flows in such fields as organic solar cells (Choe, Lee, Kim, & Seo, 
2016), semiconductors (O’Reagan & Fleming, 2018), genetically modified 
organisms (Ho & Cheo, 2014), and unmanned aerial vehicles a.k.a. drones 
(Kim, Lee, & Sohn, 2016).

The citation lists in academic publications and patents differ in two 
important ways. First, journal articles tend to cite a broad range of books 
and articles, whereas patent citations have a much narrower focus on only 
the prior inventions that contribute significantly to an innovation (Meyer, 
2000). Second, journal citations serve a broad array of purposes, such as 
giving credit to related work, correcting one’s past work, and disputing 
previous claims. In contrast, the more restrictive purpose of patent citation 
is to acknowledge previous works serving as the building blocks for the 
current invention. Thus, the networks constructed using patent and journal 
citations may differ fundamentally in their contents, necessitating careful 
distinctions between them.

Governments and business organizations routinely collect massive 
amounts of information about their relations with citizens, employees, and 
other organizations. Two examples where network analysis can be 



38   

conducted on archived data that were originally gathered for other purposes 
are healthcare (Chambers, Wilson, Thompson, & Harden, 2012) and law 
enforcement (Hollywood, Vermeer, Woods, Goodison, & Jackson, 2018; 
Liu, Patacchini, Zenou, & Lee, 2012). Electronic medical records (EMRs), 
federally mandated for all U.S. practitioners, are intended to improve phy-
sician efficiency in documenting patient diagnosis and treatment. The 
immense store of information locked away in EMRs is a challenge for 
network analysts to design new tools for its extraction and analysis (Aickin, 
2011). Tracking patients’ trajectories and outcomes as they are referred 
among healthcare organizations could reveal bottlenecks and gaps in the 
complex U.S. healthcare “system” where reform and restructuring are 
urgently needed. Procedures to protect patient privacy by anonymizing 
EMRs must be created, for example, using blockchain technology (Ekblaw, 
Azaria, Halamka, & Lippman, 2016). Law enforcement organizations 
apply network analysis to solve crimes by identifying and collecting infor-
mation from known associates of suspects. A study of 83 corporate frauds 
involving 436 defendants extracted data from indictments and secondary 
sources on corporate conspiracy networks (Steffensmeier, Schwartz, & 
Roche, 2013). Women were rarely involved in conspiracy groups, but, 
when they were, women had more minor roles and less profit than their 
male coconspirators. Research on terrorist organizations relies on public 
news sources to reconstruct clandestine networks (Basu, 2014; Ouellet, 
Buchard, & Hart, 2017). With social life increasingly online, cyberspace 
hosts a variety of crimes and creative efforts to detect and prevent them 
(Al-garadi, Varfathan, & Ravana, 2016; Kamat & Gautam, 2018).

Data mining methods and tools have proliferated with the exponential 
expansion of Big Data and rapidly falling costs of data storage (Aggarwal, 
Kapoor, & Srivastava, 2017; Leech, Collins, & Onwuegbuzie, 2017; Rafiei, 
Agichtein, Baeza-Yates, Kleinberg, & Leskovec, 2018). In addition to 
social media on the World Wide Web, major sources of Big Data are eco-
nomic transactional records—from stock prices, to bank transfers, to busi-
ness sales and purchase data—and computer-connected electronic and 
digital sensors, a.k.a. the Internet of Things—from security monitors, to 
industrial production systems, to wearable medical devices, and mobile 
metadata. Big Data come in diverse formats: spreadsheets, texts, pdfs, pho-
tographs, audio recordings, video clips, social media posts. Data miners sift 
through enormous raw datasets to detect patterns and apply machine-
learning and statistical methods to predict trends and outcomes. Businesses 
and government agencies can analyze customer- and citizen-generated 
information to identify and respond to problems, such as housing bubbles 
and natural disasters. For example, Akay, Dragomir, and Erlandsson (2015) 
used network methods to analyze opinions about a lung cancer drug posted 
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on a social media site, to identify influential users, and to “provide rapid, 
up-to-date information for the pharmaceutical industry, hospitals, and 
medical staff, on the effectiveness (or ineffectiveness) of future treatments” 
(p. 210). Other applications of data mining include predicting political ori-
entation and homophily from Twitter messages (Colleoni, Rozza, & 
Arvidsson, 2014), optimizing renewable energy network design (Cai, 2016), 
and predicting customer churn from electronic banking services (Keramati, 
Ghaneei, & Mirmohammadi, 2016). With the growing complexity of rela-
tions in Big Data deluges, cloud computing, and the Internet of Things, a 
challenge for social network analysts is understanding how they can con-
tribute value to a discipline dominated by algorithms written by computer 
scientists and engineers.

3.3. Cognitive Social Structure

The key question in mapping cognitive social structure (CSS) is “Who 
knows who knows whom?” CSS analysts investigate variations in network 
participants’ perceptions of the relations among other network members 
(Brands, 2013). To create a CSS dataset, researchers ask each person to 
report her or his subjective perceptions of every dyadic relation, for exam-
ple, “who is friends with whom?” In a complete network of N actors, CSS 
data collection of one type of relation results in N cognitive maps, each map 
showing an ego’s beliefs about the presence or absence of ties among the N 
network members. Given the potentially huge time and recall burdens (an 
informant is asked to make N  2 – N judgments about directed dyadic con-
nections), CSS data collection is often attempted only for very small net-
works or for a few salient linkages (e.g., “Who are X’s three closest 
friends?” or “Which five persons does Y trust most?”). For example, 
Krackhardt (1987) collected CSS data on two types of relations—advice 
seeking and friendship—from 21 managerial employees, resulting in two 
sets of 21 cognitive maps each displaying (21)2 – 21 = 420 directed ties. An 
egocentric network is a subset of CSS, in which ego describes only the 
perceived relations among her or his alters but not the ties among other 
network participants.

Two frequent uses of CSS are (1) to measure consensus on a network’s 
structures as perceived by its participants and (2) to assess biases in per-
ceived network structures in comparison to alternative criteria. Consensus 
is the extent of agreement between two or more informants’ judgments or 
assessments of social relations. Important theoretical propositions are that 
consensus is greater among actors with similar attributes (such as race, 
gender, or age), similar relational ties, and similar network locations. Bias 
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refers to the accuracy of an informant’s perceptions of network relations 
when compared to a specified criterion. One criterion is a comparison to the 
aggregate of all the other participants’ perceived networks. Another crite-
rion is relational data obtained from direct observations of participant 
interactions. Network analysts have long observed major discrepancies 
between respondent self-reports and behavioral measures of relation and 
have proposed methods to deal with those inconsistencies. Although the 
large majority of network data is collected using face-to-face or telephone 
interviews, few researchers investigate the CSSs used by participants in 
forming their reports. Investigators typically treat all responses as unequiv-
ocally “objective” social facts. However, a few network methodologists 
tried to theorize and measure the sources of divergence between informa-
tion based on respondent perceptions and behavioral observations (e.g., 
Batchelder, 2002; Carley & Krackhardt, 1996; Casciaro, 1998; Daniel, 
Silva, Santos, Cardoso, Freitas, & Ribeiro, 2017; Johnson & Orbach, 2002; 
Krackhardt, 1987; Neal, Cappella, Wagner, & Atkins, 2011; Yenigün, 
Ertan, & Siciliano, 2017).

CSS also helps researchers identify systematic perceptual errors in 
respondent self-reports. Kumbasar, Romney, and Batchelder (1994) con-
structed a CSS by interviewing 25 computer hardware engineers. Each 
informant was shown a randomly selected engineer’s name and asked to 
mark, on a list of all 25 engineers, which persons they perceived as a 
friend of the selected engineer. This process was repeated for all names, 
including the informant’s own name. The resulting 25 cognitive maps 
could then be aggregated across all the informants into a global network, 
using matrix algebra methods (see Chapter 4). Comparing the self- 
perceived friendship networks with the global network, Kumbasar et al. 
(1994) concluded that individuals tended to see themselves as closer to the 
center of their own network representations than to the global network’s 
center. Furthermore, individuals tend to construct a cognitively consistent 
network; that is, they viewed themselves as surrounded by friends, who 
also had numerous friendships among themselves. An analysis of per-
ceived network accuracy in a technical call center found that employees 
with more formal and informal power were more accurate about negative 
relations, more accurate about their own incoming ties, and that network 
accuracy was related to employee outcomes, including subsequent trans-
fers, promotions, and exits from the organization (Marineau, Labianca, 
Brass, Borgatti, & Vecchi, 2018).

The notion that individuals try to construct consistent mental images of 
their personal social worlds is a longstanding principle in cognitive psy-
chology. People experience psychological or emotional distress when 
their CSSs have unbalanced relations (Heider, 1958; Newcomb, 1961). 
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For example, if you perceive that two close friends dislike one another, 
your cognitive triad is unbalanced and very likely stressful. You might 
balance the triad by denying any antagonism between your friends. 
Unbalanced relations tend to trigger applications of a “balance schema,” 
wherein people change their perceptions to achieve a rebalanced image of 
network relations (e.g., Betancourt, Kovács, & Otner, 2018; Sentis & 
Burnstein, 1979). However, because cognitive correction occurs primar-
ily among friends, especially among close friends, people seem relatively 
unstressed by perceived imbalances among others who are not their 
friends. In trying to achieve and maintain psychological balance, inform-
ants are more prone to reporting distorted and biased information about 
their friends’ relations than about their more distant contacts. In contrast 
to this cognitive balance explanation, Krackhardt and Kilduff (1999), 
drawing from Taylor and Fiske’s (1978) cognitive miser model, argued 
that network participants typically possess little knowledge about socially 
distant persons, that is, to whom they are connected only through several 
intermediaries. By activating a balance schema to fill in knowledge gaps, 
respondents give biased reports about both close and distant relations. But 
their motives differ: For close relations, the balanced schema is activated 
to achieve psychological and emotional comfort, but, for distant relations, 
the schema compensates for the lack of knowledge about the relations. 
Krackhardt and Kilduff (1999) found a curvilinear relationship between 
network structure and perceived balance: employees perceived both their 
immediate friendship circle and their most peripheral contacts as more 
balanced than were those persons at intermediate distances. A major 
implication is that both close and distant ties can be subject to high 
informant bias.

Selective exposure to sources of information and advice is one mecha-
nism to construct balanced networks (Metzger, Hartsell, & Falangin, 2015; 
Stroud, 2017). The increasingly polarized political atmosphere in the 
United States may arise from voters deliberately constructing networks to 
avoid exposing themselves to people, mass media, and social media con-
veying messages incompatible with their CSSs (Medders & Metzger, 
2018). Partisans of left- and right-wing ideologies cocoon themselves 
inside echo chambers where they hear only what they want to hear and 
disregard the rest (Guo, Rohde, & Wu, 2018; Tsang & Larson, 2016). Don-
ald Trump’s successful campaign for the presidency was enhanced by his 
constantly tweeting bombastic tropes—“rapist and criminal” Mexican 
immigrants, “fake news” media, and “Crooked Hillary”—that arrived 
unfiltered to reinforce his core constituents’ dispositions to outraged griev-
ances (Haynes & Sattler, 2017). Whether a voter believes that global cli-
mate change is caused by human activity, or is a “Chinese hoax” designed 
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to hurt American manufacturing, depends substantially on whether those 
narratives fit, or fail to fit, with the views held by others in their CSSs 
(O’Gorman, 2018; Riley, Wang, Wang, & Feng, 2016). In any event, the 
Commander in Tweet’s memes will continually bombard the nation for the 
remainder of his one or two terms.

3.4. Missing Data

Social network studies are especially sensitive to missing data. In egocentric 
data collection, an ego with N alters is asked to report on CN
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therefore, ego must give information on 10 undirected ties. For directed 
relations, the number of ties among ego’s alters is twice as large: 2 CN

2  in 
the example; ego would have to report on 20 directed ties. The relational 
response rate (R) for egocentric networks is calculated by dividing the num-
ber of reported ties by the total number of possible dyadic relations among 
the alters. For example, if ego reported about eight of the 10 undirected 
 relations, then R = 0.80, or 80%; if ego failed to report on six of the 20 
directed relations, then R = 0.70, or 70%.

Calculating the response rate for a complete social network is more com-
plicated. A complete network consists of the dyadic relations among all 
pairs of the N actors in the network. For a undirected network, R is less 
attenuated because a report by one member of a dyad suffices when the 
measure is reliable. For example, to measure friendship between actors A 
and B, information provided by either informant could be used to determine 
whether that relation is present or absent. That is, unless both A’s and B’s 
reports about one another are missing, we measure their friendship with a 
single report. In general, for a complete undirected network of N actors 
with no alter reports from M actors, the response rate for a particular rela-
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For example, in a network of five actors, the nodal response rate and the 
relational response rate for varied numbers of missing nodes are the follow-
ing (see Table 3.1):

To illustrate, assume that the network’s five actors are labeled A, B, C, D, 
and E. The 10 undirected dyadic relations among these five actors are AB, 
AC, AD, AE, BC, BD, BE, CD, CE, and DE. If actor A fails to report its rela-
tions, those dyadic ties can be obtained from the other four actors’ reports 
about A. Thus, the relational response rate is 100% despite missing reports 
from one node. When the missing nodes range between 2 and 4  

(1 < M < N), the relational response rate is 1−
CM
2

CN
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟×100  percent. For exam-

ple, if three nodes (A, B, and C) do not report their relations with anyone, the 

response rate is 70% 1−
C3
2

C5
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟×100 = 70%

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. In this case, three undirected 

relations are missing (AB, AC, and BC), but the other seven dyads are 
reported by at least one member. If no actors provide information, both nodal 
and relational response rates fall to 0%. Because the nodal response rate is 

computed as 1−
M

N

⎛

⎝
⎜

⎞

⎠
⎟×100  and M

N
 is always greater than 

C

C
,M

N

2

2  the rela-

tional response rates for undirected networks are always higher than the 
nodal response rates at every level of missing nodal reports.

In contrast, missing nodal information has a substantial impact on the 
relational response rates of directed networks. Asymmetries occur in many 

Table 3.1  Missing Response in a Network With Five Actors

Number of Missing 
Nodes

Nodal Response  
Rate (%)

Relational Response 
Rate (%)

0 100 100

1 80 100

2 60 90

3 40 70

4 20 40

5 0 0
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types of ties, such as giving advice, trusting, and liking. Actors A and B 
have two directed relations: AB denotes A’s report of its relation to B and 
BA represents B’s reports of its relation to A. Therefore, each missing node 
results in missing relational information about that node’s ties directed 
toward all other actors. Assuming a network of N actors with M missing 
nodes, the relational response rate for a directed network is the following:

R

=100 percent when M = 0

= 1− M × (N −1)
2×CN

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟×100 percent when 0 < M < N

= 0 percent when M = N

⎧

⎨

⎪
⎪

⎩

⎪
⎪

To demonstrate, the five-actor network has (52 – 5) = 20 directed dyadic 
relations: AB, BA, AC, CA, AD, DA, AE, EA, BC, CB, BD, DB, BE, EB, 
CD, DC, CE, EC, DE, and ED. If every actor reports its relations with all 
others, we obtain a 100% relational response rate. If one node (e.g., A) is 
missing, all of A’s reports are also missing, resulting in four unreported 
relations (AB, AC, AD, and AE) among the 20 dyadic relations, a response 
rate of 80%. Because each node in a directed network must assess its rela-
tions with the other nodes, M missing nodes (0 < M < N) generate 
M × (N – 1) missing relations. Of course, when no nodes report any rela-
tions (M = N), both nodal and relational response rates equal 0%.

With a bit of arithmetic deduction, we now prove that relational response 
rate always equals nodal response rate in a directed network. Suppose we 
have a directed network of N nodes and M missing nodes; the nodal 

response rate is 1−
M

N
, whereas the relational response rate is 

1− M × (N −1)
2×CN

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟. In particular, 

M × (N −1)
2×CN

2 = M × (N −1)÷ 2× N !
2!× (N − 2)!

⎛

⎝
⎜

⎞

⎠
⎟=

M × (N −1)
N × (N −1)

=
M

N
.  Thus, in 

a directed network with five nodes, the response rate for both nodes and 
relations are 100% with no missing node, 80% with one missing node, 60% 
with two missing nodes, 40% with three missing nodes, 20% with four 
missing nodes, and 0% with all five missing nodes.

In the preceding discussion, we argued that a report by one member of a 
dyad in a undirected network could be treated as a reliable measure of the 
dyadic relation. Scholars typically assert that this practice must be exercised 
with great caution because nonreciprocal relations often occur (Stork &  
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Richards, 1992). For example, in a communication network, person A 
reports talking with person B, but B claims never to have talked with A. 
This contradiction calls into question the practice of reconstructing the rela-
tion between a responding actor and a missing actor from information pro-
vided only by a nonmissing node. Stork and Richards (1992) suggested that 
similarity in a pair of actors’ characteristics, such as their age, sex, and 
education, may be a good indicator of their dyadic tie confirmation. In addi-
tion, network reliability, measured as the proportion of all dyadic relations 
described identically by both members, indicates how well a single report 
characterizes the link between respondents and nonrespondents. When net-
work reliability is high and both members of a dyad have identical or very 
similar characteristics, one member’s report should serve as a reliable proxy 
for their relation. Kossinets (2003) endorsed Stork and Richards’s method 
of reconstructing a dyadic tie from the respondent actor’s report, provided 
that the overall number of nonrespondents is low.

Egocentric network studies are vulnerable to missing data because peo-
ple often fail to describe ties among their alters. Researching the 1985 GSS 
discussion networks, Burt (1987) reported that the missing data for the GSS 
egocentric studies are less severe: among the total 1534 respondents who 
enumerate 4483 discussion partners, only 66 respondents provided incom-
plete network data involving 195 discussion partners. Burt compared two 
kinds of discussion partners—those with complete network data and those 
with only partial network data. He found that 35% of the former group’s 
alters were not close to any other alters, as reported by the respondent, but 
that figure increased to 59% for the latter group. The major implication is 
that the missing relations among alters in an egocentric network tend to be 
weak ties. Egos seem more likely to report relations for alters perceived as 
well connected to other alters than they are to report relations for alters who 
are seen as isolated. This finding also explains why, contrary to other meth-
odological research, the college-educated GSS respondents produced more 
incomplete egocentric network data than the less-educated respondents. 
College graduates tended to enumerate egocentric networks consisting of 
many weakly tied alters, which in turn engendered more missing reports 
about these alters’ relations.

Missing nodes and/or relations may be particularly problematic in whole 
network research. If a key entity having important relations with others is 
omitted, the resulting network structure may be severely distorted. For 
example, the political network of movers-and-shakers in a city would look 
quite different with or without the mayor (whereas the dogcatcher’s 
absence would likely have little impact). Or, the investigation of a criminal 
network may be unable to detect crucial covert communications due to the 
criminals’ evasive actions, painting an inaccurate picture of the enterprise 



46   

(e.g., Berlusconi, Calderoni, Parolini, Verani, & Piccardi, 2016). Unlike 
survey samples, where any randomly missing case has little effect on esti-
mating a population mean, whole network analysis may produce mislead-
ing structures due to a single missing case or a handful of absent links. 
Analysts must take exceptional care to identify all important whole net-
work members and their connections.

As no foolproof post facto remedy to the missing data problem exists, the 
solution to this problem lies in convincing more respondents of the impor-
tance of participating in the research (Knoke & Kuklinski, 1982, p. 35). To 
elicit higher participation, such as the 90% response rate achieved by some 
network studies, extraordinary research efforts often require a combination 
of different persuasion techniques such as personal letters, phone contacts, 
and monetary inducements. The missing data problem is not a unique 
plague on social network studies using survey methods. Archival studies, 
for example, are also susceptible to the curse of missing data. Granted, the 
completeness of archival data is at the mercy of the data repository’s main-
tenance practices. However, given a certain level of data availability, the 
competency of the coders and the efficacy of the software in data mining 
can also make a substantial difference in the amount and quality of infor-
mation extracted. Poorly trained coders and ill-designed software definitely 
contribute to sizable amounts of missing data.

3.5. Measurement Error

Theories and methods of network analysis implicitly assume that all nodes 
and relations are measured without error in collecting and coding data. But, 
as in all scientific fields, that assumption is simply untenable. “Almost all 
studies of real-world network structures contain experimental error of some 
kind, and frequently of many kinds simultaneously” (Newman, 2017, p. 1; 
see also Newman, 2018a). Using data with substantial errors to estimate 
network parameters, such as degrees and centralities, may lead to incorrect 
inferences. Fortunately, network methodologists have made considerable 
progress toward understanding and detecting network errors (Borgatti, 
 Carley, & Krackhardt, 2006; Huisman & Krause, 2014; Kossinets, 2006; 
Zipkin, Schoenberg, Coronges, & Bertozzi, 2016). Typical procedures start 
with an artificial or real network, randomly add or delete varying numbers 
of nodes or relations, then observe changes in network parameters esti-
mated with the modified datasets. We lack the space to review in detail the 
large and growing research literature on network measurement errors. 
Interested readers may wish to begin with Smith and Moody (2013) and 
Smith, Moody, and Morgan (2017) on node-level missingness; Žnidaršič, 
Ferligoj, and Doreian (2012, 2017) on the stability of blockmodels; and 
Huisman and Steglich (2008) and Krause, Huisman, and Snijders (2018) on 
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longitudinal network data. This section extends the preceding section on 
missing data by discussing measurement error scenarios in the typology 
presented by Wang, Shi, McFarland, and Leskovec (2012).

Missing or Spurious Nodes. Entities that should be included in a net-
work may be absent. Primary sources of such false-negative nodes are 
nonresponses, such as respondent refusals, and, in organizational research, 
not-up-to-date membership rosters. In bibliometric research, large portions 
of a citation network may be missing because of coding errors for digital 
libraries due to author-name ambiguities, that is, many authors having 
identical names (Hussain & Asghar, 2017; Levin & Heuser, 2010; 
 Smallheiser & Torvik, 2009). One example of name disambiguation in 
graphs applied cluster analysis to documents within a low-dimension net-
work space (Zhang & Hasan, 2017). The researchers concluded that their 
algorithm “clusters the documents belonging to a single person better than 
other existing network embedding methods” and is particularly useful “in 
anonymized network where node attributes are not available due to the 
privacy concern” (p. 192).

False-positive nodes are entities that are incorrectly present in a net-
work. Some respondents may be prone to exaggerate their number alters, 
for example, reporting others as friends rather than as acquaintances. 
Russia’s malicious interference in the 2016 U.S. presidential election 
revealed the pervasiveness of fake Twitter, Facebook, and other social 
media platform accounts, which distort the size and structure of online 
political communities (Badaway, Ferrara, & Lerman, 2018; Lazer et al., 
2018). Separating true-positive from false-positive nodes is crucial to 
improving network data quality. Mark Newman proposed an expectation-
maximization (EM) method for making optimal estimates “in the pres-
ence of both richly textured data and significant measurement uncertainty” 
(Newman, 2018b, p. 1). Applied to two U.S. student networks, the EM 
algorithms found very few false positives but a much larger proportion of 
false negatives (about 20% for physical proximity between pairs of peo-
ple, as measured by mobile phone software, and 33% for mutually 
reported friendships). EM posterior probability distributions can be used 
to estimate network parameters of substantive interest to researchers, 
along with their standard errors.

Missing or Spurious Relations. False-negative edges occur when a 
respondent omits relations that should have been reported. Omissions are 
more likely to occur when name generator instructions rely on recalling 
alters from memory (Bernard, Killworth, Sailer, & Kronenfeld, 1984) than 
where recall is aided by giving respondents a name list. Questionnaires that 
restrict the number of choices (“Name your three best friends”) unnecessar-
ily place an artificial constraint on network size, density, and connectivity. 
False-positive edges result when relations are incorrectly reported that 
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actually don’t exist. Most of Facebook’s 2.2 billion users know that a sub-
stantial percentage of their so-called “friends” never make any subsequent 
contact after an initial friend-request. The mean and median numbers are 
338 and 200, respectively, indicating a highly skewed distribution (Mazie, 
2018). Compounding the problem is the prevalence of fake accounts, esti-
mated by Facebook to comprise more than a quarter of the total (Ng, 2018). 
Obviously, researchers should try to purge phony friends before analyzing 
the properties of online ego-network data.

Tie decay (or its converse, tie persistence) is important for determining 
whether a prior relation no longer exists. If a social setting is disrupted—
by graduating from school, moving to a new community, receiving a job 
promotion—people faced opportunities for making new connections but 
also choices about whether to retain or drop their prior contacts  (Kleinbaum, 
2017; Shipilov, Rowley, & Aharonson, 2006). Among academics, three 
indicators of tie strength that slow the rate of decay are frequency, close-
ness, and scientific contributions (Mohdeb, Boubetra, & Charikhi, 2016). 
Bridges, which connect people not otherwise connected, tend to “decay at 
an alarming rate,” threatening the stability of social capital (Burt, 2002). 
Researchers studying the duration of interorganizational collaborations, 
such as strategic alliances and joint ventures, have difficulty determining 
whether collaborations have been terminated, due to substantial amounts 
of missing data in the widely used Securities Data Corporation Platinum 
database (Lee, 2017). One expensive option is to contact firms directly by 
email or phone, but high nonresponse rates may result in a biased subsam-
ple (Cui, Calantone, & Griffith, 2011). More commonly, investigators 
estimate contemporaneous alliance portfolios by assuming that every alli-
ance ceases after some specific period, typically using moving widows of 
3 to 5 years’ duration (Andrevski, Brass, & Ferrier, 2016; König, Liu, & 
Zenou, 2014; Lee, 2017).

Falsely Aggregated or Disaggregated Nodes. These forms of network 
measurement error either mistakenly combine two or more nodes as a sin-
gle entity or incorrectly treat a single node as separate entities, respectively. 
An example from co-citation network research is a database in which an 
author with multiple name spellings is treated as different nodes, whereas 
different authors with identical name spellings are treated as a single node. 
Great care must be taken to disambiguate identities, but sometimes the task 
is impossible (Wang, Shi, McFarland, & Leskovec, 2012, p. 398). In par-
ticular, huge online databases pose formidable obstacles to cleaning dirty 
data manually, and automated methods using artificial intelligence have 
their own challenges (Chu, Ilyas, Krishnan, & Wang, 2016).

Correcting Errors. Based on simulations of errors on four node-level 
network properties using a pair of very large networks, Wang, Shi, 
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 McFarland, and Leskovec (2012, p. 408) recommended that concentrating 
on cleaning high-degree nodes would improve measurement reliability 
more than labor- and time-intensive efforts to collect and clean an entire 
large dataset. “Also, when setting a threshold for tie strength, using a lower 
threshold, which yields more false positive edges, results in more reliable 
measures than higher thresholds, which yield more false negative edges.” 
Faced with missing network data due to respondent nonresponse, analysts 
may impute and replace values from available information (Folch-Fortuny, 
Villaverde, Ferrer, & Banga, 2015; Huisman, 2014; Stork & Richards, 
1992). For example, if a person did not respond to an item about discussing 
work-related matters, just fill in those missing row values with the corre-
sponding column values. The assumption is that, if one member of a dyad 
reports a discussion partner, the other person took part in the conversations. 
However, Wang, Shi, McFarland, and Leskovec (2012) cautioned that 
missing-value imputations of nodes or relations are a viable error correc-
tion strategy only in “scenarios where false negative nodes are more detri-
mental than false positives” (p. 408). In the contrary situation “imputation 
could introduce even greater measurement error with the presence of spuri-
ous nodes.” The bottom line, as always, is to proceed with caution and run 
analyses using alternative ways of handling missing values (including 
simply removing all nodes with missing data) to see whether outcomes are 
robust. If not, the results may reflect the method of handling measurement 
errors more than actual network structures.

3.6. Collecting Network Data

Recent years have witnessed tremendous growth in computer-supported or 
online social networks. Commercial social media sites, such as Facebook, 
Twitter, Instagram, and LinkedIn, draw billions of users, including per-
sons, organizations, social events, and other entities. Other commercial 
products, such as Facetime and WeChat, use smartphones and other mobile 
devices to deploy as phone apps. They achieved phenomenal success in 
attracting users and revenue. For example, WeChat boasted more than 
1 billion users by 2018 and raked in $11 billion annually from advertising. 
A couple of reasons lie behind such tremendous growth of online social 
networking services. First, computers and smartphones are connected 
almost 24/7 via Ethernet, WiFi, and cellular signals. Second, social net-
working websites and social networking apps operating on computers or 
smartphones enable multiplex connections among more than 2.5 billion 
people worldwide (Statista, 2018), creating a vast network among this 
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huge population that sustains billions of messages and images exchanged, 
posted, and shared every day.

Massive online social networking activities provide a goldmine to schol-
ars interested in online networking behaviors. Focusing on the network 
nodes, scholars can extract valuable information on nodal attributes (indi-
vidual persons or collective entities), nodal centralities, and network den-
sity and centralization. Studying the contents of network ties, scholars have 
glimpsed at what draws people and organizations together and what sets 
them apart. Investigating the whole network, researchers understand the 
process of network formation and dissolution. However, before investiga-
tors can examine those issues in much depth, the unique features of those 
data—their sheer massive volume and problematic storage requirements—
present challenges to scholars trying to obtain access. Subsections that 
follow discuss those challenges and progress in tackling those issues.

Big Data Social Media Networks. Big Data became a core topic for 
network researchers since the turn of the millennium. In 2001, Doug Laney 
discussed the Big Data opportunity with regard to data volume, data veloc-
ity, and data variety. Laney’s (2001) talk inspired many to examine the Big 
Data revolving around the 3-Vs (Volume, Velocity, and Variety). In particu-
lar to social media networks, Big Data is omnipresent. All major commer-
cial social network sites (Facebook, LinkedIn, Twitter) and smartphone 
apps (WeChat, Facetime) far exceed 100 million users, and messages 
exchanged among the users in billions. The rate of information flowing 
through those networking sites and apps is 1 or more petabytes every hour 
(Lee & Sohn, 2015, Chapter 1). One petabyte is 1024 terabytes, which in 
turn is 1024 gigabytes (a gigabyte is 1 billion bytes), and one terabyte 
equals the data volume of the entire Library of Congress collections, con-
sisting of 167 million items. In other words, the volume of messages 
exchanged or shared among users of all social networking sites and apps is 
at least 1024 Libraries of Congress every hour.

The second dimension of Big Data is velocity, or the rate of data accu-
mulation. The key phrase in the preceding paragraph is “every hour,” which 
means that, on a typical day, the data accumulated exceeds 24,576 Libraries 
of Congress. How does one keep up with such gushers of data pouring in 
hourly and daily? Scholars wishing to stay on top of issues concurrent with 
ongoing networking activities face daunting challenges. The third Big Data 
dimension is variety. In traditional data format, data are stored digitally or, 
on some occasions, in syntax forms. However, online social networking 
data can be video, audio, locational information, music clips, images, pic-
tures, text, screen shots, and so on. They come in different shapes, forms, 
and structures. Existing analytical tools do not provide sufficient storage to 
inventory such large quantities of unstructured data, let alone to analyze 
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them. Putting the 3-Vs together, we can truly see that social media network-
ing data are Big Data insofar as they are large, rapidly accumulating, and 
highly diverse, all of which make data handling (storage, processing, ana-
lytics, transfers) very difficult and costly.

Social Science Studies of Social Media Networks. Facing such chal-
lenges, social scientists fall back on their original strength: using question-
naire items in surveys to capture respondents’ online activities. Many 
researchers focus on social networking usage and its consequences for an 
array of outcome measures such as mental health, physical health, life 
satisfaction, civic engagement, political activity, co-curricular participa-
tion (learning experiences complementing school), and general social trust 
(Bouchillon, 2018; Junco, 2012; Shakya & Christakis, 2017; Valenzuela, 
Park, & Kee, 2009). One commonality of these studies is that the data 
came from surveys tapping into respondents’ self-reported online net-
working activities (Facebook usage) and related variables. For example, 
Valenzuela, Park, and Kee (2009) sent emails to 40,360 students in two 
large public universities in Texas and collected information with Survey 
Monkey software from 2603 respondents between 19 and 28 years of age. 
The researchers asked the students questions about their life satisfaction, 
social trust, civic and political participation, and intensity of Facebook 
use. Also using Survey Monkey, Junco (2012) sent questionnaires to 5414 
students in a northeastern public university, achieving a final sample of 
2368 respondents. Bouchillon (2018) used Survey Sampling International 
(SSI) to identify respondents. SSI first asked respondents to complete a 
short set of demographic questions, with which SSI drew the sample of 
respondents whose demographic features (age, sex, race/ethnicity, and 
region) approximated the U.S. population. Bouchillon collected informa-
tion from 1005 respondents regarding their civic engagement, general 
trust, and Facebook usage.

Shakya and Christakis’s (2017) study differed slightly from the research 
designs described previously. They started with the 2013, 2014, and 2015 
waves of the Gallup Panel Social Network Study. They conducted a survey 
at each wave, a total of 10,680 respondents. They asked for permission to 
access their Facebook accounts, but only 3195 respondents agreed. They 
measured such variables as mental health, physical health, and life satisfac-
tion with respondent self-reports. However, the respondents’ Facebook 
networking activities—their number of Facebook friends, number of likes 
clicked, number of links clicked the past 30 days, and frequency of updat-
ing their status in the previous month—were collected objectively by 
examining the Facebook accounts.

Interestingly, these studies found very different effects of Facebook 
usage and outcome variables. The most optimistic was Bouchillon’s (2018) 
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finding that Facebook users had great levels of civic participation and gen-
eralized trust. Junco (2012) discovered that time spent on Facebook 
increased co-curricular activities, but playing games on Facebook was 
detrimental to co-curricular activity. Valenzuela, Park, and Kee (2009) 
found that intensity of Facebook use and life satisfaction, social trust, and 
civic/political participation were positively correlated, although the effects 
are small. In light of their results, the authors called for a relaxing of con-
cerns about the negative impact of Facebook exposures on the one hand but 
also for a quenching of enthusiasm about Facebook as a spur to social trust, 
civic engagement, and political involvement on the other. In contrast to 
those studies, Shakya and Christakis’s (2017) research was more pessimis-
tic about Facebook. They reported that using Facebook is associated with 
reduced mental and physical health. In particular, higher rates of “likes 
clicked,” “links clicked,” and “status updates” were associated with a 5% 
to 8% of standard deviation decrease in self-reported mental health. They 
further contended that the negative effects of Facebook usage may out-
weigh the positive impact of offline activities on those outcomes.

Although studies discussed previously all investigated Facebook activi-
ties, several studies used survey methods to examine other social network-
ing platforms such as Twitter, LinkedIn (Boyd & Ellison, 2008), and 
WeChat (Lien, Cao, & Zhou, 2017). WeChat is unique in starting as a popu-
lar social networking app in smartphones (it subsequently added a website 
counterpart), and it operates primarily inside China. Using conventional 
survey questionnaires, Lien, Cao, and Zhou (2017) collected responses from 
hundreds of informants at four major Chinese cities (Beijing, Shanghai, 
Guangzhou, and Shenzheng). Their research provided information about 
customer satisfaction and continuous usage intent by WeChat members.

Online Data Mining of Social Media Networks. Traditional data col-
lection with survey questionnaires to elicit respondents’ self-reports helps 
social scientists to gain a glimpse of the massive online social media net-
work. At the same time, computer scientists and information engineers 
work in parallel to develop various data mining techniques for collecting 
data directly from online social media networks. They commonly use 
online crawlers or scrapers to extract information straight from webpages 
(Russell, 2011). These approaches present two clear advantages over sur-
vey methods: (1) the information is more objective than self-reports 
because they are scraped directly from respondents’ online archival records, 
and (2) online data mining is less costly and more feasible for collecting 
information on millions of records within short time spans.

Computer scientists use Python programming language, various crawl-
ers, and webpage scrapers, in connection with an application programming 
interface (API), to parse immense amounts of data in Twitter, Facebook, 
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and LinkedIn. For example, users can mine data in Twitter with trending 
topics, hashtags, tweets, and retweets. In Facebook, analysts can delve into 
likings and friendings to detect the popularity of Facebook members. 
 Foster, Ghani, Jarmin, Kreuter, and Lane (2017, Chapter 2) illustrated how 
to use API to scrape information from the web. They particularly pointed 
out that the researchers’ network can be revealed by mapping their “hidden” 
networks. Details about Python programming, API coding, webpage scrap-
ing, and crawling are beyond the scope of this introductory book. We advise 
readers to consult special volumes (e.g., Foster et al., 2017;  Ignatow & 
Mihalcea, 2018) to acquire in-depth knowledge of those topics.

In addition to the data being massively huge, Big Data also challenges 
years of social science studies and experiences on data cleaning, which 
transforms messy, noisy, and unstructured data into a well-defined, clearly 
structured and quality tested dataset. Big Data can be very messy as com-
puter scientists and information engineers commonly mesh different data-
sets from diverse sources together to get a complete picture of the activities 
under investigation. Big Data can also be very unstructured, as video and 
audio clips, symbols, screen shots, and traditional numerical data can all be 
poured in to overwhelm data storage and processing capabilities. Are social 
scientists so outpaced by the development of Big Data and analytics that 
they have to unlearn much of what they have learned over years? Of course 
not. Also, social scientists are rightly concerned about Big Data’s inaccura-
cies (erroneous, duplicated, or missing links), incompleteness, and incon-
sistencies. In addition, the traditional inferential statistics based on 
probability sampling don’t apply to Big Data—literally every nonzero 
correlation and regression slope will reject a null hypothesis, simply due to 
the massive data size, irrespective of whether they are truly substantively 
unimportant. So, what are the good barometers to measure data representa-
tiveness for Big Data?

All those great challenges present great research opportunities for data 
scientists to work across the aisles (e.g., social scientists working with 
computer scientists and information engineers) to capitalize on the gold-
mine of Big Data residing on social media networking sites and apps. On 
the one hand, computer scientists and information engineers are overly 
focused on data collection processes (e.g., designing smart crawlers with 
machine learning) and pay less attention to the postcollection data analytics 
of substantive social issues. Social scientists, on the other hand, lack the 
techniques for mining, storing, and analyzing Big Data, resorting to con-
ventional survey methods to glimpse at online social networking activity. 
Only by working together can social scientists obtain the benefits of Big 
Data access and analytics, while computer scientists acquire better under-
standing of social issues implicated in their machine designs. Through 
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cross-disciplinary teams, computer and information scientists can help 
social scientists with Big Data collection and data parsing, and social sci-
entists can provide guidelines to computer scientists to improve their 
designs of data mining techniques.

We conclude with a brief look at ethical concerns that network research-
ers routinely confront in designing, collecting, and analyzing data and 
reporting the results (for a more detailed examination, see Chapter 4 in 
adams, 2020). As in all human subjects research, safeguarding at-risk par-
ticipants takes precedence over other considerations. Protocols for securing 
informed consent and protecting privacy and anonymity, especially for 
underage or vulnerable participants, have been developed and enforced in 
all disciplines, from medicine to labor relations to education. Social net-
work research has a distinctive problem, in that, rather than aggregating and 
summarizing variables for anonymous participants, the heart of the enter-
prise is displaying graphs revealing detailed connections among partici-
pants. Even if the points are labeled with pseudonyms, participants in small 
social systems may be able to deduce some nodal identities. Social network 
projects conducted inside organizations, such as corporations and govern-
ment agencies, are fraught with ethical dilemmas. Management controls 
researchers’ access to their employees and, as a condition for granting 
access, may require the right to see and use the data when making person-
nel decisions. For example, supervisors could insist on seeing fully labelled 
graphs showing workers’ friendship, trust, social support, and antagonism 
networks. Consequently, researchers cannot promise anonymity and confi-
dentiality to employees. In turn, workers may be reluctant to answer truth-
fully if they believe that network data could be used by management to 
discipline or fire “bad apples.” Borgatti and Molina (2003) proposed ethical 
principles for organizational research when one purpose of network analy-
sis is to make decisions affecting employees. Survey participation must be 
truly voluntary, not coerced by managers. Informed consent requires being 
“extremely explicit” about possible adverse consequences of answering 
survey questions, for example, showing workers samples of network dia-
grams and explaining possible interpretations managers could draw from 
them. Researchers might rely more on nonsurvey data collection, such as 
email logs or project collaborations “to avoid asking employees to incrimi-
nate themselves.” As with all types of social research, network studies 
should provide feedback directly to the respondents “as payment in kind for 
their participation” (p. 348). The overarching ethical principles that net-
work researchers must strive to uphold are to minimize potential harms to 
respondents and to safeguard continued researcher access to organizations 
for future network studies.
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Chapter 4

BASIC METHODS FOR ANALYZING NETWORKS

This chapter presents some basic methods for analyzing social networks. 
Specifically, we discuss representing networks as graphs and matrices and 
measuring nodes, dyads, subgroups, and whole networks.

4.1. Network Representation: Graphs and Matrices

Social networks can be represented with two common forms: graphs and 
matrices. Graphs are effective communicative tools for visually informing 
audiences about the social network structures, but they do not permit com-
puter processing and arithmetic calculation. Conversely, matrices facilitate 
calculation and computer processing but are not as intuitive as graphs at 
revealing social network structural features. In this section, we illustrate 
various social networks with both graphs and matrices, covering four fun-
damental types of social networks: binary undirected, binary directed, val-
ued undirected, and valued directed graphs of networks.

A fourfold typology of networks results from cross-tabulating of two 
basic dimensions of social networks: whether network ties are binary or 
valued and whether ties are directed or undirected. Table 4.1 shows this 
typology, but two points are worth noting. First, this typology, which 
stresses the positive effects of social networks, does not consider the sign of 
social relations, which may be either positive (e.g., like, collaborate, assist) 
or negative (e.g., dislike, oppose, undermine). Although the overwhelming 
majority of research on social networks emphasizes positive relations, a few 
network researchers have investigated negative social connections, such as 
antagonism, gossip, and social undermining (Fang, Duffy, & McAllister, 
2015; Greetham, Hurling, Osborne, & Linley, 2011; Oberst, Wegmann, 
Stidt, Brand, & Chamarro, 2017). Second, social network analysis software 
programs, such as UCINET, typically contain a wide range of algorithms 
that place various prerequisites on appropriate data structures. Analysts 
should check their software’s user manual to understand those prerequisites 
and make accurate interpretations of the program outputs.

Social network Type I in Table 4.1 denotes a binary undirected network 
whose relations indicate only the presence or absence of connections 
between pairs of nodes. Binary ties have only two values: 1 for a relation, 
0 for no relation. The intermarriage network of 15th-century Florentine rul-
ing families represents such a network (Padgett & Ansell, 1993). Type II is 
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Table 4.1  Typology of Social Networks

Binary or Values 
of Social Networks

Direction of Social Network

Undirected Directed

Binary Type I
Binary undirected social 
networks

Type II
Binary directed social 
networks

Valued Type III
Valued undirected social 
networks

Type IV
Valued directed social 
networks

a binary directed graph, also called a digraph, that indicates the presence or 
absence of connections between pairs of nodes and also the direction of 
those ties. Morimoto and Yang’s (2013) study of friendship networks (who 
nominates whom as friend) among several cohorts of graduate students 
exemplifies in this type. Type III networks are valued undirected graphs, 
where the numerical value of a tie shows the intensity, strength, frequency, 
or volume of connections between pairs of nodes. Knoke’s (2001) analysis 
of the number of concurrent strategic alliances between pairs of high-tech 
firms indicates that the ties are valued and undirected (see also Yang & 
Hexmoor, 2004). Finally, Type IV indicates valued directed networks, 
where ties reveal the intensity or volume of the relations/communications 
between pairs of nodes as well as the direction of the relationship between 
pairs of nodes. A prominent example is an international trade network 
where countries are the nodes and the ties measure the total dollar values 
of goods and services exchanged (Garlaschelli & Loffredo, 2005; 
 Sopranzetti, 2018). The ties are directed because pairs of nations import 
and export differing monetary magnitudes to one another.

Figures 4.1 to 4.4 illustrate the four types of networks, using the example 
of an artificial communication network among six graduate students. In the 
following notation, g is the number of nodes in a network; hence, g = 6 in 
these four graphs. Figure 4.1 is the simplest Type I network, with lines 
showing the presence/absence of undirected binary communication ties 
among pairs of students. Table 4.2 is a square matrix corresponding to Fig-
ure 4.1. A matrix is often referred to as a sociomatrix in the social sciences 
and an adjacency matrix in computer science and engineering. The six 
students are listed in alphabetical order in both the rows and columns, with 
a cell entry showing whether a pair of students communicated. The order 
of a matrix is the number of rows by number of columns, expressed as order 
g-by-g (also denoted gxg). The example matrices have order 6-by-6 or 6x6. 
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Figure 4.1  An Undirected Binary Graph of an Artificial Communication 
Network Among Six Graduate Students

Emily

Aiden Brian

Carol

FredDan

Figure 4.2  A Directed Binary Graph of an Artificial Communication 
Network Among Six Graduate Students

Emily

Aiden Brian

Carol

FredDan

Table 4.2 is a binary matrix because the value 1 or 0 in a cell (denoted as 
xij) indicates the presence or absence of communication between the pair in 
row i and column j. For example, xAiden, Emily = 1, indicating a tie between 
Aiden and Emily, whereas xBrian, Dan = 0, indicating the lack of connection 
between Brian and Dan. An undirected matrix exhibits symmetry because 
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Figure 4.3  An Undirected Valued Graph of an Artificial Communication 
Network Among Six Graduate Students

Emily

Aiden Brian

Carol

FredDan
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Figure 4.4  A Directed Valued Graph of an Artificial Communication 
Network Among Six Graduate Students
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the cell entries for every pair of nodes i and j have identical values (i.e., xij 
= xji). All diagonal values are 0 (xij = 0, if i = j) because students do not 
communicate with themselves.

Row margins, which are not a part of a matrix, are the sums of cell values 
across all columns within row i (xi+ = xijj

g

1∑ =
). For example, the row 
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Table 4.2  Matrix Representation of Figure 4.1

Aiden Brian Carol Dan Emily Fred

Aiden 0 1 0 0 1 0

Brian 1 0 1 0 0 0

Carol 0 1 0 1 0 1

Dan 0 0 1 0 1 0

Emily 1 0 0 1 0 0

Fred 0 0 1 0 0 0

Table 4.3  Matrix Representation of Figure 4.2

Aiden Brian Carol Dan Emily Fred

Aiden 0 1 0 0 1 0

Brian 1 0 1 0 0 0

Carol 0 0 0 0 0 1

Dan 0 0 1 0 1 0

Emily 1 0 0 0 0 0

Fred 0 0 0 0 0 0

margin for Carol is 3, showing that Carol communicates with three people 
in the network (i.e., Brian, Dan, Fred). Column margins are the sums of cell 

values across all rows within column j (x+j = xiji

g

1∑ =
). The column margin 

for Fred is 1, revealing that Fred has a tie to just one network member 
(Carol). When a network is undirected, the corresponding row margin and 
column margin of a node are always equal.

The Type II network graph in Figure 4.2 adds direction to the relations, 
specifying who is sending messages to whom. Two reciprocal ties occur, 
between Aiden and Brian and between Emily and Aiden. Other pairs are 
unidirectional: Brian sends a message to Carol, but Carol does not send a 
message to Brian. Dan also sends a message to Carol without receiving any 
answer. Likewise Dan’s message to Emily is unreciprocated. Carol sends a 
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communication to Fred, but he does not reply. The matrix in Table 4.3 
exhibits all the relations shown in the graph, with some notable differences 
from undirected binary graphs. First, senders and receivers of communica-
tions must be distinguished and, by convention, the row actors (i) are send-
ers and the column actors (j) are receivers. Second, considering that many 
social relations are not often reciprocated, reciprocity may be the exception 
rather than the rule. In network notation, xij

 ≠ xji. For example, Brian sends 
a message to Carol, but Carol sends no message to Brian (xBrian, Carol =1 and 
xCarol, Brian = 0). Third, the row margin of a node may not equal its column 
margin (xi+ ≠ x+j when i = j). The row margins reveal the extent to which 
actors send messages to others in a network, whereas the column margins 
show the extent to which actors receive messages from others. In the exam-
ple, Carol sends one message (to Fred), thus her row margin is 1, but she 
receives two messages (from Brian and Dan, respectively); therefore, her 
column margin is 2.

The Type III network in Figure 4.3 assigns values to the lines between 
pairs of nodes, in the example, depicting the number of messages exchanged 
between the two students. For example, although Dan and Carol exchange 
six messages, Aiden and Emily only exchange one message. Table 4.4 is the 
undirected valued matrix corresponding to the graph in Figure 4.3. 
Table 4.4 bears great similarity to Table 4.2, except that the values in the 
cells are not restricted to binary codes (0 and 1). Instead, the integer entries 
show the number of messages exchanged between pairs of nodes. As a 
result, Table 4.3 exhibits symmetry because the cell entries for each pair of 
students i and j have identical values.

However, the interpretations of row and column margins are not straight-
forward because both the number of ties and tie strength are involved in 
those sums. For example, Dan’s row margin (also his column margin) is 8, 
which is twice as high as the margins of Aiden or Brian (4 each). However, 
Dan, Aiden, and Brian each have connections to two other students. Dan’s 
higher margins reflect his greater number of messages exchanged with 
Carol and Emily, in contrast to the fewer messages that Aiden and Brian 
exchange with their partners. Another example is that Fred’s row and col-
umn margins = 5, which results from his high exchange volume with Carol. 
We recommend that social network analysts report the network actors’ row 
margins of both the valued network and its binary version. Then, dividing 
the valued margins by the binary margins yields the mean communication 
per node. Thus, Dan’s mean number of exchanges per student is (2+6)/2 = 4, 
Aiden and Brian each have means of (1+3)/2 = 2, and Fred has the highest 
mean (5)/1 = 5. What are the means of Carol and Emily?

Finally, the Type IV graph in Figure 4.4 is the most complex network of 
the four types, entailing not only the direction of communications but also 
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Table 4.4  Matrix Representation of Figure 4.3

Aiden Brian Carol Dan Emily Fred

Aiden 0 3 0 0 1 0

Brian 3 0 1 0 0 0

Carol 0 1 0 6 0 5

Dan 0 0 6 0 2 0

Emily 1 0 0 2 0 0

Fred 0 0 5 0 0 0

Table 4.5  Matrix Representation of Figure 4.4

Aiden Brian Carol Dan Emily Fred

Aiden 0 1 0 0 0 0

Brian 3 0 0 0 0 0

Carol 0 2 0 0 0 6

Dan 0 0 3 0 2 0

Emily 5 0 0 1 0 0

Fred 0 0 4 0 0 0

their values as shown by the numbers on the lines. The number near each 
arrowhead indicates the number of messages sent to the student to whom 
the arrow points from the student at the arrow tail. For example, the 5 near 
the arrow pointing to Aiden shows that Emily sends five messages to her 
(conversely, Aiden receives five messages from Emily). Similarly, Brian 
sends three messages to Aiden, whereas Aiden only sends one message to 
Brian. Carol sends two messages to Brian, whereas Brian sends none to 
Carol. Table 4.5 is the matrix representation for the directed valued net-
work, where the senders are in the rows, the receivers are in the columns, 
and the cell entries are the number of communications sent from actor i to 
actor j. In addition, the row margin is the total number of outbound mes-
sages from an actor. For example, Carol’s row margin is 8, and a close 
examination of her outbound ties reveals that it’s the sum of two messages 
to Brian plus six messages to Fred. Similarly, the column margin indicates 
the total number messages received by a student. For example, Carol’s 
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column margin is 7, comprised of four messages from Fred plus three from 
Dan. We again recommend that network researchers report the network 
actors’ row margins of both the valued network and its binary version. 
Then, dividing the valued margins by the binary margins yields the mean 
messages sent and received per node.

4.2. Nodes: Centrality, Power, Prestige

In this section we discuss a basic element in a social network, the node, also 
called actor or vertex in different disciplines. One of the most important 
topics in analyzing nodes is to identify the important and prominent entities 
in a network. Often node centrality reveals actors’ power, influence, visibil-
ity, or prestige. To quantify node centrality, three fundamental measures are 
available: degree centrality, closeness centrality, and betweenness central-
ity. Each measure is premised on different principles for identifying impor-
tance or prominence in a network.

The first and simplest node centrality measure is degree centrality, 
which examines the extent to which a specific node is connected with other 
nodes in the network. In a binary undirected network, the degree centrality 
of node i is its row margin (or column margin). The formula for calculating 
degree centrality in a matrix is

 C N x i j( ) ( )D i ij
j

g

1
∑= ≠

=

 (4.1)

where C N( )D i  denotes degree centrality of node i and xijj

g

1∑ =  counts the 
number of direct ties that node i has to the g – 1 other nodes j. (i ≠ j excludes 
i’s relation to itself; i.e., the main diagonal values of the matrix are ignored.) 
The computation of C N( )D i  involves simply adding all the cell entries in 
either actor i’s row or column (because undirected relations have a sym-
metric data matrix, the corresponding row and column cell entries must be 
identical).

However, for binary directed graphs and matrices, every node has two 
distinct degree centralities: one is in-degree centrality, which measures the 
extent to which a node receives relations or nominations from the g – 1 
other nodes in the network. The second measure is out-degree centrality, 
which indicates the extent to which a node sends out relations or nomina-
tions to the g – 1 other nodes. Formally, in a matrix of a binary undirected 
network, node i’s out-degree centrality equals its row margin (formula 4.1), 
whereas its in-degree centrality is its column margin, or
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 IDC N x i j i

j

g

ji

1
∑( ) ( )= ≠

=

 (4.2)

where IDC(Ni) stands for the in-degree centrality of node i. The formula 
aggregates all the values for a given node i (in the ith column) across its 
different rows. In directed networks, the in-degree centrality (column mar-
gins) often does not equal the out-degree centrality (row margins) for net-
work nodes. What do the in-degree and out-degree centralities mean 
substantively? Knoke and Burt (1983) discussed the directed relations in 
directed networks. They stated that, in directed networks, the mere partici-
pation or involvement in certain relations is less important than distinguish-
ing between senders and receivers of relations. For example, in a reporting 
network of a workplace, rank and file employees routinely report to their 
supervisors and managers about their work activities, whereas managers 
and supervisors send commands that direct the work activities of employ-
ees under their direct management.

Following Knoke and Burt’s (1983) discussion, we define prestige as the 
extent to which a social actor in a network “receives” and “serves as the 
object” of relations sent by others in the network. Such reasoning separates 
sender from receiver, or source from target, emphasizing inequalities in 
control over resources, authority, and deference. Senders of commands 
attempt to exert authority, power, or influence over the behaviors of the 
receivers of the commands. Directed network ties not only reflect the factual 
inequality in power, authority, and control of resources but also can help to 
identify new leaders emerging over time. For example, in an advice-seeking 
network, persons who are asked by others to give advice can exert tremen-
dous influence over the advice-seekers’ actions. Therefore, despite the lack 
of any “official title,” actors who are frequently asked to give advice to oth-
ers are actually very powerful in the sense of charismatic leadership. In 
addition to the resources, power, and prestige, a node’s in-degree centrality 
can also reflect its popularity. For example, in a classroom environment, 
students who are frequently chosen as friends are popular and welcomed 
members of the class, but students who receive few or no friendship nomi-
nations are unpopular or even isolates (Morimoto & Yang, 2013).

Node degree centrality has a major flaw when it comes to comparing 
nodes across different social networks; it’s susceptible to network size. For 
example, node A with degree centrality of 10 in a network of 11 actors is 
drastically different from node A with the same degree centrality (10) in a 
network of 1001 actors. The former is a highly central node connected to 
all other nodes in the small network, whereas the latter has no connections 
to the vast majority of nodes in the large network. To eliminate the effect 
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of network size on degree centrality of nodes, researchers should use nor-
malized degree centrality,

 ʹCD =
CD Ni( )

g −1
 (4.3)

Normalized degree centrality simply divides the degree centrality formula 
(4.1) by the total number of nodes (g) in the network minus 1, which is the 
maximum number of direct connections any node can have in a network of 
size g. For the preceding example, the normalized degree centrality for the 
node A is 1.00, whereas the measure for node B is .01 (or as percentages, 
100.0% and 1.0%, respectively). Normalized degree centrality is particularly 
useful to compare degree centrality of nodes across different networks with 
drastically different sizes. Computation of degree centrality of directed net-
works is the same as that shown in formula 4.3, except for the distinction 
between normalized in-degree centrality (in-degree centrality divided by g – 1) 
and normalized out-degree centrality (out-degree centrality divided by g – 1).

Computations of degree centrality for valued graphs/networks are more 
complicated than for binary graphs. The chief complication is that high 
degree centrality for a node in valued graphs results from two competing 
sources (confounding factors): high connectivity with other nodes and/or 
high values to the ties with other nodes. For example, a node in a value 
network with degree centrality of 10 may have a wide span of connections 
to many other nodes where each connection has a low value (e.g., ties to 10 
other nodes with values = 1 apiece), or the node may have few connections 
to other nodes but those connections have high values (e.g., a single con-
nection with value = 10). Therefore, any measures of degree centrality in 
valued graphs need to be carefully distinguishing between the two sources 
and identify to what extent the measure comes from the connections and to 
what extent it comes from the values of those connections.

A variation on degree centrality is eigenvector centrality. It weights each 
of the nodes with direct ties to an actor by their centralities. Hence, a node’s 
eigenvector centrality is proportional to the sum of centralities of the other 
actors to whom it is connected. Eigenvector centrality scores can be inter-
preted as measuring actor influence or popularity: a high score means that 
an actor is connected to many nodes that also have high scores. Google’s 
PageRank algorithm, used to rank webpages in its search engine results, is 
a well-known example of eigenvector centrality. Borgatti (2005) and 
Bonacich (2007) are accessible discussions of eigenvector centrality in 
comparison to alternative measures.
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Closeness centrality measures how fast node i can reach all other 
nodes in a network. Although the emphasis in degree centrality is solely 
on the number of direct ties, closeness centrality emphasizes speed of 
connections through both direct and indirect ties to all network nodes. 
For that reason, closeness centrality may be ideal for measuring commu-
nication in social networks, or even computer networks. Closeness cen-
trality of node i is computed by taking the inverse of the node’s geodesic 
distance to the g – 1 other nodes, where geodesic distance measures the 
length of the shortest path between a pair of nodes (i.e., the smallest 
number of steps in a path connecting node i and node j, where a direct tie 
has a geodesic = 1). The formula for calculating closeness centrality is 
the inverse of the sum of geodesic distances between node i and the g – 1 
other nodes:

 CC Ni( ) = 1

j=1

g

∑ d Ni ,N j( )⎡
⎣⎢

⎤
⎦⎥

 i ≠ j( )  (4.4)

C NC i( )  is the closeness centrality for node i, and j=1

g

∑ d Ni ,N j( )⎡
⎣⎢

⎤
⎦⎥ com-

putes the sum of geodesic distances between node i and each of the g – 1 
other nodes. The shorter the distance between node i and all others, the 
larger its value of the closeness centrality. A high value of closeness central-
ity indicates many short paths and hence speedy communication to others; 
conversely, low closeness centrality implies long distances between a node 
and the other nodes and slow transmission of messages. Because the 
denominator in math functions cannot be zero, a completely isolated node 
does not have any closeness centrality, i.e., its closeness centrality is unde-
fined. Thus, closeness centrality only applies to the nodes in a connected 
graph or subgraph.

To illustrate, we use a network of trade relations among five nations from 
Hafner-Burton, Kahler, and Montgomery (2009, p. 564). Figure 4.5 shows 
that network (the original graph was valued, but, to simplify, we dichoto-
mized the network to indicate only presence or absence of ties). Using 
formula 4.4, we calculate the closeness centralities of the United States and 
China as 1/6 and 1/4, respectively. Thus, China can reach other nodes in the 
network faster than does the United States. Conversely, the closeness cen-
tralities of North Korea and Iran are 1/7, the farthest away from other 
nations. What is the closeness centrality of France?

Closeness centrality is susceptible to network size. Central nodes in large 
networks tend to have low closeness centrality scores, in contrast to periph-
eral nodes in small networks that tend to have high closeness values. To 
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Figure 4.5  Network of Trade Among Five Nations

China

North
Korea

IranFrance

US

illustrate, we conjured up the two artificial networks in Figures 4.6 and 4.7. 
Using formula 4.4, the closeness centrality for node A in Figure 4.6 is 1/6, 
and the closeness centrality for node A in Figure 4.7 is also 1/6. However, 
the A nodes in these two networks occupy very different positions. Node A 
in Figure 4.6 is the central node with direct connection to all other nodes, 
whereas node A in Figure 4.7 is a peripheral node with a direct tie with only 
one other node. So what makes a central node in one network have the same 
closeness centrality as a peripheral node in another network? The answer is 
network size: the graph in Figure 4.6 has seven nodes, whereas the graph 
in Figure 4.7 has only four nodes.

In this situation, we should calculate normalized measures of closeness 
centrality, which take network size into account in multiplying each 
node’s closeness centrality score by g – 1, the total number of nodes in a 
network minus 1.

 ʹCC Ni( ) = g −1

j=1

g

∑ d Ni ,N j( )⎡
⎣⎢

⎤
⎦⎥

 i ≠ j( )  (4.5)

Applying formula 4.5 to the graphs in Figures 4.6 and 4.7 yields normal-
ized closeness centrality scores for the two nodes A of 1 and 0.5, respec-
tively. By eliminating the effect of differential network size, we now see 
that Node A in the Figure 4.6 is indeed much closer to the six other nodes 
than is Node A in Figure 4.7 to the three other nodes. Much like normalized 
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Figure 4.6  A Network of Seven Nodes in Star Shape
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Figure 4.7  A Network With Four Nodes in Chain Shape

A B C D

degree centrality, normalized closeness centrality is indispensable for com-
paring nodes across two or more networks of different sizes. To compare 
nodes within a single network, closeness centrality suffices.

Betweenness centrality measures the extent to which node i is on the 
geodesic paths of all other pairs of nodes in a network. Let’s define gjk as 
the number of geodesic path(s) between nodes j and k in a network and 
gjk(Ni) as the number of geodesic path(s) between j and k that includes the 
node i. (More than one geodesic may exist between two nodes.) Then, 
dividing gjk(Ni) by gjk measures the proportion of geodesic path(s) con-
necting j and k in which node i is involved. The sum of the proportions 
across all pairs measures the extent to which node i is involved in the 
geodesic distances of all dyads in a network. (In the following formula, 
gjk indicates geodesics, not to be confused with g, the number of 
network nodes.)

C N
g N

g
i j k  4.6B i

jk i

jk

( ) ( ) ( ) ( )= ∑ ≠ ≠  (4.6)

Betweenness centrality is 0 when node i falls on no geodesic path for all 
pairs of the other g – 1 nodes. It reaches a maximum value of 1 when node 
i falls on every geodesic path for all the pairs in the network. How many 
geodesic paths exist in a network with g nodes, excluding the node i? 
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Assuming, for simplification, that every dyad has only one geodesic 

path, then a network with g nodes would have 
g g1 2

2
( )( )− −

 maximum 

possible geodesic paths. This maximum exists because 

C
g

g

g g1 !
2 1 2 !

1 2
2g 1

2 ( )
( )

( )( )=
−

× − −
=

− −
− . Much like degree centrality and 

closeness centrality, betweenness centrality is very sensitive to the network 
size. For that reason, Wasserman and Faust (1994, p. 190) proposed using 
normalized betweenness centrality, especially when comparing nodes 
across networks of different sizes. Normalized betweenness centrality 
divides a betweenness centrality score (formula 4.6) by its maximum pos-

sible value of 
g g1 2

2
( )( )− −

.

 ʹCB Ni( ) =
CB Ni( )× 2
g −1( ) g − 2( )

 (4.7)

Normalized betweenness centrality ranges between 0 and 1. It is 0 when the 
original degree centrality is 0, meaning that a given node i is not sitting on 
the geodesic paths between any pairs of network nodes. Conversely, it is 1 
when a given node i is sitting on every geodesic path connecting all dyads. 
Thus, for node i, the closer the normalized betweenness centrality score is 
to 1, the more often the node i is part of the network’s geodesics, and thus 
potentially exerting greater influence over network relations.

Applying formula 4.6 to Figure 4.5, we observe that, whereas China has 
betweenness centrality = 5, all other nations’ betweenness centralities = 0. 
China’s high betweenness centrality is due to its presence on five geodesic 
paths: U.S.-China-North Korea, U.S.-China-Iran, France-China-North 
Korea, France-China-Iran, and Iran-China-North Korea. If the United States 
and France didn’t have a direct tie, China would be on the geodesic path 
between the United States and France as well, thus reaching a maximum 

possible betweenness centrality in a graph of five nodes 
5−1( ) 5− 2( )

2
= 6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟.

Table 4.6 summarizes the three centrality measures for each of the 
nations in Figure 4.5. China has the highest score in each of these measures, 
especially on betweenness centrality. Previously, we stated that degree 
centrality indicates the volume of direct connections, and closeness central-
ity measures the speed of communication. Here, we assert that betweenness 
centrality reveals an actor’s brokerage position within a network. In his 
classic essay on structural holes, Ronald Burt (1995) discussed how social 
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actors reap the benefits by occupying structural holes also known as broker-
age positions (e.g., as an intermediary between a pair of actors who are not 
directly connected). Burt argued that actors who fill structural holes are 
thereby able to collect diverse and valuable information from unique 
sources. Furthermore, those actors are capable of controlling the timing and 
the content when they pass messages among others who aren’t directly con-
nected, thus deriving control benefits. Along this line of reasoning, China 
gains leverage by receiving diverse and valuable information from the 
other four nations, reflected in its high betweenness centrality (brokerage 
positions). Furthermore, China also enjoys control benefits because it can 
decide whether, when, and to what extent it passes information from one 
nation to the other. Those decisions are contingent on how they benefit 
China as the network’s information controller.

Other than for degree centrality, we don’t discuss applications of 
betweenness and closeness centrality to binary directed graphs. We also 
don’t present centrality measures for valued graphs. Those topics require 
elaborate expositions beyond the scope of this introductory volume. 
Instead, we recommend reading two classic articles examining those topics 
in depth. White and Borgatti (1994) extended betweenness centrality to 
directed graphs, and Freeman, Borgatti, and White (1991) described how to 
apply centrality measures to valued graphs.

4.3. Dyads: Walk, Path, Distance, Reachability

We now consider measures at a different level of network analysis: dyads 
or pairs. Four concepts are important for measuring dyadic relations: walk, 
path, distance, and reachability. We examine each concept in some detail, 

Table 4.6  Centrality Measures for the Five Nations in Figure 4.5

Nations

Centralities

Degree Betweenness Closeness

United States 2 0 1/6

France 2 0 1/6

China 4 5 1/4

Iran 1 0 1/7

North Korea 1 0 1/7
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starting with their application to the simplest network form: binary undi-
rected relations.

In a graph, if two nodes are connected by a line representing some type 
of tie, the nodes are adjacent. If node X is adjacent to node Y and Y is 
adjacent to Z, then the two lines are incident on Y. A walk is defined as a 
sequence of nodes and lines, beginning with a node and ending with 
another node, in which every node is incident with the lines preceding and 
following it in that sequence. The beginning and ending nodes in a walk 
may be different or the same, and nodes and lines may appear more than 
once. A path is a walk in which no node and no line appears more than once 
(Wasserman & Faust, 1994, p. 106). For example, a path in a communica-
tion network requires that an actor receives or sends a message just one 
time. From these definitions, a walk is very loosely defined because any 
sequences of nodes and lines can comprise a walk. But, a path is a walk 
with very strong restrictions on its nodes and lines. A path distance, or path 
length, is the number of lines in the sequence from the beginning node to 
the end node. As defined in the preceding section, if more than one path 
exists between a pair of nodes, the path with the shortest length is called the 
geodesic. More than one geodesic may exist if two or more paths connect-
ing the same dyad each have the same shortest distances. But, if no path 
links a dyad, then no geodesic exists, and the distance between the two 
nodes is considered to be either infinite or undefined.

We illustrate these concepts with the graph in Figure 4.8 representing a 
small undirected binary communication network. Berto could communi-
cate with Carmen via four walks that are paths because none uses a node or 
line more than once: Berto-Ana-Carmen, Berto-Diego-Carmen, Berto-Ana-
Diego-Carmen, and Berto-Diego-Ana-Carmen. However, the third and 
fourth paths are longer than the first and second; their distances or lengths 
are three. Both the first and second paths have distances of two; hence, 
they’re each geodesics of the Berto and Carmen dyad. How many walks 
and paths does Carmen have connecting her to each of the three others? 
What are those path distances? And what are those three dyads’ geodesics 
and path lengths?

An important property of a pair of nodes is the dyad’s reachability: 
whether two nodes can connect to one another using a walk or a path. 
 Figure 4.9 shows that, in this undirected graph of seven people, all pairs are 
reachable because every dyad is connected via either direct or indirect paths. 
Thus, Elaf can reach Badr using the path Elaf-Chana-Ahmed-Badr and Badr 
can reach Elaf by reversing that sequence. If a dyad is reachable, it has one 
or more geodesics. What are the two geodesics of Chana and Ghada? In 
directed graphs, reachability requires that the direction of the arrows be 
maintained when tracing paths. A directed path must follow a sequence 
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where a node receives an arrowhead from a preceding node, then sends an 
arrow toward the next node in the path. In other words, all arrowheads in a 
path sequence must point in the same direction. Although one member of a 
dyad may reach the second, the reverse direction may or may not exist. For 
example, Figure 4.10 shows that, although Elaf can reach Badr (via path 
Elaf→Chana→Ahmed→Badr), Badr cannot reach Elaf by any directed 
path. Indeed, because she has no outgoing arrow, Badr can’t reach anyone! 
Sometimes two members of a dyad can reach one another by geodesics of 
differing lengths. What is the shortest path from Chana to Ghada and the 
shortest path from Ghada to Chana, and what are their lengths?

Figure 4.8  Walks, Paths, and Geodesics
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Figure 4.9  Reachability in a Binary Undirected Network
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4.4. Subgroups: Transitivity and Cliques

Subgroups are an important concept in social network analysis because they 
indicate the extent to which small, cliquish, and cohesive groups exist within 
a larger network. In Borgatti, Everett, and Johnson’s (2013, p. 156) terms, 
human social systems are clumpy and compact. To examine empirically just 
how “clumpy and compact,” network analysts developed several  measures—
among them, transitivity and clique analysis are very important tools.

Transitivity. In social network contexts, transitivity means that, if node 
A is connected to node B, and node B is connected to node C, then node A 
and node C are also connected. In an undirected network, the triad is 
closed. Ancient proverbs attested to transitivity: “the friend of my friend is 
also my friend” and “the enemy of my enemy is my friend.” In real life 
social networks, if node A is connected with node B, and node B is con-
nected with node C, node A may or may not be connected with node C (that 
is, transitivity may not occur). Nodes A and C are more likely, but not 
certain, to connect if each already has a connection with node B. From a 
longitudinal perspective, if the A-B and B-C ties occur first, then the A-C 
tie is more likely to follow. For example, a Washington lobbyist is more 
likely to communicate with another lobbyist if each has a prior relation to 
a third party, such as a government agency or Congressional staff 
( Carpenter, Esterling, & Lazer, 2004).

The proportion of transitive triplets in a whole network can be measured 
by dividing the total number of closed triplets (three nodes connected by 

Figure 4.10  Reachability in a Binary Directed Network
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three ties) by the total number of connected triplets (the sum of closed tri-
plets plus open triplets—triplets connected only by two ties). The ratio, 
which ranges from 0 when no triplets are closed to 1 when all triplets are 
closed, indicates the proportion of paths of length two that are closed. In 
other words, it’s the probability that a connected triplet is transitive. Transi-
tive triplets can be analyzed at both the ego level and the whole-network 
level. To illustrate, Figure 4.11 is an undirected graph of friendship rela-
tions among six girls. The network has a total of 15 triplets, identified by 
taking each person in turn and finding all pairs to which she is connected 
(e.g., Na is the go-between member of three triplets, Li-Na-Su, Li-Na-Yi, 
and Su-Na-Yi). But, only one of Na’s three triplets is closed (Su-Na-Yi), so 
the proportion of her triplets that are transitive is 0.33. Table 4.7 lists all 
15 triplets, grouped by their egos, classifies them by type (open or closed), 
and reports the proportion of each girl’s triplets that are transitive. For the 
whole network, the probability that a triplet drawn at random will be 
closed—that is, that friends of friends are also friends—is .40.

Cliques. Network cohesion refers to numerous, intimate relations among 
members embedded in a social group or tight social circle. A cohesive sub-
group consists of actors connected through many direct, reciprocated 
choice relations that enable them to share information, create solidarity, and 
act collectively. Many direct contacts among all subgroup members, com-
bined with few or no ties to outsiders, dispose a group toward homogeneity 
of thought, identity, and behavior. Examples of cohesive groups include 
religious cults, terrorist cells, criminal gangs, military platoons, sports 
teams, craft occupations, and work teams. The term clique (‘‘kleek’’ or 

Figure 4.11  A Six-Actor Network
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‘‘klick’’) has passed into everyday language, referring to the high-status 
in-crowds of schools, churches, and clubs. The concept acquired specificity 
in network analysis, using measures of density and path length. By investi-
gating subgroup structures, clique analysis enables researchers to under-
stand how cohesion benefits or harms group members, for example, by 
affecting perceptions of friend support or belonging (Falci & McNeely, 
2009; Martí, Bolibar, & Lozares, 2017) and by shielding corporate elites 
from external shareholder pressures (Benton, 2017). Often sociological 
concepts such as group, cluster, circle, gang, faction, and clique are used 
interchangeably without rigorous distinctions (Borgatti, Everett, & Shirey, 
1990). Summarizing the vast literature on subgroups in social network 
studies, Wasserman and Faust (1994, p. 251) extracted four general proper-
ties that characterize cohesive subgroups: mutuality of ties, reachability of 
subgroup members, frequency of ties among members, and relative fre-
quency of ties among subgroup members compared with nonmembers. 
These characteristics lay the foundation for operationally defining cliques 
and related measures of network subgroups.

A clique is defined in an undirected network as a maximum subset of 
three or more nodes in which every member of the subset is connected 
directly to every other member. The word “maximum” means no other 

Table 4.7  Proportion of Transitive Triplets in Figure 4.11

Actors Triplet Type Proportion Transitive

Ai Bi-Ai-Su Closed 1.00

Bi Ai-Bi-Su
Ai-Bi-Li
Li-Bi-Su

Closed
Open
Open

0.33

Li Bi-Li-Na Open 0.00

Na Li-Na-Yi
Li-Na-Su
Su-Na-Yi

Open
Open
Closed

0.33

Su Ai-Su-Bi
Ai-Su-Yi
Ai-Su-Na
Bi-Su-Yi
Bi-Su-Na
Na-Su-Yi

Closed
Open
Open
Open
Open
Closed

0.33

Yi Su-Yi-Na Closed 1.00

Total — 0.40
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node in the whole network can be added to the subset while preserving the 
property that every node is connected to every other node (Newman, 2010). 
Cliques may overlap, meaning that two or more cliques may have some 
nodes in common. Thus, the graph in Figure 4.9 has two cliques: the 
Chana-Ahmed-Fara clique and the Chana-Elaf-Dawud clique. Both cliques 
share one member: Chana. In contrast, the absence of direct ties between 
Chana and Ghada and between Dawud and Fara means that the four-actor 
subgroup Chana-Fara-Ghada-Dawud is not a clique.

Just as cliques can share common nodes, nodes can co-participate in 
cliques. Figure 4.12 shows the structure of co-membership among nodes in 
cliques. Four cliques exist in the figure: Clique 1-2-3-4, Clique 3-4-5, 
Clique 7-8-10, and Clique 7-9-10. Subgroup 1-2-3 is not a clique because 
it can add node 4 while still preserving its property of direct connections 
among all members (in other words, subgroup 1-2-3 is not maximal). Like-
wise, subgroups 1-3-4, 2-3-4, and 1-2-4 are not cliques because they are not 
maximal. At the clique level, Cliques 1-2-3-4 and 3-4-5 share two nodes: 3 
and 4. Cliques 7-8-10 and 7-9-10 share two nodes: 7 and 10. And at the 
nodal level, nodes 3, 4, 7, and 10 each co-participate in two cliques.

The extent to which a pair of nodes co-participate in or are co-member of 
cliques can suggest their proximity. Two nodes co-participating in many 
cliques are close, as opposed to two nodes co-participating in no cliques. Fol-
lowing this rationale, network analysis programs can generate a clique co-
membership matrix of all pairs of nodes in a network. The matrix is basically 
valued and undirected, with the off-diagonal i and j cell entries displaying the 
number of cliques shared by a dyad and diagonal entries showing the total 
number of cliques with which a node (i) is affiliated. The co-membership 
matrix can then be analyzed by hierarchical clustering and multidimensional 

Figure 4.12  Co-Memberships of Cliques
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scaling methods to visualize the closeness or the proximity among of all 
nodes in the network (see Borgatti, Everett, & Johnson, 2013, Chapter 11).

The utility of clique analysis is limited by its highly stringent require-
ment. Consequently, several alternative measures of subgroup cohesion are 
available, such as k-plex, k-core, k-clique, and k-components. A k-plex of 
size n is defined as a maximal subset of n nodes within a network such that 
each node is directly connected to at least n – k of the others. So, when 
k = 1, the 1-plex is the same as a clique because every node in the subgroup 
must be directly connected to all the other nodes in the group. When k = 2, 
the 2-plex relaxes the requirement that each node in the subgroup must be 
directly connected with n – 2 nodes. As mentioned previously, the subgroup 
Chana-Dawud-Ghada-Fara in Figure 4.9 is not a clique because it lacks 
direct Dawud-Fara and Chana-Ghada connections. However, that subgroup 
is a 2-plex because every node is directly connected with two other nodes 
in the group (n – 2 → 4 – 2 = 2). We refer readers to Newman (2010, 
 Chapter 7) for discussions of k-core, k-clique, and k-component measures.

4.5. Whole Networks: Size, Density, Centralization

At the whole network level of analysis, several emergent properties charac-
terize a network’s structure. The most obvious one is size, the number of 
nodes in a network. Many social network analyses examine a handful or 
tens of nodes. The nodes might be people involved in friendship, collabora-
tion, romantic relations, or advice-seeking. Other nodes may be collective 
entities such as corporations, work groups, teams, parties, communities, and 
nation states, engaging in a variety of partnership or competitive relations. 
Certainly, the number of nodes need not be limited to hundreds or even 
thousands of entities, as very large networks number in the millions or bil-
lions of nodes, for example, hyperlinked pages on the World Wide Web.

However, analyzing large networks with hundreds or thousands of nodes 
affords challenges to statistical processing or even computer capacity. 
 Figure 4.13 illustrates that the relation between number of nodes and num-
ber of undirected dyads is exponential rather than linear (for directed ties, 
the relation is more steeply exponential). For a single node, the number of 
dyads = 0. For two nodes, only one dyad exists; three nodes have 3 dyads; 
four nodes have 6 dyads; for 10 nodes, 45 dyads must be analyzed; and so 
on. For networks with hundreds of thousands of nodes, dyadic ties become 
astronomical, requiring fast algorithms and efficient statistical processing. 
The good news is that recent developments in data mining and processing 
in the disciplines of Big Data facilitate social network analysis of huge 
networks. Social scientists, engineers, and mathematicians are working 
together to solve analytic issues of large networks with nodes numbering in 
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the millions. Prominent businesses, such as Google, Walmart, and Amazon, 
as well as the U.S. government, possess techniques able to store, process, 
and analyze giant datasets, many of which are relational data about the 
social network activities among tens and hundreds of millions of nodes.

At the whole network level, density is an important indicator of the 
extent to which a network’s dyadic ties materialize among the maximum 
possible number of dyads. The following two formulas show the computa-
tion of density for binary graphs, with the first one applying to undirected 
graphs and the second applying to directed networks.

D
number of dyadic ties that are present
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number of dyadic ties that are present

N N
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Figure 4.13  Exponential Relation Between Number of Nodes and 
Number of Dyads
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N is the total number of nodes in the network. To illustrate its application, 
we apply formula 4.8 to Figure 4.5, the network of trade among five 

nations. Density of this small network is 2×5
5× 4

= 0.50
⎛

⎝
⎜

⎞

⎠
⎟ , which means that, 

out of the maximum possible number of dyadic pairs, half occur. Next, we 
apply formula 4.9 to Figure 4.10, a directed graph of seven nodes. The 

density is 
9
7×6

= 0.214
⎛

⎝
⎜

⎞

⎠
⎟ , indicating that only one fifth of the possible 

directed ties occur in this directed network.
Density ranges from 0.00 to 1.00, indicating two extreme situations: 0.00 

means no one in the network is connected to anyone else; 1.00 means eve-
ryone is connected to everyone else. To illustrate those two extreme forms 
of network, we altered Figure 4.5 to produce two new graphs. Figure 4.14 
shows a completely isolated network, in which no nation trades with any 
other nation, a terrible global network to live in. Figure 4.15 depicts the 
opposite, in which every nation directly trades with all other nations, an 
ideal form that’s hard to find in real life. In this graph, the dotted lines 
denote the five connections that, when added to Figure 4.5, convert its 0.50 
density to the 1.00 density in Figure 4.15. Most real-world networks are 
neither totally isolated nor totally saturated but fall somewhere in between. 
The closer the density is to 0.00, the closer the network resembles 
 Figure 4.14. Conversely, the nearer that density is to 1.00, the more closely 
the network resembles Figure 4.15.

Figure 4.14  Network of Trade Among Five Nations: Complete Isolation
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Formulas 4.8 and 4.9 only apply to binary networks, not to valued 
graphs. Valued graphs have scores attached to the dyadic ties, complicating 
the computation and interpretation of network density. You could still apply 
the formulas to the binarized versions of a valued network, but doing so 
would sacrifice rich information conveyed in the values of the dyadic rela-
tions. More research is needed to offer satisfactory solutions to computing 
and interpreting densities in valued graphs.

Another important measure at the whole network level is centralization. 
Centralization differs from centrality, in particular, degree centrality. 
Degree centrality is a nodal-level measure, the extent a node is connected 
with other network nodes. Centralization calculates the extent to which the 
nodal degree centrality differs among all nodes. This formula shows the 
computation of a whole network’s degree centralization:

 CD =
i=1

N

∑ CD N *( )−CD Ni( )⎡
⎣

⎤
⎦

N −1( ) N − 2( )
 (4.10)

The numerator sums the observed differences in degree centralities between 
the actor with the largest centrality and the other nodes. C ND

*( )  denotes 
the degree centrality for the node with the highest degree. C ND i( ) central-
ity represents degree centrality for the N – 1 other nodes. 

CD N *( )−CD Ni( )⎡
⎣

⎤
⎦i=1

N

∑  sums up the differences in degree centrality 

Figure 4.15  Network of Trade Among Five Nations: Total Saturation
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between the node with the highest degree centrality and all other nodes. The 
denominator measures the maximum possible sum of differences. This 
value occurs in a star graph (Figure 4.16), where one node (A) interacts 
directly with all the other nodes, but the others have only a tie to node A. 
Node A has the highest possible degree centrality (N – 1), whereas the other 
nodes each have degree centrality of 1; hence, the difference in centralities 
between this most central node (A) and any other node is (N – 1) – 1 = N – 2.  
Because this difference occurs (N – 1) times in the graph, the value of the 
denominator is (N – 1)(N – 2).

The index of network degree centralization ranges between 0.00 and 
1.00. Degree centrality has maximum centralization when one node has the 
highest possible centrality (N – 1) and all other nodes have degree centrality 
1 (such as the star graph in Figure 4.16). The numerator then equals the 
denominator, and the index of group degree centralization equals 1.00. 
Conversely, if a network has nodes with the same number of degrees (the 
wheel graph in Figure 4.17), and hence degree centrality, the numerator 
will be 0. Hence, the network’s degree centralization is 0.00. Therefore, the 
closer that network degree centralization is to 1.00, the more uneven or 
hierarchical are the nodes’ degree centrality scores.

Size, density, and centralization are important indicators revealing differ-
ent aspects of social network structures. Size measures the magnitude of a 
network, which can range from a few graduate students arguing in a class-
room to millions of online profiles engaging in political debates. Density 
shows the level of saturation in a network, ranging from 0.00 (totally iso-
lated network) to 1.00 (everybody is directly connected with everybody 
else). Centralization divulges the inequality among nodes in their degree 
centralities. Although 1.00 indicates the greatest hierarchy or inequality in 

Figure 4.16  A Network of Six Nodes in Star Shape
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degree centralities, 0.00 denotes an egalitarian or democratic structure. 
Three measures can be applied to uncover structural features of almost all 
types of social networks: classroom friendships, organizational leadership, 
or communications among a group of terrorists.

4.6. Structural, Regular, and Automorphic Equivalence

Social scientists are often interested in the equivalence of actors, in the 
sense of two or more actors having identical or very similar relations with 
others in a network. Structurally equivalent actors typically have a competi-
tive, rather than a cohesive, relation. For example, two cabbage growers 
who market their produce to the same set of retailers are structurally 
equivalent and in stiff competition to sell their vegetables. Structurally 
equivalent actors are completely substitutable for one another. If one farmer 
were to withdraw from the cabbage network, she could easily be replaced 
by a structurally equivalent farmer, leaving the original network structure 
unchanged. Perfect substitutability in a social network often generates 
fierce competition to obtain favorable responses from other network par-
ticipants (as is well known to grade-schoolers competing for their teacher’s 
attention). Network scholars who use structural equivalence methods are 

Figure 4.17  A Wheel Graph
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generally interested in understanding competitive relations rather than 
group cohesion (Burt, 1992).

Sociological concepts of positions and roles draw from fundamental 
theories about social classifications that possess distinctive rights and obli-
gations in relation to other categories. Robert Merton’s (1957) role theory 
analyzed the role set, a social status involving an array of interconnected 
positions within a social system. For example, medical school students play 
the role of student in relation to their professors, but the med student role 
set also encompasses relations with patients, physicians, nurses, techni-
cians, and clinic and hospital administrators. This section examines con-
cepts and methods for identifying and measuring different types of 
equivalence in actors’ ties within whole networks. An equivalence relation 
is a partitioning of subsets of nodes into mutually exclusive and exhaustive 
classes, where the members of an equivalence class (position) are equiva-
lent to one another, whereas members of different equivalence classes are 
nonequivalent (Wasserman & Faust, 1994, p. 466). Three important equiva-
lence properties, denoted by ≡, are

• Symmetry: i ≡ j if and only if j ≡ i

• Reflexivity: i ≡ i

• Transitivity: if i ≡ j and j ≡ k, then i ≡ k

Methods for finding equivalence seek to map the actors from an initial 
relational set onto a smaller number of equivalence classes. Network 
researchers developed several approaches to identifying equivalent roles 
and positions (Borgatti & Everett, 1992; Everett, 1985; Everett, Boyd, & 
Borgatti, 1990; Faust, 1988; Pattison, 1988). The three types of equivalence 
examined in this section are, in order of decreasing restrictiveness: struc-
tural, automorphic, and regular equivalence.

Structural Equivalence. Network analysts are often interested in reduc-
ing the complexity of large social systems to simpler structures, whose key 
features may be more readily grasped. A useful approach is to identify 
subsets of nodes that are equivalent, then group them together and treat 
them as jointly occupying a single position in relation to nodes occupying 
other equivalent positions. In a directed binary graph of a whole network of 
g actors, two actors are perfectly structurally equivalent in a relation if they 
have exactly identical patterns of ties sent to and received from all the other 
g – 2 actors in the network. More precisely, nodes i and j are structurally 
equivalent if, for all nodes k in the network (but not including i or j), node 
i sends a tie to node k, if and only if j also sends a tie to k, and node i 
receives a tie from k if and only if j also receives a tie from k (Wasserman & 
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Faust, 1994, p. 356). For multiple networks, this condition must hold pre-
cisely in each of the R relations for the two nodes to be structurally equiva-
lent. The presence or absence of directed ties between nodes i and j is 
irrelevant to determining whether they are structurally equivalent. Rather, 
their structural equivalence depends only on their patterns of relations with 
the g – 2 other network nodes.

Undirected binary graphs make no distinction between the senders and 
receivers of relations. Extending the preceding definition of digraph struc-
tural equivalence to an undirected graph, actors i and j are structurally 
equivalent if, for all other actors k, i has a tie with k if and only if j has a tie 
with k. Structural equivalence can also be applied to valued graphs, in 
which ranking scales rather than binary values measure the ties between 
nodes. Strictly speaking, two valued-graph nodes are perfectly structurally 
equivalent only when both have exactly identical values for every tie to all 
other nodes.

In the digraph in Figure 4.18, the pair of nodes A and B is structurally 
equivalent because each sends relations to nodes C and E, neither sends a 
relation to node D, and A and B both do not receive relations from the other 
nodes. The presence and absence of directed ties between A and B are not 
included when assessing their structural equivalence. Similarly, nodes C 
and E are structurally equivalent because both receive relations from A and 
B and each sends relations to no one. Which nodes are structurally equiva-
lent to D; why?

Figure 4.18  Digraph of a Five-Node Network for Structural 
Equivalence
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The preceding definitions of structural equivalence are usually too rigor-
ous for practical applications in empirical network analyses. Real network 
data rarely contain any dyads that meet such stringent standards. However, 
some nodes may be approximately structurally equivalent, in the sense that 
their patterns of relations with the other nodes are highly similar to one 
another although not identical. To capture such approximations, researchers 
use measures of relational similarity rather than applying a rigid, all-or-
nothing requirement of perfect structural equivalence. The more similar 
two nodes are in their respective connections with all the other nodes, the 
greater is their structural equivalence.

Structural equivalence based on relational similarity for a network dyad 
only requires that their patterns of present and absent ties to and from the 
other actors be highly similar. Assuming a binary digraph, two structurally 
equivalent actors will have entries in the corresponding rows and columns 
of the sociomatrix that closely resemble one another. Operationalizing this 
criterion, Burt (1978) proposed Euclidean distance as a measure of the 
structural equivalence of actors i and j:

d x x x x i j k[ ]ij ik jk ki kjk

g 2 2

1

2∑ ( ) ( ) ( )= − + − ≠ ≠
=

−
 (4.11)

where dij is the Euclidean distance between actors i and j and the x’s are the 
values (either 1 or 0 for binary relations) in the matrix (the first subscript 
denotes the row and the second subscript the column of a matrix cell). 
Because dij is the positive square root of the sum of two squared difference 
terms, every dij ≥ 0. If actors i and j have exactly identical ties to all others, 
all the differences (xik – xjk) and (xki – xkj) are zero; therefore, two perfectly 
structurally equivalent actors have Euclidean distance dij = 0. But, in most 
empirical cases, observed values of dij are greater than zero; hence, actors i 
and j are relationally similar to some varying extent. Euclidean distance is 
inverse to actor similarity and hence to structural equivalence: The larger the 
dij, the less the structural equivalence of actors i and j. In other words, Euclid-
ean distances actually measure the dissimilarities between pairs of actors.

To illustrate how to compute Euclidean distances for a dyad, 
 Figure 4.19 and Table 4.8 depict a five-node network structure in digraph 
and matrix forms, respectively. Figure 4.19 shows that nodes A and B are 
perfectly structurally equivalent because they both have direct connec-
tions to C and D and no tie to E. In contrast, nodes C and D are not 
structurally equivalent because, despite each receiving ties from nodes A 
and B, D also sends a tie to node E but C does not. Using the binary 
values from Table 4.8, the Euclidean distance between nodes A and B is 
the following:
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dAB = 0 indicates that nodes A and B are perfectly structurally equivalent. Can 

you show that the Euclidean distance between nodes D and E is 3 = 1.73?
Computing Euclidean distances in undirected binary graphs is simpler 

because the formula makes no distinction between senders and receivers of 
relations:

 d x x i j k  ij ik jkk

g 2

1

2∑ ( ) ( )= − ≠ ≠
=

−  (4.13)

When multiple relations are present in the network, the Euclidean distance 
computation involves summing squared differences for a dyad across all R 
relations:

 dij = xikr − x jkr( )
2
+ xkir − xkjr( )
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In contrast to Euclidean distance as a measure of dissimilarity, Pearson’s 
correlation coefficient (rij) directly measures relational similarity, with 
higher values of dyadic correlation indicating greater structural equiva-
lence. We discuss the use of correlations in blockmodel analysis in 
Chapter 5.2.

The definitions and formulas of structural equivalence are usually too 
rigorous for practical applications in empirical social network research. 
Real networks rarely contain any dyads that meet such stringent standards 
(i.e., where Euclidean distance = 0). However, some nodes may be 
approximately structurally equivalent, in the sense that their patterns of 
relations to the g – 2 other nodes are highly similar but not identical. To 
capture such approximations, researchers use measures of relational simi-
larity rather than applying a rigid, all-or-nothing requirement of perfect 
structural equivalence. The more similar two nodes are in their respective 
connections with all other nodes, the greater is their structural equiva-
lence. Structural equivalence is an important measure for dyads because it 
reveals positional similarity, hence, the competition between two nodes. 
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The most common application of structural equivalence in whole network 
analysis involves inputting a binary directed or undirected adjacency 
matrix. The output is a squared matrix whose cell values indicate the struc-
tural equivalence of every dyad in the network. Thus, the output matrix is 
valued and undirected because structural equivalence between each pair is 
independent of the order of the pair. Chapter 5.2 discusses some 
applications.

Automorphic and Isomorphic Equivalence. Isomorphic and automor-
phic equivalence are such closely related concepts that some researchers 
treat them as interchangeable (Borgatti & Everett, 1992). However, isomor-
phic equivalence applies to two graphs, whereas automorphic equivalence 

Figure 4.19  Digraph of a Five-Node Network for Structural 
Equivalence

A

C D

EB

Table 4.8  Matrix of a Five-Node Network for Structural Equivalence

A B C D E

A 0 1 1 1 0

B 0 0 1 1 0

C 0 0 0 0 0

D 0 0 1 0 1

E 0 0 0 0 0
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describes the relational properties of social actors within one graph. Two 
graphs exhibit structural isomorphism if a one-to-one mapping of the nodes 
from one graph onto the second graph preserves all the nodes’ adjacency 
relations (i.e., the same indegrees and outdegrees). In other words, if two 
nodes are connected in the first graph, then the corresponding two nodes in 
the second graph must also be connected in the same way (Borgatti & 
Everett, 1992, p. 11). Every graph is isomorphic with itself, which is called 
automorphism, a one-to-one mapping of nodes back onto themselves. Two 
actors are automorphically equivalent (jointly occupy the same position) if 
and only if they are connected to corresponding other positions (but not to 
identical nodes). Automorphic equivalent nodes have identical graph theo-
retic properties, such as centrality, ego density, and clique size (Borgatti & 
Everett, 1992).

Automorphic equivalence relaxes the structural equivalence requirement 
that actors in the same position have identical or very similar ties with the 
same set of other actors. Instead, automorphic equivalence identifies actors 
as jointly occupying a position if they have identical ties with different sets 
of actors that play the same role in relation to that position. To use a famil-
iar example, for two professors to occupy a structurally equivalent position, 
both must teach the identical set of students, which is virtually impossible. 
But, to occupy an automorphically equivalent position, the two professors 
need only teach different sets with the same number of students. The stu-
dents occupy a second position, defined as persons taught by a professor 
position. The graphs in Figure 4.20 contrast these two types of equivalence, 
where directed lines from professors to students represent the ‘‘teach’’ rela-
tion. Although both graphs have two positions, automorphic equivalence 
better captures the idea that social roles involve generalized patterns of 
relations. To cite another well-known instance, in monogamous marriages, 
we expect the wife position to be jointly occupied by a set of women who 
are in nonplural marriages to the same set of men but who are each uniquely 
paired with a different husband!

Structurally equivalent actors are also automorphically equivalent but 
not necessarily vice versa. Automorphically equivalent nodes are indistin-
guishable if the actor labels are removed from a graph. Thus, if points are 
substituted for the names in Figure 4.20B, the two subgraphs are indistin-
guishable. Borgatti and Everett (1992, p. 16) summarized the distinction:

Abstracting a bit, we could say that in the structural equivalence 
approach, the network or labeled graph represents the underlying 
structure of a group; hence an actor’s location in that structure repre-
sents his or her position in the group. In contrast, in the [automorphic 
equivalence] approach, the structure of interest is not the labeled graph 



88   

itself, which is seen as the observed or ‘‘surface structure,’’ but the 
structure of the surface structure, which is the unlabeled graph that 
underlies the labeled graph. It is the actor’s location in this ‘‘deep 
structure,’’ then, that represents his or her position in the group.

By relaxing the structural equivalence requirements, automorphic equiva-
lence becomes very useful in facilitating empirical research corresponding 
to many social theories. Borgatti and Everett (1992) argued that several 
studies operationalizing theories using structural equivalence would be bet-
ter analyzed using automorphic equivalence. For example, they addressed 
Burt’s (1979) proposal to define the industries and sectors of an economy 
as sets of firms that produce similar types of goods and occupy a single 

Figure 4.20  Structural Equivalence Versus Automorphic Equivalence
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position within an interorganizational network. Borgatti and Everett (1992, 
p. 21) asserted that structurally equivalent firms, which by definition must 
buy from the same providers and sell to the same clients, hardly constitute 
recognizable sectors. But automorphically equivalent firms, which buy 
from similar vendors and sell to similar customers, may very well comprise 
meaningful industries and sectors.

Regular Equivalence. The least restrictive of the most commonly used 
forms of equivalence, regular equivalence requires neither structural equiv-
alence’s ties to identical actors nor automorphic equivalence’s indistin-
guishable positions. Actors are regularly equivalent if they have the same 
kinds of relations with actors that are also regularly equivalent. Another 
way to conceptualize the idea is that, if a first actor occupying a position is 
tied to someone in a second position, then a regularly equivalent second 
actor must have an identical tie to someone else in a second position 
(White & Reitz, 1983, p. 214). All mothers with children are regularly 
equivalent, regardless of their numbers of offspring, as are all children who 
have mothers. In a hospital, the doctors are regularly equivalent in relation 
to their patients and nurses, even when the numbers of patients and nurses 
connected to the doctors vary. The generality of regular equivalence makes 
it perhaps the most important measure for sociologists attempting to cap-
ture social roles and positions.

Both automorphic equivalence and regular equivalence require that a pair 
of actors connect with the other actors who are structurally equivalent on the 
same relation. However, the distinction between automorphic and regular 
equivalence is sometimes ambiguous. Automorphic equivalence requires that 
unlabeled graphs be strictly substitutable for one another, but regular equiva-
lence does not require a complete substitutability between subgraphs.

To demonstrate the difference, Figure 4.21 depicts a hierarchical organi-
zational chart consisting of four vertical levels linked by supervisory rela-
tions. The CEO supervises three executive managers (A, B, C), who 
supervise four middle managers (D, E, F, G), who in turn supervise seven 
front-line employees (H through N). If we ignore the employees, then 
executive managers B and C are structurally equivalent because both have 
identical supervisory ties to the same middle managers (F and G). But A is 
not structurally equivalent to B and C because A supervises different middle 
managers. However, the three executives are regularly equivalent because 
each supervises the same number of middle managers (two apiece). If we 
consider all hierarchical levels, B and C are also automorphically equivalent 
because their subgraphs are substitutable for one another if the labels were 
removed. But A’s subgraph cannot be substituted for B’s or C’s subgraphs 
because A’s two middle managers supervise only three front-line employ-
ees, whereas both B’s and C’s subgraphs each have four employees.
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Considering only the two lowest levels, none of the four middle manag-
ers are structurally equivalent because they all supervise different frontline 
employees. Instead, three of the middle managers (D, F, and G) are auto-
morphically equivalent because their two-employee subgraphs are com-
pletely substitutable once the labels are removed (unlike E, who supervises 
only one employee). But all four middle managers meet the regular equiva-
lence criterion by supervising at least one employee. Figure 4.21 demon-
strates that structural equivalence is the most restrictive form, regular 
equivalence is the least restricted, and isomorphic and automorphic equiva-
lence lie in between. Regular equivalence seems a very flexible method for 
identifying generalized social roles in networks, broadly defined as aggre-
gate classes or categories of actors having similar structural relations with 
other positions in a social system (Faust, 1988, p. 315).

Figure 4.21  Structural Equivalence, Automorphic Equivalence, and 
Regular Equivalence in an Organizational Hierarchy
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Chapter 5

ADVANCED METHODS FOR  
ANALYZING NETWORKS

This chapter discusses several advanced methods for analyzing social net-
works. In particular, we provide overviews of ego-nets, network visualiza-
tions, multimode network analysis, community detection algorithms, and 
exponential random graph models. In the concluding section, we offer 
speculations about future directions in social network analysis.

5.1. Ego-Nets

This section discusses the analysis of ego-net data, whose collection we 
discussed in Chapter 3.2. We also describe the connections and differences 
between ego-nets and whole network studies.

An ego-net is the network that forms around a specific social actor, which 
can be a person or a collective entity such as a corporation, voluntary asso-
ciation, or nation-state (Crossley, Bellotti Edwards, Everett,  Koskinen, & 
Tranmer, 2015; Marsden, 2005; Marsden, 2011). The social actor is the ego, 
and its direct contacts are the alters. Linking ego and alters could be many 
types of relations, from emotional support between individuals to goods/
information exchanges between companies to economic ties or wars 
between nations to strategic alliances among for-profit firms. Figure 5.1 
presents a visualization of an ego-net, in which ego has five alters. The lines 
connecting ego to each alter and the lines among alters indicate some type 
of relation defined and measured in the study. Assuming that this relation is 
“discuss important matters” and the actors are persons, the diagram shows 
that ego named five alters with whom she discusses important matters. In 
addition, important matter discussion also occurs among some alter dyads; 
e.g., between Alters 1 and 2 and between Alters 1 and 3.

How does one identify egos, the particular social actors? The traditional 
sampling of random cases from a population applies: egos are those cases 
that are sampled to be representative of the population. In other words, egos 
are simply respondents in conventional sample surveys. In this regard, the 
ego-nets have clear advantage over whole network analyses by tapping into 
the general population. Conversely, although whole network analysis is 
ideal for dissecting a particular type of network structure among a finite set 
of people/actors (such as a friendship network among students in a class-
room, information exchange, or strategic partnership among IT 
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companies), the sampling in whole network analyses is rarely random 
because it either encompasses an entire population or the sampling distribu-
tion is unknown (Yang, Keller, & Zheng, 2016, Chapter 4). Although con-
ventional inferential statistics such as t-tests and F-ratio tests are readily 
applicable to analyzing the representativeness of egos, they are not appro-
priate to analyzing whole network data. Scholars have developed new and 
innovative inferential methods for whole network analyses (Lusher, 
 Koskinen, & Robins, 2012), which we discuss subsequently.

After ego-net data are collected, the remaining question is how to ana-
lyze them. Relatively few methods are readily available. The simplest and 
most straightforward measure is ego-net size. For example, the average size 
for egos/respondents in the 1985 General Social Survey (GSS) core discus-
sion network was 2.94, but that mean dropped to 2.08 in the 2004 GSS 
(McPherson et al., 2006). In another study, Fischer (1982) used nine name 
generators to elicit a wide range of alters, from 2 to 65 from the respond-
ents, with a mean 18.5 alters. His name generator items include loan bor-
rowing, socializing, information sharing related to jobs, hobbies, and 
discussing personal issues.

Figure 5.1  An Ego-Net of Important Matters Network
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Another measure of network features for an ego-net is density, which 
reveals the extent to which the alters are directly connected to one another. 
Importantly, the ego-net attached to an ego is conceptually a whole net-
work. The only difference between ego’s whole network and the other 
whole networks is that ego has direct connections to everyone by design. 
So, the calculation of ego-net density requires ignoring ego’s ties to alters 
and considering only the ties among alters. Figure 5.2 duplicates the graph 
in Figure 5.1 but omits ego’s ties to each alter. Applying Formula 4.8 from 
Chapter 4 to this graph produces a density of 0.40 (4 ties that are present/ 
10 maximum possible ties among the five nodes). Density is an important 
parameter for datasets with ego-net information. For example, in the 1985 
GSS, the mean density of ego-nets identified by the name generator “dis-
cuss important matters” was 0.60. In the 2004 GSS, the mean density of 
ego-nets increased to 0.66 (McPherson et al., 2006).

The third important measure of ego-net data is heterogeneity. Calculation 
of heterogeneity differs depending on the type of variable. For example, 
continuous variables such as age, income, or education can use standard 
deviations as heterogeneity measures. However, categoric variables, such 
as race and gender, must rely on the Index of Qualitative Variation (IQV) 
to divulge their heterogeneity. The following two formulas are for standard 
deviation and IQV, respectively:
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In Formula 5.1, s is the standard deviation, Xi  is an alter’s value on the 
variable, X  is the mean score of the alters, and N is the total number of 
alters. In Formula 5.2, K is the total number of categories in the nominal 
variable and pi is the proportion of the category i in the entire sample. To 
illustrate, if ego names three friends with ages of 79, 25, and 47, the stand-
ard deviation of its age heterogeneity would be 27.15. If one of the alters is 
white, a second is African American, and a third is Hispanic, the IQV for 

its racial composition is 1 
1 1/ 3 1/ 3 1/ 3

2 / 3
1

2 2 2( )− + +
= . Interpretation of 

standard deviation and IQV is different: the larger the standard deviation, 
the larger the heterogeneity; whereas the IQV ranges from 0 to 1, with 
values close to 1 suggesting even distribution cases of all the categories 
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(hence, great heterogeneity) and values close to 0 indicating uneven distri-
bution (hence, low heterogeneity or high homogeneity). Again, each ego 
would have a heterogeneity measure of its alters’ attributes (age, education, 
income, race, and gender). Aggregating the heterogeneity across the entire 
sample would produce important indicators such as means and standard 
deviations for each variable. For example, the mean age heterogeneity of 
the 1985 and 2004 GSS was 10.35 and 10.34, respectively, unchanged 
across 2 decades. The IQVs for race in 1985 and 2004 were 0.05 and 0.09 
respectively, indicating low heterogeneity (high homogeneity) in the racial 
composition of Americans’ core discussion networks. In contrast, the IQVs 
for gender composition were quite high (0.67 for 1985 and 0.68 for 2004), 
suggesting persistently gender-balanced core discussion groups  (McPherson 
et al., 2006).

Many texts on social networks separate ego-nets or egocentric networks 
from the whole network, as if the ego-net is a very special type, subsumed 
under whole networks. In reality, ego-nets are important topics in and of 
themselves (Crossley et al., 2015), and comparisons and contrasts with 
whole networks are very important but, in our view, too often receive insuf-
ficient attention and discussion.

Figure 5.2 Calculating Density for an Ego-Net
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A first point of comparison is that each ego-net in egocentric network 
studies is basically a whole network, with the main difference between the 
two being the networks’ sizes (apart from the obvious fact that an ego-net 
by design has an ego directly connected to a set of alters). Although the 
ego-net from each ego/respondent is commonly small, ranging from a cou-
ple of alters to five or six at most (the GSS allowed respondents to name up 
to 6 alters), the whole network can have tens, hundreds, or even millions of 
nodes in Big Data contexts. However, other than the size, the basic struc-
ture between the two is the same, and the set of methods used to analyze 
whole networks is also available to analyze each ego-net, and vice versa. 
An important advantage of ego-nets is that they are randomly sampled, so 
their network features can be generalized to the whole population. For 
example, the average IQV of racial composition for American’s core dis-
cussion group remains small, implying persistent high homogeneity in 
American discussion networks. However, the same cannot be said for the 
whole network data, many of which derive from purposive sampling, that 
is, from nonrandom samples.

A second point of comparison is that, whereas ego-nets capture ego’s 
diverse networks, whole network analysts typically seize one slice of ego’s 
many networks and magnify it for whole analyses. An ego in modern socie-
ties interacts and forms social ties across many distinct social circles or 
domains, whose members (excluding ego) rarely encounter one another 
(White, 2008). For example, ego interacts with differing sets of alters in 
families, workplaces, neighborhoods, special interest groups (e.g., Bible 
studies, birdwatching), gyms, and local bars among numerous settings 
(Crossley et al., 2015). Although all those networks obviously involve ego, 
they generally do not overlap with one another, creating distinct social 
circles or domains. Ego’s gym buddies may not know anything about his 
Bible study group. Although ego-nets would be able to capture variation 
across diverse domains, whole networks would be unable to accomplish 
that task. However, researchers interested in a particular type of network, 
such as Bible study groups, can extract them from various ego-nets, thus 
magnifying those networks for further investigation. Clearly, ego-nets and 
whole networks are two distinct research tools at a researcher’s disposal. If 
a researcher’s objective is to analyze diverse networks centered around 
individual actors, then using ego-nets is the best way to approach the mat-
ter. But, if the aim is to dissect a particular type of network, then whole 
networks are a better approach.

However, ego-nets can partially reveal a ego’s structural positions in 
relation to its alters. Such partiality may result in inaccurate interpretation 
of ego’s structural leverage. Here, the whole network can compensate for 
the deficiency of ego-nets, depicting a more accurate network structure 
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between egos and their alters. Figure 5.3 shows such a scenario: ego is con-
nected to two alters that are also both connected to a fourth node. If infor-
mation is only available about the ego-net, the fourth node will not be 
known to the researcher, leading to a conclusion that ego occupies a “stra-
tegically advantaged” brokerage position between the two alters (Burt, 
1992). Such “hidden” fourth nodes can be uncovered using a whole net-
work design, showing the flawed inference about ego’s alleged brokerage 
position. Such revelation underscores that researchers must be careful when 
studying ego-net data, not to distort ego’s structural advantage by using 
incomplete network structures.

The last comparison between ego-net and whole network data is about 
the density of ego-nets. Although a random sample of egos from a large 
population ensures representativeness, it assumes that the ego-net’s density 
is randomly distributed, which may not be true. In some special types of 
relations (teenager sexual activity networks, for example), power-law dis-
tribution or bandwagon effects are very pronounced; a few nodes may have 
very high numbers of alters, whereas most others in the population have 
only small numbers of partners. Such networks have distinctive structures 
centralized around a few dominant nodes, which may elude random sample 
surveys. Random sampling would be unlikely to select those hub nodes in 
the population. In contrast, whole network research designs would be able 
to capture and show such bandwagon structures with clear demarcations 
between central and peripheral players.

Source: From Crossley, N., Bellotti, E., Edwards, G., Everett, M. G., Koskinen, J., & 
 Tranmer, T., 2015, Social Network Analysis for Ego-Nets, p. 22. London, England: Sage.
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Figure 5.3  The “Hidden” Fourth Node
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5.2. Visualizations: Clustering, MDS, Blockmodels

Images of networks are commonly created in social network studies to 
develop structural insights and to communicate those insights to others. 
Social network analysis experienced three distinctive periods of visual 
display innovation (Freeman, 2000, 2005). The initial stage began in the 
1930s, when Jacob Moreno created hand-drawn, ad hoc sociograms to 
depict relations among actors such as schoolchildren (Moreno, 1934). 
This freestyle approach gave way to standard computational procedures 
for plotting the points and lines of a graph. A basic principle from the 
initial era of visualization is that spatial representations should preserve 
the underlying pattern of actor ties by depicting pairs that are socially 
closest in a data matrix as closest in a graphic image (Freeman, 2005). 
However, preserving precise proximities and distances among numerous 
actors in two- or three-dimensional visual displays is usually impossible, 
so researchers eventually developed methods for systematically simpli-
fying and reducing the number of dimensions while still reflecting the 
original data patterns. The second phase of visualization, beginning 
around the 1960s, used mainframe computers and software to produce 
graphics automatically. In particular, network analysts made increasing 
use of the hierarchical clustering and multidimensional scaling (MDS) 
methods described in this section. The most recent phase, starting in the 
mid-1990s with the advent of the World Wide Web, high-speed computer 
networks and browsers, and widespread personal computers, opened 
new opportunities for large-scale visual displays of relational data, 
including animation of longitudinal network changes (for example, 
Christakis & Fowler, 2008; Healy & Moody, 2014; van den Elzen, 
Holten, Blaas, & Van Wijk, 2016).

Lacking space to cover all these developments in depth, we concentrate 
on explicating the fundamental ideas of three tools for displaying relations 
in network data: hierarchical clustering, MDS, and blockmodeling. Visual 
displays are useful for exploring social network data to uncover cohesive 
subgroups and to reveal how they relate to one another. In this process, 
complex network structures can be simplified by reducing their representa-
tion from many actors to a smaller number of jointly occupied positions. 
Structural equivalence methods in blockmodeling analyze a matrix of 
dyadic dissimilarities (Euclidean distances) or similarities (correlation 
coefficients) to identify blocks that are jointly occupied by sets of actors 
with either identical or very similar patterns of ties to others. Clustering and 
MDS, when applied to the same matrix, produce two- or three-dimensional 
diagrams. Blocks can then be visualized by drawing contiguity lines around 
members of each jointly occupied position.
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We illustrate these methods on a small dataset, the 1990 Mexican politi-
cal elite network reported in Mendieta, Schmidt, Aastro, and Ruiz (1997). 
From 5400 members of the national government between 1920 and 1990, 
the authors identified “37 core actors, who have played a central role in 
Mexican politics after the 1910 revolution” (p. 35). A connection between 
a pair of actors represents any formal, informal, and organizational relation, 
for example, “common belonging (school, sports, business, political par-
ticipation), or a common interest (political power)” (p. 37). The article 
displayed six diagrams showing the ties among core actors active at each 
decade from 1940 to 1990. Figure 5.4 displays an undirected graph of the 
1990 network, when a third generation of 11 politicians had ascended to 
power. Three men successively held the presidency: José López Portillo 
(1976–1982), Miguel de la Madrid (1982–1988), and Carlos Salinas de 
Gortari (1988–1994), and the latter was the son of a fourth core member, 
Raúl Salinas Lozano. Of 55 possible ties between dyads, 22 occurred, for a 
network density of 0.40.

Clustering. Hierarchical agglomerative cluster analysis, or cluster 
analysis for short, partitions actors into subgroups (jointly occupied posi-
tions) whose members are perfectly or approximately structurally equiva-
lent. Each actor is treated initially as a singleton cluster, and then clusters 
are successively joined until all actors are merged into a single remaining 
cluster. A dendrogram, also called a tree diagram, visually depicts this hier-
archical sequence of merging clusters.

Clustering algorithms typically process a square g × g matrix of either 
Euclidean distances (dij) or correlation coefficients (rij), where g is the  
number of actors in a specific relation. (We discuss Euclidean distances in 
Chapter 4.6.) One comparative study of cluster analyses suggested that 
both measures produce very similar results, although cluster analyses using 
correlations may be somewhat easier to interpret (Aldenderfer &  Blashfield, 
1984, pp. 24–28). Multiple network relations (R) can be clustered simulta-
neously by constructing a data array with dimensions g × g × R then com-
puting Euclidean distances or correlations for every dyad across all R 
matrices before conducting the cluster analysis. Although hierarchical 
agglomerative clustering can be performed on both binary and valued data, 
for simplicity we focus on a symmetric binary matrix.

After computing a matrix by correlating all pairs of rows and columns, 
a cluster analysis proceeds to combine actors according to a threshold 
value, α, which serves as a ceiling, or upper bound, for the analyst to 
decide which actors belong in the same jointly occupied position (cluster) 
at a particular level of structural equivalence. Actors i and j jointly occupy 
a position only if dij ≤ α. Actors within one cluster have smaller social 
distances from one another (i.e., are more structurally equivalent) than 
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from the actors occupying other clusters. The clustering algorithm pro-
ceeds incrementally, applying successively less-restrictive levels of α (i.e., 
higher values of α) to aggregate actors into positions until the entire net-
work merges into a single all-inclusive cluster. Although hierarchical 
agglomerative clustering produces nonoverlapping clusters, the clusters 
are nested; that is, smaller clusters are subsumed within successively 
larger clusters at higher values of α (i.e., lower structural equivalence, less 
similarity, greater within-cluster distances). Ultimately, the researcher 
must decide which level of agglomeration (i.e., which value of α) provides 
the best substantive representation of the number of structurally equiva-
lent positions in the network.

Researchers may choose from among three basic criteria for forming 
clusters: single link, average link, or complete link. At a given level of α, 
the single-link criterion merges two clusters into one cluster when their 
two closest actors have a distance less than α. Under a complete link, two 
clusters merge when the distance between every pair of actors is less than 
α. The average linkage option is a compromise, requiring that two merg-
ing clusters have an average distance among both sets of actors that is less 
than α. Empirical analysts reported advantages and disadvantages from 
using each option, which should prompt researchers planning to use clus-
ter analysis to carefully consider these alternatives (Aldenderfer & 

Figure 5.4  The 1990 Mexican Political Elite Network
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 Blashfield, 1984, pp. 53–62). Complete link clustering appears to produce 
large numbers of homogeneous and tightly bound clusters, with a lower 
probability of ‘‘chaining,’’ the formation of a single large cluster by suc-
cessively adding one actor at a time (Burgin, 1995; Wasserman & Faust, 
1994, p. 381).

Multidimensional Scaling. MDS is a method for estimating similari-
ties of dyads in whole networks and visualizing the network’s underlying 
relational structures (Borg et al., 2017; Hout et al., 2013; Kruskal &  
Wish, 1978; Young, 1987). MDS has facilitated research on such diverse 
topics as examining the relation of friendship ties and creativity (McKay 
et al., 2017), profiling and visualizing criminal networks (Park et al., 
2012), visualizing political networks (Pfeffer, 2017), comparing interest 
group networks over time (Box-Steffensmeier & Christenson, 2015), map-
ping the flow of extreme financial episodes among global stock exchanges 
(Fernández-Avilés & Montero, 2016), and visualizing networks of cruise 
ship destinations in the Baltic Sea (Marcussen, 2017). The primary pur-
pose of MDS is to detect meaningful underlying dimensions that reflect 
the similarities (proximities) or dissimilarities (distances) among network 
actors. As in cluster analysis, the typical input to MDS is a g × g matrix 
of either Euclidean distances (dij) or correlation coefficients (rij), where g 
is the number of actors in a particular relation. For most social data, a 
nonmetric solution is preferable because it assumes that only the ranks of 
the distances are known (in contrast to metric distances such as geographic 
mileage between cities). An MDS visual output is a plot, or social map, in 
which actors with smaller distances (greater similarities) between them are 
located closer in space than are actors with larger distances (greater dis-
similarities). Although the MDS diagram coordinates can be estimated for 
multiple dimensions, most analysts display two- or three-dimensional 
maps.

The distances between actors displayed in an MDS map are related to, 
but not identical to, the similarity or dissimilarity values in the input matrix. 
Rather, they reflect the pairwise distances estimated from those data by the 
MDS program. A stress indicator measures the discrepancies across all 
pairs between the observed matrix and the computed matrix (Kruskal & 
Wish, 1978, pp. 23–30):

Stress
f x d

Scale
 ij ij( )( )

=
∑∑ −

 (5.3)

where f (xij) is a nonmetric, monotonic function of the input values 
(Kruskal & Wish, 1978, p. 29) and dij is the Euclidean distance between 
actors i and j as displayed in the map coordinates. Scale is a scaling factor 
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that constrains the stress values between 0.0 and 1.0. If an MDS map per-
fectly reproduces the input data, then f (xij) = dij for all i and j, and thus its 
stress would equal zero. Hence, the lower the stress value, the more closely 
an MDS spatial diagram represents the observed social distances among the 
network actors. For this reason, stress is also dubbed a badness-of-fit meas-
ure of MDS, in that stress values below 0.1 are considered an excellent fit, 
values between 0.1 and 0.2 are an adequate fit, and values above 0.2 are a 
poor fit (Kruskal & Wish, 1978, p. 52; Slez & Martin, 2007).

To illustrate how clustering and MDS can work together to reveal net-
work positions, the hierarchical cluster dendrogram in Figure 5.5 and the 
MDS map in Figure 5.6 are both based on a matrix of Euclidean distances 
computed on the binary graph in Figure 5.4. The cluster analysis used the 
complete link option: Clusters merge when the distance among all their 
actors was less than α (these values appear on the horizontal axis of 
 Figure 5.5). For example, Mena and Blanco formed the first cluster at 
α = 1.22, followed by three more clusters at α = 1.73. At α = 2.44, the three 
clusters included all 11 politicians in the network. Eventually, all merged 
into a single cluster on the right side of the dendrogram.

On the MDS map in Figure 5.6, which has a stress value (0.087), indicat-
ing an excellent fit, we drew contiguity lines around subgroups of actors 
jointly occupying three clusters that emerge when α = 2.44 in the clustering 
dendrogram. Although the choice of an a for identifying clusters is some-
what arbitrary, we recommend choosing a value that balances between 
cohesion and divisiveness among network actors. For example, at α = 1.73, 
the result is five two-person clusters and a singleton. In contrast, had we 
chosen α = 2.99, the result would be two large clusters. The first choice 
indicates greater fragmentation due to a low threshold for “being close,” 
whereas the second implies great cohesiveness due to larger distances 
among actors in a cluster. Neither approach strikes us as informative as the 
middling criteria (α = 2.44), which reveals a more balanced picture of the 
1990 Mexican national elite’s division and cohesion.

An extension is weighted multidimensional scaling (WMDS), which 
adds a component (weight) to the conventional MDS approach, to repre-
sent information about variation between matrices. Thus, WMDS gener-
alizes the distance model by allowing multiple matrices to be 
systematically differentiated. For example, if each matrix corresponds to 
a different individual, WMDS uses the weight to portray differences in 
how those individuals think about or perceive relations. For this reason, 
WMDS is also called individual differences scaling (INDSCAL). 
Although we cannot elaborate here on WMDS, we encourage interested 
readers to consult Schiffman, Reynolds, and Young (1981, pp. 55–85) 
and applications to evaluate test score validity for English language 
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Figure 5.5  Hierarchical Cluster Dendrogram of Figure 5.4 Network
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learners (Sireci, Han, & Wells, 2008) and to assess structural equivalence 
between German and English versions of a networking scale (Wolff, 
Schneider-Rahm, & Forret, 2011).

Blockmodels. Blockmodeling is a matrix algebraic method for sorting 
network actors into jointly occupied, structurally equivalent positions. 
Blockmodel methods were initially developed by Harrison White and his 
associates (Boorman & White, 1976; Schwartz, 1977; White et al., 1976). 
Since that groundbreaking work, researchers have fruitfully applied block-
modeling methods to various topics ranging from interorganizational net-
works (Knoke & Rogers, 1979) to diffusion of new technology (Anderson &  
Jay, 1985) to the roles of cities in the world system (Alderson &  Beckfield, 
2004) to international trade and diplomacy networks (NasehiMoghaddam & 
Ghazanfari, 2016). Methodological advances have extended blockmodel 
algorithms to dynamic stochastic blockmodels that can investigate change in 
social network structures over time (Ludkin, Eckley, & Neal, 2017; Olivella, 
Pratt, & Imai, 2018; Xu & Hero, 2014). Because space limitation prohibits 
an extended discussion on this large literature, we focus on fundamental 
issues of blockmodeling methods, implementation, and interpretation of 
outputs.

A blockmodel is the partition of a sociomatrix of g actors, in one or more 
relational networks, into two or more mutually exclusive subgroups called 
blocks. The term block refers to a square submatrix of structurally equiva-
lent actors that have very similar, if not identical, relations with the actors 
occupying the other blocks. Blockmodeling is a data reduction technique 
that systematically searches for relational patterns in network data by 
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regrouping actors and presenting condensed aggregate-level information. 
The outputs are permuted density and image matrices displaying the pat-
tern of ties within and between the blocks for each type of relation. Block-
modeling can be applied to single or multiple relations, directed or 
undirected ties, and binary or valued graphs. We examine only a binary 
matrix and refer readers to an extended discussion of blockmodeling for 
both binary and valued graphs by Doreian, Batagelj, and Ferligoj (2005, 
pp. 347–360).

A blockmodel could be constructed a priori using theoretical principles, 
for example, by sorting the employees of different bureaucratic depart-
ments into separate blocks. However, the most common applications of 
the method are exploratory searches for empirical patterns in a relational 
dataset. Blockmodeling is often implemented using CONCOR (Conver-
gence of Iterated Correlations), which is available in several social net-
work analysis programs (Schwartz, 1977). CONCOR can operate by 
correlating pairs of rows, pairs of columns, or both paired matrix vectors 
simultaneously. For undirected matrices, the rows and columns are identi-
cal, so only one needs to be correlated. For the initial step, CONCOR 
calculates Pearson correlation coefficients for every pair of columns in a 
binary g × g sociomatrix. (To blockmodel R multiple relations, the sepa-
rate g × g matrices are ‘‘stacked’’ [arranged as a single two-dimensional 
data array] for input to CONCOR.) These computations exclude the direct 

Figure 5.6  Multidimensional Scaling of Euclidean Distances in  
Figure 5.4 Network
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ties between each dyad, as their structural equivalence depends only on 
the pair’s ties to the other g – 2 network actors. If actors i and j have 
exactly identical connections with all other actors, their correlation coef-
ficient, rij, will equal 1.0. In contrast, if two actors have exactly opposite 
patterns of connections, their correlation will be –1.0. Almost always, 
empirical correlation coefficients fall somewhere between these extreme 
values. The result from the initial CONCOR step is a symmetric g × g 
matrix of correlations for every pair of actors, showing the extent of each 
dyad’s structural equivalence. The second step, and all subsequent itera-
tions, repeats this process of correlating pairs of columns in the correla-
tion matrix produced by the preceding step. At some point, the correlation 
coefficients in every cell converge to either 1.0 or –1.0, at which point the 
iterations cease.

Next, CONCOR permutes the final correlation matrix into two homo-
geneous blocks. Permutation of a sociomatrix involves simultaneously 
rearranging both the rows and columns to bring together in adjacent por-
tions those actors jointly occupying the same block. CONCOR’s initial 
partition and permutation of the sociomatrix always yields two submatri-
ces, not necessarily having equal numbers of actors, in which all the cor-
relation coefficients among pairs of actors within each block equal 1.0 but 
all the correlations between the two blocks equal –1.0. Repeating these 
procedures, CONCOR can subdivide each of the two initial blocks into 
two more blocks, and so on. The network researcher must decide where 
to stop the division process, thus determining the ultimate number of 
blocks obtained.

Blockmodel analysis results in two forms of output: a density matrix and 
a corresponding image matrix. A density matrix is a b × b matrix whose 
cell values are the densities within and between the blocks, where b is the 
number of blocks. (Density is a proportion calculated by dividing the num-
ber of observed ties in a permuted submatrix by the number of possible 
ties.) An image matrix is also a b × b matrix, obtained from the density 
matrix by recoding each cell density to either 0 or 1. Two alternative crite-
ria may be used to determine the image values: (1) any cell with no ties 
among its actors (zero-block) is recoded as 0 and any cell with at least one 
tie among its members (one-block) is recoded as 1 or (2) the researcher 
chooses a density cutoff, α (alpha), recoding all densities below this cutoff 
to 0 and all densities of α or higher to 1. The first option is an unrealistic 
standard because empirical densities of 0.0 seldom occur unless a network 
has very few relations, so almost all image matrices would consist only of 
1s in every cell. The second option, using an α density cutoff to dichoto-
mize the image values, is the most common practice. Researchers typically 
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choose the density of the entire matrix as the cutoff value. However, 
because choosing an α value inevitably involves the researcher’s judgment, 
selecting a particular value is vulnerable to the criticism of arbitrariness. In 
response, researchers should try to justify their choices on theoretical and 
empirical grounds rather than appealing solely to expediency (Scott, 1991, 
p. 136).

To illustrate blockmodeling, we again analyzed the 1990 Mexican politi-
cal elite network. We entered the binary matrix into the CONCOR program, 
requesting two splits that resulted in the four-block partition, density, and 
image matrices in Table 5.1. For determining the 1-blocks in the image, a 
density cutoff α = 0.40 or higher was used. The first block is a clique 
( Alvarez, Margain, and Portillo all have ties to one another), but none of the 
other three blocks has a sufficiently high density to warrant a “1” on the 
diagonal entries of the image matrix nor does the large second block have 
a link to the first block. The two tiny third and fourth blocks, one of which 
is a singleton, have some higher-density connections with members of the 
two larger blocks. Figure 5.7 displays an MDS analysis of the correlations 
in which the block members are inside contiguity lines. The MDS stress 
(0.153) indicates a barely adequate fit. Not surprisingly, the hierarchical 
cluster and blockmodel analyses produced different results, as the former is 
based on social distance measures and the latter of structural equivalence. 
The two visualization methods provide alternative interpretations of net-
work positions, and researchers must decide which approach better answers 
their theoretical concerns.

5.3. Two-Mode and 3-Mode Networks

Two-mode and 3-mode networks consist of multiple types of entities and 
relations between them. Entities might be individuals, groups, organiza-
tions, nations, events, documents, and websites. In this section, we discuss 
both 2- and 3-mode data structures and illustrate the application of analytic 
methods with a simple toy dataset drawn from a real-world example. These 
principles could be generalized to N types of entities, but the analytic com-
plexities render multimodal networks with many types of nodes empirically 
impractical.

Two-Mode Networks

Two-mode networks, sometimes called affiliation networks or member-
ship networks, consist of two distinct sets of nodes, such as actors and 
events, where the relations among the entities in one mode are based only 
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Table 5.1  Blocked, Density, and Image Matrices of the 1990 Mexican 
Political Elite Network

Blocked Matrix
                      1                    1  
                  1 8 0   7 4 3 9 5   2   6 1  
               ---------------------------------- 

   1    Alvarez |   1 1 |           |   |     |
   8    Margain | 1   1 | 1   1 1 1 | 1 | 1   |
  10   Portillo | 1 1   | 1         | 1 |     |
               ---------------------------------

   7     Madrid |   1 1 |         1 | 1 | 1   |
   4 Bustamente |       |           | 1 | 1 1 |
   3     Blanco |   1   |           |   | 1   |
   9       Mena |   1   |         1 |   | 1   |
   5    Gortari |   1   | 1     1   | 1 | 1   |
               ---------------------------------

   2     Beteta |   1 1 | 1 1     1 |   |     |
                --------------------------------

   6     Lozano |   1   | 1 1 1 1 1 |   |     |
  11     Rojas |       |   1       |   |     |
                ---------------------------------
 Density Matrix
             1     2     3    4
              ------------------------
Block 1 1.000 0.333 0.667 0.167
Block 2 0.333 0.200 0.600 0.600
Block 3 0.667 0.600 0.000 0.000
Block 4 0.167 0.600 0.000 0.000

Image Matrix
                1    2    3    4
              -------------------------

Block 1 1    0    1    0
Block 2 0    0    1    1
Block 3 1    1    0    0
Block 4 0    1    0    0

on their connections to the second mode (Wasserman & Faust, 1994, 
pp. 291–343). Direct relations among the entities within a mode may be 
unavailable, meaningless, or ignored. A classic example is the Southern 
Women network, consisting of 18 women and their attendance at 14 



   107

informal gatherings and civic events spanning 9 months in Natchez, 
 Mississippi, during the 1930s (Davis, Gardner, & Gardner, 1941). Anthro-
pologists collected data through interviews, participant observations, 
guest lists, and newspaper reports. Information about the direct ties among 
the women, such as their kinships and friendships, was not reported in a 
published binary matrix showing which women were present or absent at 
which events. Social network analysts subsequently conducted at least 21 
analyses to identify the structural positions occupied by the Southern 
Women according to their presence and absence at events (Freeman, 
2003). Other examples of 2-mode networks include protestors attending 
social movement protests, readers commenting on web blogs, legislators 
cosponsoring bills, political action committees (PACs) contributing funds 
to candidates’ election campaigns, firms joining strategic alliances, and 
nations signing military treaties.

Two-Mode Matrix and Bipartite Graph. A binary 2-mode network can 
be formally represented by a 2-mode matrix that records the presence and 
absence of g actors at h events. Thus, its dimensions are g rows and h 

Figure 5.7  Multidimensional Scaling of Correlations in 
Figure 5.4 Network
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columns, respectively. If actor i attends event j, the entry in the i, jth cell in 
the matrix equals 1; otherwise, the entry is 0. Denoting a binary bipartite 
matrix as A, its xij values meet these conditions:

x
i j1

0
if actor  is affiliated with event 

otherwisei j,







The row totals, also called row marginals, of matrix A sum to the number 

of events that each actor attended x .i jj

h

,1∑( )=
 The column marginals 

xi ji

g

,1∑( )=  indicate the number of actors who attended each event.

A 2-mode network may also be displayed as a bipartite graph, in which 
undirected lines connect actors aligned on one side of the diagram to the 
events aligned on the other side. Importantly, a bipartite graph does not 
permit lines among the actors nor among the events. A bipartite matrix 
contains both sets of actors and events in the rows and columns. Assuming 
that a 2-mode network has g actors and h events, the bipartite matrix has 
dimensions (g + h) × (g + h).

Figure 5.8 displays a 2-mode network consisting of five PACs that made 
donations to the campaigns of four U.S. senators during the 2008–2012 
election cycle. (UPS is United Parcel Service, MS is Microsoft, HD is 
Home Depot, SEU is Service Employees Union, and ANA is American 
Nurses Association.) Republican and Democratic party membership of 
each senator is indicated, respectively, by -R or -D appended to their 
names. In this example, the PACs are the actors and the senatorial election 
campaigns are the events. Although the bipartite graph contains no lines 
directly connecting PACs to one another, they are indirectly linked through 
donations made to the same senators. UPS and MS gave only to Republi-
cans, the SEU and ANA donated only to Democrats, whereas HD funded 
members of both parties. Table 5.2 is the bipartite matrix corresponding to 
the graph in Figure 5.8, where a cell value of 1 indicates a PAC donation to 
a senatorial campaign.

The 5 × 4 submatrix in the upper right quadrant, consisting of the five 
PACs in the rows and the four senators in the columns, is the 2-mode affili-
ation matrix, denoted as A. The lower left quadrant is the transpose of A, 
denoted as A′ (with dimensions 4 × 5 and xij = xji). The transposed matrix 
shows which senators in the rows received funding from the PACs in the 
columns. The other two quadrants of a bipartite matrix always have only 0s 
in their cells because the actors are not directly linked to one another and 
neither are the events. A bipartite matrix can be schematically represented 
as the following:
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Figure 5.8  Bipartite Graph of PAC Donations to Senatorial Election 
Campaigns

Rubio-R

McConnell-R

Reid-D

Sanders-D

UPS

MS

HD

SEU

ANA

XA,E = 0 A
ʹA 0

⎡

⎣
⎢

⎤

⎦
⎥  (5.4)

At the margins of the table, but not properly part of the matrix, the row 
totals equal the column totals. The total for a PAC shows the number of 
senators to whom it donated, whereas the total for a senator indicates the 
number of PACs from which he received funding.

Multiplying the two submatrices (A and A′) in two different orders 
yields additional information about relations among the actors and among 
the events that is not available in a bipartite matrix. This process, called 
projection, reduces a 2-mode matrix to a pair of 1-mode matrices. The first 
result, XA, is a symmetric, valued matrix of coattendances for pairs of 
actors, obtained as the product of matrix multiplication:

X AAA = ′  (5.5)

In general, a 2-mode network A is a g × h matrix, and its transpose A′ is an 
h × g matrix. Thus, X A is always a g × g matrix, whose nondiagonal cell 



110   

values are the numbers of events attended by both actor i and actor j. The 
diagonal entries of X A show the number of events each actor attended.

The second result, XE, is a symmetric, valued matrix of coparticipants at 
pairs of events, obtained by multiplying the matrices in reverse order:

X A A E = ′  (5.6)

The values in the nondiagonal cells of this h × h matrix are the number of 
actors participating in both event i and event j, whereas the diagonal entries 
of XE are the number of actors attending each event.

The 2-mode PAC-senator matrix and its transpose are the following:

A =

1100
1100
1110
0011
0011

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

 ʹA =

11100
11100
00111
00011

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The first projection, from the 2-mode matrix to a 1-mode PAC matrix XA, 
multiplies A by A′:

Table 5.2  Bipartite Matrix of the Graph in Figure 5.8

UPS MS HD SEU ANA Rubio-R
McCo-
nnell-R Reid-D

Sand-
ers-D

Row 
Total

UPS — 0 0 0 0 1 1 0 0 2

MS 0 — 0 0 0 1 1 0 0 2

HD 0 0 — 0 0 1 1 1 0 3

SEU 0 0 0 — 0 0 0 1 1 2

ANA 0 0 0 0 — 0 0 1 1 2

Rubio-R 1 1 1 0 0 — 0 0 0 3

McConnell-R 1 1 1 0 0 0 — 0 0 3

Reid-D 0 0 1 1 1 0 0 — 0 3

Sanders-D 0 0 0 1 1 0 0 0 — 2

Column Total 2 2 3 2 2 3 3 3 2 —
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XA = A ʹA =

22200
22200
22311
00122
00122

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

XA is a 5 × 5 symmetric matrix whose diagonal cell entries show the num-
ber of senators to whom each PAC donated. HD gave to three senators; all 
others donated to two. The off-diagonal values show how many senators 
received donations from each pair of PACs. For example, the third row 
shows that HD and UPS donated to two senators, as did HD and MS. But, 
two dyads (HD and SEU, HD and ANS) had only one senatorial recipient 
in common. Although the projection matrix shows the total numbers of 
senators receiving donations from dyads, information about which specific 
senators received those funds is no longer available.

The second projection, from the 2-mode matrix to a 1-mode senator 
matrix XE, multiplies A′ by A′:

XE =  ʹA A =

3310
3310
1132
0022

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

The diagonal cells of this 4 × 4 symmetric matrix show the number of PACs 
jointly donating funds to each senatorial campaign. Sanders was funded by 
two PACs; all other senators received donations from three PACs. The off-
diagonal entries are the number of PACs jointly funding senatorial dyads. 
The first row and column show that Rubio and McConnell received money 
from the same three PACs, Rubio and Reid were jointly funded by one 
PAC, but Rubio and Sanders had no common sources of campaign dona-
tions. Any projection involves a loss of information, in this case, the identi-
ties of the PACs funding the senators.

At the network level of analysis, mean rates of activity are readily com-
puted from values in the two projection matrices. Because the diagonal 
entries of XA are the numbers of actors participating in each event, sum-
ming them and dividing by the number of events yields the mean, 

x

g
X .A i ii

g

,1∑
= =  In the example, PACs donated to a mean of (11/5) = 2.20 
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senatorial election campaigns. Likewise, summing the diagonal values of 
XE and dividing by the total number of events results in the mean number 

of actors at an event, 
x

h
X .i ii

h

E ,1∑
= =  In the example, mean number of PAC 

donations per senator was (11/4) = 2.75.
Density and Centrality in 2-Mode Networks. Density and centrality 

are important basic network properties that also apply to 2-mode networks. 
As discussed in Chapter 4, density measures reveal either the proportion of 
ties present in a binary graph or the mean value of the observed lines in a 
valued graph. Similarly, the interpretation of density for a 2-mode network 
depends on whether it is a binary or valued graph (Wasserman & Faust, 
1994, p. 316).

For a symmetric g × g coattendance matrix, XA, whose nondiagonal val-
ues are the number of events attended by each pair of actors, the density 
measure is the following:

D
X

g
i j

1
2

A i

g

j

g

ij
A

1 1∑ ∑
( ) ( )=

−
<= =  (5.7)

The numerator sums all the values in the upper triangle of the coattendance 
matrix (i.e., above the diagonal because the lower triangle values are identi-
cal). The diagonal values are excluded because we cannot consider an actor 
as attending an event with itself. The denominator is the total number of 
nonordered dyads, again excluding the diagonal. For a symmetric h × h 
coparticipation matrix, XE, whose nondiagonal values are the number of 
actors participating in each event, the density measure is the following:

D
X

h h
i j

1
2

E i

h

j

h

i j
E

1 ,∑ ∑
( ) ( )=

−
<=  (5.8)

In the example, DA = 11/10 = 1.10, meaning that pairs of PACs jointly 
donated to a mean of 1.10 senatorial election campaigns. From senatorial 
perspective, DE = 7/6 = 1.17, indicating that pairs of senators attracted con-
tributions from mean of 1.17 PACs. Because projection matrices may have 
cell values greater than 1, densities could be larger than 1.0. Consequently, 
each density value should be interpreted not as a proportion but as either 
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the average number of events two actors attended (DA) or the average num-
ber of actors present at two events (DE), respectively.

Social network analysts have studied centrality at the actor level and 
centralization at the graph level of analysis for decades (Freeman, 1979; 
Wasserman & Faust, 1994, chap. 3). We commented in Chapter 4 that actor 
centrality measures the importance or visibility of actors within a network. 
Analysts describe four major types of centrality: degree, closeness, 
betweenness, and eigenvector centrality. Degree centrality reflects the 
extent to which an actor is active in a network, closeness centrality meas-
ures the extent to which an actor is connected to other actors in a network 
via shortest paths, betweenness centrality captures the extent to which an 
actor mediates flows of information or resources between other actors in a 
network, and eigenvector centrality reflects the extent to which an actor is 
connected to other central actors in a network. Faust (1997) discussed 
application of these four centrality measures to affiliation networks, but 
space constraints allow us to cover only degree centrality in 2-mode 
networks.

Drawing on the general idea that degree centrality involves the total 
number of direct ties, actor degree centrality in an affiliation network is 
the total number of actor contacts that the ith actor has through its attend-
ance at all events, obtained by summing the ith row of the coattendance 
matrix, XA:

C a x i jD
A

i

j

g

ij
A

1
∑( ) ( )= ≠

=

 (5.9)

In the example, HD donated to the same senators as UPS, MS, SEU, and 
ANA, so its degree centrality is 4. The degree centralities of the other four 
PACs are 2 because they each funded the same campaigns as two other 
PACs. Verify these dyadic commonalities by visually inspecting Figure 5.8.

Likewise, an event’s degree centrality in an affiliation network is the 
total number of event contacts that the jth event has through the participa-
tion of all actors, obtained by summing the jth column of the coparticipa-
tion matrix, XE:

C e x i jD
E

i

j

h

ij
E

1
∑( ) ( )= ≠

=

 (5.10)

The degree centralities for the four senatorial campaigns are 2, 2, 3, and 1, 
respectively. Reid had the highest degree centrality because he received 
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contributions from HD, which also funded Rubio and McConnell, and from 
two PACs (SEU and ANA) that also donated to Sanders. In contrast, the 
Sanders campaign shared funding sources only with Reid.

Three-Mode Networks

The principles and procedures for analyzing 2-mode networks can be 
readily applied to 3-mode networks. A 3-mode network consists of rela-
tions among three distinct sets of entities. In a restricted 3-mode network, 
the nodes in two sets of entities may be connected only to one or more 
nodes in the third set, and none of the nodes within a set have links to one 
another. Entities may all be the same type (e.g., three types of organiza-
tions, such as political parties, electoral campaigns, and PACs) or each 
type of entity may differ (e.g., persons, groups, and events). Similarly, the 
relational contents connecting the entities may be the same or different. 
Ties could be directed from one entity to another; for example, donors 
give money to candidates. Or ties may be undirected; for instance, candi-
dates discuss election strategies with their advisors. The ties connecting 
different types of entities may constitute a hierarchy of authority (such as 
a military or corporate command structure) or the relations between enti-
ties may be nonhierarchical.

To describe a restricted 3-mode network, we’ll assume that actors partici-
pate in events and events result in products but no direct relations exist 
between actors and products. A restricted 3-mode network can be conceptu-
alized as a pair of 2-mode matrices: the first matrix A has actors connected 
to events (with order g × h) and the second matrix P has the same events 
linked to a set of products (with order h × i), where g, h, and i are integer 
numbers of actors, events, and products, respectively. Both 2-mode matrices 
can be transposed: the order of A′ is h × g and the order of P′ is i x h.

A 3-mode matrix can be constructed by combining the pair of 2-mode 
matrices and their transposes so that all entities appear in the rows and col-
umns. As shown schematically in Table 5.3, the 2-mode matrices and their 
transposes create a square matrix T whose order is (g + h + i) × (g + h + i). 
Matrix T has five submatrices of structural zeros, reflecting restrictions on 
the types of relations that cannot be ascertained (no intraentity relations and 
no direct relations between actors and products).

We expand the example by adding five products, congressional bills for 
which the senators cast votes in favor of or against becoming a law. The 
bills are repeal of Obamacare, Environmental Protection Agency regulation 
prohibition, Colombia trade agreement, debt limit increase, and nomination 
of Caitlin Halligan to the DC Court of Appeals. In the tripartite graph in 
Figure 5.9, a directed line from a senator to bill indicates a vote in favor of 
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passage, whereas the absence of a line means a vote against the bill. The 
first three bills were backed by both Republican senators, the last bill was 
supported by both Democrats, and only the bill to raise the national debt 
ceiling received votes from senators of both parties.

As discussed in Chapter 4, an important objective of many empirical 
network analyses is to identify subgroups of entities that jointly occupy 
structural positions in a network. Some of the methods for identifying sub-
groups in 1-mode networks can also be applied to bipartite and tripartite 
matrices, usually resulting in subgroups occupied by all types of entities. 
To illustrate, we conducted a faction analysis of the 3-mode example. 
Given the small number of entities, we decided to partition the data into 
two factions (Borgatti et al., 2013, pp. 191–195). A combinatorial optimiza-
tion algorithm called Tabu Search begins by arbitrarily assigning network 

Figure 5.9  Tripartite Graph of PAC Donations to Senatorial Election 
Campaigns and Senators’ Votes for Bills
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Table 5.3  Schematic of Tripartite Matrix T

Actors Events Products

Actors 0 A 0

Events A′ 0 E

Products 0 E′ 0
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entities to one of the hypothesized factions to maximize a fit criterion 
(Glover, 1989, 1990). That criterion is an empirical solution with an ideal 
clique structure where all within-group tie densities = 1.00 and all between-
group densities = 0.00. The algorithm then moves some entities to other 
factions, recalculates the fit, and continues until no further improvement in 
fit is possible. Unfortunately, combinatorial optimization procedures 
always generate a solution, even if the purported factions aren’t really 
cohesive subgroups as indicated by poor fit values. Borgatti et al. (2013, 
p. 192) advocated repeating the analysis “a number of times to see whether 
the final factions are the same or similar.”

In our example, the same factions emerged time after time because the 
cleavage is so clearly polarized. In Table 5.4, the permuted matrix shows 
that one faction has the two Democratic senators, the two PACs donating 
only to them, and both bills they voted for. The other faction consists of 
the two Republican senators, the three PACs funding them, and the three 
bills they supported. The two within-faction densities are both 1.00 (con-
nections that are not permissible, indicated by dashes, are ignored in cal-
culating the densities). The between-faction density is not zero but is very 
low (0.10) because HD gave funds to members of both factions and 

Table 5.4  Factions in Tripartite Network of PAC Donations to 
 Senatorial Election Campaigns and Senators’ Votes for Bills.

 1 1 1  1  1

   8 9 3  4  5  4       3  1  2  0  1  2  6  7 
  R S D S A H   H U M O C E R M
  ------------------------------------------
 8 Reid-D | - - 1 1 1 1 | 1 0 0 0 0 0 - - |
 9 Sanders-D | - - 1 1 1 1 | 0 0 0 0 0 0 - - |
 13 Debt | 1 1 - - - - | - - - - - - 0 1 |
 4 SEU | 1 1 - - - - | - - - - - - 0 0 |
 5 ANA | 1 1 - - - - | - - - - - - 0 0 |
 14 Halligan | 1 1 - - - - | - - - - - - 0 0 |
  ------------------------------------------
 3 HD | 1 0 - - - - | - - - - - - 1 1 |
 1 UPS | 0 0 - - - - | - - - - - - 1 1 |
 2 MS | 0 0 - - - - | - - - - - - 1 1 |
 10 Obamacare | 0 0 - - - - | - - - - - - 1 1 |
 11 Colombia | 0 0 - - - - | - - - - - - 1 1 |
 12 EPA | 0 0 - - - - | - - - - - - 1 1 |
 6 Rubio-R | - - 0 0 0 0 | 1 1 1 1 1 1 - - |
 7 McConnell-R | - - 1 0 0 0 | 1 1 1 1 1 1 - - |
  ------------------------------------------
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Republican senator McConnell voted for the debt ceiling bill supported by 
the Democratic faction.

5.4. Community Detection

In the early 21st century, physicists, biologists, computer scientists, and 
mathematicians grew increasingly involved in network analysis and 
developed many techniques for finding positions under the general 
rubric of community detection (Freeman, 2011). Less “well-posed” than 
graph partitioning methods, community detection seeks to find the 
“natural division” of a network into subsets of nodes, regardless of the 
number or size of groups, having many lines within groups and few 
lines between groups (Newman, 2010). Mark Newman (2006a) argued 
that community structures correspond to a statistical arrangement of 
edges (lines), as measured by the modularity of a network partition (see 
also Girvan & Newman, 2002; Newman, 2003; Newman, 2006b). “The 
modularity is, up to a multiplicative constant, the number of edges fall-
ing within groups minus the expected number in an equivalent network 
with edges placed at random” (Newman, 2006a, p. 2). If the observed 
number of lines is no greater than random, modularity is zero, and thus 
network partitioning into meaningful subgraphs is not possible. As 
modularity approaches a maximum of one, a network is characterized 
by a strong community structure with higher-than-random intragroup 
ties and sparse intergroup connections. Newman  reformulated the opti-
mal modularity method in terms of the “eigenvectors of a new charac-
teristic matrix for the network, which we call the modularity matrix, and . . .  
this reformulation leads to a spectral algorithm for community detec-
tion” (2006a, p.1).

During the past decade, numerous community detection algorithms 
based on diverse assumptions proliferated, a plethora that threatened to 
overwhelm the capacity of empirical researchers to select practical tools 
appropriate to their tasks (Fortunato, 2010; Lancichinetti & Fortunato, 
2009; Leskovec, Lang, & Mahoney, 2010). Orman, Labatut, and Cherifi 
(2011) compared 11 community detection algorithms applied to artificial 
network datasets. They used a normalized information measure to assess 
the extent of similarity between observed and estimated community struc-
tures. They concluded that network size and average proportion of intra-
community to intercommunity ties had the greatest impacts on algorithm 
performances. The most consistent method was by Infomap (a 
 compression-based algorithm), followed by Walktrap (node-similarity 
based on random walks), MarkovCluster (diffusion), SpinGlass (node-
similarity), and Louvain (modularity). In a subsequent article, Orman, 
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Labatut, and Cherifi (2012) evaluated a representative set of eight com-
munity detection algorithms by applying both traditional measures of 
community structure as a partition (sets of nodes) and measures of com-
munity topological properties (e.g., density, distance, transitivity) to arti-
ficially generated realistic networks. Finding no equivalence between the 
two approaches, they concluded that “high performance does not neces-
sarily correspond to correct topological properties, and vice-versa” (p. 1). 
The analysts recommended applying both complementary approaches to 
perform a thorough assessment.

The Louvain method rapidly became “one of the most popular algo-
rithms for maximizing modularity” (Bhowmick & Srinivasan, 2013, p. 111) 
due to its ability to detect community partitions in networks with millions 
of nodes and billions of links in a fast and efficient manner. Computer sci-
entists at the Université Catholique de Louvain in Belgium developed an 
algorithm to handle the resolution limit problem: the inability to detect 
smaller communities in large networks (Blondel, Guillaume, Lambiotte, & 
Lefebvre, 2008, 2011). Modularity optimization in the Louvain method 
proceeds in two iterative steps. First, the algorithm finds small communi-
ties by optimizing local modularity. Second, it aggregates nodes belonging 
to the same community and constructs a new network with communities as 
the nodes. These steps repeat until maximum modularity is achieved and a 
hierarchy of communities emerges. Empirical applications of the Louvain 
method included mobile phone networks (Blondel, Krings, & Thomas, 
2010; Walsh & Pozdnoukhov, 2011), airline transportation networks 
 (Chopade & Bikdah, 2015; Gegov, Postorino, Atherton, & Gobet, 2013), 
political networks (Porter et al., 2005), and innumerable analyses of Twitter 
networks (Grabowicz, Asco, Moro, Pujol, & Eguiluz, 2012; Labatut, 
Dugué, & Perez, 2014).

For 2-mode networks, Larremore et al. (2014) formulated an approach to 
community detection without resorting to collapsing the data into 1-mode 
projections. Projections discard information and create networks composed 
of overlapping cliques that violate assumptions underlying community 
detection methods, which could result in finding strong community struc-
tures where none exist. They proposed a bipartite stochastic blockmodel 
method that can “efficiently and accurately find community structure in 
synthetic bipartite networks with known structure and in real-world bipar-
tite networks with unknown structure.”

Core/Periphery Models. A core/periphery structure consists of “two 
classes of nodes, namely a cohesive subgraph (the core) in which actors are 
connected to each other in some maximal sense and a class of actors that 
are more loosely connected to the cohesive subgraph but lack maximal 
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cohesion with the core” (Borgatti & Everett, 1999). This idealized pattern 
generalizes Freeman’s (1979) maximally centralized graph, a star-shaped 
diagram in which one node (the center) has direct ties to all g – 1 other 
nodes, which are unconnected to one another. A core/periphery model sim-
ply adds other entities to the graph’s center and connects them to one 
another and to the periphery entities. However, such a pure core/periphery 
structure is very unlikely in an empirical network, so Borgatti and Everett 
proposed approximations to the ideal pattern, where the members of the 
core 1-block may have less than complete connections among themselves 
and the 0-blocks may contain a few links. Borgatti, Everett, and Johnson 
(2013, pp. 223–229) described an algorithm for detecting core/periphery 
structures in empirical networks by partitioning a binary matrix into two 
positions that maximize a fit statistic.

Two core/periphery options are categorical (discrete) models and con-
tinuous models, with measures of model fit based on the correlation 
between the data matrix and an ideal block model. The continuous model 
conceptualizes the probability of a tie between two entities as a function 
of product of each node’s “coreness,” that is, the closeness of the core to 
each entity. Its algorithm calculates the extent to which a network has a 
core/periphery structure for different sizes of the core. The results of an 
empirical core/periphery analysis may be unstable. Analysts should take 
care when using the routines because alternative partitions may produce 
equally good fits. To test for solution robustness, Borgatti and Everett 
advocated rerunning the analyses several times from different starting 
configurations. A good agreement among those alternative outcomes indi-
cates a clear split of the network into core and peripheral positions.

To fit categorical core/periphery models to 2-mode networks, Everett 
and Borgatti (2013) advocated a dual-projection method. First, each of the 
two 1-mode projections—created by multiplying a 2-mode matrix and its 
transpose—is separately partitioned into core and periphery subsets. Then, 
the dual partition assignments are applied simultaneously to the corre-
sponding rows and columns of the original 2-mode matrix. The result is a 
2-mode core/periphery model and its associated 2 × 2 density and image 
matrices. Borgatti et al. (2013, pp. 243–244) discussed how to analyze a 
2-mode dataset by constructing two 1-mode projections for each type of 
entity, finding the continuous core/periphery model separately for each 
projection, and then applying the combined results to the original affiliation 
matrix.

Affiliated Graph Model. The AGM approach to community detection 
conceptualizes communities as overlapping tiles, analogous to shingles on 
the roof of a house.
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Thus, just as the overlap of two tiles leads to a higher tile height in 
the overlapping area, the overlap of two communities leads to higher 
density of edges in the overlap. . . . The composition of many overlap-
ping communities then gives rise to the global structure of the network. 
(Yang & Leskovec, 2014, p. 1894)

AGM measures the likelihood of a community affiliation graph and identi-
fies the most likely community memberships of every entity by fitting the 
AGM to an observed network. It parameterizes each community A with a 
single probability (pA). Two nodes that belong to community A form a con-
nection (edge) with probability A in the underlying network. Through an 
iterative search, each community generates links among its members inde-
pendently, with the proviso that duplicate connections are not included. 
Pairs of nodes belonging to multiple communities “become connected in 
the underlying network with a higher probability, since for each shared 
community the nodes are given an independent chance of forming an edge” 
(p. 1895). The algorithm combines “a maximum-likelihood approach with 
convex optimization and a Monte Carlo sampling algorithm on the space of 
community affiliation graphs.” The process is an efficient search that iden-
tifies the community affiliations of nodes, giving the observed community 
affiliation graph the highest likelihood. The program allows analysts to 
specify the number of communities to identify and to control the probabil-
ity of links between nodes not sharing any communities. Alternatively, the 
program can derive those parameters empirically.

AGM was developed by Jure Leskovec and colleagues and is available 
on the Stanford Network Analysis Platform (Leskovec & Sosič, 2018). 
Applied to diverse datasets, the algorithm revealed how overlapping com-
munities unify the modularity and core-periphery organizing principles in 
complex social and biological networks (Yang & Leskovec, 2014; Yang, 
McAuley, & Leskovec, 2014). The analysts demonstrated that dense net-
work cores form as an intersection of multiple overlapping communities, 
and all nodes belonging to multiple communities also reside in the net-
work’s core community.

5.5. Exponential Random Graph Models (ERGMs)

Most social network analytic methods are descriptive, depicting structures 
and processes in relational data. Indeed, those descriptive measures, along 
with many powerful visualization tools, such as MDS and hierarchical 
clustering, give social network analysis its unique advantages for commu-
nicating complex social relations to general audiences through simple and 
vivid graphs. However, to social network researchers, mere description of 
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social networks is only a first step. They are keenly interested in what lies 
beneath network patterns, what causes structures to emerge and to sustain 
or change. In parallel to descriptive and inferential statistics, social network 
analysis also encompasses descriptive and explanatory components. A 
major development in the explanatory branch is exponential random graph 
modeling (ERGM), a family of probability distributions on graphs.

We start with the very basic question: why can’t we directly apply some 
basic statistical procedures to social network data? After all, before the 
advent of ERGM, many scholars estimated multivariate regression equations 
with network data. Especially at the dyadic level, logistic regression is used 
to explain the presence or absence of dichotomous network ties between 
pairs of actors, using such predictors as similarity/dissimilarity of a dyad’s 
genders, races, nationalities, and other variables. Unfortunately, such appli-
cations confront two issues. (1) It violates the necessary assumption in mul-
tivariate regression that cases in the sample are selected independently of one 
another. In network data, cases and dyads are interdependent, not independ-
ent. For example, Ivan and Katya are more likely to be friends than any 
random dyad if they are both friends with Vlad. (2) Conventional inferential 
statistics assume that a sample is selected from the population with a known 
a priori probability. With appropriate weights, if needed, such a sample is 
representative of the population from which it was drawn. Further, inference 
about cause and effect is not disrupted by processes related to sample selec-
tion, as it was random. However, other than for ego-centered networks, net-
work data are rarely random sampled; rather, network data comprise the 
entire population or the sampling distribution is unknown (Yang, Keller, & 
Zheng, 2016). Although one can still conduct conventional inferential statis-
tical tests with network data, interpretations of the results is not equivalent to 
analyses of randomly sampled data. Simply put, statistically, inferences from 
network data do not give us much assurance due to their nonrandom sam-
pling procedures. Alternative innovative methods of inferential statistical 
methods were developed to deal with the situation.

One way to circumvent the issues of interdependency and nonrandom 
sampling for inferential statistics is through computer simulation. David 
Krackhardt (1987) used simulation to imitate the network sampling distri-
butions. The quadratic assignment procedure (QAP) calculates correlations 
or regressions using two or more matrices of network data. Let’s assume 
that two observed matrices—for example, friendship and  advising—have 
an observed correlation coefficient of r = 0.35. QAP randomly permutes the 
rows and columns of the two matrices, using the same permutation for both, 
then recalculates the correlation. The process is repeated thousands of times 
(or more, depending on the analyst’s demand), generating an empirical 
sampling distribution for the correlation coefficient. A probability (p) is 
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estimated based on the proportion of coefficients in the sampling distribu-
tion that is equal to or larger than 0.35, the observed correlation. If p < .05, 
then the correlation is unlikely to have occurred by chance. Conversely, if 
p > .05, then the observed coefficient is likely to occur by chance. The 
computed p value differs from the p value in parametric statistics. It doesn’t 
correct or change the fact that the sample is not randomly selected. It just 
implies that the likelihood that the two matrices are independent of each 
other is fairly low or that the two matrices are likely correlated.

The ERGM follows the similar logic of computer simulation and infer-
ential statistics as QAP. But, ERGM simulation is much more complex and 
more computationally intensive and it had a developmental path that began 
in the 1950s. We describe that path in the following subsections about the 
origins of the model, the model itself, and the explanatory framework of the 
model. We skip such topics as algorithms, simulations, and the estimation 
process, referring interested readers to more focused books on ERGM 
(Harris, 2014; Lusher, Koskinen, & Robins, 2013).

Origins of ERGM. Erdős and Rényi (1959) developed a simple random 
graph model to describe observations of certain network graphs with prob-
ability terms. The simple random graph model did a poor job of capturing 
the observed network structure because it assumes that network ties are 
formed randomly and independently of one another (Harris, 2014). How-
ever, the simple random graph model served as a foundation leading to 
more complex models.

Random graph models witnessed major developments in the 1980s. Hol-
land and Leinhardt (1981) developed the P1 model to account for two char-
acteristics commonly observed in directed binary graphs: (1) the network 
has large variation in nodal indegrees and (2) reciprocity occurs more com-
monly than expected. Their model explicitly accounts for reciprocation and 
differential attractiveness, using those features to explain the probability of 
an observed network. Frank and Strauss (1986) introduced the dyadic 
dependence model (dubbed the P2 model), which applies Markov depend-
ence to examine dyadic dependence. For example, the model accounts for 
the tendency for A to know C if both are tied to B. However, although the 
P2 model used structural characteristics, it did not include the individual 
network actor’s characteristics. Such restriction was later relaxed with Was-
serman and Pattison’s (1996) work on a model called p*. Compared with 
previous models, p* accounts for a variety of structural features such as 
reciprocity, homophily, transitivity, and nonuniform degree distributions. In 
addition, it also allows researchers to examine the effects of network actor 
attributes, such as gender, race, education, and age.

The ERGM arose from developments on three fronts: (1) social scientists 
struggling with ways to account for observed network data (they thus 
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identified problems to be solved), (2) research advances in graph theory, 
which produced mathematical solutions to explanatory models of social 
network data, and (3) advances in computer algorithms that allowed 
researchers to implement mathematical solutions with suitable algorithms 
(in particular, the Markov chain Monte Carlo algorithm). Three well-
known softwares emerged to help researchers estimate ERGM models: R, 
Siena, and PNet.

The ERGM. Several distinguishable features mark ERGM as superior 
to its predecessors. First, the model provides definitive answers to the 
importance of each explanatory variable with a parameterized model. Sec-
ond, the model simultaneously accounts for three types of explanatory fac-
tors affecting the creation or change of network ties: the endogenous 
network configurations (density, dependency, reciprocity, and transitivity, 
etc.), the actor attributes (age, gender, race, etc.), and other environmental 
covariates that are exogenous. Third, the model overcomes the problem of 
degeneracy by achieving convergence on a solution. Simply put, the model 
ensures that parameters reach their final values in a convergent model. The 
following formula shows the ERGM in a generalized mathematical formu-
lation (Lusher et al., 2013, p. 9):

P G ce
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ERGM tries to explain the emergence of network ties with a sum of network 
statistics weighted by parameters inside an exponentiated term. Among 
those network statistics, the local endogenous network configurations are 
important factors to include in accounting for the presence/absence of binary 
ties in an observed network. The dependent matrix in many ERGMs is 
binary, directed, or undirected, with valued graphs only entering exogenous 
explanatory variables. But, recently developed generalized exponential ran-
dom graph models (GERGMs), which can accommodate continuous-valued 
relations, greatly expand the types of social network data subjected to statis-
tical analysis (e.g., Desmarais & Cranmer, 2012).

ERGM usually applies to a whole network with a finite number of nodes. 
Looking forward, several research programs aim to extend ERGM, such as 
longitudinal ERGM, bipartite ERGM, and multilevel ERGM. Regarding Big 
Data, although ERGM can handle networks with 1000 to 2000 nodes, going 
beyond a couple of thousands can be challenging. This constraint occurs 
because an ERGM sampling distribution is very computationally expensive. 
For example, the number of graphs that ERGM needs to create for simulating 
the sampling distribution of an observed graph with n nodes is 2n(n–1)/2 (New-
man, 2010, p. 567). With a mere 6 nodes, the simulations would require 
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32,768 (215 = 32,768) simple graphs to be generated. Perhaps with advances 
in fast computer processors, fast algorithms, and parallel computing, future 
ERGM can handle Big Data graphs with millions of nodes.

The Exploratory Framework of ERGM. One question researchers 
often ask is what network configurations should be included in a model? 
The answer lies in the researchers’ objective/research topic, which means 
researchers must decide for themselves about what to include and what to 
exclude. However, Figure 5.10 shows the basic network configurations 
(undirected graphs on the left; directed networks on the right) that many 
researchers commonly consider for inclusion in their ERGMs. Including 
those endogenous network configurations allows researchers to assess the 
effects of those network characteristics on the emergence of network ties in 
the observed network.

A second dimension of explanatory factors in an ERGM is the individual 
attributes, which are familiar variables, such as a person’s race, gender, age, 
occupation, attitudes, and beliefs. Those traditional independent variables 
in conventional social statistics are also present in ERGMs and permit 
many important social relations to be examined. For example, the homoph-
ily principle stipulates that people are attracted to similar others. Gender, 
race, age, education, religion, or sexual orientation can be used to measure 
various homophilies that may influence network tie formation. Analysts 
should distinguish between individual attributes that are exogenous and 
local network configurations that are endogenous. Individual attributes may 
affect tie formation, along with some purely structural effects. To look at 
only the individual effects without examining the structural influences will 
likely cause overestimation of individual effects. For example, a friendship 
between two female colleagues may be affected by a structural tendency 
toward reciprocity. Without accounting for such structural proclivities, the 
effects of their gender similarity are likely to be overestimated, attributing 
their connection to having the same gender.

A third dimension of ERGM explanatory variables is environmental. Envi-
ronmental covariates capture contextual characteristics, operating much like 
independent control variables in conventional multiple regression models. For 
example, when examining tie formation in a formal organization, the formal 
job authority relations among employees in the organizational hierarchy must 
be considered when a researcher investigates the formation of informal ties. 
That way, the researcher can distinguish between ties that are mandated by job 
descriptions (subordinates must report to supervisors) and those which form 
spontaneously (through mutual attraction or shared interests).

A final dimension of ERGM variables is temporal. As we remarked in 
Chapter 2.1, the proliferation of longitudinal network datasets fosters the 
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invention of new statistical packages for analyzing them. Important 
advances include stochastic actor-oriented models, such as SIENA and 
RSiena (e.g., Niezink, Snijders, & van Duijn, 2019; Stadtfeld, Snijders, 
Steglich, & van Duijn, 2018), and temporal exponential random graph 
models (TERGMs) (e.g., Leifeld & Cranmer, 2019; Leifeld, Cranmer, & 
Desmarais, 2019). These models are sufficiently advanced that we do not 
attempt to describe them here.

Figure 5.10  Endogenous Network Configurations
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5.6. Future Directions in Network Analysis

Social network analysis is an expanding multidisciplinary field that con-
tinually inspires new projects, generates methodological innovations, and 
poses challenges for collaborative efforts. In this concluding section, we 
speculate about some future directions for social network analysis.

Social network analysts model networking activities around recurring 
social events, many of which take place within certain geospatial confines. 
Routine social interactions are extensively location-based. For example, 
neighbors living close by often pay social visits to one another, discuss 
neighborhood issues, or exchange information and gifts. But neighbors 
residing on more distant blocks rarely interact. Colleagues whose offices 
are right next door commonly engage in daily greetings and casual conver-
sations, which sometimes evolve into more serious topics such as office 
politics. But coworkers located on different floors seldom visit. More 
importantly, the geospatial sphere can be confounded with social causation. 
For example, the chances of becoming obese are probabilistically linked to 
the weights of one’s social contacts (Christakis & Fowler, 2007), whereas 
the odds of obesity are also linked to geospatial access to pedestrian infra-
structure or fitness facilities (Andris, 2016). In the past, social network 
analysts rarely paid much attention to geospatial characteristics, which they 
treated as an implicit factor under overarching social forces. Now, with 
both the social network analysis and Geographic Information System (GIS) 
in their respective mature stages, a communication or collaboration 
between the two sides could be groundbreaking—blazing new trails, 
enriching and extending both domains of existing knowledge. For example, 
sociologists and geographers could jointly leverage the constraints of social 
distance and geospatial distance to explain the formation, evolution, decay, 
and dissolution of dyadic ties.

A second area where social network researchers still see great growth 
potential is social media Big Data. Computer engineers have already made 
much progress with scraping and mining online social media network data, 
such as Facebook, Twitter, and LinkedIn. Currently, the task of data acqui-
sition of massive online social media network data is less daunting: 
researchers with necessary skillsets can develop their own crawlers, but, for 
those who are not technologically savvy, commercial packages (often for a 
fee) are readily available to help with data scraping from popular social 
networking sites. Between building one’s own crawlers and paying to use 
commercial data mining tools, data scientists developed a third option: 
application programming interface (API) for data scraping. With a few 
lines of code, API can scrape large amount of online social media data 
within a short time (adams, 2020). One crucial question is what is the 
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quality of data scraped online? For example, one study reported that data 
available via API scraping may be biased in systematic and unknown ways 
from the potential population of users (Hargittai, 2018). Another showed 
some ways that the API process itself makes data available to researchers 
to produce additional unknown biases (González-Bailón, Wang, Rivero, 
Borge-Holthoefer, & Moreno, 2014). Traditional inferential statistical 
methods were not developed to deal with assessing Big Data collected from 
online social media. We should anticipate future collaborations among 
social scientists, computer and information scientists, and mathematicians 
and statisticians to develop innovative methods to assess and improve data 
quality.

Another fruitful field for future development is the application of infer-
ential statistics to social network analysis. We refer to statistical analyses of 
whole network data because conventional t-tests and F-tests apply to ego-
net data (e.g., Marsden, 2011). The past decade saw substantial progress in 
explanatory models of ERGM. But, for many network methods that are 
descriptive, few inferential statistics are available to understand beyond 
simply describing a specific network. In other words, we have a poor 
understanding of how well a particular whole network dataset is related to 
other similar networks or the general population. Although some network 
analysts investigated sampling of nodes and ties (Frank, 2011), much more 
research is needed to improve knowledge of how whole network data relate 
to other network structures or the general population. Fortunately, some 
statisticians appear to be on the case (e.g., Crane & Dempsey, 2016; 
 Dempsey, Oselio, & Hero, 2019).

We believe the network topics described previously have great growth 
potential or urgently need more research effort. They are certainly not an 
exhaustive list of future frontiers. For example, new methods of multiplex 
network analysis deserve greater attention. Teasing out the complex inter-
connections between multiple layers (node, dyads, triads, cliques, and 
whole network) and multiple relational contents (friendship, advice- 
seeking, information exchange, etc.) presents numerous challenges and 
opportunities, for example, how to visualize network structures in three 
dimensions. Longitudinal network analysis adds a fourth dimension: how 
to track changes in a 3-D network structure over time. With the prolifera-
tion of longitudinal network methods (Snijders, van de Bunt, & Steglich, 
2010), many researchers will obtain fruitful results by applying these inno-
vations to longitudinal social network datasets that are increasingly avail-
able. By combining longitudinal data and ERGM, social network scholars 
will be in a better position to address the issue of causality that has chal-
lenged network research for years. Indeed, although similarity breeds con-
nections, connectivity also induces similarity. Cause-and-effect ambiguity 
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is omnipresent in most social network studies. Thus, smokers hang together 
outdoors due to their shared vice—network as dependent variable. Con-
versely, teens start smoking when their friends do—network as independent 
variable. With longitudinal whole network data, we can establish the time 
order of changes among interdependent variables. ERGM can identify and 
control for confounding factors, covariance, and endogenous network pro-
cesses. Working in tandem, causality in dynamic networks can be inferred 
from time order, probability values, and elimination of spuriousness.

We concur with adams (2020) that social network analysts should pay 
greater attention to the substances flowing through network ties and their 
impacts on social actors. We envision fruitful collaborations among social 
network, social capital, and social resource scholars. After all, social 
 network analysis is not only about formal structures and methodologies 
but also about the effects and consequences of social networks for social 
actors. More importantly, between structure/methodology and substantive 
contents, the relationship is bilateral: we easily envision how the advance-
ment of network methodologies improves knowledge of substantive 
issues. In turn, substantive investigations also present challenges, inspir-
ing innovative ways to improve social network methodology. We look 
forward to social network analysis continuing to grow and mature in the 
years to come.
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APPENDIX

Social Network Analysis Software Packages

In this book, we illustrate various social network analysis methods and 
visualizations with UCINET, developed by Borgatti, Everett, and Freeman 
(2002). The biggest advantage of UCINET is its user-friendly interface, 
which enables point-and-click menus to command a wide variety of basic 
and advanced network analytics. New users do not need a long time to learn 
how to command the software. However, UCINET is not created to deal 
with very large social network datasets, which is increasingly crucial in 
today’s data science and data driven era. The majority of UCINET’s ana-
lytical methods are descriptive, leaving out important statistical methods 
such as exponential random graph modeling (ERGM). Here, we summarize 
a half-dozen social network analysis softwares that users may explore as 
alternatives or supplements to UCINET.

1. R is a programming language and free software environment for sta-
tistical computing and graphics supported by the R Foundation for Statisti-
cal Computing (www.r-project.org/about.html). It is written primarily in 
programming languages such as C, C++, Fortran, Java, and R itself. R 
capabilities are extended through user-created packages, which allow spe-
cialized statistical techniques, graphical devices, import/export capabilities, 
reporting tools, etc. The biggest advantages of R for network analysts are 
(1) it is free of charge and (2) it is quite powerful, capable of handling very 
large datasets. However, R has a rather steep learning curve, particularly for 
new users who are not computer command savvy. Its open-source approach 
also allows developers to add or to delete/modify routines and methods, 
which may frustrate users trying to stay abreast of the software. Social 
network analysis functions and methods available in R, in particular, the 
“igraph” package (igraph.org/r), support fast handling of large network data 
with millions of nodes and fast implementation of network algorithms to 
analyze nodes, ties, and graphs. R is available for Windows PC or Apple’s 
Mac operating environments. Social network users may ask: when should 
we forgo the ease of using UCINET in favor of computer command-based 
R? The answer is, when you have a large dataset, containing more than 
10,000 nodes, for example, and/or you want to estimate an explanatory 
network model such as ERGM. R provides ready solutions to those chal-
lenges. However, if your network dataset has tens or even hundreds of 
nodes, and you need mostly descriptive analyses, then UCINET likely 
provides satisfactory solutions.
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2. SIENA stands for Simulation Investigation for Empirical Network 
Analysis. This free program uses an actor-oriented model to analyze longi-
tudinal data, that is, where a whole network has a repeated measure. SIENA 
was developed by Tom Snijders, Christian Steglich, and their associates 
(www.stats.ox.ac.uk/~snijders/siena). The early version, SIENA 3.0, also 
implemented ERGM and is still available but not maintained. The succes-
sor program, RSiena, is integrated in the package of the R statistical sys-
tem, as is a more experimental version, RSiena/Test. Although both 
programs perform statistical analysis of changes in longitudinal networks 
using computer simulations, neither estimates ERGMs.

3. PNet is a specialty software that handles ERGM and a variety of meth-
ods related to ERGM. Developers behind PNet are Dean Lusher and associ-
ates at Swinburne University of Technology in Australia (www 
.melnet.org.au/ergm). An advantage of PNet is its solution to one-mode as 
well as two-mode and two-level ERGMs of network data. Although PNet 
was developed to deal with the one-mode network data, MPNet handles two-
mode and two-level ERGMs. The team also developed XPNet for bivariate 
network analysis. The research team published a book about ERGM in gen-
eral and PNet in particular (Lusher, Koskinen, & Robins, 2012).

4. Gephi is an open visualization program initially developed by stu-
dents of the University of Technology of Compiègne in France (Grandjean, 
2015) (gephi.org). It is widely used in academics of such disciplines as 
history, journalism, and political science as well as such social media prac-
titioners as Twitter. Although capable of conducting basic social network 
analysis methods, Gephi is famous for its capability to map large data of 
online social networking activities.

5. Pajek, which means “spider” in Slovenian, was developed by 
Vladimir Batagelj and Andrej Mrvar at the University of Ljubljana in Slo-
venia. Like Gephi, Pajek is renowned for its ability to visualize very large 
social networks: it can process over one billion nodes. Pajek has programs 
to detect communities, analyze signed networks, and facilitate genealogy 
and citation research. And, like PNet, Pajek’s developers published books 
to introduce basic social network analysis methods and their software (De 
Nooy, Mrvar, & Batagelj, 2018).

6. NodeXL stands for Network Overview Discovery and Exploration for 
Excel. The package was developed by an interdisciplinary team led by Ben 
Shneiderman and Marc Smith. NodeXL is designed specifically to mine data 
from popular social media network sites such as Twitter and Facebook. Research-
ers also use NodeXL to process and to analyze data from WWW Hyperlink, 
Flickr, Youtube, and Wiki networks (Hansen, Shneiderman, & Smith, 2011).
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